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Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation 
technique that can be used as one of the adjunctive treatment techniques for 
neurological recovery after stroke. Animal studies have shown that TMS treatment 
of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct 
volume and improved neurological dysfunction in model rats. In addition, clinical 
case reports have also shown that TMS treatment has positive neuroprotective 
effects in stroke patients, improving a variety of post-stroke neurological deficits 
such as motor function, swallowing, cognitive function, speech function, central 
post-stroke pain, spasticity, and other post-stroke sequelae. However, even 
though numerous studies have shown a neuroprotective effect of TMS in stroke 
patients, its possible neuroprotective mechanism is not clear. Therefore, in this 
review, we describe the potential mechanisms of TMS to improve neurological 
function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, 
and anti-apoptosis, and provide insight into the current clinical application of 
TMS in multiple neurological dysfunctions in stroke. Finally, some of the current 
challenges faced by TMS are summarized and some suggestions for its future 
research directions are made.
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Literature search and methods

We retrieved a large amount of literature from Web of Science, Science, SCI-hub, Google 
Scholar, Pubmed and other databases to search for keywords such as stroke, ischemic stroke, 
cerebrovascular accident, noninvasive brain stimulation technique (NIBS), transcranial 
magnetic stimulation (TMS), repetitive transcranial magnetic stimulation, single pulse 
transcranial magnetic stimulation (spTMS), paired pulsed transcranial magnetic stimulation 
(ppTMS), theta burst repetitive TMS (TBS), interhemispheric inhibition, cerebral ischemia–
reperfusion injury (CIRI), neurotransmitters, excitatory neurotransmitters, glutamate, brain-
derived neurotrophic factor (BDNF), Ca2+, neurogenesis, blood–brain barrier (BBB), astrocytes, 
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microglia, oxidative stress injury, apoptosis, upper limb function, 
lower extremity function, speech, swallowing, cognition, post-stroke 
depression, spasticity, central post-stroke pain, adverse effects of TMS, 
and epilepsy, and kicked out studies that reported only protocols, trials 
that had not yet been completed, and caseloads of less than 8. A total 
of 136 randomized controlled trials, 23 experimental basic studies, 
and 5 meta-analyses were finally included (see Figure 1 for details).

Introduction

Stroke is a cerebrovascular disease of the middle-aged and elderly 
due to impaired cerebral blood flow circulation leading to tissue 
damage. With the economic and social development of countries, the 
occurrence of stroke is becoming younger and younger. Stroke 
includes two types of stroke: ischemic and hemorrhagic stroke, 
ischemic stroke accounts for 87% of all strokes and is characterized by 
high morbidity, disability and mortality, and is the leading cause of 
disability and death induced by human diseases [NCD Risk Factor 
Collaboration (NCD-RisC), 2021]. According to stroke epidemiology 
in 2020, the number of stroke patients worldwide is expected to 
increase by about 30 million per year, which will place a heavy burden 
on the global society and economy (The Lancet Neurology, 2021). 

After ischemic stroke, the key treatment strategy to save damaged 
brain tissue is to achieve cerebral blood flow recanalization. 
Commonly used treatments include intravenous thrombolysis 
(Higashida et al., 2003), endovascular therapy (Chen C. J. et al., 2015) 
and bridging therapy (Albuquerque, 2014), all of which are reperfusion 
therapies based on thrombolysis and thrombus retrieval as a clinical 
tool to mitigate further neurological deterioration in stroke patients 
by salvaging the semidark zone tissue. However, due to the strict time 
window for cerebral blood flow reperfusion therapy, only about 15% 
of stroke patients are able to achieve cerebral blood flow recanalization 
(Wahlgren et al., 2016). Although the time window for thrombolytic 
therapy in stroke patients has been extended to 24 h in recent years 
(Ragoschke-Schumm and Walter, 2018), reperfusion therapy still faces 
great challenges and risks and may even further aggravate neurological 
deficits in stroke patients, such as neurological disorders in cognition 
(Delavaran et al., 2017), speech (Schumacher et al., 2019), swallowing 
(Sreedharan et al., 2022), and sensorimotor function (D'Imperio et al., 
2021). Therefore, with the trend of increasing stroke incidence year by 
year, it is extremely necessary to propose a new adjuvant therapy to 
improve neurological dysfunction and enhance activities of daily 
living in stroke patients.

TMS is a non-invasive neurostimulation technique that is painless, 
non-invasive and needs to be used while the patient is awake, and 
consists of two main components: the main unit and the treatment cap 
or probe (with coils). During treatment, the probe is placed on the 
cerebral cortex to be  stimulated and an electric current is passed 
through the coil to generate a magnetic field, followed by an induced 
current that affects the cerebral cortex, thus achieving a transient 
enhancement or suppression of cortical neuroexcitability (Kobayashi 
and Pascual-Leone, 2003; Rossini and Rossi, 2007; Kesikburun, 2022). 
TMS has been reported to have neuroprotective effects in a variety of 
neurological disorders, such as Alzheimer’s disease (Mimura et al., 
2021), Parkinson’s (Chen and Chen, 2019), multiple sclerosis (Aloizou 
et  al., 2021), depression (Toth et  al., 2022), vascular dementia 
(Nardone et al., 2011), and stroke (Tosun et al., 2017). Some studies 
have shown that TMS combined with a variety of rehabilitation 
treatments can significantly reduce neurological dysfunction, improve 
the ability to perform activities of daily living, and improve the quality 
of life of stroke patients (Dionísio et al., 2021; Hoonhorst et al., 2021; 
Zong et al., 2022). This suggests that TMS is a feasible adjunctive 
treatment for stroke.

There are differences in the site and timing of TMS stimulation for 
different dysfunctions in stroke. Currently, the commonly used 
stimulation sites in stroke are primary motor cortex (M1), left 
dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus, 
inferior frontal gyrus, and secondary somatosensory cortex (S2) (Lee 
et  al., 2022). In addition, there are brain areas that are used as 
stimulation sites according to their functional counterparts. Among 
these stimulation sites, the primary motor cortex is by far the most 
commonly used stimulation site, presumably because M1 is the central 
regulatory point for motor control and functional decision making in 
the body (Lee et  al., 2022); second, M1 is a multi-overlapping, 
multifunctional cortical area involved in multiple functions such as 
motor, cognitive, speech, and swallowing. Therefore, for stroke, a 
multifunctional disorder neurological disease, M1 is one of the 
common stimulation targets irreplaceable for TMS treatment of stroke 
disease. In addition, the duration of TMS stimulation time varies, and 
the determination of its treatment time is related to the acute and 

FIGURE 1

Flow chart of literature search.
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chronic stage of the disease, its severity, the patient’s tolerance level, 
and the treatment goal. However, although TMS has been widely used 
to improve neurological dysfunction after stroke, its potential 
mechanisms, optimal stimulation modality, site, frequency, and 
duration to promote neural repair are not clear and need to be further 
explored. Therefore, this review will summarize the potential 
mechanisms of TMS to improve post-stroke neurological function, 
review the relevant clinical applications of TMS in stroke patients, and 
summarize the current risks and challenges that remain with TMS.

Classification of transcranial magnetic 
stimulation

TMS is not only a therapeutic tool for many neurological 
disorders, but also a common screening or diagnostic tool. When it is 
applied to the motor cortex of the brain, the target cortical muscles 
produce corresponding motor evoked potentials (MEP), and the MEP 
can be recorded in real time with surface electromyography (EMG) to 
determine the continuity and integrity of motor neural pathways. In 
addition, the EEG values recorded in combination with EEG are real-
time readings of TMS-induced changes in cortical excitability. Thus, 
TMS can be  used as a test tool to record changes in cortical 
neurological function and brain dynamics. Currently, TMS is often 
divided into three forms: single-pulse TMS (spTMS) (Henriette et al., 
2022), paired-pulse TMS (ppTMS) (Du et al., 2014) and repetitive 
TMS (rTMS) (Klomjai et al., 2015).

The spTMS is a single-pulse stimulus that occurs every few 
seconds, and is commonly used to study individual motor thresholds 
as well as cortical neural excitability (Klomjai et al., 2015; Jarczok 
et al., 2021). Similarly, ppTMS is the exploration of intracortical circuit 
excitability (Boulogne et  al., 2016) by generating two consecutive 
pulses of stimulation every few seconds, including both intracortical 
inhibition (ICI) and intracortical facilitation (ICF) endings, which 
ultimately lead to different courses of ICI and ICF depending on the 
intensity of the stimulus before and after the two pulses, and the 
interval between the two stimuli (Hanajima et al., 2002; Ilić et al., 
2002; Mcclintock et  al., 2011). The rTMS is a repetitive pulse 
stimulation of the same frequency and intensity for a certain period 
of time, and after the cumulative sum of these repetitive pulse stimuli 
reaches the threshold of evoked neural activity, the stimulated site can 
briefly produce neural excitatory or inhibitory activity (Vlachos et al., 
2012). If rTMS stimulation is repeated several times, then the effects 
produced can last longer and even form synapses that persist 
(Kricheldorff et al., 2022).

In addition, rTMS has been extended by simulating the firing 
pattern of hippocampal neurons with a new type of TMS, in which 
three pulses at 50 Hz occur at 200 ms intervals, called theta burst 
repetitive TMS (TBS) (Ferrarelli and Phillips, 2021). Compared with 
conventional rTMS, TBS can induce longer duration and more intense 
neural activity with low-intensity, short duration stimulation 
(Kricheldorff et  al., 2022). TBS includes interstitial theta pulse 
stimulation (iTBS) and continuous theta pulse stimulation (cTBS) 
(Bai Z. et al., 2022). In general, iTBS increases neuronal excitability 
and enhances LTP-like effects, while cTBS induces LTD-like effects 
and suppresses neuronal excitability (Huang et al., 2009). However, 
not all iTBS and cTBS follow this pattern, as Xue et al. found that cTBS 
treatment upregulated the release of neurotrophic factors in stroke 

patients, increased the number of new neurons in the penumbra 
region, and promoted post-stroke neurogenesis (Zong et al., 2022). 
The reason for this heterogeneity may be due to the different neuronal 
populations finally activated by cTBS and iTBS (Volz et al., 2015), as 
well as the different recruitment of indirect (I) wave in the late 
corticospinal overhead jerk after stimulation (Di Lazzaro et al., 2008). 
In addition to TBS, rTMS includes a quadruple pulse stimulation 
(QPS) with four monophasic pulse stimulation repeated every 5 s 
(Nakatani-Enomoto et al., 2012), which produces a bidirectional effect 
when acting on the motor cortex of the brain, i.e., short interval QPS 
enhances neuroplasticity and long interval QPS inhibits neuroplasticity 
(Hamada et al., 2008; Ni and Chen, 2008). Although QPS is similar to 
ppTMS, Masashi et al. found that QPS was more effective than ppTMS 
in inducing motor cortical neuroplasticity with better persistence and 
specificity than ppTMS (Hamada et al., 2007).

Effects of transcranial magnetic stimulation 
parameters on cortical excitability

Impaired excitability of the motor cortex in the hemisphere of the 
post-stroke lesion results in limited movement of the hemiplegic side 
of the limb (Liepert et al., 2000), one of the causes of this impairment 
is dysregulation of interhemispheric inhibition after stroke (Xu et al., 
2019). In a healthy state, both hemispheres regulate each other’s 
cortical excitability via the corpus callosum pathway, so that the 
bilateral interhemispheric excitability is maintained in balance and no 
over inhibition occurs (Duque et al., 2005). In contrast, after stroke, 
interhemispheric inhibition is imbalanced, and cortical excitability in 
the lesioned hemisphere is reduced by oversuppression of excitability, 
while cortical excitability in the non-lesioned hemisphere is increased. 
This leads to a variety of neurological sequelae after stroke and reduces 
the quality of patient survival (Bütefisch et al., 2008; Wahl et al., 2016; 
Patel et al., 2019). Therefore, regulation of interhemispheric excitability 
balance is an indispensable remedy to improve post-stroke 
neurological dysfunction (Lin et al., 2020; Sharma et al., 2020).

The world’s first transcranial magnetic device was developed in 
1985 by Barker et al. (1985) as a tool to study changes in excitability 
of the motor cortex of the brain after stimulation. So how is the target 
cortical excitability modulated when TMS is used to treat stroke 
patients? In general, high frequency TMS (HF-TMS) in the lesioned 
hemisphere increases cortical excitability and low frequency TMS 
(LF-TMS) in the non-lesioned hemisphere decreases cortical 
excitability (Iyer et al., 2003; Kim et al., 2004; Chen M. et al., 2015; 
Nordmann et  al., 2015). However, is there a boundary between 
HF-TMS and LF-TMS? Most studies consider low frequency ≤ 1 Hz 
and high frequency > 1 Hz (Modugno et al., 2003; Filipović et al., 2010; 
Fried et  al., 2017; Tugin et  al., 2021); some studies consider high 
frequency ≥ 5–20 Hz (Somaa et al., 2022); and a few other researchers 
consider high frequency ≥ 3 Hz (Kubis, 2016; Tian and Izumi, 2022). 
Thus, it seems that LF-TMS is relatively stable compared to HF-TMS, 
which are in the range of 0-1 Hz, and the majority of studies mostly 
use 1 Hz (Heide et al., 2006; Meng et al., 2020). And some studies have 
shown that the inhibitory effect of 1 Hz-rTMS on cortical excitability 
is the most pronounced (Muller et al., 2014). However, LF-rTMS at 
0.25 Hz (Muller et  al., 2014), 0.1 Hz (Chen et  al., 1997), 0.3 Hz 
(Cincotta et al., 2003), 0.6 Hz (Khedr et al., 2004), and 0.9 Hz have also 
been used in some studies (Kricheldorff et al., 2022).
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The modulation of target cortical excitability by TMS is also 
influenced by stimulus parameters (Lang et al., 2006; Taylor and Loo, 
2007; Jung et al., 2008; De Jesus et al., 2014). Within a certain range, 
cortical excitability produces stronger and more sustained effects with 
increasing TMS pulse number (Tang et al., 2019). In other words, the 
number of pulses is proportional to cortical excitability within a certain 
limit (Touge et al., 2001; Peinemann et al., 2004), which also varies from 
individual to individual. Therefore, when patients receive TMS for the 
first time, they should be pre-stimulated to explore the optimal TMS 
parameters. In addition to this, cortical excitability is influenced by 
stimulation intensity and time. The differences caused by stimulus 
intensity are mainly related to interindividual motor thresholds (MT) 
(D'amico et al., 2020; Rizzo et al., 2020). Cortical excitability tends to 
change at the MT intensity node, with stimulus intensities greater than 
MT increasing MEP amplitude and thus target cortical excitability; 
conversely, target cortical excitability usually decreases when stimulus 
intensities are less than MT (Modugno et al., 2001; Fitzgerald et al., 
2002). However, who is more dominant in the effect of TMS frequency 
and intensity on cortical excitability? Or are they of equal status? Heide 
et al. (2006) found that rTMS at a frequency of 1 Hz and an intensity of 
115% of resting motor threshold (RMT) applied to primary motor 
cortex (M1) for several minutes resulted in reduced cortical excitability 
(Meng et  al., 2020). This suggests that frequency may be  more 
important for the modulation of cortical excitability. However, a study 
by Gabrielle et al. using HF-rTMS at three low intensities (70, 80 and 
90% of active motor threshold (AMT)) found that only stimulus 
intensities up to 90% AMT promoted target cortical excitability, 
whereas both 70 and 80% AMT inhibited cortical excitability (Todd 
et al., 2006). This suggests that it is the modulation of cortical excitability 
by stimulus intensity that may be  more important. In summary, 
we suggest that frequency and intensity may be equally important for 
the modulation of cortical excitability, but that the expected effects 
differ due to inter-individual differences in MT. Of course, these are our 
speculations and the exact mechanisms are not yet clear. In addition, 
target cortical excitability is also influenced by the stimulus waveform 
(Arai et al., 2005), with monophasic pulses having a stronger cortical 
excitatory effect due to preferential activation of neuronal populations 
in the same direction compared to biphasic pulses (Arai et al., 2007).

Potential mechanisms of transcranial 
magnetic stimulation for stroke

TMS is known to promote the improvement of different 
neurological functions through different stimulation sites. For 
example, sites such as M1 (Bai G. et al., 2022), dorsolateral prefrontal 
cortex (DLPFC; Hara et al., 2021), and parietal cortex (Rushworth and 
Taylor, 2006) can improve motor, cognitive (Zhang et al., 2022), and 
speech dysfunctions in stroke patients. However, there is no more 
comprehensive summary of how TMS facilitates the improvement of 
neurological function after stroke. Therefore, in the following, we will 
briefly describe the potential mechanisms of TMS from these aspects.

Transcranial magnetic stimulation regulates the 
concentration of excitatory 
neurotransmitter-glutamate

Neuroexcitotoxicity after ischemic stroke is a key link leading to 
neuronal death, which can induce a series of pathological cascade 

reactions that eventually lead neurons to apoptosis or necrosis. 
Neuroexcitotoxicity is mainly caused by Ca2+ overload after cerebral 
ischemia and hypoxia, massive release of excitatory neurotransmitter 
glutamate and excessive activation of ionotropic glutamate receptors. 
Therefore, glutamate receptor inhibitors have been used clinically to 
block the over-activation of glutamate receptors and thus reduce the 
damage caused by neuroexcitotoxicity after stroke, but the effect is not 
very obvious. In recent years, it has been found that TMS can regulate 
human excitatory neurotransmitter-glutamate levels, which may 
be  one of the potential targets to prevent or mitigate post-
stroke excitotoxicity.

TMS can modulate neural activity by regulating glutamate 
concentrations in the nervous system, e.g., 10 Hz-rTMS significantly 
downregulates glutamate levels in the striatum (dorsal and NAc; Poh 
et al., 2019). Similarly, Eugenia et al. demonstrated that rTMS reduces 
the concentration of neurotransmitters such as glutamate, striatal 
serine, threonine, sarcosine, and aspartate in the nervous system (Poh 
et  al., 2019). It has also been shown that 0.5-Hz-rTMS leads to 
significantly higher levels of glutamate in the hippocampus and 
striatum, but glutamate levels in the hypothalamus are reduced. These 
results suggest that the regulation of glutamate concentration by rTMS 
may be  influenced by the stimulation site, frequency, and the 
concentration of glutamate levels in various brain regions, and that its 
main purpose is to regulate glutamate concentration to a normal 
range; thus, the mechanism by which rTMS regulates glutamate 
concentration varies in different brain regions. However, this is our 
speculation and more studies are needed to verify it (Yue et al., 2009).

In addition, TMS can promote glutamate uptake by neurons and 
decrease glutamate accumulation between neurons by upregulating 
glutamate receptor activity or expression. For example, Adeline et al. 
observed that 1 Hz-rTMS promotes upregulation of glutamate 
receptor 5 (GluA5) receptor expression (Etiévant et al., 2015). Similar 
studies have shown that TMS promotes the upregulation of the 
number and density of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors of glutamate receptor 1 
(GluA1; Vlachos et  al., 2012; Lenz et  al., 2015). Furthermore, in 
addition to regulating glutamate receptors, glutamate transporter 
proteins can also regulate extracellular glutamate levels. Therefore, it 
has been suggested that TMS regulation of glutamate concentration 
may also be related to the expression of glutamate transporter proteins. 
A study showed that rTMS promotes upregulation of the expression 
of genes of glutamate transporter proteins such as EAAT4, GLAST, 
GLT1, and EAAC24 (Ikeda et al., 2019). This is the first study in which 
rTMS was observed to regulate the expression of glutamate transporter 
proteins, providing a potential direction for future studies on the 
mechanism of rTMS.

Transcranial magnetic stimulation promotes 
neurogenesis

Neurogenesis plays a pivotal role in promoting improved 
neurological function after stroke. Brain-derived neurotrophic factor 
(BDNF), a member of the neurotrophic factor family, is one of the 
most important regulators of activity-dependent neuroplasticity (Luo 
et  al., 2017). In healthy states, BDNF is involved in promoting 
neurogenesis in the central nervous system in addition to nutritional 
support of nerve cells (Tan et al., 2021). For example, it promotes the 
formation of dendritic spines (Chaturvedi et al., 2020) and facilitates 
synaptic long-term potentiation (LTP) (Leal et al., 2014). In addition, 
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BDNF regulates the balance of excitatory and inhibitory 
neurotransmitters in the brain (Karantali et al., 2021). In addition, it 
has been shown that patients with significantly lower serum BDNF 
levels and increased brain infarct volume after stroke have a worse 
functional outcome of stroke (Qiao et al., 2017; Duan et al., 2018). It 
is thus clear that regulation of BDNF expression has an irreplaceable 
role in promoting post-stroke neurogenesis.

In recent years, TMS has become an integral part of stroke 
rehabilitation treatment strategies. Ma et al. (2014) found that 110% 
RMT, 1 Hz-rTMS activated the BDNF/tyrosine kinase receptor B 
(TrkB) pathway and promoted neuroplasticity; however, as the 
stimulation intensity increased to 150% RMT, the BDNF/TrkB 
pathway was inhibited, the number of synapses decreased, the density 
and thickness thinned, and neurogenesis was suppressed. In addition, 
Guo et al. (2014) found that TMS significantly upregulated miR-25 
expression and promoted the proliferation of neural stem cells (NSCs) 
in the subventricular zone of stroke patients. It has also been shown 
that the proliferation and differentiation of newborn neural stem cells 
to the ischemic lesion area after stroke is regulated by BDNF, and 
overexpression of BDNF accelerates the recruitment of newborn 
neural stem cells and their migration to the ischemic brain tissue area 
(Young et al., 2011; Jansson et al., 2012). In addition to the above 
possible mechanisms, it has also been shown that iTBS regulates 
intrasynaptic Ca2+ concentration by affecting N-methyl-D-aspartate 
(NMDA) activity, thereby increasing intrasynaptic transmission 
efficiency and promoting LTP-like effects (Saudargiene et al., 2015; 
Diao et  al., 2022). It is thus clear that TMS promotes improved 
neurological function after stroke and is closely related to multiple 
pathway-mediated neurogenesis.

Transcranial magnetic stimulation promotes 
vascular regeneration

Vascular injury and blood–brain barrier (BBB) disruption caused 
by ischemia after stroke induces brain edema formation, which 
exacerbates post-stroke neurological dysfunction (Fagan et al., 2005; 
Rodríguez-Yáñez et  al., 2006). Therefore, promoting angiogenesis 
becomes one of the potential targets to rescue ischemic brain tissue 
and improve neurological function. Astrocytes are the most abundant 
neuronal cells in the brain (Yu G. et  al., 2021) and have two 
phenotypes: classical activation (A1) and alternative activation (A2) 
(Liddelow et  al., 2017). In general, both types of astrocytes play 
important physiological roles both in healthy and injured conditions. 
A1-type astrocytes promote the release of inflammatory factors to 
induce inflammatory responses, while A2-type astrocytes increase the 
release of angiogenesis-related factors such as transforming growth 
factor-β (TGFβ) and vascular endothelial growth factor (VEGF) to 
promote angiogenesis (Blackburn et al., 2009; Liddelow and Barres, 
2017).Mark et al. found that chronic intracerebroventricular infusion 
of VEGF significantly promoted vascular collateral circulation 
formation and increased vascular density (Harrigan et al., 2002). Sun 
et  al. (2003) also found that increasing VEGF levels stimulated 
vascular regeneration after cerebral ischemia. In summary, promoting 
upregulation of VEGF levels by promoting the polarization of A1-type 
astrocytes to A2-type astrocytes and thus promoting vascular 
regeneration may be one of the molecular mechanisms to improve 
neural repair after stroke.

In recent years, with the rapid development of TMS, studies on 
the mechanism of TMS to improve neurological function after stroke 

have been increasing. One study showed that 10 Hz-rTMS promoted 
the polarization of A1-type astrocytes to A2-type, thereby reducing 
infarct volume and promoting neurological recovery in MCAO rats 
(Hong et al., 2020). Similarly, Zong X. et al. (2020a) reported that 
rTMS promoted the polarization of A2-type astrocytes, elevated the 
levels of angiogenesis-related factors TGFβ, VEGF, and hypoxia-
inducible factor 1α (HIF-1α), and increased the density and volume 
of neovascularization in the penumbra region of MCAO rats. The 
above studies suggest that one of the mechanisms of neuroprotective 
effects of TMS is the induction of A2-type astrocyte polarization and 
promotion of vascular regeneration.

Anti-inflammatory properties of transcranial 
magnetic stimulation

The immune inflammatory response is rapidly activated after 
stroke and continues throughout the stroke period. In general, the 
early inflammatory response contributes to neuroprotection by 
phagocytosis of dead cell debris or certain harmful toxic substances 
(Wen et al., 2006), but prolonged inflammatory factor infiltration is 
detrimental to post-stroke neuronal survival (Qin et  al., 2019). 
Therefore, reducing the inflammatory response and preventing 
excessive release of inflammatory factors are essential to improve the 
internal environment for neuronal survival after stroke.

Microglia act as neurological macrophages in the brain and play 
an important role in maintaining the homeostasis of the intracerebral 
environment (Ma et al., 2017). There are two phenotypes, classical 
activated (M1) and alternative activated (M2), which play different 
roles in response to different stimuli during different pathological 
stages of ischemic stroke (Hu et al., 2015). M1 microglia release tumor 
necrosis factor (TNF-α), interleukin 1β (IL-1β), interferon γ (IFN-γ), 
interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), matrix 
metalloproteinase 9 (MMP9), matrix metalloproteinase 3 (MMP3), 
and other pro-inflammatory mediators, induce BBB permeabilization 
and accelerate ischemic neuronal death (Kreutzberg, 1996; Yenari 
et al., 2010). In contrast, M2 microglia release anti-inflammatory and 
pro-angiogenic mediators such as interleukin 10 (IL-10), TGF-β, and 
VEGF, which exert neuroprotective effects (Ponomarev et al., 2013; 
Prinz et al., 2014). Once stroke occurs, M1 and M2 microglia are 
activated to release both pro-inflammatory and anti-inflammatory 
mediators, and the resistance of these two mediators determines the 
fate course of neuronal cells in the ischemic infarct zone (Hu et al., 
2012; Zhao et al., 2017). Therefore, regulation of M1/M2 microglia 
polarization during different stages of stroke may be  one of the 
mechanisms regulating the brain microenvironment and promoting 
neural repair.

TMS is currently used as a common intervention for stroke 
rehabilitation. Zhao et  al. (2019) found that rTMS significantly 
reduced IL-1β and TNF-α serum levels in patients. In the MCAO 
model, the 10 Hz-rTMS experimental group activated more M2 
microglia and reduced activation of M1 microglia than the no sham 
stimulation group (Hong et al., 2022). Immediately after, this study 
also showed that rTMS significantly increased microglia let-7b-5p 
levels and inhibited their downstream NF-kB signaling pathway, 
thereby reducing the size of cerebral infarcts in MCAO rats; in 
addition, in vitro experiments showed that administration of rTMS to 
microglia increased the concentration of interleukin 10 (IL-10) and 
decreased the concentration of TNF-α in the culture medium, while 
knockdown of let-7b -5p reversed these phenomena (Hong et al., 
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2022). This study repeatedly verified from in vivo and ex vivo 
experiments that rTMS ameliorates neurological dysfunction in 
MCAO model mice by promoting M2-type microglia polarization, 
regulating the let-7b-5p/NF-kB signaling pathway, and attenuating the 
inflammatory response. Similarly, it was shown (Luo et al., 2022) that 
iTBS significantly reduced IL-1β, interleukin 17A (IL-17A), TNF-α, 
and IFN-γ concentrations in MCAO mice by inhibiting M1 activation, 
promoting M2 polarization, and downregulating Toll-like receptor 4 
(TLR4)/NF-κB/NLR family Pyrin domain-containing protein 3 
(NLRP3) signaling pathway. Elevated IL-10 concentrations reduced 
neuromotor dysfunction in MCAO mice, whereas removal of 
microglia after using the inhibitor eliminated the efficacy of iTBS 
application, which inversely verified that iTBS ameliorated post-stroke 
neurological dysfunction by regulating the balance of M1/M2 
phenotype of microglia.

Antioxidant properties of transcranial magnetic 
stimulation

Achieving blood flow recanalization as soon as possible after 
stroke is a top priority to salvage the ischemic semidark zone. 
However, cerebral ischemia–reperfusion is prone to cerebral 
ischemia–reperfusion injury (CIRI) because it has a strict time 
window (Zhao et al., 2022). Therefore, it is important to explore the 
underlying mechanisms of CIRI to explore potential targets for stroke 
therapy. It has been reported that CIRI injury is mainly caused by the 
reactivation of mitochondrial aerobic respiration after blood flow 
recanalization, which generates large amounts of reactive oxygen 
species (ROS) and induces oxidative stress in neuronal cells (Orellana-
Urzúa et al., 2020; Yu S. et al., 2021). Therefore, reducing ROS release 
after stroke and enhancing the antioxidant capacity of the body are 
key steps to reduce CIRI injury. Studies have shown that TMS 
promotes functional repair in a variety of neurological diseases in 
association with its powerful antioxidant effects (Post et al., 1999; 
Medina-Fernandez et al., 2017). For example, Hui et al. found that 
rTMS attenuates CIRI injury by activating the nuclear factor 
E2-related factor 2 (Nrf2) signaling pathway, upregulating the 
expression of antioxidant proteins such as Nrf2, heme oxygenase 1 
(HO-1), and superoxide dismutase 1 (SOD1), and reducing oxidative 
stress (Liang et al., 2021).

Anti-apoptotic properties of transcranial 
magnetic stimulation

The tissue blood supply around the ischemic infarct foci 
(penumbra zone) in the early post-stroke period is still maintained at 
20–40% while retaining some oxygenated metabolic activity (Hou 
et al., 2019). Therefore, salvaging the penumbra for a certain period of 
time is essential to reduce the volume of post-stroke cerebral 
infarction. However, it has been found that within hours or days after 
cerebral ischemia, the ischemic penumbra in response to ischemic–
hypoxic stress induces some neuronal cells toward apoptosis and 
releases toxic substances that further accelerate neuronal death (Vexler 
et al., 1997; Radak et al., 2017). Thus, apoptosis, which is activated in 
the acute phase of stroke, is a major obstacle to the remodeling of 
neuronal cell structure and function in the ischemic penumbra region 
after stroke.

A recent study showed that the potential mechanism by which 
rTMS promotes neurological recovery in MCAO rats is related to the 
inhibition of premature apoptosis of neuronal cells in the penumbra 

region (Gao et al., 2010; Yoon et al., 2011). Yamei et al. showed that 
rTMS upregulated B lymphocytoma-2 gene (Bcl-2) levels and 
decreased Bcl-2-related X protein (Bax) expression significantly 
inhibited apoptosis, thereby improving neurological recovery in 
MCAO rats (Guo et al., 2017). Similarly, a similar study also found 
that TMS combined with electroacupuncture treatment inhibited 
post-ischemic neuronal apoptosis by significantly reducing cystein-3 
(Caspase-3) levels and increasing Bcl-2 mRNA expression levels (Li 
et al., 2012). In addition, rTMS can reduce mitochondrial damage, 
maintain mitochondrial membrane integrity, inhibit the activation of 
the mitochondria-dependent apoptotic cystatase-9 (Caspase-9)/
Caspase-3 signaling pathway, and reduce neuronal death (Sasso et al., 
2016; Zong et al., 2020b).

Clinical application of transcranial 
magnetic stimulation in stroke diseases

Stroke is one of the leading causes of neurological disability in the 
world (Saini et al., 2021). Once stroke occurs, a variety of neurological 
complications follow, leading to severe limitations in patients’ 
activities of daily living (Chohan et al., 2019). Therefore, exploring the 
application of new technologies in stroke rehabilitation is pivotal to 
provide more clinical experience in the future treatment of stroke 
patients; in addition, it will provide a better understanding of the 
advantages and disadvantages, indications, contraindications, and 
precautions of this technology and promote better service of this 
technology to society. In recent years, more and more studies have 
reported that TMS plays an irreplaceable role in the neurological 
rehabilitation process of stroke, involving upper and lower limb motor 
function, speech, swallowing, cognitive function, post-stroke 
depression, spasticity, and central post-stroke pain (see Table 1 for 
details). However, the potential mechanisms by which TMS improves 
the above neurological dysfunctions? and whether the stimulation 
frequency, intensity, duration and site are consistent are unclear? 
Therefore, the clinical application of TMS in stroke rehabilitation is 
briefly described below, and each of these queries will be explored.

Motor dysfunction

Upper extremity
Motor dysfunction of the upper extremity after stroke is mainly 

characterized by reduced movement, limb coordination and dexterity 
and accounts for 55–75% of all stroke patients (Wolf et al., 2006). 
Compared with the lower extremity, the recovery of motor function 
in the upper extremity after stroke progresses relatively slowly and is 
mainly concentrated in the first 6 months. Due to the weak awareness 
of rehabilitation in most patients, by the time they start to intervene 
in rehabilitation, they have already missed the golden time of upper 
limb function recovery. Therefore, it is crucial to raise the patients’ 
awareness of rehabilitation and to find an effective 
complementary therapy.

Recently, several randomized controlled trials have shown that 
rTMS modulates cortical excitability and restores interhemispheric 
inhibitory balance to improve motor dysfunction after stroke (Kim 
et al., 2006; Long et al., 2018). A study by Avenanti et al. showed that 
HF-rTMS significantly increased cortical excitability in the lesioned 
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TABLE 1 Clinical application of transcranial magnetic stimulation in post-stroke sequelae.

Type of 
Research

Stimulation 
site

Stimulation 
frequency

Stimulation time Sample 
size

Amount 
of effect

Results References

Clinical 

Studies

Lesioned 

hemisphere

10 Hz 1 time/day, 5 days/week, 4 weeks in 

total

9 9 Improvement in 

upper limb 

motor function

Ni et al. (2022)

5 Hz 1 time/day, 6 days/week, 10 times in 

total

20 18 Hosomi et al. 

(2016)

10 Hz 1 time/day, 20 min/time, 13 days in 

total

19 19 Improvement in 

lower limb 

walking speed

Kakuda et al. 

(2013)

5 Hz 1 time/day, 15 min/time, 3 times/

week, total 3 weeks

6 6 Wang et al. (2019)

10 Hz 1 time/day, 40 min/day for 2 weeks 15 15 Motor function, 

muscle strength 

improvement

Wang et al. (2020)

10 Hz 1 time/day, 20 min/time, 5 times/

week, 4 weeks in total

18 16 Improved 

cognitive 

function

Yin et al. (2020)

20 Hz 1 time/day, 20 min/time, 5 times/

week for 2 weeks

10 10 Cha et al. (2022)

50 Hz (iTBS) 1 time/day, 20 min/time, 5 times/

week, total 6 weeks

22 21 Chu et al. (2022)

10 Hz 1 time/day, 30 min/time, 5 times/

week for 2 weeks

11 11 Improvement in 

swallowing 

function

Park et al. (2017)

5 Hz 1 time/day, 30 min/day for 4 weeks 15 14

1 time/day, 10 min/time, for 2 weeks 9 9 Park et al. (2013)

1 time/day, 30 min/time, 5 times/

week for 2 weeks

30 23 Liu et al. (2022)

3 Hz 1 time/day, 20 min/time, 5 times/

week for 2 weeks

32 21 Jiao et al. (2022)

1 time/day, 10 min/day, 5 days in total 14 14 Khedr et al. (2009)

10 Hz 1 time/day, 10 min/time, 10 times in 

total

10 10 Improvement in 

speech function 

at 2-month 

follow-up

Hu et al. (2018)

Undiseased 

hemisphere

1 Hz 1 time/day, 20 min/time, for 2 weeks 11 11 Improvement in 

upper limb 

motor function

Noh et al. (2019)

1 time/day, 10 min/time, 5 times/

week for 2 weeks

23 21 Pan et al. (2019)

1 time/day, 5 days/week, total 8 weeks 20 15 Qin et al. (2023)

1 time/day, 3 days/week, 10 times in 

total

10 10 Barros Galvão 

et al. (2014)

1 time/day, 5 days/week for 2 weeks 17 14 Gottlieb et al. 

(2021)

1 time/day for 15 days 21 21 Long et al. (2018)

1 time/day, 20 min/day for 2 weeks 9 9 Improvement of 

fine motor 

function of the 

hand

Tosun et al. 

(2017)

1 time/day, 20 min/day, 5 days/week, 

total 2 weeks

20 20 Aşkın et al. (2017)

1 time/day, 20 min/time, 10 times in 

total

9 9 Tretriluxana et al. 

(2013)

1 time/day, 30 min/time, 6 times/

week for 2 weeks

20 20 Yang et al. (2022)

(Continued)
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hemisphere, thus promoting improved distal upper limb movements, 
finger dexterity and coordination in stroke patients (Kim et al., 2006). 
However, during stimulation of upper limb motor function, one study 
found that bilateral TMS (high frequency on the lesioned side and low 
frequency on the unlesioned side) was more beneficial than unilateral 
TMS in improving upper limb motor function (Long et al., 2018). 
However, another meta-analysis found that this view was only 
supported in the acute phase of stroke, whereas in the subacute and 
chronic phases, TMS on the lesioned and unlesioned side alone 
achieved better outcomes (Chen et  al., 2022). This suggests that 
promoting cortical excitability in the lesioned hemisphere during the 
acute and subacute phases of stroke is the main strategy to improve 
neurological function in the upper limbs of patients, whereas 
inhibiting cortical excitability in the unlesioned hemisphere and 
reducing its inhibition of the lesioned hemisphere during the chronic 
phase is the main mechanism to improve neurological function. In 
conclusion, the different periods of the disease are also important 
factors in determining the TMS treatment plan.

In addition, a similar picture exists for different stimulation 
modalities, e.g., TBS is more beneficial for the recovery of upper 
limb motor function in the acute phase of stroke, whereas rTMS is 
more effective in the subacute and chronic phases (Chen et  al., 
2022). In addition, it is worth noting that rTMS promotes the 
recovery of fine motor function of the upper limbs in stroke patients 
by indirectly modulating the excitability of the corticospinal tract 
in addition to directly modulating the excitability of the cerebral 
cortex, however, this process is heavily dependent on the integrity 
of the corticospinal tract (Wu et al., 2023). Therefore, when applying 
rTMS to improve upper limb motor function after stroke, the 
integrity of the corticospinal tract can be tested before developing 
an appropriate rTMS protocol. This process can be referred to the 
results of the study by Birute et  al. For example, low-frequency 
rTMS is more adapted for stroke patients with high corticospinal 
tract (CST) integrity; in contrast, high-frequency rTMS showed 
more significant clinical effects in patients with low CST integrity 
(Wang et al., 2022).

Type of 
Research

Stimulation 
site

Stimulation 
frequency

Stimulation time Sample 
size

Amount 
of effect

Results References

5 times/day for 1 week 10 7 Lower extremity 

motor function 

and spasticity 

improvement

Rastgoo et al. 

(2016)

1 time/day, 6 days/week, 4 weeks in 

total

30 30 Li et al. (2021)

1 time/day, 30 min/time, 10 times in 

total

14 12 Wang et al. (2012)

1 time/day, 40 min/day for 2 weeks 15 15 Motor function, 

muscle strength 

improvement

Wang et al. (2020)

1 time/day, 5 days/week, total 8 weeks 18 18 Improved 

cognitive 

function

Yingli et al. (2022)

1 time/day, 5 days/week, 4 weeks in 

total

30 28 Language 

function 

improvement

Bai G. et al. (2022)

1 time/day, 30 min/time, 5 times/

week for 2 weeks

6 6 Haghighi et al. 

(2017)

1 time/day, 10 min/day, 10 times in 

total

10 10 Hu et al. (2018)

1 time/day, 20 min/time, for 15 days 36 31 Ren et al. (2019)

1 time/day, 40 min/time, 6 times/

week, 10 times in total

24 24 Abo et al. (2012)

1 time/day, 30 min/time, 5 times/

week, 15 times in total

13 8 Waldowski et al. 

(2012)

Bilateral 

hemispheres

10 Hz and 1 Hz 1 time/day, 5 days/week, 4 weeks in 

total

9 9 Improvement in 

upper limb 

motor function

Ni et al. (2022)

1 time/day, 40 min/day for 2 weeks 15 15 Motor function, 

muscle strength 

improvement

Wang et al. (2020)

5 Hz and 1 Hz 1 time/day, 30 min/day for 4 weeks 15 15 Improvement in 

swallowing 

function

TABLE 1 (Continued)
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Lower extremity
It is well known that both lower extremities play an important role 

in human motor function, as demonstrated by walking and balance 
coordination (Paul et al., 2007). After stroke, patients often suffer from 
lower extremity motor dysfunction, gait abnormalities, and other 
sequelae that severely reduce patients’ family and social participation. 
TMS is an emerging therapy for stroke treatment that can increase 
walking speed (Li et al., 2018; Vaz et al., 2019), correct gait symmetry 
(Wang et al., 2019), reduce lower extremity muscle spasticity (Naghdi 
et al., 2015; Rastgoo et al., 2016), and increase balance and motor 
control (Wang et al., 2012; Kang et al., 2020) to improve lower limb 
function in stroke patients.

A randomized controlled trial showed that rTMS significantly 
improved walking, motor control, and motor function in stroke 
patients, a finding further emphasized by late follow-up data (Veldema 
and Gharabaghi, 2022). This study followed the theory of 
interhemispheric inhibition, using HF-rTMS to promote reactivation 
of cortical excitability in the diseased hemisphere and LF-rTMS to 
reduce cortical excitability in the unlesioned hemisphere and alleviate 
its overinhibition of the diseased hemisphere, thereby readjusting the 
bilateral interhemispheric inhibitory balance. In this study, the bilateral 
rTMS regimen was superior to the unilateral rTMS regimen, i.e., 
bilateral rTMS > HF-rTMS on the lesioned side > LF-rTMS on the 
unlesioned side (Veldema and Gharabaghi, 2022). In fact, in most 
studies, it has been demonstrated that bilateral rTMS regimens are 
superior to unilateral regimens, which is similar to the fact that in some 
diseases combined treatment is superior to monotherapy, which is 
uncontroversial. Then, leaving aside the bilateral rTMS regimen, why 
HF-rTMS on the lesioned side > LF-rTMS on the unlesioned side? 
We believe that after brain injury, reduced excitability in the lesioned 
hemisphere is the main cause of interhemispheric inhibition imbalance, 
and therefore, reactivation of cortical excitability in the lesioned 
hemisphere may be  the main strategy to restore interhemispheric 
inhibition balance compared to reducing excitability in the unlesioned 
hemisphere. However, this dominance is not invariable, and depending 
on the etiology, location of the lesion, the urgency of the disease, and 
individual patient differences, some patients show that reducing 
excitability in the unlesioned hemisphere is more likely to promote 
interhemispheric inhibitory homeostasis. As found in a meta-analysis, 
LF-rTMS in the unlesioned hemisphere produced more clinically 
significant effects than HF-rTMS in the lesioned hemisphere during the 
chronic phase of stroke (Chen et al., 2022).

In addition, there is some controversy about TMS improving 
lower limb function in stroke, for example, a meta-analysis showed 
that both high and low frequency rTMS had a positive effect on the 
gait speed of stroke patients (Vaz et al., 2019). However, this was not 
supported by a study by Raffaella et  al. who found that 20 Hz 
HF-rTMS, while significantly improving lower limb motor function 
in chronic stroke patients, did not increase the patients’ walking speed 
(Chieffo et al., 2014). In addition, Ying et al. found that LF- rTMS 
(1 Hz) administered in the unlesioned hemisphere did not significantly 
improve motor and walking function in stroke patients (Huang et al., 
2018). However, in another study the opposite result was obtained, 
that LF-rTMS in the unlesioned hemisphere improved muscle 
spasticity in patients’ lower extremities, thus promoting improved 
motor function in the lower extremities (Rastgoo et al., 2016), this 
idea was also supported by the studies of Soofia et al. and Liu et al.
(Naghdi et al., 2015; Liu et al., 2021). And this research variability may 

arise from the fact that walking is a complex process consisting of 
several parameters such as walking speed and angle, step width, stride 
width, and step length. And the regulation of these parameters is 
modulated by multiple neural systems such as cortical, subcortical and 
spinal integrated networks. As when walking, multiple sites such as 
primary sensorimotor areas, primary motor areas, supplementary 
motor areas, basal ganglia and cerebellar earthworms were detected 
to be  activated with increased cerebral blood flow (Veldema and 
Gharabaghi, 2022). This suggests that TMS improves lower extremity 
motor function in patients not only by the TMS protocol, but also by 
the different stimulation sites and the interactions between brain 
regions. Therefore, future studies are needed to create more and more 
beneficial evidence for the various differences arising from TMS 
application and further advance TMS.

Cognitive impairment

One study reported that one third of stroke patients have varying 
degrees of cognitive impairment, referred to as post-stroke cognitive 
impairment (PSCI), and PSCI can rapidly develop into dementia in a 
short period of time, which will seriously reduce the quality of life of 
patients (Li Y. et al., 2020). Therefore, active rehabilitation measures 
to prevent PSCI from developing into dementia are extremely 
important to improve the quality of life and social participation of 
stroke patients.

Studies have shown, TMS may improve cognitive function in 
patients with PSCI through anti-inflammation and increased cerebral 
blood flow (Cha et al., 2022). For example, Takatoshi et al. showed that 
10 Hz-rTMS promotes improved memory, attention and executive 
function in PSCI patients by increasing blood perfusion in ischemic 
brain regions (Hara et al., 2017). The dorsolateral prefrontal cortex 
(DLPFC) is often used as a stimulation site for TMS to improve PSCI 
and plays an important role in modulating higher cognitive functions 
such as memory, attention, and executive functions (Bressler and 
Menon, 2010). Yin et al. (2020) showed that left DLPFC HF-rTMS 
significantly improved executive function in PSCI patients. Similarly, 
according to the theory of interhemispheric inhibitory balance, right-
sided DLPFC LF-rTMS also promotes improved cognitive and memory 
functions in patients with PSCI (Lu et al., 2015; Yingli et al., 2022). 
Furthermore, a meta-analysis showed that rTMS improved PSCI better 
when stimulated for longer than 4 weeks and at a stimulation intensity 
in the range of 80–110% MT (Yin et  al., 2020; Wang et  al., 2022). 
However, in addition to rTMS, iTBS is one of the commonly used 
stimulation modalities to improve PSCI, and left-sided DLPFC iTBS 
significantly promotes improvements in cognitive functions such as 
executive function and semantic comprehension in patients with PSCI 
compared to sham stimulation (Chu et al., 2022; Li et al., 2022).

Swallowing disorders

More than 65% of new stroke patients each year have dysphagia 
(Martino et  al., 2005). Although dysphagia is a self-resolving 
complication in most cases, 11–50% of patients will have permanent 
dysphagia without intervention (Kumar et al., 2010). Therefore, it is 
necessary to prevent dysphagia from becoming a permanent sequel 
with external means.
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Studies have shown that TMS treatment applied in the M1 brain 
region can promote the improvement of swallowing function after 
stroke (Du et al., 2016). However, M1 area covers multiple neurological 
functions, and how to precisely locate the functional area of M1 
swallowing becomes a major obstacle. Until Li S. et al. (2020) used 
functional MRI (fMRI)-guided TMS in the motor cortex of the brain to 
excite surface electromyography of the labial orbicularis muscle and 
detected motor evoked potentials (MEPs) in the submandibular 
complex (SMC) muscle as a way to locate MSC targets in the M1 
swallowing functional area. This study provides a more precise target 
stimulation site for TMS to improve post-stroke swallowing dysfunction. 
However, as the process is an individualized one, it may target different 
individuals with slightly different MSC target locations. Therefore, 
repositioning of SMC targets for different individuals is necessary for 
effective improvement of post-stroke swallowing function.

Guided by fMRI, TMS can more accurately and effectively 
promote improvement in swallowing function, especially HF-TMS 
(Du et al., 2016; Liao et al., 2017). Xiang et al. showed that HF-rTMS 
improved dysphagia in stroke for a longer duration and with more 
significant effects than LF-rTMS (Liao et  al., 2017). It is also 
noteworthy that LF-rTMS (1 Hz) only improved appetite in stroke 
patients compared to conventional swallowing function treatment, 
while it did not seem to have a significant effect on the recovery of 
swallowing function (Ünlüer et al., 2019). Furthermore, Cheng et al. 
(2015) showed that swallowing function was significantly improved 
in chronic stroke patients after 3,000 magnetic pulses of 5 Hz-rTMS 
applied to the tongue motor area of the diseased hemisphere for 
2 weeks of continuous treatment. However, in another study, similar 
results were not obtained with the same stimulation parameters, and 
no improvement in swallowing function was observed in stroke 
patients at 2, 6, or even 12 months follow-up after the end of treatment 
(Cheng et al., 2017). This is in contrast to the findings of Cheng et al. 
(2015). These two refuting studies suggest that the clinical efficacy of 
TMS may vary even within the same disease depending on the 
severity of the disease, individual differences between patients, or 
other external factors, and therefore, exploring the optimal clinical 
efficacy of TMS still requires a long time to figure out.

Similarly, a randomized controlled trial observed that the recovery 
of swallowing function was significantly better in the bilateral 
stimulation group (simultaneous application of rTMS treatment to the 
lesioned and unlesioned side of the hyoid muscle) compared to the 
unilateral stimulation group (500 10 Hz-rTMS pulses applied to the 
lesioned side of the hyoid muscle for 2 weeks; Park et al., 2017). This 
finding was supported by a study by Momosaki et al. (2014). However, 
in another meta-analysis, no significant difference in swallowing 
function was found between subgroups with different stimulation sites 
(lesioned hemisphere, unlesioned hemisphere, or bilateral hemisphere) 
(p = 0. 53; Wen et al., 2022). We believe that this phenomenon may 
be due to partial case error and that perhaps the meta-analysis is more 
convincing compared to the control trial and could continue to 
be illustrated by continuing to increase the sample size.

Aphasia

Post-stroke aphasia (PSA) is a common acquired language 
disorder in patients with acute or subacute stroke, which can lead 
to varying degrees of impairment in four areas of listening, reading, 

and writing (Hara and Abo, 2021). In the long term, this will lead 
to loss of self-confidence in life and may induce post-stroke 
depression in severe cases (Hilari et  al., 2010). Therefore, early 
treatment of patients with PSA is a key step in preventing post-
stroke depression.

TMS has been used since 2005 for the treatment of aphasia in 
patients with chronic stroke (Gholami et al., 2022). Compared with 
conventional speech therapy, TMS significantly promotes 
improvements in naming, comprehension, repetition, and writing in 
PSA patients (Yao et al., 2020). In general, TMS treatment protocols 
vary among PSA patients with different language dysfunctions. For 
example, LF-rTMS is more beneficial for the improvement of function 
in spontaneous speech and auditory comprehension in PSA patients 
(Hu et al., 2018). In addition, the site of stimulation is a major factor 
in TMS parameters that affects clinical efficacy. The superior temporal 
gyrus is the main lesioned brain region in sensory aphasia (also 
known as Wernicke’s aphasia), where severe impairment in spoken 
language comprehension is the main clinical manifestation; therefore, 
the superior temporal gyrus is preferentially chosen as the stimulation 
site when the patient is Wernicke’s aphasic (Ren et al., 2019). Similarly, 
another typical aphasia, motor aphasia (also known as Broca’s 
aphasia), has a lesion in the inferior frontal gyrus, and when this area 
is stimulated, the patient’s spontaneous speech and repetition 
components are significantly improved (Ren et al., 2019). This shows 
that it is perfectly feasible to select the site of TMS stimulation 
according to the lesioned brain areas of different aphasia types. 
However, although the lesioned brain area can be used as a stimulation 
site for PSA patients, it is not clear whether this site is the best 
stimulation site for TMS, and there are no relevant studies to prove 
this idea. Therefore, future studies can try to compare different 
stimulation sites for the same aphasia type to observe the treatment 
effect of both groups and verify whether the lesioned brain area is the 
best stimulation site for PSA patients.

Post-stroke depression

Post-stroke depression (PSD) is the most common 
neuropsychiatric sequelae in stroke patients, with approximately 
one-third of new patients experiencing PSD each year (Shen et al., 
2017). Currently, antidepressants are the most common treatment for 
PSD, but the clinical time to effect of pharmacological treatment is 
long and only some patients improve significantly after 
pharmacological treatment. Therefore, the search for a treatment 
other than medication is promising for promoting improvement in 
PSD. And as early as 2008, it was demonstrated that rTMS treatment 
in the dorsolateral prefrontal cortex to promote improvement in PSD 
is safe and effective with few side effects (Duan et al., 2023). Therefore, 
rTMS is undoubtedly a safe and reliable alternative for those patients 
with PSD for whom psychotherapy is ineffective or for whom 
pharmacological treatment has serious side effects.

The traditional rTMS regimen of 5 days of treatment per week for 
4–6 weeks has been reported to have significant positive effects in 
patients with chronic major depression (Duan et al., 2023). However, 
the duration of this rTMS regimen is relatively long, and is it possible 
to achieve the same effect while reducing the duration of treatment in 
a clinical setting for certain patients with poor compliance or who 
cannot adhere to daily rTMS sessions? Jessica et  al. found that 
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accelerated rTMS (20 Hz, 110% RMT, 5 sessions per day for 4 days) 
significantly reduced PSD and sustained a positive effect at 3-month 
follow-up (Frey et  al., 2020). In addition, this study showed that 
accelerated rTMS is also safe and feasible in patients with subacute 
PSD, with no risk of inducing epilepsy yet (Frey et al., 2020). However, 
because the study had only six cases, the number was small and a 
larger sample size is needed for validation. Based on this study, we can 
tentatively conclude that accelerated rTMS is indeed more effective 
than conventional rTMS in the acute subacute phase of PSD; this may 
be because in the early phase of stroke recovery, the body recovers 
neurologically faster, and therefore, seizing the opportunity for high-
intensity intervention during that time is also a safe and feasible 
treatment option. This is similar to the fact that the first 6 months after 
stroke is a critical period for patients to recover upper limb function, 
and if that time window is not seized, the possibility of upper limb 
function recovery may be missed; because for most stroke patients, 
upper limb function is slow to recover, and if rehabilitation is not done 
well in the first 6 months, it is possible that later rehabilitation will 
have minimal effect on their neurological function improvement. 
However, is there a critical period for recovery of different neurological 
functions or are they all consistent? This is a key point that should 
be addressed. If we are clear about the critical period for each type of 
neurological recovery, we may be able to promote the recovery of 
neurological functions more effectively, even without unnecessary 
sequelae due to time problems.

Spasticity

The early intervention of rehabilitative exercise training is the 
cornerstone of the future social reintegration of stroke patients. 
However, post-stroke spasticity (PSS), a complication that can 
seriously affect the recovery process, is a major disorder that severely 
affects motor training and is characterized by a speed-dependent 
increase in reflex tone. In general, not all stroke patients experience 
hypertonia as a clinical manifestation. About 30–80% of stroke 
patients are experiencing or are about to suffer from spasticity, which 
can cause pain, contracture, deformity, or even stiffness and 
immobility in the joints if not taken promptly (Wei et al., 2022).

Although numerous clinical studies have demonstrated that TMS 
significantly reduces post-stroke limb spasticity, a small number of 
studies have not yielded similar results, and they suggest that the 
reasons for this heterogeneity may be multifaceted, such as stimulation 
parameters, stimulation site, type of coil, and the severity and acute 
and chronic phase of stroke patients can affect the effect of TMS in 
reducing muscle spasticity in patients (Xia et al., 2022). Different types 
of coils have different degrees of influence in improving the spasticity 
state, with the figure-of-eight coil featuring higher focal stimulation 
having a significant effect in reducing spasticity symptoms compared 
to the H-type coil (Li et al., 2021). Second, the therapeutic effect of 
spasticity also varies depending on the different stimulation sites of 
TMS. In addition to the cerebral motor cortex, the cerebellum plays 
an important role in motor control and regulation of muscle tone 
stabilization. It was found that cerebellar cTBS can reduce muscle 
spasticity in stroke patients by regulating corticospinal excitability 
through the cerebellar-dentate thalamus-cortex pathway (Li et al., 
2021). Therefore, cerebellar cTBS may be one of the more promising 
stimulation modalities among the methods to reduce muscle spasticity 

in the future development of TMS to reduce spasticity. However, it has 
been found that lesions in a common functional region connected to 
the bilateral nucleus accumbens and pallidum on the side of the lesion 
may be a potentially critical region contributing to PSS (Qin et al., 
2022), so could this region be used as a TMS target to directly improve 
PSS? As we know, this region is located in the striatal area under the 
cortical overlay, which is a higher subcortical center that regulates a 
variety of complex neural functions such as motor, sensory and 
memory. As TMS is a non-invasive neurostimulation technique, if 
we  want TMS to target the common area of bilateral nucleus 
accumbens and pallidum, we can only indirectly stimulate to this area 
through the cerebral cortex, so how can we exclude the influence of 
the cerebral cortex and the interaction between these two areas? It is 
also possible that this is one of the reasons why this region has not 
been used as a TMS target.

Central post-stroke pain

Central post-stroke pain (CPSP) is one of the common 
neuropathic pain sequelae after cerebral ischemic injury, often 
manifesting as sensory hypersensitivity or sensory abnormalities at 
the site corresponding to the vascular lesion, which is easily confused 
with stroke-induced shoulder subluxation pain and muscle spasticity 
pain, resulting in patients who may miss the best early symptomatic 
treatment period and seriously reduce their quality of life. Currently, 
CPSP is mainly treated with pharmacological agents, such as 
anticonvulsants, which have good effects on improving the symptoms 
of CPSP (Bo et al., 2022), but when it comes to intractable CPSP, the 
drugs may only play the role of placebo and do not provide a good 
solution to the patient’s CPSP troubles. A recent study found that 
rTMS in the cerebral motor cortex had a significant effect on relieving 
recalcitrant CPSP (Malfitano et al., 2021), but the duration varied, 
which may be related to the site of ischemia, the period of disease 
progression, the site of stimulation, and individual patient differences. 
Therefore, there is a need to explore the therapeutic parameters related 
to the improvement of CPSP by TMS.

In addition, most studies suggest that the possible cause of CPSP 
is central de-inhibition or central imbalance due to ischemia (Ri, 
2022), then restoration of abnormal cortical excitability by TMS may 
be  one of the potential mechanisms for the relief of recalcitrant 
CPSP. As found in the study, 10 Hz HF-rTMS had significant analgesic 
effects in CPSP patients in all periods, and M1 HF-rTMS had better 
analgesic effects than M1 LF-rTMS (Leung et al., 2020; Malfitano 
et  al., 2021). This suggests that in patients with CPSP, increasing 
cortical excitability in the lesioned hemisphere is far more effective 
than inhibiting cortical excitability in the unlesioned hemisphere, after 
all, the imbalance in the regulation of downstream somatosensory 
pathways due to reduced cortical excitability in the lesioned 
hemisphere is the most direct cause of CPSP. Therefore, restoration of 
cortical excitability in the lesioned hemisphere of CPSP patients is one 
of the potential mechanisms for the analgesic effect of rTMS. In 
addition, one study found that rTMS significantly relieved CPSP was 
associated with changes in serum BDNF levels, and an increase in 
BDNF levels reduced pain in CPSP patients (Zhao et al., 2021). In 
addition, rTMS increases the functional link between somatosensory 
pathways, which in turn has an analgesic effect (Kadono et al., 2021). 
The above studies suggest that the analgesic effect of rTMS in CPSP 

https://doi.org/10.3389/fnins.2023.1177283
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhou et al. 10.3389/fnins.2023.1177283

Frontiers in Neuroscience 12 frontiersin.org

patients may be related to the modulation of neuroplasticity in the 
lesioned hemisphere and cortical excitability during the 
recovery period.

Challenges and prospects

Although TMS is a commonly used stroke treatment today, there 
are some safety risks associated with the action of TMS in humans. 
For example, in a meta-analysis trial, 13 patients out of 273 subjects 
experienced adverse events such as headache, dizziness, rhinorrhea, 
syncope, and seizures (Qiao et al., 2022). Among them, epilepsy is the 
most serious sequelae of TMS and is currently the most controversial 
point for scientists to question TMS.

The TMS safety guidelines suggest that the occurrence of 
epilepsy is influenced by a variety of external and internal factors 
(Walton et  al., 2021). External factors generally include errors 
present in TMS equipment, errors in the operation of medical 
personnel, and the adjustment of TMS-related parameters. In 
general, TMS devices need to be  checked for their hardware 
devices when they are first used to prevent the occurrence of 
adverse reactions such as epilepsy due to inaccuracies in the 
devices (Bae et  al., 2007). Secondly, the occurrence of adverse 
reactions is also related to TMS type, frequency, intensity, time, 
and coil shape. TMS protocols with high frequencies, intensities 
>120% MT, and short pulse intervals are more likely to induce 
epilepsy (Tendler et al., 2018; Rossi et al., 2021). However, what is 
the range of high frequencies? A study showed that TMS at 15 Hz, 
120% MT, and 0.75 s pulse interval induced epilepsy (Tendler et al., 
2018). Does that suggest that HF-TMS at 15 Hz or greater than 
15 Hz necessarily leads to epileptogenesis? The answer does not 
seem to be  the case, as a subset of clinical studies with TMS 
frequencies above 15 Hz or even up to 20 Hz did not induce 
epilepsy or other adverse effects (Chieffo et al., 2014). This suggests 
that TMS is not always accompanied by the occurrence of adverse 
reactions and that inter-individual differences between patients are 
a factor in its incidence. Second, coil type also affects the incidence 
of epilepsy, with the incidence of digital-8 coils inducing epilepsy 
at 3/1000 or less than 1%(Oberman et al., 2011). The incidence of 
digital-8 coils inducing epilepsy has also been reported to be in the 
range of 0.08/1000, while H-type coils affect epilepsy in the range 
of 0.12–0.43/1000 (Stultz et al., 2020). In this comparison, it seems 
that the figure-of-8 coil is a little safer, but TMS adverse effects are 
influenced by more factors, and we  are not sure whether the 
interference of other factors has been discharged when the 
figure-of-8 and H coils were compared. Therefore, the conclusion 
still lacks some credibility. In addition, internal factors mainly refer 
to the variability of TMS for different individuals, including aspects 
such as history of disease and history of taking medications. 
Patients with a history of brain injury, epilepsy, and those who have 
taken antidepressants (Kreuzer et al., 2013) or antiepileptic drugs 
(Dobek et al., 2015) have been reported to be prone to epilepsy.

TMS-induced epilepsy is influenced by numerous factors; 
therefore, when a patient is first treated with TMS, the patient 
should be pre-evaluated for acceptability of TMS treatment and 
potential triggers for adverse reactions before developing a safe and 
reliable individualized TMS protocol for the patient. This includes 
the optimal parameters for TMS, the most suitable stimulation site, 

and precautions to be taken during the treatment. However, it is 
worth noting that the optimal parameters are not necessarily 
within the safe range, and in some patients the optimal parameters 
exceed the safe range of TMS without inducing an adverse event. 
Therefore, is it necessary to choose the optimal TMS parameters in 
such cases in a big but, or to choose the safe parameters of TMS for 
insurance purposes remains a clinical problem? In addition, some 
patients experience adverse reactions within the safe range. In 
summary, the triggering factors of TMS adverse reactions may also 
be influenced by other factors that have not yet been identified; 
therefore, further exploration of the triggering factors of TMS 
adverse reactions and prevention of side effects such as seizures in 
patients is still a direction of urgent research. In addition, although 
there are many animal experiments on TMS, few trials have been 
conducted to validate it in humans, which is undoubtedly a major 
obstacle to the development process of TMS.

Conclusion

To date, there is a large body of clinical evidence supporting the 
value of TMS in improving post-stroke neurological deficits (upper 
and lower extremity motor, cognition, swallowing, speech, mood, 
spasticity, post-stroke neuropathic pain). Although the exact 
mechanism by which TMS improves post-stroke neurological deficits 
is inconclusive, the current status of TMS is at a critical period of 
translation of its value for clinical application. At this stage, it is 
necessary to document in detail the clinical efficacy, precautions, and 
adverse events of TMS for stroke, and to optimize and adjust the 
optimal stimulation parameters for TMS. However, TMS uses different 
stimulation parameters depending on the type of stroke, disease 
urgency, duration of disease, and post-stroke neurological sequelae, 
and perhaps even the timing of TMS intervention, which makes the 
optimal treatment protocol for various post-stroke sequelae difficult 
to find. Therefore, the optimal treatment protocol for TMS needs to 
be further explored with a large number and variety of stroke cases, a 
difficult process that requires small adjustments to various stimulation 
parameters and observation of efficacy. This process may 
be  interrupted at any time due to patient non-cooperation, poor 
tolerance, financial constraints, and difficulties in follow-up, making 
it difficult to explore the optimal treatment protocol for stroke 
neurological deficits. Secondly, although there is a lot of basic research 
on TMS, the brains of experimental animals are relatively small 
compared to the human brain, and the TMS probe is about the same 
size as the probe used in the human brain in clinical practice, so can 
the TMS probe in animal studies be positioned as accurately as in the 
human brain? There is no evidence to support this yet. It is also one of 
the reasons why some researchers question the results of basic TMS 
studies. Therefore, the development of TMS probes that are more 
suitable for the head size of experimental animals is important to 
explore the potential molecular mechanisms of TMS treatment more 
precisely in the future.
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