
SOFTWARE

METAPAPER

CORRESPONDING AUTHOR:

Nikolaj Goodger

Federation University Australia
Mt Helen Campus PO Box 663
Ballarat VIC 3353, Australia

ngoodger@protonmail.com

KEYWORDS:
Autonomous Agents;
Generalization; Language
Models; Language
Representations; NetHack;
Reinforcement Learning;
Transfer Learning

TO CITE THIS ARTICLE:
Goodger N, Vamplew P,
Foale C, Dazeley R 2023 A
NetHack Learning Environment
Language Wrapper for
Autonomous Agents. Journal
of Open Research Software,
11: 8. DOI: https://doi.
org/10.5334/jors.444

A NetHack Learning
Environment Language
Wrapper for Autonomous
Agents

NIKOLAJ GOODGER

PETER VAMPLEW

CAMERON FOALE

RICHARD DAZELEY

*Author affiliations can be found in the back matter of this article

ABSTRACT
This paper describes a language wrapper for the NetHack Learning Environment (NLE)
[1]. The wrapper replaces the non-language observations and actions with comparable
language versions. The NLE offers a grand challenge for AI research while MiniHack [2]
extends this potential to more specific and configurable tasks. By providing a language
interface, we can enable further research on language agents and directly connect
language models to a versatile environment.

mailto:ngoodger@protonmail.com
https://doi.org/10.5334/jors.444
https://doi.org/10.5334/jors.444
https://orcid.org/0009-0006-7214-0979
https://orcid.org/0000-0002-8687-4424
https://orcid.org/0000-0003-2537-0326
https://orcid.org/0000-0002-6199-9685

2Goodger et al. Journal of Open Research Software DOI: 10.5334/jors.444

(1) OVERVIEW
INTRODUCTION
The recent NetHack Learning Environment Challenge
[3] established the NetHack Challenge Task within the
NetHack Learning Environment (NLE) [1] as a grand
challenge for AI. The environment has been extended
with MiniHack [2], which features a suite of smaller
environments and subtasks for investigating specific
behaviors. MiniHack also allows for easily creating new
environments using the rich features and dynamics of
the NetHack game.

Learning from scratch in NetHack is extremely
challenging because of the very large observation
space (1000s of different entities in randomized
configurations), large action space (greater than 100
distinct compositional actions), and length of the game
(>10k steps). During the NetHack Challenge, none of
the symbolic, deep-rl, or hybrid agents submitted were
able to win the game. An alternative approach is to use
the tremendous amount of prior knowledge available in
written texts and especially in the NetHackWiki.1

Transfer learning has become the standard approach
for solving Natural Language Processing (NLP) tasks,
and has been used to achieve state-of-the-art results
[4]. Sample efficiency can also be improved drastically
with Large Language Models (LLM) demonstrating in
context few-shot learning [5]. Smaller language models
have also been shown to perform few-shot learning with
fine-tuning [6]. This makes it attractive to frame a task
as a language problem to leverage these models and
utilize the knowledge in the pretrained model. Pretrained
models have been successfully applied to Reinforcement
Learning (RL) [7], Interactive Decision-Making [8], and
Instruction Following [9]. However, these examples
still utilize non-language elements with additional
parameters that require training from scratch, precluding
few-shot levels of sample efficiency.

For common sense reasoning, language models
trained on natural language do not perform as well as
humans [10]. One approach to improving the common
sense reasoning capability of language models is by
interacting with an environment to gather knowledge
not normally written down. For example, if I put an item
into a bag I can take it out again later.

The use of language representations in the
observation and action space can improve generalization
when compared to vector observations [11]. This is likely
because of the compositional structure of language.
Language representations can also be used to describe
all observation modalities, allowing a proven language
model architecture, like the transformer [12] to be used
without the need for bespoke multi-modal models.

In this paper, we present a wrapper for the NLE that
uses language to encode the non-textual observations
and similarly decode language actions to the supported

discrete actions. To summarize the main reasons for
choosing to create a language interface are as follows:

1.	 A pretrained language model can be directly
connected with the environment and so knowledge
learned during language model pretraining can
transfer to the agents task, improving sample
efficiency.

2.	 Language modeling alone does not always work for
learning common sense. By embodying the agent the
language model would need to learn common sense
to achieve its goals.

3.	 By using compositional language observations and
actions we enable agents capable of compositional
generalization.

4.	 Exclusively using the language modality for
observations and actions allows for adding
additional features, new actions, new goals, and
outputting explanations without changing the model
architecture.

5.	 To facilitate further research on language agents.

RELATED WORK
Some of the earliest work on applying deep reinforcement
learning to text-based games [13, 14] use the Evennia
Game Engine2 and test on existing games or developed
new ones to facilitate their research. The TextWorld
environment [15] is designed to test transfer learning
and generalization on different language-based games.
However, TextWorld lacks the complexity of real games,
because of its limited quest generation capability.
TextWorld is also slow to run, but this particular limitation
was entirely mitigated in TextWorldExpress [16], however
the environments are still limited in complexity. Another
text environment is WordCraft [17], combining constituent
entities in the presence of distractors to produce a goal
entity which tests common-sense knowledge but also
intentionally limits the scope of the environment.

IMPLEMENTATION AND ARCHITECTURE
To translate the NLE non-language observations to
language representations and language actions to the
keyboard actions of the environment we wrap the base
NLE. This process is visualized in the block diagram in
Figure 1. The space of language interpretations of NLE
observations is large, so we define some design goals to
target the key functionality required to solve the problem:

1.	 Include key entities, e.g. the agent must know about
monsters so that it can attack or escape.

2.	 Allow navigation. To be able to navigate the agent
should be able to see obstacles and find a path to its
goal.

3.	 Allow effective usage of ranged tools. Ranged
weapons are obstructed by obstacles and ray

3Goodger et al. Journal of Open Research Software DOI: 10.5334/jors.444

weapons can be reflected. So the agent must know
the position of nearby obstacles.

4.	 Performant. The NLE environment is extremely fast
making it useful for RL experiments, and we want to
minimize the overhead when adding the wrapper

LANGUAGE ENCODING FOR VISUAL ELEMENTS
In the NLE the screen observations include glyphs, which
are integers that uniquely represent all the objects in the
game. The screen is 79 × 21 for a total of 1659 glyphs.
To convert this into a serialized language representation

we use the subject complement grammar. We maintain
an array of glyph strings, so for each integer glyph, we
can look up the corresponding string entity with O(1)
efficiency. The entity is used as the subject, we then add
the distance and direction relative to the agent as its
subject complement forming a triple of entity, distance,
and direction, e.g. {“giant ant”, “far”, “northeast”} (see
Figure 2a for the flow). Performing this operation for
each glyph yields a collection of triples. These triples go
through a number of post-processing steps shown and
described in Figure 2b to produce a language observation.

Figure 1 NLE Language Wrapper Block Diagram.

Figure 2 These figures show the computation flow for converting glyphs to the language observation. Figure 2a shows how for each
glyph we compute the distance, direction and entity strings to produce a triple. Figure 2b shows the mapping for the collection of
triples to the language observation, with example data on the right-hand side.

(a) Glyph to triple flow

(b) Triples to language observation flow

4Goodger et al. Journal of Open Research Software DOI: 10.5334/jors.444

The distances are quantized into buckets of adjacent,
very near, near, far, and very far. The directions are also
quantized into cardinal, inter-cardinal, and intermediate
directions, e.g. north, northeast, and northnortheast.
See Figure 3 for a visualization of how the distances
and directions are calculated. A complete example
observation is shown in Figure 4.

VISUAL VIEW
Despite utilizing a compact language representation
the screen size of 1659 means that an exhaustive
description of every glyph would be enormous. To
address this we draw inspiration from the unconscious

and conscious bandwidth of the brain. The eyes process
orders of magnitude more information unconsciously
compared to what can be read consciously [18]. The
limited information throughput when reading compared
to a visual input implies that for the representations
to be interpreted in a similar time frame (at least for a
human) we should keep only the salient information and
discard the rest. Discarding information in the input and
reducing the environment’s observability will negatively
impact the performance of an optimal agent. However,
the objective of this work is to build an environment that
enables the agent to find a solution, not necessarily the
optimal one.

Figure 3 In this figure, the player is represented by the @ symbol in the center. The color bands around the player represent distances,
that are defined in the legend on the right. Glyphs that lie on cardinal or inter-cardinal directions (e.g. north, northeast, east) are
defined as being in the direction they lie on. Glyphs that are located between the cardinal and inter-cardinal directions are assigned
the direction of the direction band they fall within (e.g. northnortheast), regardless of their exact position within the band. Using this
chart we can see how for any glyph position, the distances and directions can be quantized to text relative to the player.

Figure 4 The screen in Figure 4a shows the glyphs included in the language observation listed in Figure 4b. The elements and rays
from the Visual View are indicated with red, and the elements from the Fullscreen View are indicated with blue.

5Goodger et al. Journal of Open Research Software DOI: 10.5334/jors.444

Discarding unnecessary information is achieved
using Views, which capture specific glyphs based on
rules. Currently, the wrapper has two views defined, the
Fullscreen View and the Visual View. It is possible to add
more Views by following the same design pattern.

FULLSCREEN VIEW
This View captures all glyphs that are not floors, walls,
or unexplored tiles. This process discards the majority of
the information on the screen but retains the important
items of interest, such as monsters, items, waypoints,
etc. Using the Fullscreen View alone may potentially be
enough to make progress on the game, but the exclusion
of obstacles has disadvantages the Visual View tries to
address.

One problem with the Fullscreen View is the lack of
information on obstacles. This makes navigation more
difficult. Another challenge is some actions can be
impacted by obstacles, e.g. ray spells can be reflected
by obstacles and hit the agent. To address this problem
we try to include the key obstacles in the language
observation using the Visual View. Here we simulate vision
for the agent in the cardinal and inter-cardinal directions
(The only directions the agent can directly interact in). By
implementing a simple ray marching system we cast a
ray that stops when it encounters a glyph that is either
blocking vision or cannot be perceived, which can occur
as NetHack also simulates a field of view. This ray reports
any glyph that is not a floor and is mutually exclusive to
the Fullscreen View (to avoid duplicates). This approach
offers the agent some basic navigational queues and
allows for safe usage of ray spells. To solve navigational
tasks the agent will need to be more reliant on memory
or apply a simpler strategy like wall following compared
to a multi-modal agent using the raw NLE input.

VECTOR OBSERVATIONS
The vector observation or bottom-line stats (blstats)
includes useful features like hitpoints, gold, hunger, etc.
To textualize this feature we create pairs of one or more
vector features using the template [label]:[value], e.g.
the vector values for current hitpoints and maximum
hitpoints becomes “HP: 12/24”. When possible we
encode the vector value using text, e.g. hunger values
0, 1, 2 become “Satiated”, “Not Hungry” and “Hungry”
which are the same as the in-game representations
of these states. An example observation for hunger is
“Hunger: Satiated”.

LANGUAGE ENCODING ACTIONS
There is a unique action in NetHack assigned to each
keyboard button and additional actions are available by
pressing modifier keys Ctrl and Shift. These actions also
have names consisting of one or more words like apply,
north, dip, etc. So using a language action space it is
natural to assign these words to the actions. However,

because many of the actions can be composed, the
action definition can change, e.g. the a key refers to
the “apply” action, so we map the action string “apply”
to that key, but it can also refer to the first item in the
agent’s inventory, so we might perform a composed
action like “eat” “a”. Therefore, we also include a
mapping of the action string “a” to the keyboard button
a so both semantic language actions are available to the
agent. Invalid actions raise a ValueError Exception which
must be handled by the agent.

SCALABILITY
The NLE is comparatively fast compared to other
environments, running at 14.4k steps per second on an
Intel Core i7 2.9 GHz CPU [1]. To implement this wrapper
we require extensive string manipulation logic. This is
compute intensive, so we implement the transformations
in C++ using PyBind.3 We compare the environment Steps
Per Second (SPS) running on a Ryzen 1700 CPU in Table
1 by taking random actions for 10k steps and taking
the average of 3 runs. The results show that despite the
complexity of the string manipulation, the wrapper retains
40% of the performance of NLE which is enough to run
RL experiments. We have also implemented equivalent
performance integration tests in the test suite to avoid
regression when refactoring or adding new features.

EXPERIMENTS
To validate the wrapper a Sample Factory [19]
implementation is included. This uses Asynchronous
Proximal Policy Optimization (APPO) to optimize an agent
online. The Agent uses the huggingface transformer Library
[20] for a policy and value function model. As a baseline,
for this implementation, we used the nle-sample-factory-
baseline.4 The results are shown in Table 2.

QUALITY CONTROL
The wrapper includes integration tests to validate key
functionality. It also includes performance tests to
prevent regression during further development. All the
tests are listed in Table 3. The environment has been

ENVIRONMENT SPS

NLE 15k

NLE with Language Wrapper 6k

Table 1 NLE Language Wrapper Performance.

EXPERIMENT AVG REWARD

sample factory baseline 566 (16)

language wrapper 695 (22)

Table 2 Average reward Mean (Standard Deviation) of 3 runs for
1B steps.

6Goodger et al. Journal of Open Research Software DOI: 10.5334/jors.444

TEST NAME RESULT

test_message_spell_menu PASSED

test_message_more_end PASSED

test_message_full_stop_end PASSED

test_message_bracket_end PASSED

test_message_parenthesis_end PASSED

test_message_multipage PASSED

test_message_takeoffall PASSED

test_filter_map_from_conduct PASSED

test_empty_tty_chars_returns_empty_message PASSED

test_filter_map_from_name PASSED

test_filter_map_travel PASSED

test_create_env_real PASSED

test_env_language_action_space PASSED

test_env_discrete_action_space PASSED

test_env_obsv_space PASSED

test_step_real PASSED

test_step_invalid_action PASSED

test_action_actions_maps_reflect_valid_actions PASSED

test_step_valid_action_not_supported PASSED

test_obsv_fake PASSED

test_blstats_condition_none PASSED

test_blstats_condition_flying PASSED

test_multiple_obsv_fake PASSED

test_step_fake PASSED

test_statue PASSED

test_warning PASSED

test_swallow PASSED

test_zap_beam PASSED

test_explosion PASSED

test_illegal_object PASSED

test_weapon PASSED

test_armour PASSED

test_ring PASSED

test_amulet PASSED

test_tool PASSED

test_food PASSED

test_potion PASSED

test_scroll PASSED

test_spellbook PASSED

test_wand PASSED

test_coin PASSED

(Contd.)

7Goodger et al. Journal of Open Research Software DOI: 10.5334/jors.444

validated at scale while training the included agent for 1
billion steps. Detailed explanations and examples of how
to run and test the environment are documented in the
README.

(2) AVAILABILITY
OPERATING SYSTEM
MacOS, Linux and Windows using WSL.

PROGRAMMING LANGUAGE
Python 3.7 or higher.

ADDITIONAL SYSTEM REQUIREMENTS
None

DEPENDENCIES
See Table 4 for a list of the project dependencies.

SOFTWARE LOCATION
Code repository GitHub

Name: https://github.com/ngoodger/nle-language-
wrapper

DOI: https://www.doi.org/10.5281/zenodo.7456086
Licence: MIT License
Date published: 04/07/22

LANGUAGE
English

(3) REUSE POTENTIAL

As an interactive environment using the de facto
standard OpenAI gym interface, this wrapper is
specifically directly suited for developing online RL
algorithms using language models. It could also be used
for Offline RL, Imitation learning, and Decision-Making
research, if additional work is done to record and save
trajectories from a policy. Other possibilities for re-use
include extensions or forking of the wrapper, which is
fully permitted under the MIT License, and may be useful

TEST NAME RESULT

test_gem PASSED

test_rock PASSED

test_ball PASSED

test_chain PASSED

test_venom PASSED

test_ridden PASSED

test_corpse PASSED

test_invisible PASSED

test_detected PASSED

test_tame PASSED

test_monster PASSED

test_plural_end_ey PASSED

test_plural_end_y PASSED

test_plural_default PASSED

test_plural_end_s PASSED

test_plural_end_f PASSED

test_plural_end_ff PASSED

test_plural_lava PASSED

test_wrapper_only_works_with_nle_envs PASSED

test_wrapper_requires_all_keys PASSED

test_play PASSED

test_time_reset PASSED

test_time_step PASSED

Table 3 NLE Language Wrapper integration tests.

https://github.com/ngoodger/nle-language-wrapper
https://github.com/ngoodger/nle-language-wrapper
https://www.doi.org/10.5281/zenodo.7456086

8Goodger et al. Journal of Open Research Software DOI: 10.5334/jors.444

if users wish to modify some or all of the functionality.
Feedback or contributions are welcome and can be
made by raising GitHub Issues or Pull-Requests against
the repository. Support can also be obtained by raising
a GitHub Issue.

NOTES
1	 NetHackWiki https://nethackwiki.com/.

2	 Evennia Game Engine https://evennia.com.

3	 https://github.com/pybind/pybind11.

4	 https://github.com/Miffyli/nle-sample-factory-baseline.

ACKNOWLEDGEMENTS

We would like to acknowledge Anssi Kanervisto and
Karolis Ramanauskas for sharing their sample-factory
implementation.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Nikolaj Goodger orcid.org/0009-0006-7214-0979
Federation University Australia Mt Helen Campus PO Box 663
Ballarat VIC 3353, Australia

Peter Vamplew orcid.org/0000-0002-8687-4424
Federation University Australia Mt Helen Campus PO Box 663
Ballarat VIC 3353, Australia

Cameron Foale orcid.org/0000-0003-2537-0326
Federation University Australia Mt Helen Campus PO Box 663
Ballarat VIC 3353, Australia

Richard Dazeley orcid.org/0000-0002-6199-9685
Deakin University - Locked Bag 20000, Geelong, VIC 3220, AU

REFERENCES

1.	 Küttler H, Nardelli N, Miller A, Raileanu R, Selvatici M,

Grefenstette E, Rocktäschel T. The nethack learning

environment. In Larochelle H, Ranzato M, Hadsell R, Balcan

MF, Lin H (eds.), Advances in Neural Information Processing

Systems. 2020; 33: 7671–7684. Curran Associates, Inc. URL

https://proceedings.neurips.cc/paper/2020/file/569ff987c6

43b4bedf504efda8f786c2-Paper.pdf.

2.	 Samvelyan M, Kirk R, Kurin V, Parker-Holder J, Jiang

M, Hambro E, Petroni F, Kuttler H, Grefenstette E,

Rocktäschel T. Minihack the planet: A sandbox for

open-ended reinforcement learning research. In

Vanschoren J, Yeung S (eds.), Proceedings of the Neural

Information Processing Systems Track on Datasets

and Benchmarks. 2021; 1. URL https://datasets-

benchmarks-proceedings.neurips.cc/paper/2021/file/

fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper-round1.

pdf.

3.	 Hambro E, Mohanty S, Babaev D, Byeon M, Chakraborty

D, Grefenstette E, Jiang M, Daejin J, Kanervisto A, Kim

COMPONENT DEPENDENCY FUNCTION

base gym>=0.15, gym<=0.23 Wrapper base class

base minihack>=0.1.3 Enable wrapper for MiniHack

base nle==0.8.1 Base environment

base pybind11>=2.9 Implement high performance functions

dev black>=22.6.0 Formatting Python

dev flake8>=4.0.1 Linting Python

dev pytest>=7.1.2 Test framework

dev pytest-cov>=3.0.0 Test coverage

dev pytest-mock>=3.7.0 Test mocks

dev pygame>=2.1.2 Used for specific test

dev isort>=5.10.1 Sort dependencies

dev numpy>=1.21.0 Used for test framework

agent sample_factory>=1.121.4 RL framework

agent transformers>=4.17.0 Language model for agent

Table 4 List of core dependencies for the wrapper. The Component column identifies what the dependency is required for, where
those marked base are required to use the wrapper, dev are required for development, and agent are required to train or run the
included sample factory agent. The Dependency column specifies the library name and the version. Finally, the Function column
specifies the role of the library in the project.

https://nethackwiki.com/
https://evennia.com
https://github.com/pybind/pybind11
https://github.com/Miffyli/nle-sample-factory-baseline
https://orcid.org/0009-0006-7214-0979
https://orcid.org/0009-0006-7214-0979
https://orcid.org/0000-0002-8687-4424
https://orcid.org/0000-0002-8687-4424
https://orcid.org/0000-0003-2537-0326
https://orcid.org/0000-0003-2537-0326
https://orcid.org/0000-0002-6199-9685
https://orcid.org/0000-0002-6199-9685
https://proceedings.neurips.cc/paper/2020/file/569ff987c643b4bedf504efda8f786c2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/569ff987c643b4bedf504efda8f786c2-Paper.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper-round1.pdf

9Goodger et al. Journal of Open Research Software DOI: 10.5334/jors.444

J, Kim S, Kirk R, Kurin V, Küttler H, Kwon T, Lee D, Mella

V, Nardelli N, Nazarov I, Ovsov N, Holder J, Raileanu R,

Ramanauskas K, Rocktäschel T, Rothermel D, Samvelyan

M, Sorokin D, Sypetkowski M, Sypetkowski M. Insights

from the neurips 2021 nethack challenge. In Kiela D,

Ciccone M, Caputo B (eds.), Proceedings of the NeurIPS

2021 Competitions and Demonstrations Track, volume 176

of Proceedings of Machine Learning Research. 06–14 Dec

2022; 41–52. PMLR. URL https://proceedings.mlr.press/

v176/hambro22a.html.

4.	 Ruder S, Peters ME, Swayamdipta S, Wolf T. Transfer

learning in natural language processing. In Proceedings

of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Tutorials.

June 2019; 15–18. Minneapolis, Minnesota: Association for

Computational Linguistics. URL https://aclanthology.org/

N19-5004. DOI: https://doi.org/10.18653/v1/N19-5004

5.	 Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal

P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S,

Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A,

Ziegler D, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin

M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford

A, Sutskever I, Amodei D. Language models are few-shot

learners. In Larochelle H, Ranzato M, Hadsell R, Balcan MF,

Lin H (eds.), Advances in Neural Information Processing

Systems. 2020; 33: 1877–1901. Curran Associates, Inc. URL

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfc

b4967418bfb8ac142f64a-Paper.pdf.

6.	 Schick, T, Schütze H. It’s not just size that matters:

Small language models are also few-shot learners. In

Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies. June 2021; 2339–2352.

Online. Association for Computational Linguistics. URL

https://aclanthology.org/2021.naacl-main.185. DOI:

https://doi.org/10.18653/v1/2021.naacl-main.185

7.	 Reid M, Yamada Y, Gu SS. Can wikipedia help offline

reinforcement learning? 2022. URL https://arxiv.org/

abs/2201.12122.

8.	 Li S, Puig X, Paxton C, Du Y, Wang C, Fan L, Chen T,

Huang D-A, Akyürek E, Anandkumar A, Andreas J,

Mordatch I, Torralba A, Zhu Y. Pre-Trained Language

Models for Interactive Decision-Making. arXiv e-prints, art.

arXiv:2202.01771; February 2022.

9.	 Hill F, Mokra S, Wong N, Harley T. Human instruction-

following with deep reinforcement learning via

transfer-learning from text; 2020. URL https://arxiv.org/

abs/2005.09382.

10.	 Zhou X, Zhang Y, Cui L, Huang D. Evaluating

commonsense in pre-trained language models; 2019. URL

https://arxiv.org/abs/1911.11931.

11.	 Goodger N, Vamplew P, Foale C, Dazeley R. Language

representations for generalization in reinforcement

learning. In Vineeth NB, Ivor T, (eds.), Proceedings of The

13th Asian Conference on Machine Learning. 2021; 157:

390–405. Virtual.

12.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,

Gomez AN, Ukasz Kaiser Ł, Polosukhin I. Attention is all

you need. In Guyon I, Luxburg UV, Bengio S, Wallach H,

Fergus R, Vishwanathan S, Garnett R (eds.), Advances in

Neural Information Processing Systems. 2017; 30. Curran

Associates, Inc. URL https://proceedings.neurips.cc/

paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf.

13.	 Narasimhan K, Kulkarni T, Barzilay R. Language

understanding for text-based games using deep

reinforcement learning. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language

Processing. September 2015; 1–11. Lisbon, Portugal:

Association for Computational Linguistics. DOI: https://doi.

org/10.18653/v1/D15-1001

14.	 He J, Chen J, He X, Gao J, Li L, Deng L, Ostendorf M.

Deep reinforcement learning with a natural language

action space. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1:

Long Papers). August 2016; 1621–1630. Berlin, Germany:

Association for Computational Linguistics. URL https://

aclanthology.org/P16-1153. DOI: https://doi.org/10.18653/

v1/P16-1153

15.	 Côté M-A, Kádár Á, Yuan X, Kybartas B, Barnes T, Fine E,

Moore J, Tao RY, Hausknecht M, El Asri L, Adada M, Tay

W, Trischler A. Textworld: A learning environment for text-

based games. CoRR, abs/1806.11532; 2018. DOI: https://

doi.org/10.1007/978-3-030-24337-1_3

16.	 Jansen PA, Côté M. Textworldexpress: Simulating

text games at one million steps per second. CoRR,

abs/2208.01174; 2022. DOI: https://doi.org/10.48550/

arXiv.2208.01174

17.	 Jiang M, Luketina J, Nardelli N, Minervini P, Torr PHS,

Whiteson S, Rocktäschel T. Wordcraft: An environment

for benchmarking commonsense agents. In Workshop on

Language in Reinforcement Learning (LaRel); 2020. URL

https://github.com/minqi/wordcraft.

18.	 Koch K, McLean J, Segev R, Freed M, Berry II M,

Balasubramanian V, Sterling P. How much the eye tells

the brain. Current biology: CB. 08 2006; 16: 1428–34. DOI:

https://doi.org/10.1016/j.cub.2006.05.056

19.	 Petrenko A, Huang Z, Kumar T, Sukhatme G, Koltun

V. Sample factory: Egocentric 3d control from pixels at

100000 fps with asynchronous reinforcement learning. In

ICML; 2020. DOI: https://doi.org/10.1016/j.cub.2006.05.056

20.	 Wolf T, Debut L, Sanh V, Chaumond J, Delangue C,

Moi A, Cistac P, Rault T, Louf R, Funtowicz M, Davison

J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C,

Le Scao T, Gugger S, Drame M, Lhoest Q, Alexander M.

Rush. Transformers: State-of-the-art natural language

processing. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: System

Demonstrations. October 2020; 38–45. Online. Association

for Computational Linguistics. URL https://www.aclweb.

org/anthology/2020.emnlp-demos.6. DOI: https://doi.

org/10.18653/v1/2020.emnlp-demos.6

https://proceedings.mlr.press/v176/hambro22a.html
https://proceedings.mlr.press/v176/hambro22a.html
https://aclanthology.org/N19-5004
https://aclanthology.org/N19-5004
https://doi.org/10.18653/v1/N19-5004
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://arxiv.org/abs/2201.12122
https://arxiv.org/abs/2201.12122
https://arxiv.org/abs/2005.09382
https://arxiv.org/abs/2005.09382
https://arxiv.org/abs/1911.11931
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001
https://aclanthology.org/P16-1153
https://aclanthology.org/P16-1153
https://doi.org/10.18653/v1/P16-1153
https://doi.org/10.18653/v1/P16-1153
https://doi.org/10.1007/978-3-030-24337-1_3
https://doi.org/10.1007/978-3-030-24337-1_3
https://doi.org/10.48550/arXiv.2208.01174
https://doi.org/10.48550/arXiv.2208.01174
https://github.com/minqi/wordcraft
https://doi.org/10.1016/j.cub.2006.05.056
https://doi.org/10.1016/j.cub.2006.05.056
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

10Goodger et al. Journal of Open Research Software DOI: 10.5334/jors.444

TO CITE THIS ARTICLE:
Goodger N, Vamplew P, Foale C, Dazeley R 2023 A NetHack Learning Environment Language Wrapper for Autonomous Agents. Journal
of Open Research Software, 11: 8. DOI: https://doi.org/10.5334/jors.444

Submitted: 25 October 2022 Accepted: 16 March 2023 Published: 13 June 2023

COPYRIGHT:
© 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.444
http://creativecommons.org/licenses/by/4.0/

