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ABSTRACT
This paper describes a language wrapper for the NetHack Learning Environment (NLE) 
[1]. The wrapper replaces the non-language observations and actions with comparable 
language versions. The NLE offers a grand challenge for AI research while MiniHack [2] 
extends this potential to more specific and configurable tasks. By providing a language 
interface, we can enable further research on language agents and directly connect 
language models to a versatile environment.
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(1) OVERVIEW
INTRODUCTION
The recent NetHack Learning Environment Challenge 
[3] established the NetHack Challenge Task within the 
NetHack Learning Environment (NLE) [1] as a grand 
challenge for AI. The environment has been extended 
with MiniHack [2], which features a suite of smaller 
environments and subtasks for investigating specific 
behaviors. MiniHack also allows for easily creating new 
environments using the rich features and dynamics of 
the NetHack game.

Learning from scratch in NetHack is extremely 
challenging because of the very large observation 
space (1000s of different entities in randomized 
configurations), large action space (greater than 100 
distinct compositional actions), and length of the game 
(>10k steps). During the NetHack Challenge, none of 
the symbolic, deep-rl, or hybrid agents submitted were 
able to win the game. An alternative approach is to use 
the tremendous amount of prior knowledge available in 
written texts and especially in the NetHackWiki.1

Transfer learning has become the standard approach 
for solving Natural Language Processing (NLP) tasks, 
and has been used to achieve state-of-the-art results 
[4]. Sample efficiency can also be improved drastically 
with Large Language Models (LLM) demonstrating in 
context few-shot learning [5]. Smaller language models 
have also been shown to perform few-shot learning with 
fine-tuning [6]. This makes it attractive to frame a task 
as a language problem to leverage these models and 
utilize the knowledge in the pretrained model. Pretrained 
models have been successfully applied to Reinforcement 
Learning (RL) [7], Interactive Decision-Making [8], and 
Instruction Following [9]. However, these examples 
still utilize non-language elements with additional 
parameters that require training from scratch, precluding 
few-shot levels of sample efficiency.

For common sense reasoning, language models 
trained on natural language do not perform as well as 
humans [10]. One approach to improving the common 
sense reasoning capability of language models is by 
interacting with an environment to gather knowledge 
not normally written down. For example, if I put an item 
into a bag I can take it out again later.

The use of language representations in the 
observation and action space can improve generalization 
when compared to vector observations [11]. This is likely 
because of the compositional structure of language. 
Language representations can also be used to describe 
all observation modalities, allowing a proven language 
model architecture, like the transformer [12] to be used 
without the need for bespoke multi-modal models.

In this paper, we present a wrapper for the NLE that 
uses language to encode the non-textual observations 
and similarly decode language actions to the supported 

discrete actions. To summarize the main reasons for 
choosing to create a language interface are as follows:

1.	 A pretrained language model can be directly 
connected with the environment and so knowledge 
learned during language model pretraining can 
transfer to the agents task, improving sample 
efficiency.

2.	 Language modeling alone does not always work for 
learning common sense. By embodying the agent the 
language model would need to learn common sense 
to achieve its goals.

3.	 By using compositional language observations and 
actions we enable agents capable of compositional 
generalization.

4.	 Exclusively using the language modality for 
observations and actions allows for adding 
additional features, new actions, new goals, and 
outputting explanations without changing the model 
architecture.

5.	 To facilitate further research on language agents.

RELATED WORK
Some of the earliest work on applying deep reinforcement 
learning to text-based games [13, 14] use the Evennia 
Game Engine2 and test on existing games or developed 
new ones to facilitate their research. The TextWorld 
environment [15] is designed to test transfer learning 
and generalization on different language-based games. 
However, TextWorld lacks the complexity of real games, 
because of its limited quest generation capability. 
TextWorld is also slow to run, but this particular limitation 
was entirely mitigated in TextWorldExpress [16], however 
the environments are still limited in complexity. Another 
text environment is WordCraft [17], combining constituent 
entities in the presence of distractors to produce a goal 
entity which tests common-sense knowledge but also 
intentionally limits the scope of the environment.

IMPLEMENTATION AND ARCHITECTURE
To translate the NLE non-language observations to 
language representations and language actions to the 
keyboard actions of the environment we wrap the base 
NLE. This process is visualized in the block diagram in 
Figure 1. The space of language interpretations of NLE 
observations is large, so we define some design goals to 
target the key functionality required to solve the problem:

1.	 Include key entities, e.g. the agent must know about 
monsters so that it can attack or escape.

2.	 Allow navigation. To be able to navigate the agent 
should be able to see obstacles and find a path to its 
goal.

3.	 Allow effective usage of ranged tools. Ranged 
weapons are obstructed by obstacles and ray 
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weapons can be reflected. So the agent must know 
the position of nearby obstacles.

4.	 Performant. The NLE environment is extremely fast 
making it useful for RL experiments, and we want to 
minimize the overhead when adding the wrapper

LANGUAGE ENCODING FOR VISUAL ELEMENTS
In the NLE the screen observations include glyphs, which 
are integers that uniquely represent all the objects in the 
game. The screen is 79 × 21 for a total of 1659 glyphs. 
To convert this into a serialized language representation 

we use the subject complement grammar. We maintain 
an array of glyph strings, so for each integer glyph, we 
can look up the corresponding string entity with O(1) 
efficiency. The entity is used as the subject, we then add 
the distance and direction relative to the agent as its 
subject complement forming a triple of entity, distance, 
and direction, e.g. {“giant ant”, “far”, “northeast”} (see 
Figure 2a for the flow). Performing this operation for 
each glyph yields a collection of triples. These triples go 
through a number of post-processing steps shown and 
described in Figure 2b to produce a language observation. 

Figure 1 NLE Language Wrapper Block Diagram.

Figure 2 These figures show the computation flow for converting glyphs to the language observation. Figure 2a shows how for each 
glyph we compute the distance, direction and entity strings to produce a triple. Figure 2b shows the mapping for the collection of 
triples to the language observation, with example data on the right-hand side.

(a) Glyph to triple flow

(b) Triples to language observation flow
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The distances are quantized into buckets of adjacent, 
very near, near, far, and very far. The directions are also 
quantized into cardinal, inter-cardinal, and intermediate 
directions, e.g. north, northeast, and northnortheast. 
See Figure 3 for a visualization of how the distances 
and directions are calculated. A complete example 
observation is shown in Figure 4.

VISUAL VIEW
Despite utilizing a compact language representation 
the screen size of 1659 means that an exhaustive 
description of every glyph would be enormous. To 
address this we draw inspiration from the unconscious 

and conscious bandwidth of the brain. The eyes process 
orders of magnitude more information unconsciously 
compared to what can be read consciously [18]. The 
limited information throughput when reading compared 
to a visual input implies that for the representations 
to be interpreted in a similar time frame (at least for a 
human) we should keep only the salient information and 
discard the rest. Discarding information in the input and 
reducing the environment’s observability will negatively 
impact the performance of an optimal agent. However, 
the objective of this work is to build an environment that 
enables the agent to find a solution, not necessarily the 
optimal one.

Figure 3 In this figure, the player is represented by the @ symbol in the center. The color bands around the player represent distances, 
that are defined in the legend on the right. Glyphs that lie on cardinal or inter-cardinal directions (e.g. north, northeast, east) are 
defined as being in the direction they lie on. Glyphs that are located between the cardinal and inter-cardinal directions are assigned 
the direction of the direction band they fall within (e.g. northnortheast), regardless of their exact position within the band. Using this 
chart we can see how for any glyph position, the distances and directions can be quantized to text relative to the player.

Figure 4 The screen in Figure 4a shows the glyphs included in the language observation listed in Figure 4b. The elements and rays 
from the Visual View are indicated with red, and the elements from the Fullscreen View are indicated with blue.
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Discarding unnecessary information is achieved 
using Views, which capture specific glyphs based on 
rules. Currently, the wrapper has two views defined, the 
Fullscreen View and the Visual View. It is possible to add 
more Views by following the same design pattern.

FULLSCREEN VIEW
This View captures all glyphs that are not floors, walls, 
or unexplored tiles. This process discards the majority of 
the information on the screen but retains the important 
items of interest, such as monsters, items, waypoints, 
etc. Using the Fullscreen View alone may potentially be 
enough to make progress on the game, but the exclusion 
of obstacles has disadvantages the Visual View tries to 
address.

One problem with the Fullscreen View is the lack of 
information on obstacles. This makes navigation more 
difficult. Another challenge is some actions can be 
impacted by obstacles, e.g. ray spells can be reflected 
by obstacles and hit the agent. To address this problem 
we try to include the key obstacles in the language 
observation using the Visual View. Here we simulate vision 
for the agent in the cardinal and inter-cardinal directions 
(The only directions the agent can directly interact in). By 
implementing a simple ray marching system we cast a 
ray that stops when it encounters a glyph that is either 
blocking vision or cannot be perceived, which can occur 
as NetHack also simulates a field of view. This ray reports 
any glyph that is not a floor and is mutually exclusive to 
the Fullscreen View (to avoid duplicates). This approach 
offers the agent some basic navigational queues and 
allows for safe usage of ray spells. To solve navigational 
tasks the agent will need to be more reliant on memory 
or apply a simpler strategy like wall following compared 
to a multi-modal agent using the raw NLE input.

VECTOR OBSERVATIONS
The vector observation or bottom-line stats (blstats) 
includes useful features like hitpoints, gold, hunger, etc. 
To textualize this feature we create pairs of one or more 
vector features using the template [label]:[value], e.g. 
the vector values for current hitpoints and maximum 
hitpoints becomes “HP: 12/24”. When possible we 
encode the vector value using text, e.g. hunger values 
0, 1, 2 become “Satiated”, “Not Hungry” and “Hungry” 
which are the same as the in-game representations 
of these states. An example observation for hunger is 
“Hunger: Satiated”.

LANGUAGE ENCODING ACTIONS
There is a unique action in NetHack assigned to each 
keyboard button and additional actions are available by 
pressing modifier keys Ctrl and Shift. These actions also 
have names consisting of one or more words like apply, 
north, dip, etc. So using a language action space it is 
natural to assign these words to the actions. However, 

because many of the actions can be composed, the 
action definition can change, e.g. the a key refers to 
the “apply” action, so we map the action string “apply” 
to that key, but it can also refer to the first item in the 
agent’s inventory, so we might perform a composed 
action like “eat” “a”. Therefore, we also include a 
mapping of the action string “a” to the keyboard button 
a so both semantic language actions are available to the 
agent. Invalid actions raise a ValueError Exception which 
must be handled by the agent.

SCALABILITY
The NLE is comparatively fast compared to other 
environments, running at 14.4k steps per second on an 
Intel Core i7 2.9 GHz CPU [1]. To implement this wrapper 
we require extensive string manipulation logic. This is 
compute intensive, so we implement the transformations 
in C++ using PyBind.3 We compare the environment Steps 
Per Second (SPS) running on a Ryzen 1700 CPU in Table 
1 by taking random actions for 10k steps and taking 
the average of 3 runs. The results show that despite the 
complexity of the string manipulation, the wrapper retains 
40% of the performance of NLE which is enough to run 
RL experiments. We have also implemented equivalent 
performance integration tests in the test suite to avoid 
regression when refactoring or adding new features.

EXPERIMENTS
To validate the wrapper a Sample Factory [19] 
implementation is included. This uses Asynchronous 
Proximal Policy Optimization (APPO) to optimize an agent 
online. The Agent uses the huggingface transformer Library 
[20] for a policy and value function model. As a baseline, 
for this implementation, we used the nle-sample-factory-
baseline.4 The results are shown in Table 2.

QUALITY CONTROL
The wrapper includes integration tests to validate key 
functionality. It also includes performance tests to 
prevent regression during further development. All the 
tests are listed in Table 3. The environment has been 

ENVIRONMENT SPS

NLE 15k

NLE with Language Wrapper 6k

Table 1 NLE Language Wrapper Performance.

EXPERIMENT AVG REWARD

sample factory baseline 566 (16)

language wrapper 695 (22)

Table 2 Average reward Mean (Standard Deviation) of 3 runs for 
1B steps.
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TEST NAME RESULT

test_message_spell_menu PASSED

test_message_more_end PASSED

test_message_full_stop_end PASSED

test_message_bracket_end PASSED

test_message_parenthesis_end PASSED

test_message_multipage PASSED

test_message_takeoffall PASSED

test_filter_map_from_conduct PASSED

test_empty_tty_chars_returns_empty_message PASSED

test_filter_map_from_name PASSED

test_filter_map_travel PASSED

test_create_env_real PASSED

test_env_language_action_space PASSED

test_env_discrete_action_space PASSED

test_env_obsv_space PASSED

test_step_real PASSED

test_step_invalid_action PASSED

test_action_actions_maps_reflect_valid_actions PASSED

test_step_valid_action_not_supported PASSED

test_obsv_fake PASSED

test_blstats_condition_none PASSED

test_blstats_condition_flying PASSED

test_multiple_obsv_fake PASSED

test_step_fake PASSED

test_statue PASSED

test_warning PASSED

test_swallow PASSED

test_zap_beam PASSED

test_explosion PASSED

test_illegal_object PASSED

test_weapon PASSED

test_armour PASSED

test_ring PASSED

test_amulet PASSED

test_tool PASSED

test_food PASSED

test_potion PASSED

test_scroll PASSED

test_spellbook PASSED

test_wand PASSED

test_coin PASSED

(Contd.)
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validated at scale while training the included agent for 1 
billion steps. Detailed explanations and examples of how 
to run and test the environment are documented in the 
README.

(2) AVAILABILITY
OPERATING SYSTEM
MacOS, Linux and Windows using WSL.

PROGRAMMING LANGUAGE
Python 3.7 or higher.

ADDITIONAL SYSTEM REQUIREMENTS
None

DEPENDENCIES
See Table 4 for a list of the project dependencies.

SOFTWARE LOCATION
Code repository GitHub

Name: https://github.com/ngoodger/nle-language-
wrapper

DOI: https://www.doi.org/10.5281/zenodo.7456086
Licence: MIT License
Date published: 04/07/22

LANGUAGE
English

(3) REUSE POTENTIAL

As an interactive environment using the de facto 
standard OpenAI gym interface, this wrapper is 
specifically directly suited for developing online RL 
algorithms using language models. It could also be used 
for Offline RL, Imitation learning, and Decision-Making 
research, if additional work is done to record and save 
trajectories from a policy. Other possibilities for re-use 
include extensions or forking of the wrapper, which is 
fully permitted under the MIT License, and may be useful 

TEST NAME RESULT

test_gem PASSED

test_rock PASSED

test_ball PASSED

test_chain PASSED

test_venom PASSED

test_ridden PASSED

test_corpse PASSED

test_invisible PASSED

test_detected PASSED

test_tame PASSED

test_monster PASSED

test_plural_end_ey PASSED

test_plural_end_y PASSED

test_plural_default PASSED

test_plural_end_s PASSED

test_plural_end_f PASSED

test_plural_end_ff PASSED

test_plural_lava PASSED

test_wrapper_only_works_with_nle_envs PASSED

test_wrapper_requires_all_keys PASSED

test_play PASSED

test_time_reset PASSED

test_time_step PASSED

Table 3 NLE Language Wrapper integration tests.

https://github.com/ngoodger/nle-language-wrapper
https://github.com/ngoodger/nle-language-wrapper
https://www.doi.org/10.5281/zenodo.7456086


8Goodger et al. Journal of Open Research Software DOI: 10.5334/jors.444

if users wish to modify some or all of the functionality. 
Feedback or contributions are welcome and can be 
made by raising GitHub Issues or Pull-Requests against 
the repository. Support can also be obtained by raising 
a GitHub Issue.

NOTES
1	 NetHackWiki https://nethackwiki.com/.

2	 Evennia Game Engine https://evennia.com.

3	 https://github.com/pybind/pybind11.

4	 https://github.com/Miffyli/nle-sample-factory-baseline.
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