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Background: The gut microbiome is closely related to gastrointestinal (GI) cancer, 
but the causality of gut microbiome with GI cancer has yet to be fully established. 
We conducted this two-sample Mendelian randomization (MR) study to reveal 
the potential causal effect of gut microbiota on GI cancer.

Materials and methods: Summary-level genetic data of gut microbiome were 
derived from the MiBioGen consortium and the Dutch Microbiome Project. 
Summary statistics of six GI cancers were drawn from United Kingdom Biobank. 
Inverse-variance-weighted (IVW), MR-robust adjusted profile score (MR-RAPS), 
and weighted-median (WM) methods were used to evaluate the potential causal 
link between gut microbiota and GI cancer. In addition, we performed sensitivity 
analyses and reverse MR analyses.

Results: We identified potential causal associations between 21 bacterial taxa and 
GI cancers (values of p <  0.05  in all three MR methods). Among them, phylum 
Verrucomicrobia (OR: 0.17, 95% CI: 0.05–0.59, p  =  0.005) retained a strong 
negative association with intrahepatic cholangiocarcinoma after the Bonferroni 
correction, whereas order Bacillales (OR: 1.67, 95% CI: 1.23–2.26, p  =  0.001) 
retained a strong positive association with pancreatic cancer. Reverse MR analyses 
indicated that GI cancer was associated with 17 microbial taxa in all three MR 
methods, among them, a strong inverse association between colorectal cancer 
and family Clostridiaceae1 (OR: 0.91, 95% CI: 0.86–0.96, p =  0.001) was identified 
by Bonferroni correction.

Conclusion: Our study implicates the potential causal effects of specific microbial 
taxa on GI cancer, potentially providing new insights into the prevention and 
treatment of GI cancer through specific gut bacteria.
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1. Introduction

In 2020, the five major types of gastrointestinal (GI) cancer 
(including esophageal, gastric, colorectal, liver, and pancreatic 
cancers) account for 25.8% of the global cancer incidence and 35.4% 
of the global cancer-related deaths (Sung et al., 2021). GI cancers are 
significant contributors to the global burden of cancer and pose a 
serious challenge to public health (Arnold et al., 2020), so finding the 
etiology and applying suitable preventive measures are urgent.

There is increasing evidence that intestinal microbiota is closely 
related to GI cancer (Tong et al., 2021). Intestinal flora is involved in 
the occurrence and progression of colorectal cancer (CRC) by 
affecting the inflammatory process in the intestine and producing 
metabolites (Brennan and Garrett, 2016; Wong and Yu, 2019). 
Epidemiological studies have shown that the microbial composition 
differs between CRC patients and healthy controls, and may serve as 
biomarkers for CRC screening and prognosis (Wong and Yu, 2019). 
The intestinal microbiota not only influences the occurrence of CRC 
via local effects but also has long-distance effects on other cancers, for 
example, affecting the development of liver cancer through the gut–
liver axis (Schwabe and Jobin, 2013; Yu and Schwabe, 2017). Intestinal 
microbial metabolites and microbial components can be transferred 
to the liver through the gut–liver axis (Ohtani and Hara, 2021). In 
addition, abundance differences in gut microbes between patients 
with other GI cancers (e.g., pancreatic, esophageal, and gastric 
cancers) and healthy controls were also found (Yu et al., 2021; Cheung 
et  al., 2022; Kartal et  al., 2022). However, the causality of gut 
microbiota with GI cancer has not been fully established due to the 
potential effects of residual confounding and reverse causality.

Mendelian randomization (MR), a common method for 
examining causal relationships between exposures and outcomes, has 
been used to explore potential causal associations between gut 
microbiota and multiple diseases (Li et al., 2022, 2023). Recently, using 
two-sample MR analysis, two studies reported the potential causal 
association between intestinal microbiota and CRC and one study 
reported the potential causality of gut microbiota with gastric cancer 
(Ni et  al., 2022; Long et  al., 2023). In addition, there was an MR 
analysis exploring the relationship of 57 bacterial taxa (including four 
phyla, eight classes, six orders, 10 families, and 29 genera) with liver 
cancer (Ma et al., 2023). However, potential causal associations of 
many other gut microbial taxa with liver cancer are unknown, and the 
potential causal relationship of gut microbiome with pancreatic and 
esophageal cancer is not well established. Therefore, this study 
performed two-sample MR analysis using the genome-wide 
association study (GWAS) datasets containing 211 bacterial taxa at the 
phylum to genus level from the MiBioGen consortium (Kurilshikov 
et al., 2021) and 105 bacterial taxa at the species level from the Dutch 
Microbiome Project (Lopera-Maya et al., 2022) to reveal the potential 
causal relationships of gut microbiota with esophageal, gastric, 
colorectal, liver, and pancreatic cancers.

2. Materials and methods

2.1. Study design

The study design of the present two-sample MR analysis is shown 
in Figure 1. To reliably infer the potential causality of gut microbiome 

with GI cancer risk using MR approach, we tried to meet three key 
assumptions of MR analysis. First, the instrumental variables (IVs) are 
correlated with gut microbiome. Second, IVs are unrelated to 
confounders influencing this association. Third, IVs influence the GI 
cancer risk only through gut microbiota (Davies et al., 2018).

2.2. Data sources and instruments 
selection

The genetic data of human gut microbiome at the phylum to 
genus level were obtained from the multi-ethnic MiBioGen 
consortium comprising 24 population-based cohorts with 18,340 
participants. A total of 211 gut microbial taxa were included in this 
GWAS dataset, of which 15 were unknown families or genera and 
were excluded, leaving 196 microbial taxa for MR analysis. The 
summary statistics on the species level of gut microbiota were derived 
from the Dutch Microbiome Project including a total of 105 species 
with 7,738 participants of European ancestry. To obtain more 
comprehensive results, IVs that attained locus-wide significance 
(p < 1 × 10−5) were selected. In parallel, single-nucleotide 
polymorphisms (SNPs) in linkage disequilibrium were excluded by 
the PLINK clumping method (r2 < 0.001, kb = 10,000). Then, SNPs 
with F-statistics [formula: R2/K × (N − K − 1)/(1 − R2)] < 10 were 
removed (Palmer et al., 2012). Finally, we searched the PhenoScanner 
website for additional phenotypes associated with gut microbiota-
related SNPs and removed SNPs associated with confounders (body 
mass index, waist circumference, smoking, alcohol intake, blood 
pressure, blood lipids, coronary artery disease, weight, hip 
circumference, fat percentage, diabetes, worrier or anxious feelings, 
nervous feelings, chronotype, birth weight, hypothyroidism, gout, 
Gamma glutamyl transferase, skin cancer, ovarian cancer, 
malabsorption or coeliac disease, primary biliary cholangitis, and 
Hodgkin’s disease). Four species with less than three available SNPs 
were excluded. A total of 297 bacterial taxa were included in the 
MR analysis.

Genome-wide association study summary statistics for esophageal 
cancer (750 cases and 455,598 controls), gastric cancer (569 cases and 
455,779 controls), CRC (4,562 cases and 382,756 controls), 
hepatocellular carcinoma (HCC, 123 cases and 456,225 controls), 
intrahepatic cholangiocarcinoma (ICC, 104 cases and 456,244 
controls), and pancreatic cancer (587 cases and 455,761 controls) were 
obtained from United  Kingdom Biobank, with details described 
elsewhere (Zhou et al., 2018; Jiang et al., 2021). No additional ethics 
approval or informed consent was required due to our study was based 
on public databases.

2.3. Statistical analysis

The potential causality of gut microbiota and GI cancer risk was 
primarily calculated by inverse-variance-weighted (IVW) method. 
Cochran’s Q test was used for assessment of heterogeneity, using 
random-effects IVW when heterogeneity was significant (p < 0.05) and, 
conversely, fixed-effects IVW. The consistency of results was examined 
by two additional approaches: MR-robust adjusted profile score 
(MR-RAPS) method and weighted-median (WM) method. The 
condition for WM method to obtain consistent estimates of causal 
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effects is that half of SNPs are valid IVs (Bowden et al., 2016). MR-RAPS 
can make robust inferences when it contains weak IVs (Zhao et al., 
2019). To assess pleiotropy, we performed MR-Egger and MR-Pleiotropy 
RESidual Sum and Outlier (MR-PRESSO) tests (Bowden et al., 2015; 
Verbanck et al., 2018), the latter of which could also detect outliers and 
test for differences in results before and after eliminating outliers 
(Verbanck et  al., 2018). In addition, leave-one-out analysis was 
conducted to assess the impact on overall estimates by a single SNP.

To obtain a more rigorous explanation of causality, we  used 
Bonferroni method to establish multiple testing significance thresholds 
at different taxonomic levels separately based on the number of bacteria 
under each taxonomic level [5.6 × 10−3 (0.05/9) for phylum, 3.1 × 10−3 
(0.05/16) for class, 2.5 × 10−3 (0.05/20) for order, 1.6 × 10−3 (0.05/32) for 
family, 4.2 × 10−4 (0.05/119) for genus, and 5.0 × 10−4 (0.05/101) for 
species]. P values reaching nominal significance (p  < 0.05) were 
considered to have nominal potential causal effects. Finally, reverse MR 
analyses utilizing SNPs correlated with GI cancer (p < 5 × 10−6) as IVs 
were performed to examine whether GI cancer had a causal impact on 
gut microbial taxa. “TwoSampleMR” and “MR-PRESSO” packages 
were used for analyses in R program (version 4.2.2).

3. Results

3.1. Overview

After a series of IV screening steps, a total of 3,457 eligible SNPs 
from 297 microbial taxa were finally included in this analysis. Details 

of IVs are listed in Supplementary Table S1. The IVW method 
identified 69 microbial taxa associated with esophageal cancer, gastric 
cancer, CRC, HCC, ICC, or pancreatic cancer (Figure 2). However, 
only 21 microbial taxa remained stable in both WM and MR-RAPS 
methods (Table 1). The scatter plots of the associations of these 21 
microbial taxa with the corresponding GI cancers are shown in 
Supplementary Figures S1–S6. And the statistical power of these 
microbial taxa calculated by an online tool1 is presented in Table 1.

3.2. Esophageal cancer

The IVW analysis indicated that Oxalobacteraceae (OR: 1.33, 95% 
CI: 1.01–1.77), Coprobacter (OR: 1.60, 95% CI: 1.15–2.21), Oxalobacter 
(OR: 1.43, 95% CI: 1.07–1.92), Ruminococcaceae UCG010 (OR: 2.54, 
95% CI: 1.39–4.64), Sellimonas (OR: 1.46, 95% CI: 1.07–1.99), 
Akkermansia muciniphila (OR: 1.57, 95% CI: 1.13–2.17), Bacteroides 
salyersiae (OR: 1.24, 95% CI: 1.01–1.52), and Roseburia unclassified 
(OR: 1.33, 95% CI: 1.06–1.68) were correlated with increased 
esophageal cancer risk (p < 0.05), whereas Butyricicoccus (OR: 0.56, 
95% CI: 0.33–0.94), Lachnospira (OR: 0.44, 95% CI: 0.21–0.93), and 
Bacteroides plebeius (OR: 0.72, 95% CI: 0.57–0.92) were related to a 
reduced risk of esophageal cancer (p < 0.05; Figure 2). However, only 
Oxalobacteraceae, Oxalobacter, and Ruminococcaceae UCG010 

1 https://shiny.cnsgenomics.com/mRnd/

FIGURE 1

The study design and workflow of the present MR study. EC, esophageal cancer; GC, gastric cancer; CRC, colorectal cancer; HCC, hepatocellular 
carcinoma; ICC, intrahepatic cholangiocarcinoma; PC, pancreatic cancer; IVs, instrumental variables; MR, Mendelian randomization; SNP, single-
nucleotide polymorphism; IVW, Inverse-variance-weighted; and MR-RAPS, MR-robust adjusted profile score.
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FIGURE 2

The potential causal relationship between gut microbiome and gastrointestinal (GI) cancer risk in the IVW method (p <  0.05). Red represents the risk 
taxa for GI cancer, blue represents the protective taxa for GI cancer, and white represents no causal taxa for GI cancer. EC, esophageal cancer; GC, 
gastric cancer; CRC, colorectal cancer; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; PC, pancreatic cancer; and NS, no 
significant association.
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TABLE 1 Causal associations between genetically predicted 21 microbial taxa and gastrointestinal cancer risk.

Outcome Microbial taxa 
(Exposure)

No. of SNP MR method OR (95% 
CI)

p value Statistical power

EC Oxalobacteraceae 15 IVW 1.33 (1.01–1.77) 0.045 65%

15 WM 1.52 (1.03–2.23) 0.033

15 MR-RAPS 1.45 (1.07–1.97) 0.016

EC Oxalobacter 12 IVW 1.43 (1.07–1.92) 0.016 84%

12 WM 1.48 (1.01–2.18) 0.046

12 MR-RAPS 1.47 (1.07–2.01) 0.017

EC Ruminococcaceae UCG010 8 IVW 2.54 (1.39–4.64) 0.002 100%

8 WM 2.32 (1.02–5.28) 0.044

8 MR-RAPS 2.61 (1.35–5.03) 0.004

GC Howardella 11 IVW 1.69 (1.21–2.34) 0.002 98%

11 WM 1.96 (1.25–3.08) 0.003

11 MR-RAPS 1.73 (1.21–2.49) 0.003

GC Roseburia unclassified 13 IVW 1.34 (1.03–1.74) 0.027 71%

13 WM 1.43 (1.00–2.03) 0.050

13 MR-RAPS 1.38 (1.04–1.84) 0.025

CRC Bilophila 16 IVW 0.79 (0.66–0.95) 0.012 63%

16 WM 0.75 (0.58–0.98) 0.033

16 MR-RAPS 0.78 (0.63–0.97) 0.025

CRC
Lachnospiraceae FCS020 

group
15 IVW 1.30 (1.08–1.57) 0.005 91%

15 WM 1.30 (1.01–1.68) 0.039

15 MR-RAPS 1.32 (1.08–1.60) 0.007

CRC Prevotella7 12 IVW 1.19 (1.06–1.33) 0.003 93%

12 WM 1.22 (1.04–1.43) 0.014

12 MR-RAPS 1.21 (1.07–1.38) 0.003

HCC Butyricicoccus 9 IVW 0.22 (0.06–0.79) 0.021 25%

9 WM 0.16 (0.03–0.99) 0.048

9 MR-RAPS 0.20 (0.05–0.83) 0.027

HCC Ruminococcus lactaris 4 IVW 4.79 (1.46–15.74) 0.010 100%

4 WM 5.08 (1.04–24.76) 0.044

4 MR-RAPS 5.37 (1.01–28.69) 0.049

ICC Verrucomicrobia 12 IVW 0.17 (0.05–0.59) 0.005 23%

12 WM 0.17 (0.03–0.92) 0.040

12 MR-RAPS 0.16 (0.04–0.60) 0.007

ICC Enterobacteriales 10 IVW 5.63 (1.16–27.43) 0.032 100%

10 WM 7.31 (1.01–53.03) 0.049

10 MR-RAPS 6.48 (1.18–35.45) 0.031

ICC Enterobacteriaceae 10 IVW 5.63 (1.16–27.43) 0.032 100%

10 WM 7.31 (1.01–52.97) 0.049

10 MR-RAPS 6.48 (1.18–35.45) 0.031

ICC Veillonellaceae 21 IVW 3.58 (1.29–9.93) 0.014 100%

21 WM 4.23 (1.04–17.20) 0.044

21 MR-RAPS 3.93 (1.33–11.65) 0.014

(Continued)
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maintained consistent results in both WM and MR-RAPS methods 
(Table 1). Leave-one-out analysis of these three bacterial taxa found 
that some SNPs of Oxalobacteraceae and Oxalobacter might dominate 
the positive results (Supplementary Figure S7).

3.3. Gastric cancer

According to IVW method (Figure 2), Bacteroidales S24 7group 
(OR: 0.56, 95% CI: 0.34–0.90) and Bacteroides eggerthii (OR: 0.69, 
95% CI: 0.49–0.97) were associated with a lower risk of gastric cancer 
(p < 0.05), while Clostridium innocuum group (OR: 1.48, 95% CI: 
1.04–2.10), Dialister (OR: 1.85, 95% CI: 1.06–3.25), Howardella (OR: 
1.69, 95% CI: 1.21–2.34), Lachnospiraceae NC2004 group (OR: 1.72, 
95% CI: 1.10–2.70), Paraprevotella clara (OR: 1.48, 95% CI: 1.10–
2.00), Lactobacillus delbrueckii (OR: 1.18, 95% CI: 1.01–1.38), 
Phascolarctobacterium succinatutens (OR: 1.33, 95% CI: 1.01–1.75), 
Desulfovibrio piger (OR: 1.55, 95% CI: 1.02–2.35), and Roseburia 
unclassified (OR: 1.34, 95% CI: 1.03–1.74) were correlated with higher 
gastric cancer risk (p < 0.05). Of these, only Howardella and Roseburia 
unclassified remained stable in WM and MR-RAPS methods 
(Table 1), and SNPs with significant effects were not identified in 
Howardella but in Roseburia unclassified by leave-one-out analysis 
(Supplementary Figure S8).

3.4. Colorectal cancer

Bifidobacteriales (OR: 0.75, 95% CI: 0.62–0.91), Bifidobacteriaceae 
(OR: 0.75, 95% CI: 0.62–0.91), Bilophila (OR: 0.79, 95% CI: 0.66–
0.95), Coprococcus2 (OR: 0.80, 95% CI: 0.65–0.99), Fusicatenibacter 
(OR: 0.82, 95% CI: 0.68–0.99), Odoribacter (OR: 0.73, 95% CI: 0.57–
0.94), Ruminococcaceae UCG005 (OR: 0.81, 95% CI: 0.67–0.98), 
Alistipes finegoldii (OR: 0.84, 95% CI: 0.71–0.99), Bacteroides faecis 
(OR: 0.93, 95% CI: 0.88–1.00), Lachnospiraceae bacterium 3_1_46FAA 
(OR: 0.83, 95% CI: 0.70–0.98), Lachnospiraceae bacterium 7_1_58FAA 
(OR: 0.85, 95% CI: 0.73–1.00), and Roseburia intestinalis (OR: 0.84, 
95% CI: 0.72–0.98) were negatively correlated with CRC risk in the 
IVW approach (p < 0.05; Figure 2). As for Cyanobacteria (OR: 1.19, 
95% CI: 1.01–1.40), Eubacterium brachy group (OR: 1.17, 95% CI: 
1.03–1.31), Coprobacter (OR: 1.16, 95% CI: 1.02–1.32), Family XIII 
UCG001 (OR: 1.24, 95% CI: 1.00–1.54), Lachnospiraceae FCS020 
group (OR: 1.30, 95% CI: 1.08–1.57), Prevotella7 (OR: 1.19, 95% CI: 
1.06–1.33), and Bifidobacterium longum (OR: 1.17, 95% CI: 1.00–
1.36), we observed positive associations with CRC in IVW analysis 
(p < 0.05; Figure 2). However, only Bilophila, Lachnospiraceae FCS020 
group, and Prevotella7 obtained similar estimates in WM and 
MR-RAPS methods (Table 1). Leave-one-out analysis detected that 
the results of Lachnospiraceae FCS020 group and Prevotella7 remained 
stable (Supplementary Figure S9).

TABLE 1 (Continued)

Outcome Microbial taxa 
(Exposure)

No. of SNP MR method OR (95% 
CI)

p value Statistical power

ICC Paraprevotella 13 IVW 0.27 (0.11–0.67) 0.005 31%

13 WM 0.24 (0.07–0.86) 0.029

13 MR-RAPS 0.25 (0.09–0.68) 0.007

ICC Bacteroides clarus 7 IVW 0.52 (0.28–0.99) 0.046 28%

7 WM 0.32 (0.13–0.79) 0.013

7 MR-RAPS 0.43 (0.21–0.87) 0.019

PC Bacillales 11 IVW 1.67 (1.23–2.26) 0.001 99%

11 WM 1.58 (1.04–2.40) 0.031

11 MR-RAPS 1.77 (1.27–2.48) <0.001

PC Eggerthella 11 IVW 0.63 (0.43–0.93) 0.020 47%

11 WM 0.59 (0.35–0.99) 0.044

11 MR-RAPS 0.63 (0.41–0.95) 0.027

PC Sutterella 12 IVW 2.45 (1.38–4.37) 0.002 100%

12 WM 2.54 (1.16–5.58) 0.020

12 MR-RAPS 2.54 (1.36–4.76) 0.003

PC Flavonifractor plautii 6 IVW 0.57 (0.40–0.82) 0.002 69%

6 WM 0.53 (0.32–0.88) 0.015

6 MR-RAPS 0.55 (0.36–0.85) 0.006

PC Eubacterium hallii 12 IVW 0.61 (0.46–0.83) 0.001 74%

12 WM 0.61 (0.40–0.92) 0.019

12 MR-RAPS 0.61 (0.44–0.84) 0.003

Presented are gut microbial taxa that were statistically significant in all MR analyses (IVW, WM, and MR-RAPS). EC, esophageal cancer; GC, gastric cancer; CRC, colorectal cancer; HCC, 
hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; PC, pancreatic cancer; MR, Mendelian randomization; SNP, single-nucleotide polymorphism; IVW, inverse-variance 
weighted; WM, weighted median; MR-RAPS, MR-robust adjusted profile score; OR, odds ratio; and CI, confidence interval.
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3.5. Liver cancer

We noticed 11 and 13 bacterial taxa associated with HCC and ICC 
in IVW test, respectively (Figure 2). Six taxa, namely, Clostridia (OR: 
3.21, 95% CI: 1.01–10.22), Enterobacteriales (OR: 4.52, 95% CI: 1.05–
19.40), Enterobacteriaceae (OR: 4.52, 95% CI: 1.05–19.40), Ruminococcus 
torques group (OR: 4.79, 95% CI: 1.09–21.10), Ruminococcus lactaris 
(OR: 4.79, 95% CI: 1.46–15.74), and Bacteroides clarus (OR: 1.96, 95% 
CI: 1.09–3.53) were positively associated with HCC (p < 0.05). Of these, 
Enterobacteriales (OR: 5.63, 95% CI: 1.16–27.43) and Enterobacteriaceae 
(OR: 5.63, 95% CI: 1.16–27.43) were also positively correlated with ICC 
risk (p < 0.05). Additionally, Veillonellaceae (OR: 3.58, 95% CI: 1.29–
9.93), Alistipes (OR: 5.65, 95% CI: 1.32–24.24), Oscillospira (OR: 6.38, 
95% CI: 1.44–28.30), and Slackia (OR: 3.34, 95% CI: 1.06–10.52) were 
also related to a higher risk of ICC (p < 0.05).

On the contrary, we found negative associations of Christensenellaceae 
(OR: 0.13, 95% CI: 0.03–0.57), Christensenellaceae R 7group (OR: 0.16, 
95% CI: 0.04–0.77), Butyricicoccus (OR: 0.22, 95% CI: 0.06–0.79), 
Parabacteroides goldsteinii (OR: 0.43, 95% CI: 0.23–0.83), and 
Lachnospiraceae bacterium 7_1_58FAA (OR: 0.25, 95% CI: 0.10–0.63) 
with HCC risk (p < 0.05), and Verrucomicrobia (OR: 0.17, 95% CI: 0.05–
0.59), Anaerostipes (OR: 0.14, 95% CI: 0.03–0.64), Paraprevotella (OR: 
0.27, 95% CI: 0.11–0.67), Parasutterella (OR: 0.32, 95% CI: 0.11–0.99), 
Bifidobacterium longum (OR: 0.31, 95% CI: 0.11–0.88), Bacteroides clarus 
(OR: 0.52, 95% CI: 0.28–0.99), as well as Bacteroides fragilis (OR: 0.48, 
95% CI: 0.28–0.83) were negatively associated with ICC risk (p < 0.05).

The WM and MR-RAPS analyses indicated that the associations 
of Butyricicoccus and Ruminococcus lactaris with HCC risk remained, 
and the associations of Verrucomicrobia, Enterobacteriales, 
Enterobacteriaceae, Veillonellaceae, Paraprevotella, and Bacteroides 
clarus with ICC risk remained (Table 1). Finally, stable results were 
achieved in Verrucomicrobia, Veillonellaceae, and Paraprevotella by 
leave-one-out analysis, whereas there were some SNPs in 
Butyricicoccus, Ruminococcus lactaris, Enterobacteriales, 
Enterobacteriaceae, and Bacteroides clarus with dominant effects on 
the causal estimations (Supplementary Figures S10, S11).

3.6. Pancreatic cancer

Genetically predicted Bacillales (OR: 1.67, 95% CI: 1.23–2.26), 
Defluviitaleaceae UCG011 (OR: 1.63, 95% CI: 1.01–2.64), Sutterella 
(OR: 2.45, 95% CI: 1.38–4.37), and Bacteroides plebeius (OR: 1.41, 95% 
CI: 1.07–1.85) were associated with higher pancreatic cancer risk in 
IVW method (p < 0.05; Figure 2). Differently, Ruminococcaceae (OR: 
0.49, 95% CI: 0.26–0.93), Eggerthella (OR: 0.63, 95% CI: 0.43–0.93), 
Lachnospiraceae UCG004 (OR: 0.52, 95% CI: 0.29–0.92), Alistipes 
putredinis (OR: 0.38, 95% CI: 0.18–0.82), Flavonifractor plautii (OR: 
0.57, 95% CI: 0.40–0.82), Eubacterium hallii (OR: 0.61, 95% CI: 0.46–
0.83), Dialister invisus (OR: 0.51, 95% CI: 0.33–0.79), Parasutterella 
excrementihominis (OR: 0.70, 95% CI: 0.51–0.96), and Bacteroides 
stercoris (OR: 0.62, 95% CI: 0.40–0.97) were related to lower pancreatic 
cancer risk (p < 0.05; Figure 2). As shown in Table 1, the WM and 
MR-RAPS methods revealed similar results in the potential causal 
association analysis of Bacillales, Eggerthella, Sutterella, Flavonifractor 
plautii, and Eubacterium hallii with pancreatic cancer. Furthermore, 
leave-one-out test indicated that except for Eggerthella, no SNPs with 
dominant effects were identified in other genetic predictions 
(Supplementary Figure S12).

3.7. Bonferroni correction and sensitivity 
analysis

The Bonferroni correction indicated that phylum Verrucomicrobia 
retained a strong negative association with ICC (OR: 0.17, 95% CI: 
0.05–0.59, p  = 0.005), whereas order Bacillales retained a strong 
positive association with pancreatic cancer (OR: 1.67, 95% CI: 1.23–
2.26, p = 0.001). The p values of the intercept terms of MR-Egger 
regression were all greater than 0.05, revealing no notable pleiotropy 
(Supplementary Table S2). Cochran’s Q test and MR-PRESSO detected 
no evidence of heterogeneity and outliers (p > 0.05; 
Supplementary Table S2).

3.8. Reverse MR analysis

After a series of IV screening steps, 11 esophageal cancer 
associated-SNPs, eight gastric cancer-associated SNPs, 24 
CRC-associated SNPs, five HCC-associated SNPs, three 
ICC-associated SNPs, and 13 pancreatic cancer-associated SNPs were 
eligible IVs. For HCC and ICC, reverse MR analysis was not 
performed because the number of SNPs available in the outcome (gut 
microbiome) was less than 3 and no proxy SNPs (R2 > 0.8) were found 
or proxy SNPs were also unavailable in the outcome. Details of IVs for 
reverse MR are listed in Supplementary Table S3.

We found that esophageal cancer, gastric cancer, CRC, and 
pancreatic cancer were associated with 9, 12, 23, and 20 microbial 
taxa, respectively, by the IVW method (Supplementary Table S4). 
Among them, the associations of esophageal cancer with two 
microbial taxa, gastric cancer with four microbial taxa, CRC with six 
microbial taxa, and pancreatic cancer with five microbial taxa 
remained stable in WM and MR-RAPS methods 
(Supplementary Table S5). In particular, esophageal cancer was 
negatively correlated with Ruminococcaceae UCG004 and Dorea 
longicatena, CRC was negatively correlated with Lentisphaerae, 
Lentisphaeria, Victivallales, Clostridiaceae1, Victivallaceae and 
Bacteroides ovatus, as well as pancreatic cancer was negatively 
correlated with Lachnospiraceae and Eubacterium eligens group. 
Conversely, gastric cancer was positively associated with Candidatus 
Soleaferrea, Barnesiella intestinihominis, Parabacteroides unclassified, 
and Clostridium leptum, as well as pancreatic cancer was positively 
associated with Alistipes finegoldii, Pseudoflavonifractor capillosus, and 
Bacteroides fragilis. The Bonferroni correction revealed that CRC 
retained a strong negative association with family Clostridiaceae1 (OR: 
0.91, 95% CI: 0.86–0.96, p = 0.001).

4. Discussion

Through MR analysis of 297 microbial taxa and six GI cancers 
(esophageal cancer, gastric cancer, CRC, HCC, ICC, and pancreatic 
cancer), we  identified potential causal associations between 21 
bacterial taxa and GI cancers (values of p < 0.05 in all three MR 
methods), and a strong potential causality was identified in two of 
them by Bonferroni correction (phylum Verrucomicrobia and 
order Bacillales). Reverse MR indicated that GI cancer was 
associated with 17 microbial taxa in all three MR methods, among 
them, a strong inverse association between CRC and family 
Clostridiaceae1 was identified by Bonferroni correction. To our 
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knowledge, this work comprehensively reveals the potential 
causality between gut microbiota and GI cancer using MR analysis 
for the first time.

We discovered that Howardella and Roseburia unclassified were 
positively related to gastric cancer, and Lachnospiraceae FCS020 group 
was positively associated with CRC in all three MR methods. 
Howardella, Roseburia unclassified, and Lachnospiraceae FCS020 group 
belong to the family Lachnospiraceae, which can produce short-chain 
fatty acids with an inhibitory effect on inflammation, such as acetate 
and butyrate, and is generally considered a beneficial bacterium 
(Sivaprakasam et al., 2016; Sorbara et al., 2020). However, some studies 
have found that the gut microbiota of patients with metabolic diseases, 
non-alcoholic fatty liver disease, primary sclerosing cholangitis with 
inflammatory bowel disease, and chronic kidney disease is enriched 
with Lachnospiraceae (Vacca et  al., 2020). Results regarding the 
association of Lachnospiraceae with gastric cancer and CRC are also 
inconsistent (Aviles-Jimenez et al., 2014; Yang et al., 2019; Clos-Garcia 
et al., 2020; Yu et al., 2021). This discrepancy may be due to the different 
genera and species of family Lachnospiraceae playing different roles in 
diseases, and the relationship of Lachnospiraceae with gastric cancer 
and CRC requires further exploration at more nuanced levels (i.e., 
genus and species levels). The exact mechanism underlying the effect 
of Howardella and Roseburia unclassified on gastric cancer as well as 
Lachnospiraceae FCS020 group on CRC deserves validation studies. At 
present, there are many studies on the association between gastric 
microbiome and gastric cancer, while there are few studies on the 
association between gut microbiome and gastric cancer, especially the 
research using metagenomic sequencing is more limited. Therefore, the 
positive associations between gastric cancer and four bacterial taxa 
(one genus and three species) identified in our reverse MR analysis 
were also not found in previous observational studies.

The three MR analysis methods also identified that Bilophila 
and Prevotella7 were negatively and positively correlated with CRC 
risk, respectively. Bilophila wadsworthia, one species of genus 
Bilophila, can produce hydrogen sulfide, which has a promoting 
effect on CRC (Yazici et al., 2017). However, the association between 
Bilophila and CRC has obtained conflicting results in observational 
studies (Feng et  al., 2015; Yang et  al., 2021). The function and 
mechanism of Bilophila on CRC warrant verification studies. 
Previous studies have indicated that the increase of Prevotella 
abundance is related to the deficiency of the anti-inflammatory 
cytokine IL-10 and that inflammation is a recognized driver of 
colorectal carcinogenesis (Janney et al., 2020). Ternes et al. (2022) 
also found that Prevotella7 was enriched in fecal samples from CRC 
patients. The comparison of the results of our study with those of 
previous studies on gut microbiota and CRC is shown in 
Supplementary Table S6. Furthermore, reverse MR demonstrated 
that CRC was negatively related to Lentisphaerae, Lentisphaeria, 
Victivallales, Clostridiaceae1, Victivallaceae, and Bacteroides ovatus. 
Only two microbial taxa, Clostridiaceae1 and Bacteroides ovatus, 
each had an observational study consistent with our findings 
(Supplementary Table S6).

Butyricicoccus, a butyrate producer, was detected to be inversely 
associated with HCC in our study, which remained stable across the 
three MR methods. Consistently, several observational studies also 
found that Butyricicoccus abundance was reduced in HCC patients 
(Ren et al., 2019; Lapidot et al., 2020). Supplementary Table S7 showed 
the comparison of our results with previous studies on gut microbiota 
and HCC. We also observed negative associations of Verrucomicrobia 

and Paraprevotella with ICC, and positive correlations of 
Enterobacteriales, Enterobacteriaceae, and Veillonellaceae with 
ICC. There are currently few studies concentrating on the relationship 
between intestinal microbiota and ICC, but some prior studies 
indicated that Verrucomicrobia and Paraprevotella were decreased in 
HCC patients, while Enterobacteriales, Enterobacteriaceae, and 
Veillonellaceae were enriched (Ponziani et al., 2019; Huang et al., 2020; 
Lapidot et  al., 2020). Similarly, our study also found that 
Enterobacteriales and Enterobacteriaceae were associated with increased 
HCC risk in IVW method. In addition, we found a positive association 
between Ruminococcus lactaris and HCC and a negative association 
between Bacteroides clarus and ICC, which have not been reported in 
previous studies. We could not yet prove the mechanisms of the effects 
of these bacterial taxa on liver cancer, as our study mainly focused on 
correlation analysis. Future mechanism explanation studies are needed.

Our study also suggested that Bacillales and Sutterella were 
potentially causally related to increased pancreatic cancer risk, while 
Eggerthella, Flavonifractor plautii, and Eubacterium hallii were 
associated with decreased pancreatic cancer risk. The comparison of 
our results with previous studies on gut microbiota and pancreatic 
cancer is presented in Supplementary Table S8. Sutterella is a 
pro-inflammatory bacterium (Hiippala et al., 2016), and accumulating 
studies have suggested that gut microbiota may influence pancreatic 
carcinogenesis by modulating inflammatory and immune responses 
(Meng et al., 2018). Eggerthella is also considered a pro-inflammatory 
genus (Nikolova et  al., 2021), but one study found that obese 
individuals had a lower relative proportion of Eggerthella compared 
to non-obese individuals (Pinart et al., 2022), and obesity significantly 
increased the risk of pancreatic cancer. Similarly, another study found 
that Flavonifractor plautii was more abundant in non-obese compared 
with obese individuals (Kasai et al., 2015). This seems to suggest the 
beneficial roles of Eggerthella and Flavonifractor plautii. The 
mechanism underlying the influence of Eggerthella and Flavonifractor 
plautii on pancreatic cancer deserves to be studied. Eubacterium hallii 
is one of the major producers of butyrate in the human gut with 
health-promoting effects (Hiippala et al., 2018). Observational studies 
also found that the abundance of Eubacterium hallii was higher in 
healthy controls than in pancreatic cancer patients (Matsukawa et al., 
2021; Zhou et al., 2021). As for order Bacillales, further studies are 
warranted to clarify the functional significance of specific species and 
strains for pancreatic cancer. Besides, among the five microbial taxa 
found to be affected by pancreatic cancer in reverse MR, only the 
inverse associations of pancreatic cancer with Lachnospiraceae and 
Eubacterium eligens group were also found in previous observational 
studies (Supplementary Table S8).

In addition, some gut bacteria including Oxalobacteraceae, 
Oxalobacter, and Ruminococcaceae UCG010 were found to be positively 
correlated with esophageal cancer in all three MR analysis methods. 
Reverse MR indicated that esophageal cancer was negatively correlated 
with Ruminococcaceae UCG004 and Dorea longicatena. At present, little 
is known about the relevance between intestinal microbiota and 
esophageal cancer, and the association of Oxalobacteraceae, 
Oxalobacter, Ruminococcaceae UCG010, Ruminococcaceae UCG004, 
and Dorea longicatena with esophageal cancer has not been reported. 
Therefore, our study provided a new direction to unravel the role of gut 
microflora in esophageal cancer, and the mechanism of these bacteria 
in esophageal cancer requires further exploration.

The major advantage of our study is that we  comprehensively 
analyzed the potential causalities of 297 microbial taxa and six GI 
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cancers using two-sample MR method. Using MR method to 
investigate the association between gut microbiota and GI cancer has 
the following advantages. First, according to Mendel’s Laws of 
Inheritance, alleles are randomly allocated among the descendants, 
similar to randomization in randomized controlled trials (Zheng et al., 
2017). In addition, genotypes are fixed at conception and cannot 
be modified by diseases (Zheng et al., 2017). Thus, causal inference is 
unlikely to be influenced by reverse causality and confounders. Second, 
the two-sample MR is based on publicly available large-scale GWAS 
summary-level data without additional experimental costs. However, 
our study has several limitations. First, since SNPs with p < 5 × 10−8 
were too limited, we selected SNPs with p < 1 × 10−5 as IVs. To obtain 
reliable IVs, we performed a series of IV screening steps, including 
excluding SNPs with F < 10 to avoid weak IVs bias and searching all 
SNPs in PhenoScanner to avoid confounding effects. Second, although 
297 microbial taxa were included in our analysis, the potential causal 
associations of many other microbial taxa with GI cancers were not 
explored. Especially at the species level, only 101 species were included 
in our study. Third, this MR is a correlation analysis of gut microbiota 
and GI cancer without explaining the mechanism. Fourth, the MR 
analysis may be affected by potential pleiotropy. Of note, all exposures 
in our MR analysis had 3 or more IVs, which may mitigate the impact 
of potential pleiotropy to some extent, because pleiotropy is unlikely to 
generate the same association for different IVs (Davey Smith and 
Hemani, 2014). Fifth, the variances of some microbial taxa explained 
by the genetic IVs were small, so estimates of the associations might 
be hampered by limited statistical power. Sixth, the participants in 
present study were mostly of European ancestries and only a small 
number of intestinal microbiome data were drawn from other 
ethnicities, which were less affected by ethnic bias. However, this may 
limit the applicability of the results to other populations.

In conclusion, this MR study demonstrates that gut microbiota 
has potential causal impacts on GI cancer. Our results probably offer 
useful biomarkers for non-invasive early diagnosis of GI cancer. In 
addition, our results imply that modulation of intestinal microbiome 
may be a potential intervention target for GI cancer prevention.
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