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Organic farming in extensive production regions, such as the Canadian prairies

have a particularly difficult challenge of replenishing soil reserves of phosphorus

(P). Organic grains are exported off the farm while resupply of lost P is difficult

due to limited availability of animal manures and low solubility of rock organic

fertilizers. As a result, many organic farms on the prairies are deficient in plant-

available P, leading to productivity breakdown. A portion of the solution may

involve crop genetic improvement. A hypothetical ‘catch and release’ wheat

ideotype for organic production systems is proposed to (i) enhance P uptake and

use efficiency but (ii) translocate less P from the vegetative biomass into the

grain. Root traits that would improve P uptake efficiency from less-available P

pools under organic production are explored. The need to understand and

classify ‘phosphorus use efficiency’ using appropriate indices for organic

production is considered, as well as the appropriate efficiency indices for use if

genetically selecting for the proposed ideotype. The implications for low seed P

and high vegetative P are considered from a crop physiology, environmental, and

human nutrition standpoint; considerations that are imperative for future

feasibility of the ideotype.

KEYWORDS
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1 Introduction

1.1 Phosphorus challenge on organic farms

Phosphorus (P) management is a particular challenge for Canadian organic farms on

the prairies. While most conventional farming systems heavily rely on inputs of synthetic

nitrogen (N) fertilizers, organic farms often maintain N levels through growing legumes

within the green manure and forage phase of a crop rotation. However, replenishing P is
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more difficult on organic farms as crop harvest removal of grain or

biomass continues to shrink the soil nutrient reservoir (Morrison

and Kraft, 1994). Several on-farm studies have reported low soil test

phosphorus status on Canadian organic farms (Entz et al., 2001;

Martin et al., 2007; Roberts et al., 2008; Knight et al., 2010) Entz

et al. (2001) surveyed 14 organic farms in Manitoba, Saskatchewan,

and North Dakota, USA, and reported an average soil test

phosphorus of 15 kg P ha-1, which was substantially lower than

the Manitoba average value for agricultural lands (> 20 kg P ha-1)

(Entz et al., 2001). After 13 years of organic production at the

Glenlea Long-term Rotation Study site in Manitoba, soil available P

fractions rapidly declined in the organic forage rotation (Welsh

et al., 2009; Carkner et al., 2020). Additionally, low soil test

phosphorus has also been reported on organic farms which lack

livestock in Saskatchewan (Knight et al., 2010), and organic dairy

farms in Ontario (Roberts et al., 2008). Low available P has been

shown to decrease organic grain production in the long-term

(Carkner et al., 2020), and limits the productivity of legumes in

commercial green manure crops (Thiessen Martens et al., 2021).

Phosphorus is an essential plant macronutrient, as it contributes

as a critical structural component of nucleic acids and plays a key

role in energy transfer (Marschner, 1995; Grant and Flaten, 2019).

Currently, the approved P fertilizer options for organic use are

manure and rock phosphate. However, manure is often

prohibitively expensive to purchase and transport, especially for

large, stockless organic farms on the Canadian prairies where

animal manure sources are geographically separated from

cropland (Schneider et al., 2019). Moreover, phosphorus in rock

phosphate is generally unavailable in the year of application due to

its low solubility, especially when applied to calcareous soils with

high pH, which is a common characteristic of Canadian organic

farms (Martin et al., 2007). Despite the many attempts to increase

the availability of rock phosphate through measures such as co-

composting, microbial associations, and green manure residue

management (Asea et al., 1988; Arcand and Schneider, 2006;

Arcand et al., 2010; Ditta et al., 2018; Billah et al., 2020), these

methods showed limited effectiveness in improving agronomic

response to rock phosphate in organic cropping systems in

Canada (Arcand et al., 2010). Additionally, rock phosphate is

mined from a non-renewable resource, counterintuitive to the

organic philosophy of closing the nutrient cycle on farm (Nicksy

and Entz, 2021). Other promising forms of P using unconventional

sources are currently being explored on organic farms such as frass

from black soldier fly (BSF; Hermetia illucens) larvae, anaerobically

diges ted urban food or manure waste , and struvi te

(NH4MgPO4·6H2O) which is a mineral extracted from municipal

wastewater streams or manure (Nicksy and Entz, 2021; Thiessen

Martens et al., 2021). However, these options are prohibitively

expensive, or not approved for organic use under the current

Canadian Standards, for example, Struvite, which is sourced from

human waste-water sources (Canadian General Standards Board,

2021). Improving on-farm P uptake/use efficiency of crops and

reducing external P imports play a key role for the sustainability of

Canadian organic farms.

The Canadian prairies comprises of Alberta, Saskatchewan,

Manitoba, and the Peace River region of British Columbia, and
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represent 50% of all organic land in Canada. This region is known

as one of the bread baskets of the world, and wheat is well adapted

to grow under cool, wet conditions in central and eastern Manitoba

as well as drier, hotter conditions in Saskatchewan and Alberta.

Prairie organic farms grow 93% of Canada’s organic wheat,

reaching nearly 376 000 hectares in 2020 (Canada Organic Trade

Association, 2021). Canada exported approximately 237 000 metric

tonnes of organic wheat valued at over $118 000 000 in 2020

(Agriculture and Agri-Food Canada, 2022). Recent premiums for

organic grade wheat grain are at 253% of conventional grade wheat

grain prices (Organic Biz, 2023). Wheat is often the cash crop in an

organic rotation, providing essential economic value to farmers.

Crop selection and breeding for greater P use efficiency (PUE)

and P uptake under low soil test P has been proposed as a potential

solution to tighten the P cycle on farm (Rose et al., 2013). P

management on organic farms brings unique challenges as these

farms rely heavily on biologically mediated nutrient supply, that is,

mineralizing P from soil organic matter (SOM). Therefore, specific

strategies and perspectives are required to optimize P uptake in

partnership with crops and reduce off-farm P losses. The

development of new crop cultivars that address P challenges on

organic farms can contribute significantly to this goal.
1.2 Proposal of wheat ideotype to optimize
acquisition and utilization on organic farms

One approach to deploying genetic resources to achieve specific

breeding goals is to develop a crop ideotype. An ideotype is defined

as “a biological model which is expected to perform or behave in a

predictable manner within a defined environment” (Donald, 1968).

For common bean and maize cultivars in the Americas, Latin

America, and Asia (Lynch and Brown, 2001; Wang et al., 2010;

Lynch, 2011; Richardson et al., 2011), an ideotype has been

proposed to enhance plant performance under low P conditions

that maximizes P uptake through topsoil foraging root architecture,

and enhanced soil-P mining strategies. In this paper, we propose a

hypothetical wheat ideotype that can maximize P uptake and

minimize off-farm P losses via grain P exportation for organic

production systems (Figure 1). The P-efficient cultivar is

characterized by three main features: (i) root topsoil foraging

strategies to increase P acquisition, (ii) root mining strategies to

mineralize P from organic pools, and (iii) greater P utilisation

efficiency (e.g., greater yield per unit P applied) (Richardson et al.,

2011). We further propose a reduced translocation of P from shoot

biomass into grain should be considered as an important feature for

organic production systems. While this concept is not new (Raboy,

2007; Richardson et al., 2011; Rose et al., 2013; Rose et al., 2022;

Julia et al., 2018), the importance of P translocation into grain

relative to other traits has not been highlighted when considering

overall P use efficiency in cropping systems, especially within the

context of organic production systems. In addition, to the authors’

knowledge, the implications of lower grain P as a food source

beyond the farm gate and as a seed source in organic systems have

not been well investigated. The goal of this paper is to explore the

potential of incorporating plant traits to increase P acquisition and
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lower translocation of shoot P into grain P by considering the

distinctive nature and needs of organic production systems.

Additionally, implications for lower grain P beyond the farmgate

and as a subsequent seed source are further explored.
1.3 The phosphorus cycle
in agroecosystems

The soil P cycle is a complex and dynamic process that involves

a range of biological and geochemical transformations influenced

by various environmental factors (e.g. soil moisture and

temperature). Plants can only take up P in the form of HPO4
2-

(soil pH 4.0-7.2) or H2PO4
- (soil pH >7.2), which are often referred

to as plant available P (Pierzynski et al., 2005). Plant available P

concentration in soil solution is typically low, less than 1% of the

total P in the soil (Pierzynski, 1991). For optimal plant growth, P

concentration in soil solution should exceed 0.2 mg P L-1. However,

a P concentration between 0.2-0.3 mg P L-1 indicates the potential

for eutrophication in water bodies (Pierzynski et al., 2005; Bacelo

et al., 2020), emphasizing the need to understand and manage the P

cycle in agroecosystems.

The majority of soil indigenous plant available P originates

from weathering of apatite. In agricultural systems, plant available P

pool in soils is also enriched by application of synthetic fertilizers or

manure. Once P in soil solution exists as free ions, it can react with

dissolved iron (Fe), aluminum (Al), manganese (Mn) in acid soils,

or calcium (Ca) and magnesium (Mg) in alkaline soils to form
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phosphate precipitates (Figure 2). Plant available P can also be

adsorbed onto clays and the oxides of Al and Fe, taken up by plant

roots, or incorporated into the Organic-P pool as microbial

infrastructure and/or organic matter (immobilization) (Jakobsen

et al., 2005; Pierzynski et al., 2005; Drinkwater et al., 2017).

Additionally, microorganisms in the rhizosphere may compete

with plants for plant available P in the short-term. However, they

also have the potential to release P to plants through the process of

mineralization. Through continuous biological and geochemical

reactions, P available to plants and microorganisms are in a

constant flux between mineralization/immobilization and

adsorption/desorption processes. For the interest of this paper,

biological processes (i.e., mineralization/immobilization, root

uptake) will be emphasized while geochemical processes

(adsorption/desorption, dissolution/precipitation), although

extremely important regarding plant assimilation, microbial

recycling, and environmental implications, will be given

less attention.
1.4 The organic P pool and microbial
biomass P

Soil organic P refers to P that is bonded in some way with

carbon (C). Soil organic P is initially derived from animal wastes

and plant residues and is synthesized by soil organisms. Plants and

microorganisms take up and assimilate soil solution P which is then

bonded to C through phosphorylation (Condron et al., 2005). Soil
FIGURE 1

A visual model of the ‘organic ideotype’ of wheat for low phosphorus organic cropping systems. This figure was created with BioRender.
frontiersin.org
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organic P consists of various forms including orthophosphate

monoesters , inos i to l phosphates (e .g . , phyt ic ac id) ,

phosphoproteins, mononucleotides, sugar phosphates,

phospholipids, teichoic acid, aromatic compounds, phosphonates,

and organic phosphate anhydrides. Many of these compounds exist

in the form of highly stable ring structures, making them resistant to

hydrolysis and less accessible to plants (Condron et al., 2005; Jones

and Oburger, 2011).

It is estimated that organic P pools make up 30% to 80% of soil

total P, depending on the cropping systems (Harrison, 1987;

Bhattacharya, 2018). The organic P pool is made of dead material

from plant, animal, and microbes. The microbial biomass includes

bacteria, fungi, algae, protozoa, nematodes, which make up between

2 to 5% of total soil organic carbon (Brookes et al., 1984). The

microbial biomass component within SOM is the ‘live’ fraction and

responsible for mineralization of nutrients such as P (Jakobsen

et al., 2005). The abundance and activity of soil microbes are heavily

reliant on C inputs, as well as suitable soil moisture and temperature

regimes. Microbial biomass P has been reported to account for 2 to

5% of the soil total P and approximately 10 to 15% of the soil

organic P (Richardson and Simpson, 2011).

Mineralization of organic P into plant available P is dependent

on the size of the microbial P pool, microbial activity, and the time

required for the nutrient pool to renew itself (Oberson et al.,

2001). Quantifying the size and turnover rate of microbial P

during a crop growing season is challenging due to variations in

temperature and moisture content. Using 33P isotope tracer in

four calcareous soils in Ontario, Schneider et al. (2017) showed

that the velocity of microbial P turnover was highest in soil with

the lowest available P, despite microbial biomass P concentrations

being the same. Using fumigation methodology to assess
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microbial P content and turnover, Oehl et al. (2001) reported

that organic cropping systems had greater microbial biomass P

pools and faster turnover rates than conventional systems. Similar

results were observed in Canada by Braman et al. (2016).

Therefore, the form and rate of P inputs can influence organic P

dynamics and availability. Bünemann (2015) reviewed studies on

organic P dynamics and reported that the relative contribution of

biological and biochemical mineralization of P isotopes to plant

available P ranged between 20 and 35% in arable soils, and 50 to

70% in grassland soils. Microbial P dynamics in relation to crop

type grown is poorly understood and understudied. To our

knowledge, only one study has investigated such a relationship

and reported that addition of buckwheat residues with different

types and rates of phosphate rock had little effect on the microbial

biomass P in an organic dairy farm in Ontario (Arcand

et al., 2010).

Numerous studies have demonstrated that plant P availability is

also dependent on N availability in the soil system (Lemaire et al.,

2021). For example, Briat et al. (2020) illustrated greater P uptake

was coupled with greater N supply. Nitrogen mineralization in a

cropping system is largely dependent on factors that also influence

microbial P mineralization. Therefore, a whole soil system approach

is required to understand soil-P availability, especially under

organic management, where crops rely heavily on biologically

mediated nutrient supply for both N and P. Furthermore, the role

of livestock integration into cropping systems also requires

attention. The integration of crop-livestock on organic farms in

Canada has multiple benefits ecologically and economically (Entz

and Thiessen Martens, 2009; Thiessen Martens and Entz, 2011).

Additionally, recent arguments have been made that livestock can

not only be a source of nutrients (i.e. Manure), but herbivory action
FIGURE 2

A simplified illustration of the phosphorus cycle in agroecosystems. See text for full discussion of cycling processes. P, phosphorus; Fe, iron; Al,
aluminum; Mn, manganese; Ca, calcium. Adapted from Kovar and Claassen, 2005. This figure was created with BioRender.
frontiersin.org
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has the potential to catalyze nutrient cycling, increasing the

microbial pool, and thus creating nutrient pools that cycle more

efficiently with less potential for loss (Soussana and Lemaire, 2014;

Lemaire et al., 2023). Taken together, achieving efficient P-cycling

on organic farms through breeding is important, however,

managing the soil system to ensure efficient N-P cycling is

equally critical for long-term sustainable production.
1.5 Phosphorus uptake in plants
and microorganisms

Phosphorus is relatively immobile in soil solution, meaning that

plant roots and microorganisms must navigate towards P in the soil

for uptake. Roots and microorganisms will encounter new available

P pools as they move into unexplored soil that has not been

depleted. Phosphorus is transported to microorganisms and plant

roots by either mass flow or diffusion. Mass flow involves dissolved

P moving towards the plant root/microorganism along with water.

Phosphorus transport via mass flow accounts for a very small total P

absorbed, even when P concentration in the soil solution is high.

Diffusion is the process through which P moves from an area of

high concentration to low concentration, accounting for

approximately 95% of root P uptake (Kovar and Claassen, 2005).

Diffusion is also the main uptake mechanism for microbes such as

bacteria and fungi (Jansson, 1988). In plant roots, P uptake from

soil is rapid and occurs within cells behind the root tips (Kovar and

Claassen, 2005). Phosphorus in the soil solution is much lower than

that of the cells within the plant, so P is actively moved across the

root membrane by phosphate transport proteins against a

concentration gradient (Smith et al., 2003). Phosphate

transporters have also been detected in fungi and bacterial

organisms (Jansson, 1988).
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When P in soil solution is taken up by plant root or

microorganism, it creates a ‘depletion zone’ adjacent to uptake

site (Smith et al., 2003), necessitating constantly increased P access.

There are two principal strategies to increase P access as 1) greater

soil exploration to new zones of higher inorganic P (via better root

growth or association with arbuscular mycorrhizal fungi (AMF),

and 2) P exploitation via chemical and biological P transformations

to increase more available P uptake (York et al., 2013; Fraser et al.,

2015) (Figure 3). Plants and microorganisms may employ either P

exploration or P exploitation, or a combination of both (Richardson

et al., 2011).
2 From the ground up: greater P
uptake in organic soils

2.1 Increased physical exploration of soil

Root traits associated with increased P acquisition by

explorative strategies have been extensively studied in wheat

under field and greenhouse conditions (Mcdonald et al., 2015; da

Silva et al., 2016; Wang et al., 2016; Rabbi et al., 2017; Nguyen and

Stangoulis, 2019) and summarized in several review papers

(Gahoonia et al., 1999; Lynch and Brown, 2001; Lynch, 2011;

Richardson et al., 2011). Greater exploration of the upper soil

layer (0-10 cm) by crop root systems is essential due to the

generally low P mobility in soils. Root architecture can be divided

into the geometric properties that dictate the shape of the root

system (root angle, depth, and configuration), and structural

properties (pattern of root branching, and growth of root hairs).

While some previous works have investigated how root architecture

can affect P uptake of bean and corn in response to P deficiency

(Lynch and Brown, 2001; Richardson et al., 2011), less research has

been done with wheat. The ‘topsoil foraging’ root architecture,
A

B

FIGURE 3

A schematic representation of root characteristics associated with greater P uptake adaptations to low soil P availability. This figure was created with
BioRender.
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which is characterized with wide basal and shallow seminal root

angles, has been proposed to maximize soil exploration (Manschadi

et al., 2013; Lynch, 2019). Structural characteristics such as greater

root hair density, and branching are important for P uptake as they

increase root surface area and the volume of soil from which

immobile P can be explored, especially under P deficient

environments (da Silva et al., 2016). Genotypic differences in root

angle have been observed in wheat (Maccaferri et al., 2016; Fradgley

et al., 2020; Pariyar et al., 2021), additionally, different root angle

responses to contrasting environmental conditions has been widely

observed (Manschadi et al., 2013; Chen et al., 2018; Sinha et al.,

2018). For instance, greater P uptake in Brazilian wheat genotypes

was associated with shallow-angled first and second brace roots (da

Silva et al., 2016). Gahoonia et al. (1999) reported that under field

conditions barley cultivars with longer root hairs depleted more P

from the rhizosphere soil and absorbed more P. Within the same

study, wheat genotypes grown in hydroponic media grew longer

and greater dense root hairs in response to P deficiency (Gahoonia

et al., 1999). Contrary to ‘topsoil foraging’ characteristics, Manske

et al. (2000) proposed that wheat genotypes with more developed

root systems may better access indigenous P in deeper soil profiles,

which may be advantageous to organic farms. However, further

investigation is required to determine the optimal root architecture

for P acquisition of crops under organic farming systems.

Association with AMF is another strategy plants may use to

increase soil exploration capacity. A mutualistic relationship

between the host plant and AMF is characterised by a bi-

directional nutrient transfer between the two species. The fungus

receives carbon substrates from the host plant, and the plant

receives nutrients in return (Harrison, 2005). In addition to their

roles in P nutrition, AMF also provides other benefits to the host

plant such as greater zinc uptake (Gao et al., 2007), lower grain

cadmium levels (Singh et al., 2012) and higher water use efficiency

(Li et al., 2019). AMF increases P uptake through multiple

strategies. They can enhance the host plants’ ability to explore

greater soil volume by extending their hyphal network beyond the

crops’ P depletion zone (Pepe et al., 2018). They can also stimulate

the abundance and activity of bacteria in the rhizosphere that

excrete alkaline phosphatases to mobilize organic-P (Zhang et al.,

2016; Zhang et al., 2018), thus promoting a highly efficient P-affinity

system (Harrison, 2005; Kobae, 2019). Root colonization rates by

AMF are affected by the plant-available P levels in soils. For

example, under high soil Olsen-P conditions (>50 mg P kg-1),

plants can access P independently and root AMF colonization

decreases (Entz et al., 2004; Schneider et al., 2015). In contrast,

under very low soil test P conditions where plant growth is P-

limited, root AMF colonization may become parasitic, due to

greater carbon acquisition by the fungi relative to the lower P

translocation from the fungi to the plant host (Johnson et al., 1997).

We confirmed such phenomenon in organic farming systems by

showing that root AMF colonization of flax was significantly higher

in the low-P organic system relative to the conventional system

(Entz et al., 2004).

Genotypic variation in root AMF colonization has been

observed in various crop species including wheat (Kirk et al.,

2011; Singh et al., 2012; Nahar et al., 2020). However, root AMF
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colonization depends on both soil environmental conditions and

management practices. Production practices used by organic

farmers such as cover crops and forages (Lehman et al., 2012;

Njeru et al., 2014) and conservative P additions (Schneider et al.,

2016) are known to promote root AMF colonization. However,

other practices used by organic farmers such as frequent and deep

tillage, growing non-mycorrhizal crops, and fallow are known to

reduce AMF populations (Gosling et al., 2006). Despite these

challenges, satisfactory AMF populations have been found on

organic farms (Ryan et al., 1994; Kirk et al., 2011; Chen et al.,

2022). At the Glenlea long term rotation study site in Manitoba,

Welsh (2007) observed increased diversity and spore abundance of

AMF in organic compared to conventional farming systems. Several

previous studies have reported a positive relationship between root

AMF colonization and crop P uptake efficiency under low P soil

conditions (Manske et al., 2000; Nahar et al., 2020). For example,

Manske et al. (2000) reported that root AMF colonization rate of 42

wheat genotypes was positively correlated with their P uptake

efficiency when grown under P deficient conditions. Similarly, the

benefits of AMF to increase P uptake and cause crop growth under

low P conditions were frequently reported in other studies (Feng

et al., 2003; Wang et al., 2017). Organic farms would benefit from

selecting genotypes with a greater affinity to AMF to overcome the P

constraints to crop growth. Therefore, high AMF partnership

affinity maybe a valuable quality trait to be included in crop

breeding program in organic systems, and efforts to increase the

capacity for high throughput evaluation of root AMF association

are encouraged.
2.2 Accessing where you are:
soil exploitation

Plants have multiple strategies that can increase soil P

availability by immobilizing the less soluble P in the inorganic

and organic P pools. Kovar and Claassen (2005) reported that plant

roots can exudate organic acids into the rhizosphere to solubilize P

from Fe and Al complexes in acidic soils and from Ca and Mg

complexes in alkaline soils. However, the organic acid compounds

in root exudates can vary with crop species and genotypes, and the

mechanisms are not well understood (Kovar and Claassen, 2005).

Some plants can also excrete phosphatase enzymes into the

rhizosphere to enhance mineralization by breaking down carbon

and P ring structures within soil organic matter (Li et al., 2004;

Nguyen et al., 2019). The following section will explore the potential

of soil P exploitation within the context of genotypic variation

among grass species and the potential to select/breed such traits for

maximizing crop P acquisition.

By comparing six spring wheat genotypes in a hydroponic

nutrient solution study, Akhtar et al. (2016) reported a significant

relationship between greater plant P uptake and a decrease in

solution pH. Also under hydroponic conditions, Gaume et al.

(2001) revealed significant differences in organic acid exudation

among maize genotypes in response to P deficiency. It was

concluded that developing maize genotypes with increased citric

and malic acid in root exudates can be an effective strategy to adapt
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to low P conditions. Nguyen et al. (2019) investigated wheat root

exudates under varying P availability in sandy soil and found that a

P-efficient genotype ‘RAC875’ released larger amounts of organic

acids in root exudates under P deficient compared to adequate

conditions. Metabolomics is a new discipline than can provide

direct measurements of biochemical activities present in cells,

tissues, or an organism (Saia et al., 2019), and it has the potential

to work in tandem with genomics to screen breeding lines for

metabolites. For example, metabolomics can detect organic acids

and phosphatases present in root tissues between genotypes under P

stress (Nguyen et al., 2019). Clearly, the strategies wheat genotypes

use to access P under low P conditions varies widely. The challenge

for breeders and physiologists interested in enhancing P acquisition

and utilization in genotypes will be to identify the most beneficial

traits for their specific breeding goals.

Despite low P levels on organic farms, satisfactory yields can

still be produced (Martin et al., 2007). Additionally, research in

Ontario (Schneider et al., 2017) and Manitoba (Braman et al., 2016)

reported higher organic P content in forage-based soils in organic

relative to conventional farming systems, which may explain why

organic farms maintain acceptable forage yields despite low soil test

P. Organically managed soils are sometimes characterized by more

abundant and diverse soil microbial communities (Mäder et al.,

2002; Braman et al., 2016), which can lead to greater soil nutrient

supply due to the increased mineralization capacity. This leads to

questioning the relevance of current soil P tests dictating availability

on organic farms, due to richer soil microbial communities

(Braman et al., 2016), and the potential for biologically mediated

P supply (Welsh et al., 2009).

Unpredictable fertilizer response in agroecosystems has led to a

recent argument that researchers and practitioners can no longer

rely solely on soil tests as a diagnostic tool for crop fertility (Lemaire

et al., 2021). The interactions between plant demand and soils,

nutrients to each other, and the role microbial communities play in

the rhizosphere also needs to be considered (Briat et al., 2020).

Bioassay diagnostic tools evaluating crop uptake for plant P

nutrition in organic production systems (Carkner et al., 2020),

and the creation of the N Nutrition Index (NNI) (Lemaire et al.,

2008; Lemaire et al., 2021) have been proposed. Greater

understanding of plant-soil interactions and proper diagnostic

tools are needed to accurately assess genotypic variation in

P uptake.

Given greater biological activity and potentially larger organic P

pools on organic farms, increasing cultivars’ capacity to access these

pools would reduce the reliance on external P inputs (Sattari et al.,

2012; Menezes-Blackburn et al., 2018). However, relying only on the

soil organic P pool can lead to organic matter mining and

decomposition. Therefore, adequate crop residue return is

essential on organic farms (Arcand et al., 2016). The proposed P

efficient wheat ideotype considers the unique P dynamics in an

organic cropping system and the untapped potential of biologically

mediated P supply between the root-soil interface. The ideotype

would need to possess root characteristics of soil exploration and
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exploitation to facilitate greater uptake under low P,

organic conditions.
3 Challenges of using the correct
phosphorus use efficiency indices for
screening genotypes

Investigating crop cultivars for phosphorus use efficiency (PUE)

has been proposed as an effective way to close the P cycle on organic

farms (Vance et al., 2003; Schneider et al., 2019). The term PUE is

recognized as a combined effect of: (1) increased acquisition and

uptake, and (2) increased P utilization (Vance et al., 2003;

Veneklaas et al., 2012; van de Wiel et al., 2016; Cong et al., 2020).

The term PUE has been used inconsistently throughout literature,

and evaluated using different calculations (Bovill et al., 2013,

Table 1). High P utilization efficiency is defined as growth/

biomass production per unit P uptake and is highly associated

with the remobilization of P from old to new tissues. In the last

decade, little progress has been made in breeding crops with higher

P utilization efficiency (Rose et al., 2011; van de Wiel et al., 2016).

To select for greater P utilization efficiency, some breeders have

chosen to either evaluate cultivars that can maintain high yields

under lower soil-P status or evaluate cultivars that increase yields

without increasing fertilizer rates. In organic farming, it is critical to

develop cultivars that can maintain high yield and quality under low

soil available P status. Therefore, an ideotype for organic farming

should maximize soil exploration through better root architecture,

increased root hair growth and AMF colonization, and enhance soil

exploitation through higher root exudates of organic acids

and phosphatase.

Depending on the calculations used, the selection for P efficient

genotypes could be vastly different. Many studies have based PUE

calculations on early nitrogen use efficiency (NUE) work, which

calculated NUE as the ratio of grain N uptake per unit of N available

in the soil (Manske et al., 2001; Ortiz-Monasterio et al., 2001;

Manske et al., 2002; Manschadi et al., 2013; Mcdonald et al., 2015;

Meier et al., 2022). This can be problematic for assessing PUE as

phosphorus availability and behavior in soil-plant systems differs

markedly from nitrogen. It is imperative that breeders should select

the correct PUE measurements as it relates to their goals, and not

rely on PUE precedence in the literature. Similarly, redefining the

concept of NUE towards integrating soil-plant relationships

(Ciampitti et al., 2022) and evaluating genotypes on the basis of

effective use of N rather than responsiveness to added N has also

been argued (Ciampitti and Lemaire, 2022). Selecting genotypes

based on their responses to added P through P acquisition efficiency

or relative grain yield is inappropriate for organic production

systems. For example, a genotype with poor performance under

low P conditions and a greater response to P fertilizer might yield

well in conventional systems but would not be desirable for organic

farming. In contrast, a genotype that has high uptake potential
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under low or biologically mediated nutrient supply, yield per unit of

P uptake, and low P translocation from the vegetative to

reproductive organs would be useful. Wheat cultivars with such

traits can take up high amounts of soil native P in the current

growing season while releasing P for the following crop when wheat

residues are returned (Figure 1).

Selecting crop cultivars that can simultaneously increase P

uptake and utilization efficiency is a challenge since the two traits

are intimately linked. Increasing P uptake, and therefore P in

biomass often reduces internal utilization efficiency (Veneklaas

et al., 2012). Therefore, it is suggested that different genotypes

should be targeted for uptake and utilization to optimize the overall

PUE. Ultimately, finding a way to combine both traits in a single

genotype needs to be considered (van de Wiel et al., 2016).

Comparing cultivars’ aboveground biomass per unit P uptake at

anthesis before P translocation from biomass into grain occurs

would be beneficial to maximize P uptake and utilization potential.
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4 The consequences of low
translocation of vegetative P
to grain P

The phosphorus harvest index (PHI) is defined as the ratio of

grain P to total plant P, and it represents the amount of P

translocated from the vegetative biomass into the grain. Once P is

taken up and used for vegetative growth, the remaining P is stored

in the vacuoles (Veneklaas et al., 2012). Depending on P supply,

pre-anthesis P uptake can contribute up to 81% of grain P

accumulation (Batten, 1992; El Mazlouzi et al., 2020). It has been

proposed that selecting crop genotypes with lower PHI would be a

beneficial trait to reduce external P inputs (Batten, 1992; Rose et al.,

2013; Vetterlein and Tarkka, 2018; Cong et al., 2020). While high

protein content in wheat grain is a market premium, greater grain P

is not. Grain P is stored mainly as phytate and to a lesser number,
TABLE 1 Terms and calculations used to assess phosphorus use efficiency (PUE).

PUE Indicator Formula Reference

Agronomic P Use Efficiency Yield increase/P applied Hammond et al., 2009

P Use Efficiency (I) Yield/nutrient supplied Manske et al., 2001

P Use Efficiency (II) Shoot biomass/P uptake Wissuwa et al., 1998

P Use Efficiency (III) Yield-P/Yield+P Mcdonald et al., 2015

P Use Efficiency (IV) P Uptake Efficiency*Yield/Total Plant P Manske et al., 2001

P Uptake Efficiency (I) Total aboveground P/P applied Osborne and Rengel, 2002

P Uptake Efficiency (II) Total P accumulated/root weight or length Liao et al., 2008; El Mazlouzi et al., 2020

P Uptake Efficiency (III) Total Plant P/P Supplied Moll et al., 1982 via Manske et al., 2001

P Acquisition Efficiency Total Plant P/P Applied Osborne and Rengel, 2002

P Utilisation Efficiency (I) Grain yield/Total P Uptake
Manske et al., 2002;
El Mazlouzi et al., 2020

P Utilisation Efficiency (II) Shoot dry weight/Shoot P Concentration Siddiqi and Glass, 1981

P Utilisation Efficiency (III) P harvest index/grain P concentration Manske et al., 2001

P Harvest Index Grain P/Total P El Mazlouzi et al., 2020

P Utilisation Efficiency (DM) Shoot Weight/Shoot P Mcdonald et al., 2015

P Utilisation Efficiency (GY) Yield/Grain P Mcdonald et al., 2015

Shoot P Utilisation Efficiency (I) Shoot biomass/P uptake Su et al., 2006

Shoot P Utilisation Efficiency (II) Shoot biomass/P uptake (shoots and roots) Osborne and Rengel, 2002

Biomass Utilisation Efficiency Biomass yield/P uptake Batten, 1992

P Efficiency Ratio (I) Yield/P Uptake Jones et al., 1989

P efficiency Ratio (II) Shoot growth at low P/Shoot growth adequate P Ozturk et al., 2005

Relative Grain Yield Yield-P/Yield+P Graham, 1984

Root Efficiency Ratio Total plant P/Root Dry weight Jones et al., 1992

Apparent Remobilisation of P (%)
Apt1 - Apt2/Apt1 x 100
Apt1 = P conc. in shoot at first harvest
Apt2 = P conc. in shoot at second harvest

Hocking and Pate, 1977

Phosphate Acquisition Efficiency Shoot-P/Shoot+P López-Arredondo et al., 2014
Adapted from Bovill et al. (2013).
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chemical compounds including inorganic phosphate ,

phospholipids, DNA, RNA, and ATP (Rose et al., 2013). Phytate

is poorly digested by monogastric mammals, and often becomes a

pollutant to waterbodies from livestock and city wastes (Schneider

et al., 2019). Reducing grain P could contribute to decreasing off-

farm P exportation. For example, Rose et al. (2010) estimated that a

20% reduction in rice grain P would globally reduce P removal from

fields by 0.4 Mt per year.

However, would reducing P translocation to grain adversely

affect grain yield and quality? The relationships between PHI and

yield are consistently weak (Batten and Khan, 1987; Jones et al.,

1989; Rose et al., 2011; Mcdonald et al., 2015), indicating that low P

translocation may not affect final grain yield. Movement of

carbohydrate and P into grain sink is regulated independently,

and it is reported that P movement occurs earlier and faster than

carbohydrates (Batten and Khan, 1987; Peng and Li, 2005).

Currently, cereal crop breeding efforts are mainly focusing on

increasing grain yield while maintaining protein (Wang et al.,

2003). However, little is known about how decreasing seed P

would play a role. Early studies demonstrate that low seed P can

be combined with satisfactory protein levels in wheat, legumes, and

oilseed rape (Batten and Khan, 1987; Chitra et al., 1995; Lickfett

et al., 1999). For instance, Lickfett et al. (1999) reported a

significantly negative correlation between phytate and protein in

crop grains. In contrast, we recently observed an inconsistent

relationship between grain P and protein levels under organic

management, due to P deficiency resulting in low grain P, lower

yields, and high protein (Carkner, 2023). Grain yield and protein

are generally negatively correlated (Iqbal et al., 2016), so lower grain

P in combination with lower yield would be expected to result in

higher protein. Further research is needed to explore the potential

impact on grain quality by reducing P translocation from crop

biomass into the grain on organic farms with satisfactory

yield conditions.

If an ideotype can produce high yield with low grain P

concentration, how will this affect seedling vigour when the grain is

used as seed? Will low grain P lead to a reduction in early season

vigour due to depleted seed P reserves (White and Veneklaas, 2012)?

Crop seedlings rely on P reserves for early growth and root

establishment, up to three weeks after germination (Grant et al.,

2001; White and Veneklaas, 2012). Many studies have reported

greater seedling vigour and increase P uptake due to faster root

growth when comparing P-rich seeds with P-poor seeds (Thomson

and Bolger, 1993; Rose et al., 2012; Lorts et al., 2020). However,

source seeds for experiments are usually from P-depleted soils, and it

has been argued that poorer seedling vigour may be an artifact of

poor seed quality rather than low P concentration (Julia et al., 2018).

Some studies with wheat and rice have also reported that seed size,

but not seed P content, influenced seedling and root growth (Derrick

and Ryan, 1998; Julia et al., 2018). Additionally, Pariasca-Tanaka et al.

(2015) reported significant genotypic by seed-P interactions for

seedling vigour in rice, demonstrating that genetic variation may be

a tool to manipulate this trait. While average wheat seed P

concentration ranges from 3.4-4.5 mg P g-1 (Selles et al., 2011),

Rose et al. (2013) reported that some genotypes with seed P
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concentrations as low as 1 mg P g-1 did not reduce germination,

seedling, vigour, or final grain yield. Finally, Julia et al. (2018)

demonstrated that rice seedlings acquire P from outside seed

reserves after 2 days after germination. However, their research was

conducted in growth media with synthetic P supply. Under organic

conditions, where crops rely on biological activity for P nutrition,

cold soils in the spring may hinder uptake. Greater understanding of

P supply and seedling growth under organic conditions would be

valuable to address this issue. Additionally, May et al. (2022)

demonstrated that certain cover crops like black medic can increase

soil available P over time, which may result in greater seedling

nutrition to overcome low seed P reserves. Therefore, with the use

of strategic ecological agronomy, there is a potential to select

genotypes that can access and store greater P, while translocating

less P into the seed for better P cycling. This approach may allow for

breeding ideotypes with low seed P levels that do not suffer negative

consequences on seedling vigor.
4.1 Crop residue potential to increase soil
phosphorus availability

After grain harvest, organic farmers often incorporate the

remaining crop residue into the soil either in the fall or early

spring; this is typical in extensive systems of the Canadian prairies

where straw is not collected for animal bedding. The ability of the

ideotype to ‘release’ P back into the soil system through

mineralization processes may provide a valuable nutrient source

for following crops and for building soil organic matter (Arcand;

Kucey et al., 1989), or both.

A core component of the organic ideotype is its ability to release

(mineralize) P from plant residue, thus increasing P cycling in the

rotation and reducing the reliance on external P inputs. The

bioavailability of P in crop residue depends on the the amount

and forms of P present. For instance, the biomass of wheat residue

(excluding roots) has been estimated up to 7.4 t ha-1 (Liu et al.,

2019). Damon et al. (2014) provided an extensive literature review

on residue contribution to P pools in agricultural soils, reporting

that average wheat residue P amounts in southern Australian grain

cropping systems are 0.4, 1.8, and 5.4 kg ha-1, under low, medium,

and high productivity scenarios, respectively. Tillage may have an

influence on P mineralization. For example, wheat residues

immobilized 0.2 kg P ha-1 under no-till management, and

mineralized 0.4 kg P ha-1 under conventional tillage during

decomposition (Lupwayi et al., 2007). However, the authors

indicated that the amount P that was mineralized was too small

to contribute significantly to the following crops’ P fertility. No-till

management may also increase P surface runoff during spring snow

melt, causing losses to the system (Grant and Flaten, 2019; Liu et al.,

2019). Canadian organic farmers typically incorporate a no-till

phase within their rotation (Halde et al., 2015), or leave wheat

stubble untilled between harvest and time of spring crop seeding the

following year. Therefore, it is essential to consider surface P runoff

loss when no-till is being employed on organic farms, particularly

when P content in crop residule is high.
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4.2 Implications for environmental
protection and human nutrition

Phosphorus loss from agricultural lands poses a serious threat

to water quality of Canadian watersheds. Over the last decade,

major Canadian lakes such as Lake Winnipeg and Lake Erie have

experienced severe algal bloom outbreaks (Liu et al., 2021). When

excessive P from synthetic fertilizers or manure are applied to

agricultural lands, they are subject to losses and being transported

by surface runoff and drainage in variable proportions of dissolved

P and particulate P (Hart et al., 2004). In cold climates like Canada,

dissolved P loss associated with snowmelt runoff has been identified

as the dominant P transport pathway to water bodies (Jamieson

et al., 2003). On some organic farms, especially those located where

animal manure is plentiful, manure is often used as a primary N and

P source for crops. However, due to the relatively lower N:P ratio in

livestock manure relative to crop needs, manure application usually

results in accumulation of P in soils and further an environmental

concern for water quality. On organic farms where animal manures

are less available, and hence more expensive, farmers typically use

manure only to satisfy the P deficit, relying on legumes to supply N

(Thiessen Martens et al., 2021).

While many previous studies have focused on improving farm

management practices such as 4R Nutrient Stewardship and tile

drainage (Grant and Flaten, 2019) and regulations on manure

production and application, the current paper proposes crop

genetic variation as a strategy to maximize crop P uptake and

use efficiency. The proposed ideotype for organic farming systems

will identify the key traits for PUE including 1) increased

root architecture, root hair growth and AMF colonization; 2)

efficient phosphate remobilisation strategies; and 3) optimizing

biomass P uptake while minimizing allocation to reproductive

seeds. Thus, the improved P acquisition and utilization of

the ideotype on organic farm can contribute greatly to reducing P

loss to water bodies by decreasing P inputs from organic sources.

The proposed ideotype also addresses the concerns of producers

and policymakers as it simultaneously reduces fertilizer/manure

costs and environmental risks.

In addition to the environmental issue, improper P

management in crop production systems can negatively affect

grain nutritional quality and thereby influence human health.

Phytate constitutes 60-80% of total P in most crops and

dominates the storage form of P in wheat grains (Gupta et al.,

2015). Phytate is often considered an antinutritional compound as

it strongly binds to micronutrients such as zinc (Zn) and iron (Fe).

Low bioavailability of these minerals in cereal grains can lead to

deficiencies in human populations who rely mainly on cereal foods

for calorie intakes. The phytate to Zn or Fe molar ratio in wheat

grain has been generally used to categorize their bioavailability

(Bouis and Welch, 2010). Canada is a world-leading wheat

producer, and it exports 75% of its wheat products, including to

developing countries where people are at high risk of malnutrition

(Statistics Canada, 2019). Breeding a wheat ideotype with high PUE
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and low grain phytate can potentially play an important role in

alleviating the global prevalence of micronutrient deficiencies. This

can be even more promising for organic farming systems due to the

benefits on grain micronutrient accumulation. For example,

previous studies from the Glenlea Long-term Rotation Study site

showed that wheat produced organically in the perennial rotation

had higher Zn than the annual rotation, whereas there was no crop

rotation effect when wheat was produced conventionally (Turmel

et al., 2009). Further studies are needed to understand the

biosynthesis and allocation of phytate throughout the crop life

cycle and its influence on bioavailability of micronutrients.
5 Conclusion

We propose a hypothetical ‘catch and release’ wheat ideotype

that possesses traits facilitating enhanced P uptake (‘catch P’ in

biomass) under low-P supply, reducing P translocation from the

biomass into the grain and thereby returning P back to the cropping

system by way of crop residue (‘release P’).Finally, the ideotype

minimizes off-farm harvest removal for organic production

systems, which impacts off-farm P pollution in addition to

enhancing micronutrient bioavailability as a food source. The

ideotype would carry characteristics such as greater root

exploration and exploitation strategies designed to interact with

soil microbial communities. To select for greater “P use efficiency”,

we argue that current indices used for conventional agriculture are

not appropriate, and breeders should use greater uptake efficiency,

yield per unit P uptake, and P harvest index to evaluate genotypes.

Early seedling vigour is of particular importance to organic

farmers because crops need to compete with early season weed

competition. Early season weeds have the largest impact on final

yield (Mason and Spaner, 2006). Lower seed P may hinder early

seedling vigour due to poorer seed nutrition, but this is unclear.

Further research examining the impact of lower seed P and

genotypic effects on early vigour under organic conditions would

be useful.

Lower seed P provides additional benefits of reducing exports

off farm, therefore reducing P entering the wastewater system and

polluting major Canadian fresh watersheds. However, residue

management needs to be considered to avoid P leaching from

high P biomass on farm. Lastly, low seed P is beneficial from a

nutritional standpoint, as it leads to improved Zn and Fe

bioavailability, potentially playing an important role in the

nutritional portfolio of developing countries where Zn and Fe

deficiency is prevalent. Taken together, our ideotype attempts to

address P challenges on organic farms from a systems perspective,

incorporating nutrient cycling dynamics, environmental

considerations, and nutrition. As we move into a new paradigm

of sustainable food production where external nutrients are

becoming scarce and an increasing number of people face

malnourishment, multi-pronged approaches will be required to

address these challenges.
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