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Hypoxia exacerbates heat stress
effects on the porcine intestinal
epithelium in vitro
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Heat stress (HS) negatively impacts human health, as well as animal agriculture.

The mechanisms underlying HS-induced intestinal dysfunction in vivo are still

not fully elucidated. However, HS has been shown to cause intestinal ischemia/

hypoxia, which contributes to reduced barrier integrity. The objective of this

study was to examine hypoxia alone, HS alone, and a combination using IPEC-J2

cells. We hypothesized that hypoxia is a critical factor and important step in the

pathway to HS-induced barrier dysfunction. Porcine IPEC-J2 cells were grown in

Transwell™ plates and then treated either under thermal neutral (TN; 38°C) or

heat stress (HS; 42°C) and either normoxia (NX; ~21% O2) or hypoxia (HX; 1% O2)

conditions for 24 h. Transepithelial electrical resistance, paracellular permeability

marker, FITC-dextran, media interleukin 8, cell HSP70 and 90, CLDN4, ZO-1, and

EEA1 were all analyzed. Results showed that HS did not increase intestinal

permeability in this model and elicited a reduction in IL-8 while still exhibiting

a robust HSP response. In this model, hypoxia was required to induce intestinal

barrier dysfunction and TJ redistribution. The combination of HS and hypoxia

caused even more severe tight junction disruption. This was accompanied by the

absence of an IL-8 response under HS.
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Introduction

Heat stress negatively impacts human health, as well as animal agriculture (Pearce

et al., 2013b; Ghulam Mohyuddin et al., 2022; Rosinger, 2023). Heatwaves and heat-stroke

can kill humans and animals, and there are still no standard treatments available aside from

cooling and hydration therapies (Hutchins et al., 2022; Wood et al., 2022). Combined with

reduced feed intake, HS markedly impacts animal gastrointestinal tract integrity. Previous

studies have shown that HS reduces intestinal integrity (Pearce et al., 2013a; Vásquez et al.,

2022) in pigs, however the mechanisms underlying the cause are still not fully elucidated.

Heat stress has been shown to cause intestinal ischemia/hypoxia as blood is partitioned to

the periphery to aid in cooling. The result of this redistribution of blood flow is a lack of

blood flow to internal organs, including the gastrointestinal tract. Decrements in intestinal
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integrity under HS have been observed previously by our group

when core temperatures reach 41–41.8°C (Pearce et al., 2013a;

Pearce et al., 2014; Pearce et al., 2015) for between 6 and

24 hours. Evidence of hypoxia has also been shown in cases of

environmental hyperthermia (Pearce et al., 2013a). The

gastrointestinal tract requires an extremely balanced gradient of

oxygen from the luminal to the mucosal surface, thus the GI tract is

one of the most sensitive organs to changes in oxygenation (Konjar

et al., 2021; Lian et al., 2021). Heat shock protein expression has

been shown to be a key regulator of the hyperthermic response (Hu

et al., 2022). Hypoxia and oxidative stress have been separately

proven to induce alterations in tight junction complexes, which

results in epithelial dysregulation and increased permeability. There

is a clear link between environmental hyperthermia and intestinal

permeability, although the role of hypoxia is still not fully

understood. However, it is known that the main transcription

factor involved in the hypoxic response (hypoxia-inducible factor

1, or HIF-1a) can interact with tight junction proteins including

claudins (Della Rocca et al., 2022).

Few studies have examined the combined effects of HS and

hypoxia in vitro, and these have been done in human cell lines

under acute conditions and normal human body temperatures for

controls (Lian et al., 2021; Lian et al., 2023). The current knowledge

base is still quite new. The IPEC-J2 cell line, which is a non-

transformed small intestinal cell line derived from neonatal pigs,

has been shown to be a good model to study nutrition (Rhoads et al.,

1994; Yan and Ajuwon, 2017), bacterial invasion (Duan et al., 2022),

viral infection (Guo et al., 2022), toxins (Li et al., 2022), and

environmental factors such as HS (Cao et al., 2016) and hypoxia

(Chapman et al., 2012).

Mechanisms underlying barrier dysfunction and the reduced

integrity of tight junctional complexes due to HS are not fully

understood; however, several pathways have been implicated. It is

also known that hypoxia and HS-related transcription factors

regulate the intestinal barrier and inflammatory signaling

pathway. Therefore, our objective was to use an agriculturally

relevant in vitro intestinal epithelial model to examine the effects

of hypoxia and high ambient heat (i.e., HS) on barrier integrity, as

well as tight junction protein localization and internalization. We

hypothesized that hypoxia is a critical factor and important step in

the pathway and hypoxia alone would result in tight junction

protein remodeling.
Materials and methods

Cell lines

IPEC-J2 cells were obtained from the Leibniz Institute (DSMZ;

Braunschweig, Germany). Cells were cultured in a humidified

incubator at 38°C under 5% CO2 in a 25-cm2 cell culture flask

(Corning Inc., Corning, NY). Cells were grown at 38°C, as this more

closely mimics pigs’ normal body temperatures in vivo but is not far

from the standard culture condition of 37°C. Growth media

consisted of Dulbecco’s modified Eagle’s medium: Nutrient

Mixture F-12 (DMEM/F12; Sigma-Aldrich, St. Louis, MO) with
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5% fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, MO)

supplemented with 1% insulin–transferrin–selenium premix (ITS

premix: human recombinant insulin 1 mg/mL, transferrin 0.6 mg/

mL, and selenium 0.6 mg/mL; Corning Inc., Corning, NY), 5 ng/mL

epidermal growth factor (EGF: Sigma-Aldrich, St. Louis, MO), and

1% penicillin–streptomycin mixture (Sigma-Aldrich, St. Louis,

MO). Cells were initially cultured in 75-cm2
flasks until enough

cells were obtained to transfer to 12-well Transwell™ plates

(Corning, Corning, NY). Transepithelial electrical resistance

(TEER) was measured daily until cells became confluent and

stabilized (after approximately 14 days) prior to treating.
Treatments

Cells were treated under thermal neutral (TN; 38°C) or heat

stress (HS; 42°C) conditions and subjected to either normoxia (NX;

approximately 21% O2) or hypoxia (HX; 1% O2) for 24 hours. The

treatment set-up is labelled as follows for figures: thermal neutral in

normoxia (TN NX), thermal neutral in hypoxia (TN HX), heat

stress in normoxia (HS NX), and heat stress in hypoxia (HS HX).

Hypoxia treatments were conducted using a hypoxia incubator

chamber (Stem Cell Technologies, Cambridge, MA) with a mixed

gas tank consisting of 1% O2, 5% CO2, and 94% N2). To minimize

exposure to ambient O2 during sampling, samples were collected as

quickly as possible. Transepithelial electrical resistance (TEER) was

measured every 6 hours, whereas all other measures were end-point

assays at 24 hours. Cell lysate was collected for Western blot

analysis, and basolateral media was collected for cytokine and

FITC-dextran assays. Immunofluorescence was conducted using

the Transwell™ membranes.
Functional assays

TEER was measured every 6 hours using an epithelial Volt/

Ohm meter (EVOM2; World Prevision Instruments, Sarasota, FL).

At the end of TEER measurement, 0.2 mg/mL of 4-kDa fluorescein

isothiocyanate-dextran (FITC-dextran) was applied to the apical

side of Transwell™ inserts to measure the paracellular permeability.

The concentration of FITC-dextran at the basolateral side was

measured using a fluorescent plate reader (BioTek Instruments,

Santa Clara, CA) with excitation and emission wavelengths of 485

and 530 nm, respectively.
Immunofluorescence

IPEC-J2 membranes were permeabilized with 0.5% Triton for

10 minutes, blocked with 10% bovine serum albumin for 2 hours,

and incubated with primary antibodies at a 1:200 dilution at 4°C

overnight. Secondary antibodies were incubated for 2 hours, and

DAPI was also applied for 10 mins at room temperature. Early

endosomal antigen-1 (EEA1; Santa Cruz Biotechnology), zonula

occluden 1 (ZO-1; Invitrogen), and claudin-4 (CLDN4; Invitrogen)

were analyzed. Images were obtained with a fluorescent microscope
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(Olympus, Waltham, MA) and processed in FIJI (NIH). Corrected

total cell fluorescence (CTCF) was used as a quantitative output for

fluorescence images and calculated as follows: CTCF = integrated

density – (area of selected cell × mean fluorescence of background

readings). To examine the co-localization of CLDN4 and EEA1,

Pearson’s coefficients were generated using the Coloc 2 Plug-in

in FIJI.
Western blotting

Protein from cells was extracted in a PBS +1% Triton X-100

buffer with protease and phosphatase inhibitors. Cell homogenates

were separated by SDS (10%–15%) polyacrylamide gel

electrophoresis (SDS-PAGE). Gels were run under reducing

conditions and transferred to nitrocellulose membranes.

Membranes were blocked for 1 hour in 5% non-fat dry milk

(NFDM) in TBST (1× TBS, 0.1% Tween-20). Membranes were

then blocked in primary antibody with 5% NFDM in TBST

overnight. After blocking in primary antibody (HSP70 and

HSP90) membranes were incubated in secondary antibody for 1

hour. For detection, Supersignal® West Pico Chemiluminescent

Substrate was used (Thermoscientific, Waltham, MA). Membranes

were imaged using FOTO Analyst® Luminary/FX® (Fotodyne Inc,

Hartland, WI). Band densities were quantified by densitometry

using TotalLab Quant (Total Lab®, Newcastle Upon Tyne, UK).

Bands were standardized to the density of GAPDH and represented

as a ratio of each protein to GAPDH.
ELISA

Interleukin-8 was measured using a commercially available

porcine kit (Quantikine; R&D Systems, Minneapolis, MN).
Statistical analysis

Experiments were analyzed in JMP SAS (Version 9.2, SAS

institute). Individual wells were used as technical replicates. Data

were analyzed using one-way ANOVA with the Tukey–Kramer

adjustment for pairwise comparisons. TEER was analyzed as

repeated measures. Data are presented as least square

means ± standard error of the mean. Means not sharing any

letter are significantly different by the Tukey–Kramer test

p < 0.05. Image J was used to calculate Pearson’s r value for co-

localization of CLDN4 and EEA1.
Results

To assess changes in IPEC barrier integrity, Transwell™ TEER

was analyzed as a measure of paracellular permeability between

adjacent epithelial cells. It was measured as the change from the
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baseline of the control (TN NX), which was set to 100%, with a

higher number indicating better barrier integrity and lower

permeability. Unexpectedly, HS alone (HS NX) increased TEER

by more than 100% over 24 hours, whereas hypoxia alone (TN HX)

and HS combined with hypoxia (HS HX) reduced TEER by

approximately 50% (p<0.05; Figure 1A). Substantial changes in

TEER were observed starting after approximately 12 hours of

treatment. These results indicate that hypoxia was required to

reduce TEER. FITC-dextran, another marker for paracellular

permeability was increased by 133% in the TN HX treatment

compared with TN NX control and HS NX treatment (p<0.05;

Figure 1B). FITC-dextran was highest in the HS HX group,

increasing by more than 500% compared with the TN NX

controls and by nearly 200% compared with the TN HX

treatment (p<0.05; Figure 1B). Similar to the findings concerning

TEER, hypoxia was required to increase permeability using the

FITC-dextran marker. Interestingly, one of the major mediators of

the intestinal inflammatory response, basolateral chemokine IL-8,

was reduced by more than 70% in both HS treatments (p<0.05;

Figure 1C). There was a tendency for IL-8 to be increased due to

hypoxia alone (p<0.10; Figure 1C). These results indicate a

dampened IL-8 response to HS.

The immunofluorescence distribution and structure of CLDN4

were significantly affected by the heat stress and hypoxia treatments.

This included areas of redistribution of CLDN4 (white arrows;

Figure 2A). CLDN4 appeared to redistribute from the membrane to

the cytosol and formed cluster-like structures. In addition, total relative

fluorescence (CTCF) was only significantly increased by 34% in the HS

HX group relative to the CON group (p<0.05; Figure 2B). Although not

different from the CON group, the TN HX group had significantly less

CLDN4 than the HS NX group (30% decrease; p<0.05). The

distribution and structure of the tight junction protein ZO-1 was

largely unchanged due to treatment; however, there were some areas in

which ZO-1 appears to cluster like CLDN4 (white arrows; Figure 2A).

However, the total amount of ZO-1 was significantly altered.

Compared with the CON group, TN HX-treated cells experienced a

31% decrease in ZO-1 fluorescence (p<0.05; Figure 2B). ZO-1 in both

HS groups was significantly increased by nearly 20% compared with

the CON group (p<0.05; Figure 2B). EEA1 was largely not present in

the CON group but was present in significant amounts in the HS HX

treatment (Figure 2A). However, total fluorescence was increased in

both HS-treated groups compared with the CON and TN HX groups

(p<0.05; Figure 2B). Total fluorescence of DAPI was not different

between treatments (p>0.05; data not shown). EEA1 demonstrated

high co-localization with CLDN4 with a Pearson’s r-value of 0.74,

which was significant (p < 0.05; Supplemental Figure 1).

Protein expression of two major heat shock proteins and cell

chaperones, HSP70 and HSP90, was measured in cell lysate to

confirm heat shock response in treated cells. HSP70 levels decreased

by 40% (p<0.05; Figure 3A) due to hypoxia treatment but, as

expected, increased by more than 150% due to heat exposure.

HSP90 levels were not decreased due to hypoxia treatment alone

(p>0.05; Figure 3B) but increased by more than 200% due to heat

exposure. Representative blot images are shown in Figure 3C.
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A B

C

FIGURE 1

The effects of 24 hours of either constant thermal neutral conditions under normoxia (TN NX; 21°C), constant thermal neutral conditions under 1%
hypoxia (TN HX), heat stress conditions under normoxia (HS NX; 42°C), or heat stress conditions under 1% hypoxia (HS HX) on (A) transepithelial
electrical resistance (TEER), (B) FITC-dextran (FD4) transport, and (C) basolateral media interleukin 8 concentrations. a,b,c,dp<0.05, n=12/trt.
A B

FIGURE 2

The effects of 24 hours of either constant thermal neutral conditions under normoxia (TN NX; 21°C), constant thermal neutral conditions under 1%
hypoxia (TN HX), heat stress conditions under normoxia (HS NX; 42°C), or heat stress conditions under 1% hypoxia (HS HX) on
(A) immunofluorescence images of claudin 4 (CLDN4; red), zonula-occluden 1 (ZO1; green), or early endosomal antigen 1 (EEA1; green) and
(B) corrected total cell fluorescence measurements (CTCF). DAPI (blue) is marking the nuclei. Six fields of view from six separate wells were used for
calculations. DAPI CTCF was not different between treatments. a,b,cp<0.05, n=6/trt.
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Discussion

Changes in intestinal integrity can occur due to alterations in

the amount and localization of tight junction protein at the plasma

membrane of intestinal epithelial cells. The reduction of

membrane-associated tight junction proteins and the

consequential internalization of these proteins into the early

endosome may result in the decreased polarization and integrity

of the epithelial barrier. However, few studies have assessed this

under heat stress or hypoxia conditions in pig models. Previous

studies have shown that HS reduces intestinal integrity (Pearce

et al., 2013a); however, it is largely unknown if the ambient heat or

the associated intestinal hypoxia results in tight junction protein

remodeling. Heat stress causes intestinal ischemia/hypoxia as blood

is partitioned to the periphery, and there has been evidence of

hypoxia in cases of environmental hyperthermia (Pearce et al.,

2013a). Thus, in this agriculturally relevant in vitro model, our data

suggest that hypoxia may be a driving factor in HS-induced barrier

dysfunction. The IPEC-J2 cell line used herein is a non-transformed

small intestinal cell line derived from neonatal pigs and has been

shown to be a good model for studying nutrition (Rhoads et al.,

1994; Yan and Ajuwon, 2017), bacterial invasion (Duan et al., 2022),

viral infection (Guo et al., 2022), toxins (Li et al., 2022), and

environmental factors such as HS (Cao et al., 2016) and hypoxia

(Chapman et al., 2012). Under standard cell culture conditions, cells

are typically grown at 37°C. However, pigs’ normal body

temperature ranges from approximately 38.5°C to 39.7°C, which

is higher than that of humans (Morales et al., 2016). Therefore, we

propagated the IPEC at 38°C for our thermal neutral condition to
Frontiers in Animal Science 05
mimic the source tissue. Cell viability and polarization was not

affected by this warmer thermoneutral culturing condition (data

not shown).

Under in vitro conditions, HS has been shown to upregulate the

tight junction protein zonula-occluden-1 (ZO-1), as well as

inflammatory genes IL-6, ICAM-1, and TGF-b; however,

functional integrity such as macromolecular transport was not

measured (Cao et al., 2016). Separately, Chapman et al. (2012)

reported that hypoxia treatment of IPEC-J2 cells caused a large

reduction in TEER, a functional measure of monolayer barrier

function, after 12 hours. At the same time, inulin flux (a marker of

paracellular macromolecular flux) was greatly increased by hypoxia

treatment alone. These hypoxia functional data were also

accompanied by changes in the tight junction protein distribution

of ZO-1 (Chapman et al., 2012). In the current study, we reported

large reductions in IPEC-J2 intestinal barrier function, as observed

by TEER and FITC-dextran transport, in a short period of time in

both the hypoxia alone and HS HX treatments. Intriguingly, HS

alone increased TEER in IPEC-J2 cells, and this result was similar

across multiple time points and experimental replications. Other

cell culture models have been utilized to study the effects of HS,

including IEC-6 (He et al., 2016), SW480 (Yi et al., 2017), Caco2

(Dokladny et al., 2008), and HT-29 (Lian et al., 2021). Of these

models, all have reported decreases in intestinal integrity due to

elevated culturing temperature conditions, which is in contrast to

our current model. The discrepancies in barrier TEER under

elevated culturing temperatures could also be attributed to our

TN controls being cultured at a starting temperature 1–2°C higher

than the standard to mimic normal porcine physiology. It is
A B

C

FIGURE 3

The effects of 24 hours of either constant thermal neutral conditions under normoxia (TN NX; 21°C), constant thermal neutral conditions under 1%
hypoxia (TN HX), heat stress conditions under normoxia (HS NX; 42°C), or heat stress conditions under 1% hypoxia (HS HX) on (A) heat shock protein
70 (HSP70) relative expression, (B) heat shock protein 90 (HSP90) relative expression, and (C) representative blot images of each along with
housekeeping protein GAPDH. a,b,cp<0.05, n=6/trt.
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possible that this may have caused some adaptation or acclimation

to heat in the cells; however, a robust HSP response was

still observed.

The epithelial barrier between cells is created by a series of

junctional proteins, including tight junctions (TJs), gap junctions,

adherens junctions, and desmosomes. Epithelial TJs regulate the

polarity and movement of molecules between adjacent cells.

Claudins are a family of transmembrane TJ proteins that can be

classified as either “tight” or “leaky” based on what they allow

through. Claudin 4 is considered a tight claudin and is involved in

regulating barrier function. Zonula occludens are another type of TJ

protein that are cytoplasmic. ZO-1 helps to stabilize claudin strands

and the actin cytoskeleton (Garcia-Hernandez et al., 2017).

Polarized epithelial cells are capable of rapidly remodeling and

reshaping paracellular pore spaces through diffusion, endocytosis,

and the internalization of tight junction proteins (Stamatovic et al.,

2017). This internalization of tight junction proteins is

interconnected to membrane-bound endosome compartments.

Protein expression via immunofluorescence of tight junction

proteins also appeared to redistribute to the cytosol from the

membrane, especially CLDN4. This occurred under all

treatments; however, the most noticeable changes were in the HS

HX cells where large, internalized clusters of CLDN4 were found.

This contrasts with the controls, which exhibited the typical

honeycomb structure of tight junctions. Interestingly, total

fluorescence did not correlate entirely with functional data or

redistribution observations. Specifically, total fluorescence was

decreased under hypoxia alone but increased under HS alone and

HS HX, although functional data were similar between the hypoxia

and HS HX treatments. This could be due to several factors,

including the methods utilized, timing of protein translation and

function, and proteins analyzed, as functional data is representative

of the entire junctional complex. CLDN4 also appeared to also co-

localize with EEA1. Endocytosis is a process by which substances

are taken in by a cell, and during this process vesicles are formed

containing the ingested material (Nighot and Ma, 2021). Early

endosome antigen 1 (EEA1) localizes specifically to early

endosomes; it is involved in endosomal trafficking and has been

described as a central sorting station (Barone and Zimmer, 2016).

Endocytosis is important for the regulation of tight junction

complexes and allows cells to adapt to various stressors.

Specifically, it has emerged as an important process for tight

junction remodeling and endocytic removal (Li and Ajuwon,

2021; Nighot and Ma, 2021). EEA1 has previously been shown to

co-localize with TJ proteins (Matsuda et al., 2004; Li et al., 2022).

Although the HS HX treatment had the highest TEER, it also had

increased TJ protein fluorescence and higher remodeling. This

could be unrelated to endosomal recycling or may be due to

effects on other junctional complexes that were not measured

within the scope of the current study.

The changes in the amount of tight junction proteins of heat

shock proteins. The levels of heat shock proteins, such as HSP70,

are increased during HS, and they act as molecular chaperones and

protect protein function (Alfieri et al., 2004; Chen et al., 2009). In
Frontiers in Animal Science 06
pig intestinal tissues, we have reported that HS increases levels of

SP70, in addition to levels of HIF1a (Pearce et al., 2013a). However,

hypoxia alone may not increase the amount of heat shock proteins.

Heat shock proteins act as molecular chaperones that assist in

protein folding and are regulated by heat shock factors (HSFs). Heat

shock protein 70 is one of the most inducible HSPs and is a

chaperone for nascent polypeptide chains (Wang et al., 2018). It

is also thought that HSPs act as intestinal gatekeepers (Liu et al.,

2014). Following HS, intestinal epithelial cells produce heat shock

proteins as a protective mechanism (Malago et al., 2002). HSP90 has

been shown to be involved in several survival signaling pathways,

including those involved in antioxidant response and apoptosis

(Zhang et al., 2020). As expected, levels of HSP70 and HSP90 were

increased in both HS-treated groups, indicating that both groups

experienced HS. There was no difference between the normoxia-

and hypoxia-treated groups; therefore hypoxia did not alter the HSP

response. The total fluorescence of TJ proteins was increased in

treatment groups where HSP activation was also observed.

Interleukin 8 (IL-8/CXCL-8) is one of the most abundant

inflammatory cytokines/chemokines produced by the intestinal

epithelium and epithelial cells. Its main functions are to induce

chemotaxis in neutrophils, induce phagocytosis, and protect cells

against damage (Maheshwari et al., 2002). Interestingly, our results

show a decrease in IL-8 protein secretion in HS-treated cells, which

would mimic systemic IL-8 concentrations in the blood. This is

counter-intuitive to a potential inflammatory response to

environmental hyperthermia; however, this phenomenon has also

been observed in vivo (Pearce et al., 2013a; Varasteh et al., 2015) and

may be a species-specific or timing-specific response. In our in vitro

model, there is no immune cell component, thus the IL-8 response

must be due solely to intestinal epithelial cell production. Previous

research has shown that the induction of HSPs may inhibit IL-8

production or secretion. Interestingly, heat shock has been reported

to co-activate interleukin-8 gene transcription (Singh et al., 2008;

Chung et al., 2009; Zhong et al., 2012).

We believe hypoxia is a driving factor in barrier dysfunction, as

HS alone in our model was not enough to disrupt the intestinal

barrier at a functional level but was able to cause changes at a

molecular level. This may be partially due to an increase in HSP70,

which is a molecular chaperone and protectant during HS that is

not observed in hypoxia. It may also be due to a slightly higher

starting temperature to mimic normal porcine body temperatures.

There are likely other factors or proteins involved in this process

that were not measured in the current study. In conclusion, this

short research communication provides new insights into how HS

and hypoxia modulate intestinal barrier integrity. These data show

for the first time in IPEC-J2 cells that hypoxia appears to cause a

large majority of the epithelial damage and dysfunction during a

bout of high ambient heat, including increased intestinal

permeability, tight junction remodeling, and early endosome

disruption. Interestingly, these changes are in the absence of an

IL-8 response. Future studies should elucidate mechanisms and

provide potential nutritional mitigation strategies to prevent HS

and hypoxia-induced intestinal dysfunction.
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