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Introduction: Leaves are important organs for photosynthesis in plants, and the

restriction of leaf growth is among the earliest visible effects under abiotic stress

such as nutrient deficiency. Rapidly and accurately monitoring plant leaf area is of

great importance in understanding plant growth status in modern agricultural

production.

Method: In this paper, an image processing-based non-destructive monitoring

device that includes an image acquisition device and image process deep

learning net for acquiring Brassica napus (rapeseed) leaf area is proposed. A

total of 1,080 rapeseed leaf image areas from five nutrient amendment

treatments were continuously collected using the automatic leaf acquisition

device and the commonly used area measurement methods (manual and

stretching methods).

Results: The average error rate of themanual method is 12.12%, the average error

rate of the stretching method is 5.63%, and the average error rate of the splint

method is 0.65%. The accuracy of the automatic leaf acquisition device was

improved by 11.47% and 4.98% compared with the manual and stretching

methods, respectively, and had the advantages of speed and automation.

Experiments on the effects of the manual method, stretching method, and

splinting method on the growth of rapeseed are conducted, and the growth

rate of rapeseed leaves under the stretching method treatment is considerably

greater than that of the normal treatment rapeseed.

Discussion: The growth rate of leaves under the splinting method treatment was

less than that of the normal rapeseed treatment. The mean intersection over

union (mIoU) of the UNet-Attention model reached 90%, and the splint method

had higher prediction accuracy with little influence on rapeseed.
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1 Introduction

Leaves are very important organs in plants and are often

monitored to reflect plant growth. In the late last century, leaf

monitoring was mainly performed by manual measurement (Ross

et al., 2000). With the development of computer technology, image

processing is increasingly applied in the field of plant growth

monitoring (Hamuda et al., 2016). Therefore, the accurate

acquisition of leaf image information has become the focus of

plant growth monitoring. Additionally, non-destructive continuous

monitoring has become a hot topic in recent years. In particular,

plant-specific tracking observation techniques are key to obtaining

morphological parameters of plant dynamics over time (Ali et al.,

2019; Su et al., 2020; Mohd Asaari et al., 2022). Monitoring crop

growth is important for precision agriculture, allowing scientific

and efficient cultivation to improve crop yields and reduce the waste

of resources. Leaf area (LA) reflects the performance of mechanisms

such as radiation shielding, water and energy exchange, plant

growth, and biological productivity (Hsiao et al., 1970; Salah and

Tardieu, 1997). Accurate continuous measurement of LA helps in

understanding leaf ontogenesis, especially under multiple plant–

environment interactions for researchers (Mielewczik et al., 2013;

Friedli and Walter, 2015). Plants often encounter nutrient-

improvised conditions, retarding leaf growth, decreasing LA, and

reducing photosynthetic capacity. The reduction in LA usually

arises first when plants are exposed to nutrient deficiency (Lu

et al., 2016b). A reasonable estimation of LA and its variation

would be useful to elucidate plant response mechanisms or

phenotypes to nutrients or the environment, hence guiding the

subsequent cultivation management.

The current methods for monitoring leaf growth are mainly

manual destructive measurements and non-destructive monitoring

based on computer vision. Traditional manual plant monitoring

methods rely on the professional measuring experience of the

people involved, and sophisticated instruments are used to

measure various morphological parameters of the leaves

(Jonckheere et al., 2004). It costs much time and money to train

professionals with the ability to monitor plants, even well-trained

workers will make mistakes in monitoring the plants’ status, and

there are few institutions dedicated to providing this type of

training. In addition, the manual measurement of the

measurement angle, leaf attitude, and other factors also affects the

accuracy of the measurement. Another difficulty is the time

required to manually assess the growth status of plants, which

hinders rapid decision-making and large-scale assessments. Manual

measurement often causes minimal damage to the leaf.

The continuous development of image processing technology in

recent years and the appearance of many inexpensive image

processing devices in the market allow the use of image

processing technology in agriculture at a more extensive and

easier stage. Non-destructive measurements based on computer

vision include an online monitoring platform for plants based on

3D stereo reconstruction technology and a 2D image acquisition

platform based on industrial cameras.

Plant monitoring methods based on 3D reconstruction

techniques are used in many plant morphology studies. Apelt
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et al. (2015) built a 3D reconstruction platform using a light field

camera to reconstruct the Arabidopsis thaliana wild-type in 3D and

analyzed the information of individual leaf morphology and the

time of leaf appearance in time series, providing a new idea for

accurate plant morphology measurement and growth-related

characteristics. Cuevas Velasquez et al. (2020) used a pair of

stereo images obtained by the camera to reconstruct the rose in

three dimensions, calculating the skeleton and branching structure

as a basis for later pruning using the gardening robot. Although 3D

reconstruction can reflect the overall morphology of the plant with

high accuracy, there are problems, such as low efficiency and high

cost for leaf measurement, due to expensive equipment and high

setup and maintenance costs. Intensive monitoring in a very short

amount of time is not possible because it takes considerable time to

complete 3D reconstruction. Deep learning is a powerful tool for

building 3D image processing models, but thus far, there are still

problems such as too few samples and difficulties in annotating

datasets when applying deep learning to 3D model reconstruction

(Li et al., 2020).

Obtaining information from two-dimensional plant images

through image processing algorithms is an efficient measurement

method that uses digital images and time series to acquire plant

phenotypic data using various methods and sensors in controlled

environments and the field. There are precedents for using two-

dimensional image processing techniques for LA, plant growth

status, disease diagnosis, plant vigor, and postharvest vegetable

quality monitoring (Pipatsitee et al., 2019; Baar et al., 2022). One

of those methods is to use cameras to collect images and then

import them into computer-side or smartphone-side software for

batch processing, which further improves the accuracy of

measurement and processing speed. Measurements are taken with

a camera or smartphone, and the images are placed in software such

as MATLAB or Image-Pro Plus to calculate the leaf area with the aid

of a computer (Lu et al., 2016a; Badiger et al., 2022). Julian Schrader

presented Leaf-IT, an application for measuring leaf area and other

trait-related areas on smartphones (Schrader et al., 2017). Although

this method can obtain high-precision leaf area data, it is destructive

to the plant and cannot obtain continuously changing data of leaf

area over time on the same plant. Another method is to fix light

black beads around the leaf, use thin wire fixation to spread the leaf,

and use a camera to photograph the leaf vertically (Mielewczik et al.,

2013; Friedli and Walter, 2015). The stretching method mentioned

above is usually used to measure the leaf area of soybean; in

rapeseed, the results may be inaccurate. The force pull effect on

leaf growth could not be assessed. Plant growth needs to be

monitored as much as possible without affecting the natural

growth state of the plant and at a high degree of automation.

Therefore, there is some room for improvement in the stretching

method in terms of the effect on the leaf.

In this study, a plywood-based leaf area acquisition device was

designed to obtain leaf area based on a deep learning-based image

semantic segmentation technique. The device adopts the form of

clamping the whole leaf flat, reducing the influence of errors caused

by leaf folds. Compared to the tensile method, the mechanical

damage to the leaf is reduced. We use different deep learning

models for the semantic segmentation of leaves and propose a U-
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Net model that incorporates attention block, which has higher

accuracy than other models. The accuracy of the splint measuring

method is compared with that of the manual method and the

stretching method. The effects of various methods on the growth of

rapeseed were also investigated. The results showed that the splint

method proposed in this paper had an acquisition error of leaf area

within ±5%, which provides a feasible approach for non-destructive

measurement of the rapeseed leaf area.
2 Materials and methods

2.1 Hardware setup

A complementary metal oxide semiconductor (CMOS) camera

was used to obtain the leaf images and pass them into the leaf

segmentation model located in the computer (Computer with AMD

Ryzen 5 3500X processor, memory 16G, operating systemMicrosoft

Windows 10 Professional, compiler Pycharm) for segmentation.

Based on the switching power supply, LM2596 DC step-down

module, electromagnetic relay and STM32 microcontroller, and

other equipment, a set of night light control systems was built. The

system is shown in Figure 1. The PC side and the microcontroller

used serial communication, and the microcontroller obtained the

light command, controlled the relay on and off to complete the light

command response, and achieved an automatic night light switch.
2.2 Plant material

Rapeseed seedlings were grown in an environmentally

controlled growth chamber located in the College of Resources

and Environment, Huazhong Agricultural University, with a 14-h

photoperiod under a photosynthetic photon flux density (PPFD) of

250 mmol m−2 s−1 at the leaf level. The temperature was 20°C during

the day and 18°C at night, and the humidity in the greenhouse was

controlled between 50% and 60%. Seeds were germinated for 7 days

on gauze floating on the surface of deionized water in a dish. First,

80 uniform seedlings were transplanted into half-strength nutrient
Frontiers in Plant Science 03
solution in 8.0-L black plastic containers. Seedlings were grown

under a half-strength nutrient solution for 6 days before they were

transplanted to a full-strength nutrient solution. The 13-day-old

seedlings were transplanted to the full-strength nutrient solution,

comprising, 3 mM of NH4NO3, 0.28 mM of Na2HPO4, 0.641 mM of

NAH2PO4, 2 mM of KCl, 3.24 mM of CaCl2, 2 mM of MgCl2, 1 mM

of Na2SO4, 4.6 mM of H2BO3, 9 mM of MnCl2, 0.3 mM of CuSO4, 0.8

mM of ZnSO4, 0.1 mM of Na2MoO4, 0.1 mM of Na2MoO4·2H2O, 0.1

mM of H32Mo7N6O28, 0.05 mM of FeSO4, and 0.05 mM of

Na2EDTA. Five different treatments (CK\-N\-P\-K\-Mg) were

used: control (CK, full nutrient), -N (0 mM of NH4NO3), -P (0

mM of Na2HPO4 and NAH2PO4), -K (0 mM of KCl), and -Mg (0

mM of MgCl2). The nutrient solution was renewed every 3 days.

During hydroponic cultivation, the nutrient solution was aerated

for 0.5 h with an air pump that bubbled air through air stones every

2 h to maintain a water oxygen content of approximately 8.0 mg/L.
2.3 Measuring methods

Three images were collected for each plant by selecting a leaf,

and the daytime and night-time acquisitions are listed in Table 1. In

the stretching method, leaves were stretched by five small clips with

a proper counterweight, and images were captured by a camera

installed directly above the leaves.
BA

FIGURE 1

(A) 3D view of the device. (B) Image acquisition device. This device consists of an industrial camera, a splint, and a laptop. The computer drives the
industrial camera, and the image of the blade is captured by the image sensor in the camera and transferred to the laptop for storage through the
USB connection cable.
TABLE 1 Acquisition of image datasets.

Day/night group
Method

Manual Splint Stretching Total

-CK 36 36 36 108

-N 36 36 36 108

-P 36 36 36 108

-K 36 36 36 108

-MG 36 36 36 108

Total 180 180 180 540
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2.3.1 Manual method and stretching method
In the manual method, the front view image of the rapeseed leaf

was taken by a mobile phone and put into computer software for

analysis shown in Figure 2B. First, the preprepared calibration

board was placed behind the rapeseed leaves to be tested, and a

smartphone was used to take a frontal image of the rapeseed, which

was stored in the phone’s built-in memory. After photos were taken,

the images in the phone were exported to computer software,

IPP6.0 (Image-pro Plus 4.5 software) (Media Cybernetics, Silver

Spring, MD, USA) to process the image. In the software, first, the

leaf area was manually selected, the number of pixels PNLC (pixel

number of a leaf) was written down, and then the area of the known

area SC (5 mm × 5 mm) was selected. The number of pixels is

denoted as PNCC (pixel number of calibration objects) and then the

leaf area as LAC :

LAc =
PNLc � Sc
PNCc

: (1)

LAC is the leaf area, PNLC is the pixel number of leaf, and PNCC

is the pixel number of calibration objects.

In the stretching method which is shown in Figure 2C, each leaf

was fixed to the camera’s focusing plane, supported by a plate with a

white background, and evenly clamped to the five points of the leaf

by five small clips connected by thin lines with a counterweight

consisting of a centrifugal tube filled with an appropriate amount of

water, hanging around the edge of the ring. The camera was fixed

30 cm above the leaf, and the lens was parallel to the leaf. A set of

computer-controlled lighting systems was set up on the bench to

enable the night camera to work properly. Before an image was

obtained, the calibration board was fixed on the background plate, a

5 mm × 5 mm area on the calibration board was taken as the

calibration area ( SSt), and the number of pixels PNSSt (pixel

number of stretching) were recorded. The actual area of the

marked area is   SSt . The number of pixels in the leaf area

calculated in the algorithm was taken as PNLSt (pixel number of

stretching methodPixel number of Stretching Method) and then the

leaf area as LASt :

LASt =
PNLSt � SSt

PNCSt
: (2)

LASt is the leaf area of the stretching method, and PNLSt is the

pixel number of the leaf area in the stretching method.
2.3.2 Splint method
In this method, the monitored leaf was fixed to the camera

imaging plane by two transparent acrylic plates, which were fixed to

the greenhouse stand by a rubber base, and the two acrylic plates

were connected by bolts and nuts it is shown in Figure 2A.

Additionally, the plywood lamination gap can be adjusted by

rotating the bolts to suit different thicknesses of the leaf. During

the image acquisition process, the light was fixed by a variable

bracket approximately 50 cm directly above the camera and

approximately 100 cm away from the object. The device was set
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to leave the light on during the day, turn on the light 1 s before

photographing the image at night, and turn off the light 1 s after

images were taken. Before image capture, the calibration board was

fixed on the acrylic plate, a picture was taken as the calibration

image, and the 5 mm × 5 mm size area was employed on the

calibration board as the calibration area ( SSp). We note down the

number of pixel points was taken as PNSp (pixel number of the

splint method) and the number of pixel points as PNLSp (pixel

number of the leaf area) as calculated in the algorithm. Then, the

leaf area was calculated as follows:

LASp =
PNLSp � SSp

PNCSp
: (3)

LASp is the leaf area of the splint method, and PNLSp is the pixel

number of the leaf area in the splint method.

2.3.3 Calibration leaf area
To compare the effectiveness of the three measurement

methods, the measured leaves were cut out and placed into the

scanner for scanning, and leaf area S was measured using the leaf

analysis software as the standard value. The measurement accuracy

(Acc) is expressed as follows:

Acc =
S − Stj j
S

� 100% : (4)
2.4 Image segmentation model

Image annotation is an important step in the extraction of

rapeseed leaves using deep learning methods. The semantic

segmentation of the image is compiled by using the Labelme

software, which separates the rapeseed leaves from the image

background and obtains the json format file with the boundary

points of the leaves, and the masked image of the rapeseed leaves is

obtained after the segmentation process. The rapeseed leaf

segmentation dataset was randomly divided into a training set,

test set, and validation set with a ratio of 6:2:2. The training set, test

set, and validation set contain 648, 216, and 216 images,

respectively, for a total of 1,080 images.

2.4.1 PSPNet
PSPNet was proposed in 2017 by Zhao et al. (2017) and was

improved based on fully convolutional network (FCN). The

backbone part uses ResNet50 as the feature extraction model, and

the feature layers extracted from the backbone part are fused under

four different scales using a pyramid module. The pyramid module is

actually a four-level module, the top level is the global average

pooling, and levels 2, 3, and 4 divide the input feature layers into

2×2, 3×3, and 6×6 subregions, respectively. The pooling was averaged

for each subregion separately. Finally, a 3×3 convolution was used for

feature integration, and a 1×1 convolution was used for channel

adjustment. The PSPNet model structure is shown in Figure 3.
frontiersin.org
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2.4.2 DeepLab v3+
DeepLab v3+ is a new semantic segmentation algorithm that

was introduced by Google in 2018, improving on the DeepLab v1-

3. Cai introduced the attention mechanism into the DeepLab v3+

model as shown in Figure 4, enhanced the feature information of

strawberry images, and improved the segmentation accuracy by
Frontiers in Plant Science 05
adjusting the weights of the feature channels during the

propagation of the neural model through the attention

mechanism (Cai et al., 2022). Peng et al. applied DeepLab v3+

to the segmentation of litchi branches and used migration

learning and data enhancement methods to accelerate model

convergence and improve model robustness (Peng et al., 2020).
B C DA

FIGURE 3

PSPNet structure.
B C

A

FIGURE 2

(A) Splint method. (B) Manual method. (C) Stretching method.
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Therefore, the DeepLab v3+ model was selected as a semantic

segmentation model method in this study.

2.4.3 U-Net
For the segmentation model, we used U-Net architecture, which

is proposed by Ronneberger et al. (2015), a deep learning-based

image segmentation model. Deep learning-based semantic

segmentation algorithms classify images at the pixel level. The

input image is processed by the deep neural model. The pixels in

the image are encoded by the convolution layer and pooling layer in

the downsampling process of the model and then decoded by

deconvolution in the upsampling process. Finally, the segmented

image is obtained.

As shown in Figure 5, the U-Net is a deep learning model with a

typical encoding–decoding structure. It has a left–right symmetric
Frontiers in Plant Science 06
structure, similar to the letter, with the encoding part of the model

on the left and the decoding part on the right. The advantage of the

U-Net model is that it can achieve high segmentation accuracy with

relatively less data.

The “encoding” part uses VGG16 as the main feature extraction

part, with five layers. Each layer uses two 3 * 3 convolutional kernels,

each followed by a rectified linear unit (ReLU) activation function and

a 2 * 2 maximum pooling operation. The “decoding” part uses the five

effective feature layers obtained from the “encoding” part for feature

fusion by upsampling and stacking the feature layers.

The encoding part consists of four submodules, each of which

downsamples the model of the previous level by a factor of two, and

the resolution of the image decreases to one-half of the original with

every module. The decoding part is similar in structure to the

encoding part and consists of four submodules, each of which
FIGURE 5

U-Net structure.
FIGURE 4

DeepLab V3+ structure.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1163700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1163700
upsamples the input image by a factor of two, and with each passing

submodule, the resolution of the image rises to two times that of the

input image. The loss function with boundary weights in the loss

function is formulated as follows:

Dice ¼ 2 A ∩ Bj j
Aj j + Bj j , (5)

where A is the a priori mask and B is the predicted mask.
2.4.4 Attention block
The attention model was first introduced in the seq2seq model

(Sutskever, et al., 2014). It is now widely used in different types of

machine learning tasks such as natural language processing and

image processing as well as speech recognition. According to the

different domains where the attention mechanism is applied, the

attention weights are applied in different ways and locations, and

the attention mechanism is divided into three kinds: spatial domain,

channel domain, and hybrid domain. Among them, channel

attention has a strong generalization in the image processing

domain, so this paper adds channel attention to the channel

domain. Channel attention is similar to applying a weight to each

channel’s feature map, which represents the relevance of that

channel to the key information, and the larger the weight, the

higher the relevance. By adding the SE attention block in the fusion

stage of the shallow features and deep features in the U-Net model,

the shallow features generated in the downsampling procedure are

processed by the channel attention and then fused with the

subsequent features to achieve the goal of improving the

prediction accuracy, and the U-Net-attention structure is shown

in Figure 6A.
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After the feature map is passed in, it is changed into a C-channel

feature map with the length and width of H and W, respectively, by

one convolution and then into a 3D matrix of size 1◊1◊C by one

global average pooling. Then, the weights of each channel are fixed

to between 0 and 1 by two full joins and one sigmoid, at which time

the matrix corresponds to the weights of each channel in the input

layer, and finally, these weights are multiplied by the original input

feature layer, which completes channel attention processing. The SE

block is shown in Figure 6B.
2.5 Evaluation of the model

In this paper, we use mean intersection over union (mIoU),

mPA, mPrecision, and recall, which are usually used for

segmentation tasks as the evaluation metrics, and each metric is

calculated as follows:

MIoU ¼ TP
FN+TP+FP

, (6)

Accuracy ¼ TP+TN
TP+TN+FP+FN

� 100%, (7)

Recall ¼ TP
TP+TN

� 100%, (8)

Precision ¼ TP
TP+FP

� 100% : (9)

TP, FP, FP, and FN   are from the confusion matrix. The

confusion matrix is widely used in the field of machine learning,
B

A

FIGURE 6

The U-Net-Attention model.
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it is also known as a likelihood matrix or error matrix, and it is a

visualization tool.
2.6 Effect of the measuring method on the
growth experiment

To investigate the effect of continuous monitoring on rapeseed

leaves, we also conducted a 7-day continuous monitoring

experiment in which leaf area information was collected daily,

and the change in the area for seven consecutive days was used as

an indicator to evaluate the effect of the monitoring device on

rapeseed growth.

We selected the same batch of rape seeds for cultivation, from

which 12 seedlings with similar growth were selected and

transferred into specific cultivation containers when they were 8

days old. When the seedlings reached 14 days old, they were treated

in batches and divided into blank, stretch, and splint treatments,

with the following nutrient solution ratios.

Monitoring started at the seedling age of 24 days and

continued for eight consecutive days. The leaf area was measured

every morning at 08:00. The measurement method was the

manual method.
3 Results

3.1 Accuracy of different
measuring methods

The result showed that the median error rate of all three kinds

of measuring methods was within 10%. The error rates of the three

methods differed substantially, where a negative error rate

indicates that the area measured by this method was less than

the standard area, and a positive error rate indicates that the area

measured by this method was greater than the standard value. The

results showed that the stretching method had a negative error for

leaf area measurement. The measured leaf area data were smaller

than the area data obtained from the analysis with the leaf area

scanning software. As shown in Figure 7A, in the “ck” group,

during the day, the average error of the manual method was

9.13%, the average error of the stretching method was 4.60%, and

the average error of the splint method measurement was 1.25%.

The same situation can be seen at night. During the night, the

average error of the manual method was 15.10%, the average error

of the stretching method was 6.66%, and the average error of the

splint method measurement was 0.05%. In other words, the

average error rate of the manual method was 12.12%, the

average error rate of the stretching method was 5.63%, and the

average error rate of the splint method was 0.65%.

The error rate of the manual method was positive in all five

treatments. Another interesting aspect of this graph was that, when

using the stretching method, the predicted area was always lower

than the area predicted by the scanning method. Therefore, when

images of leaves were obtained, the clips would cover part of the

leaf, and during the image process, this part of the leaf would not be
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classified to be the leaf part. Then, the area of the leaf predicted by

the stretching method was lower than the area measured by the

scanner. What is striking in this figure is that the error rate of the SP

method was ±%5, which is much better than that of either of the

other two methods.

Another point that needed to be considered was that the error

rate varied with the treatment that the plants were taken in, and the

explanation for this phenomenon is that the leaves’ shape and size

vary when their images are captured. This is particularly true when

they are been under nutrient stress such as a lack of nitrogen,

phosphorus, potassium, and magnesium. The young plant of

rapeseed shows different symptoms when deficient in nutrients,

especially on the leaves. When they lack nitrogen, the leaves are

yellow; when they lack potassium, the marginal part of the leaves is

yellow; when they lack phosphorus, the leaves are curled; and when

they lack magnesium, the leaves are partly yellow. Therefore, leaf

deficiency symptoms have some influence on the prediction of leaf

area, and there is a normal phenomenon in which the error rate is

different when the treatment varies.

According to the results mentioned above, the area measured by

the SP method is closer to the real area of the leaf.
3.2 Model training and validation

To make a comparison with the U-Net-attention algorithm

proposed in this study, we also used deep learning segmentation

methods such as PSPNet to process the images. By comparing the

model segmentation indices, we finally obtained the segmentation

method with higher accuracy. According to Table 2, we can see that

the proposed U-Net-attention semantic segmentation model with a

fused attention mechanism had more advantages.

The segmentation result is shown in Figure 8. The semantic

segmentation model based on the U-Net-attention model well-

segmented the leaf area in the image, and the application effect in

the splint method was suitable, which could meet the requirement

of calculating the area accuracy. HRnet could segment the leaf

region roughly, but there was some loss of leaf edge detail. DeepLab

v3+ had a slightly worse segmentation effect than HRnet, and the

degree of edge loss was more serious. PSPNet has a better

segmentation effect in the stretching and manual segmentation.

The models used in the above three segmentation models did

not perform well in the dataset of this experiment. The U-Net

model performed well on the dataset with a small sample size. As

shown in Figure 7, the model segmentation effect of the U-Net and

U-Net-attention model was significantly better than the other three

models, but the U-Net model without the attention mechanism

appears less vacant for rapeseed segmentation, and the addition of

the attention mechanism eliminates this phenomenon.

We also tested the time to process the images for each

prediction model. There is little difference in the running time of

U-Net attention with the addition of the attention mechanism

compared to that without it. Although HRnet, DeepLab v3+, and

PSPNet have improved versions in prediction time due to U-Net

and its addition of the attention mechanism since the current study

focuses on leaf segmentation, the segmentation accuracy is used as
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the main evaluation index, and U-Net-attention model is used as

the optimal segmentation model.
3.3 Effects of different measuring methods
on growth

The purpose of this experiment was to compare the effect on the

growth rate of plants with different measuring methods on oilseed

rapeseed. We started monitoring the leaf area on the first day as a
Frontiers in Plant Science 09
standard and compared the change in leaf area for the following

7 days.

The growth rate of rapeseed was measured under three

methods, with two replicates of each method, and the middle

value of three repetitions was taken for analysis. The leaf area of

each leaf was measured by various measuring methods at 16:00

every day. Figure 9 provides an overview of the effects of three

measuring methods on the growth rate of rapeseed. Figure 9 reveals

that there was a substantial difference between the manual method,

stretching method, and splint method. As seen in the figure, there
B

C

D

E

A

FIGURE 7

Box diagram of image segmentation error rate of rapeseed under different nutritional conditions. (A) Error rate under normal nutritional conditions.
(B) Error rate under nitrogen deficiency. (C) error rate under potassium deficiency. (D) Error rate under magnesium deficiency. (E) Error rate under
phosphorus deficiency.
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was a steady rise in all three plant treatments, which means that

there was no apparent inhibition of plant growth regardless of the

measuring method we used.

What is striking is that compared with the manual method,

plants measured by the splint method had a lower growth rate than

plants measured by the manual method and the stretching method.

This may be due to the effect that the splint had on the leaf in

vertical growth since the splint applies restraint in the vertical

direction of the leaf to ensure that the leaf was flat. Although this

had some effect on the growth of rapeseed leaf, it ensured the

accuracy of leaf area measurement.
4 Discussion

Rapid and non-destructive measurement of leaf area is essential

for monitoring plant growth rate, and growth rate monitoring

provides agricultural producers with a means to monitor plant

status and growth so they can more accurately plan and manage the

crop production process (Karimi and Siddique, 1991).

In this study, an image processing technology-based

rapeseed leaf area measurement method was proposed. The U-

Net-Attention learning model with an attention block was used

for an initial segmentation of the original image; then, an image

processing algorithm was used to perform binarization and
Frontiers in Plant Science 10
hole-filling operations on the image; finally, the leaf area

based on the number of leaf pixels was compared with the

calibrated pixels. Based on this measurement method, leaf

area measurement and continuous area change monitoring

of rapeseed under different measurement conditions were

completed. With the leaf area obtained from the scanner as

the benchmark, the average accuracy of the leaf segmentation of

the algorithm proposed in this paper was 96.77%, which was

higher than the accuracy of other segmentation models.

Meanwhile, rapeseed leaf monitoring experiments based on

the splint method obtained more objective patterns, which laid

the foundation for further leaf growth monitoring experiments

based on image processing.

Other than that, the manual method (Wang et al., 2019; Lu

et al., 2022) and stretching method (Ainsworth et al., 2005; Walter

et al., 2008) had been used in the previous research. Manual

measurement methods require cutting the leaves from the plant

or using a camera to photograph the leaves in the original location;

then, using professional image processing software can accurately

measure the area of the cut leaves, but the absence of the leaves

destroyed the natural growth state of the plant, so continuous

observation in its natural state is not possible. Although the use

of a camera to photograph the leaves in the original location ensures

that the natural growth of the plant state maximally, the operator

cannot make sure that the camera is perpendicular to the leaf and
FIGURE 8

Image segmentation results.
TABLE 2 Segmentation results on different models.

Model mIoU mPA mPrecision Recall Time (s)

HRnet 82.37% 84.31% 94.45% 68.78% 1.09

DeepLab v3+ 88.50% 90.21% 95.99% 80.55% 0.76

PSPNet 75.88% 77.42% 95.70% 54.93% 1.08

U-Net 98.09% 99.32% 97.53% 98.74% 1.39

U-Net-Attention 98.58% 99.42% 98.34% 98.90% 1.37
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the leaf for the flat state. In Figure 9, we can see that the area

measured by the manual method was larger than the ground true

area. The stretching method could ensure the flatness of the leaf and

camera when taking images, but the tension of the leaf caused a

slight increase in leaf growth rate according to Figure 9. The splint

method proposed in this paper can accomplish the measurement of

rapeseed leaf area at a lower cost and reduce labor intensity. At the

same time, it had less effect on leaf growth compared to the

stretching method and manual method. Although the splint

method had a slight effect on rapeseed leaf growth, according to

the measurement accuracy, the splint method was superior to the

other two measuring methods.

Many excellent methods have been proposed in the research for

leaf monitoring. These include leaf area measurement by stretching

the leaves (Ainsworth et al., 2005; Walter et al., 2008) and obtaining

plant morphological information using 3D modeling techniques

(Apelt et al., 2015; An et al., 2017; Boukhana et al., 2022). As can be

seen from Figure 9, the stretching measurement for the leaf may

destroy the original growth pattern of the leaf, while the leaf growth

is a continuous process, and the rate of area change is a measure of

the growth state, which requires the measurement of leaf area

without affecting the original growth state of the leaf as much as

possible. 3D modeling technologies can reconstruct the leaf

morphology and obtain the leaf area without touching the plant,

and the impact on the plant caused by its impact on the plant is

almost negligible. However, the cost of expensive equipment makes

it difficult to deploy this method on a large scale in the laboratory.

Deep learning techniques, which have gradually become a hot

research direction in recent years, can solve most of the problems

that are difficult to overcome in traditional image processing

methods (Baar et al., 2022; Sapoukhina et al., 2022; Tamvakis

et al., 2022).
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Many deep learning models had been used in the monitoring

task of plants (Halstead et al., 2021; Sapoukhina et al., 2022). Some

common models such as U-Net, DeppLab v3+, PSPNet, and HRnet

had been widely used in leaf segmentation and disease diagnosis

tasks. Deep learning model accuracy comparison in this paper

showed that the U-Net model had the best performance, while

PSPNet had the worst results. In addition, U-Net and DeepLab v3+

models perform well in the leaf disease segmentation task (Divyanth

et al., 2023). Therefore, U-Net and DeepLab v3+ could be the

preferred models for plant leaf image segmentation tasks. In this

paper, the attention mechanism was incorporated into the U-Net

model to form the U-Net-Attention model, and it can be seen from

Table 2 that the U-Net-Attention model had higher accuracy.

Incorporating attention mechanisms into models to improve

segmentation accuracy is a more common approach in deep

learning, and in order to adapt to specific segmentation tasks,

Mishra added the attention mechanism into the original model,

which further improves the segmentation accuracy (Mishra

et al., 2021). In future work, we can try to add the attention

module to different positions in the model to obtain better

segmentation effects.

Figure 9 shows that although the splinting method proposed in

this paper can increase the measurement accuracy of rapeseed leaf

to an extent, there is still a certain inhibition effect of splinting on

leaf growth compared to the control group. In future work, we need

to further explore better ways to fix the leaves and make non-

destructive measurements with minimum effect on leaf growth.

The use of non-contact methods to obtain plant phenotype

information has always been a concern for scholars, and non-

contact measurement methods are a key aspect of the non-

destructive measurement of plant phenotypes. With the

development of image processing technology, an increasing
FIGURE 9

Growth rate of the three measuring methods.
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number of high-throughput computer vision-based plant

monitoring devices are appearing in the agricultural field, which

enables researchers to reach a new level of research on plant growth

process monitoring(Zhang et al., 2021).

However, the most advanced methods currently focus on a two-

dimensional analysis and three-dimensional model building of

plant structure and morphology. There are fewer studies on the

growth monitoring of individual plant organs. The leaves, stalks,

flowers, and fruits of plants show different behaviors based on

environmental stresses, which affect the physiological and

biochemical processes of the whole plant and influence the

growth of the plant. The splint method performed in this paper

provided a good way to monitor the phenotypic characteristics of

plants. Therefore, in the future, this method could be used in plant

disease monitoring.
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