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Abstract: In this study, a production inventory model with phase type service times where customers join 
the system occur according to a Markovian arrival process is discussed. When the inventory level is 
positive, if an arriving customer finds the server idle gets into service immediately. Served customer 
leaves the system and the on-hand inventory is decreased one unit of item at service completion epoch. 
Otherwise, the customer enters into a waiting space (queue) of infinite capacity and waits for get served. 
The production facility produces items according to an (𝑠𝑠,𝑆𝑆) policy. The production is switched on when 
the inventory level depletes to 𝑠𝑠 and the production remains on until the inventory level reaches to the 
maximum level 𝑆𝑆. Once the inventory level becomes 𝑆𝑆, the production process is switched off. Applying 
the matrix-geometric method, we carry out the steady-state analysis of the production inventory model 
and perform a few illustrative numerical examples includes the effect of parameters on the system 
performance measures and an optimization study for the inventory policy. 
 
Keywords: Production inventory, Phase-type distribution, Markovian arrival process, Matrix-geometric 
method, Local purchase, Optimization 
 

MAP/PH/1 Üretim Envanter Modeli 
 
Öz: Bu çalışmada, müşterilerin Markovian varış sürecine göre sisteme katıldığı faz-tipi hizmet sürelerine 
sahip bir üretim envanter modeli tartışılmaktadır. Envanter seviyesi pozitif olduğunda, gelen bir müşteri 
hizmet biriminin boş olduğunu tespit ederse hemen hizmete girer. Hizmet verilen müşteri sistemden 
ayrılır ve eldeki stok, hizmet tamamlanma anında bir birim azalır. Aksi takdirde müşteri sonsuz 
büyüklükte bir bekleme alanına (kuyruğa) girer ve hizmet almayı bekler. Üretim tesisi, ürünleri (𝑠𝑠,𝑆𝑆) 
politikasına göre üretir. Envanter seviyesi 𝑠𝑠'ye düştüğünde üretim açılır ve envanter seviyesi maksimum 
𝑆𝑆 seviyesine ulaşana kadar üretim açık kalır. Envanter seviyesi 𝑆𝑆 olduğu anda, üretim süreci kapatılır. 
Matris-geometrik yöntemi uygulayarak, üretim envanter modelinin kararlı durum analizini 
gerçekleştiriyoruz ve parametrelerin sistem performans ölçüleri üzerindeki etkisini ve envanter politikası 
için bir optimizasyon çalışmasını içeren birkaç açıklayıcı sayısal örnek gerçekleştiriyoruz. 
 
Anahtar Kelimeler: Üretim envanteri, Faz-tipi dağılım, Markovian varış süreci, Matris-geometrik 
yöntem, Yerel satın alma, Optimizasyon 
 
1. INTRODUCTION 
 

In classical inventory systems, demanded items are directly delivered from stock and the 
amount of time required to service is negligible. Demand occurred during stock out periods 
either result in lost sales or is satisfied only after the arrival of the replenishments. In contrast, in 
most real-life situations, a positive amount of time to serve the inventory is needed, for 
example, items in inventory require time for retrieval, preparation, packing, and loading. 
Inventory systems where servicing time for demanded items is a positive value are denominated 
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by queueing-inventory systems. These systems must take into account inventory problems in 
addition to the queueing concepts for the system to work in optimum conditions. Sigman and 
Simchi-Levi (1992) firstly studied on inventory with positive service time where involve 
𝑀𝑀/𝐺𝐺/1 queue. The study in Schwarz et al. (2006) was the first to produce product form solution 
in an 𝑀𝑀/𝑀𝑀/1 queueing inventory with positive lead time. Saffari et al. (2013) considered an 
𝑀𝑀/𝑀𝑀/1  queue with associated inventory where the lead time for replenishment is arbitrarily 
distributed; they produced product form solution for the system state distribution. Queuing-
inventory systems can be handled according to many features such as arrival process and service 
process, inventory policy implemented, shortage or lost sale assumption, if there is queue 
capacity or not, service interruption or vacation assumption, or perishability of items in 
inventory. These systems have also been mentioned as inventory models with positive service 
time. A detailed survey of the literature for queueing-inventory systems can be found in 
Krishnamoorthy et al. (2011a) and Karthikeyan and Sudhesh (2016).  

Filling the inventory by an internal production rather than an external supplier is usually 
relevant since the manufacturer himself meets the demands. It could be a large enterprise that 
plans its production based on demand forecasts. Krishnamoorthy et al. (2011b) firstly extended 
queueing inventory problems to production inventory systems. (𝑠𝑠, 𝑆𝑆) inventory policy was 
implemented; that is when the inventory level drops to 𝑠𝑠, the production process starts and 
production continues until the inventory level reaches 𝑆𝑆. They called the production process 
\Markovian Production Process" (MPP). The customer arrival process is governed by 𝑀𝑀𝑀𝑀𝑀𝑀 and 
the service times are assumed to follow the phase-type distribution. Problem was formulated by 
quasi birth-death process (QBD) and stationary probabilities were derived and performance 
measures were presented. Baek and Moon (2014) studied 𝑀𝑀/𝑀𝑀/1 queuing system where 
inventory is replenished by an external supplier and also by an internal production. Customers 
join the system according to the Poisson process and service time follows an exponential 
distribution. (𝑟𝑟,𝑄𝑄) policy is implemented. A cost optimization was performed and as a 
conclusion, they claimed that by controlling the production rate, both holding and stock out 
costs can be controlled. Hence compared to the external supplier internal production makes the 
system conditions more stable. Baek and Moon (2015) provided an extension to the capacitated 
single server system and also a multi-server queueing system. Krishnamoorthy and Narayanan 
(2013) studied an (𝑠𝑠, 𝑆𝑆) production inventory system where the processing of inventory requires 
a random amount of time. Demands occur according to the Poisson process and service time is 
exponential. They provided a stochastic decomposition of the steady-state probability vector. 
They combined the stationary probability vector for the classical 𝑀𝑀/𝑀𝑀/1 queue and the 
stationary vector of a production inventory system. Also, they provided an analysis of the 
system separately when production is on and they propose a novel approach for the computation 
of the expected length of a production run. Krishnamoorthy et al (2015) discussed a production 
inventory system with positive service time where the server and the production process are 
subject to interruptions. In their study, customers arrive to the system according to Poisson 
process; the service times and the production times are follows Erlang distributions. The 
interruptions of the server and the production occur according to Poisson process and the 
recovery of these follow an exponential distribution. The production inventory system where the 
arrivals of the demands occur according to Markovian arrival process was studied by He and 
Zhang (2013).  In the system, the production time of a product follows a phase-type distribution. 
A shipment consolidation policy was used for the shipment of finished products. Namely, as 
soon as the number of finished products reaches a fixed quantity defined, all the cumulated 
finished products are shipped together to the inventory. 

The loss of customers in queueing-inventory systems can happen in the two ways. First, the 
customer does not enter the system (called lost) if there is no inventory at the time he arrives in 
the system. Second, if the inventory level drops to zero as soon as the service of the customer in 
the service is completed, the customers waiting in the queue will leave the system (lost). The 
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two queueing-inventory models have been discussed in Chakravarthy (2020). In Model 1, if any 
arriving customer finds the inventory level to be zero, he is being lost. In Model 2, the loss of 
customers is performed in the two ways. First, if an arriving customer in the idle system finds 
the inventory level to be zero, the customer is being lost, and secondly, the customers present at 
time of a service completion with zero inventory are all be lost. In Chakravarthy and 
Rumyantsev (2020), the two models in Chakravarthy (2020) have been also analyzed by 
considering 𝑀𝑀𝑀𝑀𝑀𝑀 demands in batches and phase-type service times.  

Local purchase is introduced in the inventory systems mainly to maintain customer 
goodwill. (𝑠𝑠, 𝑆𝑆) inventory system with negligible service time in the concept of local purchase 
has been studied first by Krishnamoorthy and Raju (1998). Some recent important studies on 
local purchasing (or emergency purchasing) in the literature can be listed as follows. Shajin et 
al. (2022) considered a multi-server production inventory system in which an emergency 
replenishment of one item with zero lead time takes place when the inventory level drops to 
zero. A production inventory system under a base stock policy for inventory control has been 
discussed by De la Cruz and Daduna (2022). In their study, when there are no items on the 
inventory, arriving demand is lost. Barron (2022) examined inventory systems with dual 
sourcing and emergency orders. He considered two types of supply in the systems: i) a regular 
supply that follows an (𝑠𝑠, 𝑆𝑆) inventory policy with positive lead time under a lost-sales and ii) an 
additional emergency supply that brings the inventory up to level 0 ≤ 𝑆𝑆𝑒𝑒 ≤ 𝑆𝑆 when stockout 
becomes. The emergency supply has a zero lead time but incurs an extra cost has been assumed. 
Two models of double-source queueing-inventory systems have been studied where instant 
destruction of inventory is possible in Melikov et al. (2023). Replenishment of stocks from 
various sources occurs as following. If the inventory level drops to 𝑠𝑠, a regular order for the 
supply of inventory to a slow source is generated; if the inventory level falls below a certain 
threshold value 𝑟𝑟, the system instantly cancels the regular order and generates an emergency 
order to the fast source. 

In the area of queueing models, Poisson processes and exponential distributions have very 
nice mathematical properties for the arrival processes and service time distributions. However, 
the assumptions of the two tools are highly restrictive in applications. Thus, to remove these 
limitations, Neuts first developed the theory of phase-type distributions (PH-distributions) and 
related point processes. The PH-distributions can approximate any probability distribution 
given by nonnegative random variables. For details on 𝑀𝑀𝑃𝑃-distributions and their properties, we 
refer the reader to the book in Neuts (1981).  The arrival process can be modeled by a 
Markovian arrival process (𝑀𝑀𝑀𝑀𝑀𝑀) or a batch Markovian arrival process (𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀) in which fairly 
general tools for modeling stochastic arrival processes. Both of arrival processes can capture the 
possible correlation and burstiness in the arrival process. We refer to Artalejo et al. (2010), 
Chakravarthy (2001, 2010) for detailed information. In this study, we use a 𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑃𝑃-
distributions for the arrival process and the service times, respectively, and the matrix-analytic 
method for analyzing stochastic model. One can find the details of the method in the books by 
Neuts (1981) and Latouche and Ramaswami (1999).  

We consider a production inventory system with positive service time. In this study, filling 
the inventory is considered by an internal production rather than an external supplier. It is 
assumed that when a customer arrives in the system, there is the least one inventory. In other 
words, an arriving customer is not being lost at time of an arrival. We analyze a production 
inventory system with positive service time under local purchase. That is, if there is at least a 
customer in the queue and the inventory level is reached to zero at time of a service completion, 
one item is immediately purchased from a nearby retailer for no losing the waiting customer. 
The main interest is to observe how the system have different arrival processes and service 
distributions works under various scenarios such as different arrival rate, service rate and 
production rate and to find an optimum inventory policy. The inventory policy answers two 
questions, that is, when should I start production and how much should I produce so that I have 
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the minimum total cost. We believe that the model described in this study and the analysis 
presented will be beneficial to various industrial companies as 𝑀𝑀𝑀𝑀𝑀𝑀 arrivals and phase-type 
service times can be observed frequently in practice and also take into account customer 
satisfaction (not allow loss of customers). 

The paper is structured as follows. The assumptions of the production inventory model are 
elaborated in Section 2. The steady-state analysis of the model including the stability condition 
and some performance measures of the system are discussed in Section 3. In Section 4, the total 
expected cost function is structured and presented sensitivity analysis with numerical examples. 
Finally, some concluding remarks are given in Section 5. 

 
2. MODEL DESCRIPTION 

 
We consider a production inventory system with positive service time where has one 

production facility. Customers arrive to the system according to a Markovian arrival process 
(𝑀𝑀𝑀𝑀𝑀𝑀) with  representation (𝐷𝐷0,𝐷𝐷1) of order 𝑚𝑚. The matrices 𝐷𝐷0 and 𝐷𝐷1 denote, respectively, 
the transition rates without arrival and the transition rates with arrival. The underlying Markov 
chain of the 𝑀𝑀𝑀𝑀𝑀𝑀 is governed by the generator matrix 𝐷𝐷 = 𝐷𝐷0 + 𝐷𝐷1. Hence, the arrival rate of 
customers is given by 𝜆𝜆 = 𝛿𝛿𝐷𝐷1𝑒𝑒 where 𝛿𝛿 is the stationary probability vector of the matrix 𝐷𝐷 and 
the vector satisfies as in (1).  

 
𝛿𝛿𝐷𝐷 = 0, 𝛿𝛿𝑒𝑒 = 1. (1) 

 
The service time follows a phase-type distribution with representation (𝛽𝛽,𝑇𝑇) of order 𝑛𝑛 

where 𝛽𝛽 is the initial probability vector, 𝛽𝛽𝑒𝑒 = 1, and 𝑇𝑇 is the generator matrix holding the 
transition rates among the 𝑛𝑛 transient states.  It is clear that 𝑇𝑇𝑒𝑒 + 𝑇𝑇0 = 0 in which 𝑇𝑇0 is the 
column vector contains the absorption rates into state 0 from the transient states. The phase-type 
distribution has the service rate 𝜇𝜇 = [𝛽𝛽(−𝑇𝑇)−1𝑒𝑒]−1.  

Items are put into the inventory of the system by production and each arriving customer 
demands a single item from the inventory. When the inventory level is positive, an arriving 
customer finding the server idle gets into service immediately. Otherwise, the customer enters 
into a waiting space (queue) of infinite capacity to be served under the first-come first-served 
(FCFS) discipline. Served customer leaves the system and the on-hand inventory is decreased 
by one at service completion epoch. 

The queueing-inventory system studied has a single production facility that produce one 
type of item. The production time of a product is exponentially distributed with rate 𝜂𝜂. The 
inventory level in the system is governed by the (𝑠𝑠, 𝑆𝑆)-policy. The production is switched ON 
when the inventory level depletes to 𝑠𝑠 and the production remains ON until the inventory level 
reaches to the maximum level 𝑆𝑆. Once the level becomes 𝑆𝑆, the production process is switched 
OFF. The process continues in this fashion. We want to note that if there is at least a customer 
in the queue and the inventory level is reached to zero, one item is immediately purchased for 
no losing the waiting customer. Local purchase is introduced in the inventory systems mainly to 
maintain customer goodwill. For example, when a customer goes to a system for taking an item 
which is not currently available there, the inventory keeper purchases the same from a nearby 
retailer and supplies to the customer. The production inventory system described is illustrated in 
Figure 1.  
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Figure 1: 
Production inventory system with local purchase 

 
We define 𝑁𝑁(𝑡𝑡) to be the number of customers in the system; 𝐼𝐼(𝑡𝑡) to be the inventory level 

in the system; 𝐾𝐾(𝑡𝑡) to be the status of the production process where 0 if the production is OFF 
and 1 if the production is ON; 𝐽𝐽1(𝑡𝑡) to be the phase of the service process; and 𝐽𝐽2(𝑡𝑡) to be the 
phase of the arrival process at time 𝑡𝑡. The process {(𝑁𝑁(𝑡𝑡), 𝐼𝐼(𝑡𝑡),𝐾𝐾(𝑡𝑡), 𝐽𝐽1(𝑡𝑡), 𝐽𝐽2(𝑡𝑡)): 𝑡𝑡 ≥ 0} is a 
continuous-time Markov chain  (𝐶𝐶𝑇𝑇𝑀𝑀𝐶𝐶) on the state space is given by 

 

Ω =  �𝑟𝑟(𝑖𝑖)
∞

𝑖𝑖=0

, (2) 

where 
𝑟𝑟(0) =  {(𝑗𝑗, 1, 𝑗𝑗2), 1 ≤ 𝑗𝑗 ≤ 𝑠𝑠, 1 ≤ 𝑗𝑗2 ≤ 𝑚𝑚}

∪ {(𝑗𝑗,𝑘𝑘, 𝑗𝑗2), 𝑠𝑠 + 1 ≤ 𝑗𝑗 ≤ 𝑆𝑆 − 1, 𝑘𝑘 = 0,1, 1 ≤ 𝑗𝑗2 ≤ 𝑚𝑚}
∪ {(𝑆𝑆, 0, 𝑗𝑗2), 1 ≤ 𝑗𝑗2 ≤ 𝑚𝑚}, and 

 
𝑟𝑟(𝑖𝑖) =  {(𝑖𝑖, 𝑗𝑗, 1, 𝑗𝑗1, 𝑗𝑗2), 1 ≤ 𝑗𝑗 ≤ 𝑠𝑠, 1 ≤ 𝑗𝑗1 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗2 ≤ 𝑚𝑚}

∪ {(𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑗𝑗1, 𝑗𝑗2), 𝑠𝑠 + 1 ≤ 𝑗𝑗 ≤ 𝑆𝑆 − 1,𝑘𝑘 = 0,1, 1 ≤ 𝑗𝑗1 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗2 ≤ 𝑚𝑚}
∪ {(𝑖𝑖, 𝑆𝑆, 0, 𝑗𝑗1, 𝑗𝑗2), 1 ≤ 𝑗𝑗1 ≤ 𝑛𝑛, 1 ≤ 𝑗𝑗2 ≤ 𝑚𝑚},   𝑖𝑖 ≥ 1. 

 
𝑟𝑟(0) of dimension 𝑚𝑚(2𝑆𝑆 − 𝑠𝑠 − 1) denotes the set of states corresponding to the system in 

which the system is idle and the arrival process is in phase 𝑗𝑗2 (in one of 𝑚𝑚 phases). The level  
(𝑗𝑗, 1, 𝑗𝑗2) denotes the case when the inventory level is 𝑗𝑗, 1 ≤ 𝑗𝑗 ≤ 𝑠𝑠, the production process is 
ON; the level  (𝑗𝑗, 𝑘𝑘, 𝑗𝑗2) denotes the case when the inventory level is 𝑗𝑗, 𝑠𝑠 + 1 ≤ 𝑗𝑗 ≤ 𝑆𝑆 − 1, the 
production process is OFF and ON for 𝑘𝑘 = 0 and 𝑘𝑘 = 1, respectively; and the level (𝑆𝑆, 0, 𝑗𝑗2) is 
related with the case the inventory is the maximum level 𝑆𝑆 and the production process is OFF.  

𝑟𝑟(𝑖𝑖), 𝑖𝑖 ≥ 1, of dimension 𝑚𝑚𝑛𝑛(2𝑆𝑆 − 𝑠𝑠 − 1) denotes the set of states corresponding to the 
system in which the number of customers in the system is 𝑖𝑖, the service process is in phase 𝑗𝑗1 (in 
one of 𝑛𝑛 phases) and the arrival process is in phase 𝑗𝑗2 (in one of 𝑚𝑚 phases). The level  
(𝑖𝑖, 𝑗𝑗, 1, 𝑗𝑗1, 𝑗𝑗2) denotes the case when the inventory level is 𝑗𝑗, 1 ≤ 𝑗𝑗 ≤ 𝑠𝑠, the production process is 
ON; the level  (𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑗𝑗1, 𝑗𝑗2) denotes the case when the inventory level is 𝑗𝑗, 𝑠𝑠 + 1 ≤ 𝑗𝑗 ≤ 𝑆𝑆 − 1, 
the production process is OFF for 𝑘𝑘 = 0 and is ON for 𝑘𝑘 = 1; and the level (𝑖𝑖, 𝑆𝑆, 0, 𝑗𝑗1, 𝑗𝑗2) gives 
the case when the inventory level is the maximum level 𝑆𝑆 and the production process is OFF.  

 
The infinitesimal generator matrix 𝑄𝑄 has a block-tridiagonal matrix structure is given by 

 

𝑄𝑄 = �

𝐵𝐵0 𝑀𝑀0
𝐶𝐶0 𝐵𝐵 𝑀𝑀

𝐶𝐶 𝐵𝐵 𝑀𝑀
⋱ ⋱ ⋱

�. (3) 

 
For use in sequel we need to set up the following notations. 𝑒𝑒(𝑗𝑗) is a unit column vector is 

of dimension 𝑗𝑗; 𝑒𝑒𝑖𝑖 is a column vector with 1 in the 𝑖𝑖𝑡𝑡ℎ position and 0 elsewhere; 𝐼𝐼 is an identity 
matrix. The Kronecker product and Kronecker sum are given with the symbols ⊗ and ⊕, 
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respectively. Finally, we define 𝑑𝑑1 = 𝑚𝑚(2𝑆𝑆 − 𝑠𝑠 − 1) and 𝑑𝑑2 = 𝑚𝑚𝑛𝑛(2𝑆𝑆 − 𝑠𝑠 − 1) to show the 
dimensions of the matrices in the generator 𝑄𝑄. 

The matrices 𝑀𝑀0 and 𝑀𝑀 in the generator 𝑄𝑄 have dimensions (𝑑𝑑1 × 𝑑𝑑2) and (𝑑𝑑2 × 𝑑𝑑2), 
respectively. 

  

𝑀𝑀0 =

⎝

⎜
⎜
⎜
⎜
⎛

𝛽𝛽 ⊗𝐷𝐷1
⋱

𝛽𝛽 ⊗𝐷𝐷1
𝑀𝑀01

⋱
𝑀𝑀01

𝛽𝛽 ⊗ 𝐷𝐷1⎠

⎟
⎟
⎟
⎟
⎞

𝑤𝑤𝑖𝑖𝑡𝑡ℎ  𝑀𝑀01 = 𝐼𝐼2 ⊗ (𝛽𝛽⊗ 𝐷𝐷1).  (4) 

 

𝑀𝑀 =

⎝

⎜
⎜
⎜
⎜
⎛

𝐼𝐼𝑛𝑛 ⊗ 𝐷𝐷1
⋱

𝐼𝐼𝑛𝑛 ⊗ 𝐷𝐷1
𝑀𝑀1

⋱
𝑀𝑀1

𝐼𝐼𝑛𝑛 ⊗ 𝐷𝐷1⎠

⎟
⎟
⎟
⎟
⎞

𝑤𝑤𝑖𝑖𝑡𝑡ℎ  𝑀𝑀1 = 𝐼𝐼2 ⊗ (𝐼𝐼𝑛𝑛 ⊗ 𝐷𝐷1).  (5) 

 
The matrices 𝐵𝐵0 and 𝐵𝐵 in the generator 𝑄𝑄 have dimensions (𝑑𝑑1 × 𝑑𝑑1) and (𝑑𝑑2 × 𝑑𝑑2), 

respectively. 
 

𝐵𝐵0 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐷𝐷0 − 𝜂𝜂𝐼𝐼𝑚𝑚 𝜂𝜂𝐼𝐼𝑚𝑚
⋱ ⋱

𝐷𝐷0 − 𝜂𝜂𝐼𝐼𝑚𝑚 𝜂𝜂𝐼𝐼𝑚𝑚
𝐷𝐷0 − 𝜂𝜂𝐼𝐼𝑚𝑚 𝐵𝐵02

𝐵𝐵01 𝐵𝐵03
⋱ ⋱

𝐵𝐵01 𝐵𝐵03
𝐵𝐵01 𝐵𝐵04

𝐷𝐷0 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 𝑤𝑤𝑖𝑖𝑡𝑡ℎ (6) 

 

𝐵𝐵01 = �𝐷𝐷0 𝐷𝐷0 − 𝜂𝜂𝐼𝐼𝑚𝑚
� ,    𝐵𝐵02 = 𝑒𝑒2′(2)⊗𝜂𝜂𝐼𝐼𝑚𝑚 ,    𝐵𝐵03 = � 𝜂𝜂𝐼𝐼𝑚𝑚

� ,   𝐵𝐵04 = 𝑒𝑒2(2)⊗𝜂𝜂𝐼𝐼𝑚𝑚 . 

 

𝐵𝐵 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑇𝑇⊕𝐷𝐷0 − 𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛 𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛
𝑇𝑇 ⊕ 𝐷𝐷0 − 𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛 ⋱

⋱ 𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛
𝑇𝑇 ⊕𝐷𝐷0 − 𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛 𝐵𝐵2

𝐵𝐵1 𝐵𝐵3
⋱ ⋱

𝐵𝐵1 𝐵𝐵3
𝐵𝐵1 𝐵𝐵4

𝑇𝑇 ⊕𝐷𝐷0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (7) 

 

𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝐵𝐵1 = �𝑇𝑇 ⊕ 𝐷𝐷0
𝑇𝑇 ⊕ 𝐷𝐷0 − 𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛

� ,   𝐵𝐵2 = 𝑒𝑒2′(2)⊗𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛 ,   𝐵𝐵3 = � 𝜂𝜂𝐼𝐼� ,  𝐵𝐵4 = 𝑒𝑒2(2)⊗𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛 . 
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The matrices 𝐶𝐶0 and 𝐶𝐶 in the generator 𝑄𝑄 have dimensions (𝑑𝑑2 × 𝑑𝑑1) and (𝑑𝑑2 × 𝑑𝑑2), 
respectively. 
 

𝐶𝐶0 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑇𝑇0 ⊗ 𝐼𝐼𝑚𝑚
𝑇𝑇0 ⊗ 𝐼𝐼𝑚𝑚

⋱
𝑇𝑇0 ⊗ 𝐼𝐼𝑚𝑚

𝐶𝐶01
𝐶𝐶02

⋱
𝐶𝐶02

𝐶𝐶03 0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 𝑤𝑤𝑖𝑖𝑡𝑡ℎ (8) 

 
𝐶𝐶01 = 𝑒𝑒(2)⊗ (𝑇𝑇0 ⊗ 𝐼𝐼𝑚𝑚),      𝐶𝐶02 = 𝐼𝐼2 ⊗ (𝑇𝑇0 ⊗ 𝐼𝐼𝑚𝑚),      𝐶𝐶03 = 𝑒𝑒1′(2)⊗ (𝑇𝑇0 ⊗ 𝐼𝐼𝑚𝑚). 

 

𝐶𝐶 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑇𝑇0𝛽𝛽 ⊗ 𝐼𝐼𝑚𝑚
𝑇𝑇0𝛽𝛽 ⊗ 𝐼𝐼𝑚𝑚

⋱
𝑇𝑇0𝛽𝛽 ⊗ 𝐼𝐼𝑚𝑚

𝐶𝐶1
𝐶𝐶2

⋱
𝐶𝐶2

𝐶𝐶3 0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 𝑤𝑤𝑖𝑖𝑡𝑡ℎ (9) 

 
𝐶𝐶1 = 𝑒𝑒(2)⊗ (𝑇𝑇0𝛽𝛽 ⊗ 𝐼𝐼𝑚𝑚),      𝐶𝐶2 = 𝐼𝐼2 ⊗ (𝑇𝑇0𝛽𝛽 ⊗ 𝐼𝐼𝑚𝑚),    𝐶𝐶3 = 𝑒𝑒1′(2)⊗ (𝑇𝑇0𝛽𝛽 ⊗ 𝐼𝐼𝑚𝑚). 

 
3. THE STEADY-STATE ANALYSIS 

 
3.1. Stability Condition 

 
Let 𝜋𝜋 = (𝜋𝜋1,⋯ ,𝜋𝜋𝑠𝑠,𝜋𝜋𝑠𝑠+1,⋯ ,𝜋𝜋𝑆𝑆−1,𝜋𝜋𝑆𝑆) be the steady-state probability vector of the 

generator matrix 𝐹𝐹 = 𝑀𝑀 + 𝐵𝐵 + 𝐶𝐶. The probability vector satisfies 
 

𝜋𝜋𝐹𝐹 = 0, 𝜋𝜋𝑒𝑒 = 1. (10) 
 
Lemma: We have 
 

��𝜋𝜋𝑖𝑖

𝑠𝑠

𝑖𝑖=1

+ � �𝜋𝜋𝑖𝑖,0 + 𝜋𝜋𝑖𝑖,1� + 𝜋𝜋𝑆𝑆

𝑆𝑆−1

𝑖𝑖=𝑠𝑠+1

� = 𝜇𝜇𝛽𝛽(−𝑇𝑇)−1 ⊗ 𝛿𝛿. (11) 

 
where 𝜇𝜇 is the service rate and 𝛿𝛿 is the probability vector of the generator 𝐷𝐷. 
 
Proof: The steady-state equations in (10) are rewritten as follows 
 

𝜋𝜋1[(𝐼𝐼𝑛𝑛 ⊗ 𝐷𝐷1) + (𝑇𝑇 ⊕𝐷𝐷0) − 𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛 + (𝑇𝑇0𝛽𝛽 ⊗ 𝐼𝐼𝑚𝑚)] + 𝜋𝜋2(𝑇𝑇0𝛽𝛽 ⊗ 𝐼𝐼𝑚𝑚) = 0,  
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𝜋𝜋𝑗𝑗−1𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛 + 𝜋𝜋𝑗𝑗[(𝐼𝐼𝑛𝑛 ⊗ 𝐷𝐷1) + (𝑇𝑇 ⊕ 𝐷𝐷0) − 𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛] + 𝜋𝜋𝑗𝑗+1(𝑇𝑇0𝛽𝛽 ⊗ 𝐼𝐼𝑚𝑚) = 0,
2 ≤ 𝑗𝑗 ≤ 𝑠𝑠 − 1 

 

𝜋𝜋𝑠𝑠−1𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛 + 𝜋𝜋𝑠𝑠[(𝐼𝐼𝑛𝑛 ⊗ 𝐷𝐷1) + (𝑇𝑇 ⊕𝐷𝐷0) − 𝜂𝜂𝐼𝐼𝑚𝑚𝑛𝑛] + 𝜋𝜋𝑠𝑠+1𝐶𝐶1 = 0,  

𝜋𝜋𝑠𝑠𝐵𝐵2 + 𝜋𝜋𝑠𝑠+1[𝑀𝑀1 + 𝐵𝐵1] + 𝜋𝜋𝑠𝑠+2𝐶𝐶2 = 0, (12) 

𝜋𝜋𝑗𝑗−1𝐵𝐵3 + 𝜋𝜋𝑗𝑗[𝑀𝑀1 + 𝐵𝐵1] + 𝜋𝜋𝑗𝑗+1𝐶𝐶2 = 0, 𝑠𝑠 + 2 ≤ 𝑗𝑗 ≤ 𝑆𝑆 − 2  

𝜋𝜋𝑆𝑆−2𝐵𝐵3 + 𝜋𝜋𝑆𝑆−1[𝑀𝑀1 + 𝐵𝐵1] + 𝜋𝜋𝑆𝑆𝐶𝐶3 = 0,  

𝜋𝜋𝑆𝑆−1𝐵𝐵4 + 𝜋𝜋𝑆𝑆[(𝐼𝐼𝑛𝑛 ⊗ 𝐷𝐷1) + (𝑇𝑇 ⊕𝐷𝐷0)] = 0,  
 
with the normalizing condition 
 

��𝜋𝜋𝑖𝑖

𝑠𝑠

𝑖𝑖=1

+ � �𝜋𝜋𝑖𝑖,0 + 𝜋𝜋𝑖𝑖,1� + 𝜋𝜋𝑆𝑆

𝑆𝑆−1

𝑖𝑖=𝑠𝑠+1

� 𝑒𝑒 = 1. (13) 

 
Now adding the equations given in (12) we get 
 

��𝜋𝜋𝑖𝑖

𝑠𝑠

𝑖𝑖=1

+ � �𝜋𝜋𝑖𝑖,0 + 𝜋𝜋𝑖𝑖,1� + 𝜋𝜋𝑆𝑆

𝑆𝑆−1

𝑖𝑖=𝑠𝑠+1

� [(𝑇𝑇 + 𝑇𝑇0𝛽𝛽) ⊕𝐷𝐷] = 0. (14) 

 
The last equation yields the result in the Lemma from the uniqueness of the steady-state vector 
of the generators (𝑇𝑇 + 𝑇𝑇0𝛽𝛽) and 𝐷𝐷 along with the normalizing condition in (13). 
 
Theorem: The production inventory system with 𝑀𝑀𝑀𝑀𝑀𝑀 arrival and phase-type services under 
study is stable if and only if the following condition is satisfied. 
 

𝜆𝜆 < 𝜇𝜇 (15) 
 
where 𝜇𝜇 and 𝜆𝜆 are the service rate and arrival rate, respectively. 
 
Proof: The production inventory model under study is stable if and only if 𝜋𝜋𝑀𝑀𝑒𝑒 < 𝜋𝜋𝐶𝐶𝑒𝑒 in Neuts 
(1981). The stability condition is given as 
 

��𝜋𝜋𝑖𝑖

𝑠𝑠

𝑖𝑖=1

+ � �𝜋𝜋𝑖𝑖,0 + 𝜋𝜋𝑖𝑖,1� + 𝜋𝜋𝑆𝑆

𝑆𝑆−1

𝑖𝑖=𝑠𝑠+1

� (𝐼𝐼 ⊗ 𝐷𝐷1)𝑒𝑒 < ��𝜋𝜋𝑖𝑖

𝑠𝑠

𝑖𝑖=1

+ � �𝜋𝜋𝑖𝑖,0 + 𝜋𝜋𝑖𝑖,1� + 𝜋𝜋𝑆𝑆

𝑆𝑆−1

𝑖𝑖=𝑠𝑠+1

� (𝑇𝑇0𝛽𝛽 ⊗ 𝐼𝐼) 𝑒𝑒. (16) 

 
The proof is completed as in (15). 
 

3.2. Steady State Probability Vector  
 
Let 𝑥𝑥 = (𝑥𝑥∗, 𝑥𝑥(1),𝑥𝑥(2),⋯ ) denote the steady-state probability vector of the generator 

matrix 𝑄𝑄 in (3).  The vector satisfies 
 

𝑥𝑥𝑄𝑄 = 0, 𝑥𝑥𝑒𝑒 = 1. (17) 
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The vector 𝑥𝑥∗ of dimension 𝑚𝑚(2𝑆𝑆 − 𝑠𝑠 − 1) is partitioned into vectors of dimension 𝑚𝑚           
as 𝑥𝑥∗ = [𝑥𝑥∗(1,1),⋯ ,𝑥𝑥∗(𝑠𝑠, 1), 𝑥𝑥∗(𝑠𝑠 + 1,0), 𝑥𝑥∗(𝑠𝑠 + 1,1),⋯ , 𝑥𝑥∗(𝑆𝑆 − 1,0), 𝑥𝑥∗(𝑆𝑆 − 1,1), 𝑥𝑥∗(𝑆𝑆, 0)]. 
The vector 𝑥𝑥∗(𝑗𝑗, 1), 1 ≤ 𝑗𝑗 ≤ 𝑠𝑠, denotes the probability that the system is idle, the inventory level 
is 𝑗𝑗, the production process is ON and the arrival process is in one of 𝑚𝑚 phases. The vector 
𝑥𝑥∗(𝑗𝑗, 𝑘𝑘), 𝑠𝑠 + 1 ≤ 𝑗𝑗 ≤ 𝑆𝑆 − 1, gives the probability that the system is idle, the inventory level is 𝑗𝑗, 
the production process is OFF for 𝑘𝑘 = 0 (is ON for 𝑘𝑘 = 1) and the arrival process is in one of 𝑚𝑚 
phases. The vector 𝑥𝑥∗(𝑆𝑆, 0) is the probability that the system is idle, the inventory level is the 
maximum level 𝑆𝑆 and the production process is OFF and the arrival process is in one of 𝑚𝑚 
phases. 

The vector 𝑥𝑥(𝑖𝑖), 𝑖𝑖 ≥ 1, of dimension 𝑚𝑚𝑛𝑛(2𝑆𝑆 − 𝑠𝑠 − 1) is partitioned into vectors of 
dimension 𝑚𝑚𝑛𝑛 as 𝑥𝑥(𝑖𝑖) = [𝑥𝑥(𝑖𝑖, 1,1),⋯ ,𝑥𝑥(𝑖𝑖, 𝑠𝑠, 1),𝑥𝑥(𝑖𝑖, 𝑠𝑠 + 1,0),𝑥𝑥(𝑖𝑖, 𝑠𝑠 + 1,1),⋯ , 𝑥𝑥(𝑖𝑖, 𝑆𝑆 − 1,0),
𝑥𝑥(𝑖𝑖, 𝑆𝑆 − 1,1), 𝑥𝑥(𝑖𝑖, 𝑆𝑆, 0)]. The vector 𝑥𝑥(𝑖𝑖, 𝑗𝑗, 1), 1 ≤ 𝑗𝑗 ≤ 𝑠𝑠, denotes the probability that the number 
of customers in the system 𝑖𝑖, the inventory level is 𝑗𝑗, the production process is ON, the service 
process is in one of 𝑛𝑛 phases and the arrival process is in one of 𝑚𝑚 phases. The vector 
𝑥𝑥(𝑖𝑖, 𝑗𝑗, 𝑘𝑘), 𝑠𝑠 + 1 ≤ 𝑗𝑗 ≤ 𝑆𝑆 − 1, gives the probability that the number of customers in the system 𝑖𝑖, 
the inventory level is 𝑗𝑗, the production process is OFF for 𝑘𝑘 = 0 (is ON for 𝑘𝑘 = 1), the service 
process is in one of 𝑛𝑛 phases and  the arrival process is in one of 𝑚𝑚 phases. The vector 𝑥𝑥(𝑖𝑖, 𝑆𝑆, 0) 
is the probability that the number of customers in the system 𝑖𝑖, the inventory level is the 
maximum level 𝑆𝑆, the production process is OFF, the service process is in one of 𝑛𝑛 phases and 
the arrival process is in one of 𝑚𝑚 phases. 
 

Under the stability condition given in (15) the steady-state probability vector 𝑥𝑥 is obtained 
(see Neuts (1981)) as 
 

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(1)𝑅𝑅𝑖𝑖−1, 𝑖𝑖 ≥ 2, (18) 
 
where the rate matrix 𝑅𝑅 is the minimal nonnegative solution to the matrix quadratic equation 
 

𝑅𝑅2𝐶𝐶 + 𝑅𝑅𝐵𝐵 + 𝑀𝑀 = 0, (19) 
 
and the vectors 𝑥𝑥∗ and 𝑥𝑥(1) are obtained by solving 
 

𝑥𝑥∗𝐵𝐵0 + 𝑥𝑥(1)𝐶𝐶0 = 0, 
(20) 

𝑥𝑥∗𝑀𝑀0 + 𝑥𝑥(1)(𝐵𝐵 + 𝑅𝑅𝐶𝐶) = 0, 
 
subject to the normalizing condition 
 

𝑥𝑥∗𝑒𝑒 + 𝑥𝑥(1)(𝐼𝐼 − 𝑅𝑅)−1𝑒𝑒 = 1. (21) 
 

3.3. Performance Measures 
 

Some performance measures of the system under study are listed in this section. 
 

The mean number of customers in the system 
 

𝐸𝐸𝑁𝑁 = �𝑖𝑖
∞

𝑖𝑖=1

𝑥𝑥(𝑖𝑖)𝑒𝑒 = 𝑥𝑥(1)(𝐼𝐼 − 𝑅𝑅)−2𝑒𝑒. (22) 
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The mean inventory level 
 

𝐸𝐸𝐼𝐼 = ��𝑗𝑗𝑥𝑥∗(𝑗𝑗, 1)
𝑠𝑠

𝑗𝑗=1

𝑒𝑒 + � 𝑗𝑗[𝑥𝑥∗(𝑗𝑗, 0) + 𝑥𝑥∗(𝑗𝑗, 1)]𝑒𝑒 + 𝑆𝑆𝑥𝑥∗(𝑆𝑆, 0)𝑒𝑒
𝑆𝑆−1

𝑗𝑗=𝑠𝑠+1

�

+ ���𝑗𝑗𝑥𝑥(𝑖𝑖, 𝑗𝑗, 1)
𝑠𝑠

𝑗𝑗=1

𝑒𝑒 + � 𝑗𝑗[𝑥𝑥(𝑖𝑖, 𝑗𝑗, 0) + 𝑥𝑥(𝑖𝑖, 𝑗𝑗, 1)]𝑒𝑒 + 𝑆𝑆𝑥𝑥(𝑖𝑖, 𝑆𝑆, 0)𝑒𝑒
𝑆𝑆−1

𝑗𝑗=𝑠𝑠+1

�
∞

𝑖𝑖=1

. 

(23) 

 
 

The mean production rate 
 

𝐸𝐸𝑃𝑃𝑃𝑃 = 𝜂𝜂�𝑥𝑥∗(𝑗𝑗, 1)𝑒𝑒
𝑆𝑆−1

𝑗𝑗=1

+ 𝜂𝜂��𝑥𝑥(𝑖𝑖, 𝑗𝑗, 1)𝑒𝑒
𝑆𝑆−1

𝑗𝑗=1

∞

𝑖𝑖=1

. (24) 

 
The mean rate at which production process is switched ON 

 

𝐸𝐸𝑅𝑅𝑂𝑂𝑁𝑁 = 𝜇𝜇�𝑥𝑥(𝑖𝑖, 𝑠𝑠 + 1,0)
∞

𝑖𝑖=1

𝑒𝑒. (25) 

 
The mean local purchase rate 

 

𝐸𝐸𝑅𝑅𝐿𝐿𝑃𝑃 = 𝜇𝜇�𝑥𝑥(𝑖𝑖, 1,1)
∞

𝑖𝑖=1

𝑒𝑒. (26) 

 
4. NUMERICAL STUDY 

 
We perform the numerical examples to represent the effects of various system parameters 

on the performance measures in the Section 4.1 and to discuss optimum inventory policies by 
using a constructed cost in the Section 4.2. 

We consider the following five sets of values for the arrival process. The arrival processes 
have the same mean of 1 but each one of them is qualitatively different. The values of the 
standard deviation of the interarrival times of the arrival processes with respect to ERLA are, 
respectively, 1, 1.41421, 3.17451, 1.99336, and 1.99336. The 𝑀𝑀𝑀𝑀𝑀𝑀 processes are normalized to 
have a specific arrival rate 𝜆𝜆 as given in Chakravarthy (2010). The arrival processes labeled 
MNCA and MPCA have negative and positive correlation for two successive interarrival times 
with values -0.4889 and 0.4889, respectively, whereas the first three arrival processes have zero 
correlation for two successive interarrival times. 

 
Erlang distribution (ERLA): 

 
𝐷𝐷0 = �−2 2

0 −2� ,𝐷𝐷1 = �0 0
2 0�. (27) 

 
Exponential distribution (EXPA): 

 
𝐷𝐷0 = (−1),𝐷𝐷1 = (1). (28) 
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Hyper-exponential distribution (HEXA): 
 

𝐷𝐷0 = �−1.9 0
0 −0.19� ,𝐷𝐷1 = � 1.71 0.19

0.171 0.019�. (29) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 with negative correlation (MNCA): 
 

𝐷𝐷0 = �
−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

� ,𝐷𝐷1 = �
0 0 0

0.01002 0 0.9922
223.4925 0 2.2575

�. (30) 

 
𝑀𝑀𝑀𝑀𝑀𝑀 with positive correlation (MPCA): 

 

𝐷𝐷0 = �
−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

� ,𝐷𝐷1 = �
0 0 0

0.9922 0 0.01002
2.2575 0 223.4925

�. (31) 

 
For the service times, we consider the following three phase-type distributions. The phase-

type distributions have the same mean of 1 but each one of them is qualitatively different. The 
values of the standard deviation of the distributions are, respectively, 0.70711, 1, and 2.24472. 
The distributions are normalized at a specific value for the service rate 𝜇𝜇. 

 
Erlang distribution (ERLS):  

 
𝛽𝛽 = (1 0),𝑇𝑇 = �−2 2

0 −2�. (32) 
 

Exponential distribution (EXPS): 
 

𝛽𝛽 = (1),𝑇𝑇 = (−1). (33) 
 

Hyper-exponential distribution (HEXS): 
 

𝛽𝛽 = (0.9 0. 1),𝑇𝑇 = �−1.9 0
0 −0.19�. (34) 

 
4.1.  Effects of the System Parameters 

 
Example 1: We discuss the behavior of the performance measures, 𝐸𝐸𝑅𝑅𝐿𝐿𝑃𝑃, 𝐸𝐸𝑃𝑃𝑃𝑃 and 𝐸𝐸𝐼𝐼  

under the various service time distributions and the arrival processes in Figure 2.  Towards this 
end, we fix the inventory policy (𝑠𝑠, 𝑆𝑆) = (3,8), the arrival rate 𝜆𝜆 = 0.5, the service rate 𝜇𝜇 = 1.1 
and vary the production rate 𝜂𝜂 = 0.5, 0.7, … , 2.5. 

The mean local purchase rate 𝐸𝐸𝑅𝑅𝐿𝐿𝑃𝑃 appears to decrease with increasing values of 𝜂𝜂. In the 
cases both of ERLS and HEXS, the effect of variability in the arrival processes on 𝐸𝐸𝑅𝑅𝐿𝐿𝑃𝑃 is very 
significant at the low production rate. The 𝑀𝑀𝑀𝑀𝑀𝑀 processes with positive correlation labeled 
MPCA and with high variability labeled HEXA are significantly separated from the other 𝑀𝑀𝑀𝑀𝑀𝑀 
processes, especially for the systems where the production rate is low. The values of 𝐸𝐸𝑅𝑅𝐿𝐿𝑃𝑃 are 
the lower in the case of HEXS where is phase-type distribution with high variability. We can 
say that the effect of variability in the distributions of service times on 𝐸𝐸𝑅𝑅𝐿𝐿𝑃𝑃 is important by 
depending on the 𝑀𝑀𝑀𝑀𝑀𝑀 processes (i.e., see MPCA and HEXA).  

When the production rate increases, it is expected to increasing the mean production rate 
𝐸𝐸𝑃𝑃𝑃𝑃 as in Figure 2. Similar to previous comments, the values of 𝐸𝐸𝑃𝑃𝑃𝑃 in the cases MPCA and 
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HEXA are significantly separated from the values in the other 𝑀𝑀𝑀𝑀𝑀𝑀 processes, especially for the 
systems where the production rate is low. The values of 𝐸𝐸𝑅𝑅𝐿𝐿𝑃𝑃 are slightly lower in the case of 
HEXS.  

The mean inventory level 𝐸𝐸𝐼𝐼  increases as the production rate 𝜂𝜂 increases, especially when 
lower production rates. The variabilities of the 𝑀𝑀𝑀𝑀𝑀𝑀 processes and PH-distributions have 
slightly effects on the values of 𝐸𝐸𝐼𝐼  except to MPCA with positive correlation. 
     

 
 

Figure 2: 
Effect of the production rate 𝜂𝜂 on various performance measures 

 
Example 2: We investigate the effects of the arrival rate and the service rate on the mean 

number of customers in the system 𝐸𝐸𝑁𝑁 under the various scenarios by displaying the plots in 
Figure 3. For this purpose, we fix the inventory policy (𝑠𝑠, 𝑆𝑆) = (3,8) and the production rate 
𝜂𝜂 = 0.3 on some service time distributions and arrival processes.  Moreover, we  fix the arrival 
rate 𝜆𝜆 = 1 (the service rate 𝜇𝜇 = 1.1) and vary the service rate 𝜇𝜇 (the arrival rate 𝜆𝜆) for the left-
side of Figure 3 (for the right-side of Figure 3). 

As expected, the mean number of customers in the system 𝐸𝐸𝑁𝑁 decreases with increasing 
values of 𝜇𝜇  in Figure 3a and increases with increasing values of 𝜆𝜆 in Figure 3b.  

The values of 𝐸𝐸𝑁𝑁 dramatically increases by depending on the 𝑀𝑀𝑀𝑀𝑀𝑀 arrivals at lower service 
rates or higher arrival rates, in other words, when the system has high traffic intensity. For 
example, the values are around 25, 45 and 450 for ERLA, HEXA and MPCA, respectively, in 
the case of 𝜇𝜇 = 1.1 and HEXS in Figure 3a.  
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When looking at the effect of the variability of service distribution, at lower 𝜇𝜇 values 
(when the system is on high traffic intensity), the effect of service variability on 𝐸𝐸𝑁𝑁 is 
significant, except for the case MPCA. When there is a positive correlation in arrivals (MPCA), 
the effect of service distribution disappears. The all comments can be seen in Figure 3a. 

Similar comments about the effect of the variability of service distribution can be said for 
the higher 𝜆𝜆 values (when the system is on high traffic intensity) in Figure 3b.  The effect of 
variability on 𝐸𝐸𝑁𝑁 is significant. The effect of service distribution disappears in the case of 
MPCA.  
 

 
 

Figure 3: 
Behavior of the performance measure 𝐸𝐸𝑁𝑁  under the various scenarios;  

a) for the service rate, b) for the arrival rate 
 

Example 3: We look at the effects of the arrival rate and the service rate on the mean 
inventory level 𝐸𝐸𝐼𝐼  considering various the distributions of service times and the arrival 
processes. For this purpose, we fix the inventory policy (𝑠𝑠, 𝑆𝑆) = (3,8) and vary the production 
rate 𝜂𝜂 = 0.3, 1.  Moreover, we  fix the arrival rate 𝜆𝜆 = 1 (the service rate 𝜇𝜇 = 1.1) and vary the 
service rate 𝜇𝜇 from 1.1 to 2.5 (the arrival rate 𝜆𝜆 from 0.3 to 1) in Figure 4a (in Figure 4b). 

As we showed earlier in Figure 2,  the values of 𝐸𝐸𝐼𝐼  increases as the production rate 
increases (recall the Example 1 has been performed for the constant values of both 𝜆𝜆 and 𝜇𝜇). We 
can also see this result in all plots in Figure 4 (note that the y-scales in all plots). In this 
example, we observe the behavior of 𝐸𝐸𝐼𝐼  for two different production rates (consider two 
different systems producing with low rate and producing with high rate) under various 
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scenarios. We purpose to see if the behavior of variability on 𝐸𝐸𝐼𝐼  is different at different 
production rates. 

 
 

Figure 4: 
Behavior of the performance measure 𝐸𝐸𝐼𝐼  under the various scenarios 

 
In Figure 4a, looking when the production occurs with rate 𝜂𝜂 = 0.3, in the case of ERLS, 

as the service rate 𝜇𝜇 increases, the values of 𝐸𝐸𝐼𝐼  are almost constant for the three 𝑀𝑀𝑀𝑀𝑀𝑀 processes 
(ERLA, EXPA and MNCA) and the values of 𝐸𝐸𝐼𝐼  increase for the HEXA and MPCA. On the 
other hand, in the case of HEXS, as the service rate 𝜇𝜇 increases, the values of 𝐸𝐸𝐼𝐼  are almost 
constant for the two 𝑀𝑀𝑀𝑀𝑀𝑀 processes (HEXA and MPCA) and the values of 𝐸𝐸𝐼𝐼  decrease for the 
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ERLA, EXPA and MNCA. In summary, we can say the following results. If the service 
distribution has low variability (ERLS), the 𝑀𝑀𝑀𝑀𝑀𝑀 arrivals have high variability (HEXA and 
MPCA) make a difference. In contrast, if the service distribution has high variability (HEXS), 
the 𝑀𝑀𝑀𝑀𝑀𝑀 arrivals have low variability (ERLA, EXPA and MNCA) make a difference. Looking 
when the production occurs with rate 𝜂𝜂 = 1 in Figure 4a, in the case of ERLS, we can say 
comments similar to the case 𝜂𝜂 = 0.3. One observation can be added that the increment of the 
values of 𝐸𝐸𝐼𝐼  occur dramatically for the case MPCA comparing with the case 𝜂𝜂 = 0.3. In the 
case of HEXS, we observe results similar to the case 𝜂𝜂 = 0.3 except to the case of MPCA. In 
this case, the values of 𝐸𝐸𝐼𝐼  also increase. By the second result, we can say that positive 
correlation is additionally important.  

As expected, it can be seen from all plots in Figure 4b that while the arrival rate 𝜆𝜆 
increased, the values of 𝐸𝐸𝐼𝐼  decreased. Looking at both production rates 𝜂𝜂 = 0.3, 1, it is seen that 
𝑀𝑀𝑀𝑀𝑀𝑀 has an effect on 𝐸𝐸𝐼𝐼  when the arrival rate is low, especially in the case of 𝜂𝜂 = 0.3. 
 

4.2. Optimization 
 

In this section, we establish an objective function, 𝐸𝐸𝑇𝑇𝐶𝐶, giving the expected total cost per 
unit of time for discussing optimum inventory policy as follows. Towards finding the optimum 
values of inventory policy, we fix the unit values of the costs by 𝑐𝑐ℎ = 5, 𝑐𝑐𝑝𝑝 = 20, 𝑐𝑐𝑠𝑠 = 200, 
𝑐𝑐𝑙𝑙𝑝𝑝 = 30, and 𝑐𝑐𝑤𝑤 = 250. 

 
𝐸𝐸𝑇𝑇𝐶𝐶 = 𝑐𝑐ℎ𝐸𝐸𝐼𝐼 + 𝑐𝑐𝑝𝑝𝐸𝐸𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑠𝑠𝐸𝐸𝑅𝑅𝑂𝑂𝑁𝑁 + 𝑐𝑐𝑙𝑙𝑝𝑝𝐸𝐸𝑅𝑅𝐿𝐿𝑃𝑃 + 𝑐𝑐𝑤𝑤𝐸𝐸𝑊𝑊 (35) 

where 
𝑐𝑐ℎ : Holding cost of each inventory per unit time, 
𝑐𝑐𝑝𝑝 : Producing cost of each inventory per unit time, 
𝑐𝑐𝑠𝑠 : Cost for starting production, 
𝑐𝑐𝑙𝑙𝑝𝑝 : Local purchase cost for each inventory,  
𝑐𝑐𝑤𝑤 : Waiting cost of a customer in the queue per unit time. 

 
Example 4: Under various distributions of the service times and the arrival processes, we 

give the optimum values of the maximum inventory level 𝑆𝑆∗ in this example. We fix, 
respectively, the arrival rate and the service rate by 𝜆𝜆 = 1 and 𝜇𝜇 = 1.1 and vary the production 
rates 𝜂𝜂 = 1, 4,7. 

Table 1. Optimum 𝑺𝑺∗ for 𝒔𝒔 = 𝟐𝟐 

  𝜂𝜂 = 1 𝜂𝜂 = 4 𝜂𝜂 = 7 
Arrival Service ETC 𝑆𝑆∗ ETC 𝑆𝑆∗ ETC 𝑆𝑆∗ 

ERLA 
ERLS 1376.179 8 1401.591 10 1404.860 11 
EXPS 1940.224 8 1964.812 10 1968.135 10 
HEXS 6526.170 7 6548.225 9 6552.458 10 

EXPA 
ERLS 1976.701 8 2001.869 10 2005.177 11 
EXPS 2545.455 8 2569.795 10 2573.144 10 
HEXS 7135.765 7 7157.598 9 7161.877 10 

HEXA 
ERLS 6544.177 8 6569.160 10 6572.542 10 
EXPS 7145.407 8 7169.472 10 7172.878 10 
HEXS 11820.561 7 11842.016 9 11846.453 9 

MNCA 
ERLS 2039.504 8 2064.653 10 2067.983 10 
EXPS 2601.209 8 2625.527 10 2628.875 10 
HEXS 7180.445 7 7202.190 9 7206.549 9 

MPCA 
ERLS 105691.759 8 105716.006 10 105719.324 11 
EXPS 105980.845 8 106004.136 10 106007.494 10 
HEXS 108257.731 7 108278.205 9 108282.543 10 
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As the variability in the distribution of the service times increase, the optimum value of 𝑆𝑆∗  
decreases and the optimum total cost increases. The result can be seen, specifically, in the cases 
of HEXS. On the other hand, we observe that the variability in the arrival process has not effect 
on the optimum inventory policy while it causes the increment of the optimum total cost. 
Finally, the optimum values both ETC and 𝑆𝑆∗ increase as the production rate 𝜂𝜂 increases as 
expected. 

 
Table 2. Optimum 𝑺𝑺∗ for 𝒔𝒔 = 𝟓𝟓 

  𝜂𝜂 = 1 𝜂𝜂 = 4 𝜂𝜂 = 7 
Arrival Service ETC 𝑆𝑆∗ ETC 𝑆𝑆∗ ETC 𝑆𝑆∗ 

ERLA 
ERLS 1379.914 10 1416.479 13 1419.839 14 
EXPS 1944.067 10 1979.617 13 1983.090 13 
HEXS 6530.491 9 6562.805 12 6567.401 13 

EXPA 
ERLS 1980.467 10 2016.748 13 2020.155 14 
EXPS 2549.375 10 2584.587 13 2588.095 13 
HEXS 7140.182 9 7172.168 12 7176.818 13 

HEXA 
ERLS 6547.641 10 6584.021 13 6587.512 13 
EXPS 7149.177 10 7184.234 13 7187.823 13 
HEXS 11825.129 9 11856.547 12 11861.376 12 

MNCA 
ERLS 2043.205 10 2079.530 13 2082.877 14 
EXPS 2605.070 10 2640.317 13 2643.826 13 
HEXS 7184.945 9 7216.758 12 7221.477 12 

MPCA 
ERLS 105695.546 10 105730.438 13 105733.863 14 
EXPS 105984.947 10 106018.462 13 106021.999 13 
HEXS 108262.744 9 108292.242 12 108296.986 13 

 
5. CONCLUSIONS 

 
In this study, we considered a production inventory system with 𝑀𝑀𝑀𝑀𝑀𝑀 arrival and phase-

type service time in which one item is purchased when the inventory level fall to zero. There is 
one production facility in the system and it is governed by (𝑠𝑠, 𝑆𝑆)-policy. We obtained the 
stability condition of the production inventory system in closed form and then established its 
steady-state analysis under stability by using the matrix-geometric method. Finally, some 
numerical examples were performed to see the effects of the parameters on the performance 
measures, to see the effect of the variabilities of both the 𝑀𝑀𝑀𝑀𝑀𝑀 process and the service process 
on the measures, and to define the optimum inventory policy. In all the examples, we observed 
that the variability in the inter-arrival times (the 𝑀𝑀𝑀𝑀𝑀𝑀 processes) and the variability in the 
distributions of the service times (𝑀𝑀𝑃𝑃-distributions) affect the values of the performance 
measures and the optimum inventory policy. This observation is very important in the 
modelling of real systems. 

 
CONFLICT OF INTEREST 

The author confirms that there is no known conflict of interest or common interest with any 
institution/organization or person.  
 
AUTHOR CONTRIBUTION 

The author takes all responsibility of the manuscript. 
 
 
 



Uludağ University Journal of The Faculty of Engineering, Vol. 28, No. 1, 2023                          
  

 

105 

REFERENCES 
 
1. Artalejo, J.R., Gomez-Corral, A. and He, Q.M. (2010) Markovian arrivals in stochastic 

modelling: a survey and some new results. SORT: Statistics and Operations Research 
Transactions, 34(2), 101-144. 

2. Baek, J.W. and Moon, S.K. (2014) The 𝑀𝑀/𝑀𝑀/1 queue with a production-inventory system 
and lost sales, Applied Mathematics and Computation, 233, 534-544. 
doi.org/10.1016/j.amc.2014.02.033 

3. Baek, J.W. and Moon, S.K. (2016) A production-inventory system with a Markovian 
service queue and lost sales, Journal of the Korean Statistical Society, 45, 14-24. 
doi.org/10.1016/j.jkss.2015.05.002 

4. Barron, Y. (2022) The continuous (𝑆𝑆, 𝑠𝑠, 𝑆𝑆𝑒𝑒) inventory model with dual sourcing and 
emergency orders, European Journal of Operational Research, 301, 18-38. 
doi.org/10.1016/j.ejor.2021.09.021 

5. Chakravarthy, S.R. (2001) The batch Markovian arrival process: a review and future work. 
In: Krishnamoorthy, A., Raju, N. and Ramaswami, V. (eds) Advances in probability and 
stochastic processes. Notable, New Jersey, 21-49. 

6. Chakravarthy, S.R. (2010) Markovian arrival processes, Wiley Encyclopedia of Operations 
Research and Management Science. doi.org/10.1002/9780470400531.eorms0499 

7. Chakravarthy, S.R. (2020) Queueing-inventory models with batch demands and positive 
service times, Automation and Remote Control, 81, 713-730. 
doi.org/10.1134/S0005117920040128 

8. Chakravarthy, S.R. and Rumyantsev, A. (2020) Analytical and simulation studies of 
queueing-inventory models with 𝑀𝑀𝑀𝑀𝑀𝑀 demands in batches and positive phase type services, 
Simulation Modelling Practice and Theory, 103, 1-15. 
doi.org/10.1016/j.simpat.2020.102092 

9. De la Cruz, N.N. and Daduna, H. (2022) Analysis of second order properties of production–
inventory systems with lost sales, Annals of Operations Research. doi.org/10.1007/s10479-
022-05061-z 

10. He, Q.M. and Zhang, H. (2013) Performance analysis of an inventory–production system 
with shipment consolidation in the production facility, Performance Evaluation, 70(9), 623-
638. doi.org/10.1016/j.peva.2013.05.007 

11. Karthikeyan, K. and Sudhesh, R. (2016) Recent review article on queueing inventory 
systems, Research Journal of Pharmacy and Technology, 9(11), 1451-1461. 
doi:10.5958/0974-360X.2016.00421.2 

12. Krishnamoorthy, A. and Raju, N. (1998) (𝑠𝑠, 𝑆𝑆) inventory with lead time-the N-policy. 
International Journal of Information and Management Sciences, 9, 45-52. 

13. Krishnamoorthy, A., Lakshmy, B. and Manikandan, R. (2011a) A survey on inventory 
models with positive service time, OPSEARCH, 48, 153-169.  doi.org/10.1007/s12597-010-
0032-z 

14. Krishnamoorthy, A., Viswanath, C. and Narayanan, V.C. (2011b) Production inventory 
with service time and vacation to the server, IMA Journal of Management Mathematics, 22, 
33-45. doi.org/10.1093/imaman/dpp025 



Ozkar S.: A MAP/PH/1 Prod.Inv.Model 
 

106 

15. Krishnamoorthy, A. and Narayanan, V.C. (2013) Stochastic decomposition in production 
inventory with service time, European Journal of Operational Research, 228, 358-366. 
doi.org/10.1016/j.ejor.2013.01.041 

16. Krishnamoorthy, A., Nair, S.S. and Narayanan, V.C. (2015) Production inventory with 
service time and interruptions, International Journal of Systems Science, 46(10), 1800-
1816. doi.org/10.1080/00207721.2013.837538 

17. Latouche, G. and Ramaswami, V. (1999) Introduction to Matrix Analytic Methods in 
Stochastic Modelling, ASASIAM, Philadelphia. 

18. Melikov, A., Mirzayev, R. and Sztrik, J. (2023) Double-sources queuing-inventory systems 
with finite waiting room and destructible stocks, Mathematics, 11, 226. 
doi.org/10.3390/math11010226 

19. Neuts, M.F.  (1981) Matrix-geometric Solutions in Stochastic Models: An Algorithmic 
Approach, The Johns Hopkins University Press, Baltimore, MD. [1994 version is Dover 
Edition]. 

20. Saffari, M., Asmussen, S. and Haji, R. (2013) The 𝑀𝑀/𝑀𝑀/1 queue with inventory, lost sale, 
and general lead times, Queueing Systems, 75, 65-77. doi.org/10.1007/s11134-012-9337-3 

21. Schwarz, M., Sauer, C., Daduna, H., Kulik, R. and Szekli, R. (2006) 𝑀𝑀/𝑀𝑀/1 queueing 
system with inventory, Queueing Systems: Theory and Applications, 54, 55-78. 
doi.org/10.1007/s11134-006-8710-5 

22. Sigman, K. and Simchi-Levi, D. (1992) Light traffic heuristic for an 𝑀𝑀/𝐺𝐺/1 queue with 
limited inventory, Annals of Operations Research, 40, 371-380. 
doi.org/10.1007/BF02060488 

23. Shajin, D., Krishnamoorthy, A., Melikov, A.Z. and Sztrik, J. (2022) Multi-server queuing 
production inventory system with emergency replenishment, Mathematics, 10(20), 3839. 
doi.org/10.3390/math10203839 

 


