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Abstract

Count data in environmental epidemiology or ecology often display substantial over-
dispersion, and failing to account for the over-dispersion could result in biased estimates
and underestimated standard errors. This study develops a new generalized linear model
family to model over-dispersed count data by assuming that the response variable follows
the discrete Lindley distribution. The iterative weighted least square is developed to fit the
model. Furthermore, asymptotic properties of estimators, the goodness of fit statistics are
also derived. Lastly, some simulation studies and empirical data applications are carried
out, and the generalized discrete Lindley linear model shows a better performance than
the Poisson distribution model.

Keywords: count data, generalized linear model, discrete Lindley distribution, over-dispersion,
distributed lag nonlinear model.

1. Introduction

The Poisson distribution is standard in modeling count data because it is easy to use and
interpret. For instance, Almeida, Casimiro, and Calheiros (2010) fit the generalized additive
model (GAM ) to describe the effect of daily average temperature on Poisson daily mortality
in Lisbon and Oporto cities of Portugal. Linares and Diaz (2010) investigate the relation-
ship between daily PM2.5 concentrations and hospital admissions in Madrid city (Spain)
by the generalized linear model (GLM ) with the Poisson distribution. However, a critical
property of Poisson distribution is that the variance equals the expectation. For most of the
observed count data, this property is often violated. Count data often display substantial over-
dispersion, in which the variance of the outcome is greater than its mean. Over-dispersion is
attributed to omitted-variable problems, the existence of outliers, heteroskedasticity (Rigby,
Stasinopoulos, and Akantziliotou 2008). Crawley (2012) and Hilbe (2011) state that applying
the Poisson model on over-dispersed data could result in biased estimates because of ignoring
dispersion parameters in the fitted model. Another disadvantage is that the standard errors
of the estimates are downward biased, so the explanatory variables tend to have significant
impacts on the response variable, although they do not (Faddy and Smith 2011).
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Various statistical procedures have been developed to overcome the over-dispersed problem in
the last several years. A common way is to apply the Poisson quasi-likelihood (McCullagh and
Nelder 2019) by specifying the parameters relating to the dependence of mean on explanatory
variables and the variance written as a multiplicative constant of the mean. Besides, the
negative binomial model is another valuable technique for over-dispersion. Also, Zuur, Ieno,
Walker, Saveliev, Smith et al. (2009) introduces zero-inflated Poisson as a tool for an excess of
zeroes in the data; Harrison (2014) suggests the Poisson-lognormal deal with the observation-
level random-effect model.

Abebe and Shanker (2018) use a discretization method based on an infinite series to generate
the discrete Lindley distribution from the continuous Lindley distribution (Lindley 1958).
They discuss statistical properties of the discrete Lindley distribution consisting of moments,
skewness, kurtosis, and parameter estimation. They conclude that its index of dispersion is
greater than 1, and the discrete Lindley distribution is suitable for a model with an over-
dispersed response variable.

In this study, we introduce a new method to solve the problem of over-dispersion in modeling
count data by combining the discrete Lindley distribution with the GLM, named as the
generalized discrete Lindley linear model (GDLLM ). Section 2 is about estimating parameters
and some statistics derived from the GDLLM. The simulation study is carried out to explore
the performance of the discrete Lindley model compared to the Poisson model at different
levels of over-dispersion in section 3. Furthermore, demonstrations of the GDLLM using a
few realistic data sets are included in section 4. The first data set relates to the ecologic
field extracting from the faraway package of software R Core Team (2013), and the discrete
Lindley model is compared to Poisson and negative binomial models to select the best model.
The second example is an empirical analysis to discover the impact of daily temperature on
the all-cause mortality at Dien Chau district, Nghe An province, Vietnam.

2. Mathematical background

2.1. Discrete Lindley (DL) distribution

The single random variable Y follows the discrete Lindley distribution with a single parameter
θ, denoted by Y ∼ DL(θ), if its probability mass function can be written in the following
form (Abebe and Shanker 2018)

f(y, θ) =
(

1− e−θ
)2

(1 + y) e−θy , (1)

for y ∈ N and θ > 0. The function in Equation (1) can be rewritten as

f(y, θ, φ) = exp
{
−θ y + 2 ln(eθ − 1)− 2θ + ln(1 + y)

}
,

showing that discrete Lindley distribution is in the exponential family. In which, γ = −θ is
the canonical parameter, the cumulant function is b(γ) = −2[ln(e−γ − 1) + γ], the dispersion
parameter equals 1 and the normalizing function is ln(1 + y). From the properties of distri-
bution in the exponential family, we derive the expectation and the variance of the random
variable Y following discrete Lindley distribution as follows

E(Y ) = b′(γ) = −2

[
−e−γ

e−γ − 1
+ 1

]
=

2

e−γ − 1
=

2

eθ − 1
, (2)

V(Y ) = b′′(γ) =
2e−γ

(e−γ − 1)2
=

2eθ

(eθ − 1)
2 . (3)

The index of dispersion (IOD) is defined by

IOD =
V(Y )

E(Y )
=

eθ

eθ − 1
. (4)
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The index of dispersion is greater than 1 for all θ > 0. Hence, the discrete Lindley distribution
is used to describe the over-dispersed data set.
Besides, for further analysis, denoting µ = E(Y ) and rewriting V(Y ) with respect to µ, we
have

V(Y ) =
(2 + µ)µ

2
. (5)

2.2. Generalized discrete Lindley linear model (GDLLM)

Fitting the model

Suppose Y1, Y2, · · · , Yn are independent random variables, each with discrete Lindley distri-
bution and

ηi = ln(µi) = Xiβ, (6)

where µi = E(Yi), Xi is a ith row of the design matrix containing data on the k explanatory
variables, β is the k−vector of parameters.
Then, model (6) can be rewritten in an equivalent form

η = Xβ, (7)

where η = (η1, η2, · · · , ηn)T .
The log-likelihood function for all Y ′i s is

`(η,y) =
n∑
i=1

`i =
n∑
i=1

[
− θiyi + 2 ln(eθi − 1)− 2θi + ln(1 + yi)

]
. (8)

In general, the n−vector score and n× n information matrix are computed by

u =
∂`

∂η
,

J = E
(
− ∂2`

∂ηηT

)
.

Applying to the discrete Lindley distribution, the elements of vector u and matrix J are

ui =
∂`i
∂θi

∂θi
∂µi

∂µi
∂ηi

=
2(yi − µi)

2 + µi
, (9)

Jil =


2µi

2 + µi
if i = l,

0 if i 6= l.
(10)

Also, we easily have that
∂η

∂β
= X. (11)

To obtain the maximum likelihood estimate for the parameters, we need to find the differen-
tiation of (8) with respect to β′s and set them equal to zero. It turns out that the estimates
β̂ are the solutions of

XTu = 0. (12)

Applying the Newton-Raphson, the updated β̂
(m+1)

at the (m+ 1)th iteration is

β̂
(m+1)

=
(
XTJ (m)X

)−1
XTJ (m)w(m), (13)

where w is the vector of ”pseudo data” and calculated by

w(m) = η(m) +
(
J (m)

)−1
u(m).
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The iterative weighted least square is implemented to update η,µ, and w each iteration. De-
veloped from the general algorithm by Nelder and Wedderburn (1972), our specific algorithm
for GDLLM is presented as follows

Algorithm 1

1. Step 1 Set µ
(0)
i = y and D0 = 0. Calculate η

(0)
i = ln(µ

(0)
i ).

2. Step 2 Update

- Construct ”pseudo data”w
(0)
i = η

(0)
i +

yi − µ(0)i
µ
(0)
i

,

and weight J
(0)
ii =

2µ
(0)
i

2 + µ
(0)
i

.

- Calculate β̂
(1)

from (13).
- Obtain the fitted value η(1) and µ(1).
- Compute adequate convergence

∆ =

∣∣∣∣D1 −D0

D0

∣∣∣∣ where D1 = D(y, η1): the deviance of the model.

3. Step 3 Repeat Step 2, replacing µ
(0)
i by µ

(1)
i and D0 by D1 until ∆ below some

small threshold.

Each step of the iterative weighted least square adjusts the pseudo dependent variable w. We
define an asymptotic approximation w0 of w. We get

w ≈ w0 = η0 + (J0)
−1u0 .

Then, w has asymptotic mean η0 and asymptotic variance (J0)
−1. We, therefore, have the

variance-covariance matrix for β̂

cov(β̂) = cov
[(
XTJ0X

)−1
XTJ0w0

]
=
[(
XTJ0X

)−1
XTJ0

]
cov(w0)

[(
XTJ0X

)−1
XTJ0

]T
=
(
XTJ0X

)−1
XTJ0(J0)

−1J0X
(
XTJ0X

)−1
=
(
XTJ0X

)−1
. (14)

When all the regularity conditions are met, we can extend to show that β̂ is asymptotically
normal distributed

N
(
β,
(
XTJ0X

)−1)
, (15)

or in the form of Wald statistic(
β̂ − β

)T (
XTJ0X

)−1(
β̂ − β

)
∼ χ2(k). (16)

Deviance

The definition of deviance for a fitted model is

D = 2[`(µ̂max,y)− `(µ̂,y)] , (17)

where `(µ̂max,y) indicates the maximized log-likelihood of the full model: the model with the
maximum number of parameters that can be estimated, while `(µ̂,y) denotes the maximum
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value of the log-likelihood function for the model of interest.
If the response variables Y1, Y2, · · · , Yn are independent and each Yi ∼ DL(θi), the likelihood
function is mentioned in (8). The maximum likelihood estimator for each θi is

θ̂i = ln
(2 + yi

yi

)
. (18)

Then, the maximum log-likelihood for the full model

`(µ̂max,y) = −
n∑
i=1

(yi + 2) ln
(2 + yi

yi

)
+ 2

n∑
i=1

ln
( 2

yi

)
+

n∑
i=1

ln(1 + yi). (19)

Because µi = 2/(eθi − 1), the log-likelihood as a function with respect to µ

−
n∑
i=1

(yi + 2) ln
(2 + µi

µi

)
+ 2

n∑
i=1

ln
( 2

µi

)
+

n∑
i=1

ln(1 + yi). (20)

Substitute the estimate µ̂ for µ, `(µ̂,y) is derived. Therefore, the deviance is

D = 2

n∑
i=1

[
yi ln

( yi
µ̂i

)
− (yi + 2) ln

( yi + 2

µ̂i + 2

)]
. (21)

Under the hypothesis that the model is correct, the deviance D approximately has the Chi-
square distribution

D ∼ χ2(n− k) ,

where k is the number of parameters in the model.

Goodness of fit

Testing the goodness of fit of the generalized linear model is not often based on the raw
residuals ε̂i = yi− ŷi because it does not imply the mean and variance relationship. Common
residual types used in the generalized linear model are the Pearson residuals and the deviance
residuals.

For the discrete Lindley GLM, the concrete formula of the Pearson residual is

ε̂peari =

(
yi − µ̂i

)√(
1 + µ̂i/2

)
µ̂i

. (22)

Besides, if we write the deviance as the summation of n components di computed on the ith

datum

di = 2
[
yi ln

( yi
µ̂i

)
− (yi + 2) ln

( yi + 2

µ̂i + 2

)]
,

the deviance residuals can be defined

ε̂devi = sign
(
yi − µ̂i

)√
di . (23)

These residuals should follow a distribution being approximately standardized Normal. Fur-
thermore, the residuals should not show any apparent pattern in trend when plotted against
the fitted value or any explanatory variable.
Akaike Information Criteria (AIC) is used to select different models. Also, for a model with
over-dispersed outcome, the choice of model is based on the modified Akaike Information
Criteria QAIC (Hastie and Tibshirani 1990), given by

QAIC = −2
[
`(η,y)− kφ

]
,
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in which φ is the over-dispersed parameter, and it can be estimated by

φ̂ =

∑n
i=1(ε̂

pear
i )2

n− k
. (24)

3. Simulation study

To generate the over-dispersed data, we apply the result derived by Cameron and Trivedi
(1998). Let Yi have a Poisson distribution with parameter θi where

θi = µiεi,

µi = exp(xTi β),

εi ∼ Gamma(α, α),

where xi is a k × 1 vector of explanatory variables. Note that E(εi) = 1 and V(εi) =
1

α
.

The unconditional distribution of y will be negative binomial NB
(
r = α, p =

µ

µ+ α

)
. Then,

the mean and the variance will be E(Y ) = µE(εi) = µ and V(Y ) = µ
(

1 +
µ

α

)
, presenting for

over-dispersion.

We simulate 5000 samples, with sample size n ∈ {50, 100, 200}, through the following steps:

1. Two independent variables x1 and x2 are generated: x1 is randomly chosen from the
Normal distribution N(1, 0.5), and x2 is drawn from the Bernoulli distribution with
success probability p = 0.5.

2. Using the independent variables, the mean of the dependent variable (µ) is generated
as

ln(µi) = β0 + β1x1i + β2x2i.

β = (β0, β1, β2) are assigned values (1, 2,−0.5).

3. Generate εi ∼ Gamma(α, α).
Four values of α, including 4, 2, 0.5, 0.1, are selected to present different levels of over-
dispersion.

4. Compute λi = exp(β0 + β1x1i + β2x2i)εi and generate Yi ∼ Poi(λi)

Once the data are generated, the generalized linear model, which assumes the response vari-
able following the discrete Lindley distribution, is employed. The model of generalized linear
with Poisson response variable is applied, too. We are then going to compare two methods
for each condition by using the common bias (CB), the standard deviation (SD), the mean
squared error (MSE) of each estimated parameter based on the 5000 replicates. We have

CB(βj) =
1

5000

5000∑
r=1

(β̂jr − βj),

SD(βj) =
1

5000

5000∑
r=1

(β̂jr − β̂j)2,

MSE(βj) =
1

5000

5000∑
r=1

(β̂jr − βj)2,

where β̂jr is the estimated value of parameter βj (j = 0, 1, 2) at rth simulation experiment

and β̂j =
1

5000

5000∑
r=1

β̂jr.
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Table 1: Table of common bias (CB), standard deviation (SD), mean square error (MSE) of
parameters for varying levels of over-dispersion in case n = 50

Overdispersion Parameter
CB SD MSE

DL Poi DL Poi DL Poi

0.1
β1 -0.1026 -0.2870 1.0655 1.2070 1.1457 1.5391

β2 0.0046 0.0374 1.0606 1.3110 1.1248 1.7201

0.25
β1 -0.0455 -0.1395 0.6242 0.8506 0.3917 0.7430

β2 -0.0095 -0.0041 0.6380 0.8368 0.4071 0.7002

2
β1 -0.0025 -0.0258 0.2288 0.3459 0.0524 0.1203

β2 -0.0016 -0.0025 0.2318 0.3087 0.0537 0.0953

4
β1 0.0026 -0.0116 0.1737 0.2509 0.0302 0.0631

β2 -0.0049 -0.0025 0.1698 0.2215 0.0289 0.0490

Table 2: Table of common bias (CB), standard deviation (SD), mean square error (MSE) of
parameters for varying levels of over-dispersion in case n = 100

Overdispersion Parameter
CB SD MSE

DL Poi DL Poi DL Poi

0.1
β1 -0.0732 -0.1999 0.7327 0.9313 0.5422 0.9072

β2 -0.0252 -0.0534 0.6986 0.9074 0.4887 0.8262

0.25
β1 -0.0257 -0.1041 0.4472 0.6351 0.2007 0.4142

β2 -0.0158 -0.0177 0.4186 0.5752 0.1754 0.3311

2
β1 0.0001 -0.0115 0.1618 0.2494 0.0262 0.0623

β2 -0.0009 -0.0007 0.1550 0.2226 0.0240 0.0495

4
β1 0.0031 -0.0063 0.1216 0.1792 0.0148 0.0322

β2 -0.0025 -0.0013 0.1150 0.1570 0.0132 0.0247

Table 3: Table of common bias (CB), standard deviation (SD), mean square error (MSE) of
parameters for varying levels of over-dispersion in case n = 200

Overdispersion Parameter
CB SD MSE

DL Poi DL Poi DL Poi

0.1
β1 -0.0496 0.1192 0.4821 0.6858 0.2349 1.799

β2 -0.0019 0.006 0.4743 0.6704 0.2250 0.4495

0.25
β1 -0.0178 -0.0609 0.2968 0.4579 0.0884 1.2877

β2 0.0008 0.0011 0.2971 0.4313 0.0882 0.1861

2
β1 -0.0039 -0.0121 0.1095 0.1682 0.0120 1.0240

β2 -0.0026 -0.0020 0.1069 0.1516 0.0114 0.0230

4
β1 0.0007 -0.0022 0.0843 0.1210 0.0071 1.0241

β2 -0.0020 -0.0023 0.0821 0.1130 0.0068 0.0128

Table 1 reveals the CB, SD, and MSE for the estimated coefficients of the continuous covariate
x1 and the dichotomous variable x2 in case sample size n = 50. Similarly, the measures of
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bias, standard deviation and MSE for cases n = 100 and n = 200 are summarized in Table 2
and 3.

The results in Table (1) - (3) present that, in all levels of over-dispersion and sample sizes,
estimators based on the assumption of discrete Lindley distributions perform better than the
case of Poisson distribution in all terms of common bias, standard error, and mean squared
error. Besides, the common bias, standard error, and MSE of estimators in both models
increase as the level of over-dispersion increases (α decreases). A larger sample size leads
to more precise estimates of parameters in the discrete Lindley model, and the same con-
clusion is obtained for the Poisson model. In summary, the GDLLM appears to be a good
recommendation for over-dispersion.

4. Empirical data analysis

4.1. Example 1: Species diversity on the Galapagos Islands

The gala data set is available in the faraway R package (Faraway 2004). In order to demon-
strate the performance of the GDLLM to handle over-dispersion, various popular GLM on
count data, including Poisson regression and negative binomial regression, are applied to the
data set and compared to the GDLLM through AIC and QAIC criteria. The model with the
smallest values of these criteria is considered the best-fitting model for the data set.

The response variable is the number of endemic species found in 30 Galapagos islands. The
predictors used in this study include four variables:

• Area (km2): the area of the island

• Elevation (m): the highest elevation of the island

• Nearest (km): the distance from the nearest island

• Adjacent (km2): the area of the adjacent island

The sample mean of the response variable is 26.1, and the sample variance is 746.9897. Hence,
there exists an over-dispersed problem in the data.

Table (4) shows the results of the fitting models based on Poisson, discrete Lindley, and
negative binomial distributions. The results show that both discrete Lindley and negative
binomial models provide better fits to the data than the Poisson regression model, according
to the AIC and QAIC. There is a non-significant difference between the discrete Lindley and
negative binomial models.

The residual plots are presented in Figure (1). The left plots are the normal Q-Q plot. The
normal probability plots of discrete Lindley and negative binomial models are straighter than
the Poisson model. The right panel plots the Pearson residuals against the fitted values
µ̂i. The residual ranges in the discrete Lindley and negative binomial are narrower than the
Poisson. Besides, the residual fluctuation in the Poisson model shows a more evident trend
than the others. Hence, the Poisson model is not fit the data well. No difference between
the discrete Lindley and negative binomial model indicates the reasonableness of the discrete
Lindley distribution.
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Table 4: Results from the Poisson, discrete Lindley and negative binomial regression models

Predictors Poisson Discrete Lindley Negative Binomial

Intercept
2.12200∗∗∗ 1.99825∗∗∗ 2.00139∗∗∗

(0.00810) (0.22827) (0.19845)

Area
-0.00049∗∗∗ -0.00052∗ -0.00052∗∗

(0.00005) (0.00027) (0.00023)

Elevation
0.00299∗∗∗ 0.00314∗∗∗ 0.00314∗∗∗

(0.00015) (0.00065) (0.00055)

Nearest
-0.00212 0.00302 0.00285

(0.00260) (0.01008) (0.00867)

Adjacent
-0.00058∗∗∗ -0.00057∗∗∗ -0.00057∗∗∗

(0.00005) (0.00021) (0.00018)

AIC 319.1 237.89 238.88

QAIC 373.056 236.3093 237.9763

φ̂ 6.39572 0.84229 1.10953

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard deviations are in parentheses.
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Figure 1: Residual plots for models fitted to the gala data

4.2. Example 2: Effect of temperature on all-cause mortality in Nghe An,
Vietnam

Many previous studies confirm the nonlinear and delayed effects of environmental exposures
on heath or mortality (Paravantis, Santamouris, Cartalis, Efthymiou, and Kontoulis 2017;
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Guo, Barnett, Pan, Yu, and Tong 2011). The distributed lag nonlinear model (DLNM )
proposed by Gasparrini, Armstrong, and Kenward (2010) has become a powerful technique
in the epidemiological field because it controls the bi-dimensional effect of the exposure and
lags on the outcome. The main idea of DLNM is to generate cross-basis variables and include
them in a design matrix of a generalized linear model to estimate the parameters.

In this example, we apply the DLNM to investigate the effect of temperature on all-cause
mortality with the assumption that the response variable follows the discrete Lindley distri-
bution. The procedures for generating the cross-basis variables and applying the GDLLM are
discussed clearly.

Data description

The empirical analysis is based on a time-series data set conducted at Dien Chau, a coastal
plain district in Nghe An Province, Vietnam. Geographically, Dien Chau is located in the
central part of Vietnam. The climate of Dien Chau is influenced by strong monsoon with hot,
dry summer and cold, cloudy, drizzly winter.

For the study, the daily number of death from all causes in 2014 at Dien Chau is obtained
from the A6 death register, which records every death event occurring across the country by
medical workers at commune health stations. The meteorologic indicators are daily observa-
tions measured at Nghe An Observatory and provided by the Vietnam Meteorological and
Hydrological Administration, including temperature (0C) and total precipitation (mm).

Table 5: Distribution of daily mortality cases, average temperature, and total precipitation

Variables Mean ± sd Min Q1 Median Q3 Max

All-cause mortality 4.39 ± 2.98 0.00 2.00 4.00 6.00 15.00
Temperature (oC) 24.97 ± 5.58 11.80 20.20 25.90 29.70 34.30
Total precipitation (mm) 4.01 ± 17.10 0.00 0.00 0.00 0.76 195.07

The descriptive statistics of these variables are presented in Table 5. Besides, the histogram
for all mortality cases is shown in Figure 2, with the observed and expected frequencies
of the number of death fitted by Poisson and discrete Lindley distributions. The expected
frequencies from discrete Lindley seem closer to the observed frequencies. The variance of
mortality cases is about two times the mean, so it is available to apply the GLM with discrete
Lindley distribution.
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Figure 2: Histogram for all-cause mortality
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The model

In this example, we focus on the relationship between daily temperature and the number of
all-cause death at Dien Chau, Nghe An, Vietnam. The suggested model is

log(µt) = α0 +

L∑
`=0

f · g(Tempt−`, `) + s(Pre) + s(trend) +

6∑
j=1

θjDOWjt, (25)

where Y is the daily all-cause mortality following the discrete Lindley distribution, µt = E(Yt),
Temp is the daily temperature, f ·g is the bi-dimensional function exploring relationship along
with the temperature over their lags with the outcome. Also, s(trend) and s(Pre) denote
for smooth functions of the long-time trend and total precipitation (Pre). DOW is a system
including six dummy variables for days of the week, with Monday being the base category to
which no dummy is assigned.

f · g combines the exposure-outcome and lag-outcome functions, in which f and g can be
parameterized as a linear combination of basis functions. DenoteR to be a n×(L+1)vx matrix
containing the evaluations of lagged occurrence of each basis function at all observations of
variable Temp, where vx is the number of basis functions and n is the sample size. In the
same vein, C is a (L+ 1)× v` matrix (v` < L) representing the basis functions applied to the
lag vector.

Gasparrini et al. (2010) construct a cross-basis matrix W encompassing values of the bi-
dimensional function by re-arranging and summing along with the lag of the following matrix

A =
(
R⊗ 1Tv`

)
�
(
1Tvx ⊗

(
vec(CT )

)T ⊗ 1n
)
, (26)

where 1 refers to an all-one vector with length denoted by a subscript, ⊗ and � denote the
Kronecker product and Hadamard product, respectively.

The representation of f · g is
f · g = Wγ , (27)

with γ being a vector of new parameters corresponding to the new design matrix W .

The type of smooth functions for the temperature and lag are chosen independently. The
natural cubic spline is chosen to describe the relationship in each dimension because of its
flexibility at two boundary points where some degree of non-linearity is expected (Goldberg,
Gasparrini, Armstrong, and Valois 2011). The knots are evenly spread over the temperature
range and placed at equal intervals over the logarithm of lags. These choices are motivated
by substantive papers on epidemiological literature (Gasparrini et al. 2010; Guo et al. 2011).
Besides, the natural cubic spline with knots placed at all points (degree of freedom equals 1)
is chosen to control the long-time trend and total precipitation. The model (25) now becomes

log(µt) = Wγ + αBtrend + βBPre +
6∑
j=1

θjDOWjt , (28)

where Btrend and BPre refer to the basis relating to the long-time trend and the total precip-
itation.

With the given basis functions of the exposures and the lags, we can generate a cross-basis
function by using the command crossbasis of the package dlnm in R-software (Gasparrini,
Armstrong, and Scheipl 2011). The model (28) with the new system of predictors is treated
as the GDLLM. Then, the estimates and the inferences of the parameters can be carried out
through the iterative weighted least square discussed in section 2.2. Detailed pieces of code to
generate cross-basis variables and estimate the GDLLM in R are available in the Appendix.

For the mortality analysis, we are often interested in the relative risk of an exposure x with
the given reference value x0

RRi =
E
(
Y |X = xi)

E
(
Y |X = x0)

= eβ(xi−x0) .
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Results and discussion

The QAIC is used to select the best degree of freedom (df) for the smooth functions of the
predictor Temp and the lag. The best degree of freedom for the exposure dimension is two,
while four for the lag dimension. The maximum lag is set to 20 days. The relative risks and
their 90% confidence intervals are presented.
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Figure 3: Relative risk along with temperature and lags

We choose 250C (the median temperature) as the reference to the data analysis. Figure (3)
presents the three-dimensional plot of the relative risk along with the temperature and lags.
It is found that the effects of heat and cold happen strongly and immediately but last for
only two days. Furthermore, the shape of the temperature and mortality relationship changes
along with lags.

Figure (4) shows the effects of the extreme cold and extreme hot temperature, corresponding
to 130C (the 1st percentile) and 330C (the 99th percentile), on the all-cause mortality risk
throughout 20-day lag. The strong effects appear in the first two days and rapidly decline
afterward. There is no significant effect of the heat after lag 1. However, extremely cold
temperatures also suggest delayed effects on all-cause mortality with significant relative risks
11 to 15 days after exposure.
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Figure 4: Relative risk by the temperature at different lags

Figure (5) reveals the relative risk by the temperature at specific lags. We start from lag 0
upwards and show the plots when there exists any change in the pattern of effects. Generally,
the temperature effects on mortality manifest a nonlinear and U-shaped curve. At lag 0
and 1 days, the minimum mortality temperature is 240C, and the temperature below 180C
or above 290C causes a significant increase in mortality risk. Though the causes of death
are not examined in this study, we suppose that sudden death can be attributed to heart
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attacks, cardiac arrests, and strokes. Besides, the mortality risks relating to cold temperatures
(less than 180C) are assessed over the 11 to 15 lag period. This result tallies with Carder,
McNamee, Beverland, Elton, Cohen, Boyd, and Agius (2005), and Wang, Shi, Zanobetti, and
Schwartz (2016) that mortality risk can persist within 2 or 3 weeks after exposure to the cold
temperature.
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Figure 5: Relative risk by temperature at different lags

5. Conclusion

It becomes essential to construct specialized models that adapt well to the over-dispersed
dependent count data. This study focuses on the generalized linear model, assuming that the
response variable follows the discrete Lindley distribution, and shows how this model can fit
the response variable with the over-dispersed problem. The iterative weighted least square is
employed to estimate the model’s parameters.

The performance of the discrete Lindley distribution model is evaluated through a simulation
study at different levels of over-dispersion. The discrete Lindley model gets better behavior
than the Poisson model under some criteria, including common bias, standard deviation,
and mean squared error (MSE). Data applications are also carried out to demonstrate the
modeling and assessing issues. The first example is cross-sectional data in ecological fields.
The discrete Lindley model is better than the Poisson while performing equally well with the
negative binomial model in AIC, QAIC, and residual plots. Hence, the discrete Lindley model
can be recommended for the over-dispersed data.

Finally, the empirical analysis in the second example offers evidence for the usefulness of
the proposed model in environmental epidemiology. Because of the nonlinear and delayed
associations in the temperature and all-cause mortality relationship, the distributed lag non-
linear model is carried out to generate cross-basis variables included in the regression model.
The final model has a representation of the generalized linear model. Applying the estimat-
ing technique for the GDLLM model, we obtain the estimates of the parameters relating to
these cross-basis variables, which describe the bi-dimensional effect of the predictor and the
lag. This example provides a flexible method that can be used to investigate the complex
association in exposure-health studies.
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Appendix

R-code Used to Obtain the Results in Examples

R-code for estimating GDLLM (Algorithm 1)

glm_lin <- function(y,x){

# Step 1: Setting initial values

i = 1

muy0 <- matrix(mean(y),nrow=NROW(y),1)

x <- as.matrix(cbind(x))

dev1 = 0

# Step 2: Updating

while (i < 100){

eta0 <- log(muy0)

J = diag(c(2*muy0/(2+muy0)),NROW(x),NROW(x))

w <- eta0 + (y-muy0)/muy0

beta <- solve(t(x)%*%J%*%x)%*%(t(x)%*%J%*%w)

eta <- x%*% beta

muy <- exp(eta)

ll <- sum(-(y+2)*log((2+muy)/muy) + 2*log(2/muy)

+ log(1+y))

old.dev1 <- dev1

sig1 <- sum(2*(y-muy)^2/((2+muy)*muy ))/( NROW(x)-NCOL(x))

cov_beta <- solve(t(x)%*%J%*%x)

cov_beta_ad <- sig1*solve(t(x)%*%J%*%x)

dev1 <- 2*sum(ifelse(y==0,-2*log(2)+2*log(muy+2),

y*log(y/muy) - (y+2)*log((y+2)/(muy+2))))

aic <- -2*ll+2*NROW(beta)

i = i + 1

if (abs(dev1-old.dev1) < 10^-5*dev1) break

muy0 <- muy

}

# Extracting the results

mylist <- list("coeff"= beta ,"varcov"=cov_beta ,

"adj_varcov" = cov_beta_ad , "deviance"=dev1,

"Loglikelihood"=ll, "AIC"=aic ,

"fitted"=muy , "disperson"=sig1)

return (mylist)

}

R-code used in Example 1:

# Obtaining the gala dataset

library(faraway)

# Fitting the GDLLM

X <- cbind(1,gala$Area , gala$Elevation , gala$Nearest , gala$Adjacent)

Y <- gala$Endemics

md1 <- glm_lin(Y,X)

# Fitting the Poisson model

md2 <- glm(Endemics~Area+Elevation+Nearest+Adjacent ,

family=poisson ,data=gala)

# Fitting the Negative Binomial model

library(MASS)

md3 <- glm.nb(Endemics~Area+Elevation+Nearest+Adjacent ,data=gala)
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# Computing the fitted values and Pearson residuals

y_lin <- exp(X%*%md1[[1]])

res_lin <- (Y-y_lin)/sqrt((1+y_lin/2)*y_lin)

y_poi <-md2$fitted.values

res_poi <- residuals(md2,"pearson")

y_nb <-md3$fitted.values

res_pois <- residuals(md3,"pearson")

# Residual plots for model fitting

pdf("gala1.pdf",width=6,height=6)

par(mfrow=c(3,2))

qqnorm(res_poi ,ylim=c(-4,4),main=NULL)

qqline(res_poi)

plot(y_poi ,res_poi ,xlab = "Fitted values",ylab="Residuals",ylim=c(-4,4))

qqnorm(res_lin ,main=NULL ,ylim=c(-4,4))

qqline(res_lin)

plot(y_lin ,res_lin ,xlab = "Fitted values",ylab="Residuals",ylim=c(-4,4))

qqnorm(res_nb,main=NULL ,ylim=c(-4,4))

qqline(res_nb)

plot(y_nb,res_nb,xlab = "Fitted values",ylab="Residuals",ylim=c(-4,4))

dev.off()

R-code used in Example 2

# Loading the packages

library(dlnm); library(splines)

# Generating the cross -basis matrix for temperature along lags

lagnots <- logknots(20,2)

b <- crossbasis(dt$temp_c,lag=20, argvar=list(fun="ns",df=2),

arglag=list(fun="ns",knots=lagnots ))

# Generating basis functions for variables "trend" and "precipitation"

by natural cubic spline

x1 <- ns(dt$trend)

x2 <- ns(dt$pre)

# Generating the new dataset , removing omitted observation

dt1 <- na.omit(cbind(y=dt$mort ,1,b,x1,x2,factor(dt$dayofweek )))

# Fitting the model

md1 <- glm_lin(dt1[,1],dt1[,-1])

# Plotting

bb <- md1$coef[2:9]

BB <- md1$CVar[2:9,2:9]

tem.pred <- crosspred(b,coef = bb, vcov=BB, model.link="log",

cen=25, ci.level=0.90, cumul=FALSE)

pdf("3d-tem -lin.pdf",width=6,height=6)

plot(tem.pred ,xlab="Temperature",zlab="Relative Risk",ylab="Lag")

dev.off()

pdf("lagrisk.pdf",width=5,height=2)

par(mfrow=c(1,2))

plot(tem.pred ,"slices",xlab="Lag",ylab="Relative Risk",ci="lines",

var=13,cex.main = 0.6,main="Cold effect",ci.level=0.90)

plot(tem.pred ,"slices",xlab="Lag",ylab="Relative Risk",ci="lines",
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var=33,cex.main = 0.6,main="Heat effect",ci.level=0.90)

dev.off()

pdf("temrisk.pdf",width=8,height=4)

par(mfrow=c(2,3))

plot(tem.pred ,"slices",xlab="Temperature",ylab="Relative Risk",

ci="lines", lag=0, main = "Lag 0",ci.level=0.90)

plot(tem.pred ,"slices",xlab="Temperature",ylab="Relative Risk",

ci="lines", lag=1, main = "Lag 1",ci.level=0.9)

plot(tem.pred ,"slices",xlab="Temperature",ylab="Relative Risk",

ci="lines", lag=2, main = "Lag 2",ci.level=0.9)

plot(tem.pred ,"slices",xlab="Temperature",ylab="Relative Risk",

ci="lines", lag=9, main = "Lag 3",ci.level=0.9)

plot(tem.pred ,"slices",xlab="Temperature",ylab="Relative Risk",

ci="lines", lag=11,main = "Lag 11",ci.level=0.9)

plot(tem.pred ,"slices",xlab="Temperature",ylab="Relative Risk",

ci="lines", lag=17, main = "Lag 17",ci.level=0.9)

dev.off()
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