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Abstract

ICT systems provide detailed information on computer network traffic. However, due
to storage limitations, some of the information on past traffic is often only retained in
an aggregated form. In this paper we show that Linear Gaussian State Space Models
yield simple yet effective methods to make predictions based on time series at different
aggregation levels. The models link coarse-grained and fine-grained time series to a single
model that is able to provide fine-grained predictions. Our numerical experiments show
up to 3.7 times improvement in expected mean absolute forecast error when forecasts are
made using, instead of ignoring, additional coarse-grained observations. The forecasts are
obtained in a Bayesian formulation of the model, which allows for provisioning of a traffic
prediction service with highly informative priors obtained from coarse-grained historical
data.

Keywords: network traffic prediction, state space model, Kalman filter, Bayesian structural
time series.

1. Introduction

Modern ICT systems produce many different kinds of time series with information about com-
puter network traffic. Network administrators often identify malfunction or Denial of Service
Attacks upon visual inspection of the time series. Numerous open-source and commercial
systems have been developed to support them in this task; e.g., Oetiker (2017a); Schnepp,
Mathisen, Levsen, Pohl, and Stoeckel (2021). There has also been much interest in modeling
network traffic data in order to make statistical predictions of future traffic. Indeed, the re-
cent development of Software Defined Networking (SDN) allows one to use traffic predictions
as one of multiple factors in optimization of network operation Jaglarz, Bory lo, Szymański,
and Cho lda (2020).

A system optimizing network operation must be lightweight software with a small resource
footprint. However, the traffic statistics it uses can quickly grow in size as the considered time
horizon increases. Due to storage limitations, it is thus common practice to keep only the
most recent data in full resolution (for at most a few days). Older observations are averaged
over progressively larger time scales. Such an aggregation scheme is, for instance, used by the
industry standard, high-performance data logging software RRDtool Oetiker (2017b).
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For visual inspection by humans, the progressive decrease in resolution for older observations
does not pose a significant problem. However, nonuniform resolutions present a challenge
for automated quantitive predictions as used in the aforementioned SDNs. In this paper, we
propose a general framework to address this challenge using a single Linear Gaussian State
Space Model (LG-SSM). Specifically, this paper gives 1. a tractable LG-SSM that draws on
fine- and coarse-grained data to obtain fine-grained predictions, 2. an implementation in a
Bayesian framework that assesses uncertainty in prediction, and 3. a numerical evaluation of
the resulting system based on real mrtg network traffic with a focus on longer time scales
(hours to months). We note that our approach is not a classical fractal-based multi-scale
model of the traffic Abry, Baraniuk, Flandrin, Riedi, and Veitch (2002).

To the authors’ best knowledge, the related domain literature on analysis of network traffic
does not propose direct competitors to the methods developed in this paper. In a broader
context, work such as Folia and Rattray (2018) addresses aggregation issues but does so with
a view towards arbitrary time scales, for which these methods adopt more complicated time
discretization and resampling schemes for continuous-time stochastic processes. This is in
contrast with the applications considered here, where there is a clear finest time scale that is
discrete and where aggregation is done in a designed and regular fashion to address storage
limitations. The aggregation schemes we consider also differ from down-sampling schemes in
monitoring software as implemented in the MATLAB function d2d. Indeed, down-sampling
creates thinned time series whereas we are here considering a system that retains averages.

The LG-SSM we propose is simple when compared to more involved machine learning methods
for traffic prediction Andreoletti, Troia, Musumeci, Giordano, Maier, and Tornatore (2019).
However, at least in their current design, these graph neural network methods are limited
in three aspects: 1. the methods are limited to a single time scale and do not address our
question about benefits of aggregated data, 2. they require order of magnitude larger dataset
than offered by the mrtg tool, 3. uncertainty in neural networks is hard to estimate and
it is a contemporary research topic Osband, Wen, Asghari, Ibrahimi, Lu, and Roy (2021). .
Moreover, in practice, a simple Fourier decomposition Rzym, Bory lo, and Cho lda (2020) of the
traffic data can help to obtain good forecast accuracy and performance from simple resource-
aware models. A more advanced statistical forecast models are commonly based on ARIMA
e.g. Zare Moayedi and Masnadi-Shirazi (2008); Papagiannaki, Taft, Zhang, and Diot (2003)
or ARMA Sang and qi Li (2000). Since both the aforementioned models have state-space
representation it is possible to extend our proposal to that kind of prediction model. Having
said that, in this work, we focus on structured time series as the decomposition improves the
explainability of the prediction. The main contribution of this paper is not a new forecasting
method but rather a method for improved estimation of the classical models from limited
data.

The paper is structured as follows. Section 2 outlines the data collection process in the
considered network monitoring system, and it develops our joint model for fine and coarse
data. Section 3 presents the setup and the results of our numerical evaluation on traffic in
a university network. Section 4 summarizes the work, highlights some of its limitations, and
suggests simple changes in monitoring systems that would help overcome these limitations.

2. Methods

The Multi Router Traffic Grapher (MRTG Oetiker (2017a)) is an open-source software for
monitoring network link load. It gathers statistics by pooling SNMP counters from network
devices. This process is continuous and while new measurements arrive the old ones are
aggregated. The default sampling interval is 5 min. There are only 600 such measurements,
which cover about 2 days. Older results are averaged in groups of six, which corresponds
to 30 minute intervals. There are again 600 such measurements, which cover about 12 days.
Measurements older than two weeks (2 days + 12 days) are aggregated in 2h windows. There
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are again 600 of them covering 50 days. The remaining samples are averaged over 24 hours
and give a coarse-grained traffic description over 2 years.

2.1. Linear Gaussian state space model

In order to model the described time series we adopt the framework of Linear Gaussian State
Space Models (LG-SSM). In general, an LG-SSM may be described through a dynamical
system Murphy (2012):

zt = Fzt−1 + εt, εt ∼ N (b,Q), (1)

xt = Hzt + δt, δt ∼ N (c,R), (2)

where z0 ∼ N (b0,Q0) is the n-dimensional initial hidden state and xt ∈ Rm, t ≥ 0, is the
observed signal. Throughout, N (·, ·) denotes a multivariate Gaussian distribution and the
noise vectors (εt, δt) are independent across time t. The state dynamics are parameterized
by the transition matrix F ∈ Rn×n, the transition noise mean vector b ∈ Rn and covariance
matrix Q ∈ Rn×n. The observations xt are noisy linear projections of the states zt and further
parameterized by the observation matrix H ∈ Rm×n and the observation noise mean vector
c ∈ Rm and covariance matrix R ∈ Rm×m. The system noise εt, observation noise δt, and
the initial state z0 are independent. Under these assumptions, the Kalman filter can be used
for efficient state estimation from noisy observations. This makes LG-SSM a popular choice
for time series forecasting Harvey (1990).

For the particular application of interest, we follow Hu, Sim, Antoniades, and Dovrolis (2013)
and specify an LG-SSM that incorporates three main components: trend, seasonal effect, and
temporally dependent noise. The trend is modeled by introducing two real hidden states,
namely, a current level lt and a slope vt. These are real-valued and evolve as[

lt
vt

]
=

[
1 1
0 1

] [
lt−1
vt−1

]
+

[
εlt
εvt

]
, (3)

where εlt ∼ N (0, σ2l ) and εvt ∼ N (0, σ2v) are independent. This model allows for trend changes
by a random normal perturbation. Next, we specify a harmonic signal ft,ω of frequency ω,
which can also be represented as an LG-SSM with known transition matrix with the help of
an auxiliary variable f∗t,ω. Specifically,[

ft,ω
f∗t,ω

]
=

[
cos(ω) sin(ω)
− sin(ω) cos(ω)

] [
ft−1,ω
f∗t−1,ω

]
+

[
εfωt
ε
f∗
ω

t

]
. (4)

Both components form a hidden state disturbed by independent noise representing phase

fluctuations, ε
f∗
i

t , ε
fi
t ∼ N (0, σ2fω). Typically the seasonal effect is not harmonic and it is

approximated by a sum of multiple Fourier components for both weekly and daily seasonal
effects (see Rzym et al. (2020) for details on how to choose the number of components).
Finally, further temporal dependences are captured via a one-dimensional autoregressive (AR)
process

dt = αdt−1 + εdt , (5)

where εdt ∼ N (0, σ2d). Summing the three components to one LG-SSM yields the structural
time series model

xt = lt +
∑
ω

ft,ω + dt + εxt , (6)

where εxt ∼ N (0, σ2x) is a total error Harvey (1990). In terms of the general representation
from (1) we obtain a block-diagonal transition matrix F , in which α is the only parameter.
The variational inference method applied later ensures that −1 < α < 1 as required for
stationarity in (5). The observation matrix H = (1, 0, 1, 0 . . . , 1), with the zeros for states vt
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and f∗t,ω, performs the summation in (6). Note that in (1), b = 0 and Q is diagonal. In (2),
c,R are one-dimensional with c = 0.

2.2. Bayesian inference

In order to fit LG-SSM to the network traffic data of interest, we adopt a Bayesian ap-
proach Murphy (2012) that captures uncertainty via a posterior distribution. For our setting
this approach has the advantage that today’s posterior may play the role of tomorrow’s prior
distribution. The coarse-grained data may thus also serve for the purpose of refining prior
distributions during the provisioning of the prediction service.

For Bayesian inference a joint prior distribution is to be specified for the initial states and
the unknown model parameters. We assume all quantities to be independent a priori, with
marginal normal distributions for the initial states, log-normal distributions (LN ) for the
variance parameters, and a truncated normal distribution for the AR parameter α. The
hyperparameters for these distributions are set using heuristics in TensorFlow Probability
(TFP) Dillon, Langmore, Tran, Brevdo, Vasudevan, Moore, Patton, Alemi, Hoffman, and
Saurous (2017) that aim to provide weakly informative prior distributions. In order to ap-
proximate the posterior distribution we apply Stochastic Variational Inference Murphy (2012)
Given the parameters, the LG-SSM’s predictions (forecasts) are normally distributed. How-
ever, in the Bayesian setup the normality is lost (in general the parameters are not not
normally distributed) and the TFP library approximates forecast distributions by mixtures
of Normal distributions obtained for a fixed number of posterior samples.

2.3. Aggregation to coarser time scales

Let xt be a time series on a fine time scale. We are interested in leveraging information
provided by aggregated versions of xt. Define the r-aggregated time series x′t as the average
of r consecutive values in non-overlapping windows of length r, that is,

x′t =
1

r

r−1∑
i=0

xrt+i, t = 0, 1, 2, . . . . (7)

Hereafter we use a ′ to denote aggregated time series and their parameters and properties.
Since r-aggregation is a linear operation, it retains Gaussianity of xt for x′t. In fact, we also
retain an LG-SSM as detailed in the following proposition, where we write

⊕r
i=1Ai to denote

a direct sum producing the block-diagonal matrix diag(A1, . . . ,Ar).

Proposition 1. Let xt follow the LG-SSM from (1)-(2). Then the r-aggregated process x′t
follows an LG-SSM with rn states given by

z′t = [zTrt, ε
T
rt+1, . . . , ε

T
rt+r−1]

T ,

where [·]T denotes matrix transposition. The transition and observation matrices are

F ′ =

[
F r F r−1 . . . F
0 0 . . . 0

]
∈ Rrn×rn, and (8)

H ′ =
1

r

[∑r−1
i=0 HF

i,
∑r−2

i=0 HF
i, . . . ,H

]
∈ Rm×rn. (9)

The initial state z′0 holds the original initial state and r−1 transition noises. The new system
noise ε′t = [εTrt, . . . , ε

T
rt+r−1]

T is constructed by stacking r system noise vectors, while the new
observation noise δ′t is an average of the corresponding r observation noise vectors. They are
distributed as

ε′t ∼ N

(
[bT , . . . , bT ]T ,

r⊕
i=1

Q

)
, δ′t ∼ N

(
c,

1

r
R

)
. (10)
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Proof. For clarity, the proof will be given for r = 2; cases with larger r are analogous. We
have for t ≥ 1, [

x′t−1
x′t

]
=

1

2

[
I I 0 0
0 0 I I

]
x2(t−1)
x2(t−1)+1

x2t

x2t+1

 , (11)

where I,0 ∈ Rm×m are the identity matrix and the matrix with all entries 0, respectively.
Unrolling the dynamics from (1) and (2) we obtain that

x2t−2
x2t−1
x2t

x2t+1

 =


H 0 0 0
HF H 0 0
HF 2 HF H 0
HF 3 HF 2 HF H



z2t−2
ε2t−1
ε2t
ε2t+1

+


δ2t−2
δ2t−1
δ2t
δ2t+1

 .
Hence,

[
x′t−1
x′t

]
=

1

2

[
H +HF H 0 0

HF 2 +HF 3 HF +HF 2 H +HF H

]
z2t−2
ε2t−1
ε2t
ε2t+1

+
1

2

[
δ2t−2 + δ2t−1
δ2t + δ2t+1

]
,

which simplifies to [
x′t−1
x′t

]
=

[
H ′ 0
H ′F ′ H ′

] [
z′t−1
ε′t

]
+

[
δ′t−1
δ′t

]
. (12)

Equation (12) defines a new state space model as

z′t = F ′z′t−1 + ε′t,

x′t = H ′z′t + δ′t.

3. Numerical experiment

Proposition 1 links observations at a different aggregation level (x′t) to the single underlying
LG-SSM. This link allows the construction of a joint model for two or more time scales that,
as we demonstrate now, yields improved network traffic predictions by leveraging aggregated
historical information. In our Bayesian approach to statistical inference we work with simple
vague priors that assume prior independence of parameters. Hyper parameters are obtained
from data using heuristics from TensorFlow Probability (TFP) Dillon et al. (2017), as de-
scribed in Section 2. For our experiments the following priors were obtained. At the finest
time scale, the initial states l0 and d0 are normal with mean −219 and variance 5 · 105. The
states v0 and f0 are centered normal with variances 105 and 3 · 105, respectively. The log-
normal variances σl, σv, σd, σfω , σx are all derived from a normal distribution with variance
3. The means are 2.8 for the first three variances, and 1.2 for the rest. The AR parameter
α is truncated standard normal, with truncation to (−1, 1). These same priors are also used
to induce priors for aggregated coarse-grained time series; recall Proposition 1, where the
state z′t combines a fine-scale initial state with system noise, the joint distribution of which
is determined by the fine-scale priors and dynamics.

Our numerical experiment uses a real MRTG dataset from downlink traffic measurements
at the first author’s university. In the experiment, we use two non-overlapping sets of sam-
ples: 600 samples taken every 30 min (fine-grained) and 600 samples taken every 2h (coarse-
grained), so in this case r = 4. While the model can use all four aggregation levels in the
data, we focus here on only two of them because the practical solutions proposed in the lit-
erature are focused on a time scale of about 1h Jaglarz et al. (2020) and because we could
substantially simplify our implementation for r being a power of two. The overall time span



Austrian Journal of Statistics 119

20
19

-11
-05

20
19

-11
-07

20
19

-11
-09

20
19

-11
-11

20
19

-11
-13

20
19

-11
-15

2000

1000

0

1000

2000

x t
[M

b/
s]

traffic
Forecst begin
forecast 2h+30min

forecast 30min
forecast ±2

(a) time series

11
-14

 06

11
-14

 12

11
-14

 18

11
-15

 00

11
-15

 06

11
-15

 12

11
-15

 18

11
-16

 00

11
-16

 06

2000

1000

0

1000

2000

traffic
forecast 2h+30min
forecast 30min
forecast ±2

(b) zoom of forecast

Figure 1: Fine-grained traffic time series and prediction 1a. The orange ribbon represents
forecast uncertainty for the fine-grained model. The blue ribbon shows improved uncertainty
obtained from our joint model. Additional observations improve the likelihood of forecast
(the likelihood of true future according to forecast distribution) by a factor of e2.32 ≈ 10 (log-
likelihood changed from 543.6 to 545.92) and expected mae over 3.7×. Holiday: 11, weekend:
9 10 November.

then covers around 62 days, from which the last 2 days are used only for forecast validation.
The data exhibits a strong seasonal component including both weekly and daily patterns (see
Figure 1), which our model picks by inclusion of two periodic components (16 harmonics
each). We note that since the fine-grained part of the series contains only one weekend and a
holiday on Monday, it is difficult to estimate the weekly seasonal effect as well as long-range
trend, as represented by (3), using only observations from one time scale. The forecast from
the fine-grained model based on (6) is presented in Figure 1 and denoted as forecast 30min.
The forecast distribution is a mixture of 50 equally probable Kalman prediction distributions
obtained for 50 samples from the surrogate posterior in the variational approach.

Although the average is reasonably accurate, the forecast uncertainty is very large. This can
be explained by the fact that the extra Monday breaks the periodic patterns and increases
variability in the trend component. Addition of additional observations at the coarser 2h
resolution substantially improves the prediction. The prediction interval decreases by more
than a factor or three, and the likelihood of the forecast data increases about ten times.

Further intuition about the results can be provided by computing the expected mean abso-
lute error, where the expectation is computed for estimated forecast distribution. In other
words, this is the average error for all possible future values and thus it depends on the
entire forecast distribution. The expectation computed with the Monte Carlo method us-
ing 100 samples (possible forecasts) yield the following values: mae30min = 602± 36 Mb/s
and mae30min+2h = 160± 9 Mb/s. The use of historical data decreased mae over 3.7×.
We emphasize that this substantial improvement in model accuracy comes at a moderate
computational cost.

As previously mentioned, the estimation and forecast were implemented using TensorFlow
Probability Dillon et al. (2017). The implementation with additional numerical examples is
openly available in Rusek (2021) as open-source software. The LinearOperator API provided
by TensorFlow allows one to implement the model efficiently without instantiating the large
block matrices from (8) and (9). Only small dense matrix multiplications are executed,
which can be done efficiently via the associative scan procedure. Furthermore, our code was
JIT-compiled using XLA – a TensorFlow linear algebra compiler and executed on GPU. We
observed increased numerical precision of compiled (and optimized) computations compared
to step-by-step execution. The computational cost of 300 variational steps of the estimation is
about 2.5h on Tesla V100 SXM2 GPU. Most of the time is used for compilation (we observed
a similar run time without JIT). However, as described earlier this cost is amortized by the
fact that once we have determined the parameter posterior we can refine the model online
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without lengthy computations.

4. Discussion and conclusions

In this paper we proposed a Bayesian structural time series model for network traffic mea-
surements that feature different time scales. Our LG-SSM approach readily allows one to ag-
gregate fine- versus coarse-grained observations. Our experiment shows that including older
coarse-grained statistics on network traffic can drastically improve prediction accuracy and
uncertainty. We are confident this observation would similarly hold in other modeling context,
including for example single source of error models (aka exponential smoothing) Hyndman
and Athanasopoulos (2018).

The data we consider were collected using the MRTG tool and come in the form of nonnegative
measurements. The fact that we model these directly as Gaussian and with additive structure
is a clear limitation of our work. Indeed, log-normal distributions have been shown to give
more accurate descriptions of network traffic Alasmar, Parisis, Clegg, and Zakhleniu (2019).
When working with a single time scale this issue can be addressed quite straightforwardly
by applying our model to the log-transformed traffic data. With this transformation additive
effects in the model would correspond to multiplicative effects on the original nonnegative
scale, and thus more appropriately capture the fact that during the periods of highest traffic
intensity (middle of the day) one observes higher fluctuations compared to nights when the
traffic is smallest. Classical alternative to this transformation is GARCH model Zhou, He,
and Sun (2006). However, with more than one time scale and aggregation of data the use
of log-transformations or GARCH is more subtle because time aggregation by averaging is
no longer on the log-scale. As a resolution of this problem we propose that software systems
store geometric instead of arithmic means when aggregating older measurements of traffic
size. This simple modification would make our model (and other possible LG-SSM) directly
applicable to log-transformed data with multiple time scales.

We tested this proposal on the real traffic, see detail in the Appendix A. The experimental
results support our claims for both log-transformed and non-scaled data. The reduction of
prediction variance significantly improves predictions in the log-transformed domain. The
application of log transform also reduces forecast error by eliminating unrealistic negative
forecasts. We observed a 4% reduction of mae, solely due to forecast in the log domain. This
is a clear indication that when it comes to network traffic, the geometric average is more
informative compared to arithmetic aggregation.
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A. Geometric averaging

In this section, we report the results of an experimental aggregator based on geometric aver-
aging. Since MRTG offers only 600 raw samples at a resolution of 5 min it cannot be used to
evaluate geometric aggregation over 2h and 30 min as this requires 18,000 samples.

For the purpose of evaluating the link was monitored for over two months to obtain a new time
series. The traffic was aggregated into 600 samples at resolution 30 min and 600 at resolution
2h to match exactly our main experiment. Two aggregated datasets were produced: one from
the raw observation (arithmetic), and one from the log-transformed observations (geometric).
For both datasets, we repeated the main experiment reported in the paper obtaining two
types of forecast: trained on 30 min data only and combined 2h and 30 min. The Mean
absolute errors obtained in the four experiments are reported in table 1. The accuracy is

Table 1: Mean Absolute Error (Mb/s) of the forecast

Aggregation 30 min 30 min and 2 h

Arithmetic 395±1.8 389±1.8
Geometric 2749±407 376±5

calculated in the original scale. The forecasts in the geometric case are transformed forecasts
from the log-transformed observations and visualized in figure 2.

The first observation from the experiment is that additional observations always improve
prediction. In the arithmetic experiment, the benefit is not large as in the main experiment
because the traffic is quite regular and the training dataset does not contain any holidays that
may introduce a large variance of the trend component. Having said that in the geometric
experiment we observe a huge improvement in the prediction. In fact, the additional obser-
vations at 2h resolution are necessary to make a long-term forecast. Without this, the large
variance of the model gets magnified by the exp transform that results in the average (note
that the mean of log-normal distribution depends on the variance of the underlying normal
distribution) of over an order of magnitude too large in two days. Using a median as a point
forecast would yield more stable and interpretable long-term predictions as with normal dis-
tribution, the mean equals the median. And the median of a transformed random variable is
the transformed median. On the other hand, low variance forecasts from the model trained on
the joint dataset follow the observed traffic. Furthermore, the forecast error is reduced by 5%
compared to the baseline of a model trained on 30 min dataset with arithmetic aggregation.
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Figure 2: Fine-grained traffic time series and prediction (with prediction intervals) for geo-
metric aggregation
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