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Abstract

Compositional approaches are beginning to permeate high throughput biomedical sci-
ences in the areas of microbiome, genomics, transcriptomics and proteomics. Yet non-
compositional approaches are still commonly observed. Non-compositional approaches
are particularly problematic in network analysis based on correlation, ordination and ex-
ploratory data analysis based on distance, and differential abundance analysis based on
normalization. Here we describe the aIc R package, a simple tool that answers the funda-
mental question: does the dataset or normalization exhibit compositional artefacts that
will skew interpretations when analyzing high throughput biomedical data? The aIc R
package includes options for several of the most widely used normalizations and filtering
methods. The R package includes tests for subcompositional dominance and coherence
along with perturbation and scale invariance. Exploratory analysis is facilitated by an
R Shiny app that makes the process simple for those not wishing to use an R console.
This simple approach will allow research groups to acknowledge and account for potential
artefacts in data analysis resulting in more robust and reliable inferences.

Keywords: compositional data, sub-compositions, data normalization, high throughput se-
quencing, R.

1. Introduction

In the last two decades, high throughput sequencing (HTS) has become the method of choice
to characterize molecular events in cells, organisms and ecosystems. There are many ex-
perimental designs that interrogate gene expression (transcriptomics, metatranscriptomics,
single-cell sequencing), chromatin structure (ChIP-seq, Hi-C, etc), protein function (SELEX,
CRISPR-activity), and microbial community structure and function (16S rRNA tag sequenc-
ing, metagenomics). New methods are being developed that will examine spatial and temporal
gene expression in cells, tissues and organisms. All these methods start with the design-specific
production of a ‘library’ of short fragments of DNA, or RNA converted to DNA, which are
then sequenced on an instrument. In each case, the instrument generates counts of the frag-
ments in the input library up to the limit of the instrument which varies between hundreds
of thousands and billions of fragment counts. However, each instrument has an upper bound.
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For this reason the instruments generate ‘count compositional’ data; discrete fragment counts
with a meaningless upper limit(Lovell, Müller, Taylor, Zwart, and Helliwell 2011).

Despite the uniform way that data is generated, the analytic tools for each experimental
design developed organically and episodically. For example, the earliest approaches to char-
acterize transcriptome data depended on a modified proportion, termed the RPKM, or reads
per kilo base per million, where the total number of fragment counts per gene was normal-
ized by both the gene length and the total counts in the sample and then multiplied by 1
million (Mortazavi, Williams, McCue, Schaeffer, and Wold 2008). Serious deficiencies in this
approach were observed early on leading to the concept of ‘count normalization’ where a
pseudo standard was chosen and the values in each sample were then divided by a normal-
ization constant. The various normalization methods differed mainly in how they choose the
pseudo standard. As another example, the microbiome field used rarefaction, or down sam-
pling, to normalize the total number of counts in each sample (Hughes and Hellmann 2005).
Anomalies in the results observed with rarefied data suggested that the count normalization
approaches used in transcriptome analysis might be useful (McMurdie and Holmes 2014),
and a comprehensive study showed that some microbiome datasets worked well with rarefac-
tion, others with count normalization and others or with compositional approaches (Weiss,
Xu, Peddada, Amir, Bittinger, Gonzalez, Lozupone, Zaneveld, Vázquez-Baeza, Birmingham,
Hyde, and Knight 2017).

Multiple groups suggested that compositional data approaches should be universal tools for
analyzing HTS datasets (Lovell et al. 2011; Fernandes, Reid, Macklaim, McMurrough, Edgell,
and Gloor 2014; Quinn, Erb, Gloor, Notredame, Richardson, and Crowley 2019), but uptake
has been sporadic. In part this is because of a lack of a standard of truth in many of the
datasets. Once a result is in the public sphere any new approach, even if formally correct,
may not be taken up by the community unless it reproduces at least some of the previous
(erroneous) results.

Fundamentally, compositional data exists not in Euclidian space which contains the same
number of dimensions as parts but on the Simplex which contains one less dimension than
the the number of parts (Aitchison 1982). For example, a three part dataset in Euclidian space
with co-ordinates (1,2,2) represents the locations of the data in the x, y and z dimensional
space. The equivalent compositional dataset where the only the relative data is relevant can
be represented by the co-ordinates 0.2, 0.4, 0.4 (all values divided by their sum). It should
be clear that knowing the values of any two parts automatically defines the value of the
third, and two dimensions of data are all that is necessary. This property is the fundamental
constraint of compositional data, with only the ratios between the parts being relevant. This
constraint has long been known by statisticians going back to Pearson (1897) but it took until
1982 for Aitchison (1982) to place the analysis of compositional data on a firm theoretical
foundation through the use of log-ratios between the parts. Log-ratio analysis sets up an
analysis approach that is parallel to the usual analyses done in Euclidian space, and with
proper attention to detail almost all analytic tools can be adapted to analyze compositional
data. The use of compositional approaches with a firm theoretical foundation is particularly
useful when there is not a ground truth that can be used to evaluate outcomes.

Aitchison (1982, 1986, 1992) defined the criteria that the analysis of compositional data must
fulfil based on analogy with the criteria for the analysis of data that exists in Euclidian
space. Firstly, any analysis should be scale invariant because compositional data contain
only relative information. In other words, a dataset of (1,2,2) is equivalent to a dataset
of (10,20,20) because they can both be reduced to the unit dataset of (0.2, 0.4, 0.4) by
dividing by the total. There is no non-compositional analogue with scale invariance because
non-compositional data cannot be reduced to a unit dataset without loss of information.
However, if such a transformation is done-say by converting a dataset of real numbers to
proportions-then the dataset has become a composition. Secondly, any analysis should be
sub-compositionally dominant; that is, the distances between samples in a sub-composition
should be the same as or smaller than the distances between samples in the full composition.
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This is the compositional analogue of subspace dominance in non-compositional data. Thirdly,
the analysis should be perturbation invariant. This property refers to the change in distance
between samples when the data has a systematic perturbation, and is the non-compositional
analog of translation invariance. Fourthly, the data should be compositionally coherent, that is
the correlation structure of the parts in a subset should be similar to the correlation structure
of the whole set of parts. Non-compositional data adheres to this principle. Finally, any
analysis should be permutation invariant; that is, the order of the parts should not affect the
outcome. In practice, permutation invariance is easy to satisfy, as is compositional dominance,
at least approximately. However, scale invariance, perturbation invariance and coherence can
be difficult to achieve and can dramatically effect the interpretation of datasets making the
results sensitive to particular ways of treating the data. The relative importance of each of
these criteria can vary with the dataset and the type of analysis being conducted and scenarios
where each criteria could result in a spurious result are given in the examples below.

It is not always apparent when the combination of a particular dataset and transformation
fail to achieve the ideal properties laid out by Aitchison, and previous work showing that most
approaches are not compositionally appropriate (Palarea-Albaladejo, Mart̀ın-Fernàndez, and
Soto 2012) can be difficult to conceptualize for the HTS community. The purpose of this
report is to provide a simple toolbox that can be used to determine if a transformation is
likely to give sensible and robust answers in a given HTS dataset. This toolbox is composed
of the aIc R package that can be used by those familiar with the command line and an R shiny
app that can be called from within aIc using the aIc.runExample() command. The hope is that
this toolkit can become part of a standard workflow that will be both educational and useful.

2. Methods and data

2.1. Data characteristics

Datasets were collected from a variety of sources and are all publicly available with the sources
and availability given in the Table 1.

Table 1: Datasets and sources

Name File In aIc Group size ENA/SRA Accession Source
transcriptome transcriptome.tsv yes 48, 48 PRJEB5348 Schurch 2016aa
single-cell singleCell.tsv yes 1000, 1000 N/A Skinnider 2019
meta-transcriptome mtsc.tsv yes 8, 10 PRJEB31833 Wu 2021
16S rRNA meta16S.tsv yes 198, 161 SRP107602 Bian 2017
SELEX SELEX.tsv no 7, 7 N/A McMurrough 2014

All datasets were generated from one of the Illumina HTS platforms using a variety of library
preparation methods that are detailed in the references for each dataset and summarized be-
low and in Table 1. Each dataset was used as an input for the aldex.effect() function from the
ALDEx2 R package and the ‘diff.win’ and ‘rab.all’ values were plotted (R Development Core
Team 2022; Fernandes et al. 2014; Gloor, Macklaim, and Fernandes 2016a) and are shown
in Figure 1. The formula for calculating these two parameters is given by Fernandes et al.
(2014). Simply put, the ‘diff.win’ is measuring the dispersion of the log-ratio of each part and
differs from the standard deviation by a simple scaling factor in a Normal distribution, but
provides sensible values even in skewed or multimodal data. The ‘rab.all’ value is the mean
of the log-ratio of each part. Here it is clear that the relationship between dispersion and
relative abundance varies greatly by dataset. This is important because the normalizations
employed in analyzing high throughput sequencing datasets assume a dispersion v. abun-
dance relationship like that observed for the transcriptome dataset (Anders and Huber 2010;
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Figure 1: Dispersion vs. relative abundance characteristics of different high throughput se-
quencing datasets. Publicly available high throughput sequencing datasets were processed
using the aldex.effect function from the ALDEx2 R package to estimate the within-group dis-
persion and relative abundance. These two variables were plotted on the x and y axes and
are color-coded by their data type which is expanded on in the text. Abbreviations: t’ome-
transcriptome; rRNA-ribosomal RNA; selex-in vitro selection experiment

Robinson and Oshlack 2010). It should be obvious that the application of a tool that expects
such a predictable relationship will often fare poorly in datasets that have less dependence
between the parameters such as is seen in the meta-transcriptome dataset or even has no
discernible relationship as shown for the SELEX dataset.

The transcriptome data was generated by Schurch, Schofield, Gierliński, Cole, Sherstnev,
Singh, Wrobel, Gharbi, Simpson, Owen-Hughes, Blaxter, and Barton (2016) and processed
into a read table in house as described by Wu, Macklaim, Genge, and Gloor (2021). The
raw reads for single-cell transcriptome dataset was from Zheng, Terry, Belgrader, Ryvkin,
Bent, Wilson, Ziraldo, Wheeler, McDermott, Zhu, Gregory, Shuga, Montesclaros, Underwood,
Masquelier, Nishimura, Schnall-Levin, Wyatt, Hindson, Bharadwaj, Wong, Ness, Beppu,
Deeg, McFarland, Loeb, Valente, Ericson, Stevens, Radich, Mikkelsen, Hindson, and Bielas
(2017), and processed into a read table by Skinnider, Squair, and Foster (2019). The data used
here contrasts cells identified as cytotoxic T-cells and memory T-cells and includes only cells
above the upper quartile of total reads, and includes only reads with an average read count
greater than 0.11 across all samples. This was further reduced to 1000 cells at random for
each group to keep the dataset manageable. Code for these filtering steps are in make-single-
cell.R at http://github.com/ggloor/datasets. The meta-transcriptome dataset was described
in (Macklaim and Gloor 2018; Wu et al. 2021). The 16S rRNA gene sequencing dataset is
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a subset that compares pupils to centenarians from (Bian, Gloor, Gong, Jia, Zhang, Hu,
Zhang, Zhang, Zhou, Zhang, Burton, Reid, Xiao, Zeng, Yang, and Li 2017). Finally, the
SELEX dataset is the full dataset from (McMurrough, Dickson, Thibert, Gloor, and Edgell
2014) and is included as the test dataset in the ALDEx2 R package available from the Bio-
conductor repository (Gentleman, Carey, Bates, Bolstad, Dettling, Dudoit, Ellis, Gautier,
Ge, Gentry, Hornik, Hothorn, Huber, Iacus, Irizarry, Leisch, Li, Maechler, Rossini, Sawitzki,
Smith, Smyth, Tierney, Yang, and Zhang 2004). All these read count tables, excepting the
SELEX dataset, are included as the aIc R package as datasets, and the group sizes needed to
determine normalizations per group are given in Table 1.

2.2. Data normalization

Data as collected from a high throughput sequencing instrument results from several pro-
cessing steps that occur prior to sequencing, while on the instrument and following raw data
collection. The data as collected are short sequence fragments of about 100 characters known
as reads which are further processed by trimming, filtering, subsetting and binning. McLaren,
Willis, and Callahan (2019) summarized how each of these steps can introduce bias in the
detection, abundance and integrity of the parts (gene, function, species, etc) being measured.

The sequencing instrument itself imposes a limit on the total number of reads collected, and
the total available reads are distributed amongst the number of samples being examined
(Lovell et al. 2011). The random distribution of reads amongst samples means that even
an identical replicate of a sample can have a substantially different total number distributed
between the parts. This property of HTS led early on to the idea of ‘library size’ or normal-
ization being needed to compare the read counts per part across samples and experimental
replicates (Mortazavi et al. 2008). Broadly, there are two main ways of normalization. First,
by normalizing only within a sample, that is each sample is normalized independently and the
proportion, clr, iqlr and RPKM approaches are in this class. Second, by normalizing between
samples, that is a reference is chosen external to the samples and all samples are normalized
to a reference. The Trimmed mean of M values, hereafter the TMM (Robinson and Oshlack
2010), and the relative log expression scaling , hereafter the RLE (Anders and Huber 2010),
methods being in this class.

Proportions and similar corrections: If we denote the raw read counts of a part p in sample
j as ypj with D being the total number of parts in a sample, then the total number of reads
n for sample j is the sum across all parts

nj =
D∑
p=1

ypj . (1)

The total counts observed across all samples is the sum of all nj samples that were on the
sequencing run, with the values of nj being distributed around some location. The actual
values of nj have no meaning and are nuisance parameters. It was realized early on that in
order to compare the values of ypj with ypk that it was necessary to scale or normalize these
values in some way.

The simplest approach to normalization is the proportion

proppj =
ypj
nj

. (2)

The realization that proportions were not real numbers and that the number of reads per part
depended not just on its abundance in the input, but also its length led to further corrections
such as reads per kilo base per million (RPKM) (Mortazavi et al. 2008), transcripts per
million (TPM) (Wagner, Kin, and Lynch 2012) and others. Fundamentally, though these
normalizations are simply proportions scaled by one or two constant values and are expected
to have similar properties as the proportion.
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Two commonly used normalizations (RLE, TMM) normalize each sample to a reference or
pseudo-reference sample under the assumption that the majority of parts in the samples are
invariant(Anders and Huber 2010; Robinson and Oshlack 2010). Thus, these transformations
attempt to transform the read counts by using information about parts across samples.

The relative log expression (RLE) normalization: This normalization is widely used for both
transcriptome and microbiome analysis and originated in the DESeq R package (Anders and
Huber 2010). It was developed because obvious problems with proportions and other normal-
izations were observed. Thus, the focus changed to determining a size factor s with the goal
of making data across samples comparable. The intention was that the common size would be
relatable in some way to the actual values in the pre-sequencing samples. A key assumption
was that the majority of parts in the underlying environment were invariant (or varied only
by random effects). If this were true, then determining the set of invariant parts would allow
the underlying non-compositional data to be exposed.

The RLE normalization determines a scaling factor by first determining the geometric mean
of each part across all N samples gp = (ΠN

j=1ypj)
1
N ; this is a pseudo reference. The method

proceeds by then calculating the ratio rpj =
ypj
gp

and for sample j determining the median
value of r∗j , and so on. This is the scaling factor for sample j and the final scaled counts of
sj is given by

spj =
ypj

med(r∗j)
. (3)

By design, med(r∗j) is close to 1 so that the scaled values appear to be positive real numbers,
but in fact the values are ratios between the count and the geometric mean value determined
for each sample. Parts with 0 counts do not contribute to gp in current versions of the software,
but all non-zero counts are always scaled by this constant.

The trimmed mean of M values (TMM) normalization: A second widely used approach to
determining scaling factors is the TMM method used in the edgeR R package for differential
abundance (Robinson, McCarthy, and Smyth 2010; Robinson and Oshlack 2010). The TMM
is also calculated in a multi-step process that first identifies a reference sample yr as the one
where the parts in the upper quartile of count values are the closest to the mean of all samples.
Then parts that are between the 30th and 70th decile of log-ratio between the samples in the
observation ypj and reference group ypr, and that are in between the bottom 5% and the
top 95% abundance of the read count per sample. This set of parts P∗ can then weighted

by a variance function for each part w
(r)
pj and the log-ratio sum is determined. The equation

summarizing these steps from the supplement of Quinn, Erb, Richardson, and Crowley (2018)
is reproduced below:

TMMj =
∑
P∗

w
(r)
pj log2

ypj
ypr

. (4)

There is an alternative description in Maza (Maza, Frasse, Senin, Bouzayen, and Zouine 2013)
that compares the steps involved in calculating both the RLE and TMM normalization. As
with the RLE normalization, the count values values are then divided by the normalization
factor, which again by design is close to 1, to output the scaled counts. The constraint that
both ypj and ypr > 0 is enforced when calculating the scaling factor but all parts are scaled
by TMMj .

While both the RLE and TMM values are presented and used as counts for downstream pro-
cessing of differential abundance it should be clear that they are actually ratios, and many
analyses are done with the logarithm of those ratios. Quinn et al. (2018) argue that after a
logarithm is taken the RLE and TMM normalized counts should have similar properties to
centre log-ratio transformed values. However, the clr and derived transforms only use infor-
mation about parts within samples and not across samples; this is a fundamental difference
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between the clr and other widely used transformations. We shall see that these normalizations
are not equivalent in practice.

The centred log-ratio transformation (clr) and similar: The centred log-ratio was introduced
in the discussion following (Aitchison 1982) as the ratio between ypj and the geometric mean
of all parts of sample j

clrpj =
log(ypj)

(ΠD
p=1ypj)

1
D

. (5)

A related transform is the interquartile log-ratio (iqlr) that was introduced to help centre
the data when the dataset contained an asymmetry between the groups (Wu et al. 2021). It
differs from the clr in that only a subset of the parts are used to determine the geometric mean
used as the denominator for the clr calculation. In the case of the iqlr, the parts are chosen
as those that have a log-ratio variance between the first and third quartile of the data (the
interquartile range of a standard boxplot), determined on a per-group basis and the intersect
is take between the parts in the two groups.

2.3. Tests and parameters
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Figure 2: Graphical explanation of the data manipulations. Subsetting removes parts at
random from each sample. Scaling multiplies each part by a constant in all samples. Pertur-
bation multiplies a subset of data by a constant in all samples. The results of distance tests
between sample 1 and sample 2 (S1, S2) are compared to the distances in the original dataset
for dominance, scaling and perturbation tests. The results of the correlation for the parts in
common between the original and subset are compared for the coherence test.

We employed the tests outlined in Palarea-Albaladejo et al. (2012) to examine the properties
of each of the transforms in multiple datasets on distances between the samples and followed
Lovell, Pawlowsky-Glahn, Egozcue, Marguerat, and Bähler (2015) to examine correlation.
Figure 2 shows a summary of the data modifications and which tests were applied to each
modification.
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2.4. Availability of data and code

All data and code are available at https:://github.com/ggloor/amIcomp. The code, including
the shiny app is available in the aIc R package is available on the Comprehensive R Archive
Network (Chang, Cheng, Allaire, Sievert, Schloerke, Xie, Allen, McPherson, Dipert, and
Borges 2022). Datasets are included in either the aIc or ALDEx2 R packages available on
CRAN or Bioconductor.

3. Results
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Figure 3: Graphical output from aIc tests on the SELEX dataset. The outputs of the four
main tests of aIc are shown here with the location of ideal behaviour given in each panel as the
dashed red line. The aIc.dominant test determines if the distances in a full dataset are equal
to or larger than the distances in a subset of the dataset. The aIc.scale test determines if the
distances between parts in a scaled version of the data is substantially similar to the unscaled
version. The aIc.perturbation test determines if distances between parts in the perturbed
dataset is substantially similar to the unperturbed dataset. The aIc.coherence test determines
if the correlations between parts in common are similar in the full dataset or a subset of the
dataset. In the ideal case, the correlations should be identical. Values in the upper part of
the Scale and the Perturbation tests graphs represent the maximum density value for the clr
transformed test. The extremely large maxima indicate that the distribution around 0 is very
narrow.

For each dataset we examine the effect of each normalization on the outcomes of the four
tests. The TMM and RLE normalizations are used to generate ‘normalized counts’ across
samples for differential abundance analysis which uses a Negative Binomial fit to these data
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(Anders and Huber 2010; Robinson et al. 2010), yet some uses of these outputs such as
dimension reduction and clustering often use logarithms of the normalized values. Thus, we
report results for both the original and after a logarithm is taken for each dataset.

Figure 3 shows the graphical output for each of the tests. Three of these tests examine the
effect of data normalizations on distances between samples, and the fourth test examines
the effect of data normalizations on correlations. These examples use the SELEX dataset
generated by McMurrough et al. (2014). This dataset is useful for a number of reasons. First,
by design, all samples and parts in the dataset are independent. Thus there should be no
internal correlation structure in the data. Second, the dataset has only a single directional
change in both relative and absolute abundance. Third, this dataset has a known standard of
truth derived both from phylogenetic inference and from direct biochemical observation. For
simplicity Figure 3 shows a graphical summary of the output of each test using only three
transformations; the clr, TMM and the logarithm of the TMM transform.

Subcompositional dominance determines the effect of subsetting the data on the distances
between samples, and is the compositional analog of subspace dominance in Euclidian space.
Changing the data by subsetting corresponds to reducing the number of dimensions in the
data. In order to pass this test Euclidian distances between samples in the subset should
always be equal to or less than the distance between the samples in the complete dataset
(Aitchison 1992). More formally, if we have the full composition X and a sub composition x
distances d(Xi, Xj) >= d(xi, xj). All high throughput datasets are subsets either derived by
subsetting at the initial data collection step–rRNA depletion for transcriptomes, amplification
bias for 16S rRNA gene sequencing–or by subsetting during the computational pipeline or
both. It is also common to remove parts that are present in only a small percentage of
the samples. The test employed here removes 50% of the parts at random and compares
distances between samples in both the original and the subset data. It is expected that
Euclidian distance based on clr transformed data, i.e, the Aitchison distance, will always be
sub compositionally dominant and so serves as a sanity check on the methods.

The ‘Dominance’ test in Figure 3 outputs the distance between samples of the subset relative
to the starting distances between samples. Success in this test can be summarized as the
proportion of pairwise distances between samples that are larger in the full set than in the
subset. A single number summary of this graphic is the proportion of reference distances
that are greater than the distances in the sub composition for parts in common. In the
example shown all three transforms pass the dominance test. Table 2 shows this summary
statistic for the five different datasets. Sub-compositional dominance seems to be relatively
easy to achieve for most datasets except for the 16S rRNA dataset when the RLE, TMM
normalizations are used. In general, raw proportions are not sub-compositionally dominant
as expected (Palarea-Albaladejo et al. 2012).

Table 2: Tests of compositional dominance

Dataset prop prop-l clr iqlr RLE TMM RLE-l TMM-l
SELEX 0.09 1 1 1 1 1 1 1
16S 0.05 1 1 1 0.81 0.53 1 1
tsc-ome 0.04 1 1 1 1 1 1 1
single cell 0 1 1 1 1 1 1 1
meta-tsc 0.37 1 1 1 1 1 1 1

Scale invariance determines the effect of changing the scale of the data (Aitchison 1992).
In the context of high throughput sequencing this property is desirable because we would
like to make congruent inferences regardless of the sequencing depth. Indeed, the need for
scale invariance is one of the pillars underling the logic of all transforms used to analyze
HTS data(Robinson and Oshlack 2010). Formally, if we have the original composition X and
a composition x that X multiplied by a constant (5), then distances are scale invariant if
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d(Xi, Xj) = d(xi, xj). The ‘Scale’ test that is graphically shown in Figure 3 measures the
distances between samples for the dataset and a scaled version of the same dataset. This
corresponds to situations where samples have wildly divergent library sizes or where the data
was pooled across different sequencing runs. In this test success occurs when there is no
significant difference between the distances; graphically this is represented by the density of
the output being tightly grouped around 0 difference. This test is passed by both the clr
as expected, and the logarithm of the TMM, but is failed by the raw TMM values which
show an approximate 4-fold inflation of sample distances in the scaled dataset. This is not
surprising because the raw TMM is merely an adjustment of the count values and a 5-fold
change in scale is expected. A single number summary of this test is the maximum deviation
from 0 value on the graph, and Table 3 shows this summary for all the tests and datasets. In
practice, the scale invariance test is more difficult to pass than is the dominance test. The
raw TMM, RLE and proportion consistently failed this test. Unexpectedly the TMM showed
a 17-fold change in distance for the 16S rRNA dataset. Note that even the logarithm of
the TMM normalization showed less than ideal behaviour with some samples having up to
32% difference from the desired outcome of no deviation in some datasets. This has obvious
implications for distance-based analyses such as clustering and ordination.

Table 3: Tests of scale invariance

Dataset prop prop-l clr iqlr RLE TMM RLE-l TMM-l
SELEX 0.01 0 0 0.02 4.03 4.02 0 0
16S 0.01 0 0 0.03 4.02 17.2 0 0.32
tsc-ome 0.02 0 0 0 4.04 4.05 0 0
single cell 0 0 0 0.01 4.02 4.84 0 0.03
meta-tsc 0 0 0 0.01 4.01 4.05 0 0

Perturbation invariance determines the effect of a systematic change on the distances between
samples when only a subset of the parts have scaled values; this is the compositional analog
of translation invariance in Euclidian space (Aitchison 1992). In the context of HTS this
corresponds to some parts being more (or less) easily observable because of upstream collection
and processing steps and could correspond to an amplification bias or selection bias for some
parts (McLaren et al. 2019). The test employed here compares the original dataset and a
dataset where the most abundant 50% of the parts are perturbed by a factor of 5.

The ‘Perturbation’ test shown graphically in Figure 3 measures the distances between samples
for the whole dataset and for the perturbed version of the same dataset. The ideal situation is
that the distances between samples is not affected by perturbation since this corresponds to a
simple translation of the samples from one location in space to another without changing the
relationship between the samples. Again the ideal behaviour is no change in distance between
the samples in the original and the perturbed datasets. Formally, if we have the original
composition X and a perturbed composition x that has arbitrary values of X multiplied by
a second composition, then distances are perturbation invariant if d(Xi, Xj) = d(xi, xj). As
can be seen in Table 4 this test is very problematic for almost all normalizations in almost
all datasets. Here we can see that only the clr and the closely related iqlr transforms are
reliably perturbation invariant. All other transformations can have arbitrarily large changes
in the distances between samples upon perturbation of the data ranging from a 1% change
to over a 6-fold change in distance. The raw RLE, TMM transforms behave very poorly, and
log transformation improves the outcome somewhat from 2- to 4-fold changes in distances to
double or single digit percentage differences in distance depending on the dataset and trans-
formation. The actual variance from ideal behaviour appears to be unpredictable regarding
the transformation and the dataset. Again, such a pathology will have obvious implications
for distance-based analyses such as clustering and ordination.

Sub-compositional consistency (coherence) determines the effect of subsetting the data on the
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Table 4: Tests of perturbation invariance

Dataset prop prop-l clr iqlr RLE TMM RLE-l TMM-l
SELEX 0.51 0.33 0 0 2.3 2.34 0.16 0.16
16S 1.76 0.31 0 0 3 6.15 0.33 0.52
tsc-ome 0 0 0 0 4.01 4.02 0 0
single cell 1.54 0.05 0 0 2.04 2.04 0.05 0.05
meta-tsc 0.2 0.02 0 0 4.26 5.08 0.02 0.04

Table 5: Tests of correlation coherence

Dataset prop prop-l clr iqlr RLE TMM RLE-l TMM-l
SELEX 0.98 0.98 0.96 0.92 0.97 0.97 0.97 0.97
16S 1 1 0.99 0.99 1 0.98 1 0.98
tsc-ome 1 1 1 1 1 1 1 1
single cell 1 1 1 1 1 1 1 1
meta-tsc 0.98 0.98 1 0.99 0.99 0.98 0.99 0.98

correlation between parts using the same subsetting as the dominance test. In the context
of HTS it is common to filter parts on either relative or count abundance to remove those
near the low count margin, and to filter by occurrence to identify parts that are in a plurality
or majority of the samples. The test employed here removes 50% of the parts at random
and compares Pearson or Spearman correlation coefficients between variables in both the
supplied and the data subset; the example shown here uses Pearson correlation between the
parts. An alternative test by (Greenacre 2011) can be used, but it is not as efficient for large
datasets. Note that this is not testing the correlation between the pre- and post-sequencing
data; i.e. between the underlying counts and what the instrument returns which is known to
be non-reproducible (Friedman and Alm 2012; Lovell et al. 2015). Here, the ideal situation
would be a correlation coefficient of the correlations calculated between the parts in common
to be 1. Again Figure 3 shows a graphical example. Interestingly, the correlation between
the parts in the SELEX dataset the TMM and the logarithm of the TMM look extremely
similar and are clustered around strong positive correlation. In contrast, the correlation be-
tween the parts in the SELEX data are dispersed and the clr transformed analysis shows a
marginal distribution that is non-skewed and strongly platykurtic. In practice, the correlation
between correlation coefficients in the complete and subset data is very high for all tests, but
the investigator should characterize the underlying correlation graphically to guard against
the spurious observation that was seen in the SELEX dataset with the TMM normalization.
Examination of the correlation plots of the other datasets shows that the uniform high cor-
relation observed for TMM in the SELEX dataset is unusual and that the correlation plots
more closely resemble that observed for the clr transform for all other datasets and trans-
forms. This suggests that the TMM normalization is introducing some unwanted correlation
structure in this transformed dataset.

Skinnider et al. (2019) noted that correlations in HTS data are problematic because of in-
consistency and surprisingly low sensitivity for grouping known biological associations. Erb
(2020) suggested that partial correlation coefficients of clr transformed data provide both
consistency and higher accuracy, although this was not tested here. Thus, given the broad
agreement between the subset and the full dataset for correlation within each sample and
normalization, we examined the correlations within each dataset across normalizations. The
results are summarized in Figure 4. We observed that the consistency of the correlation
coefficients varies widely by dataset. Surprisingly, inter-normalization correlation was not
associated with intra-dataset variance as the 16S rRNA dataset has high dispersion while
the single cell transcriptome has relatively low dispersion, yet both datasets show high inter-
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Figure 4: Correlation within datasets between normalizations. The correlation of correlation
coefficients for pairs of features in the noted datasets are shown using the ellipse R package
(Murdoch and Chow 2022). These range from a low of 0.18 within the SELEX dataset to very
consistent correlations in the 16S rRNA and single cell transcriptome datasets. The datasets
are arranged from lowest to largest number of samples. Sample sizes given in Table 1

normalization correlation. On the other hand, consistency seemed to be associated with group
size. Consistency was lowest for the SELEX and metatranscriptome datasets which have small
sample sizes; SELEX contains 7 samples in each group, and metatranscriptome has group sizes
of 7 and 10, while the moderately sized transcriptome dataset with 48 samples per group had
modest correlation, and the large 16S rRNA dataset had very high inter-normalization corre-
lation. In keeping with the sample size being the primary driver of this correlation, the very
large single cell transcriptome dataset with a sample size of 1000 in each group had an even
higher minimum inter-normalization correlation of 0.92, but the results are not shown. We
conclude that precision, but not accuracy can be achieved with very large sample sizes when
estimating correlation.

Finally, we examined the effect of zero replacement strategies on the robustness of this anal-
ysis. All analyses to this point used a uniform prior; that is adding 0.5 to all parts in all
samples as this is known to minimally distort the data with and is very efficient (Fernandes,
Macklaim, Linn, Reid, and Gloor 2013; Gloor, Macklaim, Vu, and Fernandes 2016b). For
this comparison, we chose the 16S rRNA dataset because this was the only dataset that did
not show compositional dominance with all normalization strategies. Thus, we would have
the opportunity to observe if one of the advanced zero replacement strategies used by the
zCompositions R package performed differently than the uniform prior approach. The results
are shown in Table 6. As expected, none of the approaches gave meaningful results with no
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zero replacement when taking the logarithm of the ratios. The log-ratio between parts with
count 0 and any non-zero part will be ± infinity. All the non log ratio-approaches performed
poorly with no zero replacement. However surprisingly neither the GBM nor the CZM zero
imputation approach performed appreciably differently than did the uniform prior method;
all three methods of zero replacement gave very similar results. This is likely because of the
wide, sparse and high-dimensional nature of the data where the parts with 0 values are found
in all samples and because of the large difference between the log-ratio of any imputed value
and infinity.

Table 6: Tests of zero replacement

Comp Test 0 replace prop prop-l clr iqlr RLE TMM RLE-l TMM-l
scale none 0 NA NA NA 4.04 4.44 NA NA
scale prior 0.01 0 0 0.03 4.03 17.2 0 0.32
scale GBM 0.01 0 0 0.04 4.02 4.3 0 0.26
scale CZM 0 0 0 0.04 4.06 16 0 0.02
dominance none 0.05 NA NA NA 0.75 0.60 NA NA
dominance prior 0.05 1 1 1 0.81 0.53 1 1
dominance GBM 0.05 1 1 1 0.71 0.52 1 1
dominance CZM 0.05 1 1 1 0.78 0.53 1 1
perturbation none 1.9 NA NA NA 2.2 4.0 NA NA
perturbation prior 1.76 0.31 0 0 3 6.15 0.33 0.52
perturbation GBM 1.86 0.24 0 0 2.8 3.9 0.26 0.57
perturbation CZM 1.86 0.26 0 0 2.8 3.95 0.3 0.49
coherence none 0.99 NA NA NA 0.99 0.96 NA NA
coherence prior 1 1 0.99 0.99 0.99 0.96 1 0.98
coherence GBM 1 1 1 0.99 0.99 0.97 1 0.99
coherence CZM 1 1 0.99 0.99 0.99 0.97 1 0.99

4. Discussion and conclusions

High throughput sequencing comes with the constraint that the platform imposes a limit on
the number of reads obtained, thus ensuring that the data behave as compositions (Lovell
et al. 2011; Friedman and Alm 2012; Fernandes et al. 2014). Aitchison (1982) identified ra-
tional and reproducible approaches to dealing with well-known limitations of compositional
data that arise because these data have one less dimension than expected. These limitations
are revealed by the four tests (Palarea-Albaladejo et al. 2012) used here and the patholo-
gies noted here have caused confusion in the literature. In the context of HTS these data
pathologies may or may not manifest depending on the dataset. Several groups have shown
that in some instances non-compositional approaches can provide appropriate answers, but
in other cases independent non-compositional approaches may give wildly divergent answers
(Weiss et al. 2017; Weiss, Van Treuren, Lozupone, Faust, Friedman, Deng, Xia, Xu, Ursell,
Alm, Birmingham, Cram, Fuhrman, Raes, Sun, Zhou, and Knight 2016; Nearing, Douglas,
Hayes, MacDonald, Desai, Allward, Jones, Wright, Dhanani, Comeau, and Langille 2022).
Several recent reports show that compositional approaches provide more consistent and more
accurate answers, in general, than do non-compositional or partially compositional approaches
(Skinnider et al. 2019; Nearing et al. 2022; Armstrong, Martino, Rahman, Gonzalez, Vázquez-
Baeza, Mishne, and Knight 2021).

HTS analysis has several standard steps, and while the actual tools vary between data types,
in concept the steps all aim to achieve a dataset and analysis that conforms to the standards of
the field. The first step is to collect the data, and regardless of data type, it is usual to collect
only a subset of the available data. In the case of RNA-seq (including transcriptome and
single cell), this means collecting only the mRNA or other sub-population of RNA from the
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cell and discarding the majority. In the case of metagenomics (whether amplified or not) this
involves isolating DNA from different species where the DNA will have different efficiencies
of isolation, and different propensities to be amplified or further processed downstream. It is
standard practice for all HTS data to filter the parts (reads) to remove those that are near
the low count margin (frequency filtering) or that occur in only a very small subset of the
samples (occurrence filtering). These types of biases result in subcompositions which affect
both the distances and the correlations observed meaning that subcompositional dominance
and correlation coherence are desirable properties. A major limitation of current workflows
is the apparent inability to identify when non-compositional approaches will fail.

The issue of systematic bias in HTS is well-studied across multiple data types. McLaren
et al. (2019) identified systematic biases in metagenomic datasets and provided a mechanism
to adjust for these biases based on logratios between the parts using internal standards.
Nearing, Comeau, and Langille (2021) recently reviewed the full suite of systematic biases
that can occur in metagenomic datasets and outlined the open challenges in addressing those
biases. The early RNA-seq literature contains many studies and reviews that outlined systemic
problems that have been addressed by multiple corrections for nucleotide content and multiple
normalizations. In short, most of these biases result in compositional perturbations whereby
a subset of the parts are systematically observed more or less frequently than expected.

The choice of sequencing platform determines the nominal scale of the sequencing data; for
example, the same library can be run on an Illumina MiSeq (20M reads) or an Illumina
NovaSeq (2 B reads). Here it is clearly desirable that the only variation should be that rare
parts from the former should be estimated with higher precision on the latter (Gloor et al.
2016b), and merely changing the read depth should not materially affect the observations for
parts that are observed with differing precision. This underlines the importance of the scale
invariance property.

The work outlined here shows that HTS data can be relatively predictable when testing
for sub-compositional dominance or correlation coherence. For the most part, it may be
safe to assume that distances observed will be similar when examining the full and the sub-
composition regardless of the data transformation. However, not all datasets and transforms
give smaller distances in sub-compositions with non-compositional transforms and this could
lead to false inferences unless the analyst specifically tests for sub-compositional dominance.

It may also be safe to assume that methods such as network analysis will give similar results
for the parts in common when only a subset of the parts are used if the sample sizes are
large. However, the caveat here is that the observed correlations between transforms are not
themselves necessarily consistent between normalization methods, and again the investigator
should determine if the correlations observed with different normalization methods are con-
gruent. Inspection of these datasets and transformations indicates that the correct answer is
sometimes, as shown in Figure 4. Indeed, two recent studies demonstrated just how problem-
atic correlation, and thus network analysis, can be in HTS datasets (Skinnider et al. 2019;
Erb 2020). Thus, correlation within HTS datasets should be considered an open problem with
Erb (2020) suggesting that partial correlation should be explored as the appropriate tool.

In summary, this work provides a framework to examine four different tests that can be applied
to datasets to determine if compositional approaches are likely to be more appropriate than
non-compositional approaches. The work is supported by the aIc R package and amIcomp
shiny app that facilitate these tests.
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