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Abstract

Simulation-based inferences have attracted much attention in recent years, as the di-
rect computation of the likelihood function in many real-world problems is difficult or even
impossible. Iterated filtering (Ionides, Bretó, and King 2006; Ionides, Bhadra, Atchadé,
and King 2011) enables maximization of likelihood function via model perturbations and
approximation of the gradient of log-likelihood through sequential Monte Carlo filtering.
By an application of Stein’s identity, Doucet, Jacob, and Rubenthaler (2013) developed a
second-order approximation of the gradient of log-likelihood using sequential Monte Carlo
smoothing. Based on these gradient approximations, we develop a new algorithm for max-
imizing the likelihood using the Nesterov accelerated gradient. We adopt the accelerated
inexact gradient algorithm (Ghadimi and Lan 2016) to iterated filtering framework, re-
laxing the unbiased gradient approximation condition. We devise a perturbation policy
for iterated filtering, allowing the new algorithm to converge at an optimal rate for both
concave and non-concave log-likelihood functions. It is comparable to the recently devel-
oped Bayes map iterated filtering approach and outperforms the original iterated filtering
approach.

Keywords: accelerated iterated filtering, sequential Monte Carlo, partially observed Markov
process model, parameter estimation.

1. Introduction

Partially observed Markov process (POMP) models (also called state-space models) have been
used as a powerful tool in modeling time series in many disciplines, including ecology, econo-
metrics, engineering, and statistics. However, making inferences on POMP models can be
challenging because of the presence of incomplete measurements and possibly weakly identifi-
able parameters. Standard methods for inference (e.g., maximum likelihood) with restrictive
assumptions of linear Gaussian models often fail to produce satisfactory results when the
assumptions are violated. Simulation-based inferences, also called plug-and-play (Bretó, He,
Ionides, and King 2009; He, Ionides, and King 2010), likelihood-free (Sisson, Fan, and Tanaka
2007; Yıldırım, Singh, Dean, and Jasra 2015), or equation-free inferences (Kevrekidis, Gear,
and Hummer 2004), are a class of algorithms where inferences only access the dynamic model
through simulations. This class of inference algorithms is attractive because it enables routine
parameter inferences in general POMP models, even in the case of intractable likelihoods. As
a result, the last decade has seen a great increase in the use of simulation-based inferences
where numerical approximations are primarily based on Monte Carlo sampling (Ionides et al.
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2006; Toni, Welch, Strelkowa, Ipsen, and Stumpf 2009; Andrieu, Doucet, and Holenstein 2010;
Wood 2010; Chopin, Jacob, and Papaspiliopoulos 2013; Ionides, Nguyen, Atchadé, Stoev, and
King 2015). A simulation-based inference can either be described as Bayesian or frequentist,
based on posterior distributions or likelihoods. Depending on how the information is ex-
ploited, Bayesian inferences can be further categorized into full information such as particle
Markov chain Monte Carlo (PMCMC) (Andrieu et al. 2010) or partial information such as
approximate Bayesian computation (ABC) (Sisson et al. 2007). Similarly, frequentist infer-
ences can also be classified as full information such as iterated filtering (Ionides et al. 2015) or
feature-based such as nonlinear forecasting (Ellner, Bailey, Bobashev, Gallant, Grenfell, and
Nychka 1998), and synthetic likelihood (Wood 2010). This paper deals with full information,
frequentist, and simulation-based inferences.

Iterated filtering (Ionides et al. 2006), the first algorithm in this category, enables maxi-
mization of likelihood function via model perturbations and approximation of the gradient of
log-likelihood through sequential Monte Carlo filtering. Since then, several variations of the
original algorithm have been developed. Lindström, Ionides, Frydendall, and Madsen (2012)
extended iterated filtering to improve numerical performance. Doucet et al. (2013) expanded
it to include general latent variable models and to use sequential Monte Carlo smoothing to
compute both the gradient and the Hessian with very attractive theoretical properties. Ion-
ides et al. (2015) generalized Lindström et al. (2012)’s approach and combined the idea with
data cloning (Lele, Dennis, and Lutscher 2007), developed a Bayes map iterated filtering with
an entirely different theoretical approach. Nguyen and Ionides (2017) revisited the approach
of Doucet et al. (2013), using different perturbation noises and exploiting these derivatives of
log-likelihood to improve on convergence rate. However, the Hessian approximation is often
computationally expensive and the inaccuracies are exacerbated when combined with gradient
estimations, decreasing the convergence rate, especially in the iterated filtering framework.
This paper chooses an alternative, maximizing the likelihood by using accelerated gradient
approaches. Thus, the proposed approach inherits a higher convergence rate from an ac-
celerated gradient family, enhancing performance without the expensive computation of the
Hessian.

The key contributions of this paper are three-fold. First, we show that the accelerated biased
stochastic gradient algorithm still converges at an optimal rate for some chosen step sizes and
bias sequences. In particular, we assume a rather weak condition that is often satisfied for
many gradient approximations from Monte Carlo sampling. Second, we develop an efficient
perturbation policy for iterated filtering, which ensures higher convergence rates than the
original iterated filtering, both in concave and non-concave log-likelihood. Third, the proposed
algorithm offers good numerical performance on some benchmark models.

The paper is organized as follows. In the next section, we introduce notations and recall some
background of gradient approximation in an iterated filtering framework. In Section 3, we
relax unbiased approximation condition, allowing the algorithm to converge with the optimal
rate under the biased approximation of the gradients. Based on the biased assumption, a
perturbation policy is derived for an iterated filtering framework. We validate the proposed
algorithm by a toy example and a challenging inference problem of fitting malaria models
to time series data in Section 4, showing substantial improvement for our methods over
the original iterated filtering approach and showing that the algorithm is comparable to the
recently developed Bayes map iterated filtering. We conclude in Section 5 with suggestions for
the future work to be extended. The proofs and some additional illustrations are postponed
to the Appendix.

2. Background of gradient approximation of iterated filtering

Let {X(t), t ∈ T} be a Markov process where X(t) takes values in a measurable space
X . The time index set, T ⊂ R, may be an interval or a discrete set and it contains a
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finite subset t1 < t2 · · · < tN at which X(t) is observed, along with an initial time t0 < t1.
Specifically, we write X0:N = (X0, . . . , XN ) = (X(t0), . . . , X(tN )). Hereafter, for any
generic sequence {Xn}, we shall use Xi:j to denote (Xi, Xi+1, . . . , Xj). The distribution
of X0:N is characterized by the initial density X0 ∼ µ(x0; θ) and the conditional density of
Xn given Xn−1, written as fn(xn|xn−1; θ) for 1 ≤ n ≤ N . Here, θ is an unknown parameter
in Θ ⊂ Rd. The process {Xn} is observed only through another process {Yn, n = 1, . . . , N}
taking values in a measurable space Y. The observations are assumed to be conditionally
independent given X0:n, and their probability density is of the form

pYn|Y1:n−1, X0:n
(yn|y1:n−1, x0:n; θ) = gn(yn|xn; θ),

for 1 ≤ n ≤ N . We assume thatX0:N and Y1:N have a joint density of pX0:N , Y1:N (x0:N , y1:N ; θ)
on XN+1 × YN . The data are a sequence of observations by y∗1:N = (y∗1, . . . , y

∗
N ) ∈ YN ,

considered as fixed. We write the log likelihood function of the data for the POMP model as
`(θ), given by

`(θ) = log pY1:N (y∗1:N ; θ)

= log

∫
µ(x0; θ)

N∏
n=1

fn(xn|xn−1; θ) gn(y∗n|xn; θ) dx0:N .

We work with the maximum likelihood estimator (MLE), which is θ̂ = arg max `(θ). This MLE
problem often uses the first order stochastic approximation (Kushner and Clark 1978), which
involves a Monte Carlo approximation to a difference equation, θm = θm−1 + γm∇`(θm−1),
where θ0 ∈ Θ is an arbitrary initial estimate of the parameter space and {γm}m≥1 is a
sequence of step sizes with

∑
m≥1 γm =∞ and

∑
m≥1 γ

2
m <∞. Under regularity conditions,

the algorithm converges to a local maximum of `(θ). The term ∇`(θ), also called the score

function, is shorthand for the Rd-valued vector of partial derivatives, ∇`(θ) = ∂`(θ)
∂θ .

Sequential Monte Carlo (SMC) approaches have previously been developed to estimate the
score function (Poyiadjis, Doucet, and Singh 2011; Nemeth, Fearnhead, and Mihaylova 2013;
Dahlin, Lindsten, and Schön 2015). However, under a simulation-based inference setting,
these approaches are not applicable, since the simulation of the derivatives of the dynamic
of the model is also required. As a result, we follow the approach of Nguyen and Ionides
(2017), using their Theorem 5 to approximate the score function. To be self-contained, we
rewrite their assumptions and Theorem 5. Interested readers are encouraged to read their
paper for full details. A POMP model is a specific latent variable model with X = X0:N

and Y = Y1:N . A perturbed POMP model is defined to have a similar construction to a
perturbed latent variable model (Nguyen and Ionides 2017) with X̆ = X̆0:N , Y̆ = Y̆1:N and
Θ̆ = Θ̆0:N . Let Z0, . . . , ZN be N + 1 independent draws from a density κ, Nguyen and
Ionides (2017) introduced N + 2 perturbation parameters, τ and τ0, . . . , τN , and constructed
a process Θ̆0:N by setting Θ̆n = θ + τ

∑n
i=0 τiZi for 0 ≤ n ≤ N . They designed a perturbed

parameter log-likelihood function

˘̀(ϑ̆0:N ) = log pY̆1:N |Θ̆0:N
(y∗1:N |ϑ̆0:N ; θ, τ, τ0:N ). (1)

so that the log-likelihood of the unperturbed model is

`(θ) = ˘̀(ϑ̆[N+1]),

where
ϑ̆[N+1] = (θ, θ, . . . , θ) ∈ Rd(N+1).

For the perturbed likelihood, they assume

Assumption 1. ˘̀ is four times continuously differentiable. For all θ ∈ Rd, there exist ξ > 0,
D > 0 and δ defined as in Assumption 3, such that for all 0 < η4 < δ and u0:N ∈ Rd(N+1),

L̆(ϑ̆[N+1] + u0:N ) ≤ Deξ
∑N
n=1 |un|η4 ,

where L̆(ϑ̆0:N ) = exp{˘̀(ϑ̆0:N )} is the perturbed likelihood.
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Assumption 2. K is a set of symmetric probability density kernels for which each κ ∈ K is
associated with a non-singular and finite covariance matrix, Ψ. There exists C6 < ∞ such
that for any integer k ≥ 1, 1 ≤ i1, . . . , ik ≤ d and β1, . . . , βk ≥ 1 and any κ ∈ K,∫ ∣∣∣uβ1i1 uβ2i2 · · ·uβkik ∣∣∣κ(u) du ≤ C6.

Assumption 3. There exist γ, δ, M > 0, such that for all u ∈ Rd and all κ ∈ K,

|u| > M ⇒ κ(u) < e−γ|u|
δ
.

Assumption 4. κ is mesokurtic, meaning that
∫
u4
iκ(u)du = 3σ4

i .

Lemma 1. (Theorem 5 of Nguyen and Ionides (2017)). Suppose Assumptions 1, 2, 3 and 4
hold. In addition, assume that τn = O(τ2) for all n = 1 . . . N . It follows that∣∣∣∣∣∇` (θ)− 1

N + 1
τ−2τ−2

0 Ψ−1
N∑
n=0

{
Ĕ
(

Θ̆n − θ|Y̆1:N = y∗1:N

)}∣∣∣∣∣ = O(τ2). (2)

where Ψ is the non-singular covariance matrix associated to κ.

An example of a density kernel satisfying the assumptions 1-4 is the Gaussian kernel. However,
the family of distributions that satisfy these conditions is strictly larger than the Gaussian
distribution (Doucet et al. 2013). Lemma 1 is useful for our approach because we can ap-
proximate the gradient of the log-likelihood of the extended model to the second order of τ
which, later on, will fit well with our accelerated simulation-based setup.

3. Proposed accelerated iterated filtering

In the MLE problem, it is possible to use an accelerated gradient method in place of a naive
stochastic approximation to improve the convergence rate of the estimations. One issue with
the accelerated gradient approach is that it is not clear how the technique can be used in
situations where both the likelihood and the gradient are intractable. These sorts of issues
are common in scientific applications of state-space models (Poyiadjis et al. 2011; Nemeth
et al. 2013; Dahlin et al. 2015). In addition, an approximation of the gradient is often biased
(Kiefer and Wolfowitz 1952; Ionides et al. 2011; Doucet et al. 2013), making the application of
the accelerated gradient method less straightforward. In this section, we first show that, under
a chosen biased control policy, an accelerated gradient algorithm still converges at an optimal
rate. Then, we apply it to the iterated filtering framework with a specified perturbation
policy.

Let us denote {εk} the sequences of the errors in the gradient approximations of the log-
likelihood and suppose the following assumption:

Assumption 5. The function ` : Θ→ R is differentiable, bounded from above and has a L-
Lipschitz-continuous gradient, i.e. L > 0 and for all θ, ϑ ∈ Θ, ‖∇`(θ)−∇`(ϑ)‖ ≤ L ‖θ − ϑ‖ ,
where ∇` denotes the gradient of `. The function ` attains its maximum value `∗ at a certain
θ∗ ∈ Θ.

In the assumption, Θ represents a subset of a finite-dimensional Euclidean space equipped
with Euclidean norm ‖·‖ and inner product 〈·, ·〉. It can be shown that (e.g. in Nesterov
(2005)) Assumption 5 is equivalent to

|`(ϑ)− `(θ)− 〈∇`(θ), ϑ− θ〉| ≤ L

2
‖ϑ− θ‖2 , ∀θ, ϑ ∈ Θ. (3)

It is well-known that the gradient ascent method converges for a general non-concave opti-
mization problem but it does not achieve the optimal rate of convergence (in terms of the
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functional optimality gap) when `(·) is concave (Ghadimi and Lan 2016). In contrast, the
accelerated gradient method in Nesterov (2013) is optimal for solving concave optimization
problems but does not necessarily converge for solving non-concave optimization problems.
Ghadimi and Lan (2016) proposed a modified accelerated gradient method that can converge
on both concave and non-concave optimization problems. However, they assumed an unbi-
ased estimation of the gradient, which is not satisfactory for our simulation-based inference.
Below, we adapt the approach of Ghadimi and Lan (2016) to accelerate a gradient ascent
method while accounting for bias gradient. That is, we allow bias in gradient approximation.
By properly specifying the biased control policy, we prove that it not only converges but also
exhibits the optimal rate of convergence for both concave and non-concave log-likelihoods.

Algorithm 1 Accelerated Biased Gradient (ABG)

Input:
θ0 ∈ Θ.
{βk > 0}, {λk > 0}
{αk} ∈ (0, 1) for k > 1 and α1 = 1.

1: θag0 = θ0. . Initialize, ag stands for accelerated gradient
2: for k in 1...N do
3:

θgak = (1− αk)θagk−1 + αkθk−1 (4)

. ga stands for gradient ascent
4:

θk = θk−1 + λk

(
∇̂`(θgak )

)
(5)

5:

θagk = θgak + βk

(
∇̂`(θgak )

)
(6)

. where ∇̂`(θgak ) is an estimation of ∇`(θgak ) with error εk.
6: end for

Along with Assumption 5, a biased control condition is also assumed for Algorithm 1.

Assumption 6. Θ is a compact set. Let εk be the bias of an estimation ∇̂`(θgak ). There

exists an A <∞ such that
∑N

k=1 λk ‖εk‖ < A for any N ∈ N.

These conditions, which are often satisfied by many simulation-based approximations, for
example, in (Ionides et al. 2006, 2011), original iterated filtering assumes Θ is a compact set
and the perturbation is a geometric series. Given these conditions, we have the following
result.

Theorem 1. (Extension of Theorem 1 of Ghadimi and Lan (2016)).
Suppose Assumptions 5 and 6 hold. In addition, let {θk, θagk }, k ≥ 1 be computed by Algorithm
1.
a) If sequences {αk} , {βk}, {λk} and {Γk} satisfy

Γk :=

{
1 k = 1

(1− αk)Γk−1 k ≥ 2
, (7)

Ck := 1− Lλk −
L(λk − βk)2

2λkαkΓk

(
N∑
τ=k

Γτ

)
> 0, for 1 ≤ k ≤ N, (8)

then for any N ≥ 1, we have for some B <∞,

min
k=1,...,N

∥∥∇`(θgak ) + εk
∥∥2 ≤ `∗ − `(θ0) +B∑N

k=1 λkCk
. (9)
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b) Suppose that `(·) is concave. If sequences {αk} , {βk},{λk} and {Γk} satisfy

αkλk ≤ βk <
1

L
, (10)

α1

λ1Γ1
≥ α2

λ2Γ2
≥ . . . , (11)

then for any N ≥ 1, we have

min
k=1,...,N

∥∥∇`(θgak ) + εk
∥∥2

≤ 2

‖θ∗−θ0‖2
2λ1

+
∑N

k=1 Γ−1
k

[
βk ‖εk‖

∥∥∇`(θgak ) + εk
∥∥+ αk ‖εk‖ ‖θk−1 − θ0‖

]∑N
k=1 Γ−1

k βk(1− Lβk)
, (12)

`(θ∗)− `(θagN )

≤ ΓN

[
‖θ0 − θ∗‖2

2λ1
+

N∑
k=1

Γ−1
k

[
βk ‖εk‖

∥∥∇`(θgak ) + εk
∥∥+ αk ‖εk‖ ‖θk−1 − θ0‖

]]
. (13)

Various options are available for selecting {αk}, {βk}, {λk}, {Γk}. By controlling the error
εk, we can provide some of these selections below which ensure the optimal convergence rate
of the ABG algorithm for both concave and non-concave problems.

Theorem 2. Suppose Assumptions 5 and 6 hold. In addition, suppose that {βk} in the

accelerated biased gradient method is set to βk = 1
2L , Γk = 1

k1+δ
, αk = 1 − (k−1)1+δ

k1+δ
for some

δ > 0. a) If sequence {λk} satisfies

λk ∈
[
βk, (1 +

1

k
)βk

]
, for ∀k ≥ 1, (14)

then for any N ≥ 1, we have

min
k=1,...,N

‖∇`(θgak ) + εk‖2 ≤ O
(

1

N

)
. (15)

Suppose that εk = O
(
τ2
)
≤ O( 1

k ), then the ABG method can find a solution θ̄ such that∥∥∇`(θ̄)∥∥2 ≤ ε in at most O(1/ε2) iterations.

b) Suppose that `(·) is concave and εk = O
(
τ2
)
≤ O( 1

k2+δ+δ1
) for some δ, δ1 > 0. If {λk}

satisfies

λk =
(
k1+δ − (k − 1)1+δ

)
∀k ≥ 1, (16)

then for any N ≥ 1, we have

min
k=1,...,N

∥∥∇`(θgak ) + εk
∥∥2≤O

(
1

N2+δ

)
, (17)

`(θ∗)− `(θagN ) ≤ O
(

1

N1+δ

)
, (18)

and the ABG method can find a solution θ̄ such that
∥∥∇`(θ̄)∥∥2 ≤ ε in O

(
1/ε

1
2+δ

)
at most.

We add a few remarks about the extension results obtained in Theorem 2, along with some
guidelines for a perturbation policy to ensure Assumption 6 holds. First, if the problem is
concave, choosing more aggressive step sizes {λk} in (16) for the ABG method yields the
optimal rate of convergence in (18). The result has been demonstrated by Nesterov (2005)
and Ghadimi and Lan (2016) but only for the accelerated unbiased gradient methods. It is
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also worth emphasizing that the ABG method can find a solution θ̄ such that
∥∥∇`(θ̄)∥∥2 ≤ ε

in at most O(1/ε1/(2+δ)) iterations with {λk} is of order O(k/L). To make the Assumption
6 held in this case, the perturbation sequence {τk} = O(1/kb) for b > 1. For general non-
concave problems, {λk} is of order O(1/L). In this situation, the perturbation sequence {τk}
would only need to be of order O(1/kb for b > 0.5. Since we can control τk, we select the
perturbation sequence {τk} = O(1/kb) for b > 1 so that it works in both cases. The value δ is
optimal at 1 for the convergence rate (see Appendix A). However, it may not be optimal for
controlling the noises, so an analysis of the biases would be of great interest but it is beyond
the scope of this paper.

Now, we are ready to present the pseudo-code of the proposed algorithm as in Algorithm 2.

Algorithm 2 Accelerated Iterated Filtering (AIF)

Input:
Starting parameter, θ0 = θag0 , sequences, αn, βn, λn,Γn
simulator for fX0(x0|θ), fXn|Xn−1

(xn|xn−1|θ), evaluator for gYn|Xn(yn|xn|θ)
data, y∗1:N , labels designating initial value parameters (IVPs), I ⊂ {1, . . . , p}, initial scale
multiplier, C > 0, number of particles, J , number of iterations, M , cooling rate, 0 < a < 1,
perturbation scales, σ1:p

Output:
Maximum likelihood estimate θMLE

1: θga0 = θ0 . Initialize
2: for m in 1...M do
3: [ΘF

0,j ]i ∼ N
(
[θga0 ]i, (Ca

m−1σi)
2
)

for i in 1..p, j in 1...J .

4: simulate XF
0,j ∼ fX0

(
·; ΘF

0,j

)
for j in 1..J . . Initialize states

5: θgam = (1− αm)θagm−1 + αmθm−1.
6: for n in 1...N do
7:

[
ΘP
n,j

]
i
∼ N

([
θgam
]
i
, (am−1σi)

2
)

for i /∈ I, j in 1 : J . . Perturb

8: XP
n,j ∼ fn

(
xn|XF

n−1,j ; ΘP
n,j

)
for j in 1 : J . . Simulate prediction particles

9: w(n, j) = gn(y∗n|XP
n,j ; ΘP

n,j) for j in 1 : J . . Evaluate weights

10: w̆(n, j) = w(n, j)/
∑J

u=1w(n, u). . Normalize weights
11: k1:J with P {ku = j} = w̆ (n, j). . Apply systematic resampling to select indices
12: XF

n,j = XP
n,kj

and ΘF
n,j = ΘP

n,kj
for j in 1 : J . . Resample particles

13: θ̄n =
∑J

j=1 w̆(n, j)ΘF
n,j

14: end for
15: Sm = C−2a−2(m−1)Ψ−1

∑N
n=1

[ (
θ̄n − θgam

) ]
/(N + 1) . Update Parameters

16:
[
θm
]
i

= θm−1 + λm−1

[
Sm
]
i

for i /∈ I.

17:
[
θagm
]
i

= θgam + βm−1

[
Sm
]
i

for i /∈ I.

18:
[
θm
]
i

= 1
J

∑J
j=1

[
ΘF
j

]
i

for i ∈ I.
19: end for

It should be mentioned that this algorithm follows the general framework of iterated filtering
family (Ionides et al. 2006, 2015), where inputs of the algorithm are the number of iterations
M , the number of particles J , perturbation scales σ1:p simulator and evaluator at each time
point. In addition, we also need four sequences {αk}, {βk}, {λk} and {Γk}. Here we use
{βk} = 1/(2L), λk = βk + βk/k, αk = 2/(k + 1) for k > 0 and Γk = 2/(k(k + 1)). It is

worth noting that Sm in line 15 of Algorithm 2 is the estimated gradient ∇̂`(θgak ) while the
perturbation {τk} are absorbed into the constant C and cooling rate a. The cooling rate
a are often selected in accordance with iterated filtering algorithm such that a = 0.950.02

while constant C is an initial scaling parameter chosen by the user. Other standard notation
inherits from iterated filtering algorithm such as XF denotes state filtering and XP denotes
state prediction. The initial value parameters (IVPs) in Algorithm 2 are the initial values of
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the state variables at time 0, which can be treated as unknown parameters. The IVPs are,
however, special parameters since they affect the dynamics only at time 0 and have no benefit
to perturbing them at other times (Ionides et al. 2015).

4. Numerical examples

To measure the performance of the proposed inference algorithm, we evaluate our accelerated
iterated filtering (AIF) against existing simulation-based approaches on some benchmark ex-
amples. In particular, we compare our algorithm to the original iterated filtering (IF1) (Ionides
et al. 2006), the tuned iterated filtering algorithm (TIF) (?), and the recently developed Bayes
map iterated filtering (IF2) (Ionides et al. 2015). It has been shown that the second-order
iterated smoothing (IS2) Nguyen and Ionides (2017) is comparable to the Bayes map iterated
filtering, while the Particle Markov chain Monte Carlo (PMCMC) Andrieu et al. (2010) be-
longs to the Bayesian approach, so we leave them out. We make use of the well-tested and
maintained code of R package pomp (King, Nguyen, and Ionides 2016). Specifically, models
are coded using C snippet declarations (King et al. 2016). The new algorithm is written in R
package is2, which inherits user-friendly interfaces of R and efficient inference of pomp (King
et al. 2016). In all the simulation-based approaches mentioned above, the sequential Monte
Carlo algorithm (SMC) is used, implemented by a bootstrap filter (Gordon, Salmond, and
Smith 1993). Experiments were carried out on 32 cores Intel Xeon E5-2680 2.7 Ghz with 256
GB memory. For fair comparisons, the perturbation configuration and initial starting point
are the same for every inference method. Scripts for reproducing our results are available in
a public GitHub repository at https://github.com/nxdao2000/AIFcomparisons.

4.1. Linear toy example

For a computationally convenient setting, simple models can be used to test the basic features
of inference algorithms. As a first step, we consider a bivariate linear Gaussian model. We
chose this model so that the Monte Carlo simulations can be verified using Kalman filters.
In this example, alternative approaches such as expected maximization (EM) or Markov
chain Monte Carlo (MCMC) algorithms would also be practical, but they are not simulation-
based and generally do not scale well to large dynamic models, so we do not include them
here. The model is given by the state space forms: Xn|Xn−1 = xn−1 ∼ N (αxn−1, σ

>σ),
Yn|Xn = xn ∼ N (xn, I2) where α, σ are 2× 2 matrices and I2 is 2× 2 identity matrix. The
following parameters are used to simulate the data:

α =

[
α1 α2

α3 α4

]
=

[
0.8 −0.5
0.3 0.9

]
, σ =

[
3 0
−0.5 2

]
,

with the initial starting point X0 is set to (−3, 4) and the number of time points N is set to
100. For each method mentioned above, we estimate parameters α2 and α3 for this model
using J = 1000 particles and run our estimation for M = 25 iterations. We start the initial
search uniformly on a rectangular region [−1, 1]× [−1, 1].

Table 1 displays the results of estimating parameters α2 and α3 for the bivariate linear Gaus-
sian model using IF1, IF2, TIF, and AIF algorithms. The last row shows the exact MLE
computed from the Kalman filter and the first row shows the true value of the parameter.
The first two columns present the estimated values of the parameters while the next two
columns display the log likelihood, ˆ̀, computed by SMC with the number of particles 10000
and its standard error, respectively. The exact log likelihood, `, and the time(s) are given in
the two rightmost columns.

https://github.com/nxdao2000/AIFcomparisons


Austrian Journal of Statistics 125

Table 1: Summary results of different algorithms for the bivariate linear Gaussian model

Algorithms α2 α3
ˆ̀ s.e. ` time(s)

Truth -0.5000 0.3000 -478.9700 0.08 -478.99
IF1 -0.5340 0.2860 -480.0700 0.09 -480.11 26.37
IF2 -0.4800 0.3370 -479.8300 0.09 -479.84 25.89
TIF -0.5600 0.2740 -479.0900 0.08 -479.10 30.97
AIF -0.5430 0.3090 -479.0900 0.09 -479.01 31.41

Exact MLE -0.5280 0.2860 -478.7300 0.26 -478.79
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Figure 1: Comparison of different estimators. The likelihood surface for the bivariate linear
Gaussian model, with the location of the MLE is marked with a green cross. The black
crosses show final points from 40 Monte Carlo replications of the estimators: (A) Original it-
erated filtering method; (B) Bayes map iterated filtering method; (C) Tuned iterated filtering
method; (D) Accelerated iterated filtering method; Each method was started uniformly over
the rectangle region [−1, 1]×[−1, 1] with M = 25 iterations, J = 1000 particles, and a random
walk standard deviation decreasing from 0.02 geometrically to 0.011 for both estimated pa-
rameters. (TopLeft) The likelihood surface for α2, α3; (TopRight) The likelihood surface for
α1, α4; (BottomLeft) The likelihood surface for α2, α4;(BottomRight) The likelihood surface
for α3, α4.
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We estimate parameters using the highest estimated likelihood between 20 independent runs,
evaluating their likelihood and standard error based on 20 replications to reduce the Monte
Carlo error in the likelihood evaluation employing the particle filter. Since the particle filter
produces an unbiased estimate of the likelihood, we average the likelihoods and calculate the
standard errors. As noted by King et al. (2016), an ideal likelihood-ratio 95% confidence set
is expected to be within qchisq (0.95, df = 2)/2 = 2.99 of the exact MLE. As seen from the
table, it is the case in this example for all methods, but accelerated iterated filtering appears
to be the best with the smallest error of about 0.22 log units from the exact MLE. By using
AIF, the results have higher estimated likelihoods compared to other approaches, indicating
a higher empirical convergence rate.

To see how the final MLEs clustered around the true MLE, we only use 40 Monte Carlo repli-
cations for this toy example. As can be observed from Fig. 1, most of the replications clustered
near the true MLE for the AIF approach, while none of them stayed in a lower likelihood re-
gion. As shown in this figure, AIF appears to be the most effective method compared to other
methods considered for this test. Given additional computational resources, we also checked
how the results of each method were compared. Specifically, we set M = 100 iterations and
J = 10000 particles, with the random walk standard deviation decreasing geometrically from
0.02 down to 0.0018 for each method. Based on 200 Monte Carlo replications, Fig. 2 can
be viewed as a statistical summary of this example. In this situation, we confirm that AIF
is the most effective among other IF1, IF2, and TIF, while all methods have comparable
computational demands for a given M and J .
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Figure 2: Comparison of estimators for the bivariate linear Gaussian model, showing the
densities of the maximized log-likelihood computed by the IF1, IF2, TIF and AIF methods
using M = 100 iterations and J = 10000 particles. The parameters α2 and α3 were estimated,
started from 200 randomly uniform initial values over a rectangular region [−1, 1]× [−1, 1].

Moreover, the results also imply that AIF is robust to initial starting guesses. Algorithmically,
AIF has similar computational costs to the first-order approaches IF1 and IF2. Additional
overheads for estimating the score function make the computation time of AIF a bit larger
compared to that of IF1 and IF2. However, with complex models and a large enough number
of particles, the overheads become negligible and the computation time of AIF will be similar
to other first-order approaches. The fact that it has a higher convergence rate with the
comparable computational complexity of the first-order implies that it is a very promising
algorithm.
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4.2. Nonlinear toy examples

Besides linear models, some nonlinear models are also examined to test the capacity of the
proposed algorithm. However, unlike linear models, nonlinear models generally can not be
verified using Kalman filters. To overcome this difficult problem, we use particle filter with a
large number of particles to evaluate the likelihood at the ground truth points. Specifically,
we use the number of particles J = 20000 to evaluate the likelihood surface. Here, to illustrate
the behavior of algorithms, and on the other hand, to simplify the computational procedures,
we only focus on a few parameters of interest while fixing the rest of the parameters. We
start from 40 randomly uniform initial value over the region of interests and run different
inference methods using M = 100 iterations. The purpose is to show that, with a sufficiently
large computational resource, every method will converge to the MLEs. However, when
resources are limited, which frequently occurs in the big data regime, only a few iterations
are executed or not many number of particles are used, the proposed algorithm outperforms
its counterparts. This will be demonstrated in the following subsections.
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Figure 3: Comparison of MLEs computed by the IF1, IF2, TIF and AIF methods for the
Ricker model, using M = 100 iterations and J = 1000 particles. The parameters σ and φ was
estimated, started from 40 randomly uniform initial values over a interval [0, 1]× [7, 13].

Ricker model

We consider Ricker model, which was introduced by (Ricker 1954) in the context of stock and
recruitment fisheries. In this model, the state process is

Nt+1 = rNt exp(−cNt + et),

where the et are i.i.d. normal random deviates with zero mean and variance σ2. The observed
variables yt are modeled by Poisson(φNt) distribution. We are interested in estimating the
parameters σ and φ started from 200 randomly uniform initial value over the region [0, 1] ×
[7, 13] using J = 1000 particles. As can be seen from Figure 3, after 100 iterations, accelerated
iterated filtering seems to be the best algorithm in approaching the MLE in terms of root
mean square errors.
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Figure 4: Comparison of different estimators. The likelihood surface for the Gompertz model,
with the location of the MLE is marked with a green cross. The black crosses show final points
from 40 Monte Carlo replications of the estimators: (A) Original iterated filtering method; (B)
Bayes map iterated filtering method; (C) Tuned iterated filtering method; (D) Accelerated
iterated filtering method; Each method was started uniformly over the rectangle region of
intertest with M = 100 iterations, J = 200 particles, and a random walk standard deviation
decreasing from 0.03 geometrically to 0.027 for both parameters. (TopLeft) The likelihood
surface for τ , r; (TopRight) The likelihood surface for σ, r; (BottomLeft) The likelihood
surface for σ, τ ;(BottomRight) The likelihood surface for r, X0.

Gompertz model

The Gompertz model, which is frequently used to model animal growth in biology, is also
considered. Let the state process be Xt+1 = K1−SXS

t εt, where S = e−r and the εt are
i.i.d. lognormal random deviates with variance σ2. The observed variables Yt are following
lognormal(log Xt; τ) distribution. The parameters include the per-capita growth rate r, the
carrying capacity K, the process noise standard deviation σ, the measurement error standard
deviation τ , and the initial condition X0. In this model, we want to estimate the measurement
error standard deviation τ . Note that we use log-transform to remove the positive constraints
for estimation purposes. We start the initial search uniformly on the (0,1) interval using
J = 200 particles and run our estimation for M = 100 iterations.
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After transforming, we can estimate the true likelihood using the Kalman filter in this rel-
atively simple example. From the experiment, we observe similar patterns as in the Ricker
model that, with M = 100 iterations, all inference methods converge well to the MLEs but
with a small number of particles (e.g. J = 200), the proposed algorithm can converge faster
to the MLEs compared to other approaches. This feature is desirable, especially in situations
where computational resources are limited.

4.3. Malaria benchmark

The majority of dynamic systems in the real world are highly nonlinear, partially observed,
or even weakly identifiable. To demonstrate the capabilities of accelerated iterated filtering
for such situations, we apply it to evaluate the likelihood of a stochastic differential equation
for malaria with relapse model in northwest India of Roy, Bouma, Ionides, Dhiman, and
Pascual (2013). We chose this challenging model because it provides a rigorous performance
benchmark for our verification. The model we consider splits up the study population of size
P (t) into different classes: susceptible individuals, S(t), exposure E(t), infected individuals,
I(t), dormant classes H(t) and recovered individuals, Q(t). The dormant class H in the
model is further subdivided into three classes H1(t), H2(t), H3(t) to allow some flexibilities
in representing relapse. The state process is written as

X(t) =
(
S(t), E(t), I(t), Q(t), H1(t), H2(t), H3(t), κ(t), µSE(t)

)
,

where infected population enters dormancy transition rate is µIH and transition rates from
stage H1 to H2, H2 to H3 and H3 to Q are specified to be 3µHI . The model satisfies the
following balance equation system

dS/dt = δP + dP/dt+ µISI + µQSQ

+aµIHI + bµEIE − µSE(t)S − δS,
dE/dt = µSE(t)S − µEIE − δE,
dI/dt = (1− b)µEIE + 3µHIHn − (µIH + µIS + µIQ)I − δI,

dH1/dt = (1− a)µIHI − nµHIH1 − δH1,

dH2/dt = 3µHIH1 − 3µHIH2 − δH2,

dH3/dt = 3µHIH2 − 3µHIH3 − δH3

dQ/dt = µIQI − µQSQ− δQ.

The malaria pathogen reproduction within the mosquito vector also satisfies

dκ/dt = [λ(t)− κ(t)]/τD,

dµSE/dt = [κ(t)− µSE(t)]/τD.

In this equation, λ(t) is the latent force of infection and λ(t), κ(t) and µSE(t) is given by

µSE(t) =

∫ t

−∞
γ(t− s)λ(s)ds, (19)

with γ(s) = (2/τD)2s2−1

(2−1)! exp(−2s/τD), a gamma distribution with shape parameter 2. Since

the latent force of infection is constrained by rainfall covariate R(t) and some Gamma white
noise, from Roy et al. (2013) we have: m

λ(t) =

(
I + qQ

P

)
× exp

{
Ns∑
i=1

bisi(t) + brR(t)

}
×
[

dΓ(t)

dt

]
.

where q denotes a reduced infection risk from humans in the Q class. {si(t), i = 1, . . . , Ns}
is a periodic cubic B-spline basis, and we set Ns = 6. Mn = ρ

∫ tn
tn−1

[µEIE(s) + 3µHIH3(s)]ds
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Figure 5: The density of the maximized log-likelihoods estimated by IF1, IF2, TIF and AIF
for the malaria model when using J = 1000 and M = 50. The log-likelihood at a computed
MLE is shown as a dashed vertical line.

is the cumulative number of cases observed from time tn−1 to time tn and ρ is the mean
age. To account for the under-reported fact, the observation model for Yn is a negative
binomial distribution with mean Mn and variance Mn + M2

nσ
2
obs. In our case, we use an

Euler-Maruyama scheme (Kloeden and Platen 1999) with a time step of 1/20 month to solve
the coupled system of stochastic differential equations.

We carried out simulation-based inference via the original iterated filtering (IF1), the Bayes
map iterated filtering (IF2), and the proposed accelerated iterated filtering (AIF). The in-
ference goal used to assess all of these methods is to find high likelihood parameter values
starting from randomly drawn values in a large hyper-rectangle. We provide this initial hyper-
rectangle in the appendix. In the presence of possible multi-modality, weak identifiability, and
considerable Monte Carlo error of this model, we start 100 random searches. The random
walk standard deviation is initially set to 0.1 for estimated parameters while the cooling rate
c is set to 0.10.02 ≈ 0.95. These corresponding quantities for initial value parameters are 2
and 0.10.02, respectively, but they are applied only at time zero. Our experiment runs on a
cluster computer with M = 50 iterations and J = 1000 particles. Figure 5 shows the MLEs
estimated by IF1, IF2, TIF and AIF with standard errors. With the higher mean and smaller
variance of IF2, TIF, AIF estimation clearly demonstrates that they are considerably more
effective than IF1. Note that the computational times for IF1, IF2, TIF and AIF are 44.27,
43.83, 52.14 and 52.35 minutes respectively, confirming that accelerated iterated filtering has
essentially the same computational cost as first-order methods IF1, IF2 for a given Monte
Carlo sample size and the number of iterations.

Experimentation with more extensive computation (M = 100 and J = 104) in Figure 6
suggests that the performance improvement of AIF over IF2 occurs primarily in simpler
models, such as the toy example, or during earlier stages of optimization on complex models.
We have had similar experiences with other complex models (Nguyen and Ionides 2017). Our
interpretation is that the parameter interpolating involved in the parameter update rule for
AIF can be inefficient when the likelihood surface contains non-linear ridges, whereas the IF2
algorithm does not carry out any interpolating in parameter space. In this hard problem,
while IF1 reveal their limitations, we have shown that IF2, TIF and especially AIF can offer
a substantial improvement. As shown in Fig 6, the proposed method has a clear advantage
over IF1 and may be an alternative to IF2 and TIF in many applications. Note that IF2
is very efficient in climbing along the ridge of the likelihood, so a natural heuristic idea to
further improve the method is hybridizing IF2 and AIF but we leave it for the future work.
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Figure 6: The density of the maximized log-likelihoods estimated by IF1, IF2, TIF and AIF
for the malaria model when using J = 10000 and M = 100. The-log likelihood at a computed
MLE is shown as a dashed vertical line.

5. Conclusion

In this paper, we have proposed an efficient simulation-based algorithm using an accelerated
biased gradient approach. We have shown that choosing a suitable perturbation sequence
results in an algorithm that leads to some advances including statistical efficiency and com-
putational efficiency. Only standard gradient conditions are used and a more systematic
approach could be generalized using the state-of-the-art algorithm in the optimization lit-
erature such as proximal theory. The convergence rates are also explicitly stated. From a
theoretical point of view, it could be an interesting perspective.

From a practical point of view, we have provided an efficient framework, applicable to a
general class of nonlinear, non-Gaussian POMP models, especially suitable for infectious
disease modeling and control feedback systems. There are many such systems, which could
be well-treated by the proposed framework. We also provide an open-source software R
package, IS2, which could be useful for the community to further explore in this direction. In
certain models, this novel approach may be of interest compared to the other approaches in
this area.

In principle, different simulation-based inference methods can be hybridized to build on the
strongest features of the multiple algorithms. Our results could also be applied to develop
other simulation-based methodologies which can take advantage of the optimal convergence
rate of accelerated methods. For example, it may be possible to use our approach to help
design efficient proposal distributions for particle Markov chain Monte Carlo algorithms.
Applying this approach to methodologies like Approximate Bayesian Computation (ABC)
(Beaumont, Zhang, and Balding 2002; Sisson et al. 2007; Toni et al. 2009), Liu-West Particle
Filter (LW-PF) (?), and Particle Markov chain Monte Carlo (PMCMC) (Andrieu et al. 2010)
with different sampler schemes, such as forward-backward particle filter (Huys and Paninski
2006), forward smoothing (Del Moral, Doucet, and Singh 2010), or forward filter-backward
smoothing (Doucet, Godsill, and Andrieu 2000), are foreseeable extensions.

A. Proofs

We first need a simple technical result (see Lemma 1 of Ghadimi and Lan (2016)). We provide
it here for completeness.

Lemma 2 (Lemma 1 of Ghadimi and Lan (2016)). .
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Assume sequences {αk} ∈ (0, 1) for k > 1 and α1 = 1 and sequences {ak}, {ηk} satisfy

ak ≤ (1 − αk)ak−1 + ηk, k = 1, 2, . . . (20)

If we define a positive sequence {Γk} as in (7) then for any k ≥ 1, we have

ak ≤ Γk

k∑
i=1

(ηi/Γi).

Proof. Since α1 = 1 and Γ1 = 1, from (7) we have

a1 ≤ η1

or
a1

Γ1
≤ η1

Γ1
.

Since Γk > 0 for every k > 1, dividing both sides of (20) by Γk,

ak
Γk
≤ (1− αk)ak−1 + ηk

Γk
=
ak−1

Γk−1
+
ηk
Γk
, ∀k ≥ 2.

Summing up the above inequalities and rearranging the terms, the conclusion follows.

Lemma 3.
k∑
τ=1

ατ
Γτ

=
1

Γk
. (21)

Proof. We have
k∑
τ=1

ατ
Γτ

=
α1

Γ1
+

k∑
τ=2

1

Γτ
(1− (1− ατ ))

=
1

Γ1
+

k∑
τ=2

(
1

Γτ
− 1

Γτ−1
) =

1

Γk
.

A.1. Proof of Theorem 1

Proof. The proof follows closely to the proof of theorem 1 of Ghadimi and Lan (2016) except
we consider bias estimate of the gradient. We first prove part a.

By (3) and (5), we have

−`(θk) ≤ −`(θk−1) + 〈−∇`(θk−1), θk − θk−1〉+
L

2
‖θk − θk−1‖2

= −`(θk−1) +
〈(
−∇`(θk−1) +∇`(θgak ) + εk

)
−
(
∇`(θgak ) + εk

)
, λk

(
∇`(θgak ) + εk

)〉
+
Lλ2

k

2
‖∇`(θgak ) + εk‖2

= −`(θk−1)−λk(1−
Lλk

2
)‖∇` (θgak )+εk‖2+λk

〈(
−∇`(θk−1) +∇`(θgak ) + εk

)
,
(
∇`(θgak ) + εk

)〉
≤ −`(θk−1)−λk(1−

Lλk
2

)‖∇` (θgak )+εk‖2+λk
(
‖ − ∇`(θk−1) +∇`(θgak )‖+ ‖εk‖

)
·‖∇`(θgak )+εk‖,

≤ −`(θk−1)− λk(1−
Lλk

2
)‖∇` (θgak ) + εk‖2 + λk

(
L‖θk−1 − θgak ‖+ ‖εk‖

)
· ‖∇`(θgak ) + εk‖,
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= −`(θk−1)−λk(1−
Lλk

2
)‖∇` (θgak )+εk‖2+λk

(
L(1− αk)‖θagk−1 − θk−1‖+ ‖εk‖

)
·‖∇`(θgak )+εk‖,

= −`(θk−1)− λk
(

1− Lλk
2

)∥∥∇`(θgak ) + εk
∥∥ 2

+L(1− αk)λk
∥∥∇`(θgak ) + εk

∥∥ · ∥∥θagk−1 − θk−1

∥∥+ λk ‖εk‖ ·
∥∥∇`(θgak ) + εk

∥∥
≤ −` (θk−1)− λk

(
1− Lλk

2

)∥∥∇`(θgak ) + εk
∥∥ 2

+
Lλ2

k

2

∥∥∇` (θgak ) + εk
∥∥ 2 +

L(1− αk)2

2

∥∥θagk−1 − θk−1

∥∥ 2 + λk ‖εk‖ ·
∥∥∇`(θgak ) + εk

∥∥
= −`(θk−1)− λk(1− Lλk)

∥∥∇`(θgak ) + εk
∥∥ 2

+
L(1− αk)2

2

∥∥θagk−1 − θk−1

∥∥ 2 + λk ‖εk‖ ·
∥∥∇`(θgak ) + εk

∥∥ (22)

The second inequality is from triangular inequality and the Cauchy-Schwarz inequality while
the second inequality is due to the Lipschitz of gradient assumption 5 and the last equality
coming from (4). We have the last inequality follows from ab ≤ (a2 + b2)/2. From (4), (5),
and (6), it follows that

θagk − θk = (1− αk)θagk−1 + αkθk−1 − βk
(
∇`(θgak ) + εk

)
−
(
θk−1 − λk

(
∇`(θgak ) + εk

))
= (1− αk)(θagk−1 − θk−1) + (λk − βk)

(
∇`(θgak ) + εk

)
.

Applying Lemma 2 where θagk − θk := ak and ηk := (λk − βk)
(
∇`(θgak ) + εk

)
, we obtain

θagk − θk = Γk

k∑
τ=1

(
λτ − βτ

Γτ
) (∇`(θgaτ ) + ετ ) .

Since‖·‖ 2 is convex, using Jensen’s inequality and Lemma 3 we have

∥∥θagk − θk∥∥ 2 =

∥∥∥∥∥Γk

k∑
τ=1

(
λτ − βτ

Γτ
) (∇` (θgaτ ) + εk)

∥∥∥∥∥
2

=

∥∥∥∥∥Γk

k∑
τ=1

ατ
Γτ

[(
λτ − βτ
ατ

)
(∇`(θgaτ ) + εk)

]∥∥∥∥∥
2

≤ Γk

k∑
τ=1

ατ
Γτ

∥∥∥∥(λτ − βτατ

)
(∇`(θgaτ ) + εk)

∥∥∥∥2

= Γk

k∑
τ=1

(λτ − βτ )2

Γτατ
‖∇`(θgaτ ) + ετ‖2. (23)

Replacing the above bound in (22), and the fact that Γk = Γk−1(1 − αk) as in (7) and that
αk ∈ (0, 1] for all k ≥ 1we obtain

−`(θk) ≤ −`(θk−1)− λk(1− Lλk)
∥∥∇`(θgak ) + εk

∥∥2

+
LΓk−1(1− αk)2

2

k−1∑
τ=1

(λτ − βτ )2

Γτατ
‖∇`(θgaτ ) + ετ‖2 + λk ‖εk‖ ·

∥∥∇`(θgak ) + εk
∥∥

≤ −`(θk−1)− λk(1− Lλk)
∥∥∇`(θgak ) + εk

∥∥2

+
LΓk

2

k∑
τ=1

(λτ − βτ )2

Γτατ
‖∇`(θgaτ ) + ετ‖2 + λk ‖εk‖ ·

∥∥∇`(θgak ) + εk
∥∥ (24)
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for every k ≥ 1. Using the definition of Ck in (8) and summing up the above inequalities, we
have

−`(θN ) ≤ −`(θ0)−
N∑
k=1

λk(1 − Lλk)
∥∥∇`(θgak ) + εk

∥∥2

+
L

2

N∑
k=1

Γk

k∑
τ=1

(λτ − βτ )2

Γτατ
‖∇`(θmτ ) + εk‖2 +

N∑
k=1

λkεk ·
∥∥∇`(θgak ) + εk

∥∥
= −`(θ0)−

N∑
k=1

λk(1 − Lλk)
∥∥∇`(θgak ) + εk

∥∥2

+
L

2

N∑
k=1

(λk − βk)2

Γkαk
(
N∑
τ=k

Γτ )‖∇`(θgak ) + εk‖2 +
N∑
k=1

λk ‖εk‖ ·
∥∥∇`(θgak ) + εk

∥∥
= −`(θ0)−

N∑
k=1

λkCk
∥∥∇`(θgak ) + εk

∥∥2
+

N∑
k=1

λk ‖εk‖ ·
∥∥∇`(θgak ) + εk

∥∥ (25)

Rearranging the terms in the above inequality

N∑
k=1

λkCk
∥∥∇`(θgak ) + εk

∥∥2 ≤ `(θN )− `(θ0) +

N∑
k=1

λk ‖εk‖ ·
∥∥∇`(θgak ) + εk

∥∥
By assumption 6 that ‖∇`(·)‖ and

∑N
k=1 λk ‖εk‖ are bounded. Since `(θN ) ≤ `(θ∗) and in

view of the assumption that Ck > 0, we obtain for some constant B,

mink=1,.N‖∇`(θgak ) + εk‖2 ≤
`(θ∗)− `(θ0) +B∑N

k=1 λkCk

which clearly implies (9).

We now prove part b).

First, from L-Lipschitz-continuous gradient property (6), we have

−`(θagk ) ≤ −`(θgak ) +
〈
∇`(θgak ), θagk − θ

ga
k

〉
+
L

2

∥∥θagk − θgak ∥∥2

≤ −`(θgak )− βk
∥∥∇`(θgak ) + εk

∥∥2
+ ‖εk‖βk

∥∥∇`(θgak ) + εk
∥∥+

Lβ2
k

2

∥∥∇`(θgak ) + εk
∥∥2
. (26)

By the assumption that `(·) is concave and (4),

−`(θgak ) +
[
(1− αk)`(θagk−1) + αk`(θ)

]
= αk

[
−`(θgak ) + `(θ)

]
+ (1− αk)

[
−`(θgak ) + `(θagk−1)

]
≤ αk

〈
∇`(θgak ), θgak − θ

〉
+ (1− αk)

〈
∇`(θgak ), θgak − θ

ag
k−1

〉
= 〈∇`(θgak ), αk(θ

ga
k − θ) + (1− αk)(θgak − θ

ag
k−1)〉

= αk
〈
∇`(θgak ), θk−1 − θ

〉
. (27)

From (5), we have

‖θk − θ‖2 =
∥∥∥θk−1 + λk∇̂`(θgak )− θ

∥∥∥2

= ‖θk−1 − θ‖2 − 2λk〈∇̂`(θgak ), θk−1 − θ〉+ λ2
k

∥∥∥∇̂`(θgak )
∥∥∥2
,

= ‖θk−1 − θ‖2 − 2λk〈∇`(θgak ) + εk, θk−1 − θ〉+ λ2
k

∥∥∇`(θgak ) + εk
∥∥2
,
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which implies

αk
〈
∇`(θgak ) + εk, θk−1 − θ

〉
=

αk
2λk

[
‖θk−1 − θ‖2 − ‖θk − θ‖2

]
+
αkλk

2

∥∥∇`(θgak ) + εk
∥∥2
.

Hence we obtain

αk
〈
∇`(θgak ), θk−1 − θ

〉
≤ αk

2λk

[
‖θk−1 − θ‖2 − ‖θk − θ‖2

]
+
αkλk

2

∥∥∇`(θgak ) + εk
∥∥2

+ αk ‖εk‖ ‖θk−1 − θ‖ (28)

Using the results of (26), (27), and (28), we get

−`(θagk ) ≤ −(1− αk)`(θagk−1)− αk`(θ) +
αk
2λk

[
‖θk−1 − θ‖2 − ‖θk − θ‖2

]
+ αk ‖εk‖ ‖θk−1 − θ‖

−βk(1−
Lβk

2
− αkλk

2βk
)
∥∥∇`(θgak ) + εk

∥∥2
+ ‖εk‖βk

∥∥∇`(θgak ) + εk
∥∥

≤ −(1 − αk)`(θagk−1)− αk`(θ) +
αk
2λk

[
‖θk−1 − θ‖2 − ‖θk − θ‖2

]
−βk

2
(1 − Lβk)

∥∥∇`(θgak ) + εk
∥∥2

+ ‖εk‖βk
∥∥∇`(θgak ) + εk

∥∥+ αk ‖εk‖ ‖θk−1 − θ‖ , (29)

where the last inequality follows from the assumption in (10). Subtracting `(θ) from both
sides of the above inequality and using Lemma 1, we conclude that

−`(θagN ) + `(θ) ≤ ΓN

[
N∑
k=1

αk
2λkΓk

[
‖θk−1 − θ‖2 − ‖θk − θ‖2

]

−
N∑
k=1

βk
2Γk

(1− Lβk)
∥∥∇`(θgak ) + εk

∥∥2
+

N∑
k=1

1

Γk

[
‖εk‖βk

∥∥∇`(θgak ) + εk
∥∥+ αk ‖εk‖ ‖θk−1 − θ‖

]]

≤ ΓN
‖θ0 − θ‖2

2λ1
− ΓN

N∑
k=1

βk
2Γk

(1 − Lβk)
∥∥∇`(θgak ) + εk

∥∥2

+ΓN

N∑
k=1

1

Γk

[
‖εk‖βk

∥∥∇`(θgak ) + εk
∥∥+ αk ‖εk‖ ‖θk−1 − θ‖

]
(30)

for every θ ∈ Rn. By our construction (11) that sequence
{

αk
λkΓk

}
is decreasing and the fact

that α1 = Γ1 = 1, we have

N∑
k=1

αk
λkΓk

[
‖θk−1 − θ‖2 − ‖θk − θ‖2

]
≤ α1 ‖θ0 − θ‖2

λ1Γ1
=
‖θ0 − θ‖2

λ1
(31)

which immediately implies the last inequality of (30).

Hence, we can conclude (13) from the above inequality and the assumption in (10):

`(θ∗)− `(θagN ) ≤ ΓN

[
‖θ0 − θ∗‖2

2λ1
+

N∑
k=1

Γ−1
k

[
‖εk‖βk

∥∥∇`(θgak ) + εk
∥∥+ αk ‖εk‖ ‖θk−1 − θ‖

]]

Finally, noting the fact that `(θagN ) ≤ `(θ∗), substitute θ := θ∗, re-arranging the terms in (30)
we obtain

N∑
k=1

βk
2Γk

(1 − Lβk)
∥∥∇`(θgak ) + εk

∥∥2
k = 1, . . . , N
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≤ ‖θ
∗ − θ0‖2

2λ1
+

N∑
k=1

1

Γk

[
‖εk‖βk

∥∥∇`(θgak ) + εk
∥∥+ αk ‖εk‖ ‖θk−1 − θ‖

]
,

or

mink=1,.N‖∇`(θgak )+εk‖2 ≤ 2

‖θ∗−θ0‖2
2λ1

+
∑N

k=1
1

Γk

[
‖εk‖βk

∥∥∇`(θgak ) + εk
∥∥+ αk ‖εk‖ ‖θk−1 − θ‖

]∑N
k=1 Γ−1

k βk(1− Lβk)

which together with (10), clearly imply (12).

A.2. Proof of Theorem 2

Proof. We first prove part a). Note that by choosing

βk =
1

2L

Γk =
1

k1+δ
, (32)

which implies that for sufficient large k

N∑
τ=k

Γτ =
N∑
τ=k

1

τ1+δ
= O(

1

kδ
)

We also have

1− αk =
(k − 1)1+δ

k1+δ
(33)

for every k > 1, or αk =
(k1+δ−(k−1)1+δ)

k1+δ
= O( (1+δ)kδ

k1+δ
) = O( 1

k ). If we choose λk such that
λk − βk = o(k−1) then

(λk − βk)2

2αkΓkλk
(
N∑
τ=k

Γτ ) =
o(k−2)

k−1k−(1+δ)

1

kδ
= o(1)

so for sufficiently large k we have

Ck = 1− L[λk +
(λk − βk)2

2αkΓkλk
(
N∑
τ=k

Γτ )] >
1

4

Hence, it can also be seen from (9) that for some positive bounded constant B2,

mink=1,.N

∥∥∇`(θgak ) + εk
∥∥2 ≤ `∗ − `(θ0) +B

NB2
= O(

1

N
),

which concludes the first part of the proof. Since ‖εk‖ = O
(
τ2
)
≤ O( 1

k ), we have ∇`(θgak )
converge to 0 at the rate of

min

{
O(

1√
N

), O (‖εk‖)
}

= O(
1√
N

),

which gives us the desired result.

We now show part b). Let λk =
(
k1+δ − (k − 1)1+δ

)
c for some constant c then

α1

λ1Γ1
=

α2

λ2Γ2
= · · · = αk

λkΓk
.
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Observe that

αkλk =
c2
(
k1+δ − (k − 1)1+δ

)2

k1+δ
=
c2 (1 + δ)2O(k2δ)

k1+δ
→ 0

for δ < 1 so (1+δ)2k2δ

k1+δ
< βk = 1

2L for sufficient large k, which implies that conditions (10) and
(11) hold. Moreover, it can also be easily seen from (22) that

mink=1,.N‖∇`(θgak ) + εk‖2 ≤
‖θ∗−θ0‖2

2λ1
+ C

∑N
k=1 Γ−1

k

[
‖εk‖+O( 1

k ) ‖εk‖
]∑N

k=1 Γ−1
k

= O(N−2−δ).

The last equality is due to the fact that
∑N

k=1 Γ−1
k =

∑N
k=1 k

(1+δ) = O(N2+δ). Combining
the above relation with (9), and since ‖εk‖ = O

(
τ2
)
≤ O( 1

k2+δ+δ1
) for some δ1 > 0, we have

∇`(θgak ) converge to 0 at the rate of O
(√

1
N2+δ

)
.

Since αkλk < βk = 1
2L , we have δ ≤ 1 which implies that the best convergence rate is

O(N−3).

B. Additional results with panel model

Motivated by testing the new algorithm on a large and more complex model, we use dynamic
variation in sexual contact rates model of Romero-Severson, Volz, Koopman, Leitner, and
Ionides (2015) following closely the setup of (Ionides 2018) as a case study. Specifically, let
Xi(t) be a latent rate of making contacts of a specific type for each individual, and yij be the
number of reported contacts for individual i between time tj−1 and tj , where i = 1, . . . , 882
and j = 1, . . . , 4. Let Cij be the expected number of contacts for individual i in reporting
interval j, taking into account the decline in reported contacts, we have

Cij = αj−1

∫ tj

tj−1

Xi(t) dt,

where α is a decline fraction. In addition, to account for the higher variance of the data,
Ionides (2018) replaced the traditional Poisson distribution with the negative binomially dis-
tribution (Bretó et al. 2009), assuming

yij ∼ NegBin (Cij , Di) .

When the dispersion Di becomes large, negative binomially distribution becomes Poisson
distribution with the same mean and variance Cij in the limit. When the dispersion Di is
small, it can model the increased variance compared to the Poisson distribution for individual
contacts. At the start of each episode, Xi(t) is drawn from a Gamma distribution with mean
µX and variance σX . To account for autocorrelation between measurements on an individual
over time observed in the data, Ionides (2018) supposes that individual i has behavioral
episodes within which Xi(t) is constant, but the individual enters new behavioral episodes at
a rate Ri.

Xi(t) ∼ Gamma(µX , σX),

but does not result in autocorrelation between measurements over time for an individual.
Hence, Ionides (2018) supposes that individual i has behavioral episodes within which Xi(t)
is constant, but the individual enters new behavioral episodes at a rate Ri. Finally, Di and
Ri are also drawn from Gamma distributions,

Di ∼ Gamma(µD, σD),

Ri ∼ Gamma(µR, σR),
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where σX , σD and σR control individual-level differences in behavioral parameters, covering
a wide range of sexual contact patterns.

The distinction between the effects of the rate at which the new behavioral episodes begin,
Ri, and the dispersion parameter, Di, is subtle since both model within-individual variability.
As noted by Ionides (2018), Ri and Di both model within-individual variability and identify
them from data depending on the high variance in the number of reported contacts. We
get the following results using IF1, IF2, and AIF to solve this empirical question (Table 2),
which include a few parameters and the estimated likelihood. As seen from this large model,
both IF2 and AIF can reach the ideal likelihood-ratio 95% confidence set of MLE (−9552.01±
qchisq(0.95, df = 6)) while IF1 is just barely outside it. This reconfirms our earlier comparison
between IF1, IF2, and AIF.

Table 2: Summary results of fitting dynamic variation in sexual contact rates model using
IF1, IF2, AIF with number of particle J = 10000 and number of iteration M = 50

Algorithms µD µR α ˆ̀ s.e. time(s)

IF1 3.8399 0.0415 0.8995 -9558.3904 1.6769 4441.292
IF2 3.0624 0.0400 0.8972 -9554.1762 1.7467 4519.276
AIF 3.0112 0.0426 0.9169 -9554.0951 1.1100 4551.132
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C. Parameters definitions and starting ranges for the malaria model

Table S-4. Parameters for the malaria SEIH3Q model.

Symbol Definition Units θlow θhigh

µEI (∗) E → I transition rate yr−1 24 24
µIH I → H transition rate yr−1 1.00 5.00
µHI H → I transition rate yr−1 1.00 5.00
µIS I → S transition rate yr−1 0.5 2.00
µIQ I → Q transition rate yr−1 1.00 2.00
µQS Q → S transition rate yr−1 10.00 20.00
q (∗) relative infectivity of Q class − 0.001 0.001
τ mean lag for mosquitoes month 0.10 0.50
ρ case reporting fraction − 0.001 0.01
σpro s.d. of dynamic noise yr0.5 0.1 0.5
σobs s.d. of measurement noise − 0.1 0.5
br coefficient of rainfall covariate − 0.5 0.9
S0 initial fraction in S class − 0 1
E0 initial fraction in E class − 0 1
I0 initial fraction in I class − 0 1
Hi,0 initial fraction in Hi class − 0 1
Q0 initial fraction in Q class − 0 1
κ0 initial value, κ(t0) − 0.1 0.5
µSE,0 initial value, µSE(t0) − 0.1 0.5
b1 1st spline coefficient − -5 5
b2 2nd spline coefficient − -5 5
b3 3rd spline coefficient − -5 5
b4 4th spline coefficient − -5 5
b5 5th spline coefficient − -5 5
b6 6th spline coefficient − -5 5
1/δ (∗) mean human life span yr 0.02 0.02

We follow definitions as in Roy et al. (2013). θlow and θhigh are the lower and upper
bounds for a hyper-rectangle used to generate starting points for the search. Pa-
rameters labeled with (∗) were set at fixed values. Non-negative parameters were
logarithmically transformed for optimization.
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