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Abstract

The aim of this paper is to introduce a generalized LASSO regression model that is de-
rived using a generalized Laplace (GL) distribution. Five different GL distributions are ob-
tained through the T -R{Y } framework with quantile functions of standard uniform, Weibull,
log-logistic, logistic, and extreme value distributions. The properties, including quantile
function, mode, and Shannon entropy of these GL distributions are derived. A particular
case of GL distributions called the beta-Laplace distribution is explored. Some additional
components to the constraint in the ordinary LASSO regression model are obtained through
the Bayesian interpretation of LASSO with beta-Laplace priors. The geometric interpre-
tations of these additional components are presented. The effects of the parameters from
beta-Laplace distribution in the generalized LASSO regression model are also discussed.
Two real data sets are analyzed to illustrate the flexibility and usefulness of the gener-
alized LASSO regression model in the process of variable selection with better prediction
performance. Consequently, this research study demonstrates that more flexible statistical
distributions can be used to enhance LASSO in terms of flexibility in variable selection and
shrinkage with better prediction.

Keywords: LASSO regression, beta-Laplace distribution, T -Laplace family, variable selection,
prediction.

1. Introduction

Developments in sophisticated data collection techniques have significantly increased the num-
ber of potential predictor variables in almost every area of science, entertainment, business,
and industry. In the field of science, some applications with many predictive variables include
genomics, biomedical imaging, and tumor classifications. Studying customer ratings to recom-
mend or sell new movies and books, analyzing social network profiles to improve the online
experience, analyzing sports statistics to help team managers and players to make better de-
cisions are applications with a large number of predictors in the fields of entertainment and
business.

With the current COVID-19 pandemic that we are in, it is important to develop more big data
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analytics tools to understand pandemic data. Given that more data are freely available for
COVID-19, it is imperative to develop big data analytics tools such as the flexible LASSO in
this study to better understand virus transmission, risk factors, origins, diagnostics, and other
vital data. Table 1 presents some of the significant applications of big data in the COVID-19
pandemic (Haleem, Javaid, Khan, and Vaishya 2020). Applied to reality, the proposed study
advances the data analysis techniques in machine learning and data mining.

Table 1: Some of the significant applications of big data in the COVID-19 pandemic

Area of the Applications Description

(a) Infected cases Identification of infected cases from the massive amount
of data based on medical histories of all patients

(b) Travel history To analyze the risk and identify people who may have
been in contact with the infected patients based on travel
history

(c) Symptoms Identification of suspicious cases based on most significant
symptoms

(d) Disease detection Identification of infected patients at an early stage using
the most significant factors

(e) Medical treatments Rapid development of new medicines and medical equip-
ment that are needed for current and future medical needs
via critical data available

When dealing with statistical modeling problems with many predictor variables, our goal is to
find a simple model that also has a good predictive ability. The statistical models with fewer
predictors are easy to interpret and often lead to a better understanding of the underlying
process generating the data. In 1976, British statistician George Box wrote a famous line, “All
models are wrong, some are useful.” As such, in the model selection process, the approximate
best model for the data is selected based on the prediction performance among different models.
The traditional model selection methods such as forward and stepwise methods often select too
many predictors when size of data is very large due to the standard errors of parameter estimates
become very small. As a result, the obtained model based on the data used to train the model
has small mean squared error (MSE). However, when it is applied to an independent data,
the MSE often is not optimal due to large variance component. Different solutions have been
proposed. In general, the resulting ‘optimal’ model often has higher MSE than the ordinary
Least Square model due to the trade off between bias and variance. One such approach is
to shrink the values of the regression coefficients smaller or to zero. This is the well known
shrinkage or regularization methods.

In the last few decades, many shrinkage methods have been proposed (Hastie, Tibshirani, and
Wainwright 2015). Some of the methods are ridge regression method (Hoerl and Kennard 1970),
Least Absolute Selection and Shrinkage Operator (LASSO) method by Tibshirani (1996), and
elastic-net regression method by Zou and Hastie (2005).

Consider the usual linear regression model: given p predictors X1,X2, . . . ,Xp, our aim is to
predict the response Y using a linear model

Ŷ = β̂0 + X1β̂1 + X2β̂2 + · · ·+ Xpβ̂p. (1)

Given a data set of n observations, the vector of estimators β̂ = (β̂0, β̂1, . . . , β̂p) is obtained
through a model-fitting procedure. In the ordinary least squares (OLS) method, the estimates
are obtained by minimizing sum of squared errors (SSE). The ridge regression method obtains
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the estimates by minimizing SSE subject to a bound on L2 norm of the regression coefficients.
This constraint leads the regression coefficients to shrink toward zero. This helps to reduce
model complexity and multicollinearity. On the other hand, the LASSO method obtains the
estimates by minimizing SSE subject to a bound on L1 norm of the regression coefficients. The
L1 penalty in LASSO can set some regression coefficients to zero. Thus, the LASSO reduces
model complexity and multicollinearity and can be used in variable selection. The elastic-net
method is a hybrid method that combines the regularization in both LASSO and ridge. Figures
1a, 1b, and 1c represent the contours of the error function and constraint regions of ridge,
LASSO, and elastic-net methods, respectively.

(a) (b) (c)

Note: β̂ is the solution from the OLS method.

Figure 1: Contours of the error function and constraint regions

In this paper, we specifically focus on the LASSO regression method. Even though the LASSO
is a promising method on many occasions, it has some drawbacks.

• Due to the nature of the convex optimization problem that LASSO tries to minimize,
when p > n, LASSO tends to select at most n predictors. This limits the use of LASSO
in variable selection.

• When multicollinearity exists in a group of predictors, LASSO tends to pick only one
predictor from the group without caring which one to select and ignores others.

• The obtained LASSO model may be over-simplified and results in large bias component
due to many parameter estimates are set to zero.

LASSO method is a convex optimization problem, and many optimization methods have been
developed for solving LASSO. On the other hand, there is also a Bayesian view of the LASSO
estimators. Based on the form of the penalty term in LASSO, the LASSO estimates can
be interpreted as posterior mode estimates when regression parameters have independent and
identical Laplace priors. Motivated by this, in this paper we introduce a family of generalized
Laplace priors that could be useful in defining a generalized LASSO regression model by first
developing a family of generalized Laplace distributions.

The paper is organized as follows: In Section 2, we introduce the T -Laplace family of distribu-
tions using the T -R{Y } framework. We also present some general properties of the proposed
generalizations of Laplace distribution. Section 3 explores the beta-Laplace distribution and
some of its properties. In Section 4, we derive a generalized LASSO regression model by in-
troducing additional components to the constraint in the ordinary LASSO regression model
through the Bayesian interpretation of LASSO with beta-Laplace priors. The geometric inter-
pretations of these additional components and the effects of the parameters from beta-Laplace
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distribution in the generalized LASSO regression model are also investigated. Section 5 presents
a numerical study and two real data examples to demonstrate the flexibility and usefulness of the
generalized LASSO regression model in the process of variable selection with better prediction
performance. Finally, Section 6 contains the conclusions and suggestions for further study.

2. T -Laplace family of distributions

Eugene, Lee, and Famoye (2002) introduced the beta-generated family of distributions with

CDF G(x) =
∫ F (x)
0 b(t)dt where b(t) is PDF of a beta random variable and F (x) is the CDF

of any random variable. Motivated by this idea, Alzaatreh, Lee, and Famoye (2013) introduced

T -X(W ) family of distributions with the CDF, G(x) =
∫W (F (x))
a r(t)dt where r(t) is the PDF

of any random variable T ∈ [a, b], −∞ ≤ a < b ≤ ∞, and W (F (x)) is a monotonic and
absolutely continuous function. Following that, Aljarrah, Lee, and Famoye (2014) defined T -
X{Y } by taking W (F (x)) to be QY (F (x)), the quantile function of any random variable Y .
Later, Alzaatreh, Lee, and Famoye (2014) renamed the T -X{Y } family as T -R{Y } framework
by defining a unified notation, which will be used in this article.

Let T , R, and Y be random variables with CDFs FT (x) = P (T ≤ x), FR (x) = P (R ≤ x) ,
and FY (x) = P (Y ≤ x), respectively. Let the PDFs be denoted by fT (x) , fR (x) , and fY (x),
respectively. The corresponding quantile functions are QT (p) , QR (p) , and QY (p), where the
quantile function is defined as QZ (p) = inf {z : FZ (z) ≥ p} , 0 < p < 1. Assume the random
variables Y ∈ [c, d] and T ∈ [a, b] ⊂ [c, d] , for −∞ ≤ a < b ≤ ∞ and ∞ ≤ c < d ≤ ∞.
Using the T -R{Y } framework, the CDF and PDF of the random variable X are respectively
defined as

FX (x) =

∫ QY (FR(x))

a
fT (t)dt = FT (QY (FR (x))) , (2)

fX (x) = fR (x)× fT (QY (FR (x)))

fY (QY (FR (x)))
. (3)

One can use X = QR (FY (T )) to generate the random variable X. Since the support of T -R{Y }
is the same as the support of R, given a random variable R, T -R{Y } gives the generalized R
distribution for any non-uniform T and Y . So, the T -R{Y } framework can be used to generate
different families of generalized R distribution.

From equations (2) and (3), the cumulative hazard function and the hazard function of the
random variable X can be defined as

HX (x) = − log (1− FT (QY (FR (x)))) , (4)

hX (x) = hR (x)× hT (QY (FR (x)))

hY (QY (FR (x)))
. (5)

In probability theory and statistics, the Laplace distribution is a continuous probability distribu-
tion named after marquis Pierre-Simon Laplace (1749-1824), a French scholar and a polymath.
Sometimes the Laplace distribution is also known as the double exponential distribution due to
its particular shape. Compared to the Gaussian distribution, the Laplace distribution is also a
symmetric distribution, but with moderate tails and a discontinuous first derivative at the mean.
The Laplace distribution has various applications in biology, computer science, social studies,
physics, finance, and economics. It has also been commonly used over Gaussian distribution in
robustness studies.

Let R be a centered Laplace random variable with the scale parameter σ > 0. The corresponding
CDF and PDF of R are defined as

FR (x) =
1

2
+

1

2
sgn (x)

{
1− e−|x|/σ

}
=

{
1
2e
x/σ if x < 0,

1− 1
2e
−x/σ if x ≥ 0,

(6)
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fR (x) =
1

2σ
e−|x|/σ =

1

2σ

{
ex/σ if x < 0,

e−x/σ if x ≥ 0,
(7)

The cumulative hazard function and the hazard function of R are defined as

HR (x) = − log

[
1

2
− 1

2
sgn (x)

{
1− e−x/σ

}]
, (8)

hR (x) =

{[
σ
{

2 e−x/σ − 1
}]−1

if x < 0,

σ−1 if x ≥ 0.
(9)

If the random variable R follows the Laplace distribution with CDF, PDF, cumulative hazard
function, and hazard function as defined in equations (6), (7), (8), and (9), then equations (2),
(3), (4), and (5) give the CDF, PDF, cumulative hazard function, and hazard function of a
random variable that follows the T -Laplace{Y } distribution.

Applying different random variables T and Y , T -Laplace{Y } generates families of generalized
Laplace (GL) distributions, and the domain of the resulting distribution is the same as that of
Laplace distribution. In Table 2, five different choices of random variable Y and corresponding
quantile functions and the domain of T that can be used along with Y are listed.

Table 2: Quantile functions of different choices of Y and domains of T

Random variable Y The quantile function QY (p) Domain of T

(a) Standard uniform p (0, 1)

(b) Weibull λ(− log(1− p))1/k, λ, k > 0 (0, ∞)

(c) Log-logistic α[p/(1− p)]1/β, α, β > 0 (0, ∞)

(d) Logistic µ+ λ log[p/(1− p)], λ > 0 (−∞, ∞)

(e) Extreme value α+ β log[− log (1− p)] (−∞, ∞)

In the following, we define five families of GL distributions, T -Laplace{uniform}, T -
Laplace{Weibull}, T -Laplace{log-logistic}, T -Laplace{logistic}, and T -Laplace{extreme value}
using the quantile functions of standard uniform, Weibull, log-logistic, logistic, and extreme
value distributions respectively as listed in Table 2 where FR (x) , fR (x) , HR (x) , and hR (x)
are respectively defined as in equations (6), (7), (8), and (9), and SR (x) = 1− FR (x) is the
survival function of the random variable R.

i. T -Laplace{uniform} family: The CDF, PDF, and hazard function of T -Laplace{uniform}
are respectively given by

FX (x) = FT (FR (x)) , (10)

fX(x) = fR(x)fT (FR(x)) , (11)

hX (x) = fR (x)hT (FR (x)) , (12)

where FT (x) , fT (x) , and hT (x) are the CDF, PDF, and hazard function of the random
variable T .

ii. T -Laplace{Weibull} family: The CDF, PDF, and hazard function of T -Laplace{Weibull}
are respectively given by

FX(x) = FT

(
λ [HR (x)]1/k

)
, (13)

fX (x) =
λfR (x) fT

(
λ [HR (x)]1/k

)
[HR (x)](1−k)/k

kSR (x)
, (14)
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hX (x) = (λ/k)hR (x)hT

(
λ [HR (x)]1/k

)
[HR (x)](1−k)/k .

Note that when λ = k = 1, we get the CDF, PDF, and the hazard function of the
T -Laplace{exponential} family.

iii. T -Laplace{log-logistic} family: The CDF, PDF, and hazard function of T -Laplace{log-
logistic} are respectively given by

FX (x) = FT

(
α [FR (x) /SR (x)]1/β

)
, (15)

fX (x) =
αfR (x) fT

(
α [FR (x) /SR (x)]1/β

)
[FR (x)](1−β)/β

β [SR (x)]1/β
, (16)

hX (x) =
αhR (x)hT

(
α [FR (x) /SR (x)]1/β

)
[FR (x)](1−β)/β

β [SR (x)]1/β
.

iv. T -Laplace{logistic} family: Using the quantile function (d) in Table 2 with µ = 0, the
CDF, PDF, and hazard function of T -Laplace{logistic} are respectively given by

FX (x) = FT (λ log (FR (x) /SR (x)))) , (17)

fX (x) =
λfR (x) fT (λ log (FR (x) /SR (x)))

FR(x)SR (x)
, (18)

hX (x) =
λhR (x)hT (λ log (FR (x) /SR (x)))

FR(x)
.

v. T -Laplace{extreme value} family: Using the quantile function (e) in Table 2 with α = 0,
the CDF, PDF, and hazard function of T -Laplace{extreme value} are respectively given
by

FX (x) = FT (β log (HR (x))) , (19)

fX (x) =
fR (x) fT (β log (HR(x))

− log (SR (x))SR (x)
, (20)

hX (x) =
βhR (x)hT (β log (HR (x)))

HR(x)
.

2.1. Some properties of the T -Laplace family of distributions

In this section, some of the general properties of the T -Laplace family will be presented.

Lemma 2.1 (Transformations). Given any random variable T with the PDF fT (x),

i. the random variable X = −σ sgn (T − 0.5) log(1− 2 |T − 0.5|) follows the distribution of
T -Laplace{uniform} family in Equation (10). An equivalent random variable can be writ-
ten as

X =

{
σ log (2T ) if 0 < T < 0.5,

−σ log (2− 2T ) if 0.5 ≤ T < 1,

ii. the random variable X = −σ sgn(0.5− e−(T/λ)
k

) log(1− |1− 2e−(T/λ)
k

|) follows the dis-
tribution of T -Laplace{Weibull} family in Equation (13). An equivalent random variable
can be written as

X =

{
σ[(T/λ)k − log(2)] if 0 < T ≤ λ[− log(0.5)]1/k,

σ log (2− 2e(T/λ)
k

) if λ [− log (0.5)]1/k < T <∞,
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iii. the random variable X = −σ sgn (0.5(T − 1)/(T + 1)) log(1 − |(T − 1)/(T + 1)|) follows
the distribution of T -Laplace{log-logistic} family in Equation (15). An equivalent random
variable can be written as

X =

{
σ log (T/(T + 1)) if 0 < T < 1,

−σ log (2/(T + 1)) if 1 ≤ T <∞,

iv. the random variable X = −σ sgn
(
0.5(eT − 1)/(eT + 1)

)
log(1 −

∣∣(eT − 1)/(eT + 1)
∣∣) fol-

lows the distribution of T -Laplace{logistic} family in Equation (17). An equivalent random
variable can be written as

X =

{
σ log

(
2eT /(eT + 1)

)
if −∞ < T < 0,

−σ log(2/(eT + 1)) if 0 ≤ T <∞,

v. the random variable X = −σ sgn(0.5− e−eT ) log(1− |2e−eT − 1|) follows the distribution
of T -Laplace{extreme value} family in Equation (19). An equivalent random variable can
be written as

X =

{
σ log

(
2− 2e−(e)

T
)

if −∞ < T < log [− log (0.5)],

σ(eT − log(2)) if log(− log (0.5)) ≤ T <∞.

Proof. The results follow immediately from the fact that X = QR (FY (T )) can
be used to generate the random variable X using the random variable T , where
QR (p) = −σ sgn (p− 0.5) log (1− |2p− 1|), 0 < p < 1 is the quantile function of the
Laplace distribution. So, we can generate a random variable X that follows T -
Laplace{uniform} distribution by first simulating the random variable T and then computing
X = −σ sgn (T − 0.5) log(1− |2T − 1|).

Thus, in general, one can compute E (Xr), the rth non-central moment of the random variable
X, by using E (Xr) = E([QR (FY (T ))]r). As an example, E (X) of T -Laplace{uniform} can be
computed as

E (X) = E(−σ sgn (T − 0.5) log (1− |2T − 1|))

=

{
σE(log(2T )) if 0 < T < 0.5,

−σE(log(2− 2T )) if 0.5 ≤ T < 1.

= σ

∫ 0.5

0
log (2T )fT (t) dt− σ

∫ 1

0.5
log (2− 2T )fT (t) dt,

where fT (t) is the PDF of the random variable T .

Lemma 2.2 (Quantiles). Let QX (p) , 0 < p < 1 denotes the quantile function of the random
variable X. Then the quantile functions for the i. T -Laplace{uniform}, ii. T -Laplace{Weibull},
iii. T -Laplace{log-logistic}, iv. T -Laplace{logistic}, and v. T -Laplace{extreme value} distribu-
tions are respectively given by

i. QX (p) = −σ sgn (QT (p)− 0.5) log (1− |2QT (p)− 1|),

ii. QX (p) = −σ sgn(0.5− e−(QT (p)/λ)
k

) log(1− |2e(QT (p)/λ)
k

− 1|),

iii. QX (p) = −σ sgn (0.5(QT (p)− 1)/(QT (p) + 1)) log(1− |(QT (p)− 1)/(QT (p) + 1)|),

iv. QX (p) = −σ sgn
(
0.5(eQT (p) − 1)/(eQT (p) + 1)

)
log(1−

∣∣(eQT (p) − 1)/(eQT (p) + 1)
∣∣),
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v. QX (p) = −σ sgn(0.5− e−eQT (p)
) log(1− |2e−eQT (p) − 1|),

where QT (p) , 0 < p < 1 is the quantile function of the random variable T .

Proof. Each result can be shown by solving FX (QX (p)) = p for QX (p) where FX (·) is the
CDF defined in equations (10), (13), (15), (17), and (19), respectively.

Theorem 2.1. The mode(s) of the T -Laplace{Y } family are the solutions of the equations

x = σ sgn(x) log

(
sgn(x)

(
Q′′Y (FR (x))

2Q′Y (FR (x))
+
f ′T (QY (FR (x)))

2fT (QY (FR (x)))
Q′Y (FR (x))

))
.

Proof. First using the fact that QY (FY (x)) = x, it follows that
Q′Y (FR (x)) = 1/fY (QY (FR (x))) so that Equation (3) can be written as
fX (x) = fR (x) fT (QY (FR (x)))Q′Y (FR (x)). The result in Theorem (2.1) can be shown
by setting the first derivative of equation fX (x) = fR (x) fT (QY (FR (x)))Q′Y (FR (x)) to
zero.

Corollary 2.1. The mode(s) of the i. T -Laplace{uniform}, ii. T -Laplace{Weibull}, iii. T -
Laplace{log-logistic}, iv. T -Laplace{logistic}, and v. T -Laplace{extreme value} distributions,
respectively, are the solutions of the equations

i. x = σ sgn(x) log
(

sgn(x)
(
f ′T (FR(x))
2fT (FR(x))

))
,

ii. x = σ sgn(x) log

(
sgn(x)

HR(x)SR(x)

(
−HR (x) + k − 1 +

λ{HR(x)}1/kf ′T (λ{HR(x)}1/k)
kfT (λ{HR(x)}1/k)

))
,

iii. x = σ sgn(x) log

(
sgn(x)

2βFR(x)SR(x)

(
2βFR (x)− β + 1 +

α{hR(x)}1/βf ′T (α{hR(x)}1/β)
fT (α{hR(x)}1/β)

))
,

iv. x = σ sgn(x) log
(

sgn(x)
2FR(x)SR(x)

(
2FR (x)− 1 +

2λf ′T (λ log(hR(x)))
fT (λ log(hR(x)))

))
,

v. x = σ sgn(x) log
(

sgn(x)
2HR(x)SR(x)

(
2HR (x)− 1 +

βf ′T (β log(HR(x)))

fT (β log(HR(x)))

))
.

Proof. First, we derive formulas for
Q′′Y (p)

Q′Y (p)
, the ratio between the first and the second derivatives

of random variable Y from uniform, Weibull, log-logistic, logistic, and extreme value distribu-
tions. Then, the results in equations i-v respectively can be obtained by applying each ratio in
Theorem (2.1).

Theorem 2.2. The Shannon entropies for the T -Laplace{Y } family are given by

ηX = ηT + E (log(fY (T ))) + log (2σ) + E (|X|) /σ, (21)

where ηT is the Shannon entropy of random variable T .

Proof. First, applying Equation (3) in the definition of the Shannon entropy, ηX =
E (− log [fX (x)]), we get ηX = ηT + E (log(fY (T ))) − E (log(fR (X))). Then, applying Equa-
tion (7), the PDF of centered Laplace random variable R, we get the desired result in Equation
(21).

Corollary 2.2. The Shannon entropies of the i. T -Laplace{uniform}, ii. T -Laplace{Weibull},
iii. T -Laplace{log-logistic}, iv. T -Laplace{logistic}, and v. T -Laplace{extreme value} distribu-
tions, respectively, are given by
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i. ηX = ηT + log (2σ) + E (|X|) /σ,

ii. ηX = ηT + log
(
2σk/λk

)
+ (k − 1)E (log (T ))− E

(
T k
)
/λk + E (|X|) /σ,

iii. ηX = ηT + log
(
2σβ/αβ

)
+ (β − 1)E (log (T ))− 2E

(
log
[
1 + (T/α)β

])
+ E (|X|) /σ,

iv. ηX = ηT + log (2σ/λ)− µT /λ− 2E
(
log
(
1 + e−T/λ

))
+ E (|X|) /σ,

v. ηX = ηT + log (2σ/β) + µT /β − E
(
eT/β

)
+ E (|X|) /σ,

where µT and ηT are the mean and the Shannon entropy for the random variable T .

Proof. The results in i-v can be shown by applying the PDFs, fY (T ) =

1, (k/λ) (T/λ)k−1 e−(T/λ)
k

, (α/β) (T/α)β−1 /
(

1 + (T/α)β
)2
, e−T/λ/λ

(
1 + e−T/λ

)2
, eT/βe−e

T/β

of standard uniform, Weibull, log-logistic, logistic, and extreme value distributions in Equation
(21).

3. Beta-Laplace distribution

In recent years, several GL distributions have been studied through different generalization
techniques. Some examples are beta-Laplace distribution (Cordeiro and Lemonte 2011) and
Kumaraswamy-Laplace distribution (Aryal and Zhang 2016). In this section, we explore some
properties of beta-Laplace distribution using the T -R{Y } framework that are not available in
the literature.

Let a random variable T follow the beta distribution with parameters a and b. Then the PDF of
T is given by fT (x) = xa−1 (1− x)b−1 /B (a, b) , a, b > 0, where B(a, b) = Γ (a) Γ (b) /Γ (a+ b)
is the beta function and Γ(·) is the gamma function. The CDF of T is the regularized incomplete
beta function, FT (x) = Ix (a, b) = Bx (a, b) /B (a, b) , where Bx(a, b) =

∫ x
0 u

a−1 (1− u)b−1du.
From Equation (10), the CDF of the beta-Laplace distribution is defined as

FX (x) = I 1
2
+ 1

2
sgn(x){1−e−|x|/σ} (a, b) =

{
I 1

2
ex/σ (a, b) if x < 0,

I1− 1
2
e−x/σ (a, b) if x ≥ 0.

(22)

By using Equation (11) , the PDF of the beta-Laplace distribution is given by

fX (x) =
1

2σB (a, b)
e−|x|/σ

[
1

2
+

1

2
sgn (x)

{
1− e−|x|/σ

}]a−1
(23)

×
[

1

2
− 1

2
sgn (x)

{
1− e−|x|/σ

}]b−1
=

1

2a+b−1σB (a, b)

{
eax/σ

(
2− ex/σ

)b−1
if x < 0

e−bx/σ
(
2− e−x/σ

)a−1
if x ≥ 0.

When a = b, the plots are symmetric and when a = b = 1, the PDF in Equation (23) reduces
to the PDF of Laplace distribution in Equation (7). The plots for the PDF of the beta-Laplace
distribution for several combinations of parameters σ, a, and b are given in Figure 2. According
to the plots in Figure 2a, when a > b the graphs are positively skewed, and the skewness
increases as a increases. Also, as a increases, the mode increases when a > 1.

According to the plots in Figure 2b, when a < b the graphs are negatively skewed, and the
skewness increases as b increases. Also, as b increases, the mode decreases when b > 1. It is
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Figure 2: Plots of the pdf of beta-Laplace distribution

evident that the parameters a and b from beta distribution increase the flexibility in the Laplace
distribution.

(Cordeiro and Lemonte 2011) discussed some of the properties of the beta-Laplace distribu-
tion using series expansions. Here, we present some additional properties of the beta-Laplace
distribution using the general properties of T -Laplace family of distributions in Section 2.

1. Quantile function: By using Lemma (2.2), the quantile function of the beta-Laplace
distribution can be derived as

QX (p) = −σ sgn

(
I−1p (a, b)− 1

2

)
log

(
1− 2

∣∣∣∣I−1p (a, b)− 1

2

∣∣∣∣),
where I−1p (a, b) is the inverse regularized beta function.

2. Median: The median of the beta-Laplace distribution is given by

MX = QX (0.5) = −σ sgn

(
I−10.5 (a, b)− 1

2

)
log

(
1− 2

∣∣∣∣I−10.5 (a, b)− 1

2

∣∣∣∣) .
Since there is no general closed-form expression for the median of the beta distribution for
arbitrary values of the parameters a and b, we do not have a closed-form expression for
the median of the beta-Laplace distribution. Some closed-form expressions of the median
for particular values of a and b are obtained in the following.

• Symmetric case: a = b
When a = b, we have I−10.5 (a, b) = 0.5. So, the median, MX = QX (0.5) = 0.

• When a = 1 and b > 0, we have I−10.5 (1, b) = 1− 2−1/b. Then,

MX = −σ
2

sgn
(

1− 2(b−1)/b
)

log
(

1−
∣∣∣1− 2(b−1)/b

∣∣∣) .
• When a > 0 and b = 1, we have I−10.5 (a, 1) = 2−1/a. Then,

MX = −σ
2

sgn
(

2(a−1)/a − 1
)

log
(

1−
∣∣∣2(a−1)/a − 1

∣∣∣) .
A reasonable approximation for the median of the beta distribution when a, b ≥ 1, is given
by (Kerman 2011), I−10.5 (a, b) ≈ (a− 1/3) / (a+ b− 2/3). Using this approximation, an
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approximated value for the median of the beta-Laplace distribution for arbitrary values
of the parameters σ, a, and b can be found using the formula

MX ≈ −σ sgn

(
a− b

2(a+ b− 2/3)

)
log

(
1−

∣∣∣∣ a− b
a+ b− 2/3

∣∣∣∣) .
3. Mode: By using Theorem (2.1), the mode of the beta-Laplace distribution can be derived

as

Mode =


−σ log

(
a+b−1

2a

)
if a < b− 1,

σ log
(
a+b−1

2b

)
if a > b+ 1,

0 otherwise.

Figure 3 displays the regions of a and b to calculate the mode of beta-Laplace distribution
for given values of a and b. When (a, b) is from the red region (i.e. when a < b− 1), the
mode is negative, and when (a, b) is from blue region (i.e. when a > b + 1), the mode
is positive. Also, when (a, b) is from the white region (the band between the two dashed
lines), the mode is zero.

Figure 3: Plot of regions of a and b to calculate mode

4. Skewness and Kurtosis: Here, we present the formulas for skewness and kurtosis of
beta-Laplace distribution based on the quantile function of the beta-Laplace distribution.
The measure of the Galton’s skewness S and the measure of the Moors’ kurtosis K are
defined based on the quantile functions. Thus, the Galton’s skewness (S) and Moors’
kurtosis (K) of the beta-Laplace distribution respectively can be found using

S =
QX (3/4)− 2QX (1/2) +QX (1/4)

QX (3/4)−QX (1/4)
,

K =
QX (7/8)−QX (5/8) +QX (3/8)−QX (1/8)

QX (3/4)−QX (1/4)
,

where QX (p) = −σ sgn
(
I−1p (a, b)− 1/2

)
log
(
1− 2

∣∣I−1p (a, b)− 1/2
∣∣). Figure 4 repre-

sents the contour plots of skewness (4a) and kurtosis (4b) of beta-Laplace distribution for
different combinations of parameters a and b when σ = 1.

Based on the contour plots of Galton’s skewness (S) in Figure 4a, the following properties
are observed:

• Case (i) If a = b, then S = 0 and beta-Laplace distribution is symmetric.

• Case (ii) a < 1 and b < 1: If a < b, then S < 0 and beta-Laplace distribution is
negatively skewed. If a > b, S > 0 and beta-Laplace distribution is positively skewed.

• Case (iii) a > 1 and b > 1: If a < b, then S < 0 and beta-Laplace distribution is
negatively skewed. If a > b, S > 0 and beta-Laplace distribution is positively skewed.
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Figure 4: Galton’s skewness(S) and Moors’ kurtosis (K) of beta-Laplace distribution

• Case (iv) a < 1 and b ≥ 1: S < 0 and beta-Laplace distribution is negatively skewed.

• Case (v) a ≥ 1 and b < 1: S > 0 and beta-Laplace distribution is positively skewed.

Based on the contour plots of Moors’ kurtosis (K) in Figure 4b, Moors’ kurtosis (K) is a
decreasing function of a and b.

5. Shannon entropy: By using Corollary (2.2) and the fact that ηT = log(B(a, b))− (a−
1)ψ(a)−(b−1)ψ(b)+(a+b−2)ψ(a+b), where ψ(·) is the digamma function, the Shannon
entropy of beta-Laplace distribution can be obtained as

ηX = log(B(a, b))− (a− 1)ψ(a)− (b− 1)ψ(b) + (a+ b− 2)ψ(a+ b) + log(2σ) +E (|X|) /σ.

4. A generalized LASSO regression model

We introduce a generalized family of LASSO regression models using the T -Laplace{uniform}
family in Sub-section 4.2 and a generalized LASSO model using beta-Laplace distribution in
Sub-section 4.3. First, we present an overview of the LASSO regression model.

4.1. LASSO regression model

The Least Absolute Selection and Shrinkage Operator (LASSO) method is a powerful penalized
regression method that was first formulated by Tibshirani (1996). Given a data set of n obser-
vations, let y = (y1, y2, . . . , yn) denotes the vector of responses, and X be an n× p matrix with
xi ∈ Rp where p is number of predictors in the model. Then, LASSO finds the solution (β̂0, β̂)
to the optimization problem

minimize
β0,β

1

2n
‖y − β01−Xβ‖2

2

subject to ‖β‖1 ≤ t,
(24)

where 1 is the vector of n ones, and ‖·‖1 and ‖·‖2 denote L1 and L2 norms, respectively. The
bound t in the constraint limits the sum of the parameter estimates’ absolute values and controls
how well the data can be fitted. The value of t can be obtained through a cross-validation
process. Suppose that we standardize each column of the matrix of predictors X so that each
predictor is centered with a zero-mean and unit variance. This allows us to ignore the units of
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the predictors. We also assume that the vector of responses, y is also centered with a zero-mean.
With these centering conditions, we can omit the intercept β0 from the LASSO optimization.
Once the optimal solution β̂ is found for the centered data, it is possible to recover the optimal
solution for the uncentered data: β̂ is same and β̂0 = ȳ − β̂X̄, where ȳ is the mean of the
uncentered response vector y and X̄ is the vector of means of the uncentered columns in X.
Because of that we omit the intercept β̂0 from the models for the remainder of this paper.

An equivalent form of the optimization problem in (24), the so called Lagrangian form, is given
as

minimize
β

1

2n
‖y −Xβ‖2

2 + λ ‖β‖1 , (25)

where λ ≥ 0 is the regularization parameter that controls the strength of the penalty ‖β‖1. The
value of λ can be determined through a cross-validation process. The regularization parameter
λ and the bound t have a reverse relationship. As the value of t becomes infinity, the LASSO
becomes the OLS, and λ becomes zero. On the other hand, as t becomes zero, all the parameter
estimates become zero, and λ becomes infinity.

LASSO has a convex objective function and a convex constraint. So, it is a convex optimization
problem, and many sophisticated optimization methods have been developed to solve it. On
the other hand, Tibshirani (1996) identified a Bayesian view of LASSO estimators. According
to the author LASSO estimates can be interpreted as posterior mode estimates when regression
parameters have independent and identical Laplace priors. Park and Casella (2008) implemented
the first explicit Bayesian approach for LASSO and presented a model of the form

y | β, σ ∼ N(Xβ, σ2In×n)

β | λ, σ ∼
p∏
j=1

λ

2σ
e−

λ
σ
|βj |,

using the independent and identical Laplace prior for each βj . Then, the negative log of full
conditional posterior distribution for β | y, λ, σ is proportional to

1

2σ2
‖y −Xβ‖2

2 +
λ

σ
‖β‖1 , (26)

where an additive constant that is independent of β is dropped. Given any fixed values of λ and
σ, the posterior mode in Equation (26) coincides with LASSO estimate with the regularization
parameter σλ.

4.2. A generalization of LASSO regression model using T -Laplace family

Motivated by the Bayesian view of the LASSO estimators in Sub-section 4.1, we introduce some
additional components to the constraint in the ordinary LASSO regression model using the
T -Laplace{uniform} family.

Park and Casella (2008) assumed that the priors of regression parameters β are independent
and identical Laplace distributions. Given the distribution of the random variable T , we assume
that the priors of β are independent and identical T -Laplace{uniform} distributions with the
CDF and PDF given in equations (10) and (11), respectively. For example, if T is a beta
random variable, then we assume that the priors of β are independent and identical beta-
Laplace{uniform} distributions. So, we can write a general class of prior distributions for β
using the PDF of T -Laplace{uniform} in Equation (11) with R ∼ Laplace(0,σ1) as

π(β| σ1) =

p∏
j=1

fR(βj)fT (FR(βj))
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=

p∏
j=1

1

2σ1
e−|βj |/σ1fT

(
1

2
+

1

2
sgn (βj)

{
1− e−|βj |/σ1

})

=
1

(2σ1)
p e
−

p∑
j=1
|βj |/σ1 p∏

j=1

e
log

{
fT

(
1
2
+ 1

2
sgn(βj)

{
1−e−|βj|/σ1

})}

Note that π(β| σ1) ∝ e
−‖β‖1/σ1+

p∑
j=1

log

{
fT

(
1
2
+ 1

2
sgn(βj)

{
1−e−|βj|/σ1

})}
. (27)

As in Park and Casella (2008), we also assume that y | β, σ22 ∼ N(Xβ, σ2
2In×n). Here y is

mean centered and X is standardized so that each predictor is centered with a zero-mean and
unit variance. Then, we can write the likelihood function as

Ln(β| σ2) =
n∏
i=1

p(yi | β, σ22)

=
1√

(2π)p det(σ22I)
e
− 1

2σ2
2 (y−Xβ)ᵀI−1(y−Xβ)

Note that Ln(β| σ2) ∝ e
− 1

2σ2
2 ‖y−Xβ‖2

2

. (28)

By the Bayes’ theorem, the full conditional of β | y, σ1, σ2 can be obtained using

p(β | y, σ1, σ2) ∝ Ln(β| σ2)π(β| σ1). (29)

By substituting equations (27) and (28) in Equation (29), we get

p(β | y, σ1, σ2) ∝ e
− 1

2σ2
2 ‖y−Xβ‖2

2−‖β‖1/σ1+
p∑
j=1

log

{
fT

(
1
2
+ 1

2
sgn(βj)

{
1−e−|βj|/σ1

})}
. (30)

From Equation (30), we can write the negative log of full conditional posterior for β | y, σ1, σ2
as

1

2
‖y −Xβ‖2

2 +
σ2

2

σ1

‖β‖1 − σ1 p∑
j=1

log

{
fT

(
1

2
+

1

2
sgn (βj)

{
1− e−|βj |/σ1

})} , (31)

where an additive constant and a multiplicative constant that are independent of β are dropped.
Based on Equation (31), we define the following optimization problem:

minimize
β

1

2n
‖y −Xβ‖2

2

subject to ‖β‖1 − σ1
p∑
j=1

log

{
fT

(
1

2
+

1

2
sgn (βj)

{
1− e−|βj |/σ1

})}
≤ t,

(32)

The optimization problem in (32) is a generalized LASSO regression problem defined by using
the T -Laplace{uniform} family. If the random variable T is from the standard uniform distri-
bution, then this generalized LASSO becomes the ordinary LASSO in (24). It is clear that the
generalized LASSO introduces some additional components to the constraint in the ordinary
LASSO. The objective function of the generalized LASSO in (32) is convex while the convexity
of the constraint depends on the distribution of the random variable T . The Lagrangian form
of the optimization problem in (32) is given by

minimize
β

1

2n
‖y −Xβ‖2

2 + λ ‖β‖1 − λσ1
p∑
j=1

log

{
fT

(
1

2
+

1

2
sgn (βj)

{
1− e−|βj |/σ1

})}
,

(33)
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where λ ≥ 0.

4.3. A generalized LASSO regression model using beta-Laplace distribution

Let T be a random variable from beta distribution with the PDF

fT (x) =
1

B (a, b)
xa−1 (1− x)b−1 , a, b > 0, (34)

where B(a, b) = Γ (a) Γ (b) /Γ (a+ b) is the beta function and Γ(·) is the gamma function. By
applying the PDF in Equation (34) in the general class of priors in (27), the corresponding prior
distribution generated from the beta-Laplace distribution for β is given by

π(β| a, b, σ1) ∝ e
−‖β‖1/σ1+(a−1)

p∑
j=1

log

{
1
2
+ 1

2
sgn(βj)

{
1−e−|βj|/σ1

}}
+(b−1)

p∑
j=1

log

{
1
2
− 1

2
sgn(βj)

{
1−e−|βj|/σ1

}}
(35)

By applying the prior distribution for β in Equation (35) to Equation (29) and following the
same approach used to define the optimization problem in (32), a generalized LASSO regression
problem derived from the beta-Laplace distribution is defined by

minimize
β

1

2n
‖y −Xβ‖2

2

subject to ‖β‖1 − σ1(a− 1)

p∑
j=1

log

{
1

2
+

1

2
sgn (βj)

{
1− e−|βj |/σ1

}}

− σ1(b− 1)

p∑
j=1

log

{
1

2
− 1

2
sgn (βj)

{
1− e−|βj |/σ1

}}
≤ t,

(36)

It is noticed that there are two additional constraint components besides the L1 norm. These
two components are

C1 =

−σ1(a− 1)

p∑
j=1

log

{
1

2
+

1

2
sgn (βj)

{
1− e−|βj |/σ1

}} ,
which is based on the CDF of the random variable R, and

C2 =

−σ1(b− 1)

p∑
j=1

log

{
1

2
− 1

2
sgn (βj)

{
1− e−|βj |/σ1

}} ,
which is based on the survival function of R.
We can write the Lagrangian form of the optimization problem in (36) as

minimize
β

1

2n
‖y −Xβ‖2

2 + λ (‖β‖1 + C1 + C2) , (37)

where λ ≥ 0. The values of λ, and hyper parameters a, b, and σ1 can be determined through
a cross-validation process. When a = b = 1, we have the ordinary LASSO regression model in
(25).

Based on the components L1 norm, C1, and C2, we define the following six methods to build
the generalized LASSO regression model in (36):

• Method 1: Use C2 only in the constraint in (36).

• Method 2: Use C1 only in the constraint in (36).
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• Method 3: Use C1 and C2 only in the constraint in (36).

• Method 4: Use L1 norm and C2 only in the constraint in (36).

• Method 5: Use L1 norm and C1 only in the constraint in (36).

• Method 6: Use L1 norm, C1 and C2 in the constraint in (36).

Some insights of the geometric interpretation

Figure 5 represents the constraint regions of each method. The levels of the constraint of each
method are presented by black solid contour lines. Also, by looking at C1 and C2, and taking
the limits as βj goes to 0, −∞, and +∞ we get the following:

lim
βj→0

C1 = lim
βj→0

C2 = − log(0.5)

lim
βj→−∞

C1 = lim
βj→+∞

C2 → − log(0)

lim
βj→+∞

C1 = lim
βj→−∞

C2 = − log(1) = 0

Some insights from these limits and Figure 5:

• When β goes to zero, both C1 and C2 become a constant − log(0.5). The result should
be similar to ordinary LASSO estimates.

• When β goes to positive infinity for C1 or β goes to negative infinity for C2, both C1

and C2 go to zero. When β goes to negative infinity for C1, or β goes to positive infinity
for C2, both C1 and C2 go to positive infinity. This indicates these estimates will shrink
during minimization process. This is where the shrinkage occurs. That is, C1 shrinks very
negative estimate to be less negative (pull it back to the zero direction); C2 shrinks very
positive estimate to be less positive (pull it back to the zero direction).

• In methods 3, 4, 5, and 6, the constraint regions have sharp corners, edges and curved con-
tours. The sharp corners and edges encourage variable selection while the curved contours
encourage strongly correlated variables to share coefficients. Compared to the constraint
region of ordinary LASSO model in (24), the constraint regions of the generalized LASSO
model in (36) in methods 4 and 5 are asymmetric.
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(a) Method 1: C2 with b = 2, σ1 = 1
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(b) Method 2: C1 with a = 2, σ1 = 1
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(c) Method 3: C1 + C2 with a = b = 2, σ1 = 1
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(d) Method 4: L1norm + C2 with b = 2, σ1 = 1
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(e) Method 5: L1norm + C1 with a = 2, σ1 = 1
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(f) Method 6: L1norm+C1+C2 with a = b = 2, σ1 =
1

Figure 5: Contours of the constraint in the generalized LASSO model
Note: The black solid contour lines represents the levels of the constraint of each method.
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The objective function and the constraint of ordinary LASSO problem in Sub-section 4.1 are
both convex. The objective function of the generalized LASSO problem in (36) is also convex.
However, the convexity of the constraint in (36) depends on the values of a and b. Figure 6
represents the contours of the constraint region in Method 6 at different values of a and b. When
a < 1 or b < 1, the constraint region becomes non-convex. On the other hand, when a ≥ 1 and
b ≥ 1, the constraint region becomes convex and hence the generalized LASSO problem in (36)
is a convex optimization problem.
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Figure 6: Contours of the constraint in method 6 at different values of a and b
Note: The black solid contour lines represents the levels of the constraint.

5. Applications

In this section, we present a numerical study to demonstrate the effects of the convexity of the
constraint in (36) in the process of variable selection. We will also analyze two real data sets
to illustrate the flexibility and usefulness of the generalized LASSO regression model in (37) in
the process of variable selection with better prediction performance.
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5.1. A numerical study

Zheng, Maleki, Weng, Wang, and Long (2017) studied the performance between ordinary
LASSO with Lp regularized least squares models when p ∈ [0, 1). When p < 1, the constraint re-
gion becomes non-convex and hence promotes sparsity. Moreover, p < 1 leads to more accurate
solutions compared to the ordinary LASSO since Lp norm models sparsity better. Authors also
discussed some iterative algorithms to obtain local minima of non-convex optimization problem
that occurs when p ∈ [0, 1). Furthermore, the convergence of the iterative algorithms to the
global minima depends on the initialization. In this sub-section, we investigate the effects of
parameters a and b of the optimization problem in (37) on the sparsity of the model.

We synthesize a data set using the approach by Song and Liang (2015). The data set contains
n = 200 observations with p = 15 predictors. All predictors are generated from multivariate
normal distribution N(0, In). The random errors are generated from N(0, σ2In) with σ = 1.5.
The response variable is generated using the first eight predictors where the coefficients are
given by (2.63 , 2.28, -1.43, 2.16, 1.73, 1.06, -1.7, -2.43) and the random errors. The first eight
predictors are the true predictors of the model. The rest seven predictors are generated in
a way to have high correlations with the response variable by first randomly generating 1000
predictors from N(0, In) and then choosing the top seven predictors that are highly correlated
with the response variable. We label these seven predictors as false predictors of the model.

To this data set, we apply the Method 6 with σ1 = 1.0 and several combinations of a and b. An
optimization algorithm based on the optim() function in R statistical software is implemented
to solve the generalized LASSO problem in (37) and the regularization parameter, λ∗ is selected
through a 10-fold cross-validation process over a grid of values for λ.

Table 3: Number of false predictors captured by the model

a\b 0.1 0.3 0.5 0.7 1.0 1.3 1.5 1.7 2.0 2.3 2.5 2.7 3.0 3.3 3.5 3.7 4.0

0.1 6 4 4 5 3 3 2 1 1 1 1 1 1 1 1 0 0
0.3 4 4 4 4 4 3 2 1 1 1 1 1 1 1 1 0 0
0.5 2 2 2 2 3 3 1 1 1 1 1 1 1 1 1 1 0
0.7 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0
1.0 1 1 1 1 1 2 2 1 1 0 1 1 1 1 1 1 0
1.3 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0
1.5 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0
1.7 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
2.0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
2.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: We decide a false predictor is captured when the absolute value of the regression coefficient estimate is less

than 0.001.

Table 3 presents the number of false predictors captured by Method 6 for several combinations
of a and b. We decide a false predictor is captured when the absolute value of the regression
coefficient estimate is less than 0.001. When a < 1 or b < 1, the generalized LASSO problem
becomes non-convex and has the ability to capture more false predictors. When a = b = 1,
we have the ordinary LASSO and it captures only one out of seven false predictors. Compared
to the ordinary LASSO, when a = b = 0.1, the generalized LASSO captures six out of seven
false predictors. Based on the number of false predictors captured in Table 3, it is evident that
the values of a and b have an impact on the sparsity of the generalized LASSO model in (37).
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When the values of a or b less than one, we have a sparse model and as the values of a and b
increase the model becomes more dense.
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Figure 7: Regularization paths of method 6 for several combinations of a and b

Figure 7 shows the regularization paths of Method 6 for several combinations of a and b. The
dotted horizontal lines indicate the true values of the eight true predictors while the colored lines
represent the paths of the regression coefficient estimates. The vertical dashed line indicates
the value of the regularization parameter (λ∗) which gives the smallest cross-validation error.
As the value of λ increases the estimates of the regression coefficients go to zero and hence the
model becomes sparse. When a = b = 1, the ordinary LASSO regression model selects a value
for λ∗ which captures only one false predictor. However, by changing the values of a and b it is
possible to build a model that selects a value for λ∗ that can capture more false predictors in the
synthetic data set. Thus, compared to the ordinary LASSO, the generalized LASSO regression
model in (37) has much more flexibility in the variable selection.
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Figure 7: Regularization paths of method 6 for several combinations of a and b

5.2. Diabetes data

In this Sub-section, we analyze Diabetes data set (Efron, Hastie, Johnstone, and Tibshirani
2004) to illustrate the flexibility and usefulness of the generalized LASSO regression model in
(37) in the process of variable selection with better prediction performance.
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Figure 8: Correlation plot for diabetes data

The data set consists of 442 observations with ten baseline predictors: AGE, SEX, BMI, BP,
and Serum measurements (S1–S6) and one response variable (Y) that measures the disease
progression one year after baseline. Figure 8 displays the correlation plot for the Diabetes data
set. Based on the correlation plot, it can be observed that predictors S1 and S2 are strongly
correlated while predictors S3 and S4 are also strongly correlated. First, we randomly split the
data set into two: training set (75%) and testing set (25%). Then we apply OLS, LASSO, ridge,
elastic-net, and methods 1–6 to the training set. Ideally, the values of a, b, and σ1 in methods
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1–6 should be determined through cross-validation. However, in this example, we set a = b = 2
and σ1 = 1. The regularization parameters λ of methods 1–6 are determined through a 10-fold
cross-validation process.

Table 4: Regression coefficient estimates

Model

Predictors OLS LASSO ridge elastic-net Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

AGE -0.65090 . -0.30745 . -0.50873 0.39017 -0.20833 -0.00906 0.23128 -0.00064
SEX -11.34000 -9.65074 -9.90095 -9.63684 -10.73777 -5.62116 -10.26569 -9.47742 -4.51198 -8.02667
BMI 26.06000 26.28249 25.11432 26.11002 25.86784 27.99046 26.39907 25.99478 28.05809 25.93001
BP 18.57000 17.37213 17.20682 17.30652 17.79112 16.42076 17.89192 17.03153 15.77341 16.14491
S1 -39.71000 -9.85397 -6.776626 -9.54005 -9.58100 -8.72247 -12.95845 -7.72758 -7.04683 -3.46306
S2 22.58000 . -2.389684 . -0.44406 0.22379 0.86373 -0.18306 0.01433 -0.86722
S3 9.81200 -4.60136 -6.864659 -5.03250 -6.34466 0.24464 -2.02052 -7.33515 0.00014 -10.41868
S4 17.44000 10.8883 10.34761 10.48153 10.24595 12.61183 13.88346 7.82349 11.18310 3.39779
S5 30.31000 19.4899 17.76703 19.34952 19.41769 19.23549 20.17135 19.17917 18.86554 18.36158
S6 3.29400 2.74109 3.850925 2.87404 2.95917 2.67535 3.01802 2.57170 2.40973 2.18371

Table 5: Mean squared errors

Model

OLS LASSO ridge elastic-net Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

training MSE 1367.15 1377.15 1379.80 1377.55 1376.66 1394.13 1374.33 1380.32 1403.25 1390.95
testing MSE 1679.90 1665.21 1668.70 1664.74 1662.40 1699.46 1673.50 1657.08 1704.83 1653.40

Table 6 and Table 7 present the regression coefficient estimates of each model and mean squared
errors (MSEs) from the training and testing data sets, respectively. It appears that if we use
only one component from L1 norm, C1, and C2 in the constraint of the generalized LASSO
model in (36), then Method 1 (using C2 only) seems to provide the best test MSE. Method 6
(L1 norm + C1 + C2) gives the best MSE from the test data. Based on the MSEs from test
data, Method 4 (L1 norm + C2) does well too. Observing the estimates in Table 6, they seem
to show the patterns that we observed under the geometric interpretation in Sub-section 4.3.
That is, Method 1 (using C2 only) shrinks positive estimates and takes care of multicollinearity
between S1 and S2. Method 2 (using C1 only) takes care of multicollinearity between S3 and
S4. Compared to all other models, Method 5 (L1 norm + C1) takes care the multicollinearity
between S1 and S2 as well as the multicollinearity between S3 and S4. These observations seem
to indicate adding the components C1 and/or C2 to L1 norm is a good approach and improves
the flexibility and usefulness of the ordinary LASSO regression model in (24) in the process of
variable selection with better prediction performance.

5.3. Stress reactions to COVID-19 data

To illustrate the flexibility and applicability of the generalized LASSO regression model in (37)
in the selection of variables with better prediction performance, in this Sub-section we analyze
a set of data collected from the study by Flesia, Monaro, Mazza, Fietta, Colicino, Segatto, and
Roma (2020).
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Figure 9: Correlation plot for stress reactions to COVID-19 data

Data consists of responses from 2053 participants to an online survey conducted during the
period of 20-31 March 2020. For illustration, we analyzed all 2053 observations and used 19
baseline predictors: gender, age, education, monthly income, number of family members, six
measurements under the Coping Orientations to the Problems Experienced (COPE-NVI-25),
total score in the Consideration of Future Consequences (CFC) scale, total score in the Brief
Self-Control Scale (BSCS), five measurements under the Big Five Inventory (BFI), internal
subscale of the short version of the Locus of Control Scale (LOC) and one response variable (Y)
that measures perceived stress scale. For more details on the data, see Flesia et al. (2020). The
correlation plot for the stress reactions to COVID-19 data is shown in Figure 9. The correlation
plot reveals a strong correlation between COPE.FUNCTIONAL and COPE.PROBLEM, as well
as a strong correlation between COPE.FUNCTIONAL and COPE.POSITIVE. The data set is
split into two randomly: a training set (75%) and a testing set (25%), then we apply OLS,
LASSO, ridge, elastic-net, and methods 1–6 to the training set. Ideally, the values of a, b, and
σ1 in methods 1–6 should be determined through cross-validation. In this example, however,
we set a = b = 0.5 and σ1 = 1. The regularization parameters λ of methods 1–6 are determined
through a 10-fold cross-validation process.
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Table 6: Regression coefficient estimates

Model

Predictors OLS LASSO ridge elastic-net Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

BE.MALE -1.05800 -1.00608 -0.99070 -1.00355 -0.98626 -0.99025 -0.87181 -0.92883 -0.96164 -0.95158
AGE -0.70440 -0.67147 -0.68867 -0.67248 -0.76853 -0.76999 -0.36731 -0.69769 -0.73210 -0.72017
EDUCATION -0.08088 -0.03980 -0.08459 -0.04435 -0.14538 -0.13091 0.09139 -0.05464 -0.09356 -0.07572
MONTHLY.INCOME -0.37550 -0.32281 -0.34136 -0.32412 -0.35788 -0.36838 -0.42789 -0.32722 0.33396 -0.33448
FAMILY.MEMBERS 0.56800 0.53346 0.53821 0.53339 0.45530 0.48759 0.74620 0.50416 0.46335 0.48749
COPE.AVOIDANCE 0.69610 0.68606 0.68281 0.68491 0.62834 0.67613 1.27520 0.71677 0.65458 0.69173
COPE.RELIGION 0.09329 0.04628 0.08802 0.05006 0.05406 0.07203 0.11380 0.05618 0.02689 0.04287
COPE.POSITIVE -7285.0 -1.20656 -1.04890 -1.18947 -1.31089 -35.91800 -0.62456 -1.28699 -1.26597 -1.28864
COPE.SUPPORT 0.37410 0.31937 0.38896 0.32772 0.41603 0.42494 0.54051 0.40679 0.38322 0.39648
COPE.PROBLEM -6875.0 . 0.06598 . -0.09396 -32.76500 0.23478 -0.00017 -0.00077 -0.00008
COPE.FUNCTIONAL 11850.0 -0.33625 -0.57998 -0.35780 -0.30735 55.93778 -1.18579 -0.34233 -0.36635 -0.34817
CFC.SCORE 0.60290 0.53050 0.55026 0.53218 0.53211 0.56226 0.64942 0.52104 0.50478 0.52147
BSCS.TOTAL.SCORE -1.30700 -1.18796 -1.18722 -1.18606 -1.17455 -1.21993 -0.97928 -1.09914 -1.11522 -1.12477
BFI.10.AGREEABLENESS 0.03009 . -0.00259 . -0.00148 0.02437 0.20413 0.00080 0.00001 0.00040
BFI.10.CONSCIENTIOUSNESS 0.32870 0.19075 0.23365 0.19395 0.30167 0.35555 0.34535 0.24552 0.23111 0.25407
BFI.10.EMOTIONAL.STABILITY -1.87500 -1.88275 -1.80123 -1.87408 -1.89271 -1.90533 -1.99410 -1.89668 -1.90699 -1.90313
BFI.10.EXTRAVERSION -0.14380 -0.07922 -0.13526 -0.08479 -0.16589 -0.16371 0.16359 -0.07831 -0.10700 -0.09496
BFI.10.OPENNESS 0.21840 0.18775 0.22866 0.19137 0.15991 0.17489 0.26855 0.16205 0.13740 0.15146
INTERNAL.LOC -0.25130 -0.23174 -0.26676 -0.23520 -0.26316 -0.25826 0.13212 -0.20112 -0.22836 -0.21551

Table 7: Mean squared errors

Model

OLS LASSO ridge elastic-net Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

train MSE 15.28393 15.32990 15.32473 15.32885 15.32040 15.31433 15.67544 15.32629 15.32664 15.32229
test MSE 15.73405 15.70487 15.70954 15.70674 15.62415 15.59866 16.53035 15.62504 15.62954 15.61503

The regression coefficient estimates and mean square errors (MSEs) from the training and test-
ing data sets are presented in Table 6 and Table 7. Using only one of the components from
L1 norm, C1, and C2 in the constraint of the generalized LASSO model in (36), Method 2
(using C1 only) appears to provide the best test MSE. Based on the estimates in Table 6,
it can be seen that Method 1 (using C2 only), Method 4 (L1 norm + C2), Method 5 (L1

norm + C1) and Method 6 (L1 norm + C1 + C2) adequately handle the multicollinearity be-
tween COPE.FUNCTIONAL and COPE.POSITIVE, as well as the multicollinearity between
COPE.FUNCTIONAL and COPE.PROBLEM with better prediction ability. Based on the
coefficient estimates, Method 3 (C1 + C2 only) also accounts for multicollinearity between
COPE.FUNCTIONAL and COPE.POSITIVE, as well as between COPE.FUNCTIONAL and
COPE.PROBLEM. As a result, adding C1 and/or C2 to L1 norm may be a good approach that
significantly enhances the flexible and applicability of the ordinary LASSO regression model in
(24) during the variable selection process with better prediction performance.

6. Concluding remarks

In this article, we develop a generalized LASSO regression model from a generalized Laplace
distribution through the Bayesian interpretation of LASSO. A family of generalized Laplace
distributions is introduced and studied using the T -R{Y } framework by Aljarrah et al. (2014).
Five different generalized Laplace families are obtained using quantile functions of standard
uniform, Weibull, log-logistic, logistic, and extreme value distributions. Various general proper-
ties of the new families including quantile function, mode, and Shannon entropy are derived. A
particular case of T -Laplace{uniform} family called the beta-Laplace distribution is explored.

Some additional components to the constraint in the ordinary Lasso regression model are ob-
tained through the Bayesian interpretation of LASSO with beta-Laplace priors. The geometric
interpretations of these additional components are presented. Using a numerical study, the
effects of the parameters from beta-Laplace distribution in the generalized LASSO regression
model are discussed. Two real data sets are analyzed to illustrate the flexibility and usefulness
of the generalized LASSO regression model in the process of variable selection with better pre-
diction performance. The comparison with other existing shrinkage methods indicates adding
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the additional components to the constraint in ordinary LASSO regression model improves the
flexibility and applicability of LASSO in variable selection with better prediction performance.

From the standpoint of practical applications, we think it will be an interesting study to use
Bayesian techniques to estimate regression parameters in the generalized LASSO regression
model by assuming that the regression parameters have independent and identical generalized
Laplace priors. Here, we will refer to works by Tibshirani (1996) and Park and Casella (2008).
Although shrinking the regression parameters or setting some coefficients to zero can sometimes
improve the prediction accuracy, this will introduce some bias but lower the variance. We think
it would also be interesting to study the generalized LASSO regression model’s performance in
terms of bias and variance, and a simulation study can be conducted to compare its bias with
other existing methods. In a future paper, we will continue investigating this aspect, and we
hope that our study will serve as a reference for future research in this area.
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Appendix

Throughout this study, we used R statistical software. The R codes for the generalized LASSO
regression model with beta-Laplace priors are included in this appendix.

#Def ine CDF of Laplace d i s t r i b u t i o n
L cdf=func t i on (x ,mu, s i g ){

y=0.5+0.5∗ s i gn (x−mu)∗(1−exp(−abs (x−mu)/ s i g ) )
re turn ( y )

}

#Def ine PDF of Laplace d i s t r i b u t i o n
L pdf=func t i on (x ,mu, s i g ){

y=0.5∗ exp(−abs (x−mu)/ s i g )/ s i g
re turn ( y )

}

#Def ine CDF of beta−Laplace d i s t r i b u t i o n
#a , b>0
BL cdf=func t i on ( a , b ,mu, s ig , x ){

pbeta ( L cdf (x ,mu, s i g ) , a , b )
}

#Def ine PDF of beta−Laplace d i s t r i b u t i o n
BL pdf=func t i on (a , b ,mu, s ig , x ){

( L cdf (x ,mu, s i g )ˆ ( a−1))∗((1− L cdf (x ,mu, s i g ) ) ˆ ( b−1))
∗L pdf (x ,mu, s i g )/ beta ( a , b )

}

#Plots o f PDF of beta−Laplace d i s t r i b u t i o n
x=seq ( −15 ,5 ,by=0.001)
para=c ( 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 )
parb=c ( 0 . 5 , 0 . 7 , 1 , 3 , 5 , 7 )
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p a r s i g=c (2 , 2 , 2 , 2 , 2 , 2 )
y1=BL pdf ( a=para [ 1 ] , b=parb [ 1 ] ,mu=0, s i g=p a r s i g [ 1 ] , x )
p l o t (x , y1 , c o l =1, type=”l ” , l t y =1, lwd=2, xlab=”x ” , ylab=”f ( x ) ” ,
yl im=c ( 0 , 0 . 2 ) )
f o r ( i in 2 : l ength ( para ) ) {

y1=BL pdf ( a=para [ i ] , b=parb [ i ] ,mu=0, s i g=p a r s i g [ i ] , x )
l i n e s (x , y1 , c o l=i , l t y=i , lwd=2)

}

l egend ( ” t o p l e f t ” , c (
exp r e s s i on ( paste ( a , '=0.5 , ' , b , '=0.5 , ' , sigma , '= 2 . 0 ' ) ) ,
e xp r e s s i on ( paste ( a , '=0.5 , ' , b , '=0.7 , ' , sigma , '= 2 . 0 ' ) ) ,
e xp r e s s i on ( paste ( a , '=0.5 , ' , b , '=1.0 , ' , sigma , '= 2 . 0 ' ) ) ,
e xp r e s s i on ( paste ( a , '=0.5 , ' , b , '=3.0 , ' , sigma , '= 2 . 0 ' ) ) ,
e xp r e s s i on ( paste ( a , '=0.5 , ' , b , '=5.0 , ' , sigma , '= 2 . 0 ' ) ) ,
e xp r e s s i on ( paste ( a , '=0.5 , ' , b , '=7.0 , ' , sigma , '= 2 . 0 ' ) ) ) ,

c o l=c ( 1 , 2 , 3 , 4 , 5 , 6 ) , l t y=c ( 1 , 2 , 3 , 4 , 5 , 6 ) ,
lwd=c ( 2 , 2 , 2 , 2 , 2 , 2 ) )

#Analyzing a data s e t
i n s t a l l . packages ( ” c o r r p l o t ”)
l i b r a r y ( c o r r p l o t )

#Reading the data f i l e
d iabetes<−read . t a b l e ( f i l e . choose ( ) , header = TRUE)
X<−as . matrix ( d i a be t e s [ , 1 : 1 0 ] )
Y<−diabetes$Y

#Make Y i s centered and X i s s tandard ized
MakeStandardized<−f unc t i on (Y,X){

Y. mean=mean(Y)
Y=Y−Y. mean
X. mean=apply (X ,2 , mean)
X. sd=apply (X, 2 , sd )
f o r ( i in 1 : dim (X) [ 2 ] ) {

f o r ( j in 1 : dim (X) [ 1 ] ) {
X[ j , i ]<−(X[ j , i ]−X. mean [ i ] ) /X. sd [ i ]

}
}
re turn ( l i s t (Y,X) )

}

#Cor r e l a t i on p lo t
M<−round ( cor ( cbind (Y,X) ) , 2 )
c o r r p l o t (M, method=”number ”)

#S p l i t t i n g data in to t r a i n and t e s t
colnames (X)<−NULL
p r o p o r t i o n s p l i t = 0 .75
t r a i n = sample ( 1 : nrow (X) , round ( nrow (X)∗ p r o p o r t i o n s p l i t ) )
#t r a i n=sample ( 1 : nrow (X) , nrow (X)/2)
t e s t=(− t r a i n )
Y. t r a i n=Y[ t r a i n ]
Y. t r a i n . mean=mean(Y. t r a i n )
Y. t e s t=Y[ t e s t ]−mean(Y. t r a i n )

X. t r a i n=X[ t ra in , ]
X. t r a i n . mean=apply (X. t r a i n ,2 , mean)
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X. t r a i n . sd=apply (X. t ra in , 2 , sd )
X. t e s t=X[ te s t , ]
f o r ( i in 1 : dim (X. t e s t ) [ 2 ] ) {

f o r ( j in 1 : dim (X. t e s t ) [ 1 ] ) {
X. t e s t [ j , i ]<−(X. t e s t [ j , i ]−X. t r a i n . mean [ i ] ) /X. t r a i n . sd [ i ]

}
}

A<−MakeStandardized (Y. t ra in ,X. t r a i n )
Y. t ra in<−A [ [ 1 ] ]
X. t ra in<−A [ [ 2 ] ]

#Lasso r e g r e s s i o n us ing the glmnet package
l i b r a r y ( glmnet )

cv . l a s s o <− cv . glmnet (X. t ra in ,Y. t ra in , alpha = 1 ,
s tandard i z e=FALSE) #k−f l o d c r o s s v a l i d a t i o n to get lambda
cv . lasso$lambda . min #g i v e s s m a l l e s t c r o s s v a l i d a t i o n e r r o r
#running the l a s s o with alpha=1 with

cv . lasso$lambda . min as the tunning parameter
model <− glmnet (X. t ra in , Y. t ra in , alpha = 1 ,
lambda = cv . lasso$lambda . min , s tandard i z e=FALSE)
# Display r e g r e s s i o n c o e f f i c i e n t s
( coe f s<−c o e f ( model ) )

#t r a i n MSE
( obj<−0.5∗ c ros sprod ( (X. t r a i n %∗% c o e f s )− Y. t r a i n )/ l ength (Y. t r a i n ) )

#t e s t MSE
( obj<−0.5∗ c ros sprod ( (X. t e s t %∗% c o e f s )− Y. t e s t )/ l ength (Y. t e s t ) )

#Ridge r e g r e s s i o n us ing the glmnet package

cv . r i dg e <− cv . glmnet (X. t ra in ,Y. t ra in , alpha = 0 , s tandard i z e=FALSE) #k−f o l d
c r o s s v a l i d a t i o n to get lambda

cv . ridge$lambda . min #g i v e s s m a l l e s t c r o s s v a l i d a t i o n e r r o r
#running the l a s s o with alpha=1 with
cv . lasso$lambda . min as the tunning parameter
model <− glmnet (X. t ra in , Y. t ra in , alpha = 0 , lambda = cv . ridge$lambda . min ,
s tandard i z e=FALSE)
# Display r e g r e s s i o n c o e f f i c i e n t s
( coe f s<−c o e f ( model ) )

#t r a i n MSE
( obj<−0.5∗ c ros sprod ( (X. t r a i n %∗% c o e f s )− Y. t r a i n )/ l ength (Y. t r a i n ) )

#t e s t MSE
( obj<−0.5∗ c ros sprod ( (X. t e s t %∗% c o e f s )− Y. t e s t )/ l ength (Y. t e s t ) )

#Ela s t i c −net r e g r e s s i o n us ing the glmnet package
cv . e l a s t i c <− cv . glmnet (X. t ra in ,Y. t ra in ,

alpha = 0 . 5 , s tandard i z e=FALSE) #k−f l o d
c r o s s v a l i d a t i o n to get lambda

cv . e l a s t i c$ lambda . min #g i v e s s m a l l e s t
c r o s s v a l i d a t i o n e r r o r

model <− glmnet (X. t ra in , Y. t ra in ,
alpha = 0 . 5 , lambda = cv . e l a s t i c$ l ambda . min , s tandard i z e=FALSE)

# Display r e g r e s s i o n c o e f f i c i e n t s
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( coe f s<−c o e f ( model ) )

#t r a i n MSE
( obj<−0.5∗ c ros sprod ( (X. t r a i n %∗% c o e f s )− Y. t r a i n )/ l ength (Y. t r a i n ) )

#t e s t MSE
( obj<−0.5∗ c ros sprod ( (X. t e s t %∗% c o e f s )− Y. t e s t )/ l ength (Y. t e s t ) )

#Def ine the g e n e r a l i z e d LASSO r e g r e s s i o n model with beta−Laplace p r i o r s
minimize . l a s s o 2 <− f unc t i on ( par , X, y , lambda ){

a c t i v a t e=4
s i g 1=1
a=2
b=2
penal ty=0
r s s <− 0 .5∗ c ros sprod ( (X %∗% par ) − y )/ l ength ( y)#Res idua l sum of squares
ones<−rep (1 , t imes=length ( par ) )
cons t ra in t1<−−(a−1)∗ l og (0 .5+0.5∗ s i gn ( par )

∗(1−exp(−abs ( par )/ s i g 1 )))# cdf o f l a p l a c e
cons t ra in t2<−−(b−1)∗ l og (0.5 −0.5∗ s i gn ( par )

∗(1−exp(−abs ( par )/ s i g 1 )))# s u r v i v a l o f Laplace
i f ( a c t i v a t e ==0){

penalty<−lambda ∗ ( abs ( par ) %∗% ones )/ s i g 1 #Or i g ina l pena l ty term from l a s s o
}
i f ( a c t i v a t e ==1){

pena l ty <− lambda ∗ ( c o n s t r a i n t 2 %∗% ones ) #Method 1
}
i f ( a c t i v a t e ==2){

pena l ty <− lambda ∗ ( c o n s t r a i n t 1 %∗% ones ) #Method 2
}
i f ( a c t i v a t e ==3){

pena l ty <− lambda ∗ ( c o n s t r a i n t 1 %∗% ones+c o n s t r a i n t 2
%∗% ones ) #Method 3
}
i f ( a c t i v a t e ==4){

pena l ty <− lambda ∗ ( ( abs ( par ) %∗% ones )/ s i g 1+c o n s t r a i n t 2
%∗% ones)#Method 4
}
i f ( a c t i v a t e ==5){

pena l ty <− lambda ∗ ( ( abs ( par ) %∗% ones )/ s i g 1+c o n s t r a i n t 1
%∗% ones ) #Method 5
}
i f ( a c t i v a t e ==6){

pena l ty <− lambda ∗ ( ( abs ( par ) %∗% ones )/ s i g 1+c o n s t r a i n t 1
%∗% ones+c o n s t r a i n t 2 %∗% ones ) #Method 6
}
re turn ( r s s + pena l ty )

}

# Method 1 : Surv iva l f unc t i on o f Laplace
d i s t r i b u t i o n as the only c o n s t r a i n t .

# Method 2 : CDF of Laplace d i s t r i b u t i o n
as the only c o n s t r a i n t .
# Method 3 : Surv iva l f unc t i on and CDF of
Laplace d i s t r i b u t i o n as the only c o n s t r a i n t s .
# Method 4 : L1 norm and Surv iva l f unc t i on o f

Laplace as c o n s t r a i n t s .
# Method 5 : L1 norm and CDF of Laplace
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as c o n s t r a i n t s .
# Method 6 : L1 norm , Surv iva l funct ion ,

and CDF of Laplace as c o n s t r a i n t s

#used a g r id search f o r a tunning
parameter : 10− f o l d c r o s s v a l i d a t i o n
n=100
p=dim (X. t r a i n ) [ 2 ]
g r i d = cv . lasso$lambda . minˆ seq (3 , −3 , l ength = n)

k=10
f o l d s=sample ( 1 : k , nrow (X. t r a i n ) , r e p l a c e =TRUE)
cv . e r r o r s =matrix (NA ,k , n , dimnames
=l i s t (NULL , paste ( 1 : n ) ) )

op . converge=matrix (NA ,k , n , dimnames
=l i s t (NULL , paste ( 1 : n ) ) )

#par . l i s t=matrix (NA ,n , p , dimnames
=l i s t (NULL , paste ( 1 : p ) ) )

f o r ( j in 1 : k ){
f o r ( i in 1 : n ) {

Y. t r a i n . c ros s<−Y. t r a i n [ f o l d s != j ]
Y. t r a i n . mean . c r o s s=mean(Y. t r a i n . c r o s s )
Y. t e s t . c r o s s=Y. t r a i n [ f o l d s ==j ]−

Y. t r a i n . mean . c r o s s

X. t r a i n . c r o s s=X. t r a i n [ f o l d s != j , ]
X. t r a i n . mean . c r o s s=apply (X. t r a i n . c r o s s ,2 , mean)
X. t r a i n . sd . c r o s s=apply (X. t r a i n . c ros s , 2 , sd )
X. t e s t . c r o s s=X. t r a i n [ f o l d s ==j , ]
f o r ( r in 1 : dim (X. t e s t . c r o s s ) [ 2 ] ) {

f o r ( s in 1 : dim (X. t e s t . c r o s s ) [ 1 ] ) {
X. t e s t . c r o s s [ s , r ]<−(X. t e s t . c r o s s [ s , r ]−

X. t r a i n . mean . c r o s s [ r ] ) /X. t r a i n . sd . c r o s s [ r ]
}

}
A<−MakeStandardized (Y. t r a i n . c ros s ,X. t r a i n . c r o s s )
#opt ions ( show . e r r o r . messages = FALSE)
err<−t ry (
{

op . r e s u l t <− optim ( rep (0 , p ) ,
fn = minimize . l a s so2 , method = ' Nelder−Mead ' ,
X =A [ [ 2 ] ] , y =A [ [ 1 ] ] , lambda =gr id [ i ] ,

c o n t r o l=l i s t ( maxit =10000) )
}

)
i f ( c l a s s ( e r r ) !=”try−e r r o r ”){

op . c f<−op . r e s u l t $ p a r
# f o r ( t in 1 : p){
# par . l i s t [ i , t ]<−op . c f [ t ]
# }
op . converge [ j , i ]=op . r e su l t $ conve rg ence
i f ( op . r e su l t $ conve rg ence !=0){

cv . e r r o r s [ j , i ]=NA
}
e l s e {

cv . e r r o r s [ j , i ]= cros sprod (
(X. t e s t . c r o s s %∗% op . c f ) − Y. t e s t . c r o s s )/ l ength (Y. t e s t . c r o s s )
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}
}
e l s e {

pr in t ( ” so r ry ”)
i=i+1

}
}

}

#op . converge
max( op . converge )

#cv . e r r o r s
mean . cv . e r r o r s =apply ( cv . e r r o r s ,2 , mean , na . rm=TRUE)
#mean . cv . e r r o r s
min (mean . cv . e r r o r s , na . rm = TRUE)
( ind=which (mean . cv . e r r o r s==min
(mean . cv . e r r o r s , na . rm = TRUE) ,TRUE) )
g r id [ ind ]

op . r e s u l t <− optim ( rep (0 , p ) ,
fn = minimize . l a s so2 , method= 'BFGS' ,

c o n t r o l=l i s t ( maxit =10000) , X = X. t ra in ,
y = Y. t ra in , lambda=gr id [ ind ] )

op . r e su l t $ conve rg ence
( op . c f <− op . r e s u l t $ p a r )
op . r e s u l t $ v a l u e

#t r a i n MSE
( obj<−0.5∗ c ros sprod ( (X. t r a i n %∗% op . c f )− Y. t r a i n )/ l ength (Y. t r a i n ) )

#t e s t MSE
( obj<−0.5∗ c ros sprod ( (X. t e s t %∗% op . c f )− Y. t e s t )/ l ength (Y. t e s t ) )
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