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Dendrites are root-like extensions from the neuron cell body and have long been

thought to serve as the predominant input structures of neurons. Since the early twentieth

century, neuroscience research has attempted to define the dendrite’s contribution to neural

computation and signal integration. This body of experimental and modeling research

strongly indicates that dendrites are not just input structures but are crucial to neural

processing. Dendritic processing consists of both active and passive elements that utilize

the spatial, electrical and connective properties of the dendritic tree.

This work presents a neuron model based around the structure and properties of

dendrites. This research assesses the computational benefits and requirements of adding

dendrites to a spiking artificial neuron model. A list of the computational properties of

actual dendrites that have shaped this work is given. An algorithm capable of generating

and training a network of dendritic neurons is created as an investigative tool through

which computational challenges and attributes are explored.

This work assumes that dendrites provide a necessary and beneficial function to

biological intelligence (BI) and their translation into the artificial intelligence (AI) realm

would broaden the capabilities and improve the realism of artificial neural network (ANN)

research. To date there have been only a few instances in which neural network-based AI



research has ventured beyond the point neuron; therefore, the work presented here should

be viewed as exploratory. The contribution to AI made by this work is an implementation

of the artificial dendritic (AD) neuron model and an algorithm for training AD neurons

with spatially distributed inputs with dendrite-like connectivity.
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Nevertheless, children still populate the slums. The struggle for existence is no

simple affair, and things happen which no mathematics can foretell.

- D’Arcy Wentworth Thompson, On Growth and Form [153]
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CHAPTER 1

INTRODUCTION

You’re welcome to study neuroscience,

but please try and help them instead of

learn from them.

Marvin Minsky[117]

1.1 Statement of Purpose

The purpose of this work is to create and demonstrate a neural model of computation

based on several purported properties of biological dendrites. From this model, an artificial

dendritic neuron (AD neuron) is derived for use in artificial intelligence work. Lastly, an

algorithm by which AD neurons can be trained is proposed and tested.

1.2 Motivation

Advances in neuroscientific study have been a source of inspiration for artificial

intelligence (AI) research since the latter’s inception. The brain’s ability to solve complex

real world problems while adapting to a dynamic environment embody the practical goals

of AI. Neuroscience-inspired solutions are wide spread throughout AI. They are visible in

approaches to learning, memory, planning, computer vision and artificial neural networks

(ANN) [69]. Such neuroscience-inspired solutions are often the result of advances in our

understanding of the brain.

One area of neuroscience research that has made significant strides in recent decades is

the study of sub-neural structures. One such structure is the dendrite. Dendrites are the

elongated root-like extensions through which a neuron receives a significant portion of its

input. The biological dendrite is crucial to neural computation. It integrates and

propagates arriving signals from their points of origin to the cell body. Many of the
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sub-neural mechanisms underlying learning and memory are located in the dendrite. Its

shape enables and influences neural processing. In neurons with elaborate dendrites, by the

time a single input signal reaches the neuron body, it has been filtered, transformed and

integrated with hundreds, if not thousands, of other signals. Dendrites allow a single

neuron potentially to integrate thousands of inputs and respond to hundreds of distinct

patterns [70, 72]. Ultimately, biological neural networks and high-level intelligence could

not exist without them [99, 54, 57].

However, sub-neural networks, such as the dendrite, are largely absent from ANN

implementations. The majority of artificial neural networks are comprised of the point

neuron which is a neuron model whose afferent, or incoming, connections are made only at

the cell body. The point neuron integrates its inputs linearly and simultaneously. By

contrast, dendritic input integration is a nonlinear process which happens locally,

repeatedly and in parallel over the length of the dendritic tree. The result of this temporal

and spatial disbursement is that a dendritic neuron is more computationally equivalent to a

network of point neurons than the point neuron itself [17].

While the ANN community has taken an increased interest in dendrites in recent years

in search of new bio-inspired forms, AI-centered work on dendrites remains very small.

Past work has not produced a clear path forward in the form of a widely adopted model.

Dendritic structures are often created by reusing ANNs which miss or make it difficult to

model unique characteristics. The benefits of adding dendritic structures is unclear or

varies from work-to-work. A thorough return to the biological source, that could identify

their function and benefits and produce a useful abstraction, is not visible in the research.

To aid in this endeavor, this work proposes a new neuron model, the artificial dendritic

(AD) neuron.

An AD neuron represents a computational improvement over the point neuron. The

AD neuron on its own is capable of recognizing and selecting between independent patterns

formed by subsets of its input space. Because of the spatial ordering of inputs along the
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dendritic tree, independent patterns do not only interact with the cell body but can

combine within the dendrite. Such interaction forms composite patterns and selects

between competing ones.

A neural-level comparison between point and dendritic models may not apply to the

network level. Are networks of AD neurons (ADNN) an improvement over classical ANNs?

AI currently lacks a domain-appropriate model to investigate this open question. Providing

an answer is important because it carries with it ideas for topological improvements to

ANNs and suggestions about the functional role of dendrites in biological networks. To

move forward, an AD model is necessary.

1.3 The Case for a Biological Simplification

Biological dendrites are a diverse group. Similar to fingerprints, it is likely no two are

perfectly identical. Variations in structure and composition suggest each dendrite combines

information differently into a specialized signal. These differences contribute to the

production of a unique neural input-output relationship which brings further diversification

to the brain network. Given such diversity between variants, is it possible to represent

dendrites using a single model and retain their computational complexity?

If the previous question is to be answered, the biological dendrite must be simplified to

a set of properties without sacrificing all the benefits of dendritic computation.

A fundamental set of properties has several benefits. A simple AD model can serve as a

foundation to explore further complexity. It is possible that certain dendritic variations or

specializations are beneficial to certain types of tasks. A simplified foundation potentially

can accommodate dendritic specialization by being compatible with a range of optional

properties. Next, weeding out dendritic idiosyncrasies reduces their complexity and

variability, simplifying the implementation and the training process. Finally, certain

dendritic properties are common to many types of networks including ANNs. Focusing on
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common network properties potentially opens the AD neuron to traditional and AI forms

of network analysis. This could give them wider applicability and a general appeal.

1.4 The Five Attributes of Artificial Dendrites

The AD neuron is defined around the abstraction of five general attributes of biological

dendrites which contribute to their purported computational abilities. These five attributes

are dispersed inputs, shape, compartmentalization, dendritic spikes and plasticity. Each of

these attributes contributes to learning within the artificial dendritic neuron.

1.4.1 Dispersed Inputs

Synapses, the points on a neuron which receive input from other neurons, are dispersed

across the entire surface of the neuron with a substantial number arriving on its dendrite.

Each input is unique in that it arrives at a difference point on the neuron and is subject to

differing local properties. Signal arriving on the dendrite propagate through the tree. Since

each arrival point is unique, paths to the soma are also unique. As a signal propagates it is

subject to alterations due to local activity and wider dendritic properties.

Abstracted, each path through the artificial dendrite is a unique function. Dispersion

creates an order among neural inputs. Order creates a set of unique paths to the soma, one

for each input. Each unique path is composed of a series of transformations of the

propagating signal. The series of transformations can be represented by a function which

defines how a signal arriving at a specific input location impacts somatic output.

1.4.2 Shape

Biological dendrites come in many forms. The shape of the dendrite determines which

signals it receives from its surroundings. For the artificial dendrite, the shape of a dendrite

is defined by the number and length of its unique paths. A dendrite’s shape determines the

minimum, maximum and average distances between input positions. A shape with many
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branches facilitates independent, parallel computations. A long thin shape devoid of

branches allows for detailed sequential computation.

1.4.3 Compartmentalization

In general dendrites are isopotential structures, meaning different branches of a dendrite

can have different electrical potentials [70, 12]. This phenomenon belies an underlying

electrical compartmentalization. Compartmentalization of the dendrite allows one neuron

to possess multiple integrative units where input is combined quasi-independently.

The artificial dendrite translates this attribute by dividing its dendritic tree into

multiple compartments. Within each compartment arriving signals integrate linearly.

Signals propagating between compartments undergo a nonlinear transformation. This local

linear bias divides a network into a set of sub-networks. Compartments allow a single

neuron to evaluate subsets of its inputs independently and repeatedly. The partitioning of

inputs into subsets potentially allows each compartment to recognize a sub-pattern within

the input space. The artificial dendrite, composed of multiple compartments, recognizes

composite patterns (i.e., patterns comprised of patterns).

1.4.4 Dendritic Spikes

The dendrites of some neuron types are capable of threshold behavior in the form of

dendritic spikes. Dendritic spikes, in general, are caused by certain input received along a

specific section of the dendrite. While the profile, behavior and cause of dendritic spikes

varies by type, they are an internal signal produced by the dendrite for a larger part of the

neuron.

For the artificial dendrite, each compartment defines which combinations of input

signals are allowed to propagate forward and which do not. The concept of a dendritic

spike is interpreted to be a compartment-level meta-signal indicating the presence of a

recognized sub-pattern.
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1.4.5 Plasticity

Plasticity is the ability of a neuron to alter local properties to increase or decrease the

impact of a local signal on a neuron’s wider behavior. Much of neural plasticity in the

adult brain is attributed to repeated or coinciding activity both within and between

neurons. Different parts of the dendrite are subject to different, possibly independent,

plasticity mechanisms. The artificial dendrite is concerned with two: synaptic and branch

plasticity. Synaptic plasticity raises or lowers the scaling of a signal arriving at a point on

the dendrite. Branch plasticity raises or lowers the scaling of a signal moving from one

branch of the dendrite to another. The artificial dendrite has the ability to alter properties

which affect the strength of signals at their points of arrival and the strength as signals

move from one point, or compartment, to another.

1.5 The Artificial Dendritic Neuron

The artificial dendritic neuron is a computational unit consisting of a set of inputs and

a single output. Neural output occurs when input arriving at the soma, the root of the

neuron, reaches a threshold. However, unlike the point neuron, the AD neuron’s inputs are

spatially ordered and connected to the cell body through a dendritic tree rather than to the

cell body itself. The distance between inputs defines how the tree itself alters propagating

signals. Because of this, the AD neuron possesses a topological bias that favors some input

patterns over others. Figure 1.1 highlights this difference in input connectivity.

In the AD neuron, an afferent signal arrives at a distinct point along the tree and must

propagate down a unique path to arrive at the cell body. As a signal propagates, it

integrates both linearly and nonlinearly with other signals either arriving directly along its

path or originating from other parts of the tree. Each input affects certain paths through

the dendritic tree while having little to no effect on others. Finally, each tree passes to the

cell body one composite signal. Because of these properties, the majority of computation in

an AD neuron happens within the dendritic tree.
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Figure 1.1: Top: point neuron with a mix of excitatory (positive weights) and inhibitory
(negative weights) inputs. Bottom: AD neuron with the same number and type of inputs
distributed over a dendritic tree.

In this work, the AD neuron is given in three different forms. The basic model describes

a conversion of the five properties given above into a working computational model. The

basic model is minimal in that it makes few assumptions about any domain to which it

might be applied, limitations on dendritic shape or connectivity, or the types of signals it

receives. An extended model of the AD neuron fills in many of these undefined aspects and

is presented with two purposes. First, it is an example of how the basic model can be

extended to further define its behavior. Second, it provides a foundation on which a

trainable, third version of the AD neuron is constructed. The final model is the trainable

version of the extended model. Various training algorithms are presented and tested to

demonstrate its capabilities. Together the three models form a process that can be forked

at any point to create alternatives. We hope that defining the AD neuron through this

constructivist presentation will aid in the formulation of such alternatives.

8



1.6 Training the Artificial Dendritic Neuron

1.6.1 Neural Learning

Both artificial and biological neurons learn by capturing the relationship between input

and the response it produces. The artificial neuron, for example, learns by exposure to

training examples. The correctness of its response forms an error signal which is used to

manipulate the neuron’s input parameters.

Learning in a biological neuron is more complex but is still thought to be, at least

partially, driven by an evaluation of input and response. It is made up of quasi-independent

processes that operate over various time scales and affect different parts of the neuron.

A model of neural learning, then, answers two questions:

• Which neural properties are altered during the learning process?

• How are input-response relationships captured to make these alterations?

The artificial neuron alters the weights of its inputs based on the correctness of its

response. The biological neuron alters its electrical, chemical and physical properties in

response to input-output timing (i.e., spike-time dependent plasticity), chemical signals in

the form of neurotransmitters, and the activity of nearby neurons.

How then does the AD neuron answer these two questions?

1.6.2 Artificial Dendritic Neuron Learning

The AD neuron is trained through alterations to its five properties. Through these

alterations, the AD neuron builds its own dendritic tree. Input activity and subsequent

neural responses move the inputs to new positions and alter their weights. These new

positions are then used to build a new dendritic tree by (re)connecting inputs and

redefining compartments. Figure 1.2 depicts this cycle.

Learning in the AD neuron is driven by the temporal relationship of input activity and

neural responses. The temporal proximity of activity at two inputs or between an input
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Figure 1.2: The AD Neuron Training Cycle

and the cell’s response is assumed to carry meaningful information. By capturing such

co-activity the AD neuron’s parameters can be altered to improve task performance. How

does this happen?

The artificial dendrite begins completely disconnected. First, co-activity among inputs

is used to either cluster inputs together or drive them apart. The direction of movement

depends on whether the activity contributes to a desirable neural response. Similarly, the

timing of input activity and neural response determines an input’s proximity to the cell

body. These two relationships--input-to-input and input-to-output--determine where each

input is positioned within the dendritic field. Next, the position of inputs within the field is

used to generate the actual dendritic tree. The dendritic field is the N-dimensional space

inhabited by the inputs. This process connects neurons to each other and, ultimately, to

the cell body. This is done using a modified minimum spanning tree algorithm. Network

distance is used to cluster inputs and compartmentalize the tree. The resulting dendritic

network carries both the feed-forward signals which drive the neural response and the

back-propagating signals which govern weight changes.

In summary, it is the timing of activity arriving at or leaving from the AD neuron

which contributes to the construction of the dendritic tree.
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1.7 Overview

The rest of the proposal is organized in order from background information to

remaining work. Chapter 2 focuses on the biological inspirations for this work. It begins

with a brief description of dendrites and then focuses on several properties which are

important to dendritic information processing. Chapter 3 describes the related AI work

which has explored artificial dendrites. Chapter 4 introduces the AD neuron model, giving

a base and extended variant. It discusses how dendrites expand the artificial neuron and

the complexity this brings. Chapter 5 describes through a series of fixed (i.e., without

learning) experiments the behavior capabilities of the AD neuron. Chapter 6 presents a

suite of algorithms capable of training the AD neuron’s various properties. Chapter 7 walks

through the results of a series of experiments which investigate the behavior of the

individual dendritic learning algorithms. Chapter 8 benchmarks the learning capability of

the AD neuron as a whole using several standard data sets. Finally, chapter 9 concludes

the work by summarizing results and listing a myriad of alternative idea and future work

which has been generated by this dissertation.
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CHAPTER 2

BACKGROUND - NEUROSCIENCE

After decades of experimentation and modeling, neuroscience possesses a rich

characterization of dendritic function and its various contributions to neural computation;

however, a unified map of dendritic function is far from complete. Theoretical work is

problematic due to the seemingly varied attributes both across and within dendritic types.

It is likely the morphological classification of neurons, and thereby dendrites, in equal parts

resolves and adds to the confusion. Individual theories or aspects of dendritic computation

overlap making a segmented conversation difficult.

A passage from an article by Payeur et al.,[125] in reference to information selection,

sums up the spirit of the sprawling nature of the discussion surrounding dendritic

computation:

Obtaining an adequate understanding of the full computational role of

compartmentalized information poses a significant theoretical challenge. In this

direction, dendritic states have been referred to as a teacher or target, a

prediction, an error signal, a plasticity regulator, an associative signal or

attentional signal. We do not expect all dendrites to have the same function,

nor do we believe these interpretations to all be mutually exclusive [125].

With this quote in mind, a focus was placed on the more general computational

characteristics attributed to dendrites rather than those that contribute to any given

specialized cognitive task. As is common in neuroscience work, it is important to define the

scale of one’s view in terms of neuro-architecture. Since the topic is the dendrite, the scale

spans a spectrum that views the neuron as both a set of subneural components (or

compartments) and as a whole. It is tempting when explaining neural and, even more so,

dendritic computation to reach for the underlying detail of neurotransmitters and the

electrochemical properties of membrane tissues. This short survey of dendritic computation
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has tried to avoid too much magnification. Similarly, it does not argue for the

neurobiological realism of the AD neuron. Instead, it focuses on a generalized, utilitarian

description of dendrites that summarizes the neurological inspiration, related research and

foundation for this work.

2.1 Dendrites

2.1.1 Neural Communication

Neurons send and receive information through different parts of the cell. Generally,

output leaves the neuron via the axon and enters a cell through the dendrite. Both axon

and dendrite extend from the cell body. However, dendrites can take on far more elaborate

shapes. Whereas the axon is typically a single fiber with relatively few branches, the

dendrite can have hundreds of branches. Furthermore, a single neuron can have many

distinct dendrites emanating from different sides of the cell body.

While axons and dendrites send and receive information, they do not actually make

contact with each other. Where the two come in close proximity, the dendrite can grow

small extensions, called spines, that further narrow the gap between axon and dendrite.

Where many spines reach for the axon, the axon can swell to form a bouton. Still, neither

of these make a physical connection and the remaining space between the two is called a

synapse. These elements can be seen in Figure 2.1 which depicts an actual cortical

pyramidal neuron.

At the synaptic cleft, electrical signals moving outward along the axon are converted to

neurotransmitters. These transmitters flood the narrow space between axon and dendrite.

They are quickly received and taken in by the dendrite where they are converted locally

back to an electrical signal. Once in the dendrite, the signal propagates onward.
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Figure 2.1: A labeled cortical pyramidal neuron. The neuron has one apical dendrite
(dark green) and several distinct basal dendrites (light green). Neuron data comes from
neuromorpho.org [10, 86]. Visualization created personally using Python3. Zoomed in area
and spine drawing were done by hand for demonstration purposes.

2.1.2 Role of Dendrites

The dendrite appears to have two main roles. By their elongated shape, dendrites allow

the neuron to make many more connections to other neurons than it could if it lacked

them. This is a role shared with the axon. Second, the dendrite itself integrates and

processes incoming signals locally before they ever reach the soma, or cell body. It is this

second, computational role that is the focus of this work.

The elongated morphology of the dendrite makes possible the high degree of

connectivity in the nervous system, providing more surface area without impeding common

neural spaces [149]. For example, the space-filling, mossy dendritic arbor of Purkinje cells

of the cerebellum has been estimated to make anywhere from 69,000 to 223,000

connections [55] over a surface area 100 times the size of its cell body [162].
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(a) (b)

Figure 2.2: Examples of two types of dendrites. Left: Bipolar, e.g., cortical pyramidal cells.
Right: Space-filling, e.g., Purkinje cells. Drawings were created by synthesizing several
textbook examples.

Dendrites take on many shapes. Visually, many types resemble the roots of plants or

the branches of a tree (Fig 2.2). Shapes range from a single branch reaching for a specific

input space to densely packed, space-filling structures which capture the activity of the

surrounding area (Figure 2.2). There are many characterizations of dendritic shapes

(cylindrical, conical, laminar, planar, and even adendritic) [149]. Dendrites are further

categorized by the location of their root. Certain types of dendrites originate from different

regions of the cell body.

Dendrites are the computational workhorse of the biological neuron; they are not merely

arms by which neurons reach distant signals. The dendrite performs active and passive

computational duties by transforming, filtering and integrating signals within the tree.

This innate ability to transform incoming signals enhances the overall computational power

of the neuron [38]. Furthermore, dendrites possess the means to evaluate spatiotemporal

patterns locally. This means that signals arriving at one part of the dendrite can be

evaluated with some independence and do not immediately affect the arrival of others.
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[...] compartmentalization of information processing endows neurons with a

second processing layer that boosts the computational capacity of the neuron

by at least an order of magnitude compared to that of a thresholding point

neuron.[124]

The following subsections cover briefly the purported computational properties of

dendrites which have influenced this work. A full treatment of any one of these dendritic

properties is beyond the scope of this work; therefore, the discussion is focused on how each

influenced the creation of the AD neuron and its four properties.

2.2 Dendritic Diversity

Dendrites do not all behave the same way. Dendritic behavior is the result of a myriad

of interdependent, active and passive properties [125]. These properties vary in kind,

density or distribution between dendritic types.

For example, dendritic morphology, or shape, determines the neuron’s capacity to listen

to surrounding activity. The densely packed dendritic branches of the Purkinje neurons

(Fig. 2.2b) are thought to capture all signals moving through a local space. Similarly, the

stellate neuron type samples a local space through separate dendrites extending from all

sides of the cell body. This is in contrast to biconical and spindle shapes whose dendrites

extend from opposite sides of the soma allowing it to sample spatially distinct fields [149,

38]. The dendritic field is the physical space occupied by the dendrite within which it can

make connections. These spaces interlock with those occupied by the dendrites and axons

of other neurons. This interlocking geometry of axonic and dendritic fields--their

orientation and location--contribute to the specialization of each neuron type.

The variability in dendritic behavior cannot be ascribed to differences in shape alone.

Ion channels are small apertures in the membrane of the neuron which allow the influx or

efflux of different ions. Ion channels are responsible for holding or changing the

membrane’s electrical potential. More specifically, ion channels allow specific types of
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positively or negatively charged ions (calcium, sodium, potassium, etc.) to pass into or out

of the cell and thereby change, in a site-by-site manner, the polarization of the cell. Local

densities of ion channels determine how synaptic sites respond to input and how current

moves from one location to another [76].

Dendritic spines and the connections they make to other neurons contribute to dendritic

diversity. Spines are dynamic. Throughout the life of an organism new spines grow and old

ones are pruned [18]. Changes in spines weaken or strengthen the connections between

neurons [68]. The location of spines on the parent dendrite as well as the density of local

spine populations impacts the role of the signals received from other neurons [13, 165].

Dendrites also differ in their active responses. Dendritic spikes are rapid swings in the

neuron’s membrane potential originating in the dendrite [98]. They are associated with

different ion channels, and the input requirements for each type varies dramatically [139,

123]. Dendritic spikes come in several types. The active response can differ by which input

patterns are capable of causing it and in the nature of the response (i.e., length, strength,

etc.) [105]. For some dendrites, clustered input patterns appear to determine the

post-synaptic response [60]. Other neurons with dendrites of a different type respond

equally well to inputs scattered across the dendrite [173, 174].

Research suggests that each dendrite makes a unique contribution to the neural circuit

and its general type allows it to fulfill basic roles. Seemingly, this would make any

generalization of their computational abilities more difficult; however, dendritic diversity

has positively influenced the current project. The biological diversity lent a freedom to the

design of the AD neuron implementation. It suggested that there is no single, best

implementation. With enough research and experimentation, we might identify a multitude

of implementations which focus on different dendritic properties and are best suited for

different tasks. Furthermore, it inspired the design of the training algorithms. If shape,

order and compartmentalization determine a dendrite’s role, these characteristics should be

allowed to vary on a neuron-to-neuron basis. In other words, they should be trainable.
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2.3 Dendritic Information Processing

Individual nerve cells convert the incoming streams of binary pulses into

analog, spatially distributed variables [. . . ]. A number of transformations can

be applied to these variables besides subtraction and addition: low- and

band-pass filtering, normalization, gain control, saturation, amplification,

multiplication and thresholding [88].

Neuroscience research indicates that dendrites heavily process afferent, or incoming,

signals before they reach the cell body. Dendrites are thought to filter, combine, exclude,

amplify, modulate, remember and even predict signals. This information processing

depends on a suite of passive and active elements. Specifically, this work identifies synapse

location, signal transport, dendritic morphology, dendritic spikes and forms of synapse and

branch plasticity as five crucial components of the dendritic information processing toolkit.

While this work condenses the dendrite to five properties that determine information

processing, neuroscience does not have a unified dendritic model that covers the functional

significance of all of its elements. Some of them, especially across different neuron types,

appear to be incompatible (e.g. cluster-sensitive versus scatter-sensitive [158]). As it

stands, the causes of dendritic processing are better understood than its purposes. Surveys

of dendritic information processing capabilities struggle to move beyond case studies and

into a theoretical treatment [99, 105, 125].

The five components mentioned above helped to identify the four properties of the AD

neuron. In this section, they are described and their connections to the four properties are

highlighted.

2.3.1 Signal Transport

Signal transport describes how the propagation of a single signal from one point in the

dendrite to another alters the signal itself. What are the effects, if any, of this movement?

Which active or passive mechanisms cause alteration?
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The movement of current back and forth along the dendritic tree is one of the longest

studied properties of the dendrite [162]. For more than a century, cable theory has been

used to describe how electrical signals move through a series of connected cylinders each

having a specific radius and length [75, 36].

A signal moving between synapse and soma is subject to the electrical characteristics of

the shape and length of each cylinder which together comprise the dendritic tree.

Biological neurons, and thereby dendrites, have a capacitive membrane that has low

electrical resistivity and through which charge leaks into the surrounding fluid. The leaky

membrane reduces the strength of the signal. Additionally, internal, or axial, resistance

(parallel versus perpendicular movement) further attenuates the signal coming from distal

branches. The passive electrical model of dendrites predicts that signals impinging distal

locations arrive at the soma (or vice versa) severely attenuated.

Signals take the form of post-synaptic potentials (PSP). PSPs can be either excitatory

(EPSP) or inhibitory (IPSP). PSPs are the polarization or depolarization of a post-synaptic

cell’s membrane due to the movement of positively or negatively charged ions into or out of

the cell. The region of polarization/depolarization moves bidirectionally from the initial

site due to adjacent ion channels opening. Ion channels open or close under certain

conditions (e.g., voltage differences or ligands) depending on their type. The treatment of

PSP movement is essential for non-isopotential neuron models with distributed input. The

distance a PSP travels from its site of initiation determines the electrical

compartmentalization of a dendrite (or part thereof) with respect to a single synapse.

However, experiments on the integration of PSPs in brain slices do not always reinforce

cable theory’s predictions [122]. The problem is that the dendritic network is a dynamic

entity. The dendrite is affected by the signals it carries. The discovery of active properties

[98] complicated the view that current propagation through the dendrite is completely

passive [105] and that distal signals arrive at the soma highly attenuated [65].
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Ion channels, and thus the dendritic branch, respond to the presence of current.

Dendrites are comprised of multiple types of ion channels. Movement of PSPs is both

nonlinear and uneven. Ion channels are not uniformly distributed [66]; therefore, the effects

of movement differ between neurons but also between parts of the same neuron.

Dendritic segments are capable of altering their efficacy for signal transport.

Branch-strength potentiation (mentioned later in Sec. 2.3.5) is a mechanism by which

entire segments of a dendrite can increase or decrease their strength. Activity within

specific dendritic branches can have an enhanced or diminished impact on the somatic

response over its sibling branches [106, 92] based on recent activity. Branch-strength

potentiation complicates a within-neuron model of signal transport uniformity by

predicting that not all dendritic distances are measured the same and even the distance

over the same segment varies with activity and time.

The circular dependency of network state and signal have strongly influenced the

direction of the current work. As a signal moves from one point in the dendrite to another

it is altered by the dendrite’s local properties and current state. Simultaneously, localized

sections of the dendrite can be potentiated or depressed by the activity either arriving at or

passing through it. This is particularly true when passing and arriving information collide.

Such events are thought to be crucial to changes in synaptic strength. Signal transport has

influenced how the role of distance between synapses has been implemented and how

colliding signals can amplify (or suppress) one another.

2.3.2 Synapse Location

The functional significance of a synapse’s location in relation to the cell, but also to its

sibling synapses, remains an open question. And to answer it for any given synapse

potentially requires a detailed understanding of the processes that drive neurogenesis,

dendritic morphogenesis and spinal and synaptic growth. It also requires an understanding

of the role of activity and experience in these processes.
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For example, Koch and Segev suggested that:

Synaptic clustering requires a learning rule that encourages simultaneously

active synapses to cluster in adjacent dendritic regions, whereas uncorrelated

synapses should have no privileged spatial relationship to each other [88].

Generally, research considering the question of a synapse’s location has focused on two

separate relationships: synapse-to-synapse and synapse-to-soma. The former relationship is

evident in neuroscience research investigating dendritic spikes. Dendritic spikes in certain

neuron types have been shown to depend on multiple inputs arriving in close temporal and

spatial proximity [60]. Distal branches are thought to compartmentalize local synapses

[174]. By themselves, signals arriving at these distant branches attenuate before reaching

the cell; however, when received within a short window of time, they can generate a

dendritic spike. A dendritic spike, from an informational perspective, can be thought of as

a unified, possibly superlinear response, to a group of individual signals. Branches, in some

instances, communicate with the rest of the dendrite as a whole (e.g., dendritic spikes).

Next, what is the functional consequence of a synapse’s distance to the cell body itself?

Early models of dendrites predicted that signals from distal synapses suffered attenuation

before arriving at the soma [133]. Research into EPSP efficacy [172], inhibition [83] and

learning rules [93] reinforce this idea. However, other evidence from the cortex [24], the

hippocampus [104, 7] and spinal motor neurons [81, 6] indicates that some neurons possess

active and passive properties that reduce or eliminate the distance-based attenuation. This

indicates that there is a need, within the dendritic tool kit, for both the

compartmentalization and democratization of synapse-soma interactions.

The synapse-to-soma relationship could indicate a more general role. One theory

classifies signals as either driving somatic responses or providing contextual modulation

[144, 1]. The literature freely admits that the definition of driver and modulator is unclear

and certainly differs between neuron types. However, a driver input is associated with

external or sensory input; whereas, a modulator is more contextual and incapable of
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producing a neural response on its own. This last point--the ability of a synapse to be

heard by the soma--is at the heart of the definition. Whether a synapse is heard depends

on location. Location is crucial with drivers occupying proximal spot on the dendrite and

modulators making more distal connections.

Similar to the driver-modulator theory, other research associates the relative location

along the proximal-distal axis of cortical pyramidal neurons with one of two types of

modulatory influence. Distal synapses lower the spiking threshold of more proximal

segments of the dendrite; whereas, proximal synapses provide a gain boost for distal signals

[13]. Whereas the driver-modulator theory defines distal and proximal synapses in relation

to the soma, this one does not. Synaptic locations are relative to other synapses. A single

synapse, for instance located along a midpoint, could play both roles.

The above research presents the idea that the location and order of synapses and

compartments within the dendrite determines their computational role. In fact, each

synapse might have as many roles as it has sibling synapses. This point influenced the

disentangling of the synapse-to-soma from the synapse-to-synapse relationship. The spatial

proximity of synapses determines the time window for signal overlap and interplay. The

combined distances (angular and radial) between synapses determines the formation of

compartments. Synapse-to-soma relationships determine a synapse’s direct influence over

the neural response. In other words, those synapses close to the soma have the last word.

2.3.3 Dendritic Morphology

The shape of a dendrite is important to the behavior of a neuron. Morphological

variations are enough to suspect that shape and purpose are inextricably linked [113].

While dendrite morphology is one of the determining features of neuron categories, the

functional significance of both type-specific and type-invariant features remains largely

undefined [44]. This is in large part due to the dependence of such definitions on the

functional significance of neuron types themselves.
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Ramon y Cajal first suggested that neurons benefit from the spatial and energy

efficiency of dendrites [30]. Efficiency and function are associated with dendritic shape.

Both explain why the process of evolution might favor their current form; however, it is

unclear to what extent the requirements of each has determined current forms.

Dendritic shapes are not arbitrary. They minimize the costs of maximizing the number

of potential connections to other neurons [166, 167]. A brain devoid of the elaborate spiny

branching structures enabling neural connectivity would occupy a space five orders of

magnitude larger than one with them [32]. However, the need for efficiency alone does not

determine topology. Research suggests that shape is determined by innate growth patterns

that are susceptible to modification by local activity. For example, a best-fit of the shape

of the dendrite of lobula plate tangential cell in flies can be produced by a version of Prim’s

spanning tree algorithm [129] that includes a branch factor bias [37]. This suggests that

neurons of a similar class are likely determined by an identical genetic “growth program”

[40]. This suggests that arborization during morphogenesis is, at least partly, governed by

rules that place restrictions on the path length from the dendritic root to any given

connection. This also implies that for any given pair of synapses, their order, or their

relative proximity to the cell body, is likely determined more by a need for efficiency and

less so by any ordering requirements for local computation.

One indication that shape impacts behavior comes from modeling work investigating

how dendritic topology impacts the response profile of a neuron. Not all neurons spike the

same when sufficiently depolarized. Some produce a single spike; others burst.

Computational models focusing on dendritic topology suggest that a dendrite’s shape and

mean path length contribute to the neuron’s firing frequency [161] and activation pattern

(i.e. tonic or bursting) [48].

Other research suggests that shape contributes to the neuron’s ability to store and

retrieve patterns. Pattern recognition performance was examined by exhaustively

generating and testing all possible dendritic trees with 22 synapses. Results suggested that
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topologies with less asymmetry and a shorter mean depth (or a smaller mean electrotonic

path length for tapered dendrites) show a stronger recall of stored vs. novel patterns [44].

Asymmetric dendrites are unbalanced trees where certain parts branch more than others

and synapses are unevenly distributed. Mean path length is the average length of all paths

through the tree measured from the root to all terminal branches.

Another thread of modeling work investigated the connection between shape and

behavior by developing algorithms to generate dendrites capable of producing certain

behaviors [28]. The algorithm used a stochastic process dependent on local branch

properties to produce the length and diameter of further branches. Research based on the

work by Burke [28] has shown that a neuron exhibiting specific behavior can be created

through an evolutionary algorithm capable of building dendritic segments [156]. These

works reinforce the idea that shape can determine function and demonstrates that

dendritic shapes which produce a specific function can be algorithmically generated.

The idea that a variety of dendritic shapes can be reproduced by a growth algorithm

[39] has strongly influenced the current work’s approach to synaptic connectivity.

2.3.4 Dendritic Spikes

Dendrites, like the soma, are capable of non-linear, suprathreshold events in the form of

dendritic spikes. Dendritic spikes are viewed as branch- or compartment-level signalling

mechanisms that can unify and amplify groups of signals enabling them to reaching the

soma or other parts of the dendrite that, individually, they would not reach. In this way,

they could function as sub-pattern or coincidence detectors [71] within a larger set of

inputs. Their generation depends on synchronous input to a dendritic region [142].

Dendritic spikes are the result of a localized feedback among ions channels which

depolarizes a region of the dendrite’s membrane [145]. Due to the uneven distribution of

these channels over the length of the dendrite, the primary driver of a dendritic spike can

differ by location [8]. Therefore, the cause, location and effect of a dendritic spike varies.
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It is likely that different types of spikes serve different purposes. For example,

calcium-based spikes in layer-5 cortical pyramidal neurons originate in the apical trunk. It

is thought that these spikes are the product of colliding forward distal input and a

back-propagating action potential generated by a somatic spike [89]. This collision results

in a burst of neural responses. Together this suggests that colliding dendritic spikes allow

the neuron to respond to relevant input arriving at different compartments.

Dendritic spikes can also play a local role within parts of the dendrite. The fact that

not all dendritic spikes reach the soma suggests their impact is not neuron-wide.

Furthermore, whether or not a spike reaches the soma depends on current circomstances.

The extent of spike propagation depends on compartmentalization which can be

dynamically regulated [71]. Because dendrites can partition input regions into electrically

independent compartments, spikes that do no move from a specific region can still affect

local processes, such as learning, without impacting other compartments [126, 8].

Compartment-level signalling suggests the somatic response is the product of a set of

sub-patterns rather than a set of unique inputs. This, in theory, allows for a low-energy

recognition of partial patterns that on their own are not significant to the wider neural

network. In other words, at an elemental level the number of neurons does not need to

equal the number of patterns. And not all patterns are created equal across all contexts.

2.3.5 Multi-tiered Plasticity

Dozens of learning models exist that partially describe neural plasticity and include

phenomenological treatments as well as low-level processes. There are two models of

plasticity that are most pertinent to our work. First, synaptic plasticity is the product of

the timing of input and response and the local state of the neuron (e.g. voltage) [34, 35].

In other words, the interaction between input and response, does not happen in isolation

from activity at sibling synapses. Second, neural plasticity is not confined to the synapse or

even to the growth and atrophy of dendritic spines. It appears to be a multilayered
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process. In additional to synapses, entire branches increase or decrease their effectiveness

to elicit somatic responses. This dendrite branch-level learning is known as branch-strength

potentiation (BSP) [100, 92]. This section provides a short overview of these two influences.

Synaptic plasticity is one of the most researched properties of neurons and is far too

large a topic to cover here in any depth. Synaptic plasticity is thought to be a major

component in learning and memory. The majority of approaches to synaptic plasticity

utilized either in neuroscience models or within spiking neural networks are based on the

relative spike times of pre- and post-synaptic neurons. If an upstream neuron spikes prior

to a downstream neighbor within a small temporal window, the learning model assumes

that upstream activity contributed to the downstream response. The intervening

connection is, thereby, strengthened. This is referred to as Hebbian learning [74] or

spike-time dependent plasticity (STDP) (for an excellent history of the subject, see [108]).

Likewise, if the order is reversed, the connection is weakened. Famously, synaptic learning

based on correlated activity was summarized by Carla Shatz as “cells that fire together wire

together” [143]. Hebbian or STDP learning is the basis for many network learning models,

and much of its attraction is due to it being an unsupervised process. However, STDP is

inherently unstable because it rewards repeated activity with an efficacy for more of the

same activity [116, 2]. Subsequent research has suggested modifications to this basic rule.

For example, the Bienenstock-Cooper-Murnau (BCM) rule suggests that the thresholds for

synaptic potentiation and depression shift based on the post-synaptic spike rate [19].

Recent work taking note of the frequency dependency of synaptic change and the

interaction of spike triplets has produced a model unifying temporal coincidence and

membrane voltage [34, 35]. Plasticity, like much else, depends on neuron type. There are

instances where, in vivo, the STDP rule appears strictly violated and the sign of synaptic

change depends on local dendritic dynamics [93]. Additionally, the presence of certain

neurotransmitters and the dendrite-dependent back-propagation of the somatic response

play a role in synaptic change.
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Above the synaptic level, dendritic branches are thought to compartmentalize input

into separable units. Research suggests that dendritic branches can exist in a “strong” or

“weak” state allowing for more robust propagation of dendritic spikes over greater, forward

(toward the soma) distances [100]. BSP is the result of a change in a K+ channel

responsible for the forward and backward propagation of somatic and dendritic spikes.

Dendritic spikes in potentiated branches exert greater control over somatic membrane

potential. This change is caused by correlated local and somatic activity.

Once elevated, BSP affects input arriving at all synapses along the branch and not only

those synapses that caused the potentiation. If branches represent input patterns, then

BSP allows the coupling of pattern-to-response irrespective of the individual inputs

comprising a pattern instance. Pattern instances and the activity they generate are known

to change over time, suggesting that activity shifts from one synapse to another even in the

continued presence of the same pattern. BSP ensures that such shifts do not result in a

failure of recognition at the neuron level. Modeling work based on Losonczy et al 2008

[100] showed that BSP might contribute to pattern separation and feature binding [92].

From the above discussion, the current work takes the view that dendrites are

multi-layered learners. A multi-layered learner is one in which the mechanisms affecting

neural change play different roles and can, to some degree, change independently. They are

multi-layered because each mechanism alters the dendrite at different scales with some

impacting specific locations and others impacting entire branches.

In general, synaptic plasticity refers to changes to a single input to the neuron. Its

impact is local. If compartmentalization creates quasi-independent pattern detectors out of

multiple synapses, synaptic plasticity would have the effect of altering a synapse’s role

within in recognizing the pattern. It determines how important a synapse is in triggering

(or inhibiting) the pattern.

BSP, on the other hand, increases or decreases the ability of all signals originating

within a dendritic branch to elicit a neural response. It might represent a
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compartmental-level form of plasticity. If a dendritic compartment is in some way

synonymous with an input pattern, then BSP could bind a pattern or collection of patterns

to the current context. In this way, BSP does not impact the dendritic branch’s ability to

recognize a pattern. Rather, it temporarily alters the pattern’s status within the larger

dendritic network.

In summary, this multi-layered plasticity potentially allows for the learning of multiple

patterns and switching between them without causing catastrophic forgetting.

2.4 Are We Neural Mathematics?

This chapter has tried to summarize the view that dendrites are themselves processing

elements by highlighting several properties that support this theory. But before we move

on, we must acknowledge that there is a crucial assumption hiding silently in this research.

Looking at structure in the living tissue and trying to draw from it a model capable of

reproducing its ability requires a language capable of describing the mind-matter (or

meaning-matter) intersection. I am skeptical that the mathematical and logical language of

AI as it is today can model this intersection. There is a strong overlap between what

certain neuroscientists are trying to see in the brain and the struggle of AI researchers to

explain why their tools do or do not work. I suspect the language of real intelligence is the

physical brain. We speak to computers through interpreters capable of transforming

human language into binary. To speak brain1 , we need interpreters that move meaning

between human language and neural structures.

AI is not the only field dependent on inadequate language. The history of research into

dendritic processing also tends to use the language of mathematics and logic[22, 87, 99]. It

is easy to create from the diverse research a panorama that portrays the entire brain, not

to mention individual cells, as a deterministic machine. For example, the placement of

synapses along the dendritic tree and the nature of each signal create relationships similar

1As dumb as that phrase sounds.
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to addition, subtraction, multiplication and division or logical combinations of AND, OR

and NOT. A partial reason for this retreat-into-math is that neuroscience lacks the

experimental tools to develop a method for interpreting the compositional aspect of brain

activity. The problem is too large, the scale is too small and the change in state too quick

to take enough measurements at a moment in time to understand which micro phenomena

compose which macro activity. So the computational nature of the brain has been the

domain of computer models. It is hard to resist superimposing parts of the model onto the

brain when the artificial robustly mimics the biological.

Ultimately, whether or not brain activity can be reduced, at any level, to a form of

math is a contentious issue for those who study it. But one thing seems to be clear.

Whatever individual neurons perform to create collectively our ability to perceive, think,

remember and react, it is enabled by the parallel, distributed structure of the dendrite.
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CHAPTER 3

BACKGROUND - ARTIFICIAL INTELLIGENCE

3.1 Overview

Unlike in neuroscience, dendrites in AI-related neuron-based learning are extremely

rare. However, several works have cited dendrites as the basis for their research [50, 177,

84]. The scope of dendritic influence ranges from simple modifications of point neurons to

novel systems. As inspiration they cite the purported computational abilities of dendrites,

the benefits of deeper network topologies and, in general, the belief that an increase in

biological fidelity is desirable.

What is missing from the literature is an AI perspective on computational properties of

dendrites. In general, AI lacks a computational model of dendrites. To our knowledge, no

AI work has proposed one or drawn one from the plethora created for neuroscientific

research. Thus far AI-side research into dendrites largely has been grafted onto traditional

approaches to neural networks. And one cannot look only at AD-themed work for answers.

Works which do not carry the name ‘dendrite’ concern themselves with the same problems

(e.g. pruning or network sparsity).

The AI-related work on dendrites thus far can be characterized as sparse and

disconnected. All approaches have inherited something from general neural network

research. Lateral borrowing between projects is all but nonexistent. This is a good thing!

The voices are few but the approaches are many. While the goal of this dissertation is to

add a model, it does not try to unify or end the search or select from among the

implementations but rather find common elements. It is the belief of this thesis that AI

research into dendrites is at an early stage when creativity and imagination are key. We

should explore the space.
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The following discussion on AI research is divided into topics that, in some way, relate

to artificial dendrites. The origins of these topics are diverse. Some were selected because

they are important to this work and some are derived from common topics or concerns

within the body of related works.

The discussion is limited only to those works that state an interest in either dendrites

or general ANN research with obvious relevant elements. When one looks at the

computational nature of dendrites described by neuroscience research and ANN research,

one sees many parallels. We cannot possibly point them all out.

For this reason, the history of artificial neural network research is omitted; there are

better forums for it [179]. Certain types of networks that arguably could contribute to the

discussion are also omitted to retain focus on specific properties. For example, long-short

term memory networks use a complex chain of neurons and connections as their elementary

construction for certain layers. There are some similarities between each layer’s chain of

separate computations and the concept of the dendrite. However, such comparisons are

beyond the scope of this work as that would entail the comparison between two complex

entities one of which is poorly understood. Lastly, there seems to be multiple research

paths within neural network literature converging on a set of AD-related ideas. To this

end, we acknowledge the likelihood that our field will arrive at a utilitarian understanding

of dendrites without taking the direct approach advocated by this work.

3.2 Overview

Previous work has focused on dividing inputs into independent, sub-neural channels

[152, 50, 177] or tree-like subnetworks whose shape is predetermined [177, 84]. Each

channel or sub-neural node integrates its input independently from the others before

passing the result forward to either an aggregate channel, node or the cell body itself.

Local integration is nonlinear which models the idea that dendritic branches are

isopotential and that the shape of the dendrite contributes to a signal.
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Several projects have been successful in demonstrating this last point. Research by John

Elias showed that reassigning inputs to different locations on a predetermined dendritic

tree is sufficient to alter the neuron’s response profile [50, 52, 51]. In Jones 2020 the order

in which signals are integrated impacts network accuracy [84]. On the other hand, Wu 2018

randomizes the connections from the previous layer to the dendritic structure of the next

[177] inspired by randomized attribute bagging [27]. These works draw inspiration from

neuroscientific theories about input placement, tree shape, and signal integration.

3.3 Dendritic Shape

3.3.1 From Artificial Dendrites

The brain’s dendritic diversity suggests no one shape fits all input. So we must begin

by asking a basic question: which dendrite shape should we use?

Behind this question lurks another concerning how for some problem or problem

domain we find an optimal shape. On the surface there are two answers to this question?

First, we develop, through trial and error, a method for selecting a predetermined shape.

Second, we develop a method to train shapes using problem data.

To our knowledge, only one work (other than ours) in the AI domain is working on the

latter method [155]. The rest opt for the first method.

Before describing how related works have handled dendrite shape, it is important to

note that other works (apart from Todo 2014) have not placed an emphasis on shape

selection. While, in general, shape is identified as being an important consideration, the

dendritic attribute driving previous work is not shape but input separation (see Section

3.4). This does not mean related works have not made decisions regarding shape--only that

it is a secondary concern.

In Todo 2014 (one of several papers describing a similar approach to building artificial

dendrites [155, 152, 131, 130, 164] that originates in [150]) neurons are expanded to four

layers: synaptic layer, dendrite layer, membrane layer and somatic layer. The somatic,
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synaptic and membrane layers together form an entity similar to a point neuron.

Individually they fill the roles of transfer function, input summation and connection

weights respectively. The novelty comes in the dendrite layer.

The dendrite layer is comprised of N dendrites. Each dendrite hosts some number of

inputs (the synaptic layer). Dendrites use of a version of logical AND when combining

signals arriving from the synaptic layer. Similar to the Identity Law of Boolean logic,

synapses with a weight of 1 prune themselves. And, similar to the Null Law, synapses with

weight 0 prune an entire dendrite. The combined dendritic signal is passed on to the

membrane layer where dendritic output is summed. The number of dendrites and synapses

per dendrite are hyper-parameters for a given neuron. The ultimate shape of each dendrite

and the number of dendrites depends on a final pruning process, informed by synaptic

weight.

The approach of Todo 2014 can accommodate any initial dendritic shape as dendrites

are allowed to contain branches. Instantiating a dense forest of dendritic trees and

connections and allowing a weight-focused training algorithm to find a suitable sub-tree is

advantageous. Unlike a purely genetic approach or the approach taken by this work,

pruning based on weights simplifies the training process. Dendrite shape does not depend

on synaptic location or finding a method for connecting synapses. In fact, synaptic location

within the dendrite is commutative.

Pruning connections based on weight to reduce the size of networks is common in ANN

work. The primary benefit (at least in the context of a final pruning stage) is the

production of a smaller, more efficient network. The final result is a sub-graph of the

original. Their approach is also capable during post-training analysis of identifying inputs

that are common to multiple dendrites. These can be used to redraw the dendritic tree to a

more complex (but equivalent) shape. It is possible this could aid in explainability.

But there is one disadvantage that is inherited from all neural networks with static,

hand-selected topologies. Network initialization must ensure the starting set of dendrites
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and the placement of inputs contains an adequate sub-graph. For the experiment described

in the paper, there are few enough inputs that all N (10 in this case) dendrites receive

input from all sources. In this case, finding an adequate sub-graph depends on initialized

weights rather than the selection of sets of inputs.

Wu 2018 ([177]) describes a dendritic neural network (DENN) in which dendrites

comprise a single pre-layer to a neuron. Each dendrite hosts a randomly selected subset of

the previous layer’s efferent connections. Dendrites sum the input values received through

each connection. Neural output is different; the neuron itself outputs the max value

received from all dendrites.

Shape in this case is a tree of depth one, rooted at the soma, with d children. The

authors equate the number of dendrites (or its shape) with an increase in network

complexity over traditional feed-forward networks. Since each dendrite receives input from

a subset of neurons in the previous layer it creates sparse representations in the hidden

layers. In general, sparse representations duplicate individual inputs across multiple

subsets of the full set of features. This has been shown to reduce catastrophic forgetting

[97]. Typical forms of sparse representations (grouping by tile coding or radial basis) place

an importance on locality. Locality is the idea that the information processed at a

particular part of a network should share similar features. Locality has influenced our work

as well. However, in Wu 2018, connections are randomly selected for each dendrite.

Locality of information in the dendritic layer is left to chance.

The advantage of this topology is that it is amenable to existing ANN implementations.

The shape does not contribute to a drastic increase in complexity since layer-to-layer

connections are still all-to-all without redundancy. The limitation of single-layer equal-size

dendrites prevents the DENN from exploring unbalanced or deep dendrites with multiple

compartments. However, this limitation of balance is not endemic to the model but its

formulation within the paper. There appears to be nothing preventing the authors from

randomizing placement such that one dendrite receives more inputs than another.
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Jones 2020 present a similar approach albeit taken to an extreme with respect to

dendritic tree length [84]. They model dendrites as binary trees in which synapses only

exist at the leaf nodes. Dendritic depth is log2(N) where N is the number of synapses.

Pairs of inputs are combined and passed through a ReLU transformation. Pairs of branch

outputs are likewise transformed and so on until the final remaining two are combined at

the soma (root). Dendritic neurons were also tested with multiple dendritic trees (k-tree)

with k varying from 1 to 32. Results indicated that increasing k resulted in better

performance overall and is comparable to a 2-layer feed-forward network where the hidden

layer has 2k neurons. The initial pairing of inputs determines the chain of subsequent

pairings and Jones 2020, interestingly, noted that pairings based on the natural locality of

inputs (e.g., adjacent pixels) produced better results than random pairings. Shape, in this

case, is determined by the number of inputs to a neuron.

The dendritic shape used in Elias 1992 ([50, 52, 51] is, like Jones 2020, a balanced

binary tree. The dendritic tree used in [51] has a depth of 4. Synapses connect at

predefined points. Each non-leaf branch has 8 excitatory and 8 inhibitory connection points

where synapses can be formed. Leaf branches have 9 of each connection type. In total the

dendritic tree has 256 connection points. The number of connection points exceeds the

number of inputs to allow for many synaptic orderings. Only one shape appears to have

been tested. This is likely due to the implementation being partially done in hardware.

The researcher does not explicitly state why this specific shape was selected. However,

the text focuses on the number of synapse orderings over the tree. Since reordering

connections forms the basis of the training algorithm, this shape seems to have been

selected to increase the possible orderings without creating too large of a search space.

Shape, then, is important as it increases the number of possible synaptic orderings.

Increasing the range of synaptic orderings also increases the dendrite’s capacity for

multiple sparse representations. In other words, each dendrite (or dendritic compartment)

by its shape and location is capable of learning one of a set of sparse representations.
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Which one it receives can change. Lastly, it should be noted that this is the only related

work in which synapse ordering along the dendrite matters.

Overall, previous work emphasizes compartmentalization over shape. The actual shape

and depth of the tree seems to be a secondary concern or a result of the particular

approach to compartmentalization or as a side effect of the chosen implementation.

Certainly, there is wisdom in choosing the simplest shape when the role of any given shape

is unknown. The chosen shapes are balanced which make for easier implementations. With

unbalanced shapes one has to contend with the fact that, unless constrained, large

dendrites will shout down smaller ones. Or distal connections will be lost along lengthy

paths. Balance, then, is beneficial.

While dendrites are viewed as vehicles of sparse representations, the contribution of

shape remains poorly understood. It is the opinion of this author that understanding the

computational uses of shape in this respect will require the comparison of many forms:

deep, wide, balanced and unbalanced. Shape, however, does not stand on its own; its

effects depend strongly on how input is integrated within and across dendritic

compartments and trees. This is the focus of the next section but first let us briefly walk

through what traditional ANN work has to say about network shape.

3.3.2 From Neural Networks

While there has been little artificial dendrite-related work on selecting or training for a

specific shape or family of shapes, there is a growing body of ANN work on selecting useful

neural network topologies for a particular problem [119, 107, 115]. Nearly all ANN work

focuses on the two most general topological aspects of a neural network: depth and width.

Width corresponds to the number of neurons in a single layer and depth is defined as the

number of layers. Network shape has been linked to network expressivity [132].

Expressivity is a theoretical measure of a network’s ability to approximate a complex

function. We can equate expressiveness with performance. Research has shown that a

36



2-layer network is universally expressive in that it is a universal function approximator[41];

however, such a shallow network, by today’s standard, in order to be expressive enough to

approximate a particular function, could need to be exponentially wide in the size of the

input [102]. Whereas, the same function could be approximated with much deeper but

narrower network. It is the general consensus that depth and width both share the burden

of a network’s potential [120]. Much of our insight into the depth versus width argument

comes in the form of a search for dimension inequalities for a class of functions [49, 151, 94,

114, 128]. In other words, how wide must a network be to approximate the same functions

that can be handled by some depth, and vice versa. The abstract, mathematical analysis of

shape largely views networks as rectangles. More granular empirical insight is lacking

therefore particulars are the result of trial and error.1

However, for certain special subtypes that contain distinct connectivity, there are

additional shape-related hyperparameters to consider. Residual connective networks

(ResNets) [73] contain connections that skip one or more layers. The number of bypassed

layers as well as the number of connections becomes a topological choice. Convolutional

networks (CNN) have layers whose individual elements examine a small section of the

overall input, unlike fully connected layers [91]. For these, users must choose the kernel size

(N ×N) to which to apply a filter. Filters themselves can be interpreted as a type of

connectivity and therefore define a shape. Recurrent networks, of which there are many

types, contain neurons that receive, perhaps indirectly, their own output. Like ResNets,

recurrent connections are chosen during construction and, generally, not a part of training.

Shape, then, can be difficult to disentangle from other network properties that

contribute to its performance. It is important, however, that we gain some granular insight.

This is particularly true in light of research into identifying sparse networks. At this stage,

it is not clear how applicable topology research using large, fully connected networks

applies to sparsely connected AD neurons except to say, as in the case of the Lottery

1Also called ‘Grad Student Descent’ by this paper[62]. We are not amused and await the revolution.
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Ticket Theory (see Section 3.7), that they guarantee the existence of a smaller network

with some level of accuracy. The general advantages of depth and width are applicable to

AD neurons. For example, Jones 2020 shows that increasing the number of independent

dendrites (width) improves performance [84]. A study of how the different sparse shapes of

pruned networks affect performance would shed some light on the subject but, to our

knowledge, this remains an open question [96].

From a general network point of view, ANN variants capture just a small selection of all

regular, symmetric network shapes, not to mention imbalanced, irregular or asymmetric

ones. As previously stated, there will be overlap of the properties that make ANN and

dendrite topologies useful. However, the difficulty in identifying those today, beyond the

low-hanging fruit of depth and width, is that typically ANNs start densely and uniformly

connected. In other words, they start by containing all shapes less than or equal to their

current dimensions. Therefore, ANN topology research has focused on defining initial

networks that are guaranteed to contain a network of smaller or equal size that can solve

the problem. For the artificial dendrite to be useful (and not just a rehash of neural

network pruning), it should be able to drastically constrain the size of its initial shape and

rather precisely refine to a final one. Dendritic research, with respect to shape, should

attempt to redefine neural networks as a set of connected, heterogeneous, sparse networks

(i.e., dendritic neurons). Arguably, the most important contribution dendritic research can

make to neural network based AI is give it the capability to innovate network shape, even

at the neuron or micro level.

3.4 Quasi-independent Integration

Quasi-independent integration (QII) describes the idea that dendrites allow the neuron

to combine signals arriving in close proximity on a branch or segment in some degree of

isolation from signals arriving elsewhere on the tree. The qualifier quasi indicates that this

isolation is not complete in the neurological setting but segments the dendrite into leaky
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compartments. In practice, this leakiness manifests in one dendritic compartment

integrating the output of other compartments. QII, then, turns the dendritic tree into a

computational entity consisting of layers of parallel integrators. Quasi-independent

integration is, arguably, the predominant idea motivating previous AI work on dendrites.

So why is this important? And how has it been implemented?

Related AI work argues in favor of dendrites based on the importance of network depth

and width in traditional ANNs. Network dimension allows for independent regions of

computation and computational repetition. In overview, the argument is made that if

network dimensions are important, then a neuron with one or more dimensions could be

beneficial. The predominant method to give neural entities dimension is through some

form of QII and connectivity. QII is important because it creates dimension.

Previous work also emphasizes the pre-somatic integration of subsets of inputs, i.e.,

compartmentalization. Parceling inputs into compartments increases the potential

complexity of neural computation (see Section 4.6). In all these works, experimental

evidence shows that a variety of approaches to compartmentalization can empower a single

neuron.

Implementations of QII typically use a two-step process similar to the perceptron: a

linear combination followed by a nonlinear output function. Todo 2014 (and related works)

combines the output produced by compartments through an approximation of Boolean-OR

via a soft-max function (Equation 3.1), where I is the resulting input given either to the

soma or to the next compartment[155]. dj is the dendritic output of the jth dendrite. I,

then, passes on the maximum output of all dendrites. Each d is the result of a soft-min (or

Boolean-AND) of all synapses within a compartment. The authors state that their

dendritic model is given by a kind of disjunctive normal form (DNF). As stated in the

paper, having a DNF as a dendritic model has significant implications for the

computational abilities of dendrites since they can approximate any Boolean function given
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enough dendrites and synapses. This wide computational range depends on AND-OR

(DNF) compartmentalization.

I =

∑
j dje

vdj∑
j e

vdj
(3.1)

In Hussain 2014, AD neurons consist of m soma-rooted branches[79]. Each branch has

exactly k synapses. Signals within a branch are integrated as a weighted sum. These

combined signals pass through a nonlinear transformation function, b(x) = x2. The text

states that the square of x, the branch output, was used because of it is easier to

implement in hardware. A constraining factor in this work (similar to Elias 1992) is that it

is or is designed to be implemented in hardware. In this work, the denritic neuron is

shallow (one level of soma-rooted dendrites) but wide. The work shows that increasing k,

synapses per branch, increases performance and states that an increase in m, the number

of branches, does so as well; however, details about the latter, which is of more interest to

this topic, are not given.

Jones 2020 shows that a mix of sequential and parallel compartmentalization leads to

improved performance[84]. This work embodies an extreme form of independent

integration in that it maximizes the number of compartments. Dendrites form a k-tree,

where k gives the number of dendritic trees rooted at the soma. Each dendritic tree is itself

a sparse ANN with the shape of a binary tree. Neurons are arranged in layers and each

neuron represents a dendritic compartment. Each neuron in each tree receives input from

only two neurons in the previous layer, except the leaf layers which receive two external

inputs. This gradual narrowing of the layers creates a deep topology that is dependent on

the size of the input vector. Their research shows that as k (the number of dendritic trees)

increases so does performance. Significant differences in performance are best seen

comparing k = 1 to k = 32, the largest network tested. First, this reinforces that composite

signals, or signals comprised of earlier integrated signals, performed over the length of the

dendritic tree, are important to an appropriate neural response. Second, higher values of k,
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or more soma-rooted dendrites, produce better results. The paper infers that duplicate

inputs spread across different dendrites has some benefit. While the exact contribution of

multiple dendrites is not discussed, it seems likely that such a configuration gives the

dendritic neuron a set of weights for each input that could prevent learning from being

trapped in local minima due to initial values. In other words, signals arriving on

independent trees form a quorum from which it is more likely the majority is correct. This

is reminiscent of techniques involving multiple copies or voices that have been applied as

meta-heuristics to ANN learning, such as Harmony Search[61] or consensus for distributed

learning[95]. It also influenced our decision to allow for multiple, soma-rooted dendrites.

Wu 2018’s approach to QII is similar to Jones 2020 in that it is based on a modified

feed-forward neural network (FNN)[177]. Its depth, or vertical compartmentalization,

differs in that it consists of one layer of dendrites. Each dendrite outputs a weighted sum of

their inputs compartmentalized by a linear rectifier: σ(x) = max (0, x).

In summary, related work has used QII to give neurons both vertical (length of

dendrites) and horizontal (number of dendrites and number of branches) dimension.

Generally, the former consists of two steps: combination and transformation. The

combination step is just a receiving step and is typically a simple sum., but it can also be

more complex, such as a selection as in the case of Todo 2014. Transformation is an

interpretive step applied to the combination. Since most implementations of artificial

dendrites is derived from ANN research, transformation has been implemented using one of

the transfer functions common to ANNs (ReLU or tanh). Horizontal QII, on the other

hand, gives a neuron completely independent input channels. Jones 2020 uses them to

duplicate signals. Todo 2014 uses them to permute signals.

3.5 Input Placement

With dendritic neurons, input does not necessarily arrive at a single location. This fact

raises several novel problems concerning neural network instantiation. For example,
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assuming we have a neuron with some number of dendritic trees, which inputs connect to

which which tree? If a tree consists of more than one quasi-independent segment, which

inputs fall into which segments? This is a hard problem because it requires we have an

understanding of the meaning carried by an input and how it should combine with others.

Neuroscience can answer this only generally in most cases. An implementation cannot live

on broad strokes alone.

This section briefly covers how previous work approached this problem. In summary,

related work places inputs using one of two methods: locality in the feature space or

randomization. In this respect, our work is unique in that input placement is a product of

training rather than random selection or pruning strategies.

Wu 2018 randomized input placement[177]. k outputs from the previous layer are

randomly selected without replacement to be input for one of d dendrites. Each input,

then, is unique to one dendrite. Jones 2020 tested their architecture on both connection

strategies--locality and randomization--and found that the latter decreased

performance[84]. Todo 2014 takes a selection-less approach; all inputs are duplicated across

all dendrites[155]. Random initial weights are used to give each input a unique voice in

each dendrite in spite of repetition. Hussain 2014 does not explicitly state the placement

strategy used; however, a figure in the paper (Figure 1) suggests inputs are sparsely

distributed and can make multiple connections[79].

At its core, placement is an initial value problem and certainly amenable to selection

strategies used for other parameters, like weights. Some works show that placement can be

avoided if the training algorithm has the capacity to silence individual connections and

even dendrites by adjusting weights[130]. But this is only possible if a neuron begins fully

and redundantly connected. So the degree of connectivity plays a role in placement

strategy. Like many other aspects of the artificial dendrite, which strategy is selected

42



appears to be driven by certain underlying details, such as an implicit model dendritic

computation and/or limitations of the training algorithm2 .

The concerns of input placement do not end with the question: which input, which

dendrite? In the general case, inputs share a dendrite with other inputs. Therefore,

placement must concern itself with the effects of input-input interactions with respect to

dendritic (or compartmental) membership and ordering. Dendritic membership is

concerned with whether all inputs have an equal voice with respect to computing the

output of a branch. Input ordering asks whether the order of arrangement on a branch

impacts dendritic output. With the exception of Elias 1992, no work has explored whether

the degree of dendrite (or compartment) membership or input ordering is important. Elias

1992 makes use of input locations along fixed dendrites. By altering the point of contact

for the set of signals, their work shows that placement and ordering are enough to learn

nontrivial tasks, such as MNIST digits. All previous and current AD models combine input

signals arriving at the same dendrite associatively. In other words, membership to a

specific dendrite is complete.

Understandably, the AI-related work on dendrites largely avoids the topic directly. At

this early stage, there are no strong motivators for a particular placement strategy.

Inspired by this point, we determined to develop a method to train input positions. In

other words, let the problem dictate where they should connect. Almost any adoption of

dendritic neurons by the AI community will require significant research into the effects of

different placement strategies on performance and complexity.

3.6 Training

AD neuron train likewise faces additional concerns. This is not to suggest that

AI-related dendritic work must address every concern or make all aspects of the dendrite

trainable. These concerns fall into two general categories: attributes that impact the

2The work of this thesis is no exception.
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dendrite and attributes that impact the input (or connection). For the dendrite, training

affects the number of dendrites and their shapes (e.g., length, number of branches, etc.).

For the input, training affects position and weight. But the two categories are linked. For

example, input position can determine the shape of a dendrite (per the implementation in

this thesis). Or, a fixed shape, as in Elias 1992, dictates where inputs can connect. The

majority of related AI works begin with the dendrite because it simplifies the search space

for input position.

In Elias 1992, training consists of moving inputs between predefined locations [51].

Although it is left unstated, Elias’ work makes the case that input configurations over the

dendritic tree constitute a very large state space due to nonlinearities between the

predefined positions. Predefined locations reduce the search space. Training involves

moving input connections from one pre-defined location to another. A connection list forms

a network’s code which is optimized using a genetic algorithm. A fitness for each

population of connection lists is generated by comparing an ideal output against the actual

output. Elias 1992 notes that, while the number of trees is N !
(N−M)!

, where N is the number

of connection points and M the number of inputs, due to the fact that convergent and

divergent connections are allowed, the actual number is far higher. Interestingly, the

trained network, capable of recognizing hand-written digits, utilized a high-degree of

convergence; however, the author does not comment on the contribution of multiple sensors

connecting to the tree at the same location. Elias’ approach is an interesting one. A

broadly tuned set of initial connection points could be used to identify a general input

order. And final positions could be tweaked by a refining process.

No other related work, to our knowledge, shifts inputs from one location to another.

Some shrink the set of input arriving on a branch by zeroing weights.

Dendrite shape is likewise not trainable in the related AI work. Todo 2014 allows for

dendrites to shrink due to weight modification but they have no mechanism to grow or

branch.
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Weight modification strategies include standard back-propagation used in typical ANNs

(Jones 2020), the absence of weights altogether (Elias 1992) and weights modified by

evolutionary means in tandem with other network parameters (Wang 2020).

Synaptic and dendritic training concerns are linked. A good example of this is in the

question of whether the dendritic tree impacts the training of weights. Jones 2020 and Wu

2018 subject the weight training signal to the shape of the tree; however, since both

implementations are directly or strongly based on sparse ANNs as dendrites, weight

training can use the same methods used by ANNs: back-propagation. Similarly to Elias

1992, Wang 2020 uses an evolutionary algorithm to train network parameters. The authors

make use of differential evolution to train three critical parameters: weight, threshold and

a value governing how responsive the synapse is to input. Differential evolutionary

algorithms use single dimensional changes within a possibly multidimensional search space

to improve a population of candidate solutions. If the change results in improved

performance, the agent moves to the new place in the search space.

Weights are the primary vehicle of neuron and network learning in AD neuron research.

This is the approach with which we are most comfortable and for which we have the most

tools. But it ignores the big addition AD neurons bring to neural networks:

non-associative, distributed input. The need to simplify the search space or only train one

attribute at a time is certainly beneficial for complexity reasons; however, selecting weight

as the initial candidate is, in the estimation of this thesis, the wrong one. Each related

work, in spite of their differences, suggests that shape and input placement play a role in

dendritic computation.

3.7 Sparse Networks

Formulations of the AD neuron borrow heavily from ANN research. For example,

several of the related works use specialized, multilayer ANNs to represent AD neurons.

There are trends in ANN research that appear to be converging toward certain properties

45



endemic to AD neurons. Specifically, this is true for sparse networks or sparse connectivity.

Generally defined, sparse connectivity describes a network where neurons in the ith layer do

not receive input from every neuron in the (i− 1)st layer. This short section covers the idea

of sparse networks and how they compare to the AD neuron.

Superficially, sparse connectivity has nothing to do with the neuron model itself. From

the point of view of the neuron, the input it receives is a topological concern and what is

done with that input is the domain of the neuron. In other words, sparse connectivity is a

network property. However, previous work on artificial dendrites have taken the view that

a single AD neuron is better matched by a network of points neurons [141]. If this view is

correct, the impetus for and benefits of sparse connectivity in ANNs might provide clues

about the benefits of the artificial dendrite. First, why are sparsely connected ANNs

attractive?

Training neural networks is a time and therefore energy intensive process[148]. Given

that the majority of the world’s energy is produced by nonrenewable, carbon dioxide

emitting sources, high energy AI is undesirable. More complex tasks typically require

larger networks[154]. Large, dense networks have millions, if not billions, of connections.

Training involves updating each connection millions, if not billions, of times. This does not

end with training (as researchers often forget). Once the trained model is deployed, every

decision made by every instance of the model must again pass input through the network.

Large, dense networks in their current forms are environmentally unsustainable and these

monetary and environmental costs limit research and deployment. Interest in sparse

connectivity, then, is driven partially by the desire to reduce the rate of network growth

with respect to problem complexity[78, 5].

Networks can be altered such that a reduction in size still produces the same results.

Research has shown that fully connected networks are overparameterized[67].

Overparameterization simply means that the model contains more information than is

needed. Parameter reduction comes in several forms but pruning is most relevant to this
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discussion as it produces subnetworks that when viewed on their own resemble AD

neurons3 . Pruning removes connections from the trained network whose weights have

become zero[90]. Trained networks typically contain a substantial number of zero weights.

Additionally, nonzero weights can be pruned through an ancillary calculation that

encourages connections that do not strongly contribute to the outcome to go to zero. This

is referred to as regularization.

Regularization pushes networks toward simpler solutions (or solutions whose fit can be

approximated with a minimum order polynomial) and away from overfitting to a specific

data set, i.e. generalization[183]. Sparse topologies have also shown an increased ability to

generalize in some cases[101, 31]. Pruning is typically performed after the training process

and therefore makes only the final model more efficient.

Pruning research has produced what is called the Lottery Ticket Hypothesis that states:

A randomly-initialized, dense neural network contains a subnetwork that is

initialized such that--when trained in isolation--it can match the test accuracy

of the original network after training for at most the same number of

iterations.[58]

In other words, a dense network contains a much smaller network with the same

capability. This smaller network can be very sparse compared to the original, pruned by up

to 98.5%. Identifying winning tickets can profoundly reduce the costs of a deployed

network; however, there is a catch on the front end. Although work on identifying when (as

early as possible) during the training process winning tickets can be selected, they cannot

be discovered except through training the dense network[59].

Perhaps a dendritic approach to network instantiation could help identify the rough

shape of these winning tickets. Being able to narrow the possible topologies could reduce

the resources required by the training process. For example, dendritic branches that do not

3There are other forms of parameter reduction such as quantization which reduces the number of bits
used by each weight.
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contribute to neural output can be removed or disabled during the training process. If

dendrites do in fact equate to one or more traditional point neuron layers, then a network

will require fewer layers to accomplish the same task.

3.8 Biologically Plausible Credit Assignment

A second line of research that has experimented with artificial dendrites involves the

search for an alternate form of credit assignment. Credit assignment is the problem of

identifying and altering upstream contributions to a downstream result. Neural network

research has spent significant effort pondering the lack of a direct biological equivalent for

weight transport, also known as back propagation. Weight transport solves the problem of

credit assignment by sending a non-local signal back through the entire network

(dendrite-to-axon). There is no evidence from neuroscience to support the idea that higher

order neural signals involved in determining the correctness of a response are sent directly,

in a chain-like manner, back through the brain to the point of input [16]. This problem has

motivated several researchers to ponder whether weight transport requires a separate

feedback pathway, or whether the error signal can be treated as input in its own right using

artificial dendrites [134]. The approach to weight transport has not influenced the work of

this thesis; however, the idea that dendrites represent different, independent functions has.

Guerguiev et al., 2017 [64] suggests that weight transport can be solved by partitioning

neuronal input into a two-part dendrite consisting of an apical and basal compartment.

The basal compartment relays sensory information; whereas, the apical compartment

carries a feedback signal used for credit assignment. In other words, basal input receives

the preceding layer’s interpretation of the input based on current weights. The apical input

receives an ideal signal, or how the network should respond to a given input. The MNIST

handwritten image data set was used to train their network. Each image passes through

three phases. During the first phase, beginning at t0, the image is presented to the

network’s 784 inputs and the network is allowed to respond based on current weights. At
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t1, a plateau potential (the integral of membrane voltage from t0 to t1) is calculated based

on the feed-forward network activity. During the second phase, the correct output neuron

receives external input driving it to fire at a maximum rate. All other outputs are

minimized. At t2, the end of the second phase, a second plateau potential is calculated.

The difference between these two potentials is then used to define target firing rates for the

hidden layer, and the output layer’s target firing rate is the difference between the firing

rates in phases one and two. These differences define the loss function for each layer and

determine the final weight modification.

Learning is based on feeding optimal results back into the hidden layer via a second

input channel. The apical input, transmitting perfect downstream information, allows for

local loss computation. It offers a method by which feedback enters the neuron and

concludes that separation between feed-forward and feedback signals is necessary for deep

learning. While Bittner’s research [21] on plateau potential driven weight increases

supports the use of apical dendrites in learning, a gap left in the discussion is in how apical

input alters basal weights. Research suggests that distal apical tufts can cause somatic

burst firing which, in turn, can cause basal depolarization (see [134] for an overview and in

depth references). As their focus is on creating a more biologically plausible method for

back-propagation, the connectivity and placement of synapses is uniform across all hidden

layer neurons.

The evidence that back propagation, as used in deep learning, is not biologically

feasible is the motivation stated by Sacramento 2018 [136, 45]. Their model has similarities

to the network and dendritic topology of Guerguiev et al. 2017 [64]. To inform upstream

connections about downstream outcomes, neurons are given three compartments: apical

and basal dendrites and the soma. As in [64], apical dendrites integrate feedback and

lateral information while basal dendrites handle feed-forward signals. Using a three-layer

network, with one hidden layer, learning is directed by a teaching signal originating in the

output layer. The teaching signal is fed back into apical inputs to the hidden layer. This
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forms an error signal for the somatic response. Weights between the input and hidden layer

are adjusted using this error signal. Unlike [64], learning is continuous and does not require

separate forward and backward phases, or the calculation of average firing rates. Leaky,

current-based models were used for the experiment.

The goal of our work was not to find a biologically-plausible credit assignment. A

better understanding about how the brain performs error calculations will undoubtedly

improve our use of neural networks. However, these two studies (Guerguiev 2017 and

Sacramento 2018) taken together suggested something more general to us. They suggested

that dendrites can provide regions of independent computation. Independent computation

can accommodate error signal integration but it could also be used in a more general sense.

Dendrites (or branches) could introduce subtle pattern variations or multiple types of the

same pattern.

3.9 Signal Propagation

Thus far we have focused on the effects of carving up dendrites into a connected set of

quasi-independent signal integrators. And we have said nothing about what happens either

at the boundaries of these segments or between them. AI related work has said very little

about them. Todo 2014 selects the maximum signal from all dendrites as the signal to

move into the next segment or soma. This suggests dendrites should possess a

winner-takes-all ability. Implicitly it suggests that multiple dendritic-level signals do not

integrate but experience a form of signal saturation.

Only Elias 1992 acknowledges that the effects of signal propagation could be important.

In this work, inputs arrive at different preset locations on the dendrite. The structure of

the dendritic tree resembles a binary tree; therefore, connections made toward the leaves of

the tree are farther from the neuron than those at the top. The paper demonstrates that

the implementation is capable of reproducing Rall’s early study on directional

selectivity[162], and target recognition is based on a threshold that appears dependent on
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some degree of distal-to-proximal activation. Propagation delay is a necessary component

for recognition. Unfortunately, Elias 1992 does not contain information about either the

actual delays or tests in which they were varied. Of the three representations for delay

mentioned above, dendritic propagation delay seems only able to force coincidences at a

micro-time scale based on wire length and propagation speeds.

Other works use either weighted or unweighted connections between pre-somatic layers

or pre-somatic layers and the soma. The method by which traditional ANNs handle the

effects of signal propagation is strongly evident in this as the practice seems to be borrowed

without discussion. Practically, this makes sense, but it does gloss over the fact that the

same computational model is being used for two types of connections: synaptic and

dendritic. Neuroscience and AI seem to agree that a decent, entry-level model of the

synapse is a scalar, but there is no consensus on the latter.

There are other methods to model signal propagation. Biological dendrites leak current

into the surrounding fluid; therefore, a signal traveling along a dendrite can be modeled by

a rate of decay. Another way to interpret signal propagation is by the use of time. The

time it takes for a signal to move from one place on the dendrite to another could have

computational significance. Our implementation uses this latter method to determine the

effects of dendrites.

Finally, signal propagation, specifically the idea that time carries meaning, is a great

influence on our work. Our implementation of the AD neuron and our method for training

its properties depends on the timing of signals arriving at or moving along the dendrite.

Before moving on to the model, we would like to note one work in particular, although not

necessarily AI-related, that influenced our handling of propagation delay.

Smith 2018 proposes a Space-time algebra to aid in modeling temporal networks.

Temporal networks pass discrete events from one element to another and are not limited to

neural networks. Smith’s formalism is built around the space-time function (s-t functions)

that satisfies three properties. 1) S-t functions are computable. 2) They obey temporal
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causality (later events cannot change earlier results). 3) Results are invariant to temporal

shifts. For temporal networks, input is transformed into a series of spikes. Likewise, output

of the network is converted back into domain-specific values. However, within the network,

the only values present are temporal differences. Functional units (i.e., neurons) accept

temporal delays as input and produce delays as output. Delays are based off some fixed

moment in time. Computable s-t functions, then, are necessarily bounded in that they

limit delays to some fixed window of time.

In Smith’s own words, “the time it takes to communicate a value is the value, and the

time it takes to compute a value is the value (emphasis his)”. This idea that the delay is

the value ties in with the general approach taken by this thesis that a dendrite is a spatial

embodiment of a temporal pattern. The sequence (or ‘volley’ used by Smith) of spikes

determines local intensities and the neural response. There is something very profound in

this idea, that Smith summarizes nicely:

Evolution has shown itself to be a very clever engineer across a broad range of

biological systems. And, it seems compelling that a clever engineer might use

the flow of physical time as a resource because it possesses some ultimate

engineering advantages: the flow of physical time is free (it happens whether we

like it or not), it requires no space, and it consumes no energy[146].

3.10 Summary

In a nutshell, AI work on dendrites takes its cues from current work on state-of-the-art

ANNs. These works are based on the general idea that deeper topologies improve

performance. While this leading statement is an over simplification and does not take into

account, for example, overparameterization and sparsity, its root idea is the driver in AI’s

exploration of the dendrite. What is missing, however, is the possibility for AD neurons

create even greater and more diverse forms of depth.
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The low-hanging fruit of dendritic shapes appears to be a single-layer of fixed input

compartmentalization prior to the soma. Such an expansion of the basic perceptron model

has a low overhead compared to more elaborate dendrite-like tree structures. Training can

still take advantage of back-propagation or other ANN learning techniques. But previous

work has not demonstrated whether dendrites are a new kind of depth or just more of the

same. Related work has not demonstrated the benefits of input placement or

compartmentalization. These works are primarily trying to answer an unstated,

preliminary and very necessary question (at least with regards to computing): ‘how can

this be done?’ Although it sounds blind and without a hypothetical basis, it is required to

answer, ‘is it useful?’

AI work on artificial dendrites is in its infancy. The majority of related works on the

subject date from the last few years. Very few, if any, fundamental questions, given by the

topics in this chapter, have concrete answers. There is as yet no comprehensive model of

dendritic computation from either the AI or neuroscience side. AI work has focused on

applications rather than methodologies and abstractions. This is due, in part, to the

complex, multi-layered computational descriptions of the biological source. Neuroscience

has many rich descriptions of dendritic learning, computation and behavior; it has built

detailed simulations of single dendritic neurons down to the smallest distal tuft, but it has

not produced a unified computational model that can guide an understanding of the

dendrite’s role across all neuron types.

Scattered approaches to dendrites within AI and the focus on real-world application is

also due to the expectations and bias currently within the AI community for results and

actionable implementations. Again, research that simply posits ‘how’ without positive

results is less publishable[109]. The results must carry (justify) the research. This is not

meant to be an outright condemnation but a characterization that explains why an infant

sub-field (AD neurons) is cloaked in the premature question, ‘what can it do?’ than ‘how

can it be done?’. Surely, there exists a form of scientific technical debt in judging research
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solely based on whether it solves some benchmark task no matter how opaque the

solution[62]. Of course, one can also argue that if an approach produces good results, it

will generate follow on research into the nature of those benefits. After all, we have made

strides in explaining the workings of ANNs. Much of our understanding has come after a

demonstration of usefulness.

The approach of this thesis follows these related works in several ways. It is

exploratory; therefore, it is concerned more with ‘how’ than improving current results. It

uses biology as a kind of proof that point neurons are not the end of the road for artificial

neuron models. However, it differs in one important way. Rather than focus exclusively on

an implementation, it focuses on how neurons can be modeled more abstractly. This is the

topic of the next chapter.
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CHAPTER 4

ARTIFICIAL DENDRITIC MODEL OF COMPUTATION

4.1 Introduction

This chapter describes an artificial dendritic model of computation. Formulating

artificial dendrites as a model of computation (versus an implementation only) provides a

blueprint for future implementations and provides a language to compare it to other

models.

All computational models highlight or capture different properties of a particular

system. The artificial dendritic (AD) neuron model places an emphasis on the dispersion of

inputs over a dendritic tree which combines signals hierarchically and nonlinearly. It

assigns a meaning to the separation between input positions caused by this dispersion. It

defines how separation affects the integration of signals arriving at different points. It

specifies a set of constraints on the shape of the tree. Our model attempts to capture the

computational significance of the separation between connected points on the dendritic tree.

The AD model highlights two computational aspects of the biological dendrite:

compartmentalization and separation. Dendrites can maintain varying electrical potentials

at different points; i.e., they are not isopotential. This is thought to divide the dendritic

tree into compartments that form quasi-independent computational units. The process of

dividing the dendritic tree into independent units is compartmentalization. Within each

compartment, synaptic inputs interact more immediately and linearly, whereas signals

between compartments are subject to nonlinear transformations [17, 127, 70]. The degree

of these transformations depends on the characteristics of the dendrite (e.g., length,

diameter, ion channels, membrane capacitance, etc.). A full biological simulation of the

dendrite is (at the present time) of no use to AI-related work. It must be simplified.

Therefore, we group these characteristics under a single term, separation. The degree of
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separation between two compartments (or more generally, two locations on the dendrite)

describes the nonlinear transformation that takes place when a signal moves between them.

In describing the nonlinear transformation, separation also describes each one’s

computational independence or lack thereof.

The rest of this chapter gives a high level overview of the AD neuron and how it uses

the ideas of compartmentalization and separation.

4.2 Model Overview

The dendritic model is made of compartments and connections. A compartment is a

disjoint subset (or partition) of a neuron’s set of inputs. A connection describes an

input-output relationship between two compartments and models their separation. Putting

these together, an AD neuron is a set of connected compartments. Within compartments,

input signals combine linearly, whereas, between compartments signals undergo a nonlinear

transformation. The nonlinear transformation of a particular signal is determined by the

separation between compartments.

A comparison to the more common point neuron model might help elucidate the

additional complexity of the dendritic model. Figure 4.1 shows the main difference between

the dendritic and point neuron models. In both figures, two inputs (A and B) arrive at a

neuron. The left figure depicts a point neuron. Point neurons sum the values of all inputs.

This linear combination models an identical point (or compartment) of arrival on the

neuron. The right figure depicts a dendritic neuron. Signals arrive at different points or

different compartments. The separation (dashed gray line) between these locations creates

a new, potentially more complex relationship (indicated by the question mark) between the

two signals. The dendritic model attempts to define this new relationship determining how

each signal, arriving at different locations, interacts.

Unlike previous work on artificial dendritic neurons, our model is versatile in that it

does not define the artificial dendritic neuron around one specific shape. Our model is
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Figure 4.1: Point model versus the dendritic model. A and B are inputs. Arrows show
the flow of information. Blue rectangles, C, L and R, are neurons (point neuron) or
compartments (dendritic neuron). Dashed gray line and question mark indicate that the
dendritic neuron uses separation to define the relationship between both input positions on
the dendritic tree and dendritic compartments.

composed of reusable and repeatable elements--compartments and connections--that allow

it to take on many different shapes without losing the ability to define how signals interact.

In this example, the two compartments, L and R, appear to be equal (same size, same

position) with respect to the output and each other. But we can imagine a different

arrangement in which L and R are not equal in some aspect. One might be closer to the

output than the soma. One might be the point of arrival for more signals than the other.

One might have more influence over neural output than the other.

In the rest of the chapter, we first describe how dendritic neuron behavior differs from

point neuron behavior using a metaphor involving a more familiar system: a lock and key.

Next, we present the AD neuron model in its basic form for clarity. Finally, we give an

extended version that fleshes out the model for use in a trainable implementation, and we

describe the computational impact of the extended model.

4.3 Neurons and Inputs as Locks and Keys

Biological and artificial neurons are frequently described by an all-or-nothing behavior.

This description says that neurons respond to correct input and not at all to incorrect

input. Correct/incorrect input can be defined differently for each situation. It could be the

magnitude of input, the rate at which input arrives or the absence of input. While many
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models of neural behavior contain a gray area of partial response, all-or-nothing behavior is

the predominant one and it is usually implemented using a single threshold. If the input is

above the threshold, the neuron responds; otherwise, it remains silent.

To help us understand the differences between the dendritic and point models, it might

be profitable to expand this description into a metaphor: the neuron and input as lock and

key. A lock is a prime example of all-or-nothing behavior. If one applies the correct key,

the lock opens. If one applies an almost correct key, it does not open. The pins must be at

the right height or a series of digits must match value and order.

The point neuron is like a lazy combination lock that will open so long as the sum of

the current digits exceeds some preset value. Set every dial to nine and voila! The

dendritic neuron model proposed here is like a real combination lock. Larger numbers are

not more correct. It will only unlock if each dial matches some preset value. However, this

metaphor only describes one compartment of the dendritic neuron, thus the metaphor is

actually more complex. Each dial itself can be another combination lock and the child lock

contributes a single digit to the parent lock. This child-parent relationship can continue

down to as many levels as desired. Each parent is unlocked by the unlocking of all of its

children.

The dendritic neuron as combination lock is visualized in Figure 4.2. Left and right

figures depict the same combination lock. The left lock is open because all actual input

(top number in each green box) matches the expected input (bottom number). The right

lock is closed because two input sources sent an incorrect value. Top left received a 2 when

it expected a 3. This mismatch propagates all the way to the root. And middle right

expected a 1 but received a 9. This shows how even a partial mismatch deep in the

dendritic tree can keep the lock from opening.

Our point and dendritic neuron locks behave differently. Figure 4.3 depicts the

differences in behavior of these two neuron models. The point neuron begins to unlock once

the input vector reaches a threshold. The dendritic neuron is capable of defining multiple,
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Figure 4.2: A dendritic neuron represented as a multi-level combination lock. Each box is
a dial. If the upper value (the actual input) matches the lower value (the expected input),
the dial emits a 1, else it emits a 0. The output of each dial is scaled by a weight, the value
along each line connecting the dials. Non-leaf dials only unlock (emit a 1) when all their
children unlock. Green boxes are unlocked. Red are locked. LEFT: All values match; the
lock opens. RIGHT: Two leaf values do not match. A 3 was expected in the top left but it
received a 2. This error cascades into the next series causing a mismatch (1 instead of 3) and
finally to the root which expected an 11 but received a 10. On the right, a 1 was expected
but a 9 received which caused a mismatch of 9 to 13.

Figure 4.3: One dimensional representation of input vectors as keys.

non-contiguous sub-ranges in which the neuron unlocks or activates. This figure shows the

problem along a single dimension and is solely for the purpose of visual representation. In

reality, the dendritic neuron’s key is a hierarchy of multidimensional keys.

The benefit of the dendritic model when viewed through this metaphor is that it more

precisely defines which keys can and cannot unlock it. It can define one or more

‘Goldilocks’ ranges and each range can be as wide or narrow as necessary. For example,

Figure 4.2 requires perfectly matching values but ranges could have softer bounds thus
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allowing for partial unlocking. Another option is a parent compartment that only unlocks

if some subset of its children are unlocked. For example, if the weights from the top right

cluster were altered from 3-2-7 to 12-6-6, then the parent would unlock if the left child and

no other unlocked or if the middle and right children unlocked together but not the left.

With this metaphor as a guide, let us examine the actual model.

4.4 Simplified Model

The AD neuron model is comprised of two fundamental elements: compartments and

connections.

4.4.1 Compartment

The dendritic neuron model is a connected network of compartments (Figure 4.4).

Conceptually, compartments model sub-trees with the dendritic tree. Figure 4.4 shows how

compartments form an abstraction of the dendritic tree by grouping branches into separate

entities. Because compartments represent swaths of the dendritic tree, they can

encapsulate the location of one or more inputs to the AD neuron. Encapsulated locations

are combined linearly. With this in mind, here is the formal definition of a compartment.

Definition: A compartment is defined by the function:

va = ψ(z), where z =
n∑

i=0

zi (4.1)

va is the output of a dendritic compartment. ψ is a compartment’s output function and

zi are the inputs terminating in the compartment. ψ is not strictly defined by the basic AD

neuron model because it is a placeholder for any activation function.

By this definition, the dendritic neuron compartment is identical to a basic perceptron

or point neuron which outputs the sum of its inputs modified by a nonlinear activation

function. There is one clear distinction between the perceptron and the dendritic

compartment. A perceptron describes a whole neuron, whereas, a compartment is capable
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Figure 4.4: Compartmentalization of the dendritic neuron. A dendritic neuron (black) is
broken into several compartments (dotted yellow). The underlying shape of the dendritic
tree is used to create matching connections (blue arrows) between compartments.

of describing the whole neuron or just a part of it. The effect of this is: whereas a

perceptron receives all inputs to its dendritic field, a dendritic compartment can receive

just a subset of the inputs. This is an important distinction that will be better understood

once we have defined the rest of the dendritic neuron model.

Compartments, or the compartmentalization of a dendritic tree, respect three rules:

No-skip Rule: If a compartment, C, contains two input locations, i and j, then there

does not exist a k between i and j along the dendritic branch such that k /∈ C. In other

words, compartments cannot skip over input locations. An addendum to this rule is that if

two inputs share the same location, they are also in the same compartment.

Order Rule: If a compartment, C, contains two input locations, i and j, and the

distances between them and the soma is di and dj such that di > dj, then d̂i ≥ d̂j, where d̂

is their distance-to-soma after compartmentalization. Or to put it another way,
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compartmentalization is order preserving. The compartmentalized tree forms a non-strict

partial order of the AD neuron’s inputs.

Intersection Rule: Let i and j be two inputs to the AD neuron located on different

dendritic branches. If a compartment, C, contains the two input locations, i and j, such

that i, j ∈ IC , the input vector to C, then IC must contain all inputs on the dendrite

between i and j. To find all inputs between i and j we follow the dendrite from one to the

other. All inputs encountered must be in C. This prevents a compartment from including

multiple branches of the dendritic tree without also including the intersection of those

branches.

These three rules insure that compartmentalization, discussed in Chapter 6, respects

the ordering of inputs and shape of the tree.

4.4.2 Connection

Connections link compartments by specifying which compartment’s output becomes

another compartment’s input. Whereas compartments define an input-to-output

relationship, connections define the output-to-input relationships between compartments.

As this implies, connections are directed. Figure 4.4 shows how connections (blue arrows)

link compartments creating an abstract version of a more complex underlying dendritic

tree.

Connections are not just dimensionless links between compartments. They store data

about the separation between the compartments. In the opening section of this chapter, we

stated that the degree of separation between compartments describes the transformation of

a signal passing from one compartment to another. Here we clarify how separation

transforms signals with respect to the dendritic neuron.

When va, compartmental output, moves from one compartment to another, it passes

through a connection. If va matches the separation stored by a connection, the connection

emits a maximum input to the receiving compartment. When there is a significant
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mismatch, the connection is silent. In this sense, a connection has an expected value or

range of values similar to the combination lock.

Definition: A connection is defined by a 4-tuple (ci, cj, ve, ϕ).

ci and cj are dendritic compartments which define the start and end of a connection. ci

is the compartment whose output is input to the connection and cj is the compartment

which receives the output of the connection. From this, we say that ci is adjacent to cj. ve

is a value in R that measures the separation between the compartments. For the model, ve

is unit-less. With respect to an implementation, ve can take on the unit of measure most

applicable.1 One good choice for ϕ is a radial metric function, such as a radial basis

function (RBF).

A radial basis function (RBF) maps from R to R using a metric or distance between its

input, x, or the actual value and a fixed value, c, or the expected value. RBFs produce a

maximum value (typically 1) when x = c. As ||x− c|| → ∞, the output of an RBF

approaches a minimum value (typically 0). There are many examples of RBF functions.

Figure 4.5 provides a graph of a simplified version of the function used throughout this

research. In the dendritic neuron model, ve is substituted for c and va, as the input to ϕ, is

substituted for x.

ϕ defines the effect the connection has on a signal passing from compartments ci to cj.

We restrict ϕ to be an RBF-like function to keep the door open for ϕ to use

difference-measuring functions which are not strictly RBFs. While RBFs have proved useful

in this research, we have no reason to claim that RBFs are the best suited for modeling the

effects of compartmental separation.

Equation 4.2 shows how the difference between ve and va forms the input to ϕ. This

creates a metric for judging how well values passing through the connection match the

separation between compartments.

1If input to the model is rate-based, ve would model the rate of compartmental output. If input were
spike times, then ve could be propagation time. In a biological scenario, ve might be a measure of electrical
current.
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Figure 4.5: Example output of the inverse quadratic radial basis function: ϕ(x) = 1
1+(x−c)2

.
The center, c, is at origin.

O = ϕ(||ve − va||) (4.2)

Another way to think about separation and the output of a compartment is to see them

as a connection’s expected value, ve, and the actual value, va, sent to it. In fact, a common

theme in neuroscience research is that, at least in part, neural learning is predictive.

Neurons are conditioned to expected certain input and learning (modifications to the

neuron) come as a result of comparing actual input to expected input [33, 140, 103].

Throughout the rest of this work, we will refer to a connection’s region of activation. A

region of activation describes the values of va for which a connection produces a

non-minimal input to the next compartment. In Figure 4.5, we might identify the range

[−2.5, 2.5] as the connections region of activation. What constitutes ‘non-minimal’ is

arbitrary and is not intended to suggest that small input values are unimportant.

4.4.3 Metric Spaces

ve and va are defined within the context of one or more metric spaces. A metric space is

an ordered pair (M,d) where M is a set and d is a metric on M , typically a function where

d :M ×M → R. Three axioms of identity, positivity, symmetry and subadditivity govern

the behavior of d for metric spaces [170].
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1. d(x, y) = 0 ⇔ x = y

2. x ̸= y ⇒ d(x, y) > 0

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)

where x, y, and z are points in M . d can be single- or multi-valued depending on the

utilized space.

The dendritic neuron model uses metric spaces to measure the separation between

compartments. Dendritic neurons or networks of dendritic compartments are free to define

multiple, independently anchored spaces. Measures of separation between spaces can be

irrelevant, arbitrarily determined or utilize a d drawn from some hyperspace. A hyperspace

is simply a space that contains other spaces with respect to some reference point; however,

the local spaces do not need to conform to the containing hyperspace. This allows for the

possibility of independent structures within a network, such as neurons, layers or regions.

Local- and hyperspaces may require different types of spaces. Figure 4.6 gives an example

of multiple spaces. In this example, the use of local and hyperspaces is less necessary since

local and hyperspace positions use Cartesian coordinates. Cartesian coordinates were used

in this example because they are easier to visualize; however, multiple embedded spaces

become useful if d differs between them. For example, a layer-space might assign neuronal

positions using some biologically-inspired space (e.g., a manifold representing the cortex),

but the neuron-space locates compartments according to a non-Euclidean, spherical

geometry.

4.5 The Expanded Model

The expanded dendritic model extends the basic model to constrain compartmental

connectivity around a biological model and to more precisely define the role of ϕ. The

expanded model fills in the undefined aspects of the base model to facilitate an
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Figure 4.6: An example of the use of multiple spaces within a hyperspace. Compartments
are placed within spaces defined by Cartesian x, y-coordinates. Blue squares are branch
compartments and yellow circles are somatic compartments. Each somatic compartment
exists at the origin within a separate local space and associated child compartments derive
their local space values for d with respect to a local origin. Each compartment also maintains
a position within the hyperspace coordinate system (blue axes). In this example, black
arrows denote connections whose values of d rely on the local space. And green arrows use
hyperspace coordinates.

implementation. It also adds several additional parameters to the definition of a connection

to better control the effects of compartmental separation.

4.5.1 ϕ, the Output Function

The base model simply defines ϕ as a radial basis-type function (RBF) making use of

expected (ve) and actual (va) values--the minimum requirements of an RBF. To create the

expanded model, the definition of a connection is increased to a 6-tuple: (ci, cj, ve, ϕ, b, w).

ci, cj and ve are unchanged. b is a shape parameter that allows ϕ to adjust the width of a

connection’s region of activation. Smaller values of b cause the region of activation to

widen and vice versa for large values. The default value used for b across most experiments

in this work is 1 as is used in the example figure 4.5.

w is a weight parameter that scales the output of ϕ. However, w is not applied directly

to ϕ. w is, in effect, a raw weight that is allowed to vary without bounds. The weight

applied to ϕ is an actual weight (wa) is given by equation 4.3. This sigmoidal function
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bounds the actual weight to (−Wmax,Wmax). A wise choice for Wmax prevents run-away

behavior. Such a value is given in the following chapter on training.

wa =
Wmaxw

|Wmax|+ |w|
(4.3)

Equation 4.4 gives the expanded version of ϕ.

ϕ(va) =
w

((va − ve)b)2 + 1
(4.4)

The suggested expansion is not the only one possible. Other RBFs could be substituted

for Equation 4.4. Two examples are the inverse multiquadratic (ϕ(va) = w√
1+((va−ve)b)2

) and

the Gaussian (ϕ(va) = we−b(va−ve)
2

). These functions differ in their rates of decay as va

moves away from ve. The inverse quadratic (Eq. 4.4) was chosen over the other two

because of its middling decay rate. When b = 1 and w = 1, the Gaussian decays to ∼ 0

quickly (|va − ve| > 2). And the inverse multiquadratic decays slowly

(ϕ(va) > 0.1 ∀|va − ve| ∈ [−10, 10]). b has a stronger and more linear impact on the shape

of the inverse quadratic than the Gaussian.

4.5.2 Two Concerns: Relevance and Importance

Why do connections use an RBF to transform the signals passing from one

compartment to another?

An RBF allows the dendritic neuron model to separate two concerns in the point neuron

model that are somewhat conflated. These concerns are the relevance of a specific value to

the receiving compartment and the importance of the connection carrying the signal.

Relevance is the meaning assigned by the connection to a specific value of va. Just like

in the combination lock metaphor, the magnitude of a signal is not its relevance. A

connection expects a specific value, ve. The closer it is, the more relevant it is. The shape

parameter b helps to define the range of relevant signals (i.e., the range of activation) 2 .

2Another way to think of the effects of b is the capacitance of a connection. Capacitance describes the
ability of an object to maintain a value which is different from the contents of its surroundings (space, objects
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Importance is the strength of a connection with respect to its sibling connections.

Sibling connections are defined as all connections with the same cj, or end compartment.

Importance is controlled by w. Weight ranks sibling connections with respect to A) each

other and B) the generation of compartmental output. For example, if w is relatively small,

no matter how close va is to ve, a connection’s ability to generate compartmental output

will be negligible. Inversely, relatively large w allow one connection to dictate the output of

an entire compartment.

In the point neuron relevance is the magnitude of a signal. The only way for a

connection to reduce the relevance of a signal is to minimize its weight. In other words, it

is impossible for a point to neuron to make a weak signal relevant without also making a

strong signal even more relevant, and vice versa.

The expanded model was designed to allow for a greater control over these concerns.

Figure 4.7 shows the differences between a point neuron’s and the dendritic model’s

separation of relevance and importance. The x-axis gives the output of ci, or its ψ, and the

y-axis is the input to cj, or φ. Solid lines are dendritic model connections and dashed lines

are point neuron connections. The dendritic connection in blue has a lesser importance,

i.e. weight, (0.5) compared to the orange (1.0). Although blue’s region of activation is

centered on 2 and orange’s is centered on 7, the orange signal is not 2.5 times as important.

Importance is tied to weight. This demonstrates that the region and peak of activation are

completely separate from the magnitude of the signal.

The point neuron does not share this separation of concerns. For the point neurons,

weights were chosen such that at the peak activation of the dendritic connection, the point

neuron’s connection produces the same value (φ(2) and φ(7) have the same result for both

neuron models). To match the weaker (less important) dendritic compartment connection

(solid blue) requires a stronger weight in the corresponding point neuron (dashed blue)

compared to the other (dashed orange). In other words, the roles are reversed; the signal

or connections). b has an inverse relationship to capacitance. For large b, as va moves from ve output drops
quickly. When b is small, the drop is slow. Relevance bleeds into more of the input space surrounding ve.
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Figure 4.7: Comparison of how one output signal (ψ) is transformed by a connection of
two different neuron models: dendritic neuron model and the traditional point neuron
model. Both models receive output from an assumed ψ. Solid lines show how dendritic
connections transform their input and dashed lines show how point neurons do it. For
dendritic connections φ(va) = w

((va−ve)b)2+1
. For the point neuron φ(va) = vaw. The weights

of the point neurons were chosen so that for the same ψ both versions of φ will output the
same value for va = 2 and va = 7 respectively.

received by the blue point neuron has a greater absolute importance than the orange.

Absolute importance means that for all input its output is larger. This is evident in the

different slopes of the two dashed lines. This is an example how the point neuron treats

smaller inputs as less important and, therefore, must increase the weight to produce

greater importance.

4.5.3 Mimicking the Point Neuron

Since the compartmental output function, ψ, can use any activation function, the point

neuron and the AD neuron compartment are identical (with respect to output). However,

the dendritic connection’s transformation of compartmental input is very unlike that of the

point neuron’s. Connections respond to a specific range of inputs. This precision impacts
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the dendritic model’s ability to match the types of input passed between point neurons,

e.g., a broad range of values or an open-ended range (e.g., [t,∞), where t is a threshold).

Does the AD neuron’s type of input prevent it from mimicking the point neuron? In a

larger sense, this is a mathematical question. It involves answering whether all instances of

a target class of function can be matched by some combination of instances from another

class of function. Since point neuron activation functions are drawn from a variety of

function classes, the question actually involves a set of target functions. A precise answer

to this question is beyond the scope of this work.

However, we can provide evidence of the ability to mimic behavior qualitatively. The

dendritic model can mimic point neuron input through either duplicate connections (Figure

4.8a), multiple ve per connection (see Figure 5.3), or a single connection with a broad

region of activation (Figure 4.8b).

These solutions cannot match the entire range of positive input values exactly. However,

in practice, covering from 0 to infinity is usually not necessary. If input to a point neuron,

in practice, is constrained to some finite range, either of these dendritic-to-point conversion

techniques can approximate it. This comparison assumes that it is desirable in some

scenarios for point neurons and compartments to receive unconstrained monotonic input.

So far, we have compared only typical point neuron input (from other point neurons) to

the input generated by AD neuron connections. There is no reason a point neuron cannot

utilize an RBF as its activation function, or even a function with more complex behavior

[26]. Ignoring that a point neuron RBF activation function belongs to the neuron and not

a connection, point neuron input can mimic AD connection behavior. Likewise AD

compartments can be made to behave like point neurons by selecting different activation

functions.

Finally, how does the full AD neuron fare when compared to the point neuron? In an

identical network setting both point and AD neuron receive the same number of inputs.

Neither has an informational advantage. The AD neuron possesses potentially many more
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(a) (b)

Figure 4.8: This pair of graphs shows two ways point neuron behavior can be mimicked by
the dendritic model;. In both figures, the dashed blue line depicts the behavior of a point
neuron using a ReLU activation function over the input range [−10, 10] (a) The solid lines
(blue, orange, green, red and purple) depict output for five dendritic model connections with
varying values for ve and w. The pink line depicts a dendritic compartment’s ReLU response
to these five connections. The compartment response roughly matches the point neuron
behavior over the shown interval. (b) The pink line shows a compartment’s response to a
single dendritic connection which uses a small value for b which produces a broad range of
activation. The broad range of activation allows the dendritic neuron to mimic roughly point
neuron behavior.

activation functions in both its connections and compartments, thus it can apply more

transformations to the same information. This alone suggests it is more powerful. From

the earlier argument, the AD neuron has not lost the ability to be a point neuron because a

single compartment is also an AD neuron.

4.5.4 The Benefits of Separation

Relevance and importance are a product of modeling the separation of network

components and the dendritic model is based on the idea that separation itself possesses

computational significance. What computational characteristics do these products of

separation bring to the dendritic neuron? The separation of relevance and importance has

three primary, intertwined computational effects: democracy of signals, connection

determines meaning, and computation through coincidence.
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The democracy of signals refers to the idea that the magnitude of a signal is irrelevant

to its impact on the receiving compartment. A very small (or even negative) value can

drive the output of a compartment just as well as a very large one. The democracy of

signals is a direct consequence of divorcing the relevance of a signal from its importance.

Second, connection determines meaning is the idea that the meaning of a signal is

something locally determined by each receiving neuron. Both biological and artificial

neuronal connectivity follows a one-to-many pattern. Rather than subject every receiving

neuron to the strength of a signal, the AD neuron allows each receiver to determine the

meaning of a particular signal by manipulating ve of the intervening connection.

Third, computation through coincidence refers to neuronal behavior that is the product

of coinciding activity (or co-activity) at a select set of inputs. Since dendritic model input

signals are evaluated individually based on their relevance and collectively based on their

importance, the output of a dendritic neuron depends on the right set of co-active inputs.

4.5.5 Connectivity

The AD model compartment, by itself, does not make a dendritic neuron. Alone it is a

point neuron. So, to fully realize the AD neuron model, we must define a set of rules

governing compartmental connectivity.

The AD neuron model can accommodate any number of biologically plausible and

implausible morphologies. The following constraints are not hard requirements. Generally,

we propose these rules to provide an example how compartments can create complex

dendritic trees through sub-typing. Compartment sub-types are created by selecting

different constraints on connectivity (and different activation functions) to limit the

possible shapes (and behaviors) of the dendritic tree. For this work, the following set of

constraints guided the development of the tree-building algorithms in Chapter 6.

Let K be the set of compartments which comprise the dendritic neuron. K can be

divided into two disjoint sets, S and B, such that:
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K = S ∪B and S ∩B = ∅ (4.5)

|S| = 1 and |B| = |K| − 1 (4.6)

B contains all branch compartments and S contains all soma compartments. Each

compartment’s set of connections can similarly be partitioned into two sets, A and E, or the

afferent (incoming) and efferent (outgoing) connections. Each of these sets can be further

partitioned into those either coming from or going to branch or soma compartments. In

total, each compartment’s connections are partitioned into four sets: AS, AB, ES, and EB.

For example, the set, AS contains all afferent connections from M-compartments.

Partitioning the connections in this way allows us to create a collection of restrictions on

each set. Together, these restrictions define the possible shapes of a dendritic tree.

Definition: Soma, or M-compartments, are defined by the following restrictions on A

and E:

AS = {s|s ∈ S and |AS| ∈ N0}

AB = {b|b ∈ B and |AB| ∈ N0}

ES = {s|s ∈ S and |ES| ∈ N0}

EB = {b|b ∈ B and |EB| ∈ N0}

(4.7)

Equations 4.7 state that S-compartments can make afferent and efferent connections to

zero or more S- and B-compartments. Allowing M-compartments to receive input and send

output to as many (or few) compartments of both types is important because it allows AD

neurons to create both dendritic and adendritic subnetworks within a network.3

Definition: Branch, or N-compartments are defined by the following restrictions on A

and E:

3The existence of adendritic neurons in the brain suggests not all neural computation is best served by
dendritic neurons.
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AS = {s|s ∈ S and |AS| ∈ N0}

AB = {b|b ∈ B and |AB| ∈ N0}

ES = {s|s ∈ S and |ES|+ |EB| = 1}

EB = {b|b ∈ B and |ES|+ |EB| = 1}

(4.8)

Equations 4.8 restrict branch compartments such that they, like the soma compartment,

can make unrestricted afferent connections. They differ from the M-compartment’s in that

they only send output to one and only one compartment. The type of the efferent

connection is unrestricted.

Definition: A dendritic path is defined as the B-compartments and connections linking

two S-compartments. A path, P , is a dendritic path if P = {p0, p1, p2, . . . , pk} where p0 and

pk are S-compartments and pi, i ∈ {1, k − 1}, are B-compartments. P is also defined by a

set of connections, PC = {ck,k−1, ck−1,k−2, . . . c1,0}. All dendritic paths are directed such

that there is a connection from pi+1 to pi.4 To guarantee the dendritic neuron’s shape is

tree-like, we place a further restriction on dendritic paths. Given the above definition of a

path, we add that in a dendritic path P, ∄ i, j | pi = pj. In other words, there are no

cycles. As a last step, pk can be removed from P . pk is removed because it is the

S-compartment, or soma, for an upstream neuron. It was included initially to ensure that

the last B-compartment receives input from at least one S-compartment.

Two paths are the same if their compartments and connections are identical and in the

same order.

Definition: A dendritic tree is defined as a set of dendritic paths terminating in the

same S-compartment which also share at least one B-compartment. Given an

S-compartment, m, a dendritic tree of m is a set of dendritic paths D such that for all

4It might seem odd that we are defining direction flowing from pk to p0 rather than the reverse. The
choice is arbitrary in general, but defining it this way simplifies the definition of dendritic trees which relies
on the path definition.
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Figure 4.9: Sample network of dendritic compartments using the proposed connection
restrictions.

P ∈ D, p0 = m and there exists an n such that the sub-path {p0, . . . , pn} is equivalent (by

the above definition of path difference) for all paths in D.

Definition: A dendritic neuron is defined as a single M-compartment and all of its

dendritic trees.

The dendritic neuron model’s connectivity constraints allows for the creation of

asymmetric, sparse and super-dense networks. An asymmetric network is one in which not

all paths from input to output are the same length. A sparse network is one in which

connections between layers is something less than all-to-all. And a super-dense network

possesses a connectivity greater than all-to-all in that it has duplicate connections between

components.

Figure 4.9 provides a sample network using these compartments and possessing these

qualities. Somatic compartments 1, 2, 3 and 4 comprise the set of input neurons, where 5 is

the only soma in the hidden layer, and 6 is the output compartment. The network exhibits

sparsity in that the path from 4 to 6 does not pass through 5. Asymmetry can be seen in

that there are two 3-to-6 paths of differing lengths (same with 1-to-6). Super-density is

evident in the multiple connections from 4-to-6.
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4.6 Combinatorics of the Dendritic Neuron

Before moving on to an examination of the behavior of the dendritic neuron model, let

us consider the effects of compartmentalization and separation on the shape of the dendritic

neuron. Related research suggests that the shape of a network determines its expressivity

[132]. Expressivity describes the range of functions a neural structure can approximate.

If shape impacts expressivity, then increasing the number of different shapes a neuron

can take on is beneficial because the dendritic neuron can better control its behavior

through its shape. The dendritic neuron model has vastly more unique shapes than the

point neuron and is therefore more expressive. It is capable of approximating a wider range

of functions because it is better able to control its shape and therefore exhibit more precise

behavior. To better understand just how configurable it is by comparison, let us start with

a point neuron and from it construct a dendritic neuron. This will allows us to compare

the configurability of the two types of neuron models.

A point neuron, e, receives inputs from an input vector, I where |I| = n. The first step

in constructing a dendritic neuron, f , from e is to partition e’s inputs into compartments.

The number of ways to partition a set of n things is given by the Bell numbers [14]. For n

inputs there are Bn ways to compartmentalize (partition) them, where Bn is the nth Bell

number.

Bell numbers have an exponential growth rate in n and are given by the following

recurrence relation:

Bn+1 =
n∑

k=0

(
n

k

)
Bk (4.9)

The exponential growth of the Bell numbers is very fast. For example, the Bell

numbers, Bk, for all k ∈ {0, 1, . . . , 13} are 1, 1, 2, 5, 15, 52, 203, 877, 4,140, 21,147,

115,975, 678,570, 4,213,597, 27,644,437. An AD neuron with thirteen inputs can partition

them in 27,644,437 ways. By comparison, the point neuron is incapable of partitioning its

inputs; therefore, regardless of n, it always has just one compartment--all n inputs. The
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equations in 4.10 give the number of shapes of the point neuron with n inputs (Se(n)) and

the number of shapes of dendritic neuron with n inputs (Sf (n)).

Se(n) = 1 Sf (n) = Bn (4.10)

The partitioning of inputs does not give the full account of dendritic model. The above

does not take into account the ordering of compartments. If we further consider that

compartments can be ordered (connected) hierarchically then the number of different

combinations further increases.

For any partitioning of the inputs, p, |p| = m, or the number of partitions of p. We

label each partition with a label, li, i ∈ {1, 2, . . . ,m}. To find the total number of unique

trees given m labeled partitions, we use Cayley’s formula, Equation 4.11. The number of

trees, t, with m labeled vertices is:

t(m) = mm−2 (4.11)

Cayley’s formula grows even faster than the Bell numbers. For example,

B13 = 27, 644, 437 and t(13) = 1, 792, 160, 394, 037. Strictly speaking, Cayley’s formula

cannot be applied to the point neuron because it has only one partition; however, a tree of

one node is a tree.

Combining Bn and t(n) gives a lower bound of the total number of shapes a dendritic

neuron with n inputs. We will call this a(n):

a(n) =
Bn∑
i=1

t(|pi|),where pi is the ith partitioning of the set of n inputs. (4.12)

The equations in 4.10 can be rewritten to give our final comparison:

Se(n) = 1 Sf (n) = a(n) (4.13)

77



A lower bound on the growth rate for a(n) is Ω(a(n)) = t(n)t(n+1)
2

. In other words, a(n)

grows according to Gaussian summation of the result of Cayley’s formula from 1 to n, the

maximum possible cardinality of all partitionings of n. This is a lower bound on a(n) as it

assumes (among other things) that there is only one partition of each size. In fact, the

number of ways to partition a set into exactly k elements where k is from 1 to n is given by

the Stirling number of the second order, or S(n, k). For all values of k such that 1 < k < n

and n such that n > 2, S(n, k) > 1. For our purpose here, it is enough to show a lower

bound as all we are concerned with is that Sf (n) is vastly larger than Se(n).5

The above does not take into account that each connection within each arrangement of

each partitioning can also assign different values for ve, w and b which would multiply the

number of possibilities by a constant, n(264)3, assuming an implementation on a 64-bit

machine.

4.7 Conclusion

The potential benefit of the dendritic neuron is its ability to precisely bound regions of

the input space that produce interesting (or meaningful) behavior. To do this, the artificial

dendritic neuron model has been constructed to allow for a large number of configurations,

or shapes. Certainly, it is reasonable to assume that many shapes of a single dendritic

neuron are equivalent in that they produce, at least qualitatively, the same behavior. So it

is necessary to show that different configurations produce different behaviors. In the next

chapter, we will look at a simple implementation that explores the subtleties of dendritic

expressivity through the partitioning of inputs and the ordering of compartments.

5For n = 13, a(n), by the lower bound, says that Sf (n) is least 29.2 trillion.
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CHAPTER 5

BEHAVIOR OF THE AD NEURON MODEL

In this chapter we employ a simple, non-trainable implementation of the extended AD

neuron model to demonstrate its basic behavior. The purpose of starting with a simple,

non-trainable version is to show the computational nature of compartmental separation

and connectivity and the benefits of separating relevance from importance. Examples are

limited to a single dendritic neuron with a minimal number of compartments. AD neuron

shapes and parameters are set by hand since the goal is to show behavior, not learning.

This implementation adheres to the specifics of the extended model from Chapter 4.

Specifically, ϕ is given by Equation 4.4 and the connection scheme for multiple

compartments follows those in Section 4.5.5. ψ primarily uses an identity function

ψ(x) = x in earlier examples where negative weights are not present. When negative

weights are present, ψ(x) = ReLU(x) to prevent the compartment from producing negative

values. Further alterations to ψ in the more complex later examples will be identified.

5.1 Input Relevance

As stated in the previous chapter, dendritic connections use the RBF ϕ to define a

discrete range of activation over which input generates a non-minimal signal to the

compartment. How close an input is to the center of the range of activation gives its

relevance. In the following examples we demonstrate the AD neuron model’s ability to

precisely define bounds for input relevance, how ve, b and w can be used to shape a

compartment’s response and the effects of relevance on compartment behavior. The goal is

to show that individual dendritic compartments exhibit a wider range of behaviors over

point neurons.

In this first example (Figure 5.1) we present two dendritic compartments, A and B.

Compartment A has two connections with differing centers relevance (ve). The right

79



Figure 5.1: Two example AD model compartments. Yellow boxes are compartments. Green
circles show each connection’s ve. (a) A single compartment with two inputs: L and R. The
L input has ve = 1 and b = 0.5. R has ve = 5 and b = 3. (b) A single compartment with two
duplicated inputs. L1 and L2 both receive the same signal, L, and R1 and R2 both receive
R. L1 and R1 both have ve = 3. L2 and R2 both have ve = −3. All four connections have
b = 3. w is 1 for all connections in (a) and (b).

connection is centered at 5 and the left is at 1. The compartment’s maximum response is,

then, at the intersection of 5 and 1 (left plot of Figure 5.2). Each connection to A uses a

different value for b. b determines the width of the region of activation. The right

connection has a larger value (b = 3) compared to the left (b = 0.5). Larger values tighten

a connection’s region of activation and higher values widen it. This causes the

compartment to receive near-max input for a wider range of input values to L than for

those to R. This example demonstrates how the input to compartment A is detached from

the strength of the actual value sent to each connection. R is keyed to a stronger value (5

vs 1 for L) but how this is interpreted by the connection for the compartment creates an

inherent equality between inputs.

Compartment B has four connections from two input sources (L and R). Each source

and compartment B share two connections. Duplicated connections have different values

for ve. The first connection (L1 and R1) from each source have a ve equal to -3. In second

connections ve = 3. For all connections, b = 3. Compartment B receives a maximum input

from each source at two values; therefore, the combined input from all four connections
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Figure 5.2: The input profiles for compartments A (left) and B (right) from Figure 5.1.

reaches a maximum at four points in the input space. The four ranges of activation are

narrow enough that each one does not overly impact the others. But there is some overlap.

This can be seen in a maximum slightly above 2 (see B’s color bar). At each of the four

points of maximum relevance in the compartment’s input space, traces of relevance

generated by the other connections is felt. How much is felt depends on the proximity in R

of each connection’s ve. Large b result in little or no overlap. By contrast, very small values

for b, (b≪ 1), could produce ranges of activation so wide that areas of maximum activation

would shift from the four intersections toward a central region (as we will see in a later

experiment).

The above examples are limited to two input sources for display purposes. More inputs

will create regions of input relevance in higher dimensional spaces. If a compartment’s set

of connections all receive input from unique connections--no two connections share the

same source--the compartment’s region of maximum input within the input space is around

a single fuzzy point whose shape is governed by the values of b across all connections. As

shown in Figure 5.2, multiple max regions can be created through duplicate connections

from the same source. Input relevance for a single connection, however, is not limited to a

fuzzy point in the higher dimensional input space. Each connection in the two dimensional
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case produces a fuzzy line of elevated relevance cutting across the input dimensions created

by sibling connections from a different source. From this we see that the input relevance of

a single connection is a hyperplane of n− 1 dimensions, where n gives the number of input

sources, not connections, to the compartment. This is an important distinction between

connections and sources. Multiple connections from the same source do not increase the

dimensionality of the activation profile, they increase the regions of activation. Sources on

the other hand increase the number of dimensions.

The shape of a compartment’s regions of activation are determined by the

implementation of ϕ. The AD neuron model does not set any limits on ϕ except that it is a

radial basis-type function. Regions of activation can take on different shapes by using

different implementations of ϕ. Figure 5.3 gives four variants of ϕ which use an inverse

quadratic; however, each is augmented by an additional transformation. The top left adds

the update function of a logistic map to the R connection. The result is that the

connection has two centers of input relevance at 0 and ve (which is 5). The top right uses

sine and cosine to create a grid of activations. In the bottom left plot, ϕ is negated for the

R connection. Both L and R have have an ve = 0 and ψ = ReLU. The negative input

silences the region of maximum activation. If the compartment’s ψ used the identity

function, R’s activation line would produce a trough in the input space. Finally, the

bottom right shows a connection with multiple centers (2 and -2). R’s output is the sum of

ϕ calculated at each center. Because the centers have a narrow profile (b >> 1) and are

well separated, maximum relevance is still 2. In other words, the regions of R’s activation

(-2 and 2) do not overlap.

The preceding plots show how different implementations of ϕ and connection-level

properties impact the shape and regions of activation of compartments. Compartmental

behavior depends on ϕ’s treatment of input relevance. We can manipulate b to broaden or

narrow the region of max relevance. And we can augment the evaluation function itself to
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Figure 5.3: Four variants on the basic implementation of ϕ. TOP LEFT: The left
connection’s ϕ includes the update function for a logistic map ϕ(va) = w

(bva(va−ve))2+1

with ve = 5. TOP RIGHT: The two connections, left and right, include cosine and sine
respectively: ϕ(va) = w

(b sin va−ve)2+1
and ϕ(va) = w

(b cos va−ve)2+1
. BOTTOM LEFT: The right

connection is negated: ϕ(va) = −w
(bva−ve)2+1

. BOTTOM RIGHT: ve is not a single value but
a list of values (2, -2). ϕ(va) =

∑ve
v (bva − v)2 + 1

generate different types of activations. Relevance is the first step in showing that by making

connections nonlinear, we make them unique in how and where they respond to input.

5.2 Weight, or Connection Importance

In the preceding chapter (Chapter 4) we suggested that connection weights are

synonymous with the importance of a connection to the receiving compartment. In this

subsection, we briefly demonstrate the way in which connection weights adjust the
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contribution each connection makes to the compartment and how this alters

compartmental behavior.

A connection’s weight determines how strong a role the connection plays in forming the

overall input to a compartment. Figure 5.4 show two variants of Compartment A from

Figure 5.1 for which connections are identical but the implementations of ψ are not. In

both variants, R is four times the weight of L (w = 4 versus w = 1). Being four times as

strong R dictates the extent and strength of the compartment’s regions of activation. In

the first variant (left plot) L and R, ψ(x) = x. The linear integration of L and R allows the

strength of R’s signal to dominate the input profile around R’s center. The output of

compartment A depends strongly on R.

In the second variant (right plot), ψ is the hyperbolic tangent function. The nonlinear

integration of L and R creates two inputs of relatively equal strength but unequal width.

Compartmental output is at maximum whether one or both connection receives a relevant

input. The greater importance of R is manifested in this broader range of activation. The

region of activation of the second variant is somewhat akin to a very small value for b,

except R has a wide range over which actual compartmental input plateaus. Once off this

plateau, relevance decays quickly, mimicking a square wave.

Both variants show that a connection’s weight determines its importance and how well

signals from a single connection determine compartmental output. But importance is also

subject to interpretation by the compartmental activation function, ψ.

This is not the only interpretation of the effects of connection weights.

Connection weights and ψ help determine a compartment’s number of distinct responses

across its entire input space. A distinct response is a local or global minimum or maximum.

To find all distinct responses we discretize the output space accordingly. For example, if we

discretize the outputs of both variants of Figure 5.4, we see that the first contains more

distinct values than the one which uses the hyperbolic tangent (right). Discretized, the left

compartment produces 0, 1, 4 and 5. These discrete outputs correspond to the four states:
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Figure 5.4: The impact of weight on connection importance. Both plots are derived from
identical compartments except for the implementation of ψ. LEFT: ψ is the identity function.
RIGHT: ψ is the hyperbolic tangent function. b = 1 for both.

L̄R̄, LR̄, L̄R and LR. The right compartment on the other hand only has two distinct

states: 0 when no inputs are active (L̄R̄) and 1 when any is active (LR̄ = L̄R = LR).

What does all this mean?

Weight, in the context of compartmental output, can function as a kind of multiplexer.

Differing connection weights cast different combinations of active inputs into unique

ranges. The left compartment has 22 possible output states which is maximal for a

compartment with 2 connections from unique sources. The right compartment

demonstrates a configuration with only 2 possible output states. The right compartment is

limited to reporting only the presence or absence of input. In the next section, we show

how this interplay between ϕ and ψ can be used to create Boolean functions.

5.3 Boolean Behaviors

In this section, we will demonstrate that the AD neuron can compute any logical

expression by showing that the AD neuron is capable of behaviors that resemble the basic

Boolean functions of OR, AND, and NOT. We also demonstrate that it is capable of the

additional functions XOR, NOR, NAND and IMPLIES.

85



Boolean evaluation of input is performed with respect to a connection’s ve. In the

unary case, a single input signal is “truer” the closer it is to ve because only around ve will

the connection produce an above baseline signal. The choice of ve (or which signal

evaluates to true) is arbitrary.

In a Boolean context, the AD neuron’s evaluation of truth and falsehood are fuzzy and

cover all values. It does not make sense to limit inputs to the interval [0, 1]. In fact, the

following examples were configured around the value zero. The following results should be

interpreted as A=0 OP B=0 rather than A OP B, where OP is one of the Boolean

operations. For example, in Figure 5.5 the output of the OR network (d) is closer to 1

(truer) when either or both inputs are or near 0. It is closer to 0, or falser, the farther both

inputs are from 0.

In each sub-figure, the green squares indicate connections and the numbers inside are

the values for ve. Arrows indicated the flow of information. Blue circles are compartments.

A and B are input signals and C is the output. 1 ϕ utilizes the inverse quadratic RBF and

ψ is the identity function. For all connections, b = 2 and w = 1. All examples receive input

from the same sources, A and B, which ranged from -5 to 5.

The simplest logical function is NOT (boxes with dashed lines) requiring a

compartment and an output connection. NOT is not shown in a separate diagram but can

be seen in the sub-figures d, e and f of figure 5.5. There are two important aspects to NOT

that cause it to invert output. First, the connection’s ve equals 0. When the compartment

receives a non-zero value, the following connection will output a 1. And when it receives an

input of 0, it will output a 1. Second, NOT depends on an earlier evalution of a particular

signal. For example, in f (IMPLIES), the initial NOT receives input from an initial

connection with a ve = 0. When A = 0, the value sent to the NOR compartment will be 0

and not 1 like B. The same is true for the other three examples. They receive as input the

1Technically, C would be the signal received by a next, downstream compartment since it is the result
of a connection.

86



Figure 5.5: Boolean behaviors: architecture. Blue circles are AD neuron compartments
labeled with their basic Boolean function. Green squares represent the compartment’s ϕ
function with the numeric value giving ve. Arrows show the flow of information. (a) Nor (b)

Xor (c) And (d) Or (e) Nand (f) Implication (A =⇒ B) is implemented as A ∨B. Boxes
with dashed outlines indicate the architecture for Not.

output of NOR and AND operations. Each will produce 1 when the comparison is true.

NOT, expecting 0, will invert the results producing OR and NAND.

There are other ways to create NOT involving more elements. The only element in the

NOT structure doing any work is the connection. The additional compartment has been

added because the AD neuron does not allow for two connections without an intervening

compartment.

For the binary operations, we start by replicating NOR, XOR and AND (top row)

because these require the fewest elements (a compartment with preceding and following

connections). In each example, the preceding connections have a ve = 0. When input is 0,

they will send an input of 1 to the compartment. Therefore, compartmental input will

range from 0 to 2. The following compartments of a, b and c have different values for ve.

These values indicate how many inputs must evaluate to true for the total output, C, to be
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Figure 5.6: Boolean behaviors: results. The behaviors depicted by these images show use
the architecture in Figure 5.5. To create these images, a sweep was performed over inputs
A and B in the range of [-5,5]. The warmth of the color indicates truth.

true. For example, AND is only true when ψ, the compartmental output, is 2 signalling

both inputs evaluated to true (A=0 and B=0).

To produce OR (D) and NAND (E) the output of NOR and AND is fed into a second

compartment which functions as a NOT compartment. Logical IMPLIES (F) requires

three compartments: two NOTs and a NOR.

Boolean behaviors (Figure 5.6) of the AD neuron have several distinguishing

characteristics due to the radial basis nature of ϕ. First, the transition from regions of low

activity to regions of high activity (or from false to true), or vice versa, is fuzzy. Fuzziness

here is defined as allowing truth values to take on any real number from 0 to 1. Transitions

between states pass through a continuous range of values rather than through a set of

jumps or steps. The fuzziness of the transition and width of each low/high regions is, as

demonstrated in previous sections, determined by the interaction of b, w and ϕ. Truth and
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falsehood for some Boolean functions is not equal across all regions where they are

typically true and false. For example, OR is typically true when one or both inputs are

true; however, the AD neuron produces a higher value when both inputs are true than

when only one is. This can also be seen in the AND example’s pale blue regions along both

x- and y-axes versus the dark blue as both inputs move away from them.

More interesting versions of Boolean behavior can be created by chaining these

elementary examples together. Diagram F in Figure 5.5 shows how to construct logical

implication, A =⇒ B. The bottom center image shows the results of this construction.

Output is false only when A is true (or A = 0) and B is false (or, B ̸= 0). Again, certain

values for A and B produce different levels of truth. The AD neuron’s version of IMPLIES

produces a higher output for A =⇒ B than for A =⇒ B. In general, it responds more

strongly when input B is active. This mirrors the fact that for A =⇒ B, when B is true

the output is true regardless of A.

By comparison, four of these Boolean functions can be reproduced by single point

neurons. OR and AND are relatively easy for the point neuron because these Boolean

functions exhibit threshold-like behavior. Once enough inputs are true (or not true) to

cause the output to be true, adding more true inputs does not make them false. Similarly

NOR and NAND can be reproduced using point neurons with negative connection weights

and a positive threshold signal. A single AD neuron compartment can reproduce XOR, a

single point neuron cannot. A minimal point neuron implementation of IMPLIES requires

two neurons and the AD neuron requires three compartments.

The AD neuron does face limitations in creating Boolean functions. Functions such as

OR are best approximated by a threshold, whereas, the AD neuron is best when

approximating functions which are true for unique combinations of input values, such as

XOR, NOR or AND. For example, XOR is true when the sum of its inputs is one. For

NOR, the sum of its inputs must be zero. For AND, it must be two. It requires more

compartments when when approximating functions which are true for multiple
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combinations, such as OR, which is true when the sum of its inputs are one or two. This

limitation is overcome through the negation of one of the easier functions.

The AD neuron with enough compartments is capable of computing any logical

expression. As the number of compartments and the complexity of their connections

increases so does the fuzziness of the output space. Increased fuzziness comes from

overlapping regions of activation due to wide activation profiles or layering across a chain

of compartments. Regions of silence for a connection or compartment are not always

completely silent. Depending on b and w and within a range of source values, input or

output may never reach zero or its maximum. This can be seen in the output of IMPLIES

(F) where the regions over which OR is true leave an imprint on the final result.

We also expect that for very complex Boolean expressions, requiring deep dendrites,

early operations, performed in distal branches of the tree, will be subject to later ones. The

effects of this are demonstrated in the next section. Constructing very complex Boolean

expressions may be challenging and require fine-tuning values for b, w and ve.

A potential solution to this problem is to use matching values of ve and w along interior

connections (i.e., non-input or non-output) to multiplex signals, casting them into different

parts of the real number space. The variant of compartment A in the left image of Figure

5.4 demonstrates how w can be used to separate the signals and combinations of signals a

compartment receives from its connections by shifting them away from the unit range [0, 1].

This could be used as kind of gain function to reduce fuzziness and create definition

between true/false boundaries.

5.4 More Complex Behaviors

Before we move onto multiple compartment examples, single AD neuron compartments

are capable of even more complex behaviors by adding compartment- and connection-level

parameters. An example of a compartment-level parameter is a threshold, t. In point

neurons, thresholds are typically a static negative input that prevents a neuron from
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producing an output unless the sum of its inputs exceeds it. Such a threshold models the

biological all-or-nothing phenomenon associated with neural activity. Below a certain level

of input, the neuron does not alter its baseline activity. Equation 5.1 modifies the basic AD

compartment model to include a threshold. The threshold is simply a static negative value

applied to the sum of all connection signals.

va = ψ(z − t),where z =
n∑

i=0

zi and ψ = ReLU (5.1)

In the left plot of Figure 5.7, we have given a variant of compartment B (from Figure

5.1) a threshold value of 2. All four connections are given sub-threshold weights. Two of

the connections, L2 and R2 (-3, -3), have a weight of 1; whereas L1 and R1 (3, 3) have a

weight of 2. This alters compartment B’s behavior such that at only one point, when

source L and R are both equal to 3, does the compartment reach a maximum output of 2.

It has two regions where output is half the maximum, 1. At the intersection of L2 and R2

(-3,-3), where the weighted signals do not breach the threshold, the neuron does not

respond at all. This plot shows that weights, in conjunction with a threshold, can elevate

some regions of activation while silencing others.

The right plot depicts cluster-like behavior. This plot depicts the output of another

variant of compartment B. We have altered weights, thresholds and activation profiles to

shift the compartment’s region of activation. In this variant, the threshold is set to 7. All

connections are given a very broad activation profile (b = 0.1) and relatively low (in

comparison to the threshold) weights (w = 2). On their own, each connection cannot cause

compartmental activation. In fact, even two or three connections together cannot exceed

the compartment’s threshold. Only where all four overlap is this possible. The maximum

point of compartmental activation occurs at the centroid of all connections’ regions of

activation, or, in this case, the origin. The maximum compartmental output is reduced to

approximately 0.35 because the point of maximum activation is shifted away from the
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Figure 5.7: Examples of compartment B’s possible behaviors using a compartment threshold
and adjusting each connection’s values for b and w. For this example, we have used ϕ(x) =
ReLU(x) due to the possibility for negative output. ve are unchanged from Figure 5.1.
LEFT: Compartment threshold, t, equals 2. For all connections, b = 1. w = 2 for L1 and
R1. For L2 and R2, w = 1. RIGHT: For the compartment, t = 7. For all connections,
b = 0.1 and w = 2.

maximum’s for each connection. In this case, the actual max is irrelevant since we are only

interested in qualitative behavior.

5.5 Input Complexity

The input profile of an AD neuron model compartment does not require signals from

many different sources to produce highly complex shapes. In Figure 5.8, we show that

compartmental input, even from a single source, can get very interesting. Multiple

connections from a single source can give a compartment the ability to respond in

unexpected ways. For example, in the left plot, a compartment receives the same signal

four times through different connections. Three of the connections have an identical profile

(same b and w) but are centered at different points (-5, -1 and 2). The fourth connection,

centered at 0, has a much broader region of relevance (b < 1) and higher strength;

therefore, it dominates the profile. The second connection’s center, ve = −1, is close

enough to the fourth’s center, ve = 0, to usurp it as the global maximum. Their
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Figure 5.8: Compartments with a single source. LEFT: A single input source makes four
unique connections with a compartment. The connections have the following parameters
(ve, b, w): (-5, 3, 1); (-1, 3, 1); (2, 3, 1); (0, 0.2, 4). RIGHT: A compartment has 100
connections from a single source. All connections use the version of ϕ with an added sine in
the denominator given in Figure 5.3. Each connection is given random parameters with the
following bounds. ve: [−π, π], b: [0.1, 100], w: [0, 1.01]. These bounds have no significance
other than that they produce interesting behavior.

combination shifts the global point of maximum activation left to -1. The other two

connections create local maxima at -5 and 2. Alone each point of peak activation would be

equal; however, since they overlap with the broadly activating connection at different

places they have different peak values.

The right plot shows just how extreme these profiles can get. An AD neuron model

compartment is given 100 connections from a single source. Each connection’s parameters

are randomly chosen (see figure caption for the random ranges) and the connection itself

uses the sine-wave variant of ϕ given in Figure 5.3. The result is a visually unpredictable

mapping of signal value to compartmental input strength as the input is the sum of 100

different sine waves. For every local peak in the profile, one can look left or right and find a

nearby input value that produces a near zero output.

These examples show that multiple and duplicate connections can generate complex

input profiles for the compartment.
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5.6 Signal Coincidence

As we have shown above, the response of the AD neuron depends on the relevance and

importance of an input signal. But it also depends on the amount of coincidence between

signals arriving along the dendritic tree. To highlight how signal coincidence is used by the

AD neuron, we ran several experiments using a type of signal coincidence that exists in the

biological brain: directional selectivity [162, 23]. Directional selectivity is ability of some

neurons to respond to a series of input signals whose order of arrival matches their

arrangement along the dendrite. The correct order will produce a stronger response from

the neuron than identical signals arriving in a different order. To show that the AD neuron

can mimic directional selectivity, and therefore more complex versions of signal

coincidence, ten AD neuron model compartments were connected together to form a single

chain (Figure 5.9). Together, the ten compartments form the dendritic neuron, D. Each

compartment is ordered from d1 to d10 corresponding to the flow of input. The nine

upstream compartments (d1 to d9) are B-compartments and d10 is an S-compartment (or

between branch and soma compartments).

The separation between compartments, ve, in D models a unit-less propagation time

and not a specific value. This is the time it takes for a signal leaving one compartment to

arrive at another compartment. Because we are only interested in the timing of input and,

in this toy experiment, each compartment only receives one external signal, connections

have a weight of 1. va, the input to ϕ, is not the signal’s magnitude but a temporal

difference between a signal’s time of arrival, ta, and the current time, T . Therefore,

va = T − ta. For all connections, ve = 10. For example, a signal arriving at d1 takes 10 time

steps to reach d2. ϕ uses the inverse quadratic RBF.

We ran two variants of the task using different compartment activation functions (ψ).

In the left figure, ψ(x) = tanh(x). And in the right, ψ(x) = ReLU(x). For each variant,

five input sequences were tested: forward, forward (fast), forward (slow), backwards and
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Figure 5.9: Diagram of dendritic neuron D. Letters denote input sources. Each blue circle
labeled di is the ith dendritic compartment. Green squares are connections and the number
in the green square is the value for ve.

a b c d e f g h i j
Forward (10 ts) 0 10 20 30 40 50 60 70 80 90
Forward (9 ts) 0 9 18 27 36 45 54 63 72 81
Forward (12 ts) 0 12 24 36 48 60 72 84 96 108
Backward 90 80 70 60 50 40 30 20 10 0
Simultaneous 0 0 0 0 0 0 0 0 0 0

Table 5.1: Times of arrival for inputs during the different sequences. Numbers given are
unit-less time steps.

simultaneous. Each sequence specifies when an input signal arrives at each compartment.

The timing of each input sequence is given in Table 5.1.

In Figures 5.10, the perfect forward example depicts an input sequence that matches

both the compartmental order (d1 to d10) and the separation between compartments.

Signals arrive starting at d1 when T = 0 and arrive at adjacent compartments 10 time

steps later: Tdi = Tdi−1
+ 10 where Tdi gives the time of arrival of a signal at compartment

di. The backward example reverses the input sequence. d10 receives a signal at T = 0 and

d1 when T = 90. The simultaneous example depicts AD neural output when all inputs
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(a) Tanh (b) ReLU

Figure 5.10: Directional selectivity. 10 AD neuron compartments connected as a single chain
where ve = 10 and va = T − ta. T gives the current simulation time and ta is the time of
input arrival. For all experiments, b = 1 and w = 1. (a) ψ uses tanh. (b) ψ uses ReLU.

arrive at the same time (T = 0). Finally, two variants on the forward test are shown in

which the sequencing is the same but the timing is slightly off. In the fast variant, input

arrives at the next downstream compartment after 9 time steps; whereas, in the slow

variant, it arrives after 12 time steps.

In both experiments depicted in Figure 5.10, the forward sequence (blue) produces the

greatest somatic (S-compartment) response. Since input times match compartmental order,

upstream signals collide at downstream compartments producing stronger input to the

next compartment. The variants of ψ produce significant differences in the peaks of the

forward variants. tanh normalizes the final signal. The two slightly out-of-phase sequences

produce peaks that are well above base line. The faster sequence (green), which is out of

phase by only 1 ts, reaches a peak near the optimal case (blue). The slower sequence

(yellow), off by 2, produces a peak only 20-30% of the optimal. The fast sequence produces

a peak whereas the slow sequences produces more of a plateau. The simultaneous sequence

barely registers as a series of evenly spaced peaks. The backward variant, although

obscured in the figure, produces similar responses; however, the timing of somatic

responses suffer long delays which extend far off the timeline. This demonstrates that
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(a) Tanh (b) ReLU

Figure 5.11: Experiment from Figures 5.10 with b = 0.1.

subtle differences in signal coincidence are clearly differentiable in the neuron’s output.

And drastically mismatched sequences produce little to no response in the S-compartment.

Taken together, this shows that an input sequence with too much randomness would be

unlikely to produce a response from the M-compartment.

In the ReLU variant, out-of-phase sequences show much less distinction. They are a

fraction of the peak of the optimally timed sequence. This reinforces what was stated in a

previous section, the effects of signal coincidence do not just depend on the response

profile, b, but also on the compartmental activation function, ψ. If the M-compartment

normalizes its output, optimal signal coincidence is less important to the neural response.

To highlight the impact of b on neural behavior due to signal coincidence, the

experiments were repeated several more times with b = 0.1 (Figure 5.11), or a very broad

response profile; b = 0.25 (Figure 5.12), a somewhat broad response profile; and b = 4

(Figure 5.13), a narrow profile. Altering b has interesting effects and interpretations.

When the response profile is broader, slightly out-of-phase forward sequences reach

approximately the same peak. Distinguishing between out-of-phase sequences relies more

on ψ. For example, Figure 5.11a, in which ψ = tanh, output peaks at approximately the

same value for all forward sequences. Changing ψ to ReLU allows the AD neuron to
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(a) Tanh (b) ReLU

Figure 5.12: Experiments from Figures 5.10 with b = 0.25.

(a) Tanh (b) ReLU

Figure 5.13: Experiment from Figures 5.10 with b = 4.

differentiate between forward sequences even when b = 0.1. The distinction between

slightly out-of-phase sequences increases as b increases (Figure 5.12b).

But the reverse is true for the narrow profile (Figure 5.13). Slightly out-of-phase

forward sequences are no better at producing a somatic response than very out-of-phase

sequences (simultaneous and backward). In general, a narrowing of the response profile

decreases the window for signal coincidence within the dendritic tree. It shinks a

compartment’s region of activation. Anything other than a perfect match is ignored. To

compensate, normalization at the S-compartment can scale the different neural responses

to improve comparisons but for b >> 1 normalization has a limited effect. In general, wider
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response profiles give the compartment wiggle room to respond to sequences with a small

amount of jitter. On the other hand, narrow profiles make the AD neuron a precise tool.

Together these show how the response profile, b, can be used to capture the level of signal

coincidence.

The potential benefits of AD neuron behavior is not limited to its ability to separate

peaks. Figure 5.11 demonstrates how a broad response profile can be used to allow certain

sequences to prime an entire branch of the tree making it more likely to produce output on

subsequent input. For example, the simultaneous input sequence (black) produces an

elongated signal. A single input pulse at time 0, spread over the length of the dendrite,

causes the AD neuron to produce elevated output for nearly 100 time steps. In 5.11a, the

signal resembles an exponential decay. In 5.11b, simultaneous input produces a plateau-like

signal. This elevated state could be used to prime one dendritic branch over another such

that a pulse arriving at a competing branch would be ignored in favor of this elevated one.

The pulse would combine with the plateau-like signal, similar to the left example in Figure

5.8, allowing for selection between two identical inputs. The initial signal which primes an

entire branch could come from a single source that makes multiple independent connections

to the receiving neuron. Or it could come from a single source with a very broad response

profile (small b). Since the priming signal persists over time, it allows the dendrite to

bridge temporal gaps between pieces of information.

These experiments demonstrate the AD neuron’s ability to capture signal coincidence

along the dendritic tree. While an AD neuron’s parameters and activation functions do

have an impact on how it responds to different sequences of inputs, the shape of the tree

determines whether the AD neuron responds at all. Shape determines which input

sequences receive a response and compartmental level parameters adjust how closely

sequences must match the neuron’s shape.

The dendritic tree in these examples is a simple non-branching chain of compartments.

Next, we examine which effects dendritic branches have on the overall response.
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5.7 The Role of Branching

Dendritic branching is the bifurcation of dendritic paths as they extend away from the

S-compartment. Specifically, a dendritic branch is a point in a dendritic tree where one

compartment (B or S) receives input from two or more B-compartments. We have termed

this many-to-one connectivity, backward branching. Forward branching is the one-to-many

connectivity of the S-compartment. This section is only concerned with backward

branching (henceforth just called ‘branching’).

This section explores how branching impacts the behavior of the AD neuron. Branching

impacts not just the set of functions a particular AD neuron configuration can

approximate, but also how well it mimics each function.

In the previous section, we showed how a single chain of compartments allow signals to

reinforce each other. It shows how they combine incrementally. However, certain scenarios

cannot be accomplished with single chains. Imagine, for example, a neuron that must

respond to both a ‘forward’ and ‘backward’ sequence but not a random or simultaneous

one. An AD neuron capable of recognizing multiple exclusive input sequences requires

some form of selection. The Boolean behaviors presented in Figure 5.6 depict how an AD

neuron could be configured to recognize both patterns. Configuration D describes how to

create an OR-like combination. If inputs A and B originate from two chains of

compartments each matching the forward and the backward sequence, the output, f(A,B),

will be high when either sequence is present.

Figure 5.14 gives more a complex example of the role of branching and demonstrates

how each branch works as an independent interpreter of upstream information. Fifteen

compartments are connected in the shape of a balanced, symmetric and full binary tree to

form a single AD neuron. Compartment 0 is an S-compartment and compartments 1

through 14 are B-compartments. The neuron receives eight distinct inputs, A through H.

The AD neuron has two important features. First, ve = 2 for compartments 1 and 2

whereas for all other compartments ve = 1. Second, the S-compartment, 0, defines ψ to be
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Figure 5.14: Diagram of the AD neuron configuration used for the branching examples. Blue
circles are B-compartments (branch) and yellow indicates the S-compartment. Compartment
numbers are labels. The green boxes represent ϕ and the number in each green box is the
value of ve. The letters are the input channels. ψ is not shown for compartments 1 through
14 because it is the identity function, f(x) = x. ψ in compartment 0 is the inverse quadratic
RBF which is also the RBF used by all ϕ of all connections. All connections have a lower
threshold of 0.05 under which a signal is set to 0 to handle the zero problem (see Section
9.2.8).

an RBF with ve = 1. This differs from all other B-compartments which use the identity

function: ψ(x) = x. The leaf compartments exist just to receive input; they do not

transform the input. They are included to demonstrate when each input is active. The

next level of compartments (3, 4, 5 and 6) combine pairs of leaf compartment outputs.

These four compartments connect to either compartment 1 or 2. The connections to 1 and

2 have a ve = 2. This makes compartments 3, 4, 5 and 6 functionally identical to the AND

compartment depicted in Figure 5.5. Only when both inputs of these compartments are
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active will compartments 1 and 2 receive a signal. Lastly, compartments 0, 1 and 2

together compute XOR. For compartments 1 and 2, their connections to compartment 0

will only activate if only one of their connections was active. For example, if compartments

3 and 4 each send an output of 2 to compartment 1, compartment 1 will also produce a 2

because both of its connections gave an input of 1. This does not match the ve of the

connection between compartments 1 and 0. Compartment 0 functions similarly because its

RBF version of ψ has a ve of 1.

Taken together, the AD neuron in Figure 5.14 recognizes the expression:

((A ∧B)⊕ (C ∧D))⊕ ((E ∧ F )⊕ (G ∧H)) (5.2)

Figures 5.15, 5.16 and 5.17 show the AD neuron’s behavior for different combinations of

inputs. In each figure, sub-plots show the output of each of the neuron’s fifteen

compartments. Active inputs are given values from a contiguous range of values from 0 to

2 with a step of 0.1. A range of input values are used rather than a single value to show

compartment behavior in the input space surrounding ve.

Figure 5.15 depicts the activation of inputs which would satisfy the expression 5.2.

Inputs A and B activate compartments 7 and 8. Compartments 7 and 8 drive a doubly

strong response from compartment 3 which is a match for compartment 1’s ve of 2.

Compartment 0 responds because ψ requires that one and only one of its inputs is active.

The AD neuron’s output suggests that the expression 5.2 is satisfied when A and B are

approximately 1 and the rest are 0.

Figure 5.16 shows the AD neuron’s behavior when inputs A, B, G and H are active.

Compartments 7, 8, 13 and 14 activate. These activations propagate into 3 and 6 which

also activate, producing an output of 2. Again, the output value of 2 causes both

compartments 1 and 2 to activate. However, the M-compartment does not respond. This is

due to compartment 0’s ψ expecting a value of 1. Because ψ’s ve = 1, the B-compartment

expects only one sub-tree to be active. In this case, the AD neuron inhibited non-matching
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Figure 5.15: Compartment-level output of the AD neuron in Figure 5.14. Compartmental
responses are show for a range of values, 0 to 2, for inputs A and B. Input: x-axis. Output:
y-axis.

activity late in dendritic tree (at the root). In fact, calling it ‘non-matching’ is not quite

correct. For two sub-trees, 7-8-3-1 and 13-14-6-2, the input did match. It only did not

match at the root. This demonstrates the quasi-independence of dendritic branches in that

an isolated match between input value and tree shape can be overridden by subsequent

processing.
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Figure 5.16: Compartment-level output of the AD neuron in Figure 5.14 with inputs A, B,
G and H active. Input: x-axis. Output: y-axis.

Figure 5.17 shows another example of the inhibition of non-matching activity but with

a positive outcome. Again, A and B are active. But so are C, E, and G. Since

compartments 1 and 2 have an expected value of 2 for all inputs, the outputs of 4, 5 and 6,

which are only 1, fail to generate a downstream response. Compartment 3’s activation

causes compartment 1 to activate. And the S-compartment subsequently responds because

only one of its sub-trees are active. Here is a case where insufficient input is suppressed

within the dendritic tree such that it does not reach the soma (compartment 0).
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Figure 5.17: Compartment-level output of the AD neuron in Figure 5.14 with inputs A, B,
C, E and G active. Input: x-axis. Output: y-axis.

Dendritic morphology impacts Boolean results. Even if two expressions are equivalent

when constructed using AD neurons they can produce different results.

Altering morphologies can produce subtle differences in behavior even if the general

Boolean behavior matches. For example, if the AD neuron is reconfigured in the shape of

an unbalanced tree such that it evaluates the expression in the order of 5.3,
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(((A ∧B)⊕ (C ∧D))⊕ (E ∧ F ))⊕ (G ∧H) (5.3)

the output profile of compartment 0 when inputs A and B are 1 (same as Figure 5.15)

changes. In the original version compartment 0 activates (above minimum threshold) in

the range (0.98, 1.02). The alternate, unbalanced configuration halves the range by

narrowing it to (0.99, 1.01). Thus, there are two ranges, (0.98, 0.99) and (1.01, 1.02), when

inputs A and B are active, over which the balanced tree will satisfy the expression and the

unbalanced one will not. By comparison, in the unbalanced tree, inputs G and H are closer

to the S-compartment than all other leaf compartments. If they (rather than A and B) are

given input, the response range is even wider than the range of the original, balanced

configuration, (0.978, 1.022). In other words, an unbalanced tree responds to input over a

wider range when it is received closer to the S-compartment. The range of satisfying input

narrows the deeper in the tree it is received. While both the balanced and unbalanced AD

neurons capture the same Boolean expression generally, they do not have identical behavior

over the entire range of input.

Finally, we conclude that a branch is a placeholder for an operation on one or more

inputs. The actual operation depends on the parameters and composition of ϕ and ψ of the

receiving compartment. The role of AD branching is to create separation within the overall

input vector such that parts of it can be integrated incrementally and independently. This

allows for AD neurons to form complex functions intentionally and with sparse connectivity.

5.8 Comparison and Summary

This chapter demonstrated a variety of AD neuron behaviors using an implementation

of the extended model. The AD neuron model is capable of defining complex regions of

activation with a strong degree of precision. It is capable of representing Boolean

expressions, albeit fuzzily. We demonstrated in limited way that duplicate connections can

be used to create multiple regions of activation.
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As stated in previous chapters, the AD neuron differs from the point neuron in two

important ways: nonlinear connections and the compartmentalization of sets of inputs.

Each characteristic gives the AD neuron behaviors which are largely beyond the behavior

of the basic point neuron.

First, the point and AD neuron models each have different strengths and weaknesses.

The point neuron excels in situations where the desired region of activation is linearly

separable. The Boolean operators of OR and AND fall into this category. The AD neuron

can approximate point behavior through multiple connections or small values for b (Figure

4.7). The AD neuron excels at defining bounded regions of activation and so is better at

approximating functions like XOR. We demonstrated this in the timing example where

compartmental output first increased as the age of an input side approached the

propagation time to the next compartment, and then, the output decreased as the age

exceeded propagation time. The point neuron is not designed to differentiate between

input which reaches its threshold and input which exceeds it.

Compartmentalization allows for situations which depend on a sequential and/or

independent evaluation of subsets of the neuron’s inputs. This is evident in the signal

coincidence experiment and the branching experiment. The branching experiment showed

how irrelevant input can be silenced within the dendritic tree such that it never impacts

the somatic response. By comparison, the point neuron could silence certain inputs by

zeroing their associated weights but in doing so it could not, then, respond to their signals.

In this chapter, we have demonstrated AD neuron behavior. Using different

configurations, we showed that it is capable of representing Boolean expressions and other

complex behavior. The tasks in this chapter, however, were all constructed by hand. For

the model to be of use in truly complex, real-world tasks, it must be able to self-adjust its

own parameters and connectivity. In other words, it must be trainable and that is the

subject of the next three chapters.
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CHAPTER 6

A METHOD FOR TRAINING THE AD NEURON

6.1 Overview

This chapter discusses the training methods and all associated expansions to the AD

neuron model. A neuron model is of little use if its defining properties cannot be trained,

so we begin by defining a trainable implementation. The defining properties of the AD

neuron model are separation and compartmentalization. This chapter presents a set of

algorithms that together modify an AD neuron using a combination of supervised and

unsupervised learning.

The training process is divided into several modular algorithms. There are in order:

1. Positioning: the position of an input within the dendritic field.

(a) Angular Positioning: the angular component of input position given by its

latitude and longitude.

(b) Radial Positioning: the radial component of input position given by its radius.

2. Tree-building: the defining of connections linking all inputs into one or more trees.

3. Compartmentalization: the grouping of inputs into compartments based on

dendritic distances.

4. Weight Modification: the altering of connection weights.

Each algorithm builds on modifications made by previous ones. First, inputs are

(re)positioned within the dendritic field by comparing the timing of input and output

activity. Angular positions are the result of input-input coactivity. Radial positions are

determined by input-output coactivity. Inputs are connected to each other based on these

trained positions. The connected inputs are assigned to compartments based on relative
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distances within the dendritic field. Weights are modified based on an input’s contribution

to compartmental output.

ψ, the compartmental output function, is implemented via a spiking neuron model. A

dendritic field is defined which provides a metric to position inputs. The bulk of the

chapter describes the algorithms outlined above.

6.2 Creating Separation Between Compartments

Before diving into the algorithms, there are several points of clarification that need to

be made about how the AD neuron creates separation between compartments during the

training process. The following does not alter the definition of the AD neuron model.

Each connection maintains a value (ve) giving the separation between two

compartments. In Chapter 4, separation was not defined differently for connections within

an AD neuron or between AD neurons. AD neural learning depends on being able to train

the separation between compartments. The following algorithms focus on single layer

networks and therefore say nothing about larger, multi-neuron structures. This means that

connections between neurons (e.g., between the input layer and output layer) are static.

For our purposes, we declare all inter-neural measures of separation to be nil. This means

that the metric of separation is only valid inside an AD neuron.

Figure 6.1 gives a visual of the implications of the above. The top diagram describes a

full case where the connection C1 crosses between two AD neurons, i.e., C1 is inter-neural.

C2 connects a B-compartment (branch) to an S-compartment (soma) within the same

neuron. In this case C1 gives the separation between the S-compartment of one neuron to

the B-compartment of another. The bottom diagram describes an alternative connection

scheme in which inter-neural connections have no separation. Signals move from one to the

other unaltered. Inter-neural signals arrive simultaneously at their destination. So the only

separation between one S-compartment and the next are the intra-neural connections of

the downstream neuron (C1 of the bottom diagram).
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Figure 6.1: Diagram of two AD neurons with example connections. C1 and C2 are
connections. Blue indicates B-compartments and yellow indicates S-compartments. Red
outlines show neural boundaries. (Top) Two connected AD neurons in which inter-neural
connections contribute a measure of separation. (Bottom) Inter-neural connections do not
contribute to separation.

Next, we need to clarify another term for the output side of inter-neural connections.

We will refer to the output end of such connections as neural inputs or just inputs. Neural

inputs represent the points in the dendritic field at which input signals arrive. The training

algorithm positions neural inputs within the dendritic field in order to build the dendrite.

In this and following chapters, references to an input value received by the AD neuron use

the term signal to differentiate them from neural inputs.

6.3 The Izhikevich Spiking Neuron Model

At the core of the AD neuron is a spiking neuron model. It forms the basic

input-to-output machinery for all AD neural compartments. Spiking neuron models

typically transform real-valued input into discrete temporal spikes. This ability is the

reason one is used in our AD neuron implementation. The following subsections give a

brief description of the Izhikevich neuron model [82].
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Our implementation of the AD neuron model uses the Izhikevich spiking neuron model

to create ψ, the output of a compartment. A spiking neuron model outputs a pulse, or

spike, when input exceeds its threshold. This differs from rate-based models more

commonly used in ANNs which produce a value when input exceeds a threshold. Spiking

models generate a temporal encoding of their input--a series of spikes. The AD neuron’s

training process makes extensive use of the relative timing of spikes to modify input

positions (see subsection 6.5.3).1

The Izhikevich model is a spiking neuron model whose behavior can be tuned to mimic

a variety of biological neuron behaviors. It consists of two ordinary differential equations

which model the cell’s membrane potential, v and recovery, u. Equations 6.1 and 6.2 give

the state change of the model.

Cv̇ = k(v − vr)(v − vt)− u+ I (6.1)

u̇ = a(b(v − vr)− u) (6.2)

In the above equations, I is the total input to the neuron. a, b, c, d, k, vr, vt, vpeak and

C are all fixed parameters that govern the behavior of the neuron. Using different values

for these parameters, the Izhikevich neuron can model different classes of neurons

(e.g., regular spiking, intrinsic bursting, fast spiking, etc.). All neurons in our model use

the parameters for a regular spiking neuron that produces behavior typical of cortical

pyramidal neurons. We chose this because, as the name suggests, it produces a regular,

evenly spaced spike train for a given input. The parameters are given in Table 6.1.

A neural response, or spike, is produced if the value of v reaches a threshold value,

vpeak. When this event occurs, v and u are reset according to Equations 6.3 and 6.4. v is

the driver of the neural response and u is a dampener which prevents the neuron from

producing back-to-back spikes.

1Why our implementation chose to use spiking neurons is discussed in a later subsection: 9.2.7.
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Parameter Value Parameter Value
a 0.03 b -2.0
c -50 d 100
k 0.7 vr -60
vt -40 vpeak 35
C 100 ib 50

Table 6.1: The Izhikevich model neuron parameters used in the AD neuron.

v = c (6.3)

u = u+ d (6.4)

We add one additional parameter to the Izhikevich model, ib. The value of this

parameter is sent to the spiking model as a baseline, constant input signal. ib causes the

neuron to “rest” just below its spiking threshold without having to alter the

well-established Izhikevich model parameters. This gives the spiking model a hair trigger

as depicted in Figure 6.2. The top plot depicts a regular spiking model with no baseline

input. The purple area measures the length of time between the onset of an input signal

(rise in the red voltage line) and the point the neuron reaches its spiking threshold (dashed

black line). A spike is caused not only by the strength of an input signal but also its

duration. Even modest input over long periods of time can cause a spike. The bottom plot

shows how using ib causes the neuron to rest just below its threshold. The result is that

even subtle input will cause it to spike.

Why do we want this fast-acting behavior? The answer is control. The Izhikevich

model was designed to mimic the behavior of a neuron receiving input from other neurons.

This is an important point and is one of the stark differences between AI neural work and

neuroscience modeling, which require that input likewise mimics neural signals. While we

desire to use a spiking model, we did not want to be trapped into casting all AD neuron

input into some biologically plausible space. For example, low-level signals to the

Izhikevich model have trouble generating spikes. And neural behavior across the transition
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Figure 6.2: Neural behavior with (bottom) and without (top) baseline input. Horizontal
black dashed line is the spiking threshold. The purple shaded area highlights the onset and
duration of the input signal. The solid red line is the membrane voltage (v in the Izhikevich
model equations). The green dotted line is the membrane resting value, u. Upper plot:
typical neural response to input without ib. Lower plot: neural response with ib just below
the neuron’s spiking threshold.

from non-spiking to spiking input space can be dramatic. We desired to have a more linear

gain on spike rate where small signals produced sparse spike trains and large signals

produced dense ones. ib, as simple a solution as it is, is the result of substantial (failed)

experimentation trying to cast a variety of input into a biologically plausible range.

The Izhikevich model is used only to generate spike times, not the signals themselves.

Connections receive spike times which they convert to real-valued signals through the RBF

function φ. The signals are received by a connection’s terminal compartment. The

compartment, then, sums all signals it receives in a given time step. This combined input

is used as input to the Izhikevich model. With enough input, the model spikes and the

time of the spike is added to a queue of spikes which form the output of the compartment.

Spikes are removed from the queue when their age reaches a learning window (the learning
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Input Neural Component Output
Time Connection R
R Compartment Time

Table 6.2: Input and output types for each AD neuron component.

window was equal to Amax, given below in table 6.3). The queue of spike times are sent to

the compartment’s set of outgoing connections. And the process begins again. Table 6.2

gives a breakdown of each neural component and type of input it expects and output it

generates.

As mentioned above, compartmental spike times are queued to form a history of recent

output. The queue allows each compartment to store a precise record of recent activity.

Without a queue, the most recent spike would erase previous spikes times. Keeping a

queue allows all spikes to propagate the length of the dendrite. Also, a spike history speeds

up the initial stages of training by allowing spikes to propagate over longer initial

connections. The precise record of activity provided by the queue improves training

performance in general since all aspects of training use the relative timing of spikes.2

6.4 The Dendritic Field

6.4.1 Description

In Chapter 4, a dendritic neuron was defined to be a single S-compartment and its

dendritic tree of B-compartments. Since connected compartments maintain a degree of

separation, we said that the separation between compartments creates a metric space. This

metric space containing the dendritic neuron and all of its compartments is called the

dendritic field. The origin of this space is the position of the S-compartment which for all

experiments is (0, 0, 0). The extent of the dendritic field is theoretically infinite, but it is

useful to bound the space such that it contains all meaningful input positions. The

2While we do not have specific data or figures to back up this claim, we have tested a queued and
queue-less version extensively. The compartmental spike queue was a later addition to our AD neuron
implementation. For much of its initial development, we used the queue-less version. When the queue was
added, results and training times improved substantially.
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definition of a meaningful position depends on the hyper-parameters Rmax and Amax. Rmax

and Amax define both the learning window used by various aspects of the training process

and the radius and circumference of the field in temporal units. In general, a meaningful

position is any position from which an input can connect to the dendritic tree and have a

chance of impacting the behavior of some part of the AD neuron. In other words, any

input outside the dendritic field is unable to connect to the tree and has no impact on

neural behavior.

6.4.2 The Spherical Geometry of the Dendritic Field

The AD neuron’s dendritic field is implemented as a spherical metric space. Spherical

geometry deals with spheres and their surfaces. The geometric constraints of spherical

geometry govern how compartments are positioned and move within the field and how

separation-based relationships are measured.

A sphere is defined by a central point, C, and a line segment, R, referred to as the

radius, with length LR. The surface of the sphere, or shell, is defined by the set of all

points in R3 which are LR distance from C. The space, SCR, contained within the shell

given by C and R can be defined as all shells whose center is C and whose radius is less

than or equal to LR.

Any point within SCR can be given by two angles and a radius. In spherical geometry it

is customary to use ϕ, θ and ρ; however, the mathematical sources used for this project

originate from the field of navigation.3 Therefore, latitude and longitude have been

substituted for ϕ and θ. The alternative labeling was also convenient to prevent the AD

neuron from containing two versions of ϕ. This is not simply a relabeling as the systems do

3A short word on sources for spherical geometry: Unfortunately, mathematical sources and texts
on spherical geometry and trigonometry are somewhat hard to find. For instance, the modern mathematical
source I used as reference, a textbook once used at naval academies, dated to 1940 [85]. It is not that the
subject has rarely been published; it is that the subject has not been published recently [159, 160]. According
to Van Brummelen, the subject disappeared from math textbooks in the 1950s. Even more illusive are applied
sources, such as finding a new point on a sphere given a heading and distance. It was not until I changed
my search criteria to the subject of navigation (aerial and naval) that I found what I was looking for [175,
43]. It is for this reason I have included this, perhaps larger than expected, section on spherical maths.
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differ. For example, the angle latitude ranges over [−π
2
, π
2
]. This differs from its

counterpart ϕ that ranges over [0, π].

From here forward lat, lon and rad will be used to indicate latitude, longitude and

radius respectively in the equations. And, the short form of a point in spherical space is a

triplet with the order: (lat, lon, rad).

A dendritic field F is defined as a spherical metric space with the S-compartment at the

center, C, or (0, 0, 0). The extent of the space is given by a maximum radius, Rmax. Input

position is given by a spherical point whose radius is bounded in [0, Rmax]. Distances are

measured differently between types of components. B-to-S compartmental distances are

measured using only their radial differences. Since the S-compartment is always at (0, 0, 0)

within its own dendritic field, B-to-S distance is simply given by the B-compartment’s

radius. Angular offsets are ignored. B-to-B distance is given by the equation, Dij

(Equation 6.6). Equation 6.6 calculates the angle, ∠ICJ , between two spherical

coordinates I and J ignoring any radial differences. 4

C(i, j) = sin2
( latj − lati

2

)
+ cos(lati) cos(latj) sin

2
( lonj − loni

2

)
(6.6)

D(i, j) = 2 atan2(
√
C(i, j),

√
1− C(i, j)) (6.7)

6.4.3 Decoupling of Relationships

The reason the AD neuron uses spherical geometry is that it decouples each

relationship from the other. Modification of a B-to-B relationship is purely angular. It

4In all equations, atan2(y, x) is defined mathematically by Equation 6.5[168]. The C++ code used to
calculate it comes from the standard library function std::atan2.

atan2(y, x) =



arctan( yx ) ifx > 0

arctan( yx ) + π ifx < 0 and y ≥ 0

arctan( yx )− π ifx < 0 and y < 0
π
2 ifx = 0 and y > 0

−π
2 ifx = 0 and y < 0

undefined ifx = 0 and y = 0

(6.5)
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takes place across a unit shell of the dendritic field and involves no radial displacement.

Similarly, a change to a B-to-S relationship involves a radial movement which does not

alter the angular distance between B-compartments. Decoupling allows each type of

relationship to be trained independently without altering the other. Furthermore,

decoupling allows them to be measured independently.

Not only is distance calculated differently between types of compartments, but different

parts of the training algorithm use different metrics to calculate the distance between

B-compartments. Altering neural input position uses (and affects) only angular distances;

whereas, tree-building uses both angular and radial distances. The reason for this is that

each B-compartment has two distinct types of relationships within the dendritic field:

B-to-B (angular) and B-to-S (radial).

Radial distances are based on Rmax, which is the maximum radial distance between the

S-compartment and a B-compartment. Likewise, angular distances are limited by Amax.

Distances with the dendritic field use temporal units (e.g., time steps). Decoupling means

that hypothetically Rmax and Amax could utilize values independent of each other; however,

we do not do this. For the dendritic fields in this work: Amax = Rmaxπ

6.5 Training

6.5.1 Inspiration

Training the AD neuron is the process of capturing input-output and input-input

relationships to (re)configure the dendritic tree in a way that is beneficial to solving a task.

Training the AD neuron rests on several neuroscientific ideas. In general, it is the idea that

correlated activity plays a role in determining connectivity. This has been stated as “cells

that fire together wire together” [143]. Our approach to training the AD neuron stretches

this idea to the sub-neural level, such that synapses that fire together wire together.

We also draw inspiration from research suggesting that clusters of synapses within the

dendritic tree are important to neural computation [112, 25], and it comes from theories
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about how more proximal inputs drive somatic responses versus distal ones [174]. From

these broad-stroke ideas about the effects of correlated neural activity and synaptic

position, we derive the idea that correlated activity creates proximity.5

The more two sources of input are temporally aligned in activity the closer their

position should be on the dendritic tree and vice versa. If they are perfectly aligned then it

is assumed they carry the same information. Likewise, the more in sync a specific input is

with the AD neuron’s S-compartment--its soma--the closer its position should be to the

root, or terminus, of its dendritic path.

Proximity is solely determined by activity regardless whether activity leads to a correct

or incorrect response. In other words, adjustments to an input’s position is not affected by

error estimates. This allows co-activity potentially to position both excitatory (positive

weight) and inhibitory (negative weight) inputs in close proximity such that they are

included in the same compartment. The choice not to subject neural input positions to

error values made sense for the above reasons and it simplified the effects of training. Like

many other aspects of the AD neuron, one could argue that input positioning should be, in

some or all cases, subject to error values.

Once neural inputs are repositioned the dendritic tree is created in such a way to

capture the relationships encoded in their relative positions. In other words, the dendritic

tree captures the spatial relationships created by co-activity.

6.5.2 Initialization

Initialization is the process of placing the components of the AD neuron (e.g. inputs,

weights, compartments and connectivity) into a proper starting state from which they can

be trained. Placement strategy can affect the relative scale of the separation between

5We reiterate here from the neuroscientific background chapter that the precise function of synaptic
arrangement is an open question. While dendritic spines and synapses grow and atrophy based on local
activity, dendrites, once formed, largely do not. The idea that correlated activity creates proximity mixes
neuroscientific research related to the early brain development, when neurons and dendrites are still forming,
and the adult brain.
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inputs and compartments, the shape and size of compartments and the time required for

compartments to form. There are many possible starting configurations and initialization

strategies. The version described below favors randomization when possible. When

elements are placed or tuned by hand, we perform parameter sweeps, opting for the central

values across the ranges which produce desirable behavior.

For the AD training algorithm to work, initialization must generate a preexisting

dendritic tree which is capable of receiving and conducting input and, as a whole, is

capable of producing output. The training algorithm requires that the AD neuron’s initial

state is viable. In general, threshold-based spiking neuron models require more tuning than

their non-spiking counterparts. There are many configurations which are unable to produce

spikes; therefore, a viable state is one from which an AD neuron starts in or can reach a

spiking state. For example, as stated in the previous subsection, activity causes

compartments to reorganize; therefore, if the initial state prevents output in the

S-compartment, radial changes will never take place. To accomplish this, we define an

initial set of basic parameters for inputs, compartments and connections which have a very

high chance to produce a viable initial state.

The basic set of AD neuron hyper-parameters is given in Table 6.3. The purpose of

each parameter is given throughout this text in the context(s) in which they appear.

Experiments in the following chapter use this set of parameters and any alterations to

these parameters are given alongside the experiment description. In fact, the parameters

below were derived from the experiments described in chapter 7. They represent a good

starting point from which to establish baseline behavior. Certain parameters (e.g., Bf and

b) need not be identical across all layers or neurons, but we have not had grounds to vary

them within the same experiment.

The S-compartment of the AD neuron is given the position (0,0,0). Every input to the

dendritic field is placed within its own leaf B-compartment. Each of these B-compartments

is connected directly to the S-compartment and given a radius of Rmax. Rmax is the
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Aλ 0.001 Amax Rmaxπ
Rλ 0.001 Rmax 500.0
Wλ 0.001 Bf 0.5
w 100.0 Lmax 20

Wmax 500.0 b 0.5

Table 6.3: Base AD neuron hyper-parameters. The three λ parameters are: (A)ngular
learning rate, (R)adial learning rate and (W)eight learning rate. w is a trainable weight
parameter. Wmax is a static strength parameter which bounds the actual weight of both
inputs and compartmental connections to [−Wmax,Wmax]. Amax and Rmax are the angular
and radial learning windows. Bf is the branch factor used to build the dendritic tree. Lmax

is the maximum compartment length. b is the RBF shape parameter.

maximum radius a compartment can have. Rmax = 500 allows for long temporal B-to-S

relationships. Input positions are initialized with a maximum radius because inactive

inputs (inputs which receive no spikes) do not move from their initial positions. Were we to

initialize input positions to a radius less than the maximum, inactive inputs would occupy

middle parts of the dendritic tree. Doing so, they can cause inactive compartments to be

created between two active compartments, creating a dead zone which silences the more

distal compartments connecting through it.6

Unlike the radius, the latitude and longitude of each N-compartment is randomized

using Equations 6.8 and 6.9. The function g returns a pseudo-random number from the

uniform distribution over the given range. These equations insure a random distribution of

compartment positions over the starting spherical shell.

lat = arccos(2g(−π, π)− 1)− π

2
(6.8)

lon = g(−π, π) (6.9)

Next, a basic tree is created. Connections are generated between every single-input

B-compartment and the S-compartment. Each connection’s ve is set to Rmax--the starting

6While we have experimented with less than Rmax initial radii (and discovered the above mentioned
problem), we have not experimented with truly random distributions of radii. It is possible there is some
benefit to random placement which overrides this concern.
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radius of all B-compartments--because they make direct connections to the S-compartment.

Therefore, in its initial state, an AD neuron’s set of compartments is equal in size to the

number of its neural inputs.

Depending on the experiment, multiple AD neurons can be generated through the above

process. Many experiments we ran used an input layer of spiking neurons. Other, simpler

experiments, do not contain proper input layers but used an internal input generator to

produce required signals. The main difference between these two input generation methods

is that the former uses a layer of fully-fledged Izhikevich neurons to generate input spike

trains, whereas the former generates spikes through a discrete Poisson process.

A discrete Poisson process subdivides time into small intervals, e.g., 1 ms, and assigns a

probability of an event occurring within each interval. For each interval, a random value

between 0 and 1 is chosen from a uniform distribution. If the random value is less than the

probability, a spike occurs in that interval.

The source of input will be given with each experiment. When Izhikevich neurons are

used as an input layer, they are not configured as AD neurons since their only purpose is to

convert real-valued signal to spike trains.

6.5.3 Input Position and Distance

As we stated above, input position is separated into two parts: angular and radial.

Angular position is defined by an input’s latitude and longitude; whereas, radial position is

just that, the radius. The angular distance between two inputs is given by da in Equation

6.11 which requires Equation 6.10.7 In Equation 6.10, i and j are neural inputs. dlat and

dlon give the differences between the two positions latitude and longitude.

aij = sin2(
dlat
2

) + cos(lati) cos(latj) sin2(
dlon
2

) (6.10)

7They have been separated for clarity.
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da = atan2(√aij,
√

1− aij) (6.11)

Radial distance calculation is not shown because it is simply the radius of a

compartment, in the case of B-to-S compartment comparisons, and the absolute difference

in B-to-B comparisons.

Distances between neural inputs and between inputs and the S-compartment encode

the timing of signals, as we will demonstrate below. For example, if two inputs are on

opposite (polar) sides of the dendritic field, then when one receives a signal at time t, the

other on average receives a signal at time t+Amax. Angular and radial positions are stored

with respect to the unit sphere and must be translated into the temporal domain using

Equations 6.12 and 6.13.

sa =
Amaxda
π

(6.12)

sr = Rmaxdr (6.13)

Given an angular distance on the unit sphere, da, sa gives the distance in time steps.

Similarly for radial measurements, given a radial distance, dr, sr gives the distance in time

steps.

6.5.4 Training Angular Position

In the trained AD neuron, relative positions encode when an input is active in relation

to its siblings. When a spike arrives at an input, it is compared to all its sibling inputs in

two ways. First, we find the temporal difference between the two input’s spike times. This

gives us their expected separation. We then find the temporal difference encoded in their

preexisting separation across the spherical shell of the dendritic field. This gives us their

actual separation. The input that has just received a spike moves (orbits) toward the point

of expected separation from its current angular position along the line, across the spherical
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shell, connecting the two positions. Radial differences between the inputs are ignored.

During this process, we assume all inputs fall on a unit shell of the dendritic field as this

reduces the number of calculations.

Angular movement only affects the currently active input. No movement takes place if

the temporal difference between spike times exceeds Amax. We have found that limiting

movement to temporal differences less than Amax is necessary for stability. A great circle

passing through two inputs creates two measurements of separation.8 The AD neuron

always uses the shorter of two for the distance between two inputs. Therefore, activity

beyond Amax would push an input away along one vector only to making it closer along the

opposing vector.

The following series of equations describe how the angular component (latitude and

longitude) of neural input positions are trained.

se = π
ti − tj
Amax

(6.14)

Equation 6.14 gives the difference between spike times at neural inputs i and j encoded

as an angular separation. This is the expected angular separation. ti and tj are the spike

times of inputs i and j. Amax is the angular learning window. The range of se will always

be in [0, π].

Next, we find the actual angular separation between i and j using Equation 6.11.

spipj = sa − se (6.15)

Equation 6.15 gives the difference between the expected and actual angular distances of

pi and pj, where px denotes the position of input x. If spipj , is positive, neural input i will

move toward its sibling j. If it is negative, i will move away from j. In order to accomplish

8A great circle of a sphere is the circle created by passing a plane through the sphere at its origin. For
any two points on the surface of a sphere, there is only one great circle which connects them.
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this move, we must first find the heading, or vector, going from i to j along the shortest

line between them.

hpipj = atan2(

sin(lonpj − lonpi) latpj ,

cos(latpi) sin(latpj)− sin(latpi) cos(latpj) cos(lonpj − lonpi)

)

(6.16)

Equation 6.16 gives the heading from pi, the currently active input, to pj.

latnew = arcsin(

sin(latold) cos(spipj)+

cos(latold) sin(spipj) cos(hpipj)

)

(6.17)

lonnew = lonold+atan2(

sin(hpipj) sin(spipj) cos(latold),

cos(spipj)− sin(latold) sin(latnew)

)

(6.18)

Using spipj and hpipj , Equations 6.17 and 6.18 give the new latitude and longitude of

the active input i. The old and new subscripts to latitude (lat) and longitude (lon) specify

the previous or new values.

The above comparison and movement process is repeated for all sibling inputs j, where

j ̸= i and whose most recent signal falls within the angular learning window, Amax. To

facilitate these movements, they are applied to a copy of input i’s position. We distinguish

the two positions as the original, pi, and the modified, p̂i. p̂i is moved instead of the

original because we must first locate the target position before applying a learning rate.
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Figure 6.3: An example of how angular movement depends on the relative timing of signals.
The time line, in light blue, gives the arrival time of three signals, tA, tB and tC . Yellow
bar is the learning window. The bottom three diagrams describe how the arrival of each
signal impacts input position. Light blue circles are the current positions (time moves left
to right); light gray circles reference previous positions. Dotted lines show the angular
separation between positions. Spherical coordinates are flattened and these plots assume
that Aλ = 1.

Once all i, j comparisons have been made and the target location has been located, pi is

moved toward p̂i using the same set of Equations 6.15, 6.16, 6.17 and 6.18. The one

difference is that Equation 6.15 has a learning rate applied to it to make Equation 6.19. Aλ

is the angular learning rate.

spip̂i = (sa − se)Aλ (6.19)

Figure 6.3 presents an example of how signal times alter input positions. At the top,

the light blue plot shows the timing of signals for three different inputs (A, B, and C)
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within the dendritic field of an AD neuron. Black vertical lines represent the signal times.

Each input receives a single signal in the depicted window. For example, input A receives a

signal at tA. The green, red and blue colored bars below the plot give the temporal interval

between signals arriving at different inputs. The three diagrams at the bottom depict how

the position of the inputs changes with the arrival of each signal.

The arrival of a signal at A, at time tA, has no impact on input position because no

signals to B or C have arrived previously. The arrival of a signal to B, at time tB, causes

B to move toward A. It moves toward because the interval TAB is shorter than their

current distance, DAB. Previously, the separation between A and B was DAB. Now it is

TAB to reflect the relative interval between input signal times. With B’s movement toward

A, the distance between B and C also changes. This relative change is not haphazard or

necessarily unwanted. B’s movement toward A adjusts B’s relationship to C with respect to

A. In this way, B partially adopts A’s relationship with C.

Lastly, a signal arrives at C, at time tC . C’s movement is made with respect to its

position to B and not A. This is because the interval TAC is longer than the learning

window, so A’s signal (and position) is ignored. Therefore, C moves only with respect to

B. Unlike B to A, C moves away from B because, as the inequality to the left of the

diagram shows, TBC > DBC . In other words, the actual separation is shorter than the

expected. Although, C’s movement was made only with respect to B, due to B’s proximity

to A, C also moves away from it, too.

This small example shows how inputs alter their angular positions due to the relative

timing of signals. If the pattern depicted at the top of the plot were typical for some set of

input examples, A and B would cluster together away from C.

Neural inputs can be moved by direct comparisons of signal times to relative positions.

But there exists a transitivity within the field. The relative positions of two inputs which

do not move by direct comparison will move if they have an co-active siblings in common.
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This also implies that the angular positions of two neural inputs without any indirect

relationships is meaningless.

For a single neural input, training angular position requires linear time in the number

of inputs to the dendritic field. Angular movement only occurs when an input receives a

signal. Therefore, training time depends strongly on the level of activity received in the

dendritic field.

Finally, an input’s role in the dendritic field is the set of distances to all other inputs,

not its actual position. An AD neuron is invariant under angular rotation so long as all

neural inputs rotate along the same heading. An angular position alone is meaningless.

6.5.5 Radial Change of Position

Whereas, angular change captures relationships between input-input timing, radial

position changes due to input-output timing. When the AD neuron’s S-compartment

produces output all inputs which have received a spike within the learning window alter

their radial position. Radial movement follows the same steps as angular movement. Since

radial movement happens along a single axis, there is no need to calculate a heading other

than the sign of the displacement.

re = (tm − ti)Rmax (6.20)

Like Equation 6.14, Equation 6.20 uses the temporal separation of signals to calculate

the expected radial separation. tm is the timing of an S-compartment spike and ti is the

most recent signal received by input i. re is in the range [0, Rmax].

rpmpi = (ra − re)Rλ (6.21)

Next, we need to calculate how far input i should move toward or away from m.

Equation 6.21 gives this displacement as the difference between the actual, ra, and

expected, re, radial separation between i and m. This amount is scaled by the radial
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learning rate, Rλ. rpmpi is then applied to the radial component of pi, the position of input

i. Like the angular training algorithm, this process is repeated for all i in the dendritic field.

In summary, a single S-compartment spike causes all inputs belonging to its dendritic

field to reevaluate their radial position with respect to the origin. Proximity to the origin

(the S-compartment) encodes how closely signals received at an input mimic the timing of

S-compartment output. It is also important to note that radial and angular training do not

measure separation along the dendrite but use geodesic lines in the angular case and

straight ones in the radial case.

6.5.6 The Units of Temporal and Spatial Separation

The previous sections discussed how the temporal interval between signals is encoded

into a spatial separation within the dendritic field. Here we take a short look at the units

of measurement of both as they will appear in experimental tasks in the next two chapters.

Input to an AD neuron is given in Hz, or the average number of signals received within

a 1,000 time step window. The use of Hz comes from the Izhikevich neuron (and most

spiking neuron models in general) which has a temporal resolution of 1 millisecond.

Throughout this work we equate 1 time step with 1 millisecond. Therefore, input sources

which use a random process are controlled through a signal generation rate given in Hz.

To translate more easily temporal intervals into spatial ones, and vice versa, both

systems should share a common unit. The radius and circumference of the dendritic field is

therefore directly convertible into Hz. For example, an Rmax of 500 can encode temporal

relationships between a neural input and the S-compartment down to 2 Hz (or 500 time

steps apart).

Consider the following example:

One neural input repeatedly receives signals 100 time steps after one of its siblings. If

Amax is 500, then, given a perfect spatial encoding, the angular distance between the two
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should be π
5

radians. The denominator of 5 comes from the fact that the temporal

relationship of their input signals is one-fifth of Amax.

The perfect encoding mentioned above is when the angular distance between two neural

inputs is not disturbed by relationships with other sibling inputs. Neural input positions

can suffer when they have multiple, divergent relationships. Distances can be stretched or

compressed. This will be highlighted in several tasks in the next chapter.

6.5.7 Building the Dendritic Tree

The creation of the AD neuron’s dendritic tree is broken into two steps: tree-building

and compartmentalization. Tree-building is the process of linking the set of neural inputs

based on their position within the dendritic field. We use the term link in this section to

differentiate between a connection as defined by the AD neuron model. Links are not part

of the model but they are a necessary step to define the dendritic tree’s connectivity. A

link is a parent-child relationship between inputs where the flow of signals move from the

child to the parent. All inputs are linked to form a tree which is used to compartmentalize

the structure.

The dendritic tree is built starting at the origin--the position of the

S-compartment--and moving outward through the dendritic field. Inputs are added to the

tree one at a time using a modified version of the minimum spanning tree algorithm

proposed in [39]. Algorithm 1 shows the steps used to build the tree. Initially, only the

S-compartment belongs to the dendritic tree. On each iteration, all inputs in the set of

unconnected inputs, U = {ui|i ∈ I} where I = {0, 1, . . . , n}, are compared to the set of

connected inputs C = {cj|j ∈ J} where J = {0, 1, . . . ,m}. A pair of inputs are chosen,

(u, c) | u ∈ U, c ∈ C such that d(u, c) = min(d(ui, cj)) ∀i ∈ I, j ∈ J where d gives the

distance between two inputs. d uses both the angular and radial distances between input

positions and the current path length to c when searching for the nearest pair. In other
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words, a nearest pair, one from each set U and C, is chosen and a link is added between

them such that u is linked to c.

Tree building creates a minimum spanning tree with one critical addition. When adding

an unconnected input to the tree, the length of the dendritic path from the root to the

potential link point is taken into account. The path length is scaled by bf , the branch

factor. bf controls both the length of each branch when measured from the origin and how

frequently existing dendrites bifurcate into child branches.

Algorithm 1 Building the dendritic tree.
Require: Disconnect all inputs
bf ← branch factor
C ← Set of all connected inputs
U ← Set of all unconnected inputs
s← The dendritic neuron’s S-compartment
C ← C

⋃
{s}

U ← U − {s}
while U ̸= ∅ do
ċ← any element in C
u̇← any element in U
ċbf ← bf ∗ path length from s to ċ
ḋ← ċbf + distance between ċ and u̇
for all c ∈ C do
cbf ← bf ∗ path length from s to c
for all u ∈ U do
d← cbf + distance between c and u
if d < ḋ then
ḋ← d
ċ← c
u̇← u

end if
end for

end for
Link u̇ to ċ
C ← C

⋃
{u̇}

U ← U − {u̇}
end while

The plots in Figure 6.4 show the effects of the tree building algorithm 1 for ninety-nine

inputs (blue) and the S-compartment (orange) using different values for bf . Neural input
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positions are identical for all figures. A lower branching factor produces fewer dendrites

rooted at the S-compartment. For bf=0.1 (6.4a) and bf=0.25 (6.4b), there are only two

links to the S-compartment. For bf=0.5, (6.4c), there are five. bf=0.75 (6.4d) produces

eight S-compartment links. And bf=0.9 (6.4e) produces fourteen. At the extremes (not

shown), bf=0.0 can produce as few as one S-compartment link and bf=1.0 will almost

always produce as many S-compartment links are there are inputs.

As bf increases, the tree changes shape. Between bf = 0.1 and bf = 0.25, only a few

inputs in the top left and right of the plot alter their linkage. Increasing bf to 0.5 has a

drastic effect. It has few sub-trees in common with bf = 0.25. As bf approaches 1, there is

little lateral movement in the trajectory of subsequent, deeper links.

bf has two major effects on the shape of the tree. First, bf determines the average

length of dendritic paths. A low bf produces very long paths with many links. Second, bf

limits the angular range within which subsequent links will be made. When bf = 0.9,

subsequent links are made within a small angular offset from the previous link. In other

words, a high bf favors straight dendritic paths. The combined impact of these two effects

determines how far inputs can be from one another and still share the same dendritic path.

Looking at bf = 0.1, we can see that the two S-compartment-rooted trees fan out each

covering half of the dendritic field. This is the same for bf = 0.25. Using spherical input

positions, a low bf can link inputs located on the same shell (close input-output

relationships). On the other hand, a high bf favors links between inputs whose angular

distance is small (close input-input relationships).

Tree-building guarantees that all neural inputs to an AD neuron are linked to form an

acyclic network or tree. Once all inputs are linked, compartmentalization begins.9

9In our implementation they work in tandem. As new inputs are linked, they are either added to an
existing compartment or define the start of a new one.
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(a) (b)

(c) (d)

(e)

Figure 6.4: An example of the tree building algorithm 1. Each figure uses the same set of
input positions with a different branching factor (bf) value. (a) bf = 0.1 (b) bf = 0.25
(c) bf = 0.5 (d) bf = 0.75 (e) bf = 0.9. The blue dots are the positions of neural inputs.
The orange dot is the origin (or eventual S-compartment position). Black lines denote links
between neural inputs. Note: the input positions in this example use x,y-coordinates rather
than 3D spherical ones to simplify the visualization.

132



6.5.8 Compartmentalization

Compartmentalization uses the acyclic network created by the tree-building algorithm

to assign neural inputs to a set of compartments. The number and shape of compartments

depends on many factors, such as the maximum compartment length, the position of

neural inputs and in which order inputs are linked. Compartmentalization uses both

position and connectivity. Algorithm 2 defines the process of compartmentalization.

Compartmentalization begins at the origin of the dendritic field. At the origin the

neuron’s S-compartment is created. Following the links of the tree, inputs are added to the

current compartment until the dendritic path linking them back to the S-compartment

exceeds the maximum compartment length. A compartment root is the first input added to

an empty compartment. The maximum length of a compartment is given by Lmax in Table

6.3. Distances are measured using the links of the dendrite (the network distance). If the

next input selected to add to a compartment would extend the compartment beyond Lmax,

a new compartment is generated with length zero and the next input becomes its root.

Once all inputs have been assigned to a compartment, internal connections (as defined

by the AD neuron model) are created between compartments. Links between inputs that

span compartments are upgraded to fully-fledged connections. The distance between these

inputs becomes ve for this new connection. For each input within a compartment, its

network distance to the compartment root is calculated. This value is used to create ve for

the incoming external connection of which the neural input is the terminal end.

This process of replacing links with connections is depicted in Figure 6.5.

It may not be obvious at first glance why this two step compartmentalization makes

sense. For the middle compartment, the external connection from D arrives at the

compartment root. During the second stage, ve for the D external connection is assigned 0

because there is no separation between its position and the root. It is the root. Compare

this to the external connection B which gets a ve equal to 18. The separation between B’s
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Figure 6.5: A two-step depiction of building compartments from a segment of a dendritic tree.
In the left pane, neural inputs (blue) are compartmentalized using an Lmax of 20. This creates
three compartments (purple). Labeled external connections are in green. Dotted black lines
show the links created during tree-building. In the right pane, inputs are collapsed into
single entity compartments. Links provide distance information for the connections, both
internal (orange) and external (green).

point of arrival and the compartment root is 18, given by a link of 8 and one of 10. The

internal connections, on the other hand, simply replace links.

The reason external connections inherit measures of separation which appear to be

internal to the AD neuron goes back to the discussion around Figure 6.1. External

connections do not carry a measure of inter-neural separation. The compartmentalization

algorithm must only maintain the distance between its point of arrival in the dendritic field

and the root compartment. Again, this design choice was made because we are only

focused on single neurons. The alternate would simply add the inter- and intra-neural

distances to get the ve of an external connection.

Operationally, the AD neuron in its final form consists of connections and

compartments.

There are several quirks to this algorithm.

First, the degree of branching in a dendritic tree can increase or decrease the size

(number of inputs) of compartments. Compartments are created from the root (or a

sub-root for subsequent compartments) using the tree’s paths. Compartment length is

synonymous with tree depth. Since compartment length is measured from the compartment
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Algorithm 2 Compartment creation.
Require: No disconnected components in the dendritic field
S ← a stack of inputs
o← S-compartment
co ← new compartment ID
K ← set of inputs linked to o
for all k ∈ K do
dk ← 0
ck ← co
Push k onto S

end for
dmax ← maximum compartment length
while S ̸= ∅ do

Pop i from S
J ← all children of i
for all j ∈ J do
dj ← di+ distance from i to j
if dj ≥ dmax then
cj ← new compartment ID
dj = 0

else
cj ← ci

end if
Push j onto S

end for
end while

root, branching increases the number of dendritic paths under consideration, potentially

decreasing the length from the root to a candidate for inclusion in the compartment.

Second, Algorithm 2 does not isolate the S-compartment but allows neural inputs to be

included in it. Therefore, maximum compartment length also defines the distance at which

dendrites begin because all inputs whose network distance is less than Lmax are included in

the S-compartment (the soma). If all inputs fall inside this distance, the AD neuron is

adendritic (a point neuron). An alternate version of the algorithm alters a single line,

changing ck ← co to ck ← new compartment ID. This alternate version forces all inputs to

occupy dendrites; the S-compartment contains no neuron inputs (i.e., external connections)

but only receives signals from compartments which belong to the AD neuron.
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This work uses the alternate version exclusively because it simplifies our

implementation and focuses only on signals arriving on dendrites. Otherwise, results have

not led us to favor one version over the other. We have experimented with both versions

and in the experiments both versions produced qualitatively similar results.

6.5.9 Weight Modification

Angular position encodes input-input relationships. Radial position encodes

input-output relationships. The dendritic tree encodes an ordering of the inputs drawn

from their positions. Compartmentalization encodes sub-patterns based on clustering

caused by the aforementioned encodings.

So, which aspect of neural activity would be captured by weight modification that is

not captured by its other properties?

Chapter 4 stated that a connection’s weight gives its importance at the compartmental

level. Therefore, weight training encodes a connection’s contribution to the compartmental

response. When a compartment emits a spike, all of its connections are evaluated for

weight modification. Connection weight is modified using a method similar to the angular

and radial training components. The compartment spike time is compared to the most

recent spike received through each of its connections. The closer these two times align the

greater the change in weight.

Figure 6.6 shows an example compartment and how the timing of

compartment-connection spikes create ŵ. The top half of the figure shows a diagram of the

compartment. Link information is shown to give a spatial dimension to the visual.

Compartment 1 contains four connections: A, B, C, and D. D, in green, is the root of the

compartment. A compartment root is the final connection, with respect to the forward flow

of information, of the compartment. The numbers in black above each link in the dendritic

tree indicate distances between connections. For example, the distance between A and D is

15. Five signal times are given for the compartment and the four connections. Connection
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signals times are SA, SB, SC and SD. The compartment’s signal time (S1) is the spike time

of the compartment.

The bottom half of figure 6.6 plots the possible values for ŵ for each connection (black

line). For example, connection D’s distance to the compartment root is 0 (because it is the

root); therefore, the max ŵ for D is when SD = S1. In this case, the difference in timing of

their signals is 5 (80-75) so the change in D’s weight is minimal. C, on the other hand,

received a signal 20 time steps before S1. Since the distance between C and the root is 20,

ŵ is maximal (red line cuts through the peak). Note, the ŵ plots extend to time 90 to

show the full rise and fall of D’s calculation for ŵ.

Compartmental-connection timing takes the dendritic tree into account. In other words,

when the temporal difference between compartmental-connection signals matches the

length of the dendritic path between them, weight change is maximal.

ŵ =
ϵ

(((tc − ti)− di)bw)2 + 1
(6.22)

Equation 6.22 gives the change in weight due to a compartmental signal. When a

compartment emits a signal all connections i ∈ C, the compartment, are modified using

Equation 6.22. tc is the time of compartmental signal. ti is the time of the most recent

signal received by connection i. di is the distance as measured by the dendritic path from

connection i to the compartment root. bw is a shape parameter similar to the b used

elsewhere10 . And ϵ is the error value. ŵ is then applied to wc the connection strength.

Input weight consists of two parameters: the maximum weight, wm and the current

weight, wc. Together these combine to form the actual weight, wa. Equation 4.3 in chapter

4 showed how wa is calculated.

This equation was chosen because it avoids the necessity of artificially capping the

growth of wc. As wc gets very large W approaches the maximum weight, wm (or −wm for

10In all experiments bw = 1. It could be omitted from this equation for the purpose of this thesis
but we include it to show that, like connections, a shape parameter can be used to alter how precise
compartment-connection timing must be to modify connection weights.
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extreme negative values). This formulation has the added benefit of representing the

longevity of an association. When wc is very large (or small), changes in its value have a

small impact on W . This makes an established weight more robust to outliers or other

types of irregular input.
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Figure 6.6: (Top) An example compartment with four connections and weight modifications
due to a compartment signal. Red box (dashed outline) delineates the dendritic
compartment. Circles indicate labeled connections which belong to the compartment. Blue
connections belong to the compartment. The green connection is the root connection of the
compartment. Numbers (Sx) above each connection and compartment indicate the most
spike time. Black arrows indicate links and the flow of information. Black numbers give
distances. (Bottom) Weight changes due to a compartment signal at time 80 (S1 = 80).
The intersection of red vertical lines and the black plots indicate the value of ŵ for each
connection. The error value in this plot is 1 for demonstration purposes.
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6.6 Miscellaneous Training Aspects

6.6.1 Random Mask

A random mask was used by several experiments to increase the angular separation

between unrelated inputs and/or patterns. Unrelated inputs (or patterns) are those whose

received signals do not coincide within the learning window. Due to random placement

during initialization, unrelated neural inputs can cluster together within the dendritic field.

This causes them to be grouped together in the same compartment which can impact

performance.

To solve this problem, we added the random mask. The random mask was inspired by

visual masks used in neuroscience experiments. A visual mask is typically a neutral

example (e.g., white noise or random patterns) shown to the subject in order to disrupt

neural activity caused by a previous example.

A random mask consisted of randomly generated spike trains of low activity (≤ 10 Hz)

across all input sources. Spike trains were created using a Poisson process. Whenever the

mask was presented to the AD neuron, the global error variable was set to a negative value

(typically -1) causing coinciding input to drive neural inputs apart. The random mask

phase of training took place at the end of an epoch, after training and testing.

The random mask and negative error created a background repulsive force across the

dendritic field. This repulsive force was low enough such that genuine attraction between

inputs caused by actual data could easily overcome it.

We found that the random mask can be used in lieu of negative feedback in tasks which

contain multiple types belonging to a single category. For example, suppose we desired to

train a single AD neuron to respond to the letters ‘A’ and ‘B’. Since the two types share

some features, without any repulsive force, the active inputs encoding both types would

likely cluster into an indistinguishable mass. Using a mask, the cluster of inputs

corresponding to non-overlapping features of A will move away from the clusters of

non-overlapping features of B. And both non-overlapping clusters will separate from the
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(a) (b)

Figure 6.7: Example of the effects of using a random mask. Both images display the sum of
angular distances from each neural input to all sibling inputs. Darker colors indicate shorter
total distances. Both AD neurons were trained on all images of the digit 0 from the MNIST
handwritten digit data set using (a) a mask strength of -1 and (b) of -32. Mask rate was 10
Hz in both.

cluster of overlapping inputs. Cluster-level separation increases the probability that

clusters will occupy separate dendrites and/or compartments.

The strength of the mask, i.e., the associate error value, can also sharpen pattern

boundaries. A pattern boundary is a consistent difference in activity between two adjacent

features with respect to the original data (e.g., two adjacent pixels in an image). The

angular distance between inputs which fall on such boundaries increases with the strength

of the mask. Very strong mask values tend to exclude all but the most co-active inputs

from pattern clusters. On the other hand, a weak mask is overcome by any degree of

co-activity between inputs.

Figure 6.7 shows the general effects of the mask strength. Neural inputs are arranged

by their source’s placement within the image. Darker-colored inputs are closer angularly to

all other inputs. The stronger mask, 6.7b, creates a smaller pattern cluster in the number

of inputs compared to 6.7a.

Tuning the impact of the random mask was performed by hand. The effect of the mask

can be tuned using either the strength of the repulsive force or the spike rate of the random

trains. We favored a lower strength and higher spike rate. A higher rate causes more
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co-activity between all inputs and a lower strength reduces the variance between input

displacements due to a single mask. Such a mask was preferred because it has a uniform

impact. However, higher rates do increase training time due to the number of spikes

involved.

6.7 Comments on Training

6.7.1 Complexity

The amortized complexity of both input position algorithms--angular and radial--are

O(n) with n being the number of inputs to the AD neuron. How often they contribute to

the run-time of the AD neuron’s overall update algorithm depends on several factors, such

as incoming signal rate and the S-compartment output rate.11

The tree building algorithm is O(n3). On paper, this is the most computationally

expensive aspect of AD training. However, experience tells us that learning does not

benefit from rebuilding the tree after every example so its impact can be reduced.

Rebuilding after every one hundredth or one thousandth training example (every epoch)

seems adequate. More testing is required to know the true of impact of delayed rebuilding.

Compartment creation, in isolation, is O(n) and like tree building does not need to

happen after each example. In fact, since regenerating compartments only makes sense

once a new tree has been built, which takes into account new input positions, compartment

creation can be woven into the tree building algorithm. Therefore, in practice, it does not

add an additional linear time before the beginning of an epoch but simply a constant

amount of work to the outer most n of the tree building algorithm.

Weight training is harder to categorize since it is highly dependent on the shape of the

tree and how widely active the neuron’s set of inputs are. Only active compartments

modify connection weights. If only a subset of a neuron’s inputs are active and they alone

11Since our implementation uses Izhikevich spiking neurons, run-time also depends on the neuron type;
some types produce more spikes given the same input.
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belong to a single compartment, then the run-time of the weight training algorithm is

linear in the size of the active subset. In the worst case, it is O(n) in the size of all inputs

to the AD neuron. This occurs if all inputs belong to one compartment.

Overall, an inactive AD neuron’s training regime is O(1) as nothing moves without

activity and if nothing has moved, there is no need to rebuild the tree or regenerate

compartments. At its worst, it is O(t(n2 + 2n) + n3) for one example if every input

received a signal every time step, the S-compartment emitted a signal every time step and

the tree and compartments are regenerated after every example. t is the number of time

steps devoted to a single input example.

6.7.2 Approximating a Centroid on the Surface of a Sphere

Each signal that arrives in the dendritic field, the receiving neural input seeks a new

position. It is pulled toward each active sibling input based on the recency of the sibling’s

last received signal. The optimal new position of the receiving input is the centroid of these

attractions. In mathematics, this is known as the Fréchet mean on a 2-sphere.

Finding the Fréchet mean is nontrivial [4, 9, 47]. Since it is a closed surface, there can

be more than one mean point which minimize the geodesic distance to a set of points.12

Current methods for approximating the means are computationally expensive, consisting of

heuristic methods such as branch and bound, Monte Carlo and gradient descent.

In the AD neuron, the Fréchet means must be approximated for each incoming signal.

It does this by moving an input along the geodesics between the input and all other active

inputs. Together these moves constitute a single attempt to find the mean. However, we

are not as interested in a perfect approximation for a single signal but in how well the

approximation converges on the true mean through time and repeated activity. Therefore,

it is enough if the set of moves produced by each signal position an input closer to a

bounded space around the actual mean. Once the input enters this bounded space, it does

12A closed surface is compact and has no boundary; therefore, a great circle which passes through two
points defines two geodesic distances between them. For antipodal points, there are infinitely many means.
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(a) (b)

(c) (d)

Figure 6.8: Simulation of the angular training algorithm for 1 input and 100 static sibling
inputs using Cartesian coordinates. Top plots use a learning rate, λ = 0.01. Bottom plots,
λ = 0.001. (a) and (c) depict the distance between the approximated mean and the actual
mean over the entire run. (b) and (d) show the sibling inputs (black dots), the mean (red)
and the path of the approximated mean (green).

not exit it (unless the mean itself moves). Let us define this bounded space as the set of

points on the surface of the sphere which are within ϵ of the Fréchet mean.

To discover how well angular training finds and limits this bounded space around the

mean, we conducted a reduced simulation. Figures 6.8 depict a simulation of the angular

training algorithm for a single input in its search for the mean of activity generated by 100

sibling inputs. In this simulation, the sibling points do not move. Since these examples are

just for demonstration of the issue, we used Cartesian rather than spherical coordinates.
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The top plots use a learning rate (λ) of 0.01 whereas the bottom plots show the

simulation with a learning rate of 0.001. Otherwise, the simulations are identical. Figures

6.8a and 6.8c give the distance between the approximated mean and the actual mean

across 1,000 time steps.

The smaller learning rate resulted in a tighter bounded region around the actual mean

(ϵ ≈ 2 for λ = 0.001 and ϵ ≈ 50 for λ = 0.01) but a slower convergence (2 ts for λ = 0.01

and 70 ts for λ = 0.001). The right side plots show the input’s path (green) toward the

mean (red).

This reduced simulation shows that the angular training algorithm does approximate

the mean given enough time and activity. Angular training is itself a heuristic to

approximate the Fréchet means, not for a set of static points but for patterns of activity

arriving at a set of points. For a set of input examples, the mean with respect to a single

input’s position in the dendritic field is not fixed. Input positions change during training

therefore the mean changes. With enough training epochs, an input’s learned position

converges toward the mean of means.

In this reduced simulation, activity is kept to consistent levels and activity at each

input varies predictably. If activity varies drastically and the actual mean moves

significantly with each example, the smaller learning rate performs less well. The

approximated mean (i.e., the position of the input in question) cannot make large enough

shifts. For data with a large variance between examples, a larger learning rate allows the

approximated mean to keep up with the actual. For such data, the error rates (like those

shown in Figures 6.8a and 6.8c) have a wider range.

However, the larger learning rate performs slightly better. It is unclear if this is

desirable. Even if the training algorithm matches the actual mean by making large jumps

in its approximation, this causes an instability in the dendritic tree. Since connectivity and

compartmentalization depend on input position, large changes in input position drastically

alter the shape of the neuron.
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Figure 6.9: Demonstration of the differences caused by altering update order. Red dots (A,
B, and C) are input positions. Black dot (O) is the origin. Orange and blue dots and lines
show changes to p̂i’s position using two different update orders. Blue: C-B. Orange B-C.
Grey lines are a visual aid to help with distance and orientation of the inputs from the origin.

Its approximation of the mean is also dependent on the order of evaluation with respect

to sibling positions. Different orderings of the sibling inputs will produce different final

positions of p̂i. This is demonstrated in Figure 6.9.

In Figure 6.9 a signal arrives at A. Both B and C have also received signals within the

learning window. The orange and blue lines depict the path of p̂i as it is moved toward

both B and C using different orders. For the orange case, p̂i is moved first toward B and

then C. For the blue case, the opposite is true: C and then B. Only the order was altered

yet their final positions (positions 2) are different.

6.8 Summary

This chapter described a suite of algorithms by which AD neurons can be trained.

Training consists of positioning inputs, connecting them, grouping them into compartments

and altering the connection weights. Input position is determined by co-activity. A

modified minimum spanning tree algorithm uses the trained input positions to build the

146



tree. Compartments are grouped using a network distance metric. Connection weights are

adjusted based on a comparison between input and compartmental output times. AD

training is unique because it creates a network shape informed by the behavior of its input

and output.

Dynamic network topology is atypical for ANNs. Connections are usually fixed. Input

location is preset. The sets of connections which come together linearly are pre-configured.

Training moves through a single mechanism, the connection weight. This simplifies the

training process. A neural network models layers and layers of functions composed of other

functions. Rearranging the network recomposes these functions potentially disrupting

attempts to find a solution through standard learning methods like gradient descent or

evolutionary search. Altering the shape of the network during training potentially disrupts

many of the high-performance optimizations on which state-of-the-art ANNs depend

(e.g. fast matrix operations). This approach stands in contrast to existing AI work on

artificial dendrites which favors predefined dendrites or sub-networks so as not to

completely wreck access to off-the-shelf, high performance hardware.

But stepping back further, AD neuron training is not generating the entire network.

The dynamism of the AD neuron is an internal matter. From a distance, the ADNN

(Artificial Dendritic Neural Network) looks like an ANN. Connections between two AD

neurons, between the S-compartment of one and the dendritic field of another, are not in

question. The AD neuron only concerns itself with where in the field it connects. This

suggests that the AD neuron training algorithm is amenable to current optimizations.13

The preceding approach depends on the assumption that clustering based on co-activity

is computationally beneficial. This assumption is undergirded by neuroscience research:

fire together, wire together[143]. However, this assumption is not a universal dictum for all

neural circuitry. It is likely a variety of rules will be necessary to make the AD neuron

13To accommodate the mutating tree, perhaps all that is needed is a neuron-level lookup table. This
is precisely how connections are handled in this work’s implementation of the training algorithm; however,
it was not done in the context of a larger network of AD neurons or pushed onto specialized hardware,
e.g. GPU.
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more of a general tool. With this in mind, this approach to training was designed to be

modifiable to allow for different rules and training behaviors. Our goals are simple: provide

an extensible starting point. Throughout we have attempted to provide a general approach

to training which supports modification.

The preceding approach does have several issues which are highlighted in the following

chapters. The following chapter delves into a series of experiments which helped to refine

and test the individual algorithms of AD neuron training. The final discussion chapter

walks through many of the issues encountered during this work and the ways in which it

can be extended.
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CHAPTER 7

TRAINING CALIBRATION

This chapter describes how we calibrated the AD neuron’s training algorithm. We train

it on a collection of tasks to gain a better understanding of the algorithm in order to

determine an appropriate set of hyperparameters (Table 6.3). In the next chapter, we test

the AD neuron model on several categorization models to examine its performance on more

complex tasks.

Training an AD neuron has five parts, corresponding to angular positioning, radial

positioning, dendritic tree-building, compartmentalization, and weight modification. Since

each of theses has a degree of independence from the others, we trained each in isolation as

well as together with the others. This allowed us to understand how each works by itself

and as part of a team.

7.1 Angular Position Training

We first trained angular position alone to see if it would produce stable and explainable

patterns in the dendritic field. The goal of these tasks is to see if the angular training

algorithm correctly encodes the temporal relationships between average spike times

received by neural inputs into matching positions within the dendritic field. For example, if

one input repeatedly received a spike 50 time steps after another, the angular distance

between them should encode this temporal relationship (see Section 6.5.6). We will also

show that angular distances can be warped by multiple, complex relationships.

If the post-training separation between input positions is not representative of patterns

within the set of input examples, subsequent steps of the training process could be in vain.

Compartmentalization and tree-building are designed to take advantage of a meaningful

spatial encoding of inputs within the dendritic field.
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To answer this question, we presented an AD neuron with simple input patterns that

should be easily recognizable in post-training input positions. The AD neuron was

initialized with a small set of afferent connections. Each connection received input in the

form of signals (i.e., spikes) at a specific rate from an input source using a Poisson process.

The number of connections and spike rates vary between tasks. All training processes other

than angular positioning were disabled. For all tasks AD neurons were initialized using the

initialization procedure from 6.5.2.

Specific input rates were selected because they produced recognizable differences in

angular (and later radial) positions. Generally, 100 Hz was used as an upper bound on

rates because rates above 100 Hz produce tight clusters in input positions which impact

visualization when displayed alongside clusters produced by lower rates. Input rates also

affect other AD neuron parameters, such as the dimensions of the dendritic field, therefore,

rates are generally kept within 20 to 100 Hz.

7.1.1 Task 1

Task 1 consisted of 21 input sources which were grouped into four patterns. Patterns

are shown in Table 7.1. Each pattern activated 5 unique sources and all patterns activated,

or shared, one source: 0. When a pattern was presented to the network, sources that

belonged to it produced signals at a rate of 100 Hz. Sources that did not belong to it were

silent (0 Hz).

A 21-input neuron was initialized using the method described in 6.5.2 with parameters

from Table 6.3 in general, although Amax was set to 100 to make input distance

calculations more intuitive.

An AD neuron was instantiated with 21 neural inputs receiving signals from the 21

sources. AD neuron parameters were drawn from those given in Table 6.3 with one

exception. Each input was connected to a source of spikes. The rate of spikes was the same

for all sources for each iteration of this learning task, e.g., 100 Hz, but was changed
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Pattern 0 0 1 2 3 4 5
Pattern 1 0 6 7 8 9 10
Pattern 2 0 11 12 13 14 15
Pattern 3 0 16 17 18 19 20

Table 7.1: The four patterns, color coded, of Task 1. Gray designates shared connections.

(a) (b)

Figure 7.1: Task 1: Four patterns, 6 sources per pattern, 1 source shared by all patterns.
Pattern colors correspond to those given in Table 7.1. The gray-colored neural input (0)
is shared by all patterns. (a) Angular positions after 100 epochs. (b) The average angular
distance within patterns over 100 epochs. Distances are angular measured with respect to
the center of a unit sphere.

between iterations to test how input rates form different spatial relationships between

input locations in the dendritic field. The timing of the spikes was controlled by a Poisson

process for each input source.

Different patterns to learn were created by activating different sets of input sources.

The different patterns are shown in Table 7.1. Each iteration of the learning task consisted

of 100 epochs of 100 examples drawn randomly from the four patterns. We made no

attempt to ensure the patterns would be equally represented in each epoch or overall.

The AD neuron was exposed to each example for 1,000 time steps during which the

angular training algorithm was active. A random mask was used with a rate of 10 Hz, a

weight of -1 and an exposure time of 10,000 time steps per epoch.
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In the base variant of this task (Figure 7.1), all input sources spiked at the same rate

(100 Hz.) creating an equal positive relationship between all inputs within the same

pattern. The task was run for 10, 100 and 1000 epochs. Only the 100 epoch run is shown.

Input positions clustered corresponding to input patterns. Pattern clusters encircled the

shared neural input, 0.

A shared input was included to test the angular training algorithm’s ability to form

meta-patterns (or, patterns composed of patterns).

Inputs within each pattern form rough circles because each input receives signals at the

same rate. A slight compression of the cluster is visible. This is not an artefact of the

spherical field but due to the peripherally positioned inputs being pulled inward by both

centrally located inputs and input 0.

Relative input positions do not visibly improve beyond the first few epochs. This is due

to the relatively strong attraction between inputs (e.g., 100 Hz spike rate) in relation to

both the size of the dendritic field (i.e, Amax) and the strength of the random mask (10

Hz). If the spike rate or learning rate is reduced, clustering takes longer.

The order of pattern clusters around the shared input varies each time the task is run.

In the run shown in Figure 7.1a, starting with pattern 0 and working clockwise, the order

is 0 (blue), 3 (red), 2 (green), 1 (orange). Once pattern clusters coalesce their order does

not change over subsequent epochs. The countering forces of attraction (pattern-based

activity) and repulsion (mask activity) are balanced thus keeping patterns in place. It is

possible to force a possible reordering of the pattern clusters by exposing the AD neuron to

a single instance of a strong or unequal mask--scattering the positions--however, this is not

guaranteed to cause a reordering of the clusters or neural input positions within a cluster.

Our method for finding a clustering-scattering balance was to vary the mask strength or

duration while leaving inputs fixed.

Figure 7.1b shows that average angular distance falls to approximately 0.36 radians.

The standard deviation of the average angular distance after the second epoch is 0.007.
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The SD shows that the spatial encoding is stable. Using the fact that the maximum

possible angular distance between two positions is π, we can calculate how well an average

angular distance of 0.36 encodes the relationship between spike rates: 0.36
π
≈ 0.11. Given

that Amax = 100, 0.11 translates to an average time between spikes of 11 time steps. This

is close to what we would expect with a rate of 100 Hz. A perfect encoding would be

10π
100
≈ 0.31. With 1,000 epochs, the average input distance within patterns improves to

0.34. If input 0 is omitted from the distance calculations, the average distance is 0.32.

What these distances encode is not the spike rate of one input source but the average

interval between input signals. Neuroscience refers to this as the interspike interval (ISI).

When all sources spike at the rate of 100 Hz, which is well below Amax, the maximum ISI

capable of affecting input positions, the average ISI of all sources contributing to a single

pattern approaches 10 milliseconds. However, when rates vary and some of them are near

or slower than Amax, calculating the average ISI of a pattern or a subset of its sources, is

more difficult. To estimate complex ISIs (and the simple one above) we used the Python3

script given in B.1. All target rates are found using this script.1

What effect does the random mask have on neural input positions? Figure 7.2 shows

input positions after 1,000 training epochs without a random mask. The inputs belonging

to each pattern cluster in a circular arrangement similar to the baseline example. However,

without a mask, the clusters overlap. Without the mask, clusters are guaranteed to overlap

due to the shared input source 0.

Removing the random mask, after 100 epochs, the average angular distance falls to

0.326 or an ISI of 10.3. The mask, then, disrupts the spatial encoding of input positions.

For this task, it translates to a 10 Hz disruption, which, again, matches the 10 Hz spike

rate of the mask. In theory, one could, once input positions are established, readjust

1The Python3 script B.1 actually gives an average ISI slightly under the expected value. For N input
sources with a spike rate of 100 Hz, as the length of the simulation goes to infinity, the average ISI goes to
9.999. We are unsure whether this approach from the smaller side to the expected value is a problem with
the script or the true result.
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Figure 7.2: Task 1 without a random mask. Training lasted for 100 epochs.

positions to remove the mask’s effect. We suppose that the vector of such corrections

would be toward the cluster’s centroid. 2

Zooming in on each pattern, non-shared inputs form a rough circular shape. It is

impossible for more than three points on a 2-dimensional surface to be equidistant;

therefore, some input positions must be closer than others. With each signal, inputs jostle

for position, and, due to initial positions, certain inputs belonging to the same pattern

become immediate neighbors within the dendritic field. In pattern 3 (red) in figure 7.1a,

for example, the pairs of connections (16,20), (20,18), (18,19), (19,17), and (17,16) are

closer than any other pairings of inputs of the pattern. In fact, the average angular

distance of similar pairings across all patterns is 0.29 which is less than the perfect

encoding given above.

Pattern size also has an impact on spatial encodings. Figure 7.3 depicts the results of a

tangent task which examined spatial encoding in situations where many input sources with

correlated spike rates (100 Hz), i.e., belong to the same pattern.

In this task, the input data set consists of one pattern which includes all sources. Each

input source spikes at a rate of 100 Hz. No mask was used to mimic the mask-less variant

2We do not make this correction in any of our tasks. Due to the immaturity of the training algorithm
we are uncertain whether such small, post-training adjustments will have a meaningful impact.
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Figure 7.3: An AD neuron with 50 neural inputs. The sources to all inputs belong to the
same pattern. All input sources spike at a rate of 100 Hz.

of the base task (figure 7.1a). In the figure, input positions on the periphery of the cluster

form a tightly packed ring, whereas those on the inside of the cluster seem less compact.

For example, connections 6 and 49 have a final angular distance of 0.04 and an average

distance over 100 epochs of 0.18. Interior neighbors 10 and 13, by comparison, have a final

angular distance of 0.11 and an average distance of 0.42. The average distance of all 50

input positions over 100 epochs is 0.3. The average distance of 50 positions is smaller than

that of size 6 clusters when no mask is used. The reason for this is that each input is pulled

into the cluster by its distant siblings and repulsed by those to whom it is too close. For

large patterns there will be far more distant sibling inputs than near ones, causing a

compaction of the cluster.

We ran two variations of Task 1 to test qualitatively whether clustering is sensitive to

input rates or if angular positions are the result of a type of saturation due to repeated

attraction. To test this we varied the spiking rates within patterns. If clustering is not due

to saturation, different rates should produce different degrees of clustering.
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(a) (b)

Figure 7.4: Variants 1 and 2 of Task 1. Dots are the final input positions after 100 epochs of
training. Colors designate the pattern membership of the input source. The gray dot is the
connection shared by all four patterns. (a) The input sources of pattern 0, inputs 0, 1, 2, 3,
4 and 5, spiked at a rate of 1 Hz. The spike rates of the other patterns remains unchanged
at 100 Hz. (b) Input 0 of pattern 0 is set to spike at 1 Hz. The rates of inputs 1, 2, 3, 4 and
5 were set to 100 Hz. Again, the rate of the other patterns remained at 100 Hz.

For the first variation (Figure 7.4a), all sources of pattern 0 (0, 1, 2, 3, 4, 5) were set to

a 1 Hz spike rate. The spike rate of the other patterns remained unchanged (100 Hz). The

low spike rate of pattern 0 represents a scenario where its input sources are weakly

correlated compared to the other patterns. In fact, the correlation between inputs of

pattern 0 are, by rate, weaker than the random mask (10 Hz).

Neural inputs 1, 2, 3, 4 and 5 form a semi-circle centered around input 0 but outside

the other more strongly correlated patterns 1 (orange), 2 (green) and 3 (red). Attractive

forces in a complex scenario do follow paths of least resistance in the dendritic field. There

are field dynamics at work that, for example, cause neural inputs 1, 2, 3, 4, and 5 to form a

semi-circle. As the clusters coalesce during the initial epoch, these inputs are the last to

arrive at the meta-cluster. They then migrate along the periphery toward each other.

Their presence on one side of the meta-cluster causes the inputs of pattern 1 to be

compressed slightly compared to the other pattern clusters (angular distance of pattern 1

was ≈ 29 compared to ≈ 31 for patterns 2 and 3).
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Pattern 0 0 1 2 3 4 5 21 24
Pattern 1 0 6 7 8 9 10 21 22
Pattern 2 0 11 12 13 14 15 22 23
Pattern 3 0 16 17 18 19 20 23 24

Table 7.2: The four patterns, color coded, of task 1, variant 3. Gray designates the
shared-by-all connection. Purple designates connections shared by two patterns.

This variant demonstrates that weakly correlated input rates manifest as loose clusters.

And it suggests that pattern shapes (circle vs semi-circle) are the result of field dynamics

created by the input rates of all sources.

For the second variation (Figure 7.4b), all input sources in all patterns were set to 100

Hz. The exception was input 0 of pattern 0, which was set to 1 Hz. The previous variant

examined the effects of different input rates between patterns. This variant examines the

effects of different rates within a pattern.

The five connections of pattern 0 receiving spikes at a rate of 100 Hz (inputs 1, 2, 3, 4

and 5) cluster at angular distances identical to the other patterns. But pattern 0’s weak

association with the shared input 0 causes it to stand away from the meta-cluster of

patterns 1, 2 and 3. Although, pattern 0’s non-shared inputs are twice as far from input 0

as those of the other three patterns, its presence still creates a void in the space near input

0. This is due to the vector, or direction, of the repulsive forces during the random mask

caused by the tight cluster. The vector of the repulsive forces of the mask depend on input

positions. Since inputs 1, 2, 3, 4, and 5 are tightly clustered, as are the inputs of the other

patterns, the repulsive forces they emit during the random mask all have a similar vector.

The consistent direction of repulsion causes the void in meta-cluster around 0 where

pattern 0’s inputs would occupy if all sources for all patterns shared the same input rate.

Variant 3 adds more shared inputs to create more complex relationships between

clusters. Input 0 continues to be shared by all four patterns. Each pattern is paired with

two other patterns through two shared inputs. For example, pattern 0 shares input 21 with

pattern 1 and input 24 with pattern 3. In total, each pattern contains three inputs which
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Figure 7.5: Variant 3 of Task 1. Dots are the final input positions after 100 epochs. Colors
designate pattern membership. The gray dot is the neural input shared by all four patterns.
Purple dots are the inputs shared by two patterns. All input sources of all inputs spiked at
a rate of 100 Hz.

are shared with other patterns (Table 7.2). Figure 7.5 shows the results of training input

positions after 100 epochs. As in the base version of task 1, the four patterns form a ring

around input 0. Patterns with a mutual input source settle into neighboring spaces.

Mutual inputs (purple dots) settle into the space between the patterns that share them.

Unlike the base variant, patterns coalesce in a fixed order around input 0. They will always

have the same neighbors. We did run a version of variant 3 (not shown) without the

random mask to test whether added mutual inputs themselves provided more structure to

the relationship between pattern clusters. The mutual inputs did increase separation

between patterns by pulling the set of unique inputs of a pattern in opposite directions.

There was still some degree of cluster overlap within the dendritic field but less than in the

base variant.
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Task 1 and its variants were designed to test how well the training of neural input

positions mimicked relationships embedded in a set of inputs. Input size and pattern

complexity were kept small and simple to allow for visual qualitative assessment. As a

baseline measurement we expected that tightly correlated inputs (a high rate of input)

would move closer together in the dendritic field than loosely correlated inputs. We also

demonstrated that the AD neuron is capable of representing multiple patterns through

separate clusters and relationships between clusters through their relative arrangement as a

meta-cluster.

Figure 7.2 showed the result of Task 1 without the effects of the random mask. In fact,

this was the first version of this task. Through these tasks we discovered that pattern

clusters could occupy the same space within the dendritic field. Observation of the

overlapping positions led to the creation of the random mask (see Section 6.6.1).

7.1.2 Task 2

Task 1 raised several concerns. Were angular positions stable when patterns were less

clearly defined in the input data set? Or did wide variations in relationships cause

instability? Secondly, how did the training algorithm behave when tasked with a larger

complex pattern. To answer these questions, tasks 2 and 3 used two real-world data sets of

increasing size and complexity. The two tasks we selected were drawn from the UMI

Machine Learning Database. Both consist of noisy time-series data collected in real-world

scenarios. For both tasks, AD neuron parameters were set to the base parameters given in

Table 6.3.

The BLE RSSI Dataset for Indoor localization and Navigation is a time-series data set

of RSSI (or, Received Signal Strength Indication) readings taken from “an array of 13

ibeacons in the first floor of Waldo Library, Western Michigan University” [118]. ibeacons

are BLE (Bluetooth Low Energy) devices which transmit a unique identifier to nearby

mobile devices [169]. RSSI is a measure of the “power present in a received radio signal”
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Figure 7.6: iBeacon layout. Labeled green points signify iBeacon locations. The library floor
was divided up into a grid (letters for the x-axis and numbers for the y-axis) which provided
the location labels for the labeled training data. Note: this plan diagram was included in
the data set and was created by the authors of the data set.

[171]. The data was collected over several days for several minutes a day using an iPhone.

RSSI readings were logged from the 13 ibeacons every several seconds as the researcher

walked around the first floor of the library. RSSI readings range from -100 to 0. A value of

-200 is assigned to ibeacons which cannot be heard. Figure 7.6 gives a map of the library

and the ibeacon locations (green points).

We selected this data set for reasons of predictability and size. It contains relatively few

features (thirteen) and a relatively small number of data points. Normally, a small sample

size prohibits the generalizability of a model, but we are not interested in a wider problem

than presented by this data set. Also, even in busy scenarios (a university library),

fluctuations in RSSI readings are somewhat predictable: they increase in strength as one

approaches a source and fall off as one moves away. The data is also sparse in that

ibeacons were placed far enough apart such that for any given location only a few are heard

at any one time. This means that a location on the library floor will have a unique subset
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of RSSI readings. Our expectation was for neural input positions to cluster based on which

ibeacons were frequently heard at the same place and time. From the input positions we

expected to reproduce relative ibeacon locations.

An AD neuron was initialized with 13 inputs matching the number of ibeacons. Each

input received one of the RSSI signals. An input layer of Izhikevitch neurons was

instantiated to providing spiking input to the AD neuron. The Izhikevich neurons of the

input layer used the same parameters (including the baseline input) as the AD neuron.

To use RSSI readings as input to the network, the readings were altered by adding 100

and multiplying by 4. In doing so, input covers a wider range of values ([0, 400] versus

[0, 100]) which creates a wider range of input spike rates. Readings of -200 were set to 0 to

avoid them becoming inhibitory input. The data set consists of 1,420 labeled and 5,191

unlabeled examples. Labels indicate marked locations in the library.3 Since we are only

interested in training input positions based on ibeacon signals and are not attempting to

locate unlabeled readings on the library floor, we have combined the training and testing

sets. Furthermore, we scrubbed the data to remove any entries in which zero or one

ibeacons are heard. Entries with less than two signals will have no effect on angular

positions (they would be useful for radial or strength training). Scrubbing reduced the

total entries from 6,611 to 4,069. During training, readings were randomized. An epoch

consisted of 10% (or 407) of the total readings. Each of the 407 runs lasted for 1,000 time

steps. The dendritic tree was rebuilt after each epoch. A random mask was used to

separate connections which are never coactive. The random mask generated randomly

timed spikes using a Poisson process at a rate of 10 Hz. The network was exposed to the

random mask for 10,000 time steps after each epoch.

Figure 7.7 shows the results after 1,000 training epochs. Input positions are robust.

Repeated runs of task 2 produce qualitatively similar input positions. They only variation

we have seen in the placement of inputs 3 to 7. Some swap positions, e.g., 3 and 4.

3The data set was originally designed to be used for simultaneous location and mapping (SLAM) learning
tasks.
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Figure 7.7: Connection positions after 1,000 training epochs.

Referencing the placements given in Figure 7.6, there appear to be some similarities

between final input positions and ibeacon locations. For example, input 1 is flanked by

inputs 5, 8 and 9. And inputs 10, 11, 12 and 13 show some of their original order. Inputs 2

through 8 are clustered together. There are other similarities but overall the placements

deviate significantly. For example, beacon 13 is closer to 9 than 7.

To aid in the interpretations of these results, we calculated the average RSSI strength of

each ibeacon when another ibeacon’s signal is also heard (Figure 7.8 left). Dark blue

(average strength of -100) squares indicate two beacons were never heard simultaneously

(e.g., B4 and B9 or B1 and B13). Warm colors indicate a stronger average signal. The

average RSSI readings are not symmetric. For example, when B9 and B13 are active, B9’s
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Figure 7.8: Left: The average RSSI strength of each ibeacon (x-axis) in entries where more
than one ibeacon signal can be heard. Strengths are for ibeacons along the x-axis when the
ibeacon on the y-axis is active. The self-reference diagonal was intentionally omitted (set
to -100). Right: Normalized angular input distances rescaled to match the range of average
RSSI readings in the left figure. Note: the color bars do not have the same maximum because
no connections have an angular distance of zero.

RSSI is approximately -80 whereas B13 is -87. The right figure of 7.8 is a heat map of

normalized distances between input positions. They have been rescaled to fit the average

RSSI range of the left figure.

There is a qualitative match between the two maps with two groups related by RSSI

strength and angular distance: B1-B7 and B8-B12. B8 belongs to both groups. This is

evident on the floor map in that B8 lies centrally near the main doors. Similarly, input 8

lies at the center of the input cluster in the dendritic field.

How well do input positions represent the layout? In the previous task co-active sources

produced circular or ring clusters. This was caused by sets of related input sources.

Limiting the size of the ring clusters to 3 or 4 inputs exposes the second-tier relationships

in the data set. First-tier relations are those between two sources. For example, the

positions of inputs 10, 11 and 12 form such a cluster. The cluster does not match the linear

positions of their corresponding ibeacons. This is likely due to all three being commonly

heard. The shorter distances between 10-11 and between 11-12 show that these are the

neighboring pairs. The longer distance between 10-12 suggests they are heard together less
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(a) (b)

Figure 7.9: Left: Absolute value of the element-wise difference of the two figures of 7.8. The
color bar’s unit is RSSI. Right: The left figure scaled by the normalized count of entries in
which a pair of ibeacon readings are heard together. Counts were normalized by dividing by
the maximum count of all pairs.

often. On the other hand, the positions of inputs 11, 12 and 13 suggest the corresponding

ibeacons are not heard together as strongly. However, figure 7.8 suggests that the RSSI

readings for the latter group are somewhat stronger. An alternative explanation why they

differ might not have to do with the 10-11-12 cluster but with the 8-10-11 cluster. ibeacons

8 and 11 are heard frequently heard together, so it likely the shape differences are due to

11 being pulled toward 8 rather than 12 to 10.

The left figure of 7.9 shows the element-wise difference of the two previous figures.

Angular distances closely match the average RSSI. The mean and median of all differences

are 3.84 and 2.75 respectively. The two large clusters of beacons mentioned above are

evident in the dark blue blocks on the bottom left and top right. The stronger relationships

between these ibeacons signals aids in positioning inputs to match. The larger differences

(top left and bottom right) occur between beacons which do not share strong average RSSI.

Figure 7.9b scales the left by a normalized count of the number of times pairs of

ibeacons are heard together. In other words, we are emphasizing the differences between

pairs which are frequently heard together and deemphasizing those with few. Doing so
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eliminates much of the differences between average RSSI and angular distance (mean: 0.26,

median: 0.05).

Interestingly, the input positions also encode, albeit indirectly, obstacles within the

space. Similar to the mask-less variant of task 1, relative connection positions are less

meaningful between input sources with infrequent co-activity. Certain spatial relationships

in the real-world placement of ibeacons do not manifest in the dendritic field. For example,

B12 and B13 neighbor B7. However, their signals, (B7-B12) or (B7-B13), are never heard

together. It is probable this is due to the large room and elevator separating them thus

limiting the paths between them. The same applies to B6 as well as to B1-B10. The

stairwell limits paths between them to also passing through B8 or B9. This is also evident

in the dendritic field with the position of input 8 between 1 and 10.

The angular training algorithm encodes in the dendritic field paths through a complex

space. This presents an interesting application to this specific part of the AD neuron

training algorithm. We believe the encoding could be improved with many more examples.

The data set contains an uneven distribution of readings over the ibeacons. It is unclear

from the data set whether the paths are specific to the task, random or represent some sort

of daily activity in the library. All three present interesting scenarios for training.

From task 2 we learned that input positions as a result of real-world data encode

features external to the feature set. Input positions are determined by direct and indirect

relationships between features. There can be value in examining the differences between

the real-world and encoded spatial positions.

In the next task we expand the number of input sources to test whether patterns in the

dendritic field which form through angular position training are both robust (i.e.,

repeatable) and stable.
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7.1.3 Task 3

Task 3 builds on task 2 by increasing the complexity of the problem domain--correlated

brain activity--and the number of features in the data set from 13 to 64. The data set used

in task 3 comes

“from a large study to examine EEG correlates of genetic predisposition to

alcoholism. It contains measurements from 64 electrodes placed on subject’s

scalps which were sampled at 256 Hz (3.9-msec epoch) for 1 second. There were

two groups of subjects: alcoholic and control. Each subject was exposed to

either a single stimulus (S1) or to two stimuli (S1 and S2) which were pictures

of objects chosen from the 1980 Snodgrass and Vanderwart picture set. When

two stimuli were shown, they were presented in either a matched condition

where S1 was identical to S2 or in a non-matched condition where S1 differed

from S2.” [46].

We used the large data set consisting of 10 alcoholic and 10 control subjects.4 Each

subject performed 10 trials of each of the three tasks (S1, S2 match and S2 non-matched).

The data recorded from each trial consists of 256 readings from 64 different electrodes.

Electrodes are placed at specific positions on the scalp. The positioning used in this task

follows the 10/20 standard (Figure 7.10). The data collection is described in Zhang 1995

[182]. For our purposes, we were not concerned with determining whether a reading came

from an alcoholic or control individual or identifying differences between the types of tasks.

Therefore, we used only S1 trials from control subjects.

The EEG data set was selected as a step up in size and complexity compared to the

ibeacon data set. It contains four times the features and many thousands more data points.

However, it is also similar to the ibeacon set in two important ways. First, it is time-series

4The EEG database contains three slices of the data set: a small data set (2 subjects per type and 3
trials per trial paradigm), a large data set (10 subjects per type and 10 trials per paradigm) and a full data
set (122 subjects and 120 trials).
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Figure 7.10: The EEG position standards. [3] We colored the electrodes to match the coloring
scheme used by our results. Not all electrodes pictured in this standard diagram were used
in the original task. We provide it to aid in the assessment of trained input positions. To aid
with orientation, Nz is the nose. Fp: Frontal polar. AF : Anterior Frontal. F : Frontal. FC:
Frontocentral. FT : Frontotemporal. CP : Centroparietal. T : Temporal. TP : Temporal
Posterior. P : Posterior. PO: Parieto-occipital. O: Occipital. The positions in white do not
appear in the task.

data. Second, multi-site EEG readings have poor spatial resolution and therefore, brain

activity is often read by multiple adjacent electrodes [29] but not all, which is analogous to

the way some but not all ibeacons can be heard from one location in the library. We

hypothesized that angular position training could use this fact to spatially associate

co-active electrodes. Similar to the ibeacon task, the input positions would mimic electrode

placement. The increase in size and complexity of this task also aided in refining result

data collected during the training process.

An AD neuron with 64 inputs was initialized using the base parameters in Table 6.3.

Input positions were randomized. Although the neuron was trained on all 64 inputs,

readings from 3 electrodes (labeled X, Y and nd) were excluded from the results because
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they do not appear on the electrode standard position chart (Figure 7.10). The neuron was

trained using the P1 trial readings from all control subjects in the large data set. The

neuron was trained for 5,000 epochs. An epoch consisted of the entire data set. The

dendritic tree was rebuilt after each epoch. In each epoch, trials were randomized, but

readings within each trial were not randomized.

In the original task, readings were sampled at 256 Hz for 1 second, resulting in 256

readings per trial. The majority of tasks in this work expose AD neurons to each example

for 1,000 time steps. To match this training time, each reading was used as input for 4

time steps before being swapped for the next in the series. This resulted in a training time

per trial of 1,024 time steps.5

EEG readings required some manipulation to convert them into a useful range of values

appropriate for spiking neuron models. The vast majority (≥ 99%) of individual EEG

voltage readings in this data set fall in the range [-30,30] µV . A few are so large and small

that rescaling with these outliers would place 99% of the data in a small range.6 So we

opted to set any reading outside the desired range to the minimum or maximum of the

desired range, -30 and 30. We then added 30 to all readings, shifting them into the range

[0,60] and then scaled them by a 10, for a final range of [0,600].

We tested several other transformations of the EEG readings into input (e.g., [-20,20]

bounds, no bounding, no shifting from the negative domain and different scalars). For

those alterations which produced spikes, the results were qualitatively similar. Different

spike rates produced a denser or looser cluster. No bounding of EEG readings resulted in

the majority of readings falling within a narrow band which made them less distinguishable

from each other (depending on scaling). Less distinction between input values has two

effects. It causes more variability in the results since similarities in input patterns between

inputs are less unique. And more epochs are required to reach a stable pattern.

5An alternative way to expand the number of readings to match the 1,000 time step target would be to
run each trial four times back-to-back. This alternate expansion does not appear to change the results.

6The maxmimum reading in the data set is 453.847. The minimum is -213.491.
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Figure 7.11: Final connection positions after 5,000 epochs. Colors and labels match those in
Figure 7.10. Not all electrodes in the standard placement figure appeared in this task, e.g.
IDs 9 and 10.

Figure 7.11 shows the final input positions after training. Trained input positions

approximately match electrode placements on the skull. Inputs receiving frontal readings

(blue) are clustered at the top. Neural inputs receiving parietal and occipital readings

(yellow, orange and red) cluster together at the bottom. Central (gray) inputs separate

rostral (forward) from caudal (rearward) positions. There are curious anomalies, however.
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O2, OZ, and O1 are more forward than PO2, POZ and PO1. And PZ, P2 and P1 are even

more rearward. Although out of order, the O’s and PO’s are aligned by ID number.

Electrode IDs are such that even numbers fall on the right side of the brain and odd

numbers on the left. While this looks to be reversed in Figure 7.11, it is not. The

orientation of the figure is from the point of view of the base of the skull looking up.7 Not

all inputs follow this left-right dichotomy; PO7 and PO8 (parietal-occipital) are reversed.

The majority, however, are separated by the center line.

There are several other anomalies. Frontocentral (FC) and parietal (P) are out of place

locally and to some degree enclose frontal (F) and occipital (O) inputs. Temporal (T)

inputs are closer to the medial line than their skull placement. Some of the medial inputs

(Z) are off to one side.

We hypothesized that the poor spatial resolution of EEG readings would manifest a

general cranial map in input positions to demonstrate the angular training algorithm’s use

with a larger and more complex set of inputs. Each time the task is run, placements are

slightly different. To demonstrate this, Figure 7.12 shows four additional runs with the

same parameters. Input positions are not identical but do reach a final position which is

generally consistent with the front-to-back and side-to-side placement of electrodes on the

cranium.

In the repeated runs (Figure 7.12), we demonstrated that training does not always

result in the same final state. On the one hand, the final state depends on the initial

state--the initial input positions. As we demonstrated in the previous task, clusters

themselves can inhibit movement of individual inputs. However, differences in relative

input positions between runs may not be caused directly by a combination of initial state

and cluster inhibition. We wondered whether they could be caused by moment-to-moment

changes in position. The larger concern is that high variability in the relationship between

features of examples of the same pattern or category could cause instability in input

7Dendritic field figures are oriented this way because, in general, the concave view offers a better view of
the positions than the convex view. Only in this example does this orientation result in an awkward view.
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Figure 7.12: Four dendritic fields trained on the same set of EEG data as that used to make
Figure 7.11. All parameters are identical. Training lasted for 5,000 epochs.

positions encoding the pattern. This could result in a input having a bounded orbit or

jitter around an optimal position. For example, wide swings in input values might pull an

input in opposing directions.

The figures of 7.13 show that input positions do stabilize after several thousand epochs

and that moment-to-moment changes are not the cause of these variations in input

position. The top two figures (7.13a and 7.13b) show the distance over time of two inputs

whose input source are electrodes adjacent on the cranium. The bottom figures (7.13c and
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(a) FP1-FP2 (b) O1-O2

(c) FPZ-OZ (d) T7-T8

Figure 7.13: Four examples of the change in angular distance between pairs of connections
over 5,000 epochs. Data is from the same run as 7.11.

7.13d) show the distance over time of two inputs whose electrodes are on opposite sides of

the cranium (front-to-back and side-to-side). In all four cases, distances stabilize anywhere

between 2,000 to 3,500 epochs. This time frame is the same for all pairs we tested across

all runs. A small learning rate is key to reducing instability in angular positions. Although

somewhat larger learning rates (0.01) will cause jitter in angular positions, relative

distances still stabilize within some bounded range.

We do not try to draw any neuroscientific conclusions from these input placements. In

spite of the variations between runs there are curious sub-patterns which recur. Given the

training examples of previous tasks, we can conclude that such repeated patterns are not

random but are the product of correlated activity. The trained positions shown above are
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the result of readings from 10 different individuals. We have also run this task using

readings from a single subject. Training on single subject readings results in input

positions that deviate from electrode placements. This suggests that our multi-subject task

creates in the input positions an average of the differences in readings between subjects,

giving us a rough reproduction of electrode placements. We have not followed up on these

results since our goal at this stage is to show qualitative, predictable behavior in the

training of input positions. Investigating this line would require the use of the full data set

of 122 subjects and 120 trials. Identifying individuals by their EEG readings or

differentiating between the EEG readings of alcoholic versus control subjects using input

positions in the dendritic field is left for future work.

7.1.4 Summary of Angular Training

The EEG task shows that the angular training algorithm produces consistent and

stable input positions for larger, more complex data sets. Stability depends strongly on the

learning rate. Final input positions depend on initial positions and the order of the

training data examples. The angular training algorithm is deterministic in that the same

initial positions, input update order and training data order will produce the same final

positions. All tests demonstrated that the angular training algorithm encodes input data

patterns in the relative angular input positions. They capture relationships between

individual features of the data set as well as meta-features, such as the relationships

between patterns which share features.

There are limitations to the angular training algorithm. The primary limitation stems

from encoding feature relationships in a reduced dimensional space. The angular

component of input position is a 2-dimensional encoding (i.e., the shell of a sphere). For

data sets with more than 3 features, a 2-dimensional space may not be able to capture all

relationships perfectly. Clusters of inputs suffer from position lock, the inability to change

position due to being surrounded by sibling inputs, and compression (the discussion section
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(9.3.4) proposes a potential alteration which would alleviate some problems caused by

dimension reductions).

The circumference of the dendritic field has a strong impact on how patterns cluster.

The circumference of the dendritic field is measured in temporal units. The default value

used in these tasks is 100 time steps. Input positions on opposite sides of the dendritic field

imply a difference of 100 time steps between the arrival time of signals. Therefore, the

circumference should be large enough to encode feature relationships with the longest

(desired) interval. If the dendritic field is too small temporally long relationships will never

become stable since they will always be too close along one trajectory. Even if the field is

wide enough for all relationships between individual features, it must be wide enough to

separate meta-patterns (e.g., clusters of inputs). Finally, the circumference of the dendritic

field must be tailored in tandem with the radius. During tree-building distances between

inputs depend on both angular and radial distances. A wide discrepancy between the two

can result in a tree which predominantly favors either angular or radial inputs.8 Our

method is not to use independent values for Amax and Rmax but to let one determine the

other using the geometric properties of a sphere (circumference from radius, or vice versa).

Angular positions are further analyzed in later tasks when all training algorithms are

active. In the next section, we present initial tasks examining the behavior of the radial

position training algorithm.

7.2 Radial Position Training

Trained radial positions encode the temporal interval between input received by a

specific input and neural output, i.e., output generated by the AD neuron’s

S-compartment. Neural output pertains only to S-compartment output; whereas,

compartmental output is a more general term which includes neural output. The radial

component of the dendritic field, like the angular component, is measured in temporal

8We are not suggesting this is a negative to be avoided. It is possible certain scenarios would benefit
from favoring one type of input over the other. Further testing is needed.
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units. An input which receives a spike on average 20 time steps before an S-compartment

spike should have a radial position of 20. To test whether the radial training algorithm

achieves this we tested it in isolation from the angular, tree-building and strength

modification algorithms.

Radial training is more dependent on the AD neuron as a whole than is angular

training.9 It requires that input is capable of generating neural output. This implies that

a dendritic tree links inputs to the S-compartment. It also requires that certain

parameters, e.g., input and compartmental weights, are large enough to generate output.

And that there is sufficient input to the AD neuron. To put it another way, in a silent AD

neuron there is no radial change.

For these tasks we made as few assumptions about the other aspects of the AD neuron

as possible without relying on degenerate forms. The initial state of the AD neuron proved

sufficient. Each input formed its own B-compartment and each single-connection

compartment was linked directly to the S-compartment. Neural inputs were placed at a

radius of 100, the maximum extent of the dendritic field. Angular positions were

randomized. The base parameters given in Table 6.3 were used.

Our approach was to test the radial training algorithm under two conditions. First, we

wanted to test its purest form: the input-output timing relationship in the absence of

complex dendritic trees caused by angular clustering. Our goal was to discover whether

individual radial positions accurately encode spike rates. To discover this we tested AD

neurons whose inputs received signals at varying rates. For these simple tests (Task 4),

angular and strength training were disabled. Second, we wanted to test what impact, if

any, intervening inputs and compartments have on radial positions (Task 5). Once the

dendritic tree becomes complex and signals received by individual inputs must pass

through multiple branches, does its shape distort input-output encodings?

9In fact, angular training (i.e., the clustering of points on a spherical shell [80]) can be done without the
rest of the AD neuron.
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(a) (b)

Figure 7.14: Radial position tasks. Left: 1 input receiving signals at a rate of 10 Hz. Right:
4 inputs receiving signals at different rates: blue 10 Hz, orange 20 Hz, green 30 Hz, and red
40 Hz.

7.2.1 Task 4

We initialized an AD neuron with 1 neural input. The source to the single input

generated spikes using a Poisson process with a mean of 10 Hz. The single input was

placed in a B-compartment and connected directly to the S-compartment. Training

consisted of 1,000 epochs with 100 runs per epoch. Each run lasted for 1,000 time steps.

No random mask was used and the dendritic tree was not rebuilt after each epoch. The

neural input was given a weight of 500 which is sufficient for a signal to a single input to

generate S-compartment output.

From an input rate of 10 Hz we expected the radial position to remain near its initial

value of 100 as this corresponds to the average interval between spikes generated at this

rate. Figure 7.14a shows the result for a single 10 Hz input. The input’s radial position

decreased from its initial position of 100 to approximately 90 over the first 200 epochs and

remained there. From the 200th epoch to the end, the mean radius was 90.4; the SD was

0.66; and the minimum and maximum were 88.7 and 91.7. While the final radial position is

stable within a range around 90 time steps (±2), the position fluctuates.

We expanded on the one input task to test whether multiple connections affected radial

position and whether increasing the spike rate reduced fluctuations. The next variant, the
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Rate 10 Hz 20 Hz 30 Hz 40 Hz
Mean Radius 86.5 45.6 30.9 23.7
SD Radius 0.69 0.32 0.19 0.13
Min Radius 84.8 44.7 30.9 23.3
Max Radius 88.6 46.6 31.4 24.1

Table 7.3

results of which are shown in Figure 7.14b, consisted of 4 inputs with input rates ranging

from 10 Hz to 40 Hz, spaced at 10 Hz intervals. The resulting radial positions for each

input are given in Table 7.3.

The results of these two simple tasks have several curious aspects. Training produces

mean radial positions which are approximately 10% less than expected. We are not entirely

certain of the cause of this discrepancy but we suspect it is caused by the parameter

selection that governs the impact of the dendritic tree on signal strength. Under the base

parameters, not all input spikes produce an S-compartment response. Instead, multiple

spikes within some interval are required to generate an S-compartment spike. Input

patterns with shorter intervals are favored, causing the imbalance.

Neural inputs with faster input rates will cause a slight decrease in the radius of inputs

with slower rates. And the size of the decrease depends on relative input rates. For

example, the 10 Hz input’s mean radius consistently decreased in the four input example to

approximately 86.5 from 90. Duplicating the single input task (Figure 7.14a) with a 40 Hz

rate instead of a 10 Hz shows no increase from the radius it achieves when three additional

slower inputs are present. The mean radius for a single 40 Hz input is 23.7. However, a

variant of the four input task in which the other input rates are faster than 40 Hz

(e.g., 50, 60 and 70 Hz) results in a slight decrease to 23.5. Although this is a decrease in

mean radius of only 0.2, the results are consistent.

Another interesting feature of these results is that inputs with higher input rates have

stabler radial positions. This is likely due to the shorter intervals between input spikes.

Shorter intervals result in smaller radial changes once a mean position is reached because
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Pattern 0 0 (100 Hz) 1 (80 Hz) 2 (60 Hz) 3 (40 Hz) 4 (20 Hz)
Pattern 1 5 (100 Hz) 6 (80 Hz) 7 (60 Hz) 8 (40 Hz) 9 (20 Hz)
Pattern 2 10 (100 Hz) 11 (80 Hz) 12 (60 Hz) 13 (40 Hz) 14 (20 Hz)
Pattern 3 15 (100 Hz) 16 (80 Hz) 17 (60 Hz) 18 (40 Hz) 19 (20 Hz)

Table 7.4: The four patterns, color coded, of Task 5. Gray designates shared neural inputs.
Hz in parenthesis give the spike rate of each input source.

the probability for large discrepancies between input-output timing and radial position is

smaller. This suggests that tying radial learning rates inversely to the magnitude of the

radial position could improve stability.

Overall, the behavior of the radial training algorithm performed as expected. The

radial position of a neural input is determined by how closely the signals it receives are

correlated with S-compartment output. Even if rates and radius do not match, their

relationship is predictable. Higher input rates result in more proximal radial positions and

vice versa. The exact relationship between rates and radial position is likely to be

something to be tuned on a per task basis.

7.2.2 Task 5

Task 5 builds on task 4 by testing the relationship between input positions when both

angular and radial training are active. Do patterns with varying input rates cause input

positions to cluster? With radial training active, cluster shapes become 3-dimensional.

What shapes do these clusters form? Does the combination of radial and angular training

require alterations to the AD neuron’s parameters?

Input sources were grouped into the 4 patterns given in Table 7.4. The patterns and

task parameters are similar to task 1’s base variant. Tasks consisted of 1,000 epochs of 100

runs. Each epoch was followed by a 10,000 time step random mask. The random mask was

kept at 10 Hz. The input rate of the random mask must be less than the minimum spike

rate or it will disrupt clustering of weakly correlated inputs. Input rates varied within

patterns. Input rates within each pattern ranged from 100 Hz to 20 Hz at increments of 20

Hz. Each pattern contained one neural input for each rate.
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(a) (b)

Figure 7.15: Trained input positions for task 5. Colors indicate pattern membership (see
Table 7.4). The black circle is the S-compartment position. The graph uses each input
latitude for the x-axis. Left: Max angular distance (π) represents 100 time steps. Right:
Max angular distance (π) represents 500 time steps.

Rate 20 Hz 40 Hz 60 Hz 80 Hz 100 Hz
Mean Radius 45.3 23.5 16.6 13.4 11.4
SD Radius 0.36 0.15 0.10 0.08 0.07

Table 7.5: Average radial positions of Task 5 taken from the run depicted in Figure 7.15a.

In Figure 7.15a, trained radial positions are arranged within the dendritic field

according to their input rates. Inputs with high rates of input (100 Hz) are closer to the

center of the dendritic field than those with slower rates. The 20 Hz and 40 Hz radial

positions (Table 7.5) match those from Task 3. Again, sharing the dendritic field with

inputs receiving faster rates of input causes a slight decrease in radius of the less active

inputs. Since the decreases are identical to the ones from task 3 (23.7 to 23.5 in the case of

the 40 Hz input for example) and this task contains four times the number of inputs with

higher rates, there appears to be a saturation effect on the ability of sibling inputs rates to

influence the radial positions of less active inputs.

This task also revealed how pattern clusters with varying rates of input arrange

themselves within the dendritic field. Figure 7.15 uses latitude to display radial positions.

In doing so, it also demonstrates that in spite of the differing radii, inputs still cluster
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angularly (horizontally in the graph). Since figure 7.15 is limited to latitude, not all

angular displacements are visible. In the left figure pattern clusters overlap in some cases

(blue-red and orange-green). This is not due to graphing input positions along one angular

dimension (latitude). A longitudinal graph would show something similar (see Figure 7.16

for a 3D display). Pattern overlap is caused by two aspects of the task: loose clusters and a

narrow dendritic field. Loose clustering is caused by slow input rates to some of the inputs.

Slow rates are encoded in larger angular distances between inputs. Loose pattern clusters

can be seen in the latitudinal positions. For example, inputs 10 and 11 in Figure 7.15a are

close latitudinally. Connections with high spike rates belonging to the same pattern tend to

train closer together and vice versa. Input 14 which spikes at one-fifth and one-fourth the

rates of inputs 10 and 11 is 0.5 radians distant. All less active inputs (4, 9, 14 and 19) in

Figure 7.15a are outside the latitudinal bounds defined by the other four belonging to the

same pattern. This leads into the second cause: the dendritic field’s temporal size.

Second, pattern overlap is caused by a relatively narrow (100 time steps) dendritic field

in comparison to the input rates. The mean width of the latitudinal bounds of all patterns

in 7.15a is 0.69 radians which when translated to the temporal size of the dendritic field is

21.7 time steps. All four patterns together do fit in a 100 time step field but only just.

Increasing the circumference of the dendritic field to 500 time steps encodes temporal

differences for pattern clusters in a wider space allowing them to separate. In Figure 7.15b

the mean latitudinal bound drops to 0.21 which translates to 33.4 time steps. The

latitudinal range occupied by each pattern is broader but the wider field aids in cluster

separation. Clusters show much less overlap and overlap disappears when viewed in

3-dimensions (Figure 7.16). These ranges are robust across repeated test of the two

variants of this task. As we will demonstrate in the next section through a repeat of these

tasks, the ability for an AD neuron to separate patterns within the dendritic field can be

important for tree-building.
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Figure 7.16: Connection positions of the same run depicted in Figure 7.15b. The dendritic
tree (gray lines) are included to show depth.

7.2.3 Summary of Radial Training

Radial training positions neural inputs based on the timing of their contribution to

neural output. Short intervals between neural input and output move an input closer to

the center of the dendritic field. Long intervals push inputs to the dendritic periphery. In

these simple examples, input rates largely determined radial position, but this might not

always be true. We can imagine a dendrite containing a mix of inhibitory and excitatory

inputs based on connection weight. Inhibitory inputs could silence or delay neural output

causing a discrepancy between input rate and radius.

It was important to demonstrate the above correlation between timing and radial

position. This correlation is one of the effects of training captured by our tree-building

algorithm. Signals from more active and participatory inputs have shorter propagation

times and are less impacted by compartmentalization.
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7.3 Tree-building

Tree-building is the process of linking neural inputs based on their radial and angular

position within the dendritic field. The process used to build the tree is given in Section

6.5.7. The following tasks focus on three goals. First, how well does tree-building capture

relative input positions. Does it take advantage of the encodings and thereby reinforce

them, or does it disrupt the spatial encodings? Second, what are the effects of using

different metrics to measure distance across the dendritic field. Different metrics can

minimize or favor radial or angular distances. Third, tree-building is affected by the

branching factor, bf. The branching factor weights the current extent of a dendrite when

considering the next input to link. How does bf impact the above capability?

7.3.1 Task 6

In task 6 we sought to test the tree-building algorithm’s behavior on input positions

created by angular and radial training. Also, we sought to test whether calculating

distances between input positions using a straight-line method is preferable over a

Manhattan method. The former uses the Law of Cosines to calculate the distance between

two inputs; the latter simply sums the radial and angular distances.10

In Section 6.5.7 the distance metric d is described as using “both the angular and radial

distances between input positions”, but the method for calculating d is not precisely

defined. Since angular and radial positions are determined independently we supposed it

possible that tree-building would benefit from treating angular and radial distances as

non-commensurate. Task 6 was designed to settle this question.

Task 6 reused the basic parameters of task 5 (20 input across 4 disjoint patterns) and

Rmax = 500 and Amax = πRmax. Under these settings the dendritic field was large enough

to capture both radial and angular distinction between input positions within and between

10For the AD neuron, the Law of Cosines is written for input positions p1 and p2: d(p1, p2) =√
r(p1)2 + r(p2)2 − 2r(p1)r(p2) cos(a(p1, p2)) where r gives the radial position of the input and a gives the

angular distance between them
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pattern clusters. The AD neuron was trained once for 1,000 epochs. The tree was then

built four different times using four different values for bf.

The figures of 7.17 show the results using the Law of Cosines method for calculating

input distances during the tree-building algorithm. In all four builds, the algorithm

captures angular and radial clustering by linking inputs on common branches. When

bf = 0.2, green and red pattern inputs are linked to the neuron through orange’s 5 input.

Similar to the test examples in Section 6.5.7, a low bf causes an increase in angular inputs

that stretch laterally across wide angular distances. The jump from bf = 0.2 to bf = 0.4

and from bf = 0.4 to bf = 0.5 cause two significant changes to the tree. The increase from

bf = 0.2 to bf = 0.4 causes the red pattern to link directly to the S-compartment. The

second increase causes the same for the green pattern. Patterns occupy completely

separate dendritic trees. As bf increases less dramatic angular links, such as 2-to-3,

12-to-13 or 15-to-16, are replaced by radial links. This demonstrates how the cumulative

dendritic path length at higher bf causes distal inputs to form straighter dendritic branches

by making longer links with less angular displacement.

The Manhattan variant (Figure 7.18) rebuilt the dendritic tree four more times using

the same values for bf as variant 1. The Manhattan method for calculating distances

between positions in the dendritic field is more sensitive to cumulative path lengths. For

example, the Manhattan method using bf = 0.2 (Figure 7.18a) resembles the Law of

Cosines method using bf = 0.4 (Figure 7.17b). A bf > 0.2 with the Manhattan method

produces far more S-compartment-rooted dendrites than the Law of Cosines method with

the largest value for bf. Dendrites transition away from complex branches to single

connection fan-like branches at lower values for bf. The degree of fanning out at each

dendritic connection depends on the tightness of more radially distant connections

belonging to a cluster.

From Task 6 we drew several conclusions. The Law of Cosines method seemed superior

to the Manhattan method. It generated predictable variations in the dendritic tree across a
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(a) (b)

(c) (d)

Figure 7.17: Results of the Law of Cosines variant of task 6 using (a) bf=0.2 (b) bf=0.4 (c)
bf=0.6 (d) bf=0.8. The AD neuron was trained for 1,000 epochs. Numbered circles represent
neural inputs. The black circle is the S-compartment. Gray lines are dendritic (internal)
connections. Colors signify pattern membership.

wider of the range of values for bf. Increasing bf caused dendritic trees to favor more direct

paths from the S-compartment to distant inputs. Lowering the branch factor created

longer, contorted shapes. The Manhattan method, on the other hand, shifted toward an

extreme state (one input per dendrite) at lower values. Second, we determined that 0.5 was

a good initial choice for bf because it seemed to be a middle ground. The middle ground is

characterized by dendritic trees which show signs of extension, or linking an input to the
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(a) (b)

(c) (d)

Figure 7.18: Results of the Manhattan variant of task 6 using (a) bf=0.2 (b) bf=0.4 (c) bf=0.6
(d) bf=0.8. The AD neuron was trained for 1,000 epochs. Numbered circles represent inputs.
The black circle is the S-compartment. Gray lines are dendritic (internal) connections. Colors
signify pattern membership.

end of an existing tree, and branching, or linking an input by forking an existing branch at

a non-leaf input.

Task 6 used patterns with varying rates of input. This produced pattern clusters easily

captured by the tree-building algorithm. Inputs were spaced out radially with no pattern’s

trained input positions vastly different from the others. How well does the tree-building

algorithm perform in less than optimal conditions? The following task attempts to answer
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this question and to demonstrate how dendritic trees contribute to the spike rate of the

S-compartment.

7.3.2 Task 7

Task 7 examines how well tree-building performs when all inputs receive input at the

same rate. As demonstrated in earlier examples, inputs that receive signals at the same

rate will have roughly the same radius. We wished to know whether the tree-building

algorithm would group clusters of inputs with near identical radii onto one dendritic tree or

across several due angular distance. More important, task 7 was the first task in which

enough of the training algorithm was active to examine the impact of the trained dendritic

tree on the behavior of the AD neuron (i.e., neural output rate).

An AD neuron was initialized with 40 inputs to input sources with identical spike rates

(50 hz). The input sources were grouped into 4 disjoint sets. Each set formed a pattern

such that only inputs belonging to the same pattern were active on a given run of the task.

Task 7 consisted of 1,000 epochs of 100 runs. Each run lasted for 1,000 time steps. A

random mask with a spike rate of 10 Hz was used with a strength of -0.1 (see Section 6.6.1

for the impact of a random mask’s strength). The mask was active for 10,000 time steps

after each epoch. The dendritic tree was rebuilt before each epoch. The maximum

compartmental length was set equal to 20. Using previous data on radial positions for a

given input rate, we calculated that a compartment length of 20 would be large enough to

compartmentalize all the inputs belonging to a single pattern so long as they all belong to

the same dendritic tree; however, a compartment length of 20 is too small to contain all the

inputs of multiple patterns. From previous tests (see Section 5.7), we expected that the AD

neuron could best learn to differentiate between patterns if patterns did not share

compartments and compartments occupied different branches. The task was repeated 3

times using different values for bf.
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(a)

(b)

(c)

Figure 7.19: Task 7: how the number of dendritic trees impacts the AD neuron’s output
spike rate using three different values for the branching factor, bf. Y-axis is in epochs. (a)
bf=0.2. (b) bf=0.5. (c) bf=0.8. Black lines show the average angular distance between
inputs belonging to a pattern. Blue lines show the number of dendritic trees rooted at the
S-compartment. Orange line shows the output spike rate of the S-compartment.
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Figure 7.19 shows the typical change in the AD neuron’s shape and output over the

course of 1,000 epochs for three different branching factors. The clustering of inputs along

pattern lines (black lines) is similar for all three. Angular positions fall at roughly the same

rate to a stable average distance of approximately 0.2 radians. With respect to the number

of dendritic trees (blue lines), there is likewise a reduction over time, but there are

important differences. Smaller branching factors cause the AD neuron’s initial state to

start with fewer dendrites. Dendrites are allowed to be longer and link more inputs. This

also results in fewer final dendrites: just 2. Increasing the branching factor to 0.5 (figure

7.19b) increases the number of starting and ending dendrites. Also, it takes nearly twice

the number of epochs for the final number to be reached (200 vs 400). Increasing it further

to 0.8 (figure 7.19c) causes the initial AD neuron to have almost as many dendrites as

inputs, but, it does not raise the number of final dendrites. Again, the training required to

reach a final, steady number of dendrites is lengthened to around 700 epochs.

Not only does the branching factor impact the speed and result of forming dendrites, it

determines the volatility of the process. Lower values for bf cause larger jumps in the

number of dendrites between each epoch. For example, in the first 100 epochs, the number

of dendrites in 7.19a range from 3 to 12. Compared to 7.19c, the population of dendrites is

between 30 and 35.

Higher values for bf are more sensitive to angular distance. This can be seen in how

closely the number of dendrites shadows the average angular distance of pattern clusters.

Specifically, for larger branching factors, the number of dendrites follows the decrease in

angular distance (blue above black). For smaller branching values, the fall in the number of

dendrites precedes the fall in angular distance (blue below black). In other words, bf

strongly determines when angular distances between input positions contain enough

information about their final state for the tree-building algorithm to produce the final

number of dendrites.
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The AD neuron’s spike rate is strongly affected by the number of dendrites. Output

rates begin near zero. This is due to inputs being scattered across the entire dendritic field.

With a high bf, each input is its own compartment. With a low bf, patterns are distributed

across across multiple dendrites and compartments. These initial conditions result in

compartments which are too small or weak to generate output of their own (and thereby

generate output in the S-compartment). As inputs cluster according to pattern

membership, the output rate rises. It stabilizes when the dendritic trees are comprised of

inputs from a single pattern. When bf is in the range 0.5 to 0.8, the AD neuron’s output is

stable at 10 or 11 spikes per run. It is stable because, regardless which inputs activate for a

given pattern, the distance to the S-compartment is the same.

On the other hand, a low bf causes a bimodal rate of 3 or 10 spikes per run. Bimodal

output is caused by dendrites linking inputs from more than one pattern in more than one

compartment. Figure 7.20 shows the final shape of the AD neuron for task 6 when bf was

set to 0.2 and 0.5. Colors highlight which pattern each input belongs to. A bf of 0.2

(Figure 7.20a) causes one dendritic tree to link the inputs of three different patterns (red,

green and orange) to the tree. A larger bf increases the impact of overall dendrite length

when linking new inputs which causes (Figure 7.20b) each pattern’s inputs to be linked to

a different tree.

Long dendritic trees are more likely to consist of multiple compartments. Multiple

compartments as we will demonstrate in a later task impacts an input signal’s chance of

generating neural output. Figure 7.21 shows the same AD neurons as figure 7.20 except

that colors show compartment membership. In 7.20a, the orange compartment holds

inputs which belong to 3 different patterns. The red and green compartments divide the

pattern consisting of inputs 10 through 19. Activity caused by an example of this pattern

will be much weaker than the others. Input signals arrive in three different compartments.

To spur output in the S-compartment, it must generate activity in three different

compartments. Compare this with the compartmentalization of the AD neuron created by
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(a) (b)

Figure 7.20: The final input positions and dendritic tree of the AD neuron for task 6 when
bf=0.2 (left) and bf=0.5 (right). Colors depict which pattern each inputs’s source belongs
to.

(a) (b)

Figure 7.21: The final input positions and dendritic tree of the AD neuron for task 6 when
bf=0.2 (left) and bf=0.5 (right). Colors depict which compartment each input belongs to.

a larger branching factor (7.21b). Each tree is its own compartment. And each

compartment contains the inputs of one pattern.

The results of task 7 helped us understand how the branching factor impacts tree

building and compartmentalization. It helped us to further hone how we choose a proper

branching factor. Figure 7.19c we believe holds the key. We suspect a near optimal bf will

cause the rate at which the number of dendritic trees approaches a stable range (blue lines)
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to match the clustering of neural inputs (black lines). To put it another way, blue shadows

black. For task 7, we knew in advance the optimal number of dendrites was four and

therefore were biased to accept bf=0.5 as a good choice. It reaches 4 dendrites ahead of the

angular clustering.

Task 7 suggests that once patterns are encoded in the dendritic tree they produce

reliable output rates. If so, reliable output rates would help to identify whether an example

belongs to a pattern, category or class. In fact, this is the method we use in later tasks to

categorize examples. Even in the mismatched tree created by a branching factor of 0.2, it is

still somewhat possible to distinguish between active patterns. Although we maligned it in

our previous discussion, the modal neural output of the neuron depicted in figure 7.20a

could be beneficial. The differing input rates could aid in determining which pattern is

active. From the singular output of the one-pattern-per-tree neuron we can only detect the

presence of a pattern, but not which one.

Although we have characterized the dendritic trees created by larger bf as being

optimal, optimal is, of course, task dependent. This demonstrates that the branching

factor can be used to optimize an AD neuron for a specific task.

We tested task 6 many times with many different values for bf. The above supposition

about how to choose bf seems to be a good rule of thumb but does not guarantee the

algorithm will create an AD neuron with the desired number of dendrites. Generally,

bf=0.6 caused the decline in the number of trees to match the input clustering. Above 0.6,

there was a chance the tree-building algorithm waffles between 4 and 5 dendritic trees.

Below 0.6, there was a chance the algorithm creates less than 4 trees. For any given test,

the number of trees seems dependent on initial conditions. The initial distribution of

connections in the dendritic field determines where clusters form initially. Some form in

close proximity to each other. Usually clusters shift away from each other because of the

repelling force created by the random mask. Sometimes they do not and appear fixed in

spite of the mask. We believe this is caused by countervailing forces; the sum of repelling
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forces generated by the mask create a field with dead zones or sinks. It is unknown if given

enough epochs such sinks will dissipate due to small shifts in input positions due to the

random spike times.

Finally, in working through task 7 we realized that the random mask works best with

smaller negative values (-0.1 vs. -1.0) over longer runs (10,000 vs 1,000).11

7.3.3 Summary of Tree-building

The tree-building part of the AD neuron training algorithm creates a minimum

spanning tree rooted at the S-compartment. It uses a branching factor, bf, to weight each

dendritic path when evaluating the next neural input to link to the tree.

The two tasks above demonstrate the impact tree-building has on the capability of an

AD neuron. A suboptimal tree can cause the neuron to perform poorly. An optimal tree

depends on the number of dendritic trees, the paths created by linking neural inputs

together and compartmentalization (which is the subject of the next section).

7.4 Compartmentalization

7.4.1 Task 8

Task 7 showed that compartmentalization along with the general shape of the tree has

an impact on the output of the AD neuron. To further explore this impact, we devised task

8 to test how compartment length alters AD neuron output. Task 8 consisted of a single

AD neuron which received input from 100 sources through 100 neural inputs. Input sources

were given label IDs ranging from 0 to 99. Input rates are shown in Figure 7.22 by ID.

Input rates range from 100 Hz to 3.84 Hz. The AD neuron was trained for 500 epochs of

100 runs each. Each run lasted for 1,000 time steps. A random mask followed each epoch

which lasted for 10,000 time steps and used an error value of -0.1. The AD neuron was

trained with bf=0.5 and compartment length equal to 20.

11Here is the origin of the general rule stated back in Section 6.6.1.
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Figure 7.22: Spike rates by input source ID. Rates were produced using the function: Ri =
0.1

(0.1(49.5−i))2+1
. Ri is the input rate for neuron with ID i.

The dendritic tree produced for task 8 is shown in Figure 7.23. A bf of 0.5 links all

neural inputs to the same dendritic tree.12 The dendritic tree itself has a hyperbolic shape

(i.e., crescent shape) which fans out along one dimension as it extends into the field. The

curved fan-shape is curious. It appears that inputs at the same radial position separate

along one vector which causes the fanning out (see Figure 7.23), whereas, inputs at

different radial positions separate along a vector orthogonal to the first which causes the

tree to bend (see Figure 7.24). Fanning out causes distal compartments to contain fewer

inputs. Proximal inputs are compact which creates fewer compartments. A compartment

length of 20 creates a variety of dendritic path lengths measured by number of

compartments. The longest path contains 9 compartments and the shortest just 1.

For testing, inputs were grouped into sets of 10 in order from 0 to 99, e.g., group 0

contained inputs 0 to 9, group 1 contained 10 to 19, etc. This produced 10 test example

patterns. Input sources belonging to a pattern spiked at a rate of 50 Hz. Sources that did

not belong to the pattern were silent (0 Hz). The neuron was exposed to each pattern,

presented in random order, for 1,000 time steps. 100 tests were run using each

12A high bf (> 0.8) will cause distant inputs to link directly to the S-compartment.
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Figure 7.23: Task 8 dendritic tree. Circles are inputs. Gray lines show the shape of the
dendritic tree. Colors denote compartment membership. Numbers correspond to input IDs.
Compartment length: 20. bf: 0.5.

compartment length. Each pattern targeted a different depth of the tree. Using one trained

AD neuron, we ran several variants which rebuilt the same AD neuron using different

compartment lengths. Input positions and other parameters remained unchanged.

Using the trained neuron depicted in Figure 7.23 the tree was built using three different

compartment lengths: 5, 20 and 100. The six figures of 7.25 show the resulting

compartmentalization and S-compartment output. Left-hand figures depict how
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Figure 7.24: Same AD neuron as 7.23 viewed from the side.

compartment length impacts compartmentalization of the entire dendrite. The right figure

shows the average neural output rate during for each pattern.

A compartment length of 5 produces S-compartment output that qualitatively best

matches the input profile in Figure 7.22. All three lengths produce a similar peak output

(from 9 to 11 spikes) when inputs close to the S-compartment are active. There is a subtle

positive correlation between compartment length and maximum neural output. However,

we have not seen a correlation between neural output from distal inputs and compartment

length.

In fact, changes to compartment length have a nonlinear effect on neural output,

especially when neural input arrives deeper in the tree. Smaller compartments (i.e., those

195



(a) (b)

Figure 7.25: Dendritic trees with compartments and S-compartment output rates for three
compartment lengths. (a)(b) Compartment length: 20. Left figures: an AD neuron with
the dendritic tree built using three different compartment lengths. Colored dots are inputs.
Colors indicate compartment membership (note: colors are drawn from a list so there are
some repeating colors). Right figures: S-compartment output rates using the correspond
dendritic tree. Input rates: 50 Hz.

with fewer inputs) require fewer active member inputs to generate a compartmental spike.

The need for fewer active inputs owes to input scaling due to compartment size (see

Section 9.2.12 and the final paragraph of Section 6.3). Therefore, a path of small

compartments is more likely to experience a chain of spikes than a chain of larger ones. At

the other end of the scale, very large compartments reduce the number of compartments

distal signals must pass through to reach the S-compartment. In Figure 7.25f, inputs

belonging to test patterns 0 and 9 are spread across the pink, brown, purple and gray

compartments; however, the compartments themselves are small. Although patterns 0 and

9 are scattered, they can generate compartmental output. Patterns 1 and 8 are also

scattered; however, a few of their inputs belong to the massive orange compartment, so

their signals impinge the dendrite close to the S-compartment. Compartment membership

closer to the S-compartment increases the pattern’s ability to generate neural output. All

inputs belonging to patterns 2 through 7 belong to the orange compartment. These

patterns are all equally capable of generating maximal output.
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(c) (d)

Figure 7.25: Dendritic trees with compartments and S-compartment output rates for three
compartment lengths. (c)(d) Compartment length: 5. Left figures: an AD neuron with
the dendritic tree built using three different compartment lengths. Colored dots are inputs.
Colors indicate compartment membership (note: colors are drawn from a list so there are
some repeating colors). Right figures: S-compartment output rates using the correspond
dendritic tree. Input rates: 50 Hz.

(e) (f)

Figure 7.25: Dendritic trees with compartments and S-compartment output rates for three
compartment lengths. (e)(f) Compartment length: 100. Left figures: an AD neuron with
the dendritic tree built using three different compartment lengths. Colored dots are inputs.
Colors indicate compartment membership (note: colors are drawn from a list so there are
some repeating colors). Right figures: S-compartment output rates using the correspond
dendritic tree. Input rates: 50 Hz.
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In figure 7.25b we see that moderately long compartments (20) prevent distally arriving

input from generating S-compartment output. Patterns 0 and 9 produce no output and

patterns 1 and 8 do not rise to the minimal levels produced by small or larger

compartment lengths. Medium-sized compartments are large enough such that they do not

spike as readily from a small number of active inputs. However, they are also small enough

that the pattern size (10 inputs) we selected for this task causes inputs belonging to the

same pattern to be distributed across many compartments at a certain depth in the

dendritic tree. For example, in Figure 7.23, the inputs belonging to pattern 0 (inputs

labeled 0 to 9) belong to 8 different compartments.

Lowering the branching factor causes a decrease in output spike rate generally. The

decrease is more evident the more distally input is received in the tree. For example,

lowering the branch factor to 0.2 in conjunction with a compartment length of 5 results in

patterns 0, 1, 2, 7, 8 and 9 producing zero output. For longer compartments, even smaller

branch factors are required to silence distal input. Small branch factors have a less

pronounced effect on proximal input, reducing rates by 1 or 2 Hz. At the other end of the

spectrum, large branch factors (> 0.5) can create significantly different trees, making

comparisons more difficult. For example, when bf = 0.8 distal inputs (0-9 and 90-99)

occupy their own dendritic trees. These distant inputs link directly to the S-compartment,

creating short trees. Short trees have a stronger impact on the S-compartment. The result

is that patterns 0 and 9 generate more neural output than patterns whose inputs have a

smaller radial position.

In summary, compartment length and the compartmentalization process determine the

functional length of the dendritic tree. Compartmentalization abstracts the dendritic tree

and, although the underlying structure is not removed, it is de-emphasized by longer

compartmental lengths. In the examples above, we demonstrated that neural output

depends as much on which compartment receives input as where in the tree it is received.

This implies that compartment length is important to AD neuron behavior. Currently, we
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do not have a method to find an optimal length for a given problem so it falls in that

category of hyper-parameters which must be found by hand. Finding compartment length

and other such hyper-parameters are further discussed in Section 9.3.10.

Before moving on, we pause to note that the preceding tasks show that the first four

properties of AD neuron training--angular position, radial position, tree-building and

compartmentalization--together create a neuron capable of recognizing input without

altering weights. This is demonstrated in Figure 7.25d in an AD neuron capable of

reproducing, albeit qualitatively, the pattern embedded in its input. In other words, the

shape of the AD neuron on its own contributes to learning. Normally when we think of

learning in neural networks, we think of weights, and weight modification is the subject of

the next section. However, shape can support learning as well. When we look at the shape

of a neuron, we are looking at more than just the form of a thing. We are looking at one

part of a complex function. We are looking at one part of a computational unit. This is the

crux of this work and will be discussed in the final chapter.

7.5 Weight Modification

7.5.1 Task 9

Connection weights specify the importance of a connection within a compartment. Task

9 tested whether our approach to weight modification is capable of shifting S-compartment

output rate toward a desired goal rate. We also wanted to test the stability of learned

output rates. To answer these questions we tasked a single AD neuron to respond

differently to two patterns which were equal in strength (equal in number of inputs and

input rate). As a control test, we first trained an AD neuron using the two patterns

without weight modification to demonstrate that without it the AD neuron does not favor

one pattern or the other. Next, we ran the same task with weight training active to

demonstrate its ability to bias output for one pattern.
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Figure 7.26: The two input patterns used in task 8. Blue: pattern A. Orange: pattern B.

Task 9 is similar to task 8. The AD neuron has 100 inputs. The compartment length is

20 and the branch factor is 0.5. Learning rates followed those given in the base parameters.

We created two patterns, A and B, using the input sources. The method for creating

each input pattern is the same as in task 8 (see the caption of Figure 7.22). Both patterns

had a peak rate of 100 Hz but their peaks within the input space differed. Pattern A peaked

at input 25 and B at 75. Figure 7.26 shows input spike rates per input source for both

patterns. Random spikes for each input were created using Poisson process input sources.

The AD neuron was trained for 1,000 epochs. Each epoch consisted of 100 training

examples, 50 of each pattern. Each example ran for 1,000 time steps. The tree was rebuilt

after each epoch. All aspects of the AD neuron training algorithm were enabled. When

weight training was active, an error value was calculated based on the S-compartment spike

rate of the previous run of the same pattern. The error rate was calculated using:

E = 1− Or

Tr
where E is the error value, Or is the previous output rate for the current

pattern and Tr is the target rate for the current pattern. Target rates were 20 Hz for

pattern A and 5 Hz for pattern B. Error values were constant across all connections for the

duration of the run. The target rates used are not special. Relatively low rates were

selected to avoid pushing connections toward very large weights which might have made it
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(a) (b)

(c) (d)

Figure 7.27: Task 9 results. Left: the dendritic trees after 1,000 epochs of training. Circles
are neural input positions plotted by latitude and radius. Gray lines indicate connectivity.
Warmer colors indicate stronger weights. The black circle is the S-compartment. Right:
S-compartment spike rates by pattern. Spike rates are taken from a single run of each
example after each epoch, i.e., the rates are not averages. Top: the AD neuron trained
without weight modification. Bottom: the AD neuron trained with weight modification.

difficult to differentiate between the target rates and output saturation. And the two

target rates are far enough apart to differentiate between the two.

Figure 7.27 shows the results of task 9 both without (top) and with (bottom) weight

modification active. In both variants, the dendritic tree is similar. Training results in a

single tree with two large arms. Inputs are ordered from one arm to the another in

approximate ID order. In the variant without weight modification, the dendritic tree links

input 58 to the S-compartment. Connection 58 lies roughly between the most active inputs

of each pattern (i.e., inputs 25 and 75 in figure 7.26).
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The tree, due to initial conditions and randomization during the training process, is

slightly biased to inputs of pattern B. This is evident in Figure 7.27b in which the spike

rate of pattern B (orange) is consistently 1 or 2 Hz above the output rate caused by

pattern A (blue). Subsequent tests showed that training typically causes a slight bias

toward one pattern or the other. This bias emerges early in training and causes the inputs

of one pattern to have a shorter path to the S-compartment. While the bias does not cause

runaway behavior in favor of itself, without some sort of annealing or randomization during

the training process, it persists. Without knowledge of the bias, the two patterns are not

distinguishable.

The variant in the bottom two figures uses weight modification. Again, the neuron has

only one dendritic tree. However, the connection through which the rest of the tree is

linked, #22, creates a complete bias toward pattern A.

The inputs strongly associated with pattern A have a shorter dendritic path. The

increased spike rate due to weight modification causes these inputs to have a lower radial

position. The tree-building algorithm then favors them with shorter paths. While overall

the tree maintains the same shape, it is pulled inward on one side. The stronger weights

(red circles) on the right side of Figure 7.27c cause signals more often associated with

pattern A to generate more S-compartment output.

The rates in Figure 7.27d show the resulting bias toward pattern A. Quickly the output

rates generated by both patterns separate and move toward the target rates (blue: 20,

orange: 5). Output rates of both patterns show a higher degree of variance. Pattern A’s

output rate is likely more varied due to the larger weights scaling its most active inputs.

The large weights amplify subtle variations in the timing of the randomly generated input

spikes.

Figure 7.28 shows the final distribution of weights across all inputs. The raw weights of

all inputs are initialized to 100. After 1,000 epochs of training, the stronger weights belong

to inputs associated with pattern A. Those depressed below the starting raw weight are
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Figure 7.28: Task 9 final connection weights for the test depicted in figures 7.27c and 7.27d.
The conversion from raw weight to actual weight is given in 6.5.9.

associated with pattern B. The two patterns overlap (i.e., both patterns generate activity

in all input sources). Overlap causes contention between weights of different inputs. For

example, a raw weight of 100 causes both patterns to generate an output spike rate near 5

Hz. This can be seen in the baseline run of task 9 in which weight training was inactive

(Figure 7.27b). Once input positions stabilize, the rates of both patterns hover around 4

Hz. For the AD neuron to output a rate of 20 Hz when pattern A is active, weights,

specifically those receiving spikes from inputs 10 to 40, must increase. However, increasing

weights of these inputs also increases the output rate of pattern B. So pattern B’s are

subsequently depressed. This cycle continues until both reach an average rate equal to the

target rates for each pattern (A:20 Hz, B:5 Hz).

Figure 7.28 suggests that the selected target rates for each pattern were too different.

The difference in targets created two divergent groups of inputs which drove connection

weights toward extremes. To test whether the target rates were causing output instability

and the general inability to reach the target,13 we lowered pattern A’s target to 10 Hz.

Lowering the target rate had several expected and unexpected effects.

13Extended runs of task 9 (5,000 epochs) did not reduce instability.
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Reducing the differences in target rates improved output rate instability while

maintaining separation between the rates caused by examples of each pattern. We believe

the primary reason for this is a reduction in the range of weights across all inputs. When

the target rates were 20 and 5, the range of actual weights in the final neuron spanned

from 20 to 300. Reducing pattern A’s target to 10 reduced the range to 60 to 155. This

confirmed our suspicion that selecting achievable target rates is important.

Unexpectedly, the inputs with the highest weights changed. Figure 7.29a shows these

differences. Unlike the initial run, the inputs with the highest weights in this variant are

more active during pattern B examples. The tree shape and connectivity of the neuron’s

single dendritic tree is similar. Inputs active during pattern A examples are nearer the

S-compartment in both their dendritic path lengths and their radial positions. However,

the weights of these inputs are weaker than those activated by pattern B. What caused this

change and what does this say about the weight training algorithm?

Connection weights are sensitive to input position and compartmentalization. Task 8

demonstrated the effect tree location and compartmentalization have on input signals. The

inputs which receive more input during examples of pattern B are deep in the tree and

their signals must pass through multiple compartments before reaching the S-compartment.

In a sense, they must speak louder to be heard.

Figure 7.29d compares each input’s power, or ability to be heard at the S-compartment,

by subtracting normalized radii from normalized weights.14 This is a rough adjustment

since it does not use dendritic path length and ignores the contribution of angular positions

to distances. The ŵ − r̂-measure of input power suggests that the ability to be heard by

the S-compartment for inputs 10 to 80 is not as different as weights or position alone might

suggest. For example connection 65’s weight is 150% the weight of input 38; however their

measure of power is equal. This suggests that weights compensate, to some degree, for an

input’s position within the tree.

14Normalization is calculated by the method: x̂ = x
max(x)−min(x) .
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To test whether this power calculation makes sense, we examined neural output rate

when only these inputs were active. They ability to generate similar output rates suggest

they have the same power. Using the same AD neuron, each in turn was given an input

spike rate of 100 Hz. Input 38 consistently produced S-compartment output at 3-4 Hz while

input 65 did so at 2-3 Hz. As a control we also tested input 0 whose connection weight is

four-fifths the weight of input 38. It was unable to generate S-compartment output.

Testing individual pairs of inputs is by no means definitive. We examine the output

generation ability of many more inputs between 10 and 80 and found a third aspect of the

tree which should be included: compartmental distance, or the number of compartments on

the path between it and the root. For example, the jump in weights between inputs 63 and

64 coincides with a compartment boundary. Straight-line distances and dendritic path

lengths impact an input’s power less than its compartmental distance.

The results of figure 7.27c suggested another variant for task 9 which might reduce

variance in the output rate. For this variant, the original target rates (A:20 and B:5) were

used but the branching factor was increased from 0.5 to 0.8. We theorized that an increase

in the branching factor might cause the tree-building algorithm to create multiple dendritic

trees which would partition the set of inputs along pattern lines. We wondered whether

multiple trees would alleviate the contention created by divergent targets rates.

Increasing the branching factor did cause the dendritic neuron to consistently develop

multiple trees, each roughly taking half the inputs, with the split falling somewhere between

inputs 45 to 55. Increasing the branching factor did reduce the overall volatility of output

spike rates caused by pattern A (pattern B’s remained the same). However, actual weights

were more extreme (ranging from 0 to 330) and the overall output spike rate generated by

pattern A was lower. Pattern A’s output rate was also slower to rise above pattern B’s.

Using the branch factor to place patterns on distinct dendritic trees did not reduce

weight contention. In fact multiple trees consistently made the problem worse. Separate

paths allow the most active inputs of each pattern to generate neural output in isolation.
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(a) (b)

(c) (d)

Figure 7.29: Results of task 9 variant where pattern A’s target rate is 10 Hz. All other
parameters are unchanged. (a) dendritic tree: warm colors are stronger weights. (b) output
rate generated by both patterns. (c) raw and actual weights. (d) Normalized connection
weights, ŵ minus normalized connection radii, r̂.

Each pattern triggers fewer spikes in compartments which contain inputs whose rates are

biased toward the other pattern. Without this mixing in the middle (inputs 40-50), the

transition from strong to weak connection weights is even more extreme that in Figure 7.28.

Task 9 showed that the AD neuron training is capable of matching S-compartment

output to multiple target rates. Different rates signal the presence of different patterns

encoded in the dendritic tree. Increased weights can empower distal connections allowing

their signals to be heard far from their position in the dendritic tree. Weights, however, can

mitigate the effects of compartmentalization, equalizing the power individual connections

have over neural output. Matching output rates is sensitive to parameter selection and the
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type of input received by the neuron. In the end, we felt that task 9 was too complex to

further explore the effects of parameter selection on weight training. Task 10 uses a simpler

variant to test weight modification using different compartment lengths, maximum weights

and branching factors which seem to have a strong effect on weight modification.

7.5.2 Task 10

Task 9 raised questions about how the maximum weight parameter and compartment

length affected weight modification and the ability to match the output rate to a target

rate. Task 10 was designed to test how sensitive output rates were to poorly chosen

maximum weights and to explore how compartment length impacted both weights and

output rates.

Task 10 reduced the input count to 20 to create a similar but simpler version of task 9.

Input was also simplified to a single pattern of varying rates shown in figure 7.30. A single

pattern removed the contention in weight modification caused by multiple patterns. The

simpler task also reduced the effects of a complex tree on neural output.

Task 10 used a baseline, best parameter set garnered from previous tasks. The target

output rate used to create error values was 10 Hz. Maximum weight was set to 500.

Compartment length was set to 20. The branch factor was set to 0.5. The task lasted for

1,000 epochs or 100 runs each. Each run lasted for 1,000 time steps. The dendritic tree was

rebuilt after each epoch. All aspects of the AD neuron training algorithm were enabled.

Figure 7.31 demonstrates typical results of task 10 using the baseline configuration.

Figure 7.31c shows that neural output reached its target around epoch 600. The rate is

mostly stable with occasional ±1Hz fluctuations. Again, rates climb from zero as neural

inputs encode the pattern through positioning and compartmentalization. The final state

of the tree is shown in Figure 7.31a. The most active inputs have clustered into two

compartments (orange and green). The dendrite consists of a single tree with two branches

at the midpoint (input 12). Figure 7.31b shows the final raw and actual weights. The bulk
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Figure 7.30: Input rates by input ID

of elevated weights all belonged to the proximal orange compartment (input IDs 0-7). This

suggested that distal compartments, due to the low rate of input received by their

connections, played a small role in achieving the target rate. Compartmentalization

effectively silenced these inputs.

Task 10 was repeated with different compartment lengths. Figures 7.32c show results

typical when compartment length is extended to 40. The size of the proximal compartment

(orange) increases by 2 to 4 neural inputs. The change had a negligible positive effect on

the neuron to reach its target rate. On average, rates stabilize 50 epochs earlier.15 More

significantly, the additional inputs in the proximal compartment resulted in more

connections with elevated weights (Figure 7.32b). Expectedly, having more connections

with weights caused a reduction in weight values for individual connections. The peak raw

weight fell from approximately 440 to 350.

Figure 7.33 shows the results using a compartment length of 5. Neural output was not

able to reach the target output after 1,000 epochs. Actual and raw weights are significantly

higher than those of the neuron with a longer compartment length. More training does

result in the target being reached, but to do so neural weights must reach extreme values.

15Our method for calculating output rate stability is simply to log when 50% of the runs within a window
of runs (e.g., 20) match the target.
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(a) (b)

(c)

Figure 7.31: Results of task 10 using a maximum weight of 500 and a compartment length
of 20. (a) The dendritic tree with input positions graphed by latitude and radius. Colors
indicate compartment membership. (b) The final raw and actual weights of each input. (c)
The output rate of the S-compartment.

The next variant increased compartment length to 100. Figure 7.34 shows the results.

All inputs but three are included in the proximal compartment. Trained weights mimic the

input rates from figure 7.30. Curiously, across all variants of task 10, the connections

bound to inputs 0 and 1 finish with smaller weights than those bound to inputs 2 and 3.

While we have not investigated the phenomenon for this task, we suspect the lower weights

are due to the higher rate of input. A higher input rate (100 Hz) means they can generate

compartmental output with small weights. This suspicion is based on our notion of input

power (r̂ − ŵ) in the previous task.
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(a) (b)

(c)

Figure 7.32: Results of task 10 using a maximum weight of 500 and a compartment length
of 40. (a) The dendritic tree with input positions graphed by latitude and radius. Colors
indicate compartment membership. (b) The final raw and actual weights of each input. (c)
The output rate of the S-compartment.

The longer compartment, however, does not improve the speed at which the neuron

trains to its target output rate. In fact, the ±1 Hz fluctuations slightly increased.

We repeated task 10 several more times using a compartment length of 40 but varying

the maximum actual weight. We tried a maximum weight of 100 and 250. 100 was

insufficient. Output rates did not exceed 7 Hz and the raw weight reached 1,500. A max

weight of 250 did allow the neuron to reach an output rate of 10 Hz; however it struggled

to maintain it. Results looked similar to figure 7.33c.
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(a) (b)

(c)

Figure 7.33: Results of task 10 using a maximum weight of 500 and a compartment length
of 5. (a) The dendritic tree with input positions graphed by latitude and radius. Colors
indicate compartment membership. (b) The final raw and actual weights of each input. (c)
The output rate of the S-compartment.

Task 10 again demonstrated the AD neuron’s ability to train for a specific output rate.

The maximum weight parameter plays a major role in limiting the range of target output

rates a neuron can effectively achieve. The maximum weight parameter must be large

enough for the neuron to easily reach the target rate. Because of this, it is better to

overestimate the maximum weight needed than underestimate it. A maximum weight

which is too small will cause the raw weight to grow endlessly. The raw weight can also

signal if the difference between multiple target weights is too large (task 9). The contention

they generate in the weight training algorithm will cause weights to continually diverge.
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(c)

Figure 7.34: Results of task 10 using a maximum weight of 500 and a compartment length
of 100. (a) The dendritic tree with input positions graphed by latitude and radius. Colors
indicate compartment membership. (b) The final raw and actual weights of each input. (c)
The output rate of the S-compartment.

Compartment size also plays a role by maximizing the ability of a set of connections to

generate local compartment output. Oversized compartments cause fluctuations in output

rate. Compartment boundaries do not distinguish between more and less active inputs.

Small compartments can be beneficial because the connections in each compartment will

tend to receive similar input rates. Smaller compartments can stabilize neural output rates

by reducing the number of connections with short paths to the S-compartment. However,

small compartments also draw many more boundaries in the dendritic tree decreasing the
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ability of distal connections to be heard at the neural level. This can increase the training

time to reach a target output or prevent it altogether.

Lastly, task 10 helped us to finalize the set of base parameters given in the previous

chapter.

7.5.3 Summary of Weight Training

Tasks 9 and 10 demonstrated the AD neuron’s ability to match neural output to

different target output rates depending on that pattern was presented. Weight training is

the primary mechanism for raising or lowering neural output rate from the rate to which it

is predisposed by its initial conditions. Input positions, tree-building and

compartmentalization do play a role but since they are not subject to an error signal they

encode input without regard for its correctness.

The ability of the AD neuron to signal the presence of a specific pattern by an output

rate depends on several factors. In task 9, the two patterns overlapped in the inputs they

activated. If the target rates for each pattern were too different, connections contended

with each other. One set pushed weights up. Increased weights drove up the output rate of

the pattern with the lower target since it activated the same inputs, albeit less often. So,

when active, the pattern with the lower target rate drove weights back down. While

divergent weights can reach target rates, they create instability. Weight values become so

extreme that subtle variations in input are amplified. In the worst case, target rates are

impossible to reach causing an unending increase or decrease (or both).

Another important factor for output stability is the maximum weight. From Section

6.5.9, the purpose of the maximum weight is to prevent runaway behavior by providing an

upper and lower bound on the actual weight. If the maximum weight is too low for a

selected target rate, the raw weight will continue to increase but the actual weight will not.

The S-compartment’s output rate (barring other changes to the neuron) will never reach

the target. On the other hand, if the maximum weight is too high, the output rate might
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not stabilize due to the impact of small raw weight changes having too large an impact on

the actual weight.

Task 9 demonstrated that target rates alter the shape of the dendritic tree. Inputs

which were more frequently active during pattern A were closer to the S-compartment,

both radially and along the dendritic path.

7.6 Training Summary

This chapter discussed ten tasks with many different variants which together

demonstrate how the AD neuron training algorithms were tested. The tasks of this chapter

represent just a few of the many tasks run to bring the work this far. Tasks were excluded

primarily because they pertained to earlier, incomplete versions of the AD neuron. Others

were excluded because they did not contribute any new information. The set of tasks

included here demonstrate our approach to testing and together describe the viability of

our approach to trainable artificial dendrites.

Tasks were chosen or designed to test the different mechanism in as much isolation as

possible. Four of the five algorithms--angular position, radial position, tree-building and

compartmentalization--were developed and tested initially in isolation from one another.

Weight modification, because it depended on a complete dendritic neuron, came last and is

the least tested of the five. Integrating the algorithms prompted modifications or additions

to some algorithms. Integration was time consuming in that it required repeated passes

back through earlier tasks to test whether newly added bits conflicted (or enhanced)

previously added ones.

In overview, the AD neuron builds its dendrite by positioning neural inputs. These

incoming connection ends are themselves connected together to form the dendritic tree.

The tree is divided into compartments. Connection weights are modified based on their

contribution to compartmental activity.
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For each aspect of the neuron, development and testing suggested a myriad of

alternatives. Many of these are discussed in the final chapter. Choosing between

alternatives often required not choosing but implementing, in a limited way, several

possibilities. For example, multiple weight modification algorithms were considered until

very late in the project. We chose the current one because it learned from behavior

(i.e., compartment-level response to input) not captured by the other learning algorithms.

At each crossroad we endeavored to select the simplest version of each method and only

moved to more complex forms when the simple version was inadequate.

We do not possess a complete understanding of AD neuron behavior. The different

training algorithms themselves interact nonlinearly in that changes to one produce

unexpected behavior in the others. Balancing them was a difficult task. However, in their

current form, they are robust in that they do not require a perfect set of parameters, as we

demonstrated. The only parameter-related requirement is that at some point the

S-compartment must begin emitting spikes or else radial positions will not change. Often,

tasks begin without neural output. This silence persists for the first few epochs. But as the

angular training algorithm begins to cluster connections and compartmentalization and

tree-building begin to add them to the same dendritic tree, the S-compartment begins to

spike.

Is this approach viable? We believe the contents of this chapter answer affirmatively.

Training modifications capture patterns embedded in the input space. The state of the AD

neuron encodes these patterns in a retrievable manner. This encoding changes neural

output such that input patterns can be distinguished in it. While viable, much more work

is required to make it useful. For this reason, we separated the AD neuron model from its

trainable form.

Although the approach is viable, unanswered questions and issues abound. For

example, tasks 9 and 10 suggest that hard boundaries for compartments are inadequate.

For example, in task 9, better results can be achieved if the dendritic tree consists of two
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compartments. A proximal one containing 7 or 8 connections and another containing all

the rest. As to how or why compartments should expand or contract, we cannot say. Our

inclination is that compartment length should be trainable. How this should be

accomplished and whether it is beneficial is left for future work.

Another problem area is distal compartments. As configured, it has been difficult to see

a specific role played by distal inputs. More often than not they are silenced by the chain

of compartments their signals must propagate through. We suspect that our treatment of

signal integration within compartments could be improved.

Also, angular position training would benefit from some manner of annealing16 .

Annealing might help prevent angular position lock by reducing final position’s dependence

on initial ones.

Various aspects of training, which have proven to be important to ANN training, have

not been investigated, such as batch size (i.e., the number of training runs in an epoch).

For our approach, batch size determined how often the dendritic tree was rebuilt. Most of

our tasks used a batch size of no less than 100 and no more than 1,000. The dendritic tree

and its compartments do not change until the end of an epoch. This means that by the

end, the tree does not match the current state and position of the connections. Similarly,

we are uncertain whether neural input positions should be altered during runs (as we have

done) or only once per epoch, like tree-building and compartmentalization. Again, we leave

such questions to future work.

The tasks do not end here. The next chapter contains several larger, more complex

tasks. These tasks test the classification performance of AD neurons.

16Annealing in heuristic algorithms introduces small randomizations in the state of the entity to avoid
local minima.
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CHAPTER 8

TRIALS

This chapter presents the results of several larger tasks which benchmark the entire

suite of training algorithms working in concert. While the goal of these tasks is to

benchmark performance (i.e., accuracy), they also allow us to stress test the conclusions

drawn in the previous chapter concerning parameters, initialization, run-time and the

feasibility of the algorithms themselves. The trainable AD neuron is complex. While parts

of the combined training algorithm capture patterns embedded in the data, this does not

guarantee that together they produce something useful. It is important to acknowledge

that the behavior seen in simpler tasks by no means translates to successful performance in

more complex tasks.

To understand the differences between the AD neuron and the point neuron we have

selected two tasks. The first task is a time-series task which we expect the AD neuron to

perform better than the point neuron. The second tasks involves recognizing categories

from the Fashion MNIST data set. Typically, categorization is a task which point neurons

(specifically large networks of point neurons) handle well.

8.1 Movement Recognition Trial

In this task, the AD neuron implementation is presented with a time series classification

(TSC) problem. Time series data is data that has been ordered temporally. It gives the

change of state of a system, object or process through the progression of some finite

amount of time. TSC involves correctly identifying the source of a specific time series from

among a set of possible origins. TSC is a difficult problem for machine learning because

potentially it requires a model to identify patterns by connecting data points that are

separated by a possibly varying or even undetermined span of time. We chose this trial

because it represents the type of trial to which the AD neuron may be better suited.
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The goal of this task was to test whether an AD neuron configuration recognizes

specific types of movement and whether the training algorithm can produce such a

configuration. This task tests whether AD neurons can learn to discriminate between

directions of movement within a visual field. This task was inspired by neuroscience

research which shows that certain neurons, due to dendritic properties, fire only or at an

increased rate when input represents movement in a particular direction [121, 110].1

A 2D-space was divided into a 10× 10 grid. A 10× 10 grid was used because it posed a

moderately complex problem without requiring excessive training times. The moderate size

of the problem kept results interpretable.

Each input layer neuron was assigned to a different cell in the grid. Simulated objects

passing through the grid caused the neurons associated with nearby cells to spike at a rate

based on an activation function. The activation function is given by Equation 8.1. Figure

8.4 shows an example of the grid and two example activations.

0.1

(db)2 + 1
(8.1)

The maximum rate (when an object is directly in the center of a cell) was 100 Hz. d is

the distance between the object’s location and an input neuron’s focal point, and b controls

the radius of the activation caused by the object. The initial position of a horizontally

moving object was given with a random y-value and an x-value of 0 (i.e., they begin at a

random location on the left side of the grid). The initial position a vertically moving object

was given a random x-value and a y-value of 0 (top of the grid).

1The neurological basis for this appears to be quite complex and a complete understanding of its
supporting neural architecture is lacking. That said, there are two competing ideas to explain this
phenomenon: sequential synaptic activation and the interplay of excitatory and inhibitory neurons. These
are not mutually exclusive since each could be relevant to one type of neuron or region. For this task, the
neurological basis is mentioned here because the AD neuron is capable of ordering synapses along a common
dendrite. If such ordering is sufficient, then sequential activation should produce stronger output than other
forms of activation. The AD neuron can encode temporal delays in the lengths of its dendrite. With the
appropriate delay between synapses, movement generated input, which would normally arrive at different
times, can be made coincidental at the soma.
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(a) (b)

Figure 8.1: (a) The accuracy rate for the movement recognition task using a spiking point
neuron. (b) S-compartment output (number of spikes) for both output neurons. Blue:
output caused by movement in the correct direction. Orange: Incorrect direction.

Two variants of the trial were conducted: one using AD neurons and one using point

neurons.

8.1.1 Point Neuron

Point neurons were created from AD neurons by adding all neural inputs to the

S-compartment and disabling all training except weight modification. Neural input initial

positions were identical to the S-compartment, (0, 0, 0). Otherwise, all parameters were

unchanged. The trial itself was run under the same conditions. The figures in 8.1 and 8.2

display the same information shown above for the AD neuron. The accuracy of the point

neuron variant (8.1a) is low. The direct reason for low accuracy can be seen in the similar

responses output neurons have to correct and incorrect input examples (figure 8.1b). Both

output neurons spike at the same rate for both types of movement.

Unlike the AD neuron, the behavior of the point neuron is the same for both types of

movement. The timing of neural output for the point neuron is does not vary between

movement types (figures 8.2). Neural output rises and falls as the simulated object passes

near (or through) the center of each cell. Output for a correct response (blue) initiates

somewhat later than the incorrect response, or slightly after the 200th time step versus
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(a) (b)

Figure 8.2: Probability of an S-compartment output spike per time step. Blue: Correct
movement. Orange: Incorrect movement.

(a) (b)

Figure 8.3: The actual weight of each connection arranged according to their selectivity
within the grid. (a) Point neuron tasked with recognizing horizontal movement, and (b)
vertical movement. Actual weight is calculated according to the formula given in equation
4.3.

slightly before. The cause of this later response can be seen in the actual weights in figures

8.3.

Connection weights place both output neurons in a competition neither can win. In

effect, each is playing for the other team.

The output neuron recognizing horizontal movement elevates all connections from each

pattern instance (row) except for the first. The opposite is true for vertical movement. The
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reason for this is that signals generated by the object passing through the cell arrive at a

“cold” neuron, meaning it has not experienced any previous input and is therefore in its

resting state. Signals generated by later movement reach a “warm/hot” neuron and more

easily produce neural output. This causes a rise in the weights of these connections. Since

in this point neuron all neural inputs belong to the same compartment, neural output

drives weight modification. The side effect is that 9 out of 10 opposing movement patterns

send signals through connections with elevated weights (columns in the left hand figure or

rows in the right hand figure). This is the reason why incorrect input examples cause earlier

output. Earlier output results in more overall output. Figure 8.1b demonstrates this. After

the 1,000 epoch, incorrect output rates exceed correct ones. This trend continues.

8.1.2 AD Neuron

Each run consisted of 1,100 time steps in which simulated objects moved from either

the top of the grid to the bottom or from the left side to the right. For vertical movement,

the simulated object was placed outside the grid at a y-value of -200. A random x-value

was selected from the range [0, 1100]. For the horizontal case, the simulated object was

placed to the right of the grid at x = −200. A random y-value was chosen from [0, 1100].

Movement was either perfectly vertical or horizontal. In both cases, the object passed

through all cells in a given column or row. Trials consisted of 1,000 epochs of 100 runs per

epoch. Each run lasted for 1,100 time steps which allows the simulated object to move

through the entire visual field. The dendritic tree is rebuilt and re-compartmentalized

between epochs. The parameters used are given in the base parameters (Table 6.3) with

several exceptions. The branching factor (bf) was set to 0.7. A higher branching factor was

used for the initial trial to bias the tree-building algorithm toward straighter trees. The

radius of the dendritic field was increased from 500 to 1,000 to allow for longer

relationships between input and output spikes. And the maximum compartment length

was set to 100. We discuss below the effects of different compartment lengths and why 100
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Figure 8.4: LEFT: A simulated visual field divided into a 10 grid. The field is continuous. An
input layer neuron was assigned to the center of each cell. The closer an object moves to the
center of a cell the stronger the input received by the associated neuron. The red and blue
dot and attached arrows demonstrate how objects move across the field. The step-by-step
activation caused by these two points is displayed in the right figure. RIGHT: The input
from the visual field caused by the two points shown in the left figure. While this field is
continuous, it is only sampled at fixed positions: the center of each cell.

was selected. Target output rates were 5 Hz for examples of an output neuron’s matching

category and 1 Hz for non-matching examples.

A random mask was used to separate patterns. The random mask used a Poisson

process to generate input spikes at a rate of 10 Hz.

Evaluation of the AD neuron’s ability to learn was based on whether there was a clear

distinction between the output levels corresponding to a learned versus unlearned (or

opposing) category. Although the target rate for a learned category was 5 Hz, a correct

response did not require that a neuron reach this goal, only that its output rate be strictly

greater than the rate of the other output neuron. Error values were calculated based on a

running average of a neuron’s past output rate for a given category. The error calculation

used equation 8.2.
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eijt =


1− rijt−1

RC
if i = j

RI

rijt−1

− 1 if i ̸= j and rijt−1 ≥ RI

RI − rijt−1 if i ̸= j and rijt−1 < RI

(8.2)

eijt is the error rate of the ith output neuron for input example category j at time t. rij is

the output rate of the same neuron for the previous presentation of category j. RC and RI

are the correct category and incorrect category target rates. The piece-wise equation

causes examples which match a neuron’s category (i = j) to increase its output rate toward

the correct rate, RC , and decrease it toward the incorrect, RI , when they do not match.

Additionally, if output rates exceed the correct rate (or dip below the incorrect rates), each

part will flip its sign. This prevents runaway behavior in either direction. A special case

(the third) is needed when an output neuron’s rate is less than the incorrect target rate. In

this case, eijt = RI − rijt−1. This prevents divide-by-zero and prevents eijt becoming very

large when rijt−1 is very small.

Figures 8.5 and 8.6 show the dendritic trees of the two output AD neurons recognizing

horizontal and vertical movement respectively. The grid is represented in the tree such that

following the tree from a distal input to the S-compartment reproduces the simulated

object’s trajectory through the grid. The distance between neural inputs in the dendritic

field directly corresponds to the speed at which the simulated object moves through the

visual field.

The resulting input positions and trees show a distinct bias toward the type of

movement each was tasked with encoding. For example, in 8.5, the neuron recognizing

horizontal movement, input positions show a distal-to-proximal order corresponding to

left-to-right movement through the grid. Neural inputs selective to the left side of the grid

(e.g., 0, 10, 20, ...) are most distant from the S-compartment (-1), whereas, right side

selective inputs (e.g., 9, 19, 29, ...) are closest to the S-compartment. Since all movement is

perfectly vertical or horizontal, movement by the simulated object produces sequences of
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Figure 8.5: Dendritic tree of the AD neuron recognizing horizontal movement after 1,000
training epochs. Colors denote compartment membership. Numeric labels indicate the grid
cell that sends signals to each neural input. -1 is the S-compartment (or soma).

input layer activations. The neural inputs receiving signals from these sequences of

activations cluster to form dendritic branches. Activations do not only occur along the

direction of movement. Since the receptive fields of the input neurons overlap, movement

can cause lateral activations in neurons receptive to adjacent cells. However, these lateral

activations occur less frequently allowing the random mask to push the branches apart.
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Figure 8.6: Dendritic tree of the AD neuron recognizing vertical movement after 1,000
training epochs. Colors denote compartment membership. Numeric labels indicate the
grid cell that sends signals to each neural input. -1 is the S-compartment (or soma).
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Each AD neuron was able to learn to discriminate one direction of movement from the

other with a high degree of accuracy. Figure 8.7a shows the accuracy rate averaged across

10 trials. The final rate is > 99%. After 100 epochs, learning produces rates of more than

95%.

The discrimination between types of movement does not require extremely different

output rates. The AD neuron learns to tell one from the other when the rates differ by just

2 Hz. Figure 8.7b shows average output rates per epoch for correct (or matching) and

incorrect (or non-matching) responses. In their initial state, they both begin producing, on

average, approximately 1 spike per run. After training, movement in the correct direction

for each neuron results in 2 spikes, whereas, the incorrect results in 0 for the incorrect

direction. To ensure that these rates were stable, the trial was run out to 10,000 epochs.

S-compartment output requires multiple signals reaching it at roughly the same time.

Solitary signals do not generate activity in the two output neurons. Combined signals

cause the S-compartment to spike. The timing need not be perfect. A signal arriving from

distal parts of the tree may prime the S-compartment’s spiking neuron model by elevating

its membrane potential (v from the Izhikevich neuron model discussion). A following signal

(a) (b)

Figure 8.7: (a) The accuracy rate for the movement recognition task using AD neurons. (b)
S-compartment output (number of spikes) for both output neurons. Blue: output caused by
movement in the correct direction. Orange: Incorrect direction.
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(a) (b)

Figure 8.8: Probability of an S-compartment output spike per time step. Blue: Correct
movement. Orange: Incorrect movement.

Input Groups 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99
Path length to S-Comp. 804 742 678 616 557 497 441 387 344 371
Average radial position 705 657 608 560 511 463 414 366 325 351

Table 8.1: Average dendritic path lengths from groups of inputs to the S-compartment of
the AD neuron recognizing vertical movement (figure 8.6).

from the subsequent activation of another input neuron would push the model beyond its

threshold, generating output. This one-two-punch of distal and proximal input is caused by

(in the vertical case) inputs selective to the bottom row of the grid (90 to 99) being closest

to the S-compartment.

The plots in figure 8.8 depict when in the course of a run S-compartment output is

most likely to occur. When we compare plot 8.8a to the distances given in table 8.1, we see

that an increase in the likelihood of output corresponds to the dendritic path length of the

most distal neural inputs. Table 8.1 only represents input positions for the neuron

recognizing vertical input, but a similar grouping can be made for the horizontal one as

well. Inputs are grouped by row. The leftmost column gives the dendritic and radial

distances for the neuron inputs receptive to cells forming the top row of the grid.

The high accuracy in this trial does not require a perfect spatial or connective encoding.

The separation of branches is not perfect in either final example. Many of the branches
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encoding rows or columns share an S-compartment connection. Or, some patterns are

interspersed along a common branch. Limited tests show that these imperfect encodings do

not impact performance (see hand-crafted variant below). In fact, a decent degree of

accuracy can be achieved without arranging neural inputs such that branches resemble an

object’s path through the visual field. 80% accuracy can be achieved if from the initial

state of one input per tree, inputs are given the radial positions listed in table 8.6.

We expected that neural inputs receiving signals from inputs corresponding to the final

row (in the horizontal case) or column (vertical case) would be nearest the S-compartment.

However, the AD neuron’s recognition of a movement type does not require signals from all

input neurons. Signals arriving at the S-compartment from the first seven inputs are more

likely to coincide with the eighth’s arrival (or next to last) input than with the ninth’s.

We ran the movement recognition trial using several different configurations. In the

parameter space around the configuration described above, the results are qualitatively

similar: accuracy above 95%. If the maximum compartment length is significantly larger

(> 200), input signals are unable to generate S-compartment output. Large compartment

lengths cause the majority of the inputs belonging to a single branch to fall into one

compartment. Temporally sparse input is not enough to cause such large B-compartments

to produce output. On the other hand, a small compartment length (< 50) places each

neural input into its own compartment. The result is that all input (correct or incorrect) is

more able to generate B- and S-compartment output, degrading accuracy.

An optimal compartment length divides branches up into compartments containing 2 to

4 neural inputs. Compartments of this size can be activated by two coinciding signals. This

provides just enough of a threshold to limit single signals from propagating to the

S-compartment.

As stated above, the training algorithm does not produce a set of ideal dendritic trees,

i.e., one pattern per dendrite. This raises the question of whether the imperfections of the

trained AD neurons are responsible for errors. To answer this question we reran the trial
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using a “perfect”, hand-crafted pair of output AD neurons. Hand-crafted dendrites rewired

the connections of trained AD neurons such that each grid row (horizontal case) or column

(vertical case) occupied a separate dendrite. Input positions themselves were not altered or

allowed to reposition. The AD neurons were allowed to re-compartmentalize neural inputs

based on the hand-crafted tree.

The hand-crafted AD neurons performed similarly to the trained ones. Errors appeared

to be caused (for both hand-crafted and trained neurons) by weak input signals. Weak

signals were caused by the randomly selected axis of movement falling between two rows

(horizontal movement) or columns (vertical movement). Such a path can fail to generate

enough input to activate the S-compartment.

8.1.3 Discussion

The AD neuron is capable of distinguishing between different types of movement, albeit

simple, disjoint categories. The AD neuron learns this task through clustering neural

inputs that receive related signals along common dendrites. Since dendrites (i.e. dendritic

compartments) have a squashing effect on signals exiting them, dendrites whose

connections work in tandem have a far greater impact on the S-compartment than

dendrites which are sparsely active. This is the strength of the AD neuron, but this task

highlighted several weaknesses as well.

The training algorithm does not produce ideal dendrites. Inputs belonging to different

patterns intermingle or share a main branch. However, this trial suggests that ideal shapes

are not required for all tasks. In fact, it is not obvious what an ideal shape is. For example,

we later found that a single dendritic tree containing all neural inputs in the

distal-to-proximal ordering found in the examples above is sufficient to get a very high

accuracy (> 95%). This obviates the need to use the random mask and suggests that, for

movement tasks, individual dendritic paths for each pattern are not necessary if they are

all identical.
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By comparison, it is obvious the point neuron would not be able to learn a solution to

this problem because this problem is a form of exclusive-or. Weight modification alone

cannot bias a neuron toward one sequence of signals and away from another. The AD

neuron is successful because it encodes the timing of the sequence into the structure which

is responsible for carrying the signals. Sequences matching the encoding fare better than

those which do not.

8.2 FMNIST Trial

For the second trial, we chose a problem to which the point neuron may be better or

equally suited, the Fashion-MNIST (or FMNIST) data set [178]. FMNIST presents a

classification problem of bi-tone images of clothing which belong to one of ten categories

(Figure 8.9). Deep networks of point neurons have proven to be very adept at solving this

problem; however, this data set is one of the simpler tasks used to benchmark new

algorithms. For example, images of the FMNIST data set can be categorized to a high

accuracy using single-pixel analysis [56]. It is for this reason we suggest that a single point

neuron may be as equally suited to recognize clothing images as the AD neuron.

The FMNIST data set is a benchmark data set for neural networks. The FMNIST

database is a drop-in replacement for the MNIST handwritten image database due to

image size (28× 28 pixels) and the range of pixel intensity (0-255). It was created because

state-of-the-art neural networks made solving the problem posed by MNIST trivial. As a

benchmark for new algorithms, MNIST is therefore not a good predictor of performance in

real-world tasks. We selected FMNIST over MNIST simply because it is a slightly more

difficult task.2 Shapes and pixel intensities vary significantly more than those of MNIST.

Certain images are ambiguous enough to pose a challenge to a human. Because the

challenge is greater, we anticipate differences in capabilities between neuron models to be

exaggerated.

2We did extensive testing using the MNIST data set earlier in the life-cycle of this work but switched
for the reasons given above. Some MNIST results do appear in Chapter 6 concerning the random mask.
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Figure 8.9: Sample of the Fashion MNIST images and categories.

Our goal for this trial was again to compare the AD neuron to the point neuron across

several tasks of increasing difficulty. Although the previous chapter described certain

behaviors and contributions of each part of the AD neuron training algorithm, they were

examined across different tasks. Here, we wanted to examine their contributions on the

same task.

The level of difficulty was increased across tasks in two ways. We deceased the number

of output neurons from one-per-category to just one for all categories. And we increased

the number of categories we expected the neurons to learn. For the latter, neurons were

trained to respond to examples from different categories with different output rates.

For all trials, a one-layer network of AD neurons was initialized. The network consisted

of an input layer of 784 Izhikevich spiking neurons, one for each pixel of the 28× 28 images.

The input layer was used to encode image pixel intensities into spike trains. The input

layer was connected to an output layer consisting of one or more AD neurons. Image pixel

values are in the range [0,255] and were rescaled to [0,1000] to generate more activity in the

input layer. Training lasted for 500 or 1,000 epochs. For some runs, we lowered the epochs

to reduce training time. Each epoch consisted of 100 training examples of each category

selected at random. The network was exposed to each example for 1,000 time steps.

Following each training epoch, the network was shown 10 testing examples of each

category selected at random. A small number of testing examples were used per epoch

(instead of the entire data set) because we wanted to show that accuracy rates were not

dependent on category averages and that models were consistent across any set of bagged
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examples. Spike rates for each output neuron were accumulated during this testing phase

and used to calculate the error value for the subsequent training phase. Error values were

calculated using the previously mentioned equation (Equation 8.2). Target output rates

were set on a trial-by-trial basis. For tasks which used a one-to-one ratio of output neurons

to categories, target rates were set to 10 Hz for examples matching a neuron’s preferred

category and 1 Hz for non-matching examples. For later tasks, target rates were staggered.

We increased the matching target rate compared to the movement trial above because

we wanted to ensure a clear distinction between a correct and incorrect response.3 All

other parameters, including those of the random mask, were identical to those used in the

time series experiment above.

Point neurons were created by placing all neural inputs at position (0, 0, 0), adding them

to the S-compartment and disabling all training algorithms except weight modification.

Figures in all variants depict single runs which are representative of either general

behavior or some specific quirk. Trial variants were run multiple times to verify general

behavior and many times to verify behavior which did not always occur (e.g., Figure 8.13).

8.2.1 Two Categories - Two Output Neurons

We ran several preliminary tests (not included in this work) which showed that both

the AD and point neurons could learn a single category. Therefore, for our first significant

trial, we tested whether single-layer networks of each type of neuron could learn to

distinguish between two image categories: 1 (T-shirt/top) and 5 (Sandal).

We selected these two categories because, as a baseline, they are relatively dissimilar.

The articles of clothing in these categories have drastically different shapes and therefore

pixel overlap between examples is sparser. Also, examples in category 0 generally occupy

more of the image than those of category 5.

3In following trials using just one output neuron, we show that using such different target output rates is
probably unnecessary since a single AD neuron is capable of responding to different categories using output
rates separated by just 2.5 Hz.
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(a) (b)

Figure 8.10: Accuracy per epoch of the (a) AD neural network and (b) point neural network
for categories 0 and 5 of the FMNIST data set.

Networks of each neuron type were initialized as described above. The output layer

contained two neurons, one for each category. Each output neuron would be trained to

respond to one of the two categories.

Figure 8.10 shows the AD versus point results for a single test. Both networks

performed well on this initial task (above 95%). The network of point neurons slightly

outperforms the AD neuron and it reaches peak performance in fewer epochs. Both

encodings are stable within the time frames tested (up to 1,000 epochs).4

The AD neuron compartmentalizes the connections frequently activated together.

Figure 8.11 shows connections by actual weight (left) and compartment membership (right)

for the largest compartments of the AD neuron tasked with learning category 5 (sandals).

The general shape of category 5 examples can be seen in the connections with large weights.

The connections with the strongest weights belong to one of several (in this case, three)

compartments. While these compartments do not exclusively contain strong connections,

the same general category shape is present in the combined membership of these three

largest compartments. The number of compartments depends on the branching factor and

4We lowered the trial duration to 500 epochs for most of these tests to increase the number of tests we
could perform. AD neurons with 784 neural inputs take a long time to train.
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(a) (b)

Figure 8.11: (a) The actual weight for all 784 neural inputs to the AD neuron tasked with
learning category 5 (sandal). (b) Compartment membership for each neural input. Alpha
channel uses compartment size to highlight only the connections belonging to the largest
compartments. Colors denote compartments. Inputs in both images are positioned according
to the pixel location from which they receive input.

the compartment size. A part of future work is to examine whether spatial locality within

the source image (or the lack thereof) is important to compartment membership.

Connections with negative weights receive input from pixels predominantly associated

with the other category (blue squares in Figure 8.11a). The range of connection weights

depends largely on target output rates. Our use of 10 Hz and 1 Hz caused an extreme

difference in the two (approximately [−450, 450] which, being close to the maximum

possible range of actual weights, [−500, 500], required very large raw weights,

[−2000, 2500]).

Figure 8.12 shows actual weights and larger compartments for category 0 (T-shirt).

Interestingly, the strongly weighted connections form a well-defined map of a T-shirt;

however, the category consists of examples which include both long- and no-sleeved shirts.

Whereas, the former example type is not visible in the weights, it is visible in Figure 8.12

(navy and olive colored compartments).

The above suggests that certain compartments appear to contain feature information,

e.g., sleeves or stomach. This is also visible in Figure 8.11b. Category 5 examples typically
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(a) (b)

Figure 8.12: (a) The actual weight for all 784 neural inputs to the AD neuron tasked with
learning category 0 (T-shirt). (b) Compartment membership for each neural input. Alpha
channel uses compartment size to highlight only the connections belonging to the largest
compartments. Colors denote compartments. Inputs in both images are positioned according
to the pixel location from which they receive input.

fall into two sub-categories: flats and heeled (see Figure 8.9). Heeled sandals are

represented by the red compartment, whereas, pixels indicative of flats send input to

connections belonging to the purple compartment.

Altering compartment sizes does not appear to enhance this feature-compartment

correlation. Very large compartments blob all connections associated with category

features into one giant compartment. Smaller compartments do not appear to further

isolate features. For example, the use of smaller compartments does not, say, divide the

navy-colored compartment into a right and left sleeve but includes connections from both

sides.

Reducing compartment size seems to have another impact on AD neuron output; it

introduces more variance and instability in the results. Behavior is more easily impacted

by outlier examples because smaller compartments allow individual connections to have

potentially a stronger voice. Connection weights become less uniformly spread over the

total range. A handful of connections will have weights at the extreme end of the upper or
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lower quartile of the range. This suggests that the neuron’s output has learned to recognize

categories based on a small percentage of the pixels.

The main source of instability caused by small compartments is the dendritic tree’s

susceptibility to drastic reordering. On the other hand, larger compartments cause a

general decrease in accuracy but seem to grant more stability. This could be because AD

neurons with larger compartments better absorb small changes to input positions and

connectivity. In larger compartments, changes to input positions appear less likely to cause

splits or combinations of existing trees or compartments. With smaller compartments,

sometimes the shift of a single neural input can cause compartments to divide.

Figure 8.13 shows an example of an AD neuron with smaller compartments

experiencing a sudden drop in accuracy. Smaller compartments were created by increasing

the branching factor to 0.8. This created smaller compartments by reducing the branching

of dendritic trees and forcing more trees to originate at the root. At epoch 460, accuracy of

the output neuron associated with category 0 (T-shirt) drops to zero after a long period of

high accuracy. Within a few epochs, the accuracy rate recovers. Each time this has

occurred, it seems to signal a fundamental reordering of compartments, either in the

number of compartments or their composition. In this case, the range of the number of

compartments shifts upward, doubling. However, the timeline for compartment population

(Figure 8.13b) is rife with changes, shifts and sudden spikes. Such changes also cause a

change in average compartment size. We are reasonably certain that the catastrophic drop

in accuracy is due to changes in the AD neuron and not, for example, a bag of outlier

examples since the drop persists over several epochs. However, we are uncertain why some

changes affect accuracy and some do not.

We believe that the difference in impact on accuracy depends on whether compartment

population changes involve proximal neural inputs. Divisions between compartments

depend heavily on the angular position of proximal inputs with respect to larger clusters of

more distal inputs. These proximal inputs typically form the root of a dendritic tree. If a
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(a) (b)

Figure 8.13: Results for a variant of the two category-two output neuron task with the
branching factor set to 0.8. (a) Accuracy rates for the output neuron associated with category
0 (T-shirt). (b) The number of compartments in the AD neuron per epoch with size (i.e.,
number of connections) greater than 1.

proximal input’s position relative to a larger distal cluster changes, a large number of

inputs can change compartment affiliation.

In a larger sense, impact is determined by the “importance” of the neural inputs

involved in the change. A more definitive answer to this question is left for future work

primarily because it requires a method for defining and tracking neural input and

compartmental importance over the training life cycle. Defining importance potentially

involves combining input position, connectivity, compartmentalization and weights, relative

to all other inputs, into some kind of metric. We feel this is an area of artificial dendritic

research beyond the scope of this work.

These comments about accuracy, stability and compartment size are anecdotal.

Whether sudden drops in accuracy are due to compartment reordering or to some other

phenomenon is an open question.

Since the AD neuron performed well distinguishing these two categories, we selected

this trial to perform ablative tests. In each test, we turned off various parts of the training

algorithm in order to determine their contribution. We assumed that by disabling part of
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(a) (b)

(c)

Figure 8.14: Ablative tests of the AD neural network. (a) No weight modification. (b) No
radial modification. (c) No angular modification.

the overall algorithm accuracy would fall by varying degrees demonstrating the

contribution of each.

Figure 8.14 shows the same trial in three different configurations. In each configuration,

we turned off either weight modification, angular position training or radial position

training. Removing weight modification (Figure 8.14a) had the most pronounced effect on

accuracy, reducing it from the high 90s to approximately 50%. Omitting radial training

(Figure 8.14b), such that all neural inputs remained in their initial positions at the outer

edge of the dendritic field, had a less severe effect on accuracy, dropping it to

approximately 80%. Lastly, removing angular training (Figure 8.14c), improved the
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learning speed of the network. Without angular training, the network typically reached

greater than 90% accuracy after just one epoch.

Angular movement is disruptive as, during initial epochs, neural inputs move across the

dendritic field. This causes the creation and destruction of vastly different dendrites each

epoch until the input positions settle. This is evident in the linear learning rate across the

first 50 to 200 epochs. Radial movement decreases learning time by reducing the separation

between a neuron’s most active inputs and the S-compartment. This allows the

S-compartment to be more responsive to input due to a shortening of the time between a

signal’s arrival at the point of input and its arrival at the S-compartment. This increases

the output rate of both the S-compartment and B-compartments, which generates more

change in connection weights. This reinforcement of weight modification by radial

repositioning is the cause for the quick learning seen in the no-angular test in Figure 8.14c.

What, then, does the angular modification provide in the context of this trial? It slows

the the rate at which the network encodes a category. However, angular position training

contributes stability to the model. In our trials, disabling angular training lowered the

overall accuracy of the trained model by approximately 2%. We believe this is caused by

compartmentalization. While compartmentalization was not disabled in any of the tests

using AD neurons, without angular position training, the vast majority of neural inputs

belong to a compartment all their own, making it a close cousin to the point neuron. With

angular training, compartment sizes grow. Compartments dilute the individual impact of

the neural inputs contained within them. Each input on its own is less important. A

compartment’s output is nonlinear with respect to the amount of input. Above a certain

point, more input does not increase a compartment’s output.

These properties of compartments cause the AD neuron to be less susceptible to outlier

input examples, i.e., examples with different shapes or pixel intensities. This seems also the

reason why the rate of learning decreases as it takes time for compartments to form and

connection weights to adjust.
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The AD neural network’s performance was on par with the network of point neurons.

This led us to wonder whether, for certain tasks, there is any benefit to using AD neurons.5

Previous tasks suggest that AD neurons are capable of recognizing different patterns

through isolating sets of neural inputs on different dendritic trees. We hypothesized that

the AD neuron might outperform the point neuron if the number of output neurons was

reduced. In other words, can one neuron learn to differentiate between categories? This

question formed the basis of the next variant of the FMNIST trial.

8.2.2 Two Categories - One Output Neuron

Networks of each neuron type were initialized as described above. The output layer

contained one neuron. This single output neuron was trained to recognize different

categories by responding with a different spike rate for each category. The target rate for

examples belonging to category 0 (T-shirts) was 10 Hz and the target rate for category 5

was 5 Hz. These two rates were chosen based on previous experience with setting target

rates. Each rate is both achievable by the default AD neuron configuration, different

enough to allow for identification but not so different as to prevent the reaching of either

target.

The output rate was matched to a target rate by selecting the minimum of |r − ti|

where r is the spike rate for the output neuron, and ti is the target rate for category i.

Only the final 200 epochs were used for accuracy calculations to omit rates from earlier in

the training process.

Figure 8.15 shows an example of the accuracy rates for this variant (two categories and

one output neuron). Expectedly, the accuracy of both networks is diminished. The AD

neural network accuracy rate dropped to 93% and the network of point neuron fell to 84%

across five runs. This is a reversal from the two output neuron variant above in which the

network with point neurons was more accurate.

5After all, some neurons in the brain are adendritic.
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(a) (b)

Figure 8.15: Accuracy per epoch of the (a) AD neural network and (b) point neural network
for categories 0 and 5 of the FMNIST data set.

To understand what causes this difference in diminished performance, we must look

into the interaction of neural position, compartmentalization and weights. Figure 8.16

shows the actual connection weights for all incoming connections to the output neuron in

each type of network.6 While the connection weights of both neurons vary significantly,

the range of the point neuron’s are typically greater. Second, the rough shape of each

category (T-shirt and sandal) is more pronounced in the former than the latter. Category 0

(T-shirt) is roughly visible in the point neuron’s pixel-by-pixel weight map, category 5 is

not. Connections corresponding to pixels with defining intensities for both categories

(i.e., where the two categories overlap in the image) have a strong negative weight in the

AD neuron. In the point neuron, more connections have extremely negative actual weights.

In the point neuron, since all connections belong to the S-compartment, input signals

directly impact the state of the S-compartment. Individual connections are more capable of

producing neural output. Similarly, neural output modifies each connection directly. Thus,

when activity at an individual connection causes S-compartment output, it causes

modifications to itself. This allows very active connections to push themselves toward one

6Recall, actual weights are bounded between a minimum and maximum using the equation: wa =
wrwb

|wr|+wb
, where wr is the raw weight and wb is the bound. wa is in [−wb, wb].
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(a) (b)

Figure 8.16: Weights of all afferent, external connections (i.e., connections originating in the
input layer). (a) Network with an AD neuron. (b) With a point neuron.

(a) (b)

Figure 8.17: (a) Compartment membership for each connection arranged by pixel location.
Different colors represent different compartments. Color transparency was used to highlight
only the largest compartments. (b) Actual connection weights averaged by compartment.

extreme or the other in terms of connection weights. By comparison to the AD neuron,

when a B-compartment causes S-compartment output, the B-compartment’s outgoing

connection is affected not the connections belonging to the B-compartment. This puts a

barrier between S-compartment activity and low, connection-level changes.

Compartments are also distinguishable by weight. Figure 8.17 shows membership of the

largest compartments and the average connection weight of each compartment. While
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compartments contain a mix of different connection weights, the mix does not appear to be

uniform. The purple and red compartments cover the torso and right shoulder area of

category 0 (T-shirt). The green colored compartment contains almost all connections

activated by pixels of the left shoulder. Many of green compartment connections belong to

category 5 which lie outside the area typically occupied by the shirt. In fact, the red and

purple compartments contain connections frequently activated by both categories; whereas

the green compartment contains connections activated by just one. The green compartment

contains more connections with strong weights and vice versa for red and purple.

The above arrangement of connections, weights and compartments is typical of

overlapping patterns. Connections frequently used by both patterns often have weak or

negative weights. These inhibit activity at the compartment level. If we take the mean

actual connection weight of a compartment as an indicator of how likely its connections

contribute to accurate output, we can begin to understand the role of each. This assumes

that all connections in a compartment are equally likely to receive a signal on a given time

step. Since co-activity forms the basis of compartment creation (via input position), this

assumption makes sense as a general rule.

Compartments with many low or negatively weighted connections absorb input. These

compartments usually contain connections receiving input from ambiguous sources, i.e.,

pixels whose values are often indicative of both categories. In the example above, the

purple compartment appears to have this function as its mean connection weight is just 6.

The red compartment has a mean actual weight of 42. At the other end of the spectrum,

connection’s which receive less ambiguous input about an example’s category belong to

compartments with a stronger mean actual weight. The green and brown compartments

contain many connections which are only typically activated by one or the other category.

Green’s mean actual weight is 133, and brown’s is 155.
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(a) (b)

Figure 8.18: Accuracy for the three category - one output neuron variant of the FMNIST
trial. (a) The output neuron consists of a single AD neuron. (b) The output neuron is a
single point neuron.

This reinforces the conclusion that the separation of connections by compartments is a

large part of what enables an AD neuron to learn multiple categories. To explore this

further, we ran another variant which increased the number of categories to three.

8.2.3 Three Categories - One Output Neuron

The previous experiment was repeated with the addition of a third clothing image

category: category 1 (trousers). Category 1 was given a target rate of 7.5 Hz, which is

between the two other categories’ rates.7 Adding a third category increased the difficulty

of the task in two ways. First, the single output neuron was tasked with learning a third

type of item. And second, the separation between target output rates was cut in half (from

5 Hz to 2.5 Hz). Also, we increased the number of epochs for the experiment to 1,000

because we found that output rates took longer to stabilize.

Figure 8.18 compares the accuracy and accuracy variance of a typical run for both the

AD neuron (a) and the point neuron (b). Table 8.2 shows the mean accuracy and standard

7In a single test, it is impossible for a neuron to spike seven and a half times in 1,000 time steps. However,
error rates are calculated based on the mean rate from one epoch, so a target rate of 7.5 Hz is achievable.
However, concerned that this might inadvertently cause instability, we ran a later test using rates of 12 Hz,
9 Hz and 6 Hz. Results did not change.
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AD POINT
SD 0.076 0.064

MEAN 0.77 0.44

Table 8.2: Mean accuracy and SD for five runs of the three category, one output neuron
trial variant. These numbers were compiled from the accuracy rates of the second half of
five runs (i.e., the final 200 epochs).

deviation for five runs of each. Adding a third category lowers the accuracy rates of both.

For the point neuron the accuracy is roughly half of what it was (a 40 point reduction)

from the two category, one output neuron variant. The AD neuron also showed diminished

accuracy, dropping from 93% to 77%. However, results for the AD neuron varied

substantially more than in the previous task; the standard deviation increased from 0.049

to 0.076. The point neuron’s results did not vary significantly more (SD change: 0.061 to

0.064).

To understand the difference in the AD and point neuron results, we examined how well

each network matched the target output rates for each category. Figure 8.19 show the

mean testing phase output rates by category for the AD neuron, and Figure 8.20 shows the

same for the point neuron. The plots on the right of each figure provide a closer look at the

final 200 epochs of a typical run. Both neurons successfully matched output rates to the

target rates.

The reason why the AD neuron outperforms the point neuron can be seen in the closer

treatment of the output rates. For the AD neuron, the output rate generated by each

category varies similarly within each epoch. Rate changes caused by the previous training

phase have a similar impact across all categories. A relatively constant separation is

maintained between output rates. This is not true for the point neuron. Category output

rates do not always train in the same direction. This causes the epoch-by-epoch separation

between output rates to vary, sometimes allowing rates to cross.

Figures 8.19 and 8.20 show several additional quirks of the training process. The output

rate generated by category 1 examples falls initially below the rates of other categories for
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(a) (b)

Figure 8.19: Mean testing phase output rates by category for the AD neuron. Target rates
were: category 0, 10; category 1, 7.5; category 5, 5. (a) Output for an entire run. (b) Zoomed
in view of (a) of the last 200 epochs.

(a) (b)

Figure 8.20: Mean testing phase output rates by category for the point neuron. Target rates
were: category 0, 10; category 1, 7.5; category 5, 5. (a) Output for an entire run. (b) Zoomed
in view of (a) of the last 200 epochs.

the first part of training. The target rate for category 1 examples is between the other two.

This behavior is evident in the training of both neuron types. For the AD neuron, the

target rate is typically found around epoch 200, whereas, the point neuron does not find it

until epoch 600 or 700. This behavior in the point neuron is particularly baffling because

this change in rates takes place after the output rates have been stable for approximately

500 epochs. This phenomenon poses two questions. First, why does the category 1 rate
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(a) (b)

Figure 8.21: Actual weights for the point neuron arranged by input pixel location within the
FMNIST images. (a) Actual weights at epoch 200. (b) Actual weights at epoch 900.

drop below the others during the first part of training? Two, what change in neural state

causes it to recover? We also note that the drop in category 1 rates happen regardless

which target rate is given. We also tried switching rates with category 0 and giving

category 1 a target rate of 15 Hz. We reiterate that for all trials, the order of categories per

epoch was randomized.

The reason why category 1 output rates bottom out is due to the nature of the category

itself. Category 1 (trousers) examples significantly overlap category 0 (T-shirt) in terms of

pixel intensities. The average category 1 example uses a subset of the pixels used by

category 0 to represent the article of clothing. This can be seen in the examples in Figure

8.9. Because output rates of both neuron types in their initial states are very high relative

to the target rates, training rapidly reduces the weights of frequently active inputs over the

first few epochs. Reducing category 0 output rates has a strong impact on the rates of

category 1. This initial reduction in weights affects a small set of inputs activated by all

categories.

For the point neuron, weight readjustment causes the recovery of category 1 output

rates. Figure 8.21 shows an example of weights for the point neuron at epoch 200 and at

epoch 900. Initially, low or negative weights are concentrated at connections associated

247



(a) (b)

Figure 8.22: (a) Number of compartments by epoch of the AD neuron for the run depicted in
Figure 8.18a. (b) Connections arranged by input pixel location. Colors denote compartment
membership. Color transparency was used to show only the largest connections.

(a) (b)

Figure 8.23: Final actual weights for the run depicted in Figure 8.18a. (a) Per connection
(b) Per compartment (mean).

strongly with category 1 (trouser legs). After 700 more epochs of training, low or negative

weights are spread over more connections. This is particularly true of the connections

associated with the sleeve area of category 0 (T-shirt).

The AD neuron recovers the output rate of category 1 examples much more quickly.

Compartmentalization allows the output rate to recover. The number of compartments

stabilizes near the time when category 1’s output rate begins to rise (approximately epoch
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200). Once the training algorithm depresses the weights of connections frequently activated

by category 1 examples to a point below which example input cannot reach the target

output rate, category 0 and 1 examples each try to push a similar set of connection weights

in opposite directions. In other words, category 1 examples will try to lift weights while

category 0 examples will try to keep them depressed.

Compartmentalization separates certain connections (or groups of connections) that are

salient to each category. Separating connections causes their signals to combine indirectly

and only after each has been transformed by their respective compartment’s nonlinear

activation function (ψ). Signals salient to different categories are no longer in direct

competition--reinforcing or cancelling each other. More importantly, since weight

modification is caused by the local compartment spike rate, connections in different

compartments cannot directly modify each other’s weights.

Another curiosity of training regards to the point neuron, which is evident in Figure

8.20 (and later in Figure 8.25). The output rate generated by examples belonging to

category 5 are flat compared to the other two. Since this does not concern the AD neuron,

we were only interested in testing whether this artefact was due to our implementation. To

understand whether this phenomenon was caused by the choice of rates or by the category

itself, we performed several runs in which rates were changed or simply swapped. Pairing

category 5 with different categories also did not change this behavior. Regardless the

selection of target rates, the output rate associated with category 5 examples behaved the

same (the same goes for category 5 in the two category variant and category 8 in the final

five category variant). We are uncertain of the cause of this phenomenon.

Figure 8.23 shows the actual weights of each connection and the mean actual weight for

each compartment. Even with this simple example of an AD neuron trained on just three

categories, expressing why specific connections belong to specific compartments is difficult.

However, we do see some similarities with the two category variant (Figure 8.17).

Compartments with high mean weights tend to have connections which receive input from
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pixels indicative of just one category, for example, the left sleeve area of category 0

(T-shirt) or the heel and toe areas of category 5 (sandal). Compartments with lower mean

weights tend to receive input from pixels which overlap one or more categories, for

example, the knee area of category 1 (trouser) or the right sleeve of category 0 which often

overlaps with high-heeled sandals of category 5.

Ultimately, the training algorithm tends to place connections in different compartments

whose inputs are activated by examples of more than one category and those which are not.

This trial indicates that the AD neuron is capable of separating, via

compartmentalization, information associated with different categories. This added

capacity gives it an edge over the point neuron. However, there must be an upper limit to

the number of categories one neuron can encode. This formed the question for the final

experiment.

8.2.4 Five Categories - One Output Neuron

For our final variant of the FMNIST trial, we again increased the number of categories

to be learned by a one layer network with a single output neuron. All parameters and

categories from the previous variant were retained. Examples from two new categories were

added to the training and testing sets: category 3 (dress) and category 8 (bag). We

selected these categories because they are distinct types from the other three categories.

No quantitative measure of distinctiveness was made. We simply wanted categories that

contain different types of clothing. The unused categories--pullover, coat, shirt, sneaker and

ankle boot--are variations of the five used categories.

The two new categories, dress (3) and bag (8), were given target output rates of 12.5 Hz

and 15 Hz respectively. Table 8.3 gives the rates by category. Rates of previously used

categories were kept the same because tests from the previous variant suggests that

matching categories to rates does not significantly affect accuracy. Furthermore, for these
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Category 5
(sandal)

Category 1
(trouser)

Category 3
(T-shirt)

Category 0
(dress)

Category 8
(bag)

Target Rate 5 Hz 7.5 Hz 10 Hz 12.5 Hz 15 Hz

Table 8.3: Target output rates for the five category variant of the FMNIST trial.

(a) (b)

Figure 8.24: AD neuron performance in the five category, one output neuron variant. (a)
Accuracy rate. (b) Testing phase output rates by category.

variants, we are only interested in changes to AD neuron learning caused by more

categories than a study on the affects of rate choice on accuracy.8

The AD neuron outperformed the point neuron in this variant; however, the difference

between their accuracy narrowed compared to the three category variant. The AD neuron

was 51% accurate across three runs and the point neuron was 32% accurate. Figures 8.24

and 8.25 show the accuracy and output rates of a typical run for both networks. Can we

identify the cause for this increased drop in accuracy?

An increase in the number of categories causes a shift in the AD neuron’s ability to

match output rate to target rate. Figure 8.26 shows the output rates for the AD neuron for

the final 100 epochs of a run. Output rates are pulled toward the mean of all target rates.

8Limited tests were run by swapping rates between categories and by assigning different rates. Swapping
rates did not affect accuracy; however, separating rates did have an effect. For example, in the previous
variant (Section 8.2.3), we tested category 1 (trouser) with 15 Hz instead of 7.5 Hz and saw a small gain.

We suspect that increasing the separation between rates also causes instability as the neuron tries to
accommodate a wider range of output rates.

More study in this area is needed.
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(a) (b)

Figure 8.25: Point neuron performance in the five category, one output neuron variant. (a)
Accuracy rate. (b) Testing phase output rates by category.

For example, the output rate generated by category 8 examples is 13.6 Hz, a 1.4 Hz drop

from the target of 15 Hz. Category 5, which should be 5 Hz is 6.3 Hz, a 1.3 Hz rise. The

category with the middle rate (category 1 with a target of 10 Hz) produces an output rate

of 9.9 Hz, which is almost exact.

This phenomenon is caused by training as it adjusts the neuron’s state to match five

different output rates. It is a direct cause of the further reduction in accuracy of the AD

neuron compared to the three-category trial. Effective target output rates are closer

together. While this decreases the variance in rates compared to the three-category trial

(SD 0.059), the decrease is not sufficient to maintain accuracy. This pull-to-the-center is

completely absent from the previous three-category variant. The point neuron shows an

opposite, albeit inconsistent, behavior where rates are pushed away from the center. In the

AD neuron, this could be another indicator (along with accuracy) of the encoding capacity

for a particular configuration.

Trained connection weights between the two neuron types differ significantly (Figure

8.27). For example, the left side of the weight map is extremely positive in the AD

neuron’s case and very negative for the point neuron. In general, the point neuron utilizes

more negatively weighted connections than the AD neuron and its very positively weighted
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Figure 8.26: A closer look at the final 100 epochs from Figure 8.24b.

(a) (b)

Figure 8.27: Actual connection weights arranged by input pixel location within the source
images. (a) AD neuron. (b) Point neuron.

connections lie predominantly along the periphery. This is likely due to the moderating

effects of compartmentalization which diminish the impact of individual signals. If we

compare the actual AD neuron connection weights in Figure 8.27a to compartment

membership in Figure 8.28, we again see a positive-negative weight divide between

compartments. Green and gray compartments hold more of the positive weights while

purple, red, orange and yellow hold more of the negatively weighted connections.

To get a fuller picture of connection weight-compartment relationships, we can examine

if the dendritic field contains any visible meta-patterns. Figure 8.29 compares neuron input
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(a) (b)

Figure 8.28: Compartment membership of AD neuron connection arranged by input pixel
location within the source images. Different colors denote different compartments. Same
neuron is depicted in both images. (a) All compartments are visible. (b) Only the largest
compartments are visible.

position, compartment membership and actual weights within the dendritic field. The

compartment colors match those of Figure 8.28 (i.e., same neuron). First, the

compartments mentioned above with many negatively weighted connections cluster toward

the top right of the figure. Those with more positive connections are in the bottom left.

The positive-negative division between compartments is a result of input position within

the dendritic field.

Do compartment positions within the dendritic field mimic the location of input pixels

within the images? The gray and green compartments occupy the image’s left and right

flanks; however, their associated input pixel locations are thoroughly interspersed with

each other. An examination of Figure 8.30 suggests that within each compartment field

location has little correlation to pixel location. Considering what we know about the

behavior of the input position algorithms from the previous chapter (see Task 1), it is

possible that all neural inputs in both compartments are drawn together. The tree-building

and compartmentalization algorithms are unable to compensate for such a large cluster of

inputs with an irregular (i.e., non-circular) shape. Therefore, they are split into two or

more compartments. Similarly, it is likely some connections belonging to the yellow
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(a) (b)

Figure 8.29: A 3D-view of the trained AD neuron. Circles show the neural input positions
associated with each incoming connection. Gray lines show the links between them created
by the tree-building algorithm after the final training epoch. The same neuron is depicted
in both sub-figures. (a) Neural inputs are colored by compartment membership. (b) Neural
inputs are colored by the associated connection weight.

compartment, by the location of their neural inputs in both the dendritic field and image,

belong to either the green or gray compartments. Obviously, this is not the only

interpretation.

An alternative interpretation can be argued from the red and orange compartments. If

we examine just their associated pixel locations, by the logic above, we might say their

connections should all belong to the same compartment. However, if we examine their

relative locations within the dendritic field, we find the orange and red compartments on

opposite sides of the main cluster, completely separated by the yellow and purple

compartments. The red and orange compartments suggest pixel locality is not (or less)

important. In fact, the green and gray compartment connections show locality in the
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Figure 8.30: Closer view of the dendritic field of Figure 8.29. Compartments 3 (green) and
8 (gray) visible. Labels are the x,y input pixel locations within example images.
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dendritic field and in the image due to a distinct feature in one of the categories, for

example, the sleeves of a shirt.

Lastly, the pink and light blue compartments contain connections whose associated

pixels are exclusively at the top and bottom of the image. Within the dendritic field, the

associated input positions of both compartments are close together. Figure 8.31 depicts

neural input location within the dendritic field (points) and within the image (labels).

Connections of the light blue compartment are predominantly associated with input pixels

at the top of the image. However, some are associated with pixels at the bottom. If these

latter connections were on the border between the pink and light blue compartments, we

might assume that the tree-building and compartmentalization algorithms disrupted their

inclusion in the pink compartment. However, they are not, e.g., the neural input labeled

10,26 in the upper right hand corner of Figure 8.31. They are scattered throughout the

compartment’s cluster.

Calibration tasks (Figure 7.3) of the last chapter showed that relationships between

inputs can restrict angular movement, especially if the number of related inputs is large. It

is possible that this prevents their associated connections from joining compartments.

Although the final chapter talks about how this effect might be reduced (see 9.3.8), we are

unsure whether (a) the general problem strongly affects performance, (b) any given input

suffered such restriction, (c) a perfect spatial encoding exists and (d) assuming a perfect

encoding exists, the tree-building and compartmentalization algorithms can take advantage

of it.

The five category trial suggests that AD neurons have a limit to the number of

categories they can encode. This limit is likely a function of the size of the neurons input

and the similarity of the categories.
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Figure 8.31: Closer view of the dendritic field of Figure 8.29. Compartments 5 (pink), 7
(light blue) and 10 (purple) visible. Labels are the x,y input pixel locations within example
images.
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8.2.5 Discussion

The FMNIST trials show that a single AD neuron is capable of learning multiple

categories better than a single point neuron. This, we believe, is the strongest argument for

continued work on dendritic neurons. A single point neuron, on the other hand, excels at

encoding a single category. The AD neuron benefits in more complex scenarios from its

ability to adjust which connections belong to which compartments. The FMNIST trial

made use of completed different categories, but we suggest (for future work) examining

how well it performs on variations of one category, where differences are subtle. Using

FMNIST as an example, train an AD neuron to recognize just shirt sleeves or the heel of a

shoe. We suggest this because asking one neuron to encode an entire category, even one as

simple as a shoe, could be asking too much. An advanced use of AD neurons, we predict,

would be connecting neurons trained to recognize independent features together to

recognize different, say, clothing types.

Our goal for this trial and its variants was to show the performance of the AD neuron

compared to the point neuron. Obviously, focusing on accuracy leaves many important

questions about AD neuron performance unexplored. Such questions include the impact of

the branching factor, compartment size, the size of the dendritic field, learning rates, target

rates and error rates are calculated.

We selected FMNIST because it is a standard benchmark for machine learning

algorithms. However, in hindsight, it might not be the best benchmark for such

single-neuron scenarios. It is our opinion that an understanding of single-neuron learning

behavior would be better formed at this early stage by using more basic categories. In

general, this reevaluation of benchmarks is part of a larger question about the maximum

computational capacity of an AD neuron of a certain size. Therefore, testing a particular

configuration of an AD neuron would be best served by data sets which fall within a

neuron’s computational range. We suspect that future AD neuron benchmarking will
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require a general reassessment of which data sets are best suitable to study which parts,

e.g., compartmentalization, tree-building, etc.

8.3 Trials Summary

This chapter described two extended trials of AD neuron performance compared to a

comparable point neuron. In the first trial, an AD neuron was tasked with learning to

differentiate vertical and horizontal movement through a simulated visual field. The AD

neuron was able to learn the task by separating and ordering neural inputs along different

dendrites. In the second trial, we showed that a single AD neuron is able to learn multiple

FMNIST categories better than the point neuron. The results of both trials suggest that

there are benefits to the AD neuron. These benefits seem to stem from the AD neuron’s

ability to divide its set of inputs into different compartments. This gives the neuron

quasi-independent places of computation.

The next and final chapter will look back and give an assessment of our work and the

AD neuron. More importantly, it will lay out our vision of future work and ideas for

continuing this research.
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CHAPTER 9

ASSESSMENT AND FUTURE WORK

This work proposed an artificial dendritic neuron model, an implementation, and a

method to train the implementation.

Inspiration for the AD neuron came from the characterization of the dendrite by the

neuroscience community as a computational workhorse. The impetus for this undertaking

was the dearth of dendritic work by the AI community despite the successes of neural

network-based solutions. By contributing a dendritic model and a way to train it we hope

to create new interest in more complex, dynamic artificial neuron models.

The AD neuron model consists of two fundamental components: compartments and

connections. Compartments are similar to traditional point neurons. They combine a

subset of neural inputs and transform the combined signal using an activation function.

Compartments are linked together into dendrites using connections. Connections use radial

basis functions to model the effect of the dendrite on signals moving between

compartments. Model behavior was characterized through a series of static demonstrations

using a simplified implementation. These demonstrations highlighted the effects of different

AD neuron configurations. We showed that AD neurons are capable of replicating any

Boolean expression.

A training method was proposed for the AD neuron. The training method consisted of

a suite of algorithms. The training algorithm first positions neural inputs within the

dendritic field. Using these positions, neural inputs are linked together by connections to

form a dendritic tree. The dendritic tree is then compartmentalized. Lastly, weights are

modified based on the activity of each compartment. The training method was tested using

tasks which targeted each individual algorithm. Finally, the trainable AD neuron was given

two trials to test its classification capability versus the point neuron.
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In this chapter, we assess the work and discuss several challenges, and we conclude by

discussing alternate implementations and future research.

9.1 Contributions

The central contribution of this work is a complex neuron model with fully trainable

dendrites. To our knowledge this is the first such neuron model to come out of either AI or

neuroscience. We demonstrated that training dendrites is possible using only task data.

Work using our model showed that trained dendrites allow single AD neurons to perform

tasks beyond the capability of a point neuron. It also showed that trained dendrites

increase the number of categories a single neuron can learn.

More generally, we set out to convince the community that AI should earnestly take up

research into complex neuron models by showing a glimpse of their potential computational

benefits. Research into complex neuron models is inevitable if we are to sidestep the

current limitations of ANN solutions.

In the short term, we do not expect that the AD neuron model will revolutionize neural

network-based machine learning. There are many hurdles to overcome to make dynamic

dendrites feasible in real-world use cases given available tools. First among the hurdles is

the additional complexity which prevents the use of current neural network-related tools

and hardware. Reliance on CPU-based computation slows down learning dramatically. AD

neurons require more information than point neurons. This reduces any potential

parallelization achievable on hardware such as GPUs that have per core memory

constraints [163]. Even without memory concerns, the dynamic connectivity of the AD

neuron poses a challenge. At a minimum, each AD neuron would require its own dynamic

connection and weight matrices. We believe these are not insurmountable issues but they

will require changes to how we effect training.

Next, it is likely that efficient, optimal solutions will require multiple dendritic and

adendritic models. Heterogeneous networks will require a knowledge of best uses for each
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which will increase the difficulty of network design. AD neurons will not make our jobs

easier. To fully realize complex neuron models will require a refocusing on simple tasks

more characteristic of ANN’s early days than the current ones being tackled by mature

ANN research.

However, parts of the AD neuron model could be useful in the short term. The AD

neuron model itself is a composite of several algorithms and design choices. Interest in

dendritic neuron models is growing. Specifically, related work has repeatedly signalled that

dendrites are a potential source for additional network depth. The AD neuron

demonstrates several properties of this additional depth which are distinct from the depth

provided by layers. Shape matters. Over the short term, this work might inspire related

work to experiment with a greater variety of micro-topologies even if the shapes themselves

are static.

It is also possible that the neural input positioning algorithm could be useful as a

machine learning tool. For example, it could be used to help with dimensionality reduction.

Dimensionality reduction is the process of excluding entire features of the input data

during training [77]. The input positioning algorithm encodes the n-dimensional

relationships in the input data into the reduced dimensions of a dendritic field. As part of

a preprocessing stage, this could help to expose irrelevant features or other feature

relationships that might inform network construction.

Our work contributes to the need for an expansion of ANN terminology with respect to

network components (see Section 9.2.5). Currently, neuron denotes the smallest component

of a neural network. The AD neuron successfully uses point neurons to model segments of

the dendrite. We believe that point neurons should be renamed compartments and that the

term neuron should refer to a set of connected compartments. We believe this change is

more than superficial. It allows us to think of layers as deep networks.

The dendritic model provides a way to inject network complexity in the form of

sparsely connected trees at a micro level. Adding complexity at a micro level means we can

263



still treat networks on a macro scale as static entities. We can initialize a network as a

collection of layers and each layer can be instantiated as a set of homogeneous neurons. The

bounds of the dendritic field encapsulate network heterogeneity and the ability to train it.

For the long term, this work has the potential to direct the development of tools and

hardware to facilitate future research into complex neurons. The point neuron model, the

Perceptron, existed for many decades before the current revolution. This change was

largely brought on by tools and hardware capable of generating and processing large

networks. During the life-cycle of this work, neuromorphic chips--a hardware embodiment

of spiking neurons and local memory--have been developed. While the AD neuron model

and neuromorphic chips have several common themes, such as local memory, neuromorphic

chips rely on point neuron models for computation. Our hope is that research into

dendritic neuron models can aid in the development of a second generation of

neuromorphic technology which incorporates more of what we know about the substrate

for biological intelligence.

Finally, explainability in neural networks, for both AI and neuroscience, is a problem

that stems from the complex topologies required to perform human-level tasks. A potential

long term benefit of work on trainable artificial dendrites is an improved understanding of

what dendritic shape contributes to neural computation.

9.2 Assessment

This section assesses each part of the AD neuron. We summarize the capabilities and

limitations. Also, potential usefulness to neuroscience will be touched upon. This section

focuses also on development because the usefulness of this work is not only in the final tool.

Tool building is as important as the tool. We will walk through the more important design

choices that went into making the AD neuron in the hopes that it will aid in understanding

the many choices that went into the model as well as suggest alternate configurations to be

explored.
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9.2.1 Compartmentalization

The AD neuron demonstrates an ability to learn tasks which are beyond the capability

of a similar (e.g., spiking) point neuron. The AD neuron does not require more information

than the point neuron; they both receive the same number of inputs. The AD neuron

raises its computational ability by combining subsets of inputs prior to making a final,

somatic response, i.e., by compartmentalization. Since the AD neuron uses a

multi-dimensional space to situate and link compartments, it is important to look at

patterns of compartmentalization and ask which, if any, are beneficial.

More specifically, the AD neuron derives its increased computational range from

independent or parallel compartmentalization. This form of compartmentalization forms

separate dendritic trees, branches or paths (see tasks in Sections 8.1 and 7.3.2). Success in

these types of tasks rely on the useful positioning of neural inputs within the dendritic field

such that they form multiple, independent sets of inputs. Our work suggests that

independent compartmentalization gives the AD neuron the ability to respond in different

ways to multiple patterns (Section 8.2). This idea mirrors the theory that the width of an

ANN allows the network to create, through training, independent subnetworks to perform

isolated transformations. But these same tasks (Section 8.1 for example) suggest that a

perfect positioning or compartmentalization of neural inputs is not always necessary. If the

patterns of a task are identical, one branch might suffice. Where and the degree to which

branching occurs could be taken as an indication of pattern complexity.

Our research suggests that dependent, or repeated, compartmentalization benefits tasks

of a compositional nature. Dependent compartments are chained together to form a single

dendritic path. In the movement trial, the order of compartments along a dendritic tree

capture the order of cell activation. Without the ability to train such orderings, the trial

would fail. Calibration tasks (Section 7.4.1) suggest paths composed of multiple

compartments alter signals arriving at different compartments in different ways.
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Ultimately, the computational role of compartmentalization is likely task dependent.

Two tasks might require that the same information is filtered in different ways. How to

train different filters for the same information is not addressed directly by our research.

Compartmentalization has another potential benefit. Compartments divide the input

space into quasi-independent sets of input dimensions. An input dimension is just a single

input to the neuron. We have added the word ‘dimension’ here to connect

compartmentalization to a reduction of the ‘curse of dimensionality’ [15, 20], which

describes the fact that the number of input examples needed to adequately describe an

input space grows exponentially with the number of dimensions (i.e. inputs). An adequate

description of an input space is not defined here as it is determined by the problem and

measures of acceptability of any given solution. How do compartments reduce the curse of

dimensionality?

Creating separate input spaces means that some input dimensions do not directly

interact with each other. For example, if a point neuron has ten inputs and each input can

take on 264 values, then the size of the input space is (264)10 or 2640 possible input

examples. Now let us assume that the same neuron partitions these ten inputs into two

compartments of five inputs each. The input space is now 2[(264)5] or 2321. This off-the-cuff

estimation does not take into account the additional complexities of the AD neuron, such

as the shape of the tree. If we assume that the two compartments connect in a chain, then

the input space grows to (264)5 for the distal compartment and (264)6 for the proximal one

since it also receives the output of the former. In the worst case, each input is a

compartment and all ten compartments impinge directly on the S-compartment which puts

the input space back in the realm of (264)10. The impetus for our work does not depend on

this argument and we have done no work in this area. It is mentioned here because it

might be an area of interest.
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From the start of this work, we envisioned compartments as point neurons in order to

reduce the complexity of the artificial dendritic neuron. This choice seemed like a natural

step beyond the point neuron model.

However, the process of creating compartments was not clear from the beginning. It

required dividing the input space into discrete subsets. The evolution of two aspects of

compartmentalization during the course of this work show how we worked through this

problem.

First, the process of creating compartments from subsets of neural inputs was not

immediately clear. We considered two approaches which established opposing dependencies

in the training algorithm: tree-first or compartment-first approach. In the

compartment-first approach, compartments are created based solely on input positions

within the dendritic field. This approach mirrors traditional methods of clustering, such as

finding centroids or training weights in a self-organizing map, since it requires identifying

sets of related points (or features) based on their location in some N-dimensional space.

The compartment-first approach potentially could experiment with the myriad of

clustering algorithms and therefore was initially favored. In the tree-first approach, inputs

themselves would be used to build the dendritic tree based on their positions.

Compartmentalization would follow using as its metric, not unfettered distances across the

dendritic field, but distances based on connections and paths in the tree.

Compartmentalization, then, would amount to a reduction in the size of the tree by

combining nodes while maintaining some properties of the underlying connectivity.

Only once we considered both approaches did we realize that tree-building and

compartmentalization together created a form of hierarchical clustering. Hierarchical

clustering is the process of clustering in which new clusters are created by dividing or

combining clusters identified in a previous iteration. By treating tree-building and

compartmentalization as two parts of one larger process (the creation of the dendritic tree),

we could tighten their relationship. For example, the metric used to connect neural inputs
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during tree-building would be the same metric used to measure an input’s relationship to

its compartment. Relationships between compartments would use relationships between

inputs as connected by the tree.

Another serious consideration was that compartmentalization was not a one time

process. An AD neuron would need to be re-compartmentalized many times during the

training process. Each re-compartmentalization would require a new tree. Clustering

algorithms themselves require some form of training or repetition. The danger of

drastically increasing AD neuron training time steered us away from this approach. We

were also determined to minimize which aspects of the AD neuron were trained and which

were created deterministically based on trained aspects.

We chose the tree-first approach because it allowed us to integrate the two algorithms

such that compartmentalization is a constant amount of additional work in each step of

tree-building. Input positioning makes certain assumptions about the nearness of neural

inputs and we did not want to layer on more assumptions through clustering. Also, we

already had determined to use the tree-building algorithm provided by previous

neuroscience research [39]. Altogether, the tree-first approach seemed to make fewer

assumptions about how inputs should be combined and connected along the dendrite.

Next, we needed to determine how to divide the tree into different compartments. The

most obvious way was to start at the S-compartment since it, as the source of neural

output, must be a compartment. Working outward from the S-compartment, our algorithm

could choose to add an input to the current compartment or create a new one. Without

hints that a more complex heuristic would improve the AD neuron’s performance, we

strove to keep the algorithm as simple, time-wise, as possible. Compartment lengths were

measured from the first input added to a new compartment. This prevented the

tree-building and compartmentalization algorithms from having to reconsider previously

linked inputs under a more complex compartmentalization metric. One compartment

ended when its length reached some predetermined maximum.
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The second aspect of compartments that evolved during this work was the

compartment-level response. Although we determined to represent compartments as point

neurons, we were uncertain whether branch compartments should behave like somatic

compartments. If they spiked, was that their only output, or did some B-compartment

input “leak” into subsequent B-compartments without a spike?

Early on we tested an alternative design which added a decay rate to connections. Even

if a compartment did not spike, some amount of its input would reach the next

compartment. The rate of decay was a function of the separation between compartments.

Since AD neuron compartments are primarily based on spiking point neurons, the forward

leak of compartmental input would be an addition specific to the AD neuron. Having no

quantitative or background reason to include or exclude it from our initial model, we opted

to exclude it. Once this simpler version was tested and better understood, as part of future

work, we could revisit the idea.

As to whether B-compartments behaved like S-compartments, we took the middle road.

First, we added to the model the ability to create different types of compartments which

could be distinguished by their implementation of ψ, the output function. This allowed us

to diversify compartment responses if we felt a scenario required it without revising the

model. Second, for the initial implementation, we did not vary ψ. All compartments,

somatic or branch, behaved the same. This, again, seemed to make the fewest assumptions.

9.2.2 Tree-Building

The tree-building algorithm is built around a modified minimum spanning tree that

includes a weighted overall path length when adding new neural inputs to the tree. It was

chosen for its simplicity and because neuroscience research identified it as being capable of

generating many types of dendrites. Throughout this research we did not consider

additional methods; therefore, it is difficult to assess the algorithm in the light of

alternative ideas. In some scenarios (Section 8.1) where patterns created isolated clusters
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of inputs, it perform well in connecting inputs such that compartmentalization captured

the patterns. However, for denser clusters, trees did not always create natural bounds

between compartments.

The only dial in the tree-building algorithm is the branching factor, which indirectly

affects the depth of the dendritic tree. If it is low, dendrites become long, winding from

input-to-input, with relatively few branches. The depth of the neuron increases as there are

fewer independent, parallel compartments. Radial position becomes very important for one

or two inputs and irrelevant to the rest. Only one or two inputs will connect directly to the

S-compartment. The rest will be linked by connections that wrap around the dendritic

field. Most inputs will be too far from the S-compartment to have any impact. If the

branching factor is too high, every input connects directly to the S-compartment.

Depending on the compartment length, such neurons can devolve into a point neuron (all

inputs belong to one compartment).

However, in between extremes, sensitivity to the branching factor, or its ability to

impact performance, is task dependent. Simple patterns in the input space can be captured

by a wide range of branching factors. All values above the range produce similar results.

All values below the range also produce similar results. It is the size of this Goldilocks

range which is task dependent. Also, based on our experience, extreme precision is not

necessary. We did not need to select values of greater precision than a tenth to see a useful

result, and often shifting the branching factor up or down by a tenth did not

catastrophically alter results.

In future work we make several suggestions for alternate tree-building algorithms

(Section 9.3.4). We also suggest that tree-building and compartmentalization could have

their associated parameters trained as part of a second stage of training (Section 9.3.3).
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9.2.3 Input Positioning

Angular and radial position together give the position of a neural input within the

dendritic field. The relative timing of input signals determines the angular distance between

two neural inputs. And the relative timing of an input signal and S-compartment output

determines the radial position of a neural input. These two components form an input’s

position and are used to inform the tree-build and compartmentalization algorithms.

Using a Hebbian-like learning algorithm to arrange neural inputs in order to construct

dendrites is novel. Generally, Hebbian learning uses the relative timing of events (e.g.,

spikes) to increase or decrease the connection between neurons. For example, Hebbian

learning is typically used to implement synaptic learning. From a neuroscience perspective,

realizing dendritic shapes through Hebbian learning seemingly ignores genetic contributions

during neurogenesis. However, our algorithm, even conceptually, is not growing dendrites

in the sense that it is picking and choosing which neural spaces to invade through dendritic

growth. The inputs to the AD neuron are set. At the micro-level, dendritic spines, small

extensions from the dendrite proper, which house the synapses, are thought to grow and

shrink due to activity. When we consider that the AD neuron’s set of inputs is fixed, our

algorithm is not determining which neurons among all to make connections to. It is

determining how and where the connections are made. One could argue that the AD

neuron is not growing dendrites but shaping them: a task somewhere between dendritic

morphology and spinal growth.

In simple scenarios where the number of neural inputs are few and the variance of the

input signals between examples is minimal, the positioning algorithm performs well in

capturing their relationships. Patterns in the input space form recognizable input clusters

in the dendritic field. Multiple patterns are more easily separated by either negative error

values or a random mask. Such clusters are easily captured and separated by the

tree-building algorithm. In these cases, the AD neuron can learn to recognize different

patterns without having to adjust weights.
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However, in more complex scenarios, where the number of neural inputs is large and

examples vary significantly, the position algorithm tends to cluster all active inputs into

one large group. While there does appear to be meaning in the location of individual

inputs within such large clusters, the tree-building algorithm struggles to capture it (see

Section 8.2). This assessment is not definitive since identifying meaning in large clusters of

trained inputs is difficult. This suggests to us that immediate future work should limit the

number of inputs or spread inputs across several AD neurons. Our reasoning for this comes

from our belief that explainability in these early stages of research is important if we are to

characterize the contributions of dendrites.

Another reason is based on what could be a limitation of our current algorithm. As we

demonstrated in early calibration tasks, the larger a cluster of neural inputs becomes, the

more imperfect each input’s angular position is likely to be. This is due to the fact that

each input in the cluster has a relationship to all inputs in the cluster. Angular positions

are 2-dimensional, and a 2-dimensional encoding of N inputs, when N is larger than 2, is

potentially impossible. Smaller numbers of inputs allow for more movement within the

dendritic field and reduce the chance that an input becomes blocked by or locked within a

cluster.

Of course, limiting the AD neuron to a maximum number of inputs because of training

limitations is an unsatisfying suggestion, especially when we consider that biological

neurons can have tens of thousands of inputs. What can be done to reduce or eliminate the

underlying problem? An N+1-dimensional dendritic field (N neural inputs plus the soma)

would solve the problem but, again, this is unsatisfying since the biological brain exists in

only 3-dimensions.

As we previously stated, compartmentalization itself reduces dimensions. If we assume

there is some perfect N-dimensional encoding of a data set in the dendritic field which is

used to produce k compartments, so long as the 2-dimensional encoding produces the same

k compartments and connects them in the same order, we theorize that the two will be
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functionally equivalent within some margin e. The margin would be based on the

input-input differences in distance between the perfect and imperfect encoding as a

function of the frequency with which each participates in the generation of output, or their

radial position. If this measurement of imperfection is correct, then we must only reduce e

until the AD neuron becomes useful for a given scenario. In a following section, we discuss

alternate designs for the dendritic field and angular positions which might alleviate this

issue.

Training and encoding input positions went through several major revisions early in this

work. Positioning is the oldest part of the work. Initially, input positions were encoded and

trained using Cartesian coordinates in R3. Changes to input positions used straight-line

displacements. Several scenarios were identified in which this method inadvertently created

spatial relationships not present in the input data. For example, imagine two neural inputs

whose initial positions are on opposite poles of the dendritic field. Any temporally

correlated input would cause them to move toward each other and the center of the

dendritic field, altering their relationship to the S-compartment in the process.

At the time, the positioning algorithm was less sophisticated. If two inputs received

signals within the learning window, they moved toward each other as a function of how

temporally close their signals were. While the current algorithm shifts input positions

toward a spatial encoding of signal temporal proximity, the older version simply moved one

input toward another. The result was that if two inputs frequently received signals at or

near the same time, they moved ever closer together. This runaway behavior caused inputs

to have only two types of positional relationships to each other in the dendritic field: far

away or tightly packed.

Because of these two issues, we decided to decouple input-input and input-output

relationships by converting the dendritic field to spherical geometry. This allowed us to use

angular displacements to model the former and radial position to model the latter.
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Positioning was changed such that neural inputs moved toward a spatial distance which

encoded the temporal distance between received signals.

While these changes improved the results of the AD neuron, we do not suggest that the

earlier implementation has no merit. In fact, as future work, we believe a return to the

Cartesian system might be useful. Ultimately, the spherical dendritic field was selected to

disassociate input-input relationships from affecting input-output relationships (and vice

versa); however, we suspect that the muddling of relationships were, in part, exacerbated

by the earlier positioning algorithm. Under the new algorithm, disruptions to relationships

caused by input or output related movement should be eventually corrected. For example,

even if two inputs on opposite sides of the field initially move toward the soma due to

input, any correlation of either’s input to output would cause both to move to a proper

distance from the soma over time. It is possible this aberrant intermediate stage could slow

or disrupt learning; however, it might be made moot by a decrease in training time overall.

Also, movement and distance calculations using spherical geometry are computationally

expensive compared to the Cartesian system. A profile of our implementation suggests that

the training algorithm spends a significant amount of time calculating the angular distance

between neural inputs. While switching could increase the number of epochs needed, this

might be offset by a decrease in the CPU time needed for each epoch.

9.2.4 Complexity

The AD neuron is more spatially and temporally complex than the perceptron. This

could hamper its use in large networks. In this section we estimate the AD neuron’s

complexity and discuss its impact.

9.2.4.1 Space

The number of connections in an AD neuron is twice the size of its inputs, or 2N .

There are N incoming connections (one per input) and potentially N connections to build

the dendritic tree. Each connection contains b, w, va and ve. The trainable implementation
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of the model also assigns a three-dimensional position to each input and a compartmental

identification number. The tree requires another N variables if it is encoded using an

adjacency list. If each of these variables is stored using 64bits, then for an AD neuron with

N inputs, it requires 104N bytes. Without considering additional information required by

the training algorithms or the memory requirements of the Izhikevich neuron model, an

AD neuron with 100 inputs uses more than 10 KB. Compare this to a perceptron which

uses 1.6 KB for 100 inputs, or 8 bytes per weight and input value.

The AD neuron’s memory footprint is six and half times that of the perceptron (at the

very least). To justify this increase in size, future work will need to compare the memory

requirements of an ANN with the same capabilities for a particular task. We predict that

for some tasks, the overhead will be too much under the current configuration. There are

several ways to reduce its size. The model uses input position to calculate ve and build the

tree but once training is complete positions are no longer necessary. Removing them would

make the trained model 24N bytes smaller. Also, the training algorithm does not include a

method for altering b. As in our implementation, a single constant suffices, reducing the

model by 16N . These optimizations reduce the size of the trained model but they still far

exceed current network memory requirements and they do nothing for the space

requirements during training.

9.2.4.2 Time

The added temporal complexity of the AD neuron is likely more impactful than its

additional spatial complexity. The feed-forward pass through the network is uneven, in the

sense that certain paths through a network of AD neurons can be much shorter than other

paths due to the dynamic nature of the dendritic tree. Uneven paths within a layer of AD

neurons could cause delays in updating the next layer. Parallelized versions of the AD

neural network could struggle to saturate all processing units due to these delays and the

need to wait for all inputs to the next layer. Furthermore, the degree of unevenness is not
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static during training. Each AD neuron rebuilds its dendritic tree after each epoch at the

very least. This implies the source of delay would be difficult to predict from one pass or

epoch to another.

During its learning phase, the AD neuron update method is more complicated than the

perceptron’s. In addition to weight modification, it must reposition its inputs and,

potentially, rebuild its tree. Rebuilding the tree is O(N3). Updating input position is

O(N). The calculations involved in our implementation are inherently more complex than

those of the perceptron. However, the complexity does depend on the design of the

implementation which we noted above.

Time complexity also depends on the somatic model. We used the Izhikevich model

which requires updating two state variables each time step to generate spiking behavior.

There is one beneficial aspect to spiking models. They greatly reduce the amount of

information which needs to move from one AD neuron to another. When the neuron spikes

all downstream neurons connected to it receive an updated spike time. When it does not

emit a spike, no communication is needed since neurons keep a history of received spikes.

Very active neurons (100 Hz) only spike 10% of the time.

9.2.4.3 Detail

Is the AD neuron overly complex? We pause to ask whether our model has advanced

beyond a more utilitarian fully trainable model. For example, the AD neuron uses a

continuous space to track neural inputs within the dendritic field. Perhaps this level of

precision with respect to input position is unnecessary to prove that artificial dendrites are

a useful addition to AI’s neural toolkit. Simpler methods, such as discrete “partitions” of

the dendritic field, might suffice (some are discussed below). However, starting with a more

detailed model has aided our ability to consider the necessary level of detail required to

create fully trainable dendrites. A detailed first attempt will help make future iterations

more efficient.
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9.2.4.4 Hyper-parameters

A question arises as to whether the AD neuron is hyperparameter heavy? There are

more hyperparameters for AD neurons as we have described them than for point

neuron-based ANNs. This is due to the relative complexity of the AD neuron and the

larger set of parameters needing to be trained than just weights. Depending on the type of

experiment, the neuron requires defining, largely by hand, the branching factor,

compartment size, the size of the dendritic field, target spike rates, and learning rates.

While this is far from ideal, as discussed in Section 9.3.3, we see a fruitful avenue of future

research addressing these also with training, similar to some ANN work [137, 11].

9.2.5 The AD Neuron: Neuron or Network?

The AD Neuron, defined as a connected tree of compartments, blurs the definition of an

artificial neuron. What is the line between a neural network and a dendritic neuron? A

point neuron is a self-contained, monadic entity. Whereas, the plurality and shape of a

dendritic neuron resembles a network. A dendritic neuron with only one compartment is a

neuron, but is an AD neuron, which could have hundreds of compartments and an

elaborate topology, still a neuron? Assuming a future ability to train elaborate dendrites, it

might be hard to draw a circle around a set of compartments and call it a neuron. If we

were to zoom out from a network of elaborate AD neurons, we would see a jumble of

connected compartments.

The AD neuron challenges the definition of neuron and neural network in that a case

can be made that it is one or the other. For example, the AD neuron partitions its set of

incoming connections which is not typical of point neurons. On the network side of the

argument, its topology as we have described it is limited and its connectivity is sparse.

However, the dendritic neuron’s computational abilities are somewhere between the point

neuron and the ANN in general.
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Rather than argue how many independent or quasi-independent compartments a

neuron can have before it becomes a network, the dependencies of a training regime are

better able to draw the line between neuron and network. Neuronal bounds are given by

the limits of its training algorithm. What learns together belongs together. No matter how

many elements comprise a neuron model, we can circumscribe those compartments whose

activity impacts the group, excluding those that do not. Of course, any complex entity, like

the AD neuron, can consist of sub-elements which have aspects that train independently,

but they must also share a coordinated change. This definition allows single compartments

neurons to be still considered neurons.

Although the computational ability of the AD neuron goes beyond the point neuron,

the AD neuron is not an ANN because, as we have defined it, its topology is limited. It

lacks expandable layers, multiple output channels or the ability to make recurrent

connections. All of these have proven to be important to different ANN solutions. Due to

these structural limitations, the computational ability of any AD neuron can be bounded

by some ANN. Crossover research between neuroscience and AI has suggested that the

dendritic neuron has a computational bound similar to a five-to-seven layer ANN [141].

The dendritic neuron, then, should be viewed as containing an intermediate complexity

that lies between the point neuron and the network. Rather than come up with a new

term, this intermediate complexity should retain the name ‘neuron’ and demote the point

neuron to a ‘compartment’.

9.2.6 Dendritic Paths

If compartments recognize sub-patterns within the input space, what, if anything, do

dendritic paths contribute? For the AD neuron model, dendritic paths complete our use of

compartmentalization by defining relationships between compartments which are

constrained by the rules given in Chapter 4.
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Each dendritic path forms a unique path through the AD neuron and a chain of

dendrites form a path through a network of AD neurons. Recent research suggests that

neural networks can be evaluated by the number and nature of the paths through them

[138, 42]. Although we have only examined dendritic paths on a micro scale, AD neuron

results reinforce the idea that the shape and composition of a path strongly impact

learning. An AD neural network diversifies the types of paths (e.g., different lengths) which

can exist in a network even beyond those achieved by most regularization methods. Deep

networks of multilayer perceptrons are universal function approximators so, certainly, more

types of paths do not improve theoretical performance. But, in our estimation, the main

current goals of ANN research is (1) to do more with less (reduce network size for a given

task) and (2) explain how trained networks make decisions. Therefore, it is likely that

path-based analysis can benefit from what is the path-based learning of the AD neuron.

9.2.7 Why Spiking Neurons?

Our work uses a spiking neuron, the Izhikevich neuron, to model compartmental

dynamics. We did not set out to use spiking neurons. In fact, our first, static prototypes of

dendrites used activation functions common to ANNs, such as hyperbolic tangent. Spiking

neurons are less common in AI research due to their discontinuous update function which

impedes the use of backpropagation learning. We desired, if possible, to build our training

algorithms on research into learning in artificial or biological neural networks. During the

design of the input position training algorithm, we were inspired by two descriptions of

dendrite modification given by neuroscience.

The process of neurogenesis and dendrite growth certainly depends on genetic

information; however, research indicates that activity plays an important role in shaping

dendrites [111, 176]. Specifically, activity is thought to play a large role in encouraging the

growth of dendritic branches.
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On the other hand, dendrites typically do not undergo continual regrowth or massive

reshaping during their life cycle. They do, however, make and retract connections to

nearby neurons through the growth and atrophy of dendritic spines. Spines are small

protrusions from the dendrite which house synapses. Changes to dendritic spines are due

to correlated activity in different, nearby neurons.

These two descriptions of dendritic and spinal growth gave us the idea to use

presynaptic and postsynaptic activity to determine the location of neural inputs. Steeped

in the descriptions of neural activity provided by neuroscience, we first developed a

learning algorithm based on the temporal proximity of input and output spikes. This led

us to the idea to encode the temporal proximity of activity into a spatial proximity within

the dendritic field.

We were concerned with using temporal encoding as it is not common in AI research.

However, a rate-based approach appeared to pose several questions absent from the

spike-based version. For example, if two neurons providing input to a third each produce

an output of 1 (which we take to be the equivalent of 1 Hz for the sake of this argument),

should their neural inputs be close together or far apart in the dendritic field? Should they

be deep in the dendritic field or near the periphery? Such an approach seemed to have only

one interpretation: low with low and high with high. At the time, this seemed like a

limited learning rule, so we opted for the spike-based approach, which necessitated the use

of spiking neurons.

We selected the Izhikevich neuron because we were familiar with it. To a lesser extent,

the Izhikevich neuron is configurable via its parameters, making it capable of producing

different spiking behavior. We doubted our research would use multiple configurations but

it seemed wise to use a model that had different options.

The use of a spiking neuron model precluded the use of backpropagation to train

weights. During initial development, we were not certain we would be able to use

backpropagation due to some other dendritic property; therefore, preventing its use did not
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alter our choice. Ultimately, the question whether or not a rate-based neuron model could

be used to model compartmental dynamics should be revisited as part of future work.

9.2.8 The Zero Problem

Complex systems are often comprised of multiple functions where the output of one is

the input of another. Predicting where in the input space such systems exhibit undefined

or undesirable behavior can be difficult. It can be equally difficult to put in place systems

to avoid such behavior.

Zero output, in a neural network setting, typically means that a neuron is silent.

However, in many cases, for the AD neuron, zero output is capable of generating a response

in a subsequent compartment due to the way connections transform signals. The zero

problem is due to the use of RBFs to model the separation between compartments. Since

our work uses spiking neuron models, this is not applicable to our work. However, in a

potential future rate-based version of the AD neuron, the zero problem will become a

factor in the behavior of compartments. Because of this, we include the following

discussion to make future researchers aware of this issue.

The zero problem is caused by the fact that ϕ does not equal zero when its input is

zero. For example, two AD neuron compartments, A and B, are connected together such

that A’s output is B’s input (Figure 9.1). Both compartments respond maximally when

input equals 1. Looking at the output of A (blue plot), as the input moves away from 1,

A’s output drops toward zero. A is inactive when its output is zero. The output of A is

confined to [0, 1] for all input values.

B’s only input comes from A. Therefore, we only need to inspect B’s output (green

plot) for inputs in [0, 1]. Here is the problem. B’s output range is limited. B’s output will

always be in the range [0.8, 1]. In other words, due to A’s output range and B’s expected

input of 1, B will never be inactive. In fact, B’s output will always be within 20% of its

maximum.
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Figure 9.1: An example of the zero problem. Colored circles A and B are AD neuron
compartments. Boxes with values are connections with associated values of ve. The graph
shows the output of each compartment. Plot colors match compartment colors.

Why is this a problem? It depends on whether an input of zero should cause a

compartment to activate. The scenario depicted here depends on the relationship between

the range of ψ and the expected value of ϕ (its ve). But we can also imagine a desirable

scenario in which B should activate only when A is silent (i.e. B’s ve = 0).

It is likely that there are two general types of connections: those that carry a positive

response to activity and those that carry a negative response. Using compartments A and

B, a positive response connection activates B when A is active. A negative response

connection activates B when A is inactive. The zero problem exists only in positive

response connections which should respond to minimal input but should be silent on no

input.

In general, AD neuron compartments have two states--inactive and active--which

correspond to two disjoint unit ranges: 0 and (0, 1].1 The range (0, 1] contains all active

states and 0 is the only inactive state.

The question becomes, how does an AD neuron connection differentiate between very

low activity and no activity?

1The unit ranges disregard connection modifiers such as weights to simplify our expression of the problem.
A version which uses the entire real number line would use three ranges. Active: (−∞, 0) and (0,∞). Inactive:
0.
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Figure 9.2: The experiment of Figure 9.1 repeated except ϕ in the connection from A-to-B
uses b = 5.

One solution would be to embrace the discontinuity of a connection’s output. We can

acknowledge that ϕ, while a continuous function, should follow the discontinuous spirit of

two states. The input space is, then, divided into active and inactive sections. Inactivity

could be defined as all output equal to zero within some ϵ. And active is all output outside

[0,±ϵ].2 Using this definition of inactivity, ϕ would become a piece-wise function. For

example, the inverse quadratic would become:

φ(x) =


w

((va−ve)b)2+1
if w

((va−ve)b)2+1
> ϵ

∞ if w
((va−ve)b)2+1

≤ ϵ

(9.1)

Another possible solution is to utilize b which controls a connection’s activation profile.

Liberal use of large values for b would shrink most activation profiles such that only those

very close to zero would include zero. Figure 9.2 shows that if the connection between A

and B uses a larger b then the output range of B spans most of [0, 1].

A third solution is to scale compartment and connection values away from zero. By

multiplying the output of ψ and ve by a large enough scalar, we can map ranges of

2This is the technique used in the experiments of Section 5.7.
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Figure 9.3: An extension of the previous two experiments. An additional compartment, C
has been added. The output of ψ and ve is scaled by the amount seen in the box between
connections. The A-to-B scalar is 10. The B-to-C scalar is 10.

activation such that they are less likely to contain zero.3 This is not a complete solution.

Depending on the scalar, very small ve still include zero.

Figure 9.3 demonstrates the effects of this scalar when ve = 1. The number of

compartments has been extended to three to show the cumulative effects of scaling over

repeated connections. Scaling causes a narrowing of the range of activation for subsequent

compartments. C responds only when A’s response is close to its maximum.

While we have called this the zero problem, it is actually a problem of thresholds. In the

extreme case, a chain of compartments can elevate a near total mismatch to a near total

match. Partial matches suffer the same issue. Depending on how the chain of

compartments is configured with respect to its parameters xe, b and w certain partials

might be pushed to zero or elevated to the maximum.

Finally, whether or not zero is a problem also depends on the meaning of compartment

separation within the context of the task. For example, if separation between

compartments signifies the time it takes for a signal to propagate from one compartment to

another, then zero is not a problem at all (as in our implementation). In this context, a ve

close to zero means that a signal arrives at downstream compartments with near

3An implementation of the AD neuron containing this scalar is not included in this work. The experiment
in Figure 9.3 uses a global constant which scales the result of ψ and ve.
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simultaneity because the distance between the compartments is very small. If ve represents

a spike rate, as it does in the above experiments, then perhaps the researcher can estimate

its likely range and choose an appropriate scalar.

Again, we have included this discussion to inform future research on a rate-based

version.

9.2.9 Calculating the Error

The use of a spiking neuron model complicated the calculation of error values in

scenarios where the AD neuron was tasked with determining the category of an input

example. One way is to count the number of output spikes within a window of time and

use this information to interpret neural behavior. Another method is is to judge output

based on the timing of the first spike generated by an input example. We used the former

method because some of our trials used time-series. Spikes generated by time series are not

guaranteed to fall at the beginning of the series. For example, one example might produce

a single, early spike followed by silence; whereas, another might produce a later, dense

spike train. We wanted to use roughly the same error calculation throughout.

The number of output spikes generated by an example was stored based on the

category of the example, and for the next example of the category, this previous rate was

used to construct an error value. An initial version of this project ran each example twice:

once to get an output rate and a second time to train. The above method of using the rate

of the previous to train the next cut training time in half. With regards to learning, neither

our tests nor related literature suggest one method is better than the other. Training time

is an issue with the AD neuron and reducing it was our main concern.

In all scenarios, error values were based on comparing the output rate to a target rate.

One, this allowed us to task single neurons with learning multiple categories since they

could be encoded using different target rates. Two, having a target prevented runaway

behavior by bounding changes to the neuron regardless whether its performance was
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correct or not. The biggest challenge was in selecting rates which due to input values and

parameters the neuron could achieve. If rates were too high, neural properties never

settled. If rates were too low, there was the danger of silencing the neuron. Selecting

optimal target rates is an avenue of future research.

9.2.10 Order of Update

As noted in the chapter on training, the order of update of neural inputs must be

randomized at regular intervals. Without randomization, clusters of neural inputs orbit the

dendritic field. This phenomenon is not always present and is most evident in data sets

with regular categories, i.e., composed of very similar examples. Without randomization

inputs change position in the same order, later moves always take into account the same

earlier moves made by other inputs.

The problem with orbiting behavior is that this orbital force is a strong force within the

dendritic field because it is a product of regular co-activity of inputs. It is strong in that it

can cause a group of inputs to ignore weaker correlations. In other words, intra-cluster

correlations in activity disrupt inter-cluster correlations. It cannot be said for certain at

this stage whether this orbiting behavior is completely undesirable, but, on the surface, it

seems to be disruptive.

Early experiments training input position struggled to produce AD neurons that could

solve very simple tasks. We believe this orbiting behavior was the cause because as soon as

update order was randomized, results improved dramatically. Learning stabilized.

It is difficult to track the incremental movement of even a few inputs over a long

enough span to deduce precisely the cause of one specific type of orbiting behavior. In

general, orbiting seemed to be caused by ordered movement creating a leader-follower

scenario. Imagine two inputs where one input always moves first and the other, being

related in activity, follows it. This leader-follower dynamic is exacerbated when some

inputs within the group receive input in a predictable time series.
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9.2.11 Stability and Compartments

The previous section discussed one quirk of input position training which affected the

stability of learned patterns. Learning in the AD neuron is stable, as we demonstrated in

several tasks. Subsequent training does not appear to disrupt learned patterns. However,

we are less confident about epoch-to-epoch improvement for complex tasks (Section 8.2).

In some tasks, the accuracy rate of the AD neuron jumped significantly. In the later

FMNIST trials, these jumps resembled a seesaw effect. Although each positive or negative

jump is roughly bounded, this behavior suggests that the neuron is switching between

several states.

Across several tasks we tested smaller learning rates, thinking smaller changes might

reduce the effect; however, the swings in accuracy were still present in the trained neuron.

In fact, for the FMNIST trial, lower rates did not alter the swings.

Cross-referencing examinations of two aspects of the AD neuron--input position (Figure

7.13) and compartmentalization (Figure 8.22a)--we believe compartmentalization is the

culprit. Although input positions do not change substantially between epochs, the number

of compartments do. The majority of these changes impact small compartments, but larger

compartments often break, combine and drift even after many epochs of training.

We believe a prime cause of compartment jostling is the combination of many neural

inputs in an oversized dendritic field. In the situation, many inputs cluster in a small

angular segment of the field. The angular displacement between inputs is small causing

more inputs to be added to fewer clusters. A smaller dendritic field would spread out the

same inputs over the entire field. This would potentially create more, smaller

compartments whose members are more spread out and less susceptible to jumping

compartments due to small positional changes.

Perhaps a completely different approach to compartmentalization (Section 9.3.4) could

reduce jostling compartments. Future work should concentrate on stabilizing learning with

respect to compartments.
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9.2.12 Compartment as Pattern Identifier

In the current model, compartments can contain a single neural input, all inputs to the

AD neuron or anything in between. Ideally, connection weights control a compartment’s

response such that it is in proportion to the presence of some learned pattern. A

compartment containing many inputs is far more likely to produce output than one with a

few. Does this make sense? In other words, conceptually, should we equate compartment

size (i.e., number of neural inputs) with number of patterns or with the number of features

in a pattern? Our intuition tells us the latter. Alternatively, the number of patterns

recognized by a single compartment could be a function of its size--somewhere between 1

and N, the number of inputs.

We tested several approaches. We averaged input by the number of connections, by a

percentage of the number of connections (e.g., 0.5), and by not dividing input at all. The

notable change we observed was that scaling input by compartment size had a tendency to

create AD neurons which could become silent when large numbers of active inputs were all

placed in one compartment. These tests did not convince us that scaling compartmental

input produced better results.

Ideally, either a connection’s weight, w, or b, the shape property, both proposed by the

extended model, could be trained to solve this problem. While we have examined the

contribution of connection weights to AD neuron behavior, we have not explored how they

contribute to compartment dynamics deeper in the dendritic tree. Future works should

explore this question to determine whether connection weights are sufficient to adjust input

with respect to a pattern-to-compartment ratio.

9.2.13 Connection Shape Parameter

The extended model contains a shape parameter, b, which allows for the narrowing or

widening of the result of ϕ, the connection’s output function. This idea was drawn from

the different time scales of potentiation in the dendrite (i.e., long plateau potentials). It
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was included because we assumed controlling the range of activation around ve would be

useful. However, this work made very little use of b. The complexity of the AD neuron was

such that using a single value for many of the tasks and tests sufficed.

Despite its lack of use, it is likely a trainable version of b would prove useful,

particularly in a spiking model. b allows the AD neuron to bridge or separate input signals

offset in time. It determines how precise compartmental output must be to generate input

to the next compartment. It is likely, like in biology [147], different neurons operate at

different time scales. A trainable b would allow each AD neuron (or even each connection)

in a network to learn its own optimal value.

9.3 Future Work

9.3.1 Next Steps

As we stated earlier, the AD neuron model and training algorithm are substantially

more complex than the point neuron and its training algorithm. The dendritic neurons

produced by training and their behavior we found difficult to interpret as input complexity

increased. To remedy this, we intend to investigate the AD neuron in a simpler setting. The

goal of working within a simpler setting is further understand how the AD neuron encodes

information and learns to recognize patterns so that the AD neuron itself can be refined.

For example, this work would benefit from more testing using predetermined dendrites

to establish a broader understanding of the role of general shapes and configurations. Also,

training should focus on continuing with simple tasks like those in Chapter 7. These two

steps will be linked by training AD neurons to match the results of the predetermined

dendrites similar to the signal coincidence behavior in Section 5.6 and the movement trial

in Section 8.1.

We do not intend to abandon the complexity of the current model. A parallel track we

intend to take is to break down the AD training algorithm and reevaluate its different

components. It is likely there are better solutions to some of the problems. In particular,
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we would like to find a better way for the positioning parts of the algorithm and the

tree-building parts to interact. The best way to do this is to take nothing for granted and

return to the calibration tasks. As part this, we intend to explore a way to expand training

to one or more of the hyperparameters.

It is tempting to push forward into more complex scenarios, specifically those involving

networks of AD neurons. It is our belief that such an inevitable push will benefit from

spending more time trying to understand the AD neuron in simpler, more isolated tasks.

9.3.2 Triplet Learning

Neuroscience modeling research has suggested that synaptic learning is more complex

than the simple pre-before-post, or cause-and-effect Hebbian model would indicate [34, 35].

In fact, learning is the result of three coinciding spikes. Using this idea, we could alter the

input position training algorithm to combine both angular and radial positions into one

update. Currently, coinciding signals arriving at two different neural inputs causes them to

adjust their relative angular positions with respect to the temporal interval between the

two signals. And coinciding input and output signals do the same for the radial position.

An alternative would be to only evaluate angular positions after an S-compartment, or

output, spike. In other words, angular position training would require two input signals

followed by an output signal.

The reason this change might be helpful is that it would provide some local supervision

to angular training. Currently, angular training is the most unsupervised part of the

algorithm. All pairs of input signals arriving within the learning window of each other

cause a change in angular position. Requiring S-compartment output would allow the

algorithm to limit the amount of angular change. It would also allow the algorithm to base

angular change on some measure of correctness with respect to current output. While we

do not have any hard evidence to support this change, out intuition concerning angular

movement is that there is too much of it involving too many neural inputs.
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Alternatively, angular change could depend not on S-compartment output but on the

output of a local B-compartment. The local B-compartment could be either the

compartment to which either is a member or a compartment through which both connect

to the S-compartment. This idea suggests that learning depends on local, not global,

conditions. However, it presents several complexity issues regarding identifying which

compartment activity affects which neural inputs. This is a topic that should be followed

up in future research.

9.3.3 Multi-stage Training

The AD neuron trains all aspects of itself--input position, the dendritic tree,

compartmentalization and weights--simultaneously. Future work will explore multi-stage

training. There are several reasons for this.

In several scenarios, the S-compartment is inactive until angular input positions have

been significantly trained. Until neural inputs begin to cluster within the dendritic field,

building the dendrite or compartmentalizing inputs can be unnecessary. Also, since weight

modification is based on compartment membership, it might make sense to pause weight

modification until more stable compartments form. Early, unnecessary changes to weights

might have to be undone, increasing training time.

Breaking the training algorithm into multiple steps might allow more of the AD neuron

to be trained. For example, in the current version the branching factor and compartment

size are selected by hand. If the tree-building algorithm ran offline with respect to input

position training, we could incorporate an heuristic that tries multiple values for the

branching factor in an attempt to improve results. The same process could be used for

compartment size. We did not attempt this due to the increase in training times and

because we could find through hand-selection a value that worked.
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9.3.4 Discrete Dendritic Field

We are uncertain how much detail is necessary to create beneficial dendritic

computation. It is possible that a better first step in expanding our neuron models would

be to use a discrete dendritic field. A discrete dendritic field is divided up into

predetermined compartments (Figure 9.4 left column). Compartments can form slices

or/and layers. Neural input positions could be trained as per the algorithm described in

this work. During tree-building, connectivity is determined by radial position only and

angular positions, once compartment membership is determined, is ignored (top right).

Another possibility (bottom right) is to collapse both angular and radial positions during

tree building such that all inputs falling within a compartment connect at the same

location. In the examples, precise input positions need to be maintained but play a

reduced role in calculating separation.

Using discrete dendritic fields could simplify tree-building and compartmentalization

without losing the basic additions of dendritic computation. The tree-building and

compartmentalization phases of the training algorithm are the most computationally

expensive: O(n3), where n is the number of neural inputs. Roughly, a discrete model of the

dendritic field would require n operations to determine which compartment an input is

current in. Depending on the connectivity scheme--order preserving (top right) or order

collapsing (bottom right)--the algorithm would add n log n (in the worst case, all in one

compartment) operations to order the inputs in each compartment.4 This reduces the

complexity to O(n log n+ n).

Any new method of compartmentalization would need to be tested extensively against

the results of this work.

4It is best to use the worst case here. Our experiments show that input position training causes
many inputs to cluster in small segments of the dendritic field. In the way we have designed the AD
neuron, a uniform distribution of neural inputs across the dendritic field and therefore across predetermined
compartments only happens at initialization.
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Figure 9.4: Two versions of discrete dendritic fields. Top row: the dendritic field is sliced
into eight compartments which extend from the center to the periphery. Bottom row: the
dendritic field is sliced into sixteen compartments with an inner and outer set of eight.
Left column: neural inputs after positional training but prior to tree-building. Right
column: neural inputs after tree-building. Trees are indicated by dotted lines. Colors denote
compartment membership.

9.3.5 Alternate Dendritic Field Geometry

Spherical geometry is not the only possible way to define the dendritic field and neural

input positions. Earlier versions of the AD neuron of this work used a 2− and

3−dimensional Cartesian coordinate representation of space to track synapse location.

Future work will investigate the use of 4-dimensional quaternions which use a single real

and three complex values. Quaternions are efficient at modeling rotations of an object

across three dimensions. When we consider each neural input within the dendritic field, its

angular position is simply a rotation around the field’s center. It will be necessary to

compare the requirements of the two approaches. It is possible that switching to

quaternions could make several aspects of the algorithm more efficient.
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Another avenue of future is the use of different field shapes to limit the types of

dendrites that can form. For example, the dendrites of some neurons appear limited to a

conical field. Others fan out in a 2-dimensional plane. It is likely such recurring shapes

have a computational purpose.

9.3.6 Limited Sibling Influence

Currently, an incoming signal to an AD neuron triggers the receiving neural input’s

position to be compared to the position of all sibling input positions with respect to their

recent activity. In theory, this method to train input positions is costly; however, if

incoming signals are sparse enough, the number of calculations are minimized. A potential

way to reduce the number of calculations is to compare each input only to a subset of its

siblings. Our present implementation excludes sibling inputs if their most recent activity is

beyond the learning window. This limits the number of complex calculations associated

with finding distance, heading and movement in a spherical space. Regardless, the number

of checks for an input signal is still n, the number of sibling inputs.

Potentially, a more robust way to reduce the computational complexity of the AD

neuron is to set a hard limit on the size of influencing sibling inputs. The potential

problem in this is identifying (and storing), for each input, the set of influencing siblings

without trading one form of complexity for another.

A possible method is to use distance. We could limit influence to all siblings less than d

distance from the receiving input. Already, the tree-building algorithm is (almost)

computing the all-to-all distances between all neural inputs. This information could be

stored with each input to create a list of influencing siblings for use during the next epoch.

Another possibility, if discrete dendritic fields were adopted, would be to use only those

inputs in one’s own or adjacent compartments. Compartmentalization would naturally

facilitate a limited number of sibling checks.
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Assuming a process of limiting sibling checks is computationally beneficial, such a

change could impact the dendrite. During the early stages of development, we omitted

siblings during position updates for spatial and temporal reasons. For example, if the

distance to another sibling was beyond a spatial encoding of the temporal learning window,

it was not checked. It came to light that this caused initial positions to play an oversized

role in creating clusters of neural inputs, especially if the learning window was small

compared to the extent of the dendritic field. Despite correlated activity in two inputs,

they might not cluster unless one or more related siblings occupied the intervening space in

the dendritic field. The spatial reason for limiting sibling checks was then abandoned. A

potential solution is to include one or more randomly selected siblings in each set of

influencing siblings.

Future work on this issue should also investigate whether sparse influence between

siblings is beneficial for training as a whole. Perhaps it would be enough to predetermine,

for each input, a set of influencing siblings.

9.3.7 Duplicate Connections

A single cortical axon can make many thousands of synapses, but only a handful (<10

for spiny stellate cells) seem to be onto any one neuron [135]. Multiple connections between

neurons can take place along the same or different dendrites. It is theorized that duplicate

connections strengthen the communication, learning and/or memory between neurons, but

their precise function remains unknown [53]. Certainly, a functional analysis of duplicate

connections depends on the context. Clustered connections might have a different purpose

than disparate ones. Duplicate connections could allow a neuron to integrate the same

information, the same variable, in duplicate parts of the overall expression. Under the

current training implementation, duplicate connections from the same source would have a

very strong tendency to cluster in the same position.
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Despite the above, we theorize that in dense dendritic fields, duplicate connections from

the same source might help the AD neuron to include the same information in multiple

contexts. We are not exactly sure how to achieve this. We spent a significant amount of

time on a further extended implementation which added associativity to each input (see

Section 9.3.8). Input associativity was simply a small static floating point value which

caused each input to interact with siblings differently based on how close their associative

values were. Experimentation suggested that associativity was capable of causing duplicate

connections to belong to different clusters creating different roles for each duplicate.

Duplicate connections increase the complexity of the AD neuron. A simple method to

identify unnecessary duplicates could be based on input position. Any duplicates within

some range of each other could be declared unnecessary and the number reduced to one.

To keep the scope of the project contained, we abandoned this thread of investigation.

However, we believe there is potential in duplicate connections.

9.3.8 Input Associativity

Input associativity is the idea that sibling influence during angular position training is

not uniform. Some neural inputs exert a stronger influence than others. This idea grew out

of tangent research into duplicate connections between AD neurons. Duplicate connections

need a mechanism to prevent them from mirroring each other during the training process.

Getting duplicates to associate with different groups of inputs has the potential increase

the computational complexity of a neuron by allowing the same signal to contribute to

different contexts.

We implemented associativity as a randomly selected floating point value from a set of

predefined values, e.g., one to ten. Inputs were assigned one of the predefined values using

a uniform distribution. Associativity was calculated based on the minimum difference

between two values with wrap around. The minimum difference was given as input to a

radial basis function with a center of zero. The result was used to scale angular movement.
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Correlated activity between less associative inputs formed a weaker bond and vice

versa. The effect moderately diversified input clusters. In one learning task (not discussed

in this work), we used associativity and fixed weights to train an AD neuron to learn XOR.

Associativity was subsequently abandoned due to added complexity. It required additional

computational work, a method (and potentially a heuristic) for assigning associations and

the selection of additional hyper-parameters, e.g., the number of associative values. More

important, without first testing a simpler model, we could not judge its contribution. We

believe this is an interesting tangent that should be explored in future work.

9.3.9 Fuzzy Branching Factor

Our work uses a one-size-fits-all approach to the branching factor. In other words, the

branching factor is the same throughout the dendritic field. Considering that biological

neurons exhibit different degrees of branching at different radii, it is natural to wonder

whether the branching factor should be constant throughout the field.

Certain parts of this work have hinted that a given trained AD neuron could be

improved if the earlier stages of tree-building used a high bf and the later stages used a low

bf. This would encourage a few number of S-compartment rooted trees which on the

periphery would expand into highly branching tufts that receive many inputs. Our reason

for thinking this is based on qualitative assumptions about neural input clustering. Results

might improve if large clusters connect through one S-compartment rooted tree. Different

regions of the cluster would form tuft compartments recognizing different subpatterns or

alternatives. This is something that should be investigated in future work.

9.3.10 Training Hyper-parameters

We discussed in Section 9.2.4.4 that a potential problem in the model is the number of

hyperparameters needed. Future work should investigate whether some or all of these are

themselves amenable to training.
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A potential method for training the branching factor and compartment size is to run

multiple testing phases, each using different values. The best performing value would then

be used in the next epoch. A hill-climbing algorithm would be used to select candidate

values. On the surface this seems like it would increase the duration of the testing phase by

the number of candidate values; however, each value could be tested independently and

therefore in parallel. Candidate branching factor and compartment size could be selected

and tested simultaneously or they could be staggered across epochs, e.g., even-od epochs.

Finally, we did not present a method to train b, the connection’s shape parameter. A

potential idea is to change b with respect to a correct or incorrect compartment response.

Increasing b has the potential to disassociate incoming spikes which do not arrive

simultaneously but at a small offset. Decreasing b has the opposite effect. It would cause

more input to a compartment to overlap. It would seem natural to increase b for incorrect

responses and decrease b for correct ones. However, a case can be made for increasing b due

to correct responses as a way to encourage the AD neuron to further temporally align

useful input signals. The answer to this is left for future work.

9.3.11 When to Rebuild?

Our implementation rebuilds the dendritic tree and creates a new set of compartments

after each training epoch. While we have tested epochs of different lengths, we have not

directly experimented with altering the frequency at which the tree is rebuilt. During

subsequent training phases, input positions move away from their previous, end-of-epoch

positions used to build the last tree. Many calculations depend on these positions. By the

end of a training epoch, the input positions could be radically different from the shape of

the tree.

The question that future work needs to answer is: how often should the tree be

updated? We have kept updates sparse due to the time-complexity of the algorithm.

Perhaps more frequent full, or even partial, rebuilds would be beneficial.
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9.3.12 Neural Input Importance

In a previous chapter, we mention a possible role for the importance of a neural input.

An input’s importance could be defined around how vital its information is to creating

correct or preventing incorrect neural output. Theoretically, if we could track an input’s

importance, we could under certain conditions delete it from the AD neuron’s set of inputs.

Currently, we equate importance with radial position. All neural inputs are initialized to

the outermost shell of the dendritic field and they are prevented from moving outside this

shell. Therefore, any input which never moves from the outer shell is irrelevant. Otherwise,

it has some measure of importance.

Neural importance is key to understanding changes in AD neuron behavior during

training. For example, changes to radially-short inputs can have a greater impact than

changes to those far from the center of the dendritic field.

Future work should focus on developing one or more heuristics for calculating the

importance of a input. An initial version could use the measure described above. An online

heuristic could allow for pruning during training and even contributing to other parts of

the training algorithm by altering or scaling changes to (un)important neural inputs.

9.4 Final Thoughts

Throughout this work, we have been well aware that each choice we made had many

alternatives. Many of those alternatives have been realized only now, at the end. They are

part of the contributions of this work. The output of exploration is often learning the

questions we need to ask. This chapter was written largely to expose these questions and

suggest next steps.

What we label as ‘intelligent’ is itself a controversial subject. It is the opinion of the

author that, despite recent advances, intelligence still belongs only to biology. Mimicking

intelligence even with our best hardware is expensive [157]. The 100s of megawatt hours

required to train (not to mention run for millions of users) are unsettling at a time when
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human activity is driving the world’s climate toward extremes. This is just the beginning.

If the technology proves useful and not immediately destructive, in the near future there

will be thousands of such expensive models being trained and retrained, and their results

will be consumed by billions.

We need to do more with less. More than anything, we hope this work encourages the

ANN community to work the field as both AI researchers and neuroscientists toward this

end. Creating an intelligence outside the natural process will prove to be humanity’s worst

idea. Let us use these tools primarily to understand ourselves.

Finally, a lesson from my father has been helpful in keeping morale up during this work.

And I think it serves as a final contribution. He was a carpenter and liked to say, “If you

have to build fifty of something, fifty chairs for example, you will be ready to start building

the fifty chairs when you finish the last one.” Following this thought, the forward-looking

discussion in this chapter might be the biggest contribution of this work. Hopefully others

will see the potential in the ideas of this work and where we have made mistakes and take

inspiration from their synthesis.

We will only know how to build artificial dendritic neurons after we have designed

several dozen. Well, here’s one more.
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APPENDICES

APPENDIX A

ARCHITECTURE

The software used in this work was largely coded from scratch. This was necessitated by

our goal to implement fully trainable dendrites. Prior to coding everything ourselves, we

examined several computational neuroscience libraries and tools to see if they would work.

We looked to neuroscience rather than AI because computational neuroscience makes

frequent use of complex neuron models. None of the tools we investigated supported

working with dynamic dendrites. The tools we looked at included Brian2, NEST [63],

Spike, GeNN [180], and Auryn [181]. Although no documentation stated that these tools

supported dynamic dendrites, it is possible that the tools could be hacked or modded to

complete this work. However, in making our first steps, we were not entirely sure what the

final implementation would require and were therefore hesitant to invest time into

something that would prove insufficient.

Our implementation was coded in Modern C++ (the current build uses C++20).

Current version of the code can be found here: Project Radius. Future versions of this

project will be available on my Github repository. Project Radius depends on the JSON

for Modern C++ to read JSON config files and the C++ implementation of OpenMP for

paralellization. Hardware used during the life cycle of this project varied from an older

AMD Phenom II 955 to a modern i7-9700. All hardware used was off-the-shelf.

Visualization used Python3’s matplotlib module. Development was initially on Ubuntu and

later on Manjaro (but likely any linux distro will run the code). Windows and Mac

versions are not available.

Next, we will briefly describe the implementation and its design. Component names

used in the software do not necessarily correspond to those in this text.
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At the heart of the simulation is the Neuron. Neurons model a single AD neuron and

therefore are responsible for keeping track of all neural inputs. During the Neuron’s update

process each Neural Input is checked whether it received a spike. If a Neural Input receives

a spike, the angular training algorithm is called on that Neural Input. Next, the neuron

queries its dendrites for input. This recursive query is passed back down the dendrite

through each compartment until the complete input is calculated. The input is then

applied to the S-compartment. If the S-compartment emits a spike, the radial training

algorithm is called. Radial training was paralellized using OpenMP. Weight modification

can take place during the input query and as a result of an S-compartment spike. Each

Neural Input keeps track of its own weight, compartment membership and position within

the dendritic field. Compartment membership is stored as an integer identifier.

Connectivity between Neural Inputs is stored as a parent and vector of integer identifiers.

Neurons are stored in Layers. Layers function exactly like they do in typical ANNs such

that the output of one Layer is the input to the next. Apart from defining the flow of

information by defining the order of updates, they are simple containers for Neurons.

Neuron updates within layers was paralellized using OpenMP. A Connection matrix is used

to send spike times from one layer to the next to decouple communication between

neurons. Neuron and Input addresses into the matrix are given by three integer identifiers:

Layer, Neuron and Input.

Layers are all stored in the Network. A Network encapsulates the inner workings of the

Layers and Neurons such that Simulation code is similar regardless of the composition of

the Network or any requirements of the task itself. Networks are given by a JSON object

which defines its composition: Layers, Neurons, connectivity, and certain initial

parameters, such as initial radius and weights. Only those parameters required during the

Network building phase are in the JSON Network definition.

Task code is broken into an initialization section which loads all necessary resources and

generates the Network. Once initialization is finished, the task section runs the required
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number of epochs. Each epoch consists of a training, testing and possibly random mask

section in this order. The architecture provides for a mechanism to load pre-trained models

for further or alternative training sessions; however, this was not utilized extensively. On

several occasions trained models were loaded and further trained to verify long term

stability.

Serialization is handled by the Writer. Each component of the Network has a data-only

structure specific to itself which it populates with information and sends to the Writer.

This allows the Writer and Network to function agnostically of each other. While Network

state and activity can be serialized as often as required, the work presented in this

document serialized the network only during the testing phase. This vastly reduced the

data created by the Network, which, in turn, reduced the time it took to generate

visualizations for analysis. Very early work, specifically during the creation of the angular

training algorithm, reversed this policy and serialized the Network during the training

phase. This allowed us to visualize the movement of neural inputs through the dendritic

field. However, this produced very large data sets. For example, 1,000 epochs of 100

examples per epoch of a single AD neuron training on the MNIST data set produced 60

GB of data. While this data was useful to prove to ourselves that neural inputs were

behaving as expected, it was not feasible for us to store such quantities of data for 100s of

runs. Focusing on just the testing phase data, we reduced model data for the same task to

just 4-6 GB.

The implementation contains several miscellaneous modules. Several modules were

written to handle specific tasks, such as FMNIST. These include code to load the binary

data and present it to the Network in several different ways. Input Generators are capable

of generating different simple spike patterns using different processes, such as the Poisson

process.
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APPENDIX B

MISC. CODE

This section contains miscellaneous code used to complete this dissertation.

B.1 Average Interspike Interval Simulator

The following Python3 script was used to simulate the average interspike interval of a

given number of inputs each spiking at a given rate. Output of this script was used in

Chapter 7.

1 import random
2 #######################################################
3 # Finds the average interspike interval for a set of inputs
4 # with given spike rates. Any ISI greater than the window
5 # maxT is ignored. Based on the Law of Large Numbers.
6 #
7 # Code: zsh
8 #
9 # Parameters:

10 #
11 # NUM_INPUTS: number of inputs per pattern
12 # I: dict of spike times per input
13 # R: spike rates per input
14 # flags: tracks whether input i has spiked
15 # dI: interspike intervals
16 # T: make sim time
17 # maxT: max ISI. ISI beyond max will not be counted.
18 ########################################################
19 NUM_INPUTS = 6
20 I = {}
21 R = [0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
22 flags = []
23 dI = {}
24 T = 100000
25 maxT = 100
26

27 # Initialization
28 for i in range(NUM_INPUTS):
29 I[i] = []
30 dI[i] = []
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31 flags.append(False)
32

33 # Run sim
34 for t in range(T):
35

36 # Reset all flags
37 for f in range(len(flags)):
38 flags[f] = False
39

40 for i in range(NUM_INPUTS):
41

42 # if there's a spike
43 if random.random() < R[i]:
44 flags[i] = True
45 dAll = 0
46 dCount = 0
47

48 # calculate the average of all ISIs less than maxT
49 for k in range(NUM_INPUTS):
50 if k==i: continue
51 if len(I[k]) > 0:
52 d = t-I[k][-1]
53 if d <= maxT:
54 dAll += d
55 dCount += 1
56 if dCount > 0:
57 dI[i].append(dAll/dCount)
58

59

60 # If input f had a spike, append the current sim time.
61 for f in range(len(flags)):
62 if flags[f]:
63 I[f].append(t)
64

65 # Output
66 for d in range(len(dI)):
67 print(f"{d} average: {sum(dI[d])/len(dI[d])}")
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