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The Two-Dimensional Wavelet Transform Modulus Maxima (2D WTMM) sliding

window methodology has proven to be a robust approach, in particular for the extraction

of the Hurst (H) roughness exponent from grayscale mammograms. The power spectrum is

a computational analysis based on the Fourier transform that can be used to estimate the

roughness of a scale-invariant image or region via the calculation of H. We aim to examine

how the calculation of H in fractional Brownian motion (fBm) images and mammograms

can be improved. fBm images are generated for Htheo ∈ [0.00, 1.00] for testing through the

previous 2D WTMM sliding window analysis using the Gaussian smoothing function, the

second-order derivative of the Gaussian smoothing function, the Mexican hat, and the

power spectrum analysis. The power spectrum is shown to provide a more accurate

calculation of H for Htheo < 0.45 (RMSE = 0.01), while the 2D WTMM analysis with the

Mexican hat smoothing function provides this for Htheo ≥ 0.45 (RMSE = 0.058) in fBm

images. Through the previous implementation of the 2D WTMM sliding window analysis,

we have categorized mammographic subregions into three categories: Fatty (H < 0.45),

risky dense (0.45 ≤ H ≤ 0.55), and healthy dense mammographic tissue (H > 0.55). The

power spectrum and the 2D WTMM analysis are further tested on the CompuMAINE

Laboratory’s acquired de-identified Perm and Maine mammographic datasets. From this



analysis, it can be concluded that the power spectrum analysis cannot accurately

distinguish fatty from dense tissue in grayscale mammograms. The implementation of the

Mexican hat smoothing function provides a decrease in the number of mammographic

subregions rejected during our analysis. In addition, the Mexican hat smoothing function

indicates a greater difference in risky dense mammographic tissue between cancerous and

normal patients compared to the previously adapted 2D WTMM analysis with the

Gaussian smoothing function. The presence of noise in the Perm mammographic dataset

indicates a larger minimum size for the range of wavelet scales a (MinADelta = 3.0)

should be used in the calculation of H using the Mexican hat smoothing function in the 2D

WTMM sliding window analysis. Higher quality (16-bit) mammograms in the Maine

mammographic dataset indicate a similar minimum range of wavelet scales used in

previous studies (MinADelta = 1.0) should be used to calculate H with the Mexican hat

smoothing function. Through extensive calibration and testing of the power spectrum and

2D WTMM methodologies, we conclude the implementation of the 2D WTMM

methodology with the Mexican hat smoothing function provides the most accurate

calculation of H ∈ [0.00, 1.00] in fBm and mammographic images.



PREFACE

To preface, we acknowledge the Mexican hat wavelet discussed in this thesis is also referred

to as the Ricker wavelet. Due to use in previous published papers by the CompuMAINE

laboratory, we refer to it as the Mexican hat wavelet and smoothing function throughout

this work.
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CHAPTER 1

INTRODUCTION

Breast cancer is the most common cancer amongst women, occurring in every one in

eight [1]. Major research efforts are centered around developing methodologies to improve

early detection from mammographic screenings. The Computational Modeling, Analysis of

Imagery and Numerical Experiments (CompuMAINE) Laboratory is a University of Maine

based laboratory developing and utilizing image and signal processing methods to conquer

real-world problems.

The innate heterogeneity of the mammographic tumor environment makes it difficult

for researchers to quantify changes in a patient’s breast tissue. Changes in the stromal

tissue, composed of adipocytes, fibroblasts, blood vessels, etc., and immune cells in the

mammographic microenvironment are key in the visual appearance of the tissue through

imaging. With this, mammographic density represents the proportion of fibroglandular to

adipose tissue in the breast. High mammographic density is associated with more

fibroglandular rather than adipose tissue. Mammographic density decreases the overall

sensitivity of screening mammography allowing for a potential late-stage diagnosis of breast

cancer and thus represents one of the more important breast cancer risk factors, as women

with approximately 75 to 100 percent dense breast tissue are at a 4-to-6-fold risk of

developing breast cancer [2, 3].

When a screening mammogram is ordered, the patient’s breast is imaged in two views:

craniocaudal (CC) and mediolateral oblique (MLO). The CC mammographic view is the

most common view and images the breast from the top-down, allowing for glandular tissue

to be seen. Additionally, the MLO mammographic view allows the radiologist to see the

breast tissue present, and a portion of the pectoralis major. If the pectoralis major is not

shown, the mammogram is discarded, and the patient is re-imaged from the MLO point of

view. Pressure is applied to the chest wall, and the breast is imaged 30-60 degrees to
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acquire the MLO view [4]. The screening mammography guidelines are enforced by the

American College of Radiology, which recommends yearly screening for patients 40 years of

age or older to aid in early detection of breast cancer [5].

Once the breast is imaged, a visual assessment of the screening mammogram is

performed by a radiologist. They will then decide if additional breast imaging through

diagnostic mammography is necessary; however, the presence of varying levels of

mammographic breast density has caused a low cancer detection yield and a high false

positive rate of breast cancer [6]. Fatty breast tissue regions are translucent in the X-ray

spectrum and are therefore portrayed as dark regions in the mammogram. Epithelial and

stromal tissues absorb these X-rays causing them to be portrayed as white on the

mammogram (Figure 1.1 A1,2), while tumorous regions xalso appear white (Figure 1.1

B1,2). The elevated presence of epithelial and stromal tissues can obscure cancerous

regions in the patient’s mammogram leading to high false positive rates (Figure 1.1 B1,2).

In addition, these high false positive rates create unnecessary emotional strain on

patients and increase the financial burden due to unneeded biopsies and medical visits [6].

With this, the introduction of clinical support systems, such as computer aided detection

(CADe), diagnosis (CADx), and triage (CADt), to the medical field has quite rapidly

become valuable tools for radiologists. For breast cancer specifically, CADx and CADe

provide a radiologist additional information to aid in their diagnosis. CADt assists a

radiologist in prioritizing their patient triage. An example of this is seen through

CureMetrix’s CADt system designed to push suspicious studies to the top of the work list

while also increasing the rate of recall for suspicious cases [7]. One study reported in 2016

that CADe was used in approximately 92% of screening mammograms in the United States

[8].

Previous studies have shown that the two-dimensional Wavelet Transform Modulus

Maxima (2D WTMM) multi-fractal method is a robust approach for the quantification of

density fluctuations in the mammographic microenvironment. In these studies, density

2



Figure 1.1: Fatty tissue is relatively translucent, since it absorbs few X-rays. Thus, it results in
dark areas on the image. Epithelial and stromal tissues filter X-rays more efficiently, absorbing their
energy and thus appearing as clear areas (Figure 1 A1, A2). Breast lesions are not easily discernible
in these areas since dense tissue and tumors both appear as white areas on a screening mammogram
(Figure 1 B1, B2) (Figure reproduced from Ref. [3]).

fluctuations were classified into three categories. In areas of fatty tissue these density

fluctuations are monofractal anti-correlated (MAC) (H < 0.45), while both monofractal

uncorrelated and long-range correlated (LRC) (H > 0.45) are seen in dense breast tissue
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regions [9, 10]. For dense tissue regions, a H close to 0.5, i.e. 0.45 < H < 0.55, is associated

with the loss of homeostasis and may indicate a proclivity towards developing malignancy

in these coined "risky" dense breast tissue regions [9, 10]. This thesis aims to explore the

implementation of a power spectral approach through the use of the 2D Fast-Fourier

transform in which H can be extracted from the transformed power spectral signal [11]. In

addition, the Mexican hat wavelet is the second derivative of the current used Gaussian

smoothing. We explore the implementation of the Mexican hat in the 2D WTMM

methodology [12]. The higher wavelet order of the Mexican hat wavelet (nψ = 3) is

hypothesized to provide a more robust calculation of H using the 2D WTMM method.

Both methodologies are tested on fractional Brownian motion images, with known H, and

various patient mammographic datasets. This approach will allow us to discover the most

efficient methodology in terms of speed and, most importantly, diagnostic accuracy of H in

grayscale mammograms.
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CHAPTER 2

LITERATURE REVIEW

2.1 Breast Cancer Risk Assessment

Globally, breast cancer impacts approximately 300,000 women each year with an

incident rate between 8.3% and 12.5% [13, 14, 15]. Based on data collected from the SEER

Cancer Statistics Review across 2017 to 2019, a women’s 10 to 20 year risk of developing

breast increases with age (Figure 2.1). With this, it is important to be able to accurately

assess a patient’s risk at their last regular screening, but also in a longitudinal manner. To

accomplish this, there is an ongoing effort to develop breast cancer risk assessment models.

Figure 2.1: According to data collected from the SEER Cancer Statistics Review 2017-2019, a
woman’s risk of developing breast cancer can be seen to increase with age.
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In general, there are two main categories of breast cancer risk assessment models. The

first category are models designed to estimate a patient’s risk of developing breast cancer

[15]. The performance of these models are evaluated through the concordance (c) statistic

and observed to expected (O:E) ratio. The c-statistic represents the fraction of data that

behaves as expected where a value of 1.0 represents a near perfect discrimination. The O:E

ratio represents the actual number of cases versus that of the predicted in the population

used for model evaluation [15]. The most commonly used method to assess a patient’s risk

of developing breast cancer is the Gail model, also known as the Breast Cancer Risk

Assessment Tool from the National Cancer Institute, first developed in 1989 [16]. The Gail

model focuses on assessing a patient’s breast cancer risk with the use of the multivariate

linear regression models designed to incorporate various breast cancer risk factors, such as

age of menarche and first live birth, number of prior breast biopsies, and recognition of

hereditary risk. While the Gail model is one of the oldest and most commonly used risk

assessment models its effectiveness has been put into question due to its weakness in

high-risk clinical populations (c-statistic: 0.56, O:E ratio: 1.08) [17, 18].

Mammographic density (MD) is one of the most important radiological risk factors for

breast cancer assessment, as it is responsible for the formation of dense breast tissue. The

clinically accepted manner to assess a patient’s MD is through the breast imaging

reporting and data systems (BI-RADS) [19, 20]. The BI-RADS system separates a

patient’s MD into four categories (Figure 2.2):

1. Almost entirely fatty tissue (5-24% MD)

2. Scattered areas of density (25-49% MD)

3. Heterogeneous density (50-75% MD)

4. Extremely dense (MD ≥ 75% tissue density).

BI-RADS categories one and four are associated with 10% of women in the U.S., while

categories two and three are seen in 40% of women [19]. A 2007 study concluded the
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greatest MD is seen in Asian women, while the lowest is seen in African American women

[21]. Given the results of this study, the Chen and Tice models extended the Gail model by

putting a focus on MD [22, 23]. The Chen model incorporates the average percent breast

density from both CC mammograms of the respective patient [22]. Incorporating percent

density as a risk factor increases the c-statistic from the Gail model from 0.56 to 0.64 [22].

Rather than incorporating percent density, the Tice model incorporates BI-RADS density

classifications to predict the 5-year risk of invasive breast cancer in women not diagnosed

with breast cancer. Validation results from the Tice model demonstrate low discrimination

(c-statistic: 0.66) and high calibration (O:E: 1.03). Additionally, the Tice model’s lack of

family history and incorporation of BI-RADS categories for MD demonstrates it should be

interpreted with caution [23]. With this, the Chen model’s elevated discrimination and

Figure 2.2: Clinically, the assessment of breast density is accomplished through the use of the
Breast Imaging Reporting and Data System (BIRADS) [20]. This system is broken down into four
categories: (1) almost entirely fatty (5-24% MD), (2) scattered areas of fibroglandular density
(25-49% MD), (3) heterogeneously dense (50-75% MD), and (4) extremely dense breast tissue
(75-100% MD).
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incorporation of additional breast cancer risk factors, in comparison with the Gail model,

would grant a radiologist insight into accurately assessing a patient’s breast cancer risk.

The second category of breast cancer risk assessment models are those designed to

estimate a patient’s risk of carrying a high-risk genetic mutation. The Myriad model,

developed in 1997, was the first risk assessment model designed to predict a patient’s

genetic carrier status of the BRCA1 mutation [24]. This model is only for patients deemed

high-risk due to their respective family history and was validated on 798 women with

high-risk history and no current documentation of genetic mutations. Logistic regression

was utilized to determine the breast cancer risk factors applicable for the BRCA1

mutation [24]. In 1998, Frank et al. accounted for the BRCA2 mutation by applying

logistic regression to estimate the probability of carrying the BRCA1 or BRCA2 mutation

through assessing the patient’s family history [25]. A group of 10,000 women were

genetically tested to determine their risk of possessing the BRCA1 or BRCA2 mutation.

The Myriad II model was tested on this group of women. Validation results of the Myriad

II’s ability to predict BRCA carrier status was performed through the use of sensitivity

and specificity reporting 0.71 and 0.63, respectively [25]. Upon validating the model, it was

discovered that the Myriad II model demonstrated an underrepresentation for the Korean

and southern Chinese populations and an overall underestimation for patients with a

limited family history [26].

In addition to the Myriad II, another commonly used model is the Couch or UPenn

model. This model, which was developed in 1997, was intended for patients with a family

history of breast cancer and is used to estimate the patient’s risk of developing a BRCA1

mutation. Further, it is also used to estimate the patient’s family member’s risk. The

model accounts for risk of developing breast and ovarian cancer, and the average age of

diagnosis for both. The Couch model was validated through a logistic regression analysis of

263 families with a family history of breast cancer and with or without a history of ovarian

cancer. The Couch model is commonly used in the clinical setting due to its ease of use
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and incorporation of accessible clinical data [27]. Rather than assessing a patient’s risk of

carrying a BRCA germline mutation, the family history assessment tool (FHAT) is an

algorithm implemented to aid clinicians in their assessment of a patient’s need for genetic

counseling [28]. FHAT assigns points to the relationship of the affected individual, age of

onset, and the type and number of primary cancers. The total points are calculated for an

overall family FHAT score. Each family member who has been diagnosed with breast,

ovarian, colon, or prostate cancer is scored individually. The FHAT algorithm was

validated using 184 families from the Ontario Familial Breast Cancer Registry [28]. Similar

to the Myriad II model, validation of the FHAT algorithm was performed through the use

of sensitivity and specificity reporting 0.94 and 0.51, respectively. FHAT validation results

demonstrates its ability to identify high-risk patients for further evaluation through

incorporation of family history [28].

Rather than assessing a patient’s risk of developing breast cancer or a germline

mutation individually, more effective models have considered both of these risk factors into

their assessment. The BRCAPRO model was initially introduced in 1997 to predict

BRCA1 and BRCA2 mutations, assess a patient’s risk to develop invasive breast or

ovarian cancer, or develop contralateral breast cancer [29, 30]. BRCAPRO can be applied

to patients with or without a family history of breast or ovarian cancer. Similar to

BRCAPRO, the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation

Analysis (BOADICEA) was first described in 2002 and refined in 2004 to calculate the

probability of the BRCA1 and BRCA2 mutations in the respective patient, while also

assessing the risk of breast and ovarian cancer development [31, 32]. With an update in

2014, the BOADICEA model was extended to incorporate family history of male breast,

prostate, pancreatic cancer, and tumor pathology into its risk factors [31, 32, 33].

Finally, the Internal Breast Cancer Study Breast Cancer Risk Evaluation Tool, known

as the Tyrer-Cuzick (TC) model, has the same goal as the BRCAPRO and BOADICEA

models [34]. The TC model incorporates a wide variety of risk factors, demonstrates better
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calibration and predictive accuracy than the Gail model, and tends to calculate a higher

lifetime risk than the BRCAPRO model [35]. The TC model is also the only one out of the

three combined risk assessment models to incorporate mammographic density as a risk

factors (Table 2.1) [36, 37]. Overall, the Gail model is the most commonly used risk

assessment model in the clinical setting. However, the problems seen in this model has

caused for image-based risk assessment to be implemented to assess a patient’s risk of

developing breast cancer. With this, iCAD has recently developed the ProfoundAI

image-based breast cancer risk assessment technology. ProfoundAI provides a one to three

year breast cancer risk estimation from a patient’s 2D or 3D mammogram through

incorporating age, breast density, and mammographic features [38, 39].

Table 2.1: A comparison of risk factors for various clinically implemented breast cancer risk
assessment models. The Tyrer-Cuzick model is continually updated and is one of the few risk
assessment models to incorporate mammographic density and additional breast cancer risk factors.

Hormonal Models Hereditary Models

Risk Factors Gail Chen Tice Myriad Couch FHAT* BRCAPRO BOADICEA† Tyrer-Cuzick

Age X X X X X
Age of Menarche X X

Age of First Live Birth X X X
Age of Menopause X
Number of biopsies X X X X

History of Atypical Hyperplasia X X X
Number of first-degree relatives with BC X

Breast Density X X X
BMI X

Race / Ethnicity X X X X X

Other X X X X
* Family History Assessment Tool (FHAT)
† Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA)
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CHAPTER 3

FRACTIONAL BROWNIAN MOTION IMAGES

3.1 Fractional Brownian Motion Image Generation

The fractional Brownian motion (fBm) image concept was first introduced by

Mandelbrot and Ness [40]. fBm images are generated with a known Hurst exponent (H ) in

which all points throughout the image possess the same roughness, i.e. with a monofractal

signature. The generation of these images has become an area of interest to study various

image analysis and processing techniques. A two-dimensional fBm image, BH(x), is

indexed from H ∈ [0.00, 1.00] is a stationary zero-mean Gaussian process whose correlation

function is defined as

< BH (x)BH (y) >=
σ2

2

(
|x|2H + |y|2H − |x− y|2H

)
, (3.1)

where < ... > represents the ensemble mean value and x, y ∈ R2 are points in the image

domain [11]. The variance of this process can be shown through

V ar[BH (x)] = σ2|x|2H, (3.2)

for any x ∈ R2. For H = 1/2, motion in the fBm image is considered to be uncorrelated;

however, for H > 1/2, motion is considered to be positively correlated, while if H < 1/2,

negative correlation is seen. Through the correlation function (Equation 3.1), one gets

BH (x0 + λu)− BH (x0) ≃ λH [BH (x0 + u)− BH (x0)] , (3.3)

where u describes a unit vector, ≃ represents the equality in law, and λ represents a

rescaling factor. Equation 3.3 demonstrates that fBm images are a self-affine process. The

higher the value of H the more regular the motion. For any x0 in any direction u, the fBm

image is continuous and non-differentiable characterized by the Hölder exponent,

h(x0) = H (Equation 3.3). The fBm image can further be described by a singularity
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spectrum, D(h), reducing to one point, thus indicating the fractal dimension, D, of the

points in the domain of the image shown through

D(h) =


2, h = H.

−∞, h ̸= H,

(3.4)

in which h = H is equal to 2. The CompuMAINE Laboratory possesses an in-house

software called Xsmurf consisting of approximately 130,000 lines of C and Tcl code. An

existing Xsmurf function ibro allows for fBm images of a specific size and H to be

generated using the Fourier transform filtering synthesis method [41]. In order to have a

sufficient sample size for testing, 500 fBm calibration images were generated for each H

ranging from 0 to 1 in 0.05 increments. Figure 3.1 demonstrates three of these fBm images

for H = 0.25 (a), H = 0.50 (b), and H = 0.75 (c) with their corresponding surface plots in

gray, red, and cyan, respectively.

Figure 3.1: fractional Brownian motion (fBm) images are often used as testing images. fBm images
of size 360 by 360 pixels with known Hurst (H) exponent and their surface plots: H = 0.00 (gray),
H = 0.50 (red), and H = 1.00 (cyan).
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CHAPTER 4

METHODS

4.1 The Two-Dimensional Wavelet Transform Modulus Maxima Methodology

The Two-Dimensional Wavelet Transform Modulus Maxima (2D WTMM) multi-fractal

method has proven to be a robust approach in analyzing the mammographic

microenvironment [9, 10, 42]. The 2D WTMM methodology allows for a wavelet transform

(WT) to be implemented as a mathematical microscope in order to characterize roughness

in an image. An image f is convolved with a wavelet ψ1 (x, y) =
∂ϕ(x,y)
∂x

and

ψ2 (x, y) =
∂ϕ(x,y)
∂y

, where ϕ (x, y) represents the 2D smoothing function [43]. The WT is

defined as

Tψ[f ](b, a) =

Tψ1 [f ] = a−2
∫
ψ1(a

−1(x− b))f(x)

Tψ2 [f ] = a−2
∫
ψ2(a

−1(x− b))f(x)

 . (4.1)

The Mexican hat smoothing function can be derived from the second derivative of the

Gaussian function as shown below

ϕGau (x, y) = e−(x2+y2)/2 = e−|x|2/2

ϕMex(x) =
d2

dx2
(ϕGau) = (2− x2)e−|x|2/2.

(4.2)

The first-order wavelets ψ1 and ψ2 are shown for the Gaussian ϕGau (Equation 4.2) and

Mexican hat smoothing function ϕMex (Equation 4.2) on the top and bottom rows,

respectively, in Figure 4.1. The implementation of higher order wavelets, where the number

nϕ of vanishing moments of ϕ conditions the order of the wavelet, nψ = nϕ + 1, allows the

WTMM methodology to characterize images with H > 1 [12, 43]. The 2D WT (Equation

4.1) can also be written in terms of its modulus and argument defined as

Tψ[f ](b, a) = (Mψ[f ](b, a),Aψ[f ](b, a)) , (4.3)
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where

Mψ [f ] (b, a) =
[
(Tψ1 [f ] (b, a))

2 + (Tψ2 [f ] (b, a))
2

] 1
2

(4.4)

Aψ

[
f
]
(b, a) = Arg (Tψ1 [f ] (b, a) + iTψ2 [f ] (b, a)) . (4.5)

The Wavelet-Transform Modulus Maxima (WTMM) are locations b where Mψ[f ](b, a) is

Figure 4.1: The first-order Gaussian smoothing function’s ϕGau associated wavelets: ψ1 (a) and ψ2

(b). The second-order derivative of the Gaussian smoothing function is known as the Mexican hat
ϕMex. The Mexican hat’s associated wavelets: ψ1 (c) and ψ2 (d) (Equation 4.2).

a local maximum in the angular direction of Aψ[f ](b, a) for wavelet scales a. These

WTMM organize gradient changes of the image into connected chains known as maxima

chains, as shown through the red lines for three different wavelet scales in Figure 4.2

[11, 12, 44]. The black dots on the WTMM chains in Figure 4.2 are the WTMM maxima

(WTMMM). WTMMM are defined as the points along the maxima chains where
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Figure 4.2: The maxima chains are shown for scales a = 21σw (left), a = 22σw (middle), and
a = 23σw (right) (where σw = 7 pixels) overlaid onto a 2D fBm image with H = 0.5. The local
maxima along Mψ (WTMMM) are shown through small filled black dots.

Mψ[f ](b, a) is locally maximum. Across all wavelet scales a, these WTMMM, from each

individual WTMM chains, are connected to form maxima lines. The set of all maxima lines

are known as the WT space-scale skeleton L(a), as shown for the Gaussian and Mexican

hat smoothing functions in Figure 4.3abc and Figure 4.3def, respectively. Along a maxima

line pointing to the singularity x0 in the rough surface as a→ 0+, denoted Lx0(a), the

WTMMM follow [45]

Mψ[f ](Lx0(a)) ∼ ah(x0), a→ 0+, (4.6)

where h(x0) is the Holder roughness exponent. Equation 4.6 only holds when the wavelet

order is greater than the Holder exponent being estimated i.e. when nψ > h(x0). For a set

of maxima lines in L(a), a partition function can be called for wavelet scales a defined as

[11, 12, 44]

Z(q, a) =
∑
l∈L(a)

(
sup

(b,a′)∈l,a′≤a
Mψ[f ](b, a

′)

)q

, (4.7)

where q are the statistical order moments. Using the information from the partition

function, the roughness of a surface can be characterized by the τ(q) spectrum, obtained

from the power-law behavior of the partition function [11]

Z(q, a) ∼ aτ(q), a→ 0+. (4.8)
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Figure 4.3: Across wavelet scales a, WTMMM (black dots in Figure 4.2) can be connected to form
maxima lines. These maxima lines construct the wavelet transform skeleton, L(a), shown for fatty
(ad), risky dense (be), and healthy dense tissue (cf) from the Gaussian (top) and Mexican hat
(bottom) smoothing functions.

Given the monofractal nature of fBm images, the τ(q) spectrum is a linear function of q

defined below

τ(q) = qH − 2, (4.9)

where the slope of τ(q) is an estimate of H. Multi-fractal surfaces would cause the τ(q)

spectrum to behave in a non-linear manner [44]. In order to obtain the singularity

spectrum, a Legendre transform is applied to τ(q) spectrum [11, 12, 44]

D(h) = min
q
(qh− τ(q)). (4.10)

However, to properly investigate the potential numerical uncertainties related to the D(h)

calculation, expectation values can be computed through

h(q, a) =
∑
l∈L(a)

ln

∣∣∣∣∣ sup
(b,a′)∈l,a′≤a

Mψ[f ](b, a
′)

∣∣∣∣∣Wψ[f ](q, l, a) (4.11)

and

D(q, a) =
∑
l∈L(a)

Wψ[f ](q, l, a) lnWψ[f ](q, l, a). (4.12)
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The computation of these expectation values gives

h(q) =
dτ(q)

dq
= lim

a→0+

h(q, a)

ln a
(4.13)

and

D(q) = lim
a→0+

D(q, a)

ln a
(4.14)

from which we obtain the D(h) singularity spectrum. These calculations are highlighted for

three example fBm images of H = 0.25 (gray), 0.50 (red), and 0.75 (cyan) using the

Gaussian smoothing function (Figure 4.4). The q-values allow one to emphasize different

singularity strengths for the analysis of a surface by weighing the modulus of the WT along

the maxima lines [12].

4.2 The Power Spectral Analysis

In addition to the 2D WTMM methodology, a power spectral analysis was also explored

as a methodology to calculate H in both fBm images and mammograms. H can be

extracted from the scaling of the power spectrum signal S(k) expressed as a function of the

wavevector (k), where k = (k, θ)

S(k) =
1

2π

∫
dθ|f̂(k, θ)|2 k−β. (4.15)

where k is the spatial frequency and β is the power spectral exponent. Equation 4.15 a

power-law relationship S(k) ∼ (1/k)β [11]. H is calculated from the power spectrum signal

by plotting log2(S(k)) versus log2(k). The slope of the linear portion of the power spectrum

signal (-β) is used to calculate H through β = 2H + 2 (Figure 4.5). β and H are calculated

in Xsmurf through the i2sp function which requires the image, number of points of the

power spectrum signal, and log base for the signal to be transformed to as arguments.

4.3 Additional Methodologies

In addition to the 2D WTMM and power spectral methodologies, differential box

counting (DBC) is another methodology for extracting fractal dimension (FD) and H from
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Figure 4.4: 2D WTMM analysis with the Gaussian smoothing function for fBm images of H = 0.25
(gray), H = 0.50 (red), and H = 0.75 (cyan). Z(q, a) (Eq. 4.7), D(q, a) (Eq. 4.12), and h(q, a) (Eq.
4.11) versus log2(a) for q-values ranging from -1 to 2 (a-c). τ(q) (Eq. 4.9) versus all q (d). The
monofractal nature of the fBm image is demonstrated through the linearity of τ(q) and clustering
of D(h) (Eq. 4.10) (e).

images [46]. DBC allows for the FD of an image to be calculated through FD = log(N(r))
log(1/r)

,

where N(r) is the number of boxes of side length r needed to cover all points in the image

[46]. The primary concern with DBC is the inaccuracy of H through over and under

counting; however, this methodology is continually being improved [47]. The calculation of

H in a self-affine series can be accomplished through various methodologies. The roughness

length (RL) methodology implements a sliding window mechanism over a one dimensional

(1D) fBm signal. The standard deviation of H is proportional to the sliding window size

defined by R(w) = AwH where the log-log plot of roughness length R(w) versus sliding

window size w allows for the calculation of H [48]. Rescaled range analysis (R/S) divides a
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Figure 4.5: For fBm images of H = 0.25 (gray), H = 0.50 (red), and H = 0.75 (cyan), the central
256 by 256 pixel region of the image is analyzed by the power spectrum methodology. The log-log
plot of power versus frequency is seen in which the linear region is shown through the colored line
above the power spectral signal.

fBm series into two parts, Rn and Sn, for which the ratio of Rn

Sn
is calculated [48]. The

division of the 1D fBm signal is repeated until the length of each divided signal is 2. The

log-log plot of Rn

Sn
versus the number of iterations n allows for the calculation of H.

Comparing the wavelet transform (WT), power spectral, RL, and R/S methodologies in

the calculation of H in 1D fBm signals, Chamoli et al. 2007 found the WT and R/S

methods to perform the best in short and long term series [49]. However, the power

spectral methodology was tested on both 1D and 2D fBm signals versus a variety of

wavelets. The power spectral methodology produced a more consistent calculation of H in

fBm images [50]. Validating this conclusion on tomographic brain CT images, Parra et al.
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2003 found the extraction of H from the frequency domain to be more reliable [50]. Dlask

et al. 2022 implemented the maximum likelihood methodology for the comparison of

benign versus cancerous lumps’ H in mammograms [51].
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CHAPTER 5

IMPROVING THE 2D WTMM METHODOLOGY AND POWER

SPECTRAL ANALYSIS

5.1 2D WTMM Parameter Tuning

5.1.1 Current Autofit Methodology

The current 2D WTMM methodology for analyzing the tissue microenvironment of

grayscale mammograms begins with the sliding window analysis [9, 10]. A sliding window

of 360 by 360 pixels iterate over the mammograms with a 32-pixel step size creating

thousands of overlapping mammographic subregions. Each subregion is then fed to the 2D

WTMM methodology in which the central 256 by 256 pixel region of the subregion is

analyzed to avoid edge effects (Figure 5.1). The WT (Equation 4.1) is computed on these

Figure 5.1: A sample mammographic tissue subregion of size 360 by 360 pixels. The red rectangle
indicates the central 256 by 256 pixel region kept for analysis to avoid edge effects.
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Table 5.1: List of q-values and their associated weights using the 2D WTMM sliding window
analysis.

q -2.0 -1.5 -1 -0.5 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.5 1 1.5 2 2.5 3.0
Weight 0.1 0.5 1 3 5 7 9 10 9 8 7 5 3 2 1 0.5 0.2

subregions from wavelet scale a ∼ 7 pixels to a ∼ 120 pixels allowing for the WTMM

chains to be created for wavelet scales a. With the WTMM chains created, the WTMMM

can be acquired allowing for the creation of the WT skeleton L(a), the calculation of the

partition function (Equation 4.7), h(q, a) curves (Equation 4.11), and D(q, a) curves

(Equation 4.12) [9, 10, 11, 52, 44, 12, 53]. Once the sliding window mechanism is complete,

each subregion can be passed to the multi-fractal analysis. A fitting window is performed

on the D(q, a) vs log2(a) curves (Figure 5.2b) and h(q, a) vs log2(a) curves (Figure 5.2c) to

find the most linear portion of these curves to extract a slope. The lower bound amin for

this fitting window is varied from log2(amin) = 0.0, 0.1, ...2.1, as the upper bound amax is

also varied from log2(amax) = 1.0, 1.1, ...4.1 with MinADelta = amax − amin. For each

(amin, amax) window, the coefficient of determination R2 is calculated for h(q = 0) and

D(q = 0), denoted as R2
h(0). For all q-values (Table 5.1), the weighted standard deviation of

H over all q-values and the weighted mean of R2 over all h(q, a) curves are calculated to

evaluate the goodness of fit. These metrics are denoted as sdw and <R2w>, respectively.

Marin et al. 2017 determined that the following conditions must be met for the specific

fitting window to be kept [9]:

I. −0.2 < h(q = 0) < 1.0

II. 1.7 < D(q = 0) < 2.5

III. R2
h(0) > 0.96

IV. sdw < 0.06

V. < R2
w >> 0.96.
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Figure 5.2: Sliding window 2D WTMM analysis with the Gaussian smoothing function for
mammographic fatty, risky dense, and healthy dense tissue regions, with estimated H = 0.35
(gray), H = 0.50 (red), and H = 0.65 (cyan), respectively. Z(q, a) (Eq. 4.7), D(q, a) (Eq. 4.12),
and h(q, a) (Eq. 4.11) versus log2(a) for q-values ranging from -1 to 2 (a-c). τ(q) (Eq. 4.9) versus
q (d). The monofractality of the mammographic subregions are confirmed through the linearity of
τ(q) and clustering of D(h) (Eq. 4.10) (e).

Condition (I) represents the H for an image’s singularity spectrum h(q = 0) [9]. The

range exists to ensure no regions posses an H > 1 as this is the upper limit that can be

estimated with first-order wavelets. Condition (II) ensures D(h) ∼ 2 (Equation 4.10) i.e.

the domain is dense. Condition (III) ensures h(q = 0) is sufficiently linear to extract a

viable slope from the fitting window. Condition (IV) ensures the surface is monofractal.

The threshold checks if the h(q, a) curves are parallel to one another, thus representing a H

within a standard deviation of 0.06 across all q values. Finally, condition (V) analyzes the

linearity of all h(q, a) curves, while giving more weight to the curves closer to h(q = 0). If a

subregion passes these conditions, H can be obtained by calculating the slope of h(q = 0)
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within the (log2(amin), log2(amax)) fitting window. However, if a subregion does not pass

these conditions, it is rejected from the 2D WTMM sliding window analysis and classified

as a no-scaling region. The resulting H from the autofit analysis classifies the

mammographic subregions into three categories: H ≤ 0.45 (gray), 0.45 < H < 0.55 (red),

and H ≥ 0.55 (cyan) (Figure 5.3). Respectively, these categories are a description of

anti-correlated fluctuations (fatty tissue), uncorrelated density fluctuations (risky dense

tissue), and correlated density fluctuations (healthy dense tissue) [9].

5.1.2 Implementation of the Mexican Hat Wavelet

In order to investigate the efficiency of the current autofit methodology, a goal of this

thesis was to implement the Mexican hat rather than the Gaussian smoothing function

employed in the current state of the 2D WTMM sliding window analysis [9, 10]. The

Mexican hat is simply the second derivative of the Gaussian smoothing function. The

visual and mathematical differences can be seen in Figure 4.1 and Equation 4.2,

respectively. The higher wavelet order of the Mexican hat smoothing function nψ = 3 can

be directly related to the increased amount of vanishing moments, which in the multi-scale

context of the 2D WTMM methodology, has been shown to increase scaling efficiency

[11, 44]. A more populated L(a) (Figure 4.3) is likely due to the higher order nature of the

Mexican hat smoothing function.

5.1.3 Calibration analysis on fBms

A total of 500 fBm calibration images per H ∈ [0.00, 1.00] were analyzed through the

use of the Mexican hat to evaluate its performance in comparison with the Gaussian

smoothing function in the 2D WTMM methodology. The mean and standard deviation of

the calculated H from both the Gaussian and Mexican hat smoothing functions from 0.00

to 1.00 in 0.05 increments as shown in Figure 5.4. These initial results demonstrate the

Mexican hat outputs an experimental mean H closer to the theoretical H (Htheo) in

comparison with the Gaussian smoothing function.
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Figure 5.3: WTMM chains are shown for the Gaussian (shown in red text) and Mexican hat (shown
in blue text) smoothing functions at wavelet scales a = 21σw, 22σw, and 23σw (where σw = 7 pixels).
Throughout all wavelet scales a, the higher wavelet order nature of the Mexican hat causes for more
WTMM chains to be produced across all wavelet scales a in comparison with the Gaussian.

5.1.4 Changing the R2 Threshold

The coefficient of determination R2 defined as

R2 = 1− sum squared regression (SSR)
total sum of squares (SST)

= 1−
∑

(yi − ŷ)2∑
(yi − ȳ)2

(5.1)

is used to evaluate the goodness of fit along the h(q, a) curves (Figure 5.2c). For

experimental H values close to 0, ȳ is similar to the expected value, causing the value of R2

to equal -Infinity, which make condition (III) fail. Thus, the standard deviation for the

experimentally calculated H ∈ [0.00, 0.10] is quite high (Figure 5.4). Varying the R2

threshold from 0.80 to 0.95 in 0.05 and from 0.95 to 0.99 in 0.01 increments, respectively,

demonstrates a higher amount of no-scalings across H ∈ [0.00, 0.10] until R2 = 0.95. For

R2 > 0.95, no-scaling values begin to be seen for H > 0.10. The amount of no-scalings for

the Mexican hat is consistently less than the Gaussian smoothing function (Figure 5.5).
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Figure 5.4: The power spectrum and 2D WTMM methodologies were used to analyze 500 fBm
calibration images across Htheo ∈ [0.00, 1.00] in 0.05 increments for both the Gaussian and Mexican
hat smoothing functions. The mean and standard deviation of calculated H through the Gaussian
(red), Mexican hat (blue), and power spectrum (green) methodologies is plotted against Htheo.
Htheo = Hexperimental is shown through the dotted black line.

5.1.5 Changing the Minimum Value of H

For Htheo ∈ [0.00, 0.10], a high amount of no-scalings is seen when calibrating the

Gaussian and Mexican hat smoothing functions on fBm images. The minimum value of H

MinH allowed from the autofit analysis is −0.2; however, this was changed to 0.0 to

examine the amount of no-scalings for H ∈ [0.00, 0.10] (Figure 5.6). An even higher

amount of no-scaling values can be seen when MinH = 0.0 for both the Gaussian and

Mexican hat smoothing functions. Regardless of the increased amount of no-scalings, the

effect of changing MinH can be evaluated through the use of Root-Mean Square Error

(RMSE) defined as
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Figure 5.5: The R2 threshold is varied from 0.80 to 0.99 in the 2D WTMM and power spectrum
methodologies. The mean, standard deviation, and no-scaling counts are shown for the Gaussian
(red) and Mexican hat (blue) smoothing functions, and the power spectrum methodology (green).

RMSE =

√√√√( 1

N

) n∑
i=1

(ŷi − yi)2 (5.2)

where N is the number of simulated fBm images, ŷi is Htheo, and yi is the experimental

calculation of H. Considering both H ∈ [0.00, 0.45[ and H ∈ [0.00, 1.00], RMSE indicates

changing MinH to 0.0 does not yield a more efficient calculation of H (Table 5.2).
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Figure 5.6: The minimum value of H, MinH, allowed from the 2D WTMM sliding window analysis
is changed from −0.2 to 0.0 to examine the effect on H calculation. fBm images rejected from the
analysis, also known as no-scalings, due to not meeting the required conditions are shown through
the line plot for both Gaussian (red) and Mexican hat (blue) smoothing functions.

5.1.6 Changing the Distance Between amin and amax

The current 2D WTMM sliding window analysis employs an iterative loop over wavelet

scales a for an image’s h(q, a) and D(q, a) curves (Section 5.1.1 ). H is calculated from the

slope of the most linear region of h(q = 0) [9, 10]. In order to address the amount of

no-scalings in the current version of the 2D WTMM analysis, especially for

H ∈ [0.00, 0.10], this iterative loop across the wavelet scales a for an image’s h(q, a) curves
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is revisited (Figure 5.7). In its default and initial implementation, the lower log2(amin) and

upper log2(amax) bound of the window is varied by a factor of 0.1. The distance between

log2(amin) and log2(amax), denoted as MinADelta, is 1.0. MinADelta is varied from 1 to 5

in 0.5 increments and RMSE is used to evaluate how this change affects the accuracy of the

calculated H (Figure 5.8 and Table 5.3) [9, 10].

Figure 5.7: Demonstration of the sliding window’s minimum size, MinADelta, across the h(q, a)
curves for an fBm image (H = 0.5).

5.2 Improving the Power Spectral Analysis

The power spectrum is efficient in calculating H from fBm images for which

Htheo < 0.50 (Figure 5.9). In order to examine how the power spectrum analysis can be
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Table 5.2: RMSE is used to evaluate the performance of the 2D WTMM, with both the Gaussian
and Mexican hat smoothing functions, and power spectrum methodologies in fBm images. The
power spectrum has the lowest RMSE for H ∈ [0.00, 0.45[ while the Mexican hat demonstrates the
lowest RMSE for H ∈ [0.45, 1.00].

H ∈ [0.00, 0.45[ H ∈ [0.45, 1.00] H ∈ [0.00, 1.00]

R2 Threshold Gaussian Mexican Power Spectrum Gaussian Mexican Power Spectrum Gaussian Mexican Power Spectrum

0.80 0.05827 0.03754 0.01002 0.12703 0.05757 0.20027 0.09743 0.04869 0.13865
0.85 0.05867 0.03807 0.01002 0.12703 0.05757 0.20027 0.09754 0.04889 0.13865
0.90 0.06010 0.03950 0.01002 0.12703 0.05757 0.20027 0.09795 0.04943 0.13865
0.95 0.06251 0.04392 0.01002 0.12703 0.05757 0.20027 0.09867 0.05117 0.13865
0.96 0.09457 0.06796 0.01002 0.14737 0.08166 0.20027 0.12843 0.07564 0.13865
0.97 0.07209 0.07247 0.01002 0.14733 0.08166 0.20027 0.12565 0.07776 0.13865
0.98 0.07334 0.06742 0.01002 0.14720 0.08166 0.20027 0.13137 0.07675 0.13865
0.99 0.06280 0.06597 0.01002 0.14566 0.08169 NaN 0.13623 0.07696 0.27968

improved to provide more accurate calculations of H, varying the R2 threshold, the fBm

image size, and the optimal spatial frequency range was explored.

5.2.1 Changing the R2 Threshold

One characteristic needed to acquire the linear portion of the power spectral signal is a

suitable R2 threshold. The R2 threshold was varied from 0.80 to 0.95 in 0.05 increments

and from 0.95 to 0.99 in 0.01 increments, respectively. A lower standard deviation across H

values acquired from the power spectrum methodology is seen as R2 is increased until

R2 = 0.99 (Figure 5.5). At this point, mean and standard deviation of H are not able to be

calculated due to the lack of fBm log transformed power spectral signals that have a linear

portion with an R2 ≥ 0.99.

5.2.2 Changing Image Size

As discussed previously, the current sliding window methodology involves the creation

of 360 by 360 pixel subregions for analysis in the 2D WTMM and power spectrum

methodology. To examine how this methodology can be improved, various fBm image sizes

and power spectral signal lengths are created and tested with the power spectrum

methodology. Through increasing fBm image size and the length of the log transformed

power spectral signal, the experimental mean of calculated H decreases for Htheo ≥ 0.65,

while the standard deviation increases (Figure 5.9).
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Figure 5.8: To calculate H in the 2D WTMM sliding window analysis, the h(q = 0) curve is
analyzed through a sliding window analysis of size MinADelta. MinADelta is varied from 1.0 to
4.9 in which the mean, standard deviation, and no-scaling counts are shown for the Gaussian (red)
and Mexican hat (blue) smoothing functions.

5.2.3 Calibrating Spatial Frequency Range along a Power Spectral Signal

The power spectrum methodology, regardless of the threshold changes, is able to

accurately classify H experimentally in fBm images for Htheo < 0.45. If mammographic

power spectral signals are found to be similar to the fBm power spectral signals, fBm

calibration demonstrates the power spectrum methodology can be applied to classify fatty

tissue in mammograms in a much faster manner than the 2D WTMM methodology.

31



Table 5.3: RMSE is used to evaluate the performance of the 2D WTMM methodology with both
the Gaussian and Mexican hat smoothing functions in fBm images. The Mexican hat demonstrates
a lower RMSE than the Gaussian smoothing function regardless of MinADelta.

H ∈ [0.45, 1.00] H ∈ [0.00, 1.00]

MinADelta Gaussian Mexican Gaussian Mexican

1.0 0.13582 0.07137 0.11801 0.07668
1.5 0.13990 0.06594 0.12070 0.06881
2.0 0.14491 0.05900 0.12480 0.06077
2.5 0.15308 0.05495 0.13208 0.05602
3.0 0.16521 0.05357 0.14314 0.05392
3.5 0.18078 0.05685 0.15809 0.05538
4.0 0.19884 0.06381 0.17678 0.06022
4.5 0.22014 0.07243 0.19953 0.06706
4.9 0.23481 0.07546 0.21541 0.06986

Table 5.4: RMSE is used to evaluate the power spectrum methodology’s calculation of H for fBm
image sizes of 360, 512, and 1024 with signal lengths of 128 and 256 points for H ∈ [0.00, 0.45[ and
H ∈ [0.00, 1.00]

fBm Image Size Number of Points H ∈ [0.00, 0.45[ H ∈ [0.00, 1.00]

360 128 0.01480 0.07152
256 0.00500 0.11147

512 128 0.00555 0.07958
256 0.00526 0.11449

1024 128 0.00775 0.11807
256 0.00554 0.13369

However, an issue in calculating H from the log transformed power spectral signal is the

acquisition of the spatial frequency range defined with lower kmin and upper kmax bounds.

Since the power spectrum methodology is being applied to fatty tissue regions, a R2

threshold of 0.99 can be used to ensure for the most accurate linear region of the power

spectral to be extracted. The spatial frequency range is fixed by taking the median of kmin

and kmax output through applying the power spectrum methodology to all 500 fBm

calibration images for each H ∈ [0.00, 1.00]. Thus, for each mammographic subregion H is

calculated by the slope of the power spectrum signal in

[log2(kmin), log2(kmax)] = (2.096, 7.096).
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Figure 5.9: Power spectrum method results on fBm images with size 360, 512, and 1024 are seen
for power spectral signal lengths of 128 and 256 points.

5.3 Calibration Results

RMSE was used to evaluate the efficiency of the 2D WTMM, with the Gaussian and

Mexican hat smoothing functions, and the power spectral methodologies in the calculation

of H in fBm images. Through varying MinADelta, the Mexican hat consistently

demonstrates a lower RMSE (Table 5.3). As we increase MinADelta, an increased amount

of no-scalings are seen for both the Gaussian and Mexican hat smoothing functions (Figure

5.8). Increasing the R2 threshold in the 2D WTMM methodology increases the amount of

no-scalings and RMSE values for both the Gaussian and Mexican hat smoothing functions

(Table 5.2 and Figure 5.5). For fBm images with Htheo ∈ [0.00, 0.45[, the power spectral

analysis demonstrates the lowest RMSE values, thus highlighting its efficiency in
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calculating H in fBm images with a known anti-correlated H. However, for fBm images

with Htheo ∈ [0.00, 1.00], the Mexican hat smoothing function has the lowest RMSE, while

the power spectral methodology has the highest RMSE (Table 5.2 and Figure 5.5).

Altering fBm image size and power spectral signal size increases the RMSE of the power

spectral analysis for Htheo ∈ [0.00, 1.00], while for Htheo ∈ [0.00, 0.45[ the RMSE is

decreased (Table 5.4). While the RMSE is decreased, the computational time of the power

spectral analysis on these larger images is increased.
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CHAPTER 6

MAMMOGRAPHIC IMPLEMENTATION

Two mammographic datasets, previously acquired by the CompuMAINE Laboratory,

are used for testing the power spectral and 2D WTMM methodologies. These being the

Perm and Maine mammographic datasets. The Perm dataset consists of cancerous and

benign subsets with 80 and 22 patients, respectively. The cancerous subset consists of 37

cases of invasive ductal carcinoma (IDC) and 43 cases of invasive lobular carcinoma (ILC),

while the benign subset consists of 12 cases of fibroadenoma (fiba) and 10 cases of

fibrocystic mastopathy (fibm) [10]. The Maine mammographic dataset consists of cancerous

and control subsets of 46 and 27 patients, respectively (Table 6.1).

Table 6.1: Perm and Maine mammographic datasets

Mammographic Dataset Group Pathology Number of Patients

Perm
Benign Fibroadenoma (fiba) 12

Fibrocystic Mastopathy (fibm) 10

Cancer Invasive Ductal Carcinoma (IDC) 37
Invasive Lobular Carcinoma (ILC) 43

Maine Cancer - 46
Control - 27

6.1 Power Spectral Results

The power spectral methodology was applied to our initial patient dataset using the

median kmin and kmax values from fBm image calibration (Section 5.2.3). A power spectral

signal is acquired from a mammographic subregion and the slope is extracted between the

median kmin and kmax values. When the output power spectral signal from these subregions

are fit in this spatial frequency range, the mammographic subregion is always classified as

fatty tissue. The innate noise while a patient is receiving a mammogram is responsible for

this phenomenon. The power spectral signal from a fBm image is quite linear due to the

homogenous nature of the image. A mammographic power spectral signal does not fully
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share this degree of linearity indicating the median kmin and kmax values should be

re-calibrated on fBm images induced with various degrees of white noise (Figure 6.1).

Figure 6.1: Power spectral signals for fBm images with H = 0.25 (gray), H = 0.50 (red), and
H = 0.75 (cyan) are plotted with a power spectral signal of a 360 by 360 pixel white noise image
(green) (left). Three power spectral signals are plotted for fatty (gray), risky dense (red), and
healthy dense (cyan) mammographic tissue regions (right). The black box indicates the similarity
of the mammographic and white noise power spectral signals at high frequencies.

The power spectrum methodology can be applied to a white noise influenced fBm image

to mimic the noise seen in a mammographic subregion, as seen through the black box in

Figure 6.2. First, a white noise image is created in Xsmurf with the same dimensions of the

fBm image. The white noise image is multiplied by the ratio of the minimum pixel value of

the white noise and fBm image, respectively. The degree of white noise in this image is

altered through multiplying this ratio by a factor ranging from 0 to 1. Finally, this altered

white noise image is added to a fBm image from which the white noise influenced power

spectral signal can be obtained (Figure 6.2).

All 500 fBm calibration images of Htheo ∈ [0.00, 1.00] are analyzed with the power

spectrum methodology for each white noise percentage ranging from 0 to 100% in 5%
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Figure 6.2: fBm images (H = 0.50) are influenced with varying levels of white noise. The white
noise influenced fBm images of 0% (first row), 25% (second row), 50% (third row), and 75% (fourth
row) are plotted alongside their power spectral signal.

increments. The median kmin and kmax were calculated for each white noise percentage

value. We see a decrease in the median kmax value as white noise percentage increases
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Table 6.2: White noise percentages versus median log2(kmax) calibrated through the power spectrum
methodology in fBm images.

Noise % 0.000 0.050 0.100 0.150 0.20 0.250 0.300 0.350 0.400 0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000
log2(kmax) 7.096 5.266 4.904 4.759 4.64 4.599 4.511 4.418 4.319 4.319 4.319 4.319 4.212 4.212 4.096 4.096 4.096 4.096 4.096 4.096 4.096

(Table 6.2). The power spectrum methodology was then applied to all mammograms in the

Perm mammographic dataset with each of the white noise fBm calibrated median kmin and

kmax. The initial implementation of the 2D WTMM sliding window analysis with the

Gaussian smoothing function utilized the Wilcoxon rank-sum test to demonstrate a

statistically significant difference (p < 0.05) for fatty, risky dense, and healthy dense breast

tissue regions between benign and cancerous mammograms of the Perm dataset [10]. With

this, the Wilcoxon rank-sum test was used to evaluate the benign and cancerous

mammograms of the Perm dataset with each white noise calibrated kmin and kmax using

the power spectrum methodology. White noise percentages ranging from 0.70 to 1.00

demonstrate a statistically significant difference (p < 0.05) in fatty and risky dense breast

tissue between benign and cancerous mammograms in the Perm dataset (Table 6.3).
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Table 6.3: Median log2(kmin) and log2(kmax) values for each white noise percentage tested on the

Perm mammographic dataset using the power spectrum methodology. The p-values seen here are

output through the Wilcoxon rank-sum statistical test for the comparison of benign and cancerous

mammograms.

Noise % Fatty Tissue Risky Dense Tissue Healthy Dense Tissue Risky Dense/Fatty Tissue

0.00 NA NA NA NA

0.05 0.8527 0.8462 0.6740 0.8462

0.10 0.9770 0.8660 0.5859 0.8660

0.15 0.7577 0.5291 0.9628 0.5399

0.20 0.4466 0.3057 0.8461 0.3175

0.25 0.4466 0.3057 0.8461 0.3175

0.30 0.3175 0.1867 0.7639 0.1922

0.35 0.1733 0.1249 0.3633 0.1311

0.40 0.1733 0.1249 0.3633 0.1311

0.45 0.1733 0.1249 0.3633 0.1311

0.50 0.1733 0.1249 0.3633 0.1311

0.55 0.1733 0.1249 0.3633 0.1311

0.60 0.1332 0.1024 0.3337 0.1095

0.65 0.1332 0.1024 0.3337 0.1095

0.70 0.0434 0.0409 0.0957 0.0443

0.75 0.0434 0.0409 0.0957 0.0443

0.80 0.0434 0.0409 0.0957 0.0443

0.85 0.0434 0.0409 0.0957 0.0443

0.90 0.0434 0.0409 0.0957 0.0443

0.95 0.0434 0.0409 0.0957 0.0443

1.00 0.0434 0.0409 0.0957 0.0443
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6.2 2D WTMM Methodology Results

The implementation of the Mexican hat smoothing function in the 2D WTMM

methodology for the calculation of H in fBm images was shown to be more effective than

the Gaussian smoothing function (Figure 5.4 and Table 5.2, 5.3). On fBm images, the

implementation of a MinADelta = 3.0 and the Mexican hat smoothing function produced

the lowest value of RMSE (Table 5.3). In order to evaluate if the Mexican hat smoothing

function should be incorporated into the 2D WTMM sliding window analysis, the varying

of MinADelta is tested for the Gaussian and Mexican hat smoothing functions on the

Perm and Maine mammographic datasets. A statistically significant difference in benign

versus cancer mammograms is seen in fatty (p = 0.051) and risky dense (p = 0.0005) tissue

of mammograms in the Perm dataset when analyzed with a MinADelta = 3.0 and the

Mexican hat smoothing function (Figure 6.3). The p-values obtained using these autofit

parameters are the lowest seen across all tests using the Gaussian smoothing function

(Table 6.4). The increase of MinADelta leads to an increase in no-scalings from both the

Gaussian and Mexican hat smoothing functions (Figure 5.8). fBm testing of these

parameters demonstrates this is not seen until MinADelta ≥ 4.0 where we see no-scalings

in the Gaussian and Mexican hat smoothing functions for Htheo > 0.45 (Figure 5.8).

Table 6.4: The 2D WTMM sliding window analysis is tested on the Perm mammographic dataset
with the Gaussian and Mexican hat smoothing functions while varying MinADelta. The p-values
seen here are calculated through the Wilcoxon rank-sum statistical test for the comparison of
benign and cancerous mammograms. The greatest significant difference for risky dense breast tissue
between benign and cancerous mammograms is seen through the Mexican hat smoothing function
with a MinADelta = 3.0 in the Perm dataset.

Gaussian Mexican hat

Fatty Tissue Risky Dense Tissue Healthy Dense Tissue Fatty Tissue Risky Dense Tissue Healthy Dense Tissue MinADelta

0.0125 0.0065 0.0909 0.1512 0.7424 0.0541 1.0
0.0197 0.0078 0.0909 0.0454 0.2964 0.0164 1.5
0.0277 0.0078 0.1311 0.0098 0.0703 0.0133 2.0
0.0601 0.0125 0.2377 0.0055 0.0061 0.0403 2.5
0.0925 0.0250 0.3765 0.0051 0.0005 0.0799 3.0
0.1928 0.0813 0.5353 0.0105 0.0012 0.2135 3.5
0.2631 0.0653 0.9172 0.0472 0.0098 0.4742 4.0
0.5575 0.3241 0.6147 0.0993 0.0593 0.7840 4.5
0.7868 0.6412 0.9934 0.9491 0.4218 0.3992 4.9
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Table 6.5: The 2D WTMM sliding window analysis is tested on the Maine mammographic dataset
with the Gaussian and Mexican hat smoothing functions while varying MinADelta. The p-values
seen here are calculated through the Wilcoxon rank-sum statistical test for the comparison of
benign and cancerous mammograms. The greatest significant difference for risky dense breast tissue
between benign and cancerous mammograms is seen through the Mexican hat smoothing function
with a MinADelta = 1.0 in the Maine dataset.

Gaussian Mexican Hat

Fatty Tissue Risky Dense Tissue Healthy Dense Tissue Fatty Tissue Risky Dense Tissue Healthy Dense Tissue MinADelta

0.07885 0.00206 0.01137 0.28845 5.00E-05 0.00189 1.0
0.10328 0.00097 0.00418 0.25545 0.00013 0.00326 1.5
0.05796 0.00348 0.00504 0.21839 0.00027 0.00606 2.0
0.02318 0.00770 0.02042 0.16876 0.00012 0.01502 2.5
0.00700 0.01237 0.02943 0.13266 0.00068 0.01731 3.0
0.00234 0.03024 0.02991 0.06780 0.00236 0.03375 3.5
0.00189 0.07146 0.06497 0.04062 0.01143 0.05665 4.0
0.02200 0.13465 0.07216 0.04533 0.04663 0.22061 4.5
0.04909 0.12228 0.10009 0.19409 0.18077 0.29836 4.9

A statistically significant difference in cancerous versus normal mammograms is seen in

risky (p = 0.0046) and healthy dense tissue (p = 0.0413) for cancerous versus normal

mammograms in the Maine dataset when analyzed with a MinADelta = 1.0 and the

Mexican hat smoothing function (Figure 6.4 and Table 6.5). An h(q, a) curve from a

sample mammographic subregion in the Maine dataset demonstrates linearity across all

q-values for both the Gaussian and Mexican hat smoothing functions, which is not seen in

a sample h(q, a) curve from a mammographic subregion in the Perm dataset (Figure 7.1).

An elevated median log2(amin) between the Maine (0.2) and the Perm (0.9) datasets

indicates an increased amount of mammographic noise is present in the Perm dataset

attributed to the lack of linearity across q-values for the Gaussian and Mexican hat

smoothing functions shown (Table 6.6).

Table 6.6: Median amin and amax in the 2D WTMM analysis for both the Gaussian and Mexican
hat smoothing functions for the Perm and Maine mammographic datsets.

Perm Dataset Maine Dataset

Gaussian Mexican Hat Gaussian Mexican Hat

Median Amin 0.9 0.9 0.2 1.1
Median Amax 2.4 2.2 1.7 2.4
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Figure 6.3: The 2D WTMM sliding window analysis analyzed all mammograms in the Perm
mammographic dataset with the Gaussian (top row) and Mexican hat (bottom row) smoothing
functions. Percent fatty (gray), risky dense (red), healthy dense (cyan), and risky dense over fatty
tissue (maroon) are shown for benign and cancerous mammograms. The p-values shown are obtained
through the Wilcoxon ranksum statistical test.

Figure 6.4: The 2D WTMM sliding window analysis analyzed all mammograms in the Maine
mammographic dataset with the Gaussian (top row) and Mexican hat (bottom row) smoothing
functions. Absolute number of fatty (gray), risky dense (red), healthy dense tissue (cyan) regions,
along with the amount of no-scalings (purple), are shown for cancerous and normal mammograms.
The p-values shown are obtained through the Wilcoxon ranksum statistical test.
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CHAPTER 7

DISCUSSION

7.1 Conclusions

The power spectrum methodology was investigated due to its ease of use and

computational efficiency. On fBm images, the power spectrum methodology is more

efficient in the calculation of H than the 2D WTMM methodology with the Gaussian and

Mexican hat smoothing functions for H ∈ [0.00, 0.45[ (Figure 5.4). The power spectrum

methodology’s efficiency for H ∈ [0.00, 0.45[ recognition in fBm images inspired the

possibility of implementing a combined autofit approach with the 2D WTMM

methodology. The power spectrum would be used for H ∈ [0.00, 0.45[ and the Mexican hat

smoothing function would be used for H ∈ [0.45, 1.00]. However, the inability of the power

spectrum methodology to distinguish fatty from risky and healthy dense tissue renders this

combined approach ineffective, regardless of the investigation into white noise calibrated

power spectrum signals (Table 6.3).

The 2D WTMM methodology was further examined through replacing the Gaussian

smoothing function with its second order derivative, the Mexican hat. The higher order

nature of the Mexican hat was hypothesized to provide a more accurate H calculation in

fBm and mammographic images. The Mexican hat demonstrates a more accurate H

calculation in fBm images than the Gaussian through its associated lower RMSE in

comparison with the Htheo of the fBm images (Tables 5.2 and 5.3). The implementation of

the 2D WTMM sliding window analysis with MinADelta = 1.0 demonstrates the Gaussian

performs better than the Mexican hat smoothing function in the Perm dataset. However,

the implementation of MinADelta = 1.0 on the Mexican hat’s h(q, a) curves has shown to

not be effective on mammograms from the Perm dataset. The high level of noise at small

wavelet scales a in the Perm mammographic dataset’s h(q, a) curves is attributed to this

phenomenon, which is not seen in the mammograms from the Maine patient dataset
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(Figure 7.1). The implementation of the Mexican hat with MinADelta = 3.0 and

MinADelta = 1.0, for the Perm and Maine datasets, respectively, demonstrate a greater

significant difference in fatty and risky dense breast tissue for benign and cancerous

mammograms (Tables 6.4 and 6.5). We are able to conclude the Mexican hat smoothing

function should be implemented into the 2D WTMM sliding window analysis to achieve

the most efficient recognition of risky dense breast tissue in mammograms, while

MinADelta is highly dependent on the quality of mammograms provided.

Figure 7.1: h(q, a) curves are seen for both the Gaussian and Mexican hat smoothing functions for
a sample mammographic subregion in the Perm and Maine datasets.
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Figure 7.2: Visualization of risky (red) and healthy dense (cyan) mammographic tissue output from

the 2D WTMM sliding window analysis using the Gaussian (ac) and Mexican hat (bd) smoothing

functions. A cancerous (top row) and normal (bottom row) patient are seen here from the Maine

mammographic dataset.
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7.2 Future Research

The CompuMAINE Laboratory has recently been granted access to a set of

longitudinal mammograms with a total of 9,300 benign, cancerous, and control patients

from the OPTIMAM mammographic dataset [54]. To further validate the conclusions in

this thesis, the 2D WTMM sliding window analysis with both Gaussian and Mexican hat

smoothing functions will analyze the mammograms in the OPTIMAM dataset. The

wavelet leaders methodology will also be implemented, as this methodology would allow for

the entire grayscale mammogram to be analyzed via a texture based analysis rather than

the sliding window analysis current embedded into the 2D WTMM approach [55, 56].

The application of the Wilcoxon rank-sum methodology in this thesis is applied only to

MLO mammograms. The application of the Mexican hat smoothing function in the 2D

WTMM sliding window analysis demonstrates a larger statistical difference in risky dense

breast tissue for benign and cancerous CC mammograms in the Maine dataset (Table 7.1).

With this, the incorporation of CC and MLO mammograms into the statistical analysis

together will be examined to most accurately assess a patient’s breast cancer risk through

the 2D WTMM sliding window analysis. Finally, rather than iterating through various

amin and amax values, the median amin and amax across all mammograms of a patient

dataset will be implemented into the 2D WTMM sliding window analysis to examine how

this affects the statistical comparison between benign and cancerous mammograms.
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Table 7.1: The 2D WTMM sliding window analysis is tested on CC mammograms in the Maine

dataset with the Gaussian and Mexican hat smoothing functions while varying MinADelta. The

p-values seen here are output through the Wilcoxon rank-sum statistical test for the comparison

of benign and cancerous mammograms. The greatest significant difference between benign and

cancerous CC mammograms is seen through the Mexican hat smoothing function.

Gaussian Mexican Hat

Fatty Tissue Risky Dense Tissue Healthy Dense Tissue Fatty Tissue Risky Dense Tissue Healthy Dense Tissue MinADelta

0.19252 0.00175 0.02918 0.51745 2.00E-05 0.00369 1.0

0.18077 0.00088 0.02378 0.51745 2.00E-05 0.00424 1.5

0.08279 0.00287 0.03099 0.36168 9.00E-05 0.00533 2.0

0.03408 0.01368 0.0511 0.19685 0.00014 0.00924 2.5

0.01788 0.06091 0.05492 0.08602 0.00012 0.01948 3.0

0.01156 0.12173 0.06945 0.03651 0.00028 0.04179 3.5

0.01067 0.19067 0.1295 0.01817 0.00373 0.06689 4.0

0.02246 0.23585 0.1516 0.01391 0.02789 0.15957 4.5

0.09315 0.26194 0.1837 0.0147 0.21763 0.35562 4.9
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