Cattle grazing management effects on pasture composition in semi-arid woodlands

T.J. Hall and J.R. Douglas²

¹DPI&F, PO Box 308, Roma, Queensland 4455, Australia, Email: trevor.hall@dpi.qld.gov.au, ²"Verniew", Mitchell, Queensland 4465, Australia,

Keywords: grazing management, pasture composition, burning, tree competition, woodland

Introduction Manipulating grazing pressure, controlling tree competition and burning are the main options for cattle farmers to manage land in subtropical Australian *Eucalypt* woodlands. These can contain >175 herbaceous and 60 woody species, but only 5 are desirable perennial and productive grass (Silcock *et al.*, 1996). Here we describe the responses of some perennial grasses to cattle grazing pressure, tree competition and spring burning.

Methods Two experiments in *Aristida/Bothriochloa* (wiregrass/bluegrass) native pasture in a poplar box woodland (*Eucalyptus populnea*) in inland Queensland (25° 45°S; 148° 25°E) measured the effects of cattle grazing pressure, tree competition and spring burning on pasture composition between 1994 and 2002. Experiment 1 had 3 grazing pressures; low (25% utilisation of end of summer pasture), medium (50%) and high (75%), and 2 tree competition levels; trees killed (stem injected herbicide) and live trees, by 2 replications, in 12 paddocks of 4-30 ha; while experiment 2 had 2 burning regimes; annual spring burn after 25 mm of rain and no burning, with the same 2 tree competition levels, by 3 replications in 12 plots each of 1 ha. Species composition (as a % contribution to total pasture yield) was recorded by visual dry weight ranking of the 6 highest yielding species in 50-354 quadrats (0.25m²)/paddock (experiment 1) and in 50 quadrats (experiment 2) at the end of each summer. Transformed data were analysed by 2-way ANOVA with randomised blocks in the Genstat program.

Results and Discussion In 2002 after 8 years, perennial grasses showed variable responses within the desirable, intermediate and undesirable species groups to the 3 management treatments (Table 1).

Table 1 Effect of grazing pressure, tree competition and burning on composition (%) of desirable^d, intermediateⁱ and undesirable^u grasses in Eucalypt woodland after 8 years (* indicates significant difference P<0.05)

Grass species	Grazing pressure ¹			Tree competition ¹		Spring burning ²	
	Low	Medium	High	Cleared	Treed	Burn	No burn
Aristida ramosa ^u	29.0	30.9	11.2*	22.1	25.3	5.5*	17.1
Bothriochloa bladhii ^d	2.3	0.2	0.1	1.4*	0.4	7.1*	0.7
Bothriochloa decipiens i	9.1*	23.5	18.1	9.6*	24.2	22.0	23.8
Chloris divaricata i	2.9	3.2	6.5	5.0	3.4	2.1	0.5
Chrysopogon fallax ^d	1.9	5.0*	2.1	1.2*	4.8	13.0*	4.4
Cymbopogon spp. i	4.3*	0.2	0	2.4	0.6	1.0	8.7*
Dichanthium sericeum d	6.2	6.9	1.6*	7.2*	2.6	9.6*	2.6
Heteropogon contortus d	3.3*	0.6	0	1.5	1.1	8.8*	2.0

experiment 1; experiment 2

Of the desirable species, clearing and spring burning increased *Bothriochloa bladhii* (Forest bluegrass); low grazing pressure and burning increased *Heteropogon contortus* (black speargrass); killing trees and burning increased *Dichanthium sericeum* (Queensland bluegrass) but high grazing reduced it; killing trees reduced *Chrysopogon fallax* (golden beard grass) but medium grazing pressure and burning increased it. High grazing pressure maximised intermediate grasses, like *Chloris divaricata* (windmill grass). Low grazing pressure and killing trees reduced *Bothriochloa decipiens* (pitted bluegrass) but burning did not. Low grazing pressure and no burning increased *Cymbopogon* species (barbwire grasses). High grazing pressure and spring burning decreased the undesirable *Aristida ramosa* (purple wiregrass), but tree competition did not affect it.

Conclusion To improve landscape stability and cattle productivity in this semi-arid Eucalypt community, one can use strategic management to manipulate plant composition, encourage desirable grasses, maintain intermediate species and discourage undesirable components.

References

Silcock, R. G., P. G. Filet, T. J. Hall, E. T. Thomas, K. A. Day, A. M. Kelly, P. K. Knights, B. A. Robertson & D. Osten (1996). Enhancing pasture stability and profitability for producers in Aristida/Bothriochloa woodlands. Queensland Department of Primary Industries, Final Report, Oct. 1992-Jun. 1996. pp. 157.