Round-bale silage preparation of rice straw

Y. Cai, C. Xu, N. Yoshida and M. Ogawa

National Institute of Livestock and Grassland Science, Nishinasuno, Tochigi 329-2793, Japan, Email: cai@affrc.go.jp

Keywords: fermentation quality, lactic acid bacteria, rice straw, round bale silage

Introduction Rice straw is an important feed resource for ruminants. In Japan, rice straw cannot be fully dried due to the usually humid autumn season, which leads to about 70% of the production being ploughed back or incinerated. Therefore, the development of techniques to enhance the long-term preservation and quality of rice straw is of great importance. In this work, a new lactic acid bacterium was used as a silage inoculant, and its effect on round-bale silage preparation from fresh rice straw was examined.

Materials and methods Fresh rice straw of Koshihikari cultivar was obtained from a field in Saitama, Japan, on October 2002. Silage was prepared using a round-bale system. Chikuso-1 (*Lactobacillus plantarum*, Brand seed Ltd., Sapporo, Japan; Cai *et al.*, 2003) was used as an inoculant.

Table 1	Fermentation	quality of rice	e straw silage
---------	--------------	-----------------	----------------

	Silage ensiled for 65 days		Silage ensiled for 300 days	
	Control	Chikuso-1	Control	Chikuso-1
pН	5.67 ^b	3.77 ^a	5.75 ^b	3.85 ^a
Dry matter (%)	65.73	65.97	64.56	63.24
Lactic acid (% FM)	0.17^{a}	2.06 ^b	0.22^{a}	1.86 ^b
Acetic acid (% FM)	0.16	0.18	0.35	0.27
Propionic acid (% FM)	nd	nd	nd	nd
Butyric acid (% FM)	0.14	nd	0.35	nd
Ammonia N (g/kg FM)	0.28^{b}	0.09 ^a	0.45 ^b	0.10 ^a

FM, fresh matter; nd, not detected. Chikuso-1: *Lactobacillus plantarum*; a,b Values are means of three silage sample Means in the same silage row with different superscripts are significantly different (P < 0.05)

Results The moisture content of the fresh rice straw after harvest was 65%. Its content of water-soluble carbohydrates and crude protein were 5% and 4% of dry matter, respectively. The inoculant strain Chikuso-1 was a Gram-positive and catalase-negative rod that did not produce gas from glucose, formed L(+) and D(-) lactic acid and grew under a low-pH condition. After storage for 65 and 300 d, silages inoculated with Chikuso-1 were well preserved and exhibited significantly (P<0.05) lower pH, butyric acid and ammonia-nitrogen, and significantly (P<0.05) higher lactic acid content, as compared to control silages (Table 1). During silage fermentation, the control silages displayed mould growth, whereas in Chikuso-1-inoculated silages, moulds were at or below the detectable level.

Conclusions These results showed the growth potential of *Lactobacillus plantarum* Chikuso-1 and its beneficial effects on rice-straw silage, suggesting that this strain could help achieve higher quality and longer preservation of this type of silage.

Reference

Cai Y., M. Fujita, M. Murai, M. Ogawa & N. Yoshida (2003). Application of Lactic acid bacteria (*Lactobacillus plantarum* Chikuso-1) for silage preparation. *Grassland Science*, 49, 477-485.