Comparison of technologic and economic parameters of drills for grassland oversowing L. Gonda and M. Kunský

Grassland and Mountain Agriculture Research Institute (GMARI), SK-97421 Banská Bystrica, Slovakia, Email: gonda@vutphp.sk

Keywords: grassland, oversowing technologies, shallow rocky soil

Introduction Direct grassland oversowing is a very important technology in Slovakia as some 350,000 ha (42 %) of grassland are on unploughable sites that dominate mountain regions. Slope inclinations >16° and shallow soil layers (150-200mm) limits ploughing on these sites (Tiley & Frame, 1988).

Materials and methods After 2000, 2 types of drills for direct oversowing were developed: SPP 6 and SP 16, respectively, for band- and strip- oversowing (see Table 1). Both prototypes were tested in mountain conditions (Gonda, 2003) together with series-produced machinery: drill VREDO 125.07.05 (Netherlands) and HORSCH SE 3 (Germany), used for row and total (wide) oversowing, respectively. Soil was shallow rocky clay (<200 mm), altitude 400-600 m and slope inclination 12°; seed rate 40kg grass/clover mixture /ha (20/80 clover/grass).

Results Table 1 compares technological and economic parameters of 4 main oversowing systems of grassland renovation in Slovakia.

Technology	Machinery Tractor Drill	Engine power (kW) Working width (mm)	Productive efficiency [#] (ha/h)	Price (€)	Technological costs		Technology	Sward profile
					(€/h)	(€/ha)	system	-
Row oversowing	ZETOR - 7540	57.0	-	31010.0	23.74	19.79	Ws C	pa sive
	VREDO 125.07.05	2 500.0	1.20	15972.6				
Strip oversowing	ZTS 123 45	90.5	-	39345.7	32.68	38.91	WE	active discs destroyed sward 22%
	SP 16	2 400.0	0.84	15444.4				5
Band oversowing	ZTS 163 45	121.0	-	48892.2	41.50	44.63	M _t	active heads destroyed sward 38%
	SPP 6	2 700.0	0.93	26649.2				
Total (wide) oversowing	ZTS 183 45	136.0	-	80504.0	50.51	50.51	₩s	active heads destroyed sward 100%
	SE 3 HORSCH	3 000.0	1.00	26164.7				W

Table1 Technical and economical evaluation of oversowing technology in upland grasslands in Slovakia

[#] Full production: no idle time w... width of the row; r... row distance; d ... row depth

Row oversowing needs little energy and is cheap. It suits less-demanding soil conditions but not highly degraded grassland because it only partially destroys the turf (5%) and the microrelief stays undestroyed. **Strip oversowing** best suits shallow rocky soils with considerably degraded grassland. It does not destroy the microrelief and does not cause soil erosion or herbage contamination. **Band oversowing** needs much energy and is expensive. It mainly suits deep plateau-land soils without stones and considerably degraded grassland. It destroys turf (38%) and creates excellent conditions for root development, but can cause erosion at slope inclinations >12°. Strongly devastated microrelief needs rolling to prevent soil contamination of herbage. **Total (wide) oversowing** has the highest energy demands and costs of the 4 methods. It suits severely degraded grassland where total destruction of the root system of the original sward is needed and excellent conditions for the development of a dense sward are created. It cannot be used on shallow and rocky soils.

Conclusions The 4 oversowing technologies do not compete with each other. Instead, they offer a choice after consideration of all soil, climatic and energetic conditions and the degradation degree of the grassland.

References

Gonda L. (2003). Výskum a modelovanie aplikácie techniky a technológií pre obhospodarovanie trávnych porastov v horských a podhorských oblastiach (výskumná správa), VÚTPHP Banská Bystrica, Sk, 94 pp.

Tiley, G. E. D & J. Frame (1988). Sward establishment and renovation without ploughing. *Proceedings of the 12th General Meeting of the European Federation*, Dublin, Ireland pp. 199-203.