
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Mechanical
Engineering Mechanical Engineering

2023

Parallel Real Time RRT*: An RRT* Based Path Planning Process Parallel Real Time RRT*: An RRT* Based Path Planning Process

David Yackzan
University of Kentucky, dwyackzan@gmail.com
Author ORCID Identifier:

https://orcid.org/0000-0002-8650-5063
Digital Object Identifier: https://doi.org/10.13023/etd.2023.194

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Yackzan, David, "Parallel Real Time RRT*: An RRT* Based Path Planning Process" (2023). Theses and
Dissertations--Mechanical Engineering. 211.
https://uknowledge.uky.edu/me_etds/211

This Master's Thesis is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It
has been accepted for inclusion in Theses and Dissertations--Mechanical Engineering by an authorized
administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/me_etds
https://uknowledge.uky.edu/me_etds
https://uknowledge.uky.edu/me
https://orcid.org/0000-0002-8650-5063
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

David Yackzan, Student

Dr. Hasan Poonawala, Major Professor

Dr. Jonathan Wenk, Director of Graduate Studies

PARALLEL REAL TIME RRT∗: AN RRT∗ BASED PATH PLANNING PROCESS

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in the College of Engineering
at the University of Kentucky

By

David Yackzan

Lexington, Kentucky

Director: Dr. Hasan Poonawala, Professor of Mechanical Engineering

Lexington, Kentucky

2023

Copyright ©David Yackzan 2023
https://orcid.org/0000-0002-8650-5063

https://orcid.org/0000-0002-8650-5063

ABSTRACT OF THESIS

PARALLEL REAL TIME RRT∗: AN RRT∗ BASED PATH PLANNING PROCESS

This thesis presents a new parallelized real-time path planning process. This pro-
cess is an extension of the Real-Time Rapidly Exploring Random Trees* (RT-RRT∗)
algorithm developed by Naderi et al in 2015 [1]. The RT-RRT∗ algorithm was demon-
strated on a simulated two-dimensional dynamic environment while finding paths to
a varying target state. We demonstrate that the original algorithm is incapable of
running at a sufficient rate for control of a 7-degree-of-freedom (7-DoF) robotic arm
while maintaining a path planning tree in 7 dimensions. This limitation is due to
the complexity of maintaining a tree in a high-dimensional space and the network
frequency requirements of the control signal for a real robotic system.
We develop and implement a parallelized version of RT-RRT∗, dubbed Parallel RT-

RRT∗ (PRT-RRT∗), that can update motion plans in a dynamic environment while
sending control signals at a high frequency. To achieve this, PRT-RRT∗ establishes
a method of efficient communication between separate collision detection, path plan-
ning, and control nodes. We show that PRT-RRT∗ is capable of solving the dynamic
path-planning problem on the 7D Franka Emika Panda robotic arm.

KEYWORDS: Path-Planning, Robotics, Dynamic Environments

David Yackzan

04/28/2023
Date

PARALLEL REAL TIME RRT∗: AN RRT∗ BASED PATH PLANNING PROCESS

By
David Yackzan

Hasan Poonawala
Director of Thesis

Jonathan Wenk
Director of Graduate Studies

04/28/2023
Date

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dr. Poonawala for consistently providing
guidance and support through the graduate school process. His constant willingness
to provide a space to work through ideas and challenges has been the catalyst of
much of my learning. He has supported me as an advisor, teacher, and mentor since
I became a part of the lab.
Second, I would like to thank my family for their love and support in all aspects

of my life. I would not be able to devote so much of my time and energy toward my
goals without the unwavering support they have provided me.
Third, I would like to thank my colleagues, Benton Clark and Pouya Samanipour

for always providing feedback and moral support throughout our shared graduate
school journey.
Finally, I would like to thank Dr. Seigler and Dr. Hoagg for serving on my com-

mittee.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii
LIST OF TABLES . vi
LIST OF FIGURES . vii
1 INTRODUCTION AND CONTRIBUTIONS 1

1.1 Contributions . 2
2 LITERATURE REVIEW . 3

2.1 Reinforcement Learning (RL) . 3
2.2 Potential Fields (PFs) . 3
2.3 Control Barrier Functions (CBFs) . 4
2.4 Search Methods . 5
2.5 Real Time Search Methods . 5
2.6 Path Planning with Dynamic Obstacles 5
2.7 Real-Time Motion Planning . 6
2.8 Fast Marching Trees . 6

3 BACKGROUND . 8
3.1 Problem Definition . 8

3.1.1 Static Path Planning Problem 8
3.1.2 Dynamic Path Planning Problem 8
3.1.3 Path Planning Tree . 9

3.2 Existing Algorithms . 11
3.2.1 RRT . 11
3.2.2 RRT∗ . 13

3.3 RT-RRT∗ . 15
3.4 PRT-RRT∗ Software Design . 20
3.5 PRT-RRT∗ Component . 20

3.5.1 Planner Component . 21
3.5.2 Controller Component . 25
3.5.3 Collision Checker Component 25
3.5.4 Sensor Component . 26

4 SIMULATION METHODS AND RESULTS 28
4.1 Evaluation of RT-RRT∗ Real Time Performance for a 7D Robotic System 28
4.2 Evaluation of Root Rewiring Impact on Executed Path Cost 30
4.3 Evaluation of PRT-RRT∗ Tree Maintenance vs. Planning From Scratch 33

4.3.1 Comparative Scenarios . 33
5 DISCUSSION . 38

5.1 Value of Parallezing RT-RRT∗ . 38
5.2 Value of Preserving and Maintaining a Path Planning Tree 39
5.3 Limitations . 40

5.3.1 Current Edge Obstructions . 40
5.4 Future Work . 40

5.4.1 Add Ability to React to Current Edge Obstructions 40

iv

5.4.2 Further Parallelization . 41
APPENDICES . 42

Appendix A . 42
Appendix B . 44

BIBLIOGRAPHY . 45
VITA . 50

v

LIST OF TABLES

4.1 RT-RRT∗ Single Node Rewiring Time 29
4.2 PRT-RRT∗ With vs. Without Root Rewiring Path Cost Results . . . 32
4.3 PRT-RRT∗ vs. M-RRT∗ Scenario Results 36

1 Panda PID Controller Gains . 42
2 Simulation Hyperparameters . 42
3 Root Rewiring Evaluation Independent T-Test Results 42
4 Tree Maintenance vs. Planning From Scratch Independent T-Test Re-

sults . 43

vi

LIST OF FIGURES

3.1 Example of a Path Planning Tree. 10
3.2 RT-RRT∗ Planner Process . 17
3.3 RT-RRT∗ Root Advancement . 18
3.4 RT-RRT∗ Root Advancement and Rewiring 19
3.5 PRT-RRT∗ Component Software Dependencies 21
3.6 PRT-RRT∗ Communication Between Components 22
3.7 PRT-RRT∗ Planner States . 23
3.8 Example of Successful PRT-RRT∗ Reroute. 24
3.9 PRT-RRT∗ Controller States . 26
3.10 PRT-RRT∗ Collision Checker States 27

4.1 M-RRT∗ Planner Process . 31
4.2 Root Rewiring Evaluation States . 32
4.3 Evaluation of Root Rewiring Impact on Executed Path Cost Plot . . 33
4.4 No Obstacle Scenario States . 34
4.5 Add Ball Scenario States . 35
4.6 Add Wall Scenario States . 35
4.7 Scenario Cost Results Plot . 37
4.8 Scenario Iteration Results Plot . 37

vii

CHAPTER 1. INTRODUCTION AND CONTRIBUTIONS

This thesis presents a new real-time path planning process called Parallel Real-

Time RRT∗ (PRT-RRT∗) along with an implementation of the algorithm for a 7-DoF

robot arm in a dynamic environment. The goal of this work is to create a general-

purpose, open-source method for quickly finding and executing collision-free paths

from an agent to a variable target state in an environment with moving obstacles. By

general-purpose, we mean this method should be easy to implement on a new robot

in a new environment without requiring expertise. The implementation presented in

this thesis used a Franka Emika Panda robotic arm with a 7-dimensional joint config-

uration space. The PRT-RRT∗ process is based on the Real Time RRT∗ (RT-RRT∗)

algorithm introduced in [1].

The RT-RRT∗ algorithm contributed strategies to the standard RRT∗ algorithm to

advance and rewire around the planning tree root node online. These strategies allow

a planning tree to be maintained and updated as the agent state, target state, and

obstacle states vary. However, the root rewiring strategy becomes increasingly com-

putationally expensive as the dimensionality of the path planning space increases.

In 7 dimensions, it is infeasible to complete a significant amount of root rewiring

in a loop that runs at a frequency high enough to execute control in serial. The

authors demonstrate the capability of RT-RRT∗ to find and execute solution paths

in a 2-dimensional configuration space in [1]. However, in Section 4.1 we show the

shortcomings of that algorithm applied to a 7-dimensional configuration space in Sec-

tion 4.1.

The PRT-RRT∗ algorithm distributes the computational expense of the planning,

dynamic collision checking, and control sub-processes by running them on separate,

parallel threads. This parallelization allows for the algorithm to find and execute dy-

namic path planning solutions for the 7-Dimensional state space of the Franka Emika

1

Panda robotic arm while maintaining a stored planning tree and sending control com-

mand signals at high frequency.

1.1 Contributions

We contribute the following:

• PRT-RRT∗: A parallelization of RT-RRT∗ that enables the tree maintenance

processes developed in RT-RRT∗ to be able to run on the 7D Panda robotic arm

while sending control signals at the required frequency. Standard RT-RRT∗ is

not able to run quickly enough to maintain the path planning tree and send

control signals in the Panda robot arm configuration space.

• An easily transferable software package to implement the PRT-RRT∗ planning

process an any robot with a URDF and a simple controller.

The software package with documentation for implementing the PRT-RRT∗ process

on a robot within the ROS framework can be found at [2].

2

CHAPTER 2. LITERATURE REVIEW

In this section we discuss various methods in the literature that explore solutions

to navigating robots in environments with obstacles.

2.1 Reinforcement Learning (RL)

Many RL strategies have been successfully employed for collision-free navigation

of robots in dynamic environments. One example presented in [3] demonstrates the

successful control of a robot manipulator around a moving human in simulation using

a Deep RL policy. Another RL example dubbed Mobile robot Collision Avoidance

Learning (MCAL) [4], demonstrates the ability to control a wheeled SR7 robot in

an environment with reciprocating obstacles using a Soft Actor Critic policy. The

work in [4] also incorporates path planning in a second method dubbed Mobile robot

Collision Avoidance Learning with Path (MCAL P) which uses the trained RL policy

to follow planned solution paths.

The disadvantage of RL approaches is that they do not provide easily transferable

solutions. If a new obstacle is added into an environment, or if the robot changes,

then the RL algorithm will require retraining before it can be re-implemented. This

training process requires expertise and time to conduct properly.

2.2 Potential Fields (PFs)

PF-based path planning methods [5] overlay the configuration space of a robot

with a vector field that repulses the robot state from obstacles and attracts the

robot state towards the target state. The vector field derives from the gradient of

a potential function chosen such that the target state is a minimum of it. These

methods are capable of tracking variable target states in environments with moving

obstacles, however, there are several limitations. Often, the target state is not the

only minimum. The other minima represent trapped states from which the agent

will not be able to leave and will never reach the target state. For example, if the

3

agent reaches a state in the vector field that equally repels the agent from advancing

due to nearby obstacles and equally attracts the agent to the target state, then the

agent can get stuck. PFs can also produce cyclic motion in which the agent moves

back and forth without achieving the target state due to repelling obstacles. PF-

based navigation methods are also unable to pass between closely spaced obstacles

and struggle with pick-and-place applications using robot arms as the target state is

necessarily near an obstacle. These limitations are explored in detail in [6].

2.3 Control Barrier Functions (CBFs)

CBFs have been successfully developed for safely achieving desired target states

while avoiding static obstacles and even other controllable agents in an environment.

The primary advantage of CBFs is that they can be used to provide safety guar-

antees when the dynamics of an environment are known and controllable. A recent

example of a successful CBF application is presented in [7] where the authors use

probabilistic movement primitive distributions to define Control Lyapunov Functions

(CLFs) and CBFs. The authors report their method is capable of controlling a sys-

tem around static obstacles without leaving a neighborhood defined by a training

set. They demonstrate their method by creating a controller for a UR5e robot in

simulation that produces collision-free trajectories in an environment with obstacles.

The work presented in [8] shows a collision-free supervisory control of several agents

in an environment with limited actuation. The authors of the paper present obstacle

avoidance guarantees and demonstrate the methods in a simulation with drones.

CBF solutions are low-level solutions to obstacle avoidance navigation tailored to

the dynamics of the systems and environments they are designed for. They can be im-

plemented in conjunction with higher level path-planning based solutions to combine

long-term path benefits of planning with short-term safety benefits of CBFs. A solu-

tion using planning and CBFs can be seen in [9] in which the Control Barrier Function

guided Rapidly-exploring Random Trees (CBF-RRT) algorithm is presented.

4

2.4 Search Methods

A∗ search [10] is a well-known search algorithm capable of finding the optimal path

between two nodes in a graph. However A∗ search does not scale well, and sub-

optimal versions such as weighted A∗ search [11] were produced that trade efficiency

for solution quality. The work in [12] presents a novel search method, R∗ search,

that focuses on batched, easy-to-solve searches for motion planning. This method

allows the algorithm to avoid local minima and also discard search state-space from

memory once it completes each of its search batches, allowing it to scale well. The

authors show experimentally that R∗ search is able to scale to large complex planning

problems.

2.5 Real Time Search Methods

Real time path planning search methods were developed based on A∗ and R∗ search,

called Real-time A∗ (RTA∗) [13] and Real-time R∗ (RTR∗) [14] respectively. The

authors of RTR∗ demonstrate its ability to plan paths online for an agent to avoid a

moving obstacle while seeking a goal state in a 2D simulation in [14].

2.6 Path Planning with Dynamic Obstacles

In other related work, algorithms have been developed to work around moving

obstacles by considering their dynamics while planning paths. In [15], the authors

introduce a method by which a car can be automatically navigated around other

moving cars by tracking and predicting their trajectories. In [16] the authors add a

“safe interval” variable to states in the path planning tree that encodes the amount of

time-steps in the future that the state will be considered collision free. This enables

paths to be chosen safely, where a solution path is only considered if the safe interval

ensures the states will be collision free long enough for the agent to move through

them. The work in [17] considers the case where multiple agents in an environment

react to each other. In this work the authors demonstrate the concept of optimal

reciprocal collision avoidance in which the potential reactive motion of other agents in

5

the environment is accounted for. The drawback of these methods is that they assume

the obstacle dynamics and reciprocal motion of other agents in the environment are

known.

2.7 Real-Time Motion Planning

In [18], the authors introduce parallelization techniques for common path planning

operations such as random sampling and nearest neighbor computation using Graph-

ics Processing Units (GPUs) which they call “g-Planner”. In [19] authors from the

same lab introduce a highly efficient parallelization technique for collision checking

within the path planning framework. The parallelization of these techniques allow

for much faster real-time motion planning. Similar work is presented in [20] in which

the authors present work to construct field-programmable gate array (FPGA) chips

specifically for the task of motion planning. The authors state that these chips are

capable of performing motion planning calculations three orders of magnitude faster

than existing methods. While these real-time motion planning techniques are capable

of exponentially improving the efficiency of path planning processes, the main draw-

back of this work is that it requires users to purchase and install specific hardware.

The work in [21] demonstrates another application of real-time motion planning

using a sparse Probabilistic Roadmap (PRM) with a smoothing neural network (NN)

to quickly solve for a smooth path from one point to another. The authors success-

fully implement their work on a 6 DoF robotic arm in a simulation that is able to

quickly react to obstructing obstacles. The drawback of this work is that in order to

implement it on a different system, the smoothing NN must first be trained, which

requires expertise and time.

2.8 Fast Marching Trees

The Fast Marching Trees (FMT*) algorithm, introduced in [22] is a sampling-

based motion planning algorithm that is capable of solving complex problems in high-

dimensional configuration spaces. FMT* is an extension of Fast Marching Methods

6

(FMM) which were introduced in discussed in [23],[24] as numerical methods for

calculating solutions to the Eikonal equation. Solutions to the Eikonal equation can

be used for computing shortest paths in continuous domains. More recent work,

introduced in [25] extends the FMT* method to work efficiently for collision-free

path planning around obstacles. They dub the extended algorithm obstacle-based fast

marching tree (OB-FMT*). This work is similar to other recent work introduced in

[26], in which the authors introduce an obstacle-aware sampling method that ensures

new samples from the configuration space will not be obstructed by obstacles. They

show that their sampling method significantly lowers the time to solve and the path

length when implemented with RRT as opposed to RRT with non-obstacle-aware

sampling methods.

7

CHAPTER 3. BACKGROUND

In this section, we first formulate the static and dynamic path planning problem

and provide definitions for the tree data structure in the scope of this work. We move

on to discuss the RRT, RRT∗, and RT-RRT∗ algorithms that PRT-RRT∗ is built on.

3.1 Problem Definition

3.1.1 Static Path Planning Problem

The static path planning problem solved by RRT and its variants is defined over

the configuration space of an agent. The dimension of the configuration space is

equivalent to the degrees of freedom of the agent and will be denoted by n. Thus, the

configuration space is defined as Q ⊂ Rn. The Franka Emika Panda robot arm the

simulations are run on in this work has a dimension of n = 7, and thus its configura-

tion space is defined as Q ⊂ R7. The portion of the configuration space obstructed by

obstacles will be denoted by Qobs ⊂ Q and the portion of the state space unobstructed

by obstacles will be denoted by Qfree ⊂ Q. Note that Qfree = Q \Qobs.

A static path planning problem is initialized with the following data: the con-

figuration state space Q, the current state of the agent qcurr ∈ Q, the target state

qtarget ∈ Q, and the portion of the state space obstructed by obstacles Qobs. The static

path planning problem is valid as long as qcurr ∈ Qfree, qtarget ∈ Qfree, and there is

some path, defined as Etarget ∈ Qfree that exists between them. The static path

planning problem is considered solved when Etarget is found. A survey of 8 prominent

static path planning methods for mobile robots can be found in [27].

3.1.2 Dynamic Path Planning Problem

The dynamic path planning problem is a variation of the static path planning

problem defined above in Section 3.1.1. The dynamic path planning problem is also

defined over the configuration state space of an agent Q ⊂ Rn. The main difference

8

being that the dynamic path planning problem varies over time t.

In the dynamic path planning problem the agent state q(t)curr ∈ Q, the target state

q(t)target ∈ Q, and the space obstructed by obstacles Q(t)obs ⊂ Q can change through-

out the problem as a function of time. We define the space obstructed by dynamic

obstacles at time t as Q(t)obs,dyn ∈ Q, and define the space obstructed by static obsta-

cles as Qobs,st ∈ Q. The obstacle space Q(t)obs is now defined as the space obstructed

by both static and dynamic obstacles such that Q(t)obs = Q(t)obs,dyn ∪ Qobs,st. The

free space also becomes a function of time, Q(t)free ⊂ Q and Q(t)free = Q \ Q(t)obs

still holds.

The dynamic path planning problem is valid as long as q(0)curr ∈ Q(0)free, q(t)target ∈

Q(t)free ∀t, and there is some path, defined as E(t)target ∈ Q(t)free that exists be-

tween them at all times t. The dynamic path planning problem is considered solved

when the current state of the agent q(t)curr has reached the target state q(t)target at

time t such that q(t)curr = q(t)target.

3.1.3 Path Planning Tree

Upon initialization of the path planning problem, an RRT based solution algorithm

creates a tree, defined by T ⊂ Q. The tree is made up of a collection of nodes,

denoted by qi ∈ Q, and the edges between them. An edge is defined as the line

directly connecting two nodes, denoted by ei,j ⊂ Q where ei,j is the edge between

qi and qj. If a node is in the tree, we say qi ∈ T . If an edge is in the tree, we say

ei,j ∈ Te. An example of a path planning tree is illustrated in Figure 3.1.

Note that while some of the following terms will be a function of time t in the

dynamic path planning problem, we omit t for simplification. A path planning tree is

initialized with the root node qroot ∈ Q such that qroot = qcurr. Each node qi ∈ T has

one or zero parent node(s) pi ∈ Q, T (zero only in the case of the root node), zero

or more child nodes hi ⊂ Q, T , and an associated cost ci ∈ R. An edge exists in the

9

Figure 3.1: Example of a Path Planning Tree. The dots represent states in the tree,
the green circle qtarget encircles the target state, the blue dot qcurr rep-
resents the current state of the agent, the pink circle qroot encircles the
current root of the path planning tree, the black lines e represent edges
in the tree, the green lines Etarget represent a solution path to the target
state, and the red squares Qobs represent obstacles in the environment.

tree ei,j ∈ Te between two nodes qi, qj if either qi is the parent of qj (qi = pj) or qi is

a child of qj (qi ∈ hj). A node with zero child nodes is called a leaf node.

The cost between any two nodes in the tree qi, qj ∈ T , denoted by ci,j or cj,i is

computed by a norm distance function over the edge between the two nodes. We use

the 1-norm in the implementation developed in this thesis, thus

ci,j = ∥ei,j∥1 = ∥qi − qj∥1 = |qi,1 − qj,1|+ |qi,2 − qj,2|+ ...+ |qi,n + qj,n|. (3.1)

A path, denoted by Ei is defined as the set of concurrent edges in the tree that

lead from any node in the tree qi ∈ T back to the root node of the tree qroot ∈ T .

Note that since every node other than qroot in the tree has exactly one parent node,

it follows that there is exactly one path for each node. The path for the root node is

10

the empty set Eroot = ∅. The cost ci associated with a node qi is computed by the

sum of all the edges in its path Ei. Thus, the cost of a node qi is computed by

ci =
∑
e∈Ei

∥e∥1. (3.2)

Each path Ei has an associated list of nodes, which will be defined by Qi ⊂ Q.

For example, let E10 be the path to the 10th node added to the planning tree such

that E10 = {eroot,4, e4,7, e7,10}. Then the associated list of nodes to E10 would be

Q10 = {qroot, q4, q7, q10}. Note that Qi will always start with qroot and end with qi.

3.2 Existing Algorithms

3.2.1 RRT

The Rapidly exploring Random Trees (RRT) algorithm was developed in [28] as a

solution to the static path planning problem. It is an iterative process that uses ran-

dom sampling to quickly build a space-filling tree, capable of finding feasible solution

paths in high-dimensional spaces efficiently. The algorithm is outlined in Algorithm 1

The static path planning problem is initialized as defined in Subsection 3.1.1 with

Q, qcurr, qtarget, Qobs. The RRT algorithm begins by establishing a tree T with

qroot ∈ T such that qroot = qcurr.

11

Algorithm 1: RRT

Input: qroot, qtarget, Qobs

1 T ← qroot
2 while qtarget /∈ T do
3 qrand = Sample(Q)
4 if qrand /∈ Qobs then
5 qnear = FindNearestNode(T , qrand)
6 if Distance(qnear, qrand) > dmax then
7 qnew = Steer(qnear, qrand)
8 else
9 qnew = qrand

10 end
11 if enear,new /∈ Qobs then
12 cnew = cnear + cnear,new
13 T = qnew, enear,new
14 end

15 end

16 end
Output: Etarget

For each RRT iteration, a random point qrand is sampled uniformly from the config-

uration space. If qrand ∈ Qobs, then a new random point is sampled until qrand ∈ Qfree.

The nearest node in the tree to qrand is found, denoted by qnear ∈ T . If the sampled

point qrand is within a maximum distance dmax of qnear, then a new node is defined

by qnear = qrand. Otherwise, a steering function is used to interpolate a node closer to

qnear as qnew = Steer(qrand, qnear). A common steering function and the one employed

in the implementation developed in this thesis is defined by

Steer(qrand, qnear) = dmax

(
qrand − qnear
||qrand − qnear||

)
.

If the edge between qnear and qnew is not in collision with any obstacles such that

enear,new /∈ Qobs, then qnew is added to the tree as a child to qnear. These steps are

repeated until a new node sufficiently close to qtarget is added to the tree.

It may take many iterations for an RRT algorithm to find a solution path to a target

state using random sampling. To mitigate this, approaches have been developed as

12

discussed in [29] to bias the tree growth and guide the search. Define a random

number x ∈ [0, 1], and let α be a small, pre-defined hyperparameter. For this work,

we use the goal-biased sampling method with α = 0.05 as follows

qrand =

qtarget, if x < α

RandomSample(Q), otherwise

(3.3)

3.2.2 RRT∗

The RRT∗ algorithm developed in [30] improved RRT with the addition of two

key strategies: a method to choose the best parent when adding a new node to the

tree and a rewiring method to check for path improvements through a newly added

node to the tree. These strategies decrease the cost of the solution path as iterations

proceed. The RRT∗ algorithm is outlined in Algorithm 2 with the two key strategies

highlighted.

Algorithm 2: RRT∗

Input: qroot, qtarget, Qobs

1 T ← qroot
2 while qtarget /∈ T do
3 qrand = Sample(Q)
4 if qrand /∈ Qobs then
5 qnear = FindNearestNode(T , qrand)
6 if Distance(qnear, qrand) > dmax then
7 qnew = Steer(qnear, qrand)
8 else
9 qnew = qrand

10 end
11 if enear,new /∈ Qobs then
12 Qnn = GetNeighbors(T , qnew)
13 AddToBestParent(T , Qnn, qnear, qnew) using Algorithm 3
14 RewireAroundNode(T , Qnn, qnew) using Algorithm 4
15

16 end

17 end

18 end
Output: Etarget

13

Algorithm 3: Add To Best Parent

Input: T , Qnn, qnear, qnew
1 cnew = cnear + cnear,new
2 for qi ∈ Qnn do
3 if ci + ci,new < cnew and ei,new /∈ Qobs then
4 cnew = ci + ci,new
5 qnear = qi
6 end

7 end
8 T ← qnew, Te ← enear,new

Algorithm 4: Rewire Around Node

Input: T , Qnn, qnew
1 for qi ∈ Qnn do
2 if cnew + ci,new < ci and ei,new /∈ Qobs then
3 ci = cnew + ci,new
4 Te ← ei,new
5 end

6 end

The method to choose the best parent in the tree for a new node (Algorithm 3) is

incorporated after the edge enear,new is determined to be collision-free. Before adding

qnew to the tree, RRT∗ first gathers the set of near neighbors to qnew in the tree as

Qnn = {qi ∈ T : ||qnew − qi|| < dmax}. The algorithm then iterates through all of the

nodes in Qnn, computing the cost cnew for the new node as a child of each qi ∈ Qnn

and checking if the edge ei,new is collision-free and could be a valid connection. The

algorithm chooses the parent of qnew (pnew) as the lowest-cost node in Qnn where there

is a valid connection.

The rewiring strategy (Algorithm 4) takes place after a new node is added to the

tree. At the end of an RRT∗ iteration where a new node qnew was added to the tree,

the algorithm attempts to rewire any nodes in Qnn through qnew. For each neighbor

node qi ∈ Qnn if the cost of the neighbor node ci is lowered when the parent of the

neighbor node pi is changed to qnew, then the neighbor node will be removed from its

previous parent and rewired in the tree with qnew as its parent node.

14

Improvements to RRT∗. Many further improvements have been made to the

RRT∗ algorithm since its development. Three improvements for RRT∗ are presented

in [31] that allow RRT∗ to handle sporadic obstacles in the environment by pruning

the tree, improve efficiency of solution path improvement by sampling around the

first solution path found, and improve efficiency of rewiring by checking if a node

can be directly connected to its grandparent rather than its parent. A method in

which a planning tree was grown from both the target configuration and the start

configuration at the same time called Bidirectional RRT∗ (B-RRT∗) was introduced

in [32]. And more recent improvements of the B-RRT∗ algorithm are introduced

in [33],[34],[35],[36],[37]. Another method introduced in [38] called RRT-connect also

attempts to grow two trees from the start and target configurations as in B-RRT∗, but

adds a step each iteration in which the trees attempt to connect to each other. More

recently, an optimal version of RRT-connect called RRT∗-connect was introduced in

[39]. Even more recently, methods of combining machine learning with path planning

have been explored by Jainkn Wang and others in [40],[41],[42].

3.3 RT-RRT∗

The RT-RRT∗ algorithm developed in [1] presents an attempt to solve the dynamic

path planning problem defined in Section 3.1.2. It builds on ideas developed in the

RRTX algorithm from [43],[44], in which the idea of real-time motion re-planning was

introduced. The RT-RRT∗ algorithm is intended to execute a high frequency loop

that maintains and updates a path planning tree while controlling an agent along

collision-free paths to a target state. To attempt to keep the main loop running

at a sufficiently high frequency to send control signals, the amount of time allowed

for expansion and rewiring of the path planning tree, and control of the agent is

restricted.

In contrast to RRT based static path planning problem solutions, RT-RRT∗ stores

and maintains its path planning tree until the agent reaches the target state. As a

15

result the planning tree is maintained and expanded for a much longer time period in

RT-RRT∗, and the size of the tree must be limited to conserve memory. To this end,

the authors incorporate a sampling density rejection algorithm such that a node will

not be added to the tree if there are too many nodes in the space around it or it is too

close to another node already in the tree. Let kmax be the maximum amount of nodes

allowed in a neighborhood of a planning tree and let rmin be the minimum allowable

distance between two nodes in the tree. The sampling density rejection algorithm is

given in Algorithm 5.

Algorithm 5: Sampling Density Rejection

Input: qnew, T
1 qnear = FindNearestNode(T , qnew)
2 Qnn = GetNeighbors(T , qnew)
3 if Size(Qnn) < kmax or ∥qnear − qnew∥ ≥ rmin then
4 AddToBestParent(T , Qnn, qnear, qnew) using Algorithm 3
5 end

The authors contribute two main tree maintenance methods to the base RRT∗

algorithm that keep the path planning tree up to date with the problem dynamics.

One method advances the root of the tree as the state of the agent changes, and a

second method rewires the tree around the updated root. Figure 3.2 illustrates the

RT-RRT∗ planner process.

The root node advancement strategy advances the root node, qroot as the agent

state qcurr is controlled along a solution path Etarget such that the agent state is

always moving towards the current root. This keeps the planning tree paths up to

date as the agent moves in its state space. Note that the root node is advanced

once the agent state qcurr is sufficiently close to qroot. For example, let Etarget =

{eroot,4, e4,7, e7,10, e10,target}, where the agent state qcurr is moving towards qroot.

Once the agent state gets sufficiently close to qroot the root node will advance to

qroot = q4 and thus the solution path will be updated and shortened to Etarget =

{eroot,7, e7,10, e10,target}. This method is illustrated in Figure 3.3.

16

Figure 3.2: RT-RRT∗ Planner Process

The rewire around root strategy allows nodes to rewire along lower cost paths

around the updated root node. The authors of RT-RRT∗ establish a root rewire

priority queue, denoted by Qroot ⊂ Q, to hold nodes that will be rewired next. The

highest priority nodes to be rewired next are at the front of the queue. To ensure

resources are not wasted attempting to rewire a node more than once per iteration,

a set Sroot ⊂ Q holds the nodes that have been rewired during the current rewiring

iteration and is checked before adding new nodes into Qroot. The rewire around root

algorithm is given in Algorithm 6.

17

(a) Solution path found (b) Root advanced to first
state

(c) Root advanced to second
state

Figure 3.3: RT-RRT∗ Root Advancement. a) A solution path is found from the cur-
rent state of the agent (blue dot) to the target state (green circle). b)
The current root (pink circle) is advanced to the first state in the solu-
tion path, and the agent (blue dot) is controlled toward the current root.
c) The agent (blue dot) approaches the first state in the solution path
and the current root (pink circle) is advanced to the second state in the
solution path.

Algorithm 6: Rewire Around Root

Input: Qroot, T
1 Sroot = ∅ // To track which nodes get rewired

2

3 if Qroot = ∅ then
4 Qroot ← qroot
5 Sroot ← qroot
6 end
7 T ← qroot
8 while Time not expired and Qroot ̸= ∅ do
9 qr = PopFront(Qroot)

10 Qnn = GetNeighbors(T , qr)
11 for qi ∈ Qnn do
12 if cr + ci,r < ci and ei,r /∈ Qobs then
13 ci = cr + ci,new
14 Te ← ei,r
15 end
16 if qi /∈ Qroot,unique then
17 Qroot ← qi
18 Sroot ← qroot
19 end

20 end

21 end

18

Without these methods, if the target state changes and is satisfied by a node on

a different branch then the branch the current state of the agent is on, then a new

solution path would necessarily travel through the original root location. This will

likely not be the shortest solution path available through the nodes in the planning

tree. This case is demonstrated in Figure 3.4. The combination of these strategies

allow the planning tree to store the shortest possible paths along the nodes in the

tree to the root node that best represents the agent’s current state as it moves.

(a) Without root advancement and rewiring. (b) With root advancement and rewiring.

Figure 3.4: RT-RRT∗ Root Advancement and Rewiring. a) The current state of the
agent (blue dot) is controlled along the initial solution path (green path)
in a tree without tree without node advancement and rewiring. The path
to the new target (cyan circle) will involve backtracking to the original
root node (pink circle), traversing three edges (cyan path). b) The current
state of the agent (blue dot) is controlled along the initial solution path
(green path) in a tree maintained with root advancement and rewiring.
The root node (pink circle) has changed to the node that the current state
is approaching. Due to rewiring, the new target state is only one edge
(cyan path) away from the node that the current state is approaching.

19

3.4 PRT-RRT∗ Software Design

We developed the PRT-RRT∗ implementation on the 7-DoF Franka Emika Panda

robot arm using open-source software. The Robot Operating System (ROS) frame-

work was utilized for managing communication between the planning, collision de-

tection, control, and sensing processes. Each of these four processes will be referred

to as a component. The controller component utilizes ROS MoveIt for high-level

control within the ROS franka, libfranka for low-level control of the Panda robot,

and Franka ROS to bridge the gap. The path planning process was implemented in

the Open Motion Planning Library (OMPL) framework. The collision detector and

the planner components both use the Bullet Continuous Collison Detection (CCD)

library for collision detection. Figure 3.5 illustrates the software dependencies of each

component.

The software package and documentation for installing and implementing PRT-

RRT∗ for Panda or any other robot with a URDF can be found in [2]. Note that

while the planner and collision detector components will work with other robots given

a URDF, in order to implement this process for a new setup the sensor and controller

processes will need to be designed for the robot and sensor stack in use. We use the

ROS Joint Trajectory Controller interface for PID control of the Panda robot arm.

A PID controller can be easily set up and tuned for a new robot as described in the

documentation in [45]. The PID control gains for the Panda controller are reported

in Table 1 in Appendix A. Note that any control may be used provided it is capable

of reaching the neighborhood of goal configurations within a known finite time.

3.5 PRT-RRT∗ Component

There are four distinct components running in parallel that make up the PRT-RRT∗

process: the planner component, the controller component, the collision checker com-

ponent, and the sensor component. See Figure 3.6 for a diagram of the communication

between components.

20

Figure 3.5: The PRT-RRT∗ components are laid out in the top row with the software
packages used in the 3 rows below. The components were designed using
the software packages within their individual columns.

3.5.1 Planner Component

The planner component is made up of four primary process states and the tran-

sitions between them. The states and state transitions are illustrated in Figure 3.7

and described below.

Tree Expansion. The planner component seeks solution paths to the planning

problem, starting from the current state of the agent q(t)curr and ending at the current

target state q(t)target ∀t. The planner process employs the RRT∗ algorithm discussed

in Section 3.2.2 to expand and rewire the tree as it searches for solution paths. Once

a solution path is found, the planner enters the communication state, publishes the

path out to the other components, and waits to hear back.

Communication. This short waiting period is essential to keep the solution path

information aligned between the parallel processes. For example, if the planner con-

tinues updating the tree and finds a better solution path, say Ê(t)target after E(t)target

was published, then the path to be executed by the controller and checked for col-

lision by the collision checker will be misaligned with the path held by the planner

(Ê(t)target ̸= E(t)target). Thus, the planner must wait to continue operating on the

tree until it receives an update that the controller is executing the next step in the

21

Figure 3.6: PRT-RRT∗ Communication Between Components

path or that the collision checker found the next step obstructed.

Tree Maintenance. Once the planner is notified that the control has begun

executing to the next state in the solution path, the planner will transition to main-

taining the planning tree. To maintain the planning tree, the planner component first

advances the root node and then rewires from the root node similar to the RT-RRT∗

routines discussed in Section 3.2.2. Recall that in RT-RRT∗, the root node is ad-

vanced when the agent state gets sufficiently close to the root node. In contrast, the

PRT-RRT∗ planner does not advance the root node until the controller has started

executing to a new state. The planner component will output an updated solution

path if a better path is found during rewiring. The planner spends the majority of

the maintenance period rewiring the tree, but also allocates some time to expand the

tree using RRT∗ so that exploration of the space continues throughout the process.

This exploration is useful in case the target state changes in the future.

Rerouting. If the next edge in the solution path becomes obstructed then the

planner needs to seek an unobstructed path to the target. The collision checker com-

ponent will alert the planner component to reroute. The reroute routine attempts

to find a better parent for each of the nodes along the currently obstructed solution

22

Figure 3.7: PRT-RRT∗ Planner States

path, qi ∈ Qtarget in order to yield an unobstructed solution path to the target state

among nodes already in the tree. If the reroute routine fails to find an unobstructed

path to the target already in the tree, then the planner will expand the tree via RRT∗

until a solution path is found. The reroute routine is outlined in Algorithm 7 and an

example of a successful reroute is depicted in Figure 3.8. This reroute routine is a

novel contribution.

To ensure solution paths account for up-to-date information about the environ-

ment, the planner component receives information about the current state of obstacles

Q(t)obs and the current target state q(t)target from the sensor component.

23

Algorithm 7: PRT-RRT∗ Reroute Routine

Input: T , Q(t)target, Q(t)obs
1 for qi ∈ Q(t)target do
2 if qi ∈ Q(t)obs then
3 continue
4 else
5 Qnn = GetNeighbors(T , qi)
6 AddToBestParent(T , Qnn, pi, qi) using Algorithm 3

7 end

8 end
Output: True if reroute succeeded, else False

(a) The solution path (green path) becomes
obstructed by a dynamic obstacle (red
block) and the planner attempts to
reroute the next state in the solution path.

(b) The reroute is successful and an unob-
structed solution path (green path) is
found to the target state (green circle).

Figure 3.8: Example of Successful PRT-RRT∗ Reroute.

Hyperparameters. The hyperparameters incorporated in the PRT-RRT∗ planner

are listed below.

• Max distance (rmax): Maximum euclidean distance between two connected

nodes in the tree.

• Goal Bias (α): Small number in the interval [0, 1] that influences how often the

goal is sampled. See Equation 3.3

24

• Max neighbors (kmax): Maximum neighbors allowed within rmax of a node. If

a new sample exceeds this number, then it will be rejected. See Algorithm 5.

• Nearest neighbor (rmin): Minimum Euclidean distance allowed between two

nodes in the tree. If a new sample is closer than rmin to a sample already in

the tree, then it will be rejected. See Algorithm 5

• Prime Tree seconds (tprime): Amount of time in seconds the PRT-RRT∗ algo-

rithm is initially allowed to plan before returning a solution.

3.5.2 Controller Component

The controller component executes solution paths Etarget(t) step-by-step after they

have been received from the planner. Parallelizing this process allows the control

signal frequency to be independent of the planner process frequency. Each step in

the path must be explicitly declared collision-free by the collision checker before the

controller will begin execution of the step.

As the controller component begins executing the next step in the current solution

path, it outputs an update that it is executing the next step, and how long it will

take to execute. If the controller component receives a notification from the sensor

component that the target state has been updated or a notification from the collision

checker that the next step in the path is obstructed, it will disregard its stored solution

path and wait for the planner to output an updated solution path to the current

target state before executing any more steps. The controller process is illustrated in

Figure 3.9.

3.5.3 Collision Checker Component

The collision checker component repeatedly checks for collisions along the first edge

in Etarget(t) between the current root node, qroot(t) and the second node in Qtarget(t)

∀t. When the collision checker component first checks for collisions along a new edge,

or when the collision status changes along an edge already checked for collisions, it

25

Figure 3.9: PRT-RRT∗ Controller States

will output whether the edge is collision-free or not. Recall that qroot(t) is advanced

to the next node in Qtarget(t) when the controller begins executing from the previous

root. The collision checker process is illustrated in Figure 3.10.

3.5.4 Sensor Component

The sensor component observes when obstacles move or the target state changes

and communicates this information to other components. The sensor component

is purely an observer of the environment and does not take any input from other

components.

A good example to illustrate the sensor component detection is a camera observing

the space around a robot arm for a pick and place application. If the robot is tasked

with picking up moving objects, then both the target state and the obstacle state

related to the object change. The sensor component must detect this and notify the

other components.

26

Figure 3.10: PRT-RRT∗ Collision Checker States

27

CHAPTER 4. SIMULATION METHODS AND RESULTS

The simulations were run on a Desktop PC with 20 Gb of RAM and an Intel Core

i-5 CPU. Ubuntu 20.04, and ROS Noetic were installed on the Desktop. The path

planning simulations were conducted for the 7-DoF Franka Emika Panda robotic arm.

4.1 Evaluation of RT-RRT∗ Real Time Performance for a 7D Robotic

System

The Franka Emika Panda robotic arm hardware communicates data at a frequency

of 1000 Hz, sending and receiving packets every 1 ms as outlined in [46]. If this control

frequency requirement is violated then the robot will halt. High frequency control

requirements are common for other 7DoF robotic arms as well like the Kinova Gen3

and the UR5 [47],[48].

Due to the serial execution of the tree maintenance and control sub-processes in

the RT-RRT∗ algorithm, the combined processing time of each iteration must have

an upper limit of 1 ms to satisfy the robot control frequency requirement. Thus if

any one sub-process out of those performed in an RT-RRT∗ loop takes longer then 1

ms, then it follows that RT-RRT∗ is unable to perform under the control frequency

constraint. While each sub-process can be manually limited in processing time, at a

minimum the RT-RRT∗ loop must be able to complete at least one attempt to add a

node to the tree and at least one rewiring to make progress. If the process is unable

to attempt to add a node in each iteration, then it will be unable to explore the space

and seek a solution path to a target state. If the process is unable to rewire at least

one node in each iteration, then it will be unable to maintain the tree and keep the

path planning data relevant to the agent as it moves. See Figure 3.4 for an example

of an unmaintained vs. a maintained path planning tree.

The rewiring operation is the most complex sub-process within the RT-RRT∗ main

loop, so to evaluate the feasibility of running the RT-RRT∗ loop in under 1 ms, data

28

was extracted on the RT-RRT∗ rewiring method. The rewiring method is outlined in

Algorithm 4.

During simulation with the Panda robot arm, the sensor component published a

new target state and the PRT-RRT∗ process planned and executed a solution path

to the target state. Rewiring around the advancing root node occurred while the

controller executed each step in the solution path. The average rewiring time per

node was collected each time the rewiring sub-process was executed. This simulation

was run in an obstacle free environment 10 times using the PRT-RRT∗ process. The

amount of time it took on average to complete one rewiring operation as well as

the minimum time it took to complete one rewiring operation per simulation run

was extracted. The PRT-RRT∗ process was employed for these simulations because

it uses the same rewiring operation as RT-RRT∗, but will not fail if the operation

takes too long due to the ability of the parallel control process to communicate at

the required control frequency. The results are shown in Table 4.1. See Table 2 in

Appendix A for the hyperparameter values used during the simulations.

Table 4.1: RT-RRT∗ Single Node Rewiring Time

Simulation Number Avg. Rewire Time (msec/node) Min. Rewire Time (msec/node)
1 2.534 1.074
2 2.302 1.683
3 2.631 1.842
4 2.392 1.206
5 2.708 1.701
6 3.114 2.347
7 2.353 1.781
8 2.269 1.752
9 2.155 1.537
10 3.031 1.903

Zero nodes were rewired in <1 msec, a requirement for the RT-RRT∗ algorithm

inner-loop control to be feasible for the Franka Emika Panda robot arm.

29

4.2 Evaluation of Root Rewiring Impact on Executed Path Cost

The results above from Section 4.1 imply that in order to implement RT-RRT∗ on

a 7D robot like the Franka Emika Panda, the root rewiring process would need to be

disabled for the control process to maintain the required frequency. We designed the

following methods to evaluate if it is worthwhile to maintain a path planning tree if

it cannot be maintained using a root rewiring process.

Monitored RRT∗. For the purpose of comparison, we designed a monitored

RRT∗ (M-RRT∗) planner process. The M-RRT∗ process uses the same sensor, collision

detector, and controller components as the PRT-RRT∗ process. However, the planner

component used by M-RRT∗ uses generic RRT∗ to solve for solutions between the

current state of the robot and the target state. Whenever a new path needs to be

planned due to a dynamic obstacle or change in target state, the M-RRT∗ planner

starts planning a path from scratch using RRT∗ rather than rewiring and updating a

stored tree as is done in the PRT-RRT∗ process. M-RRT∗ also uses the same sampling

density rejection method as PRT-RRT∗ (Algorithm 5). With all other algorithmic

details being the same, we assume any statistically significant variation between the

performance of the M-RRT∗ and PRT-RRT∗ processes is due to storing vs. not storing

the tree. The M-RRT∗ planner process is illustrated in Figure 4.1.

30

Figure 4.1: M-RRT∗ Planner Process

Primed PRT-RRT∗ No Rewire. The Primed PRT-RRT∗ No Rewire process

is the same as the Primed PRT-RRT∗ process, except the root rewiring process is

disabled. This is done to mimic the behavior of an RT-RRT∗ implementation for the

7D Panda configuration space, in which the process would be unable to rewire from

the root and send control signals out at the required frequency.

Three planner processes were compared: the Primed PRT-RRT∗ planner process,

the Primed PRT-RRT∗ No Rewire planner process, and the M-RRT∗ planner process.

In the Primed PRT-RRT∗ processes, the planner was initially given five seconds to

expand a planning tree without knowledge of the target or obstacle states. This

allowed us to mimic maintaining a stored planning tree from before the target and

obstacle states were published. After the initial five seconds had elapsed for the

Primed PRT-RRT∗ processes and at the beginning of each simulation for M-RRT∗,

an initial target joint state was published by the sensor component. Two seconds

after the initial target state was published, in which time the processes found and

31

began executing a solution path to the initial target joint state, a final target joint

state was published.

The starting, initial target, and final target joint states are depicted in Figure 4.2.

A total of 150 simulations were run, 50 using the Primed PRT-RRT∗ process, 50 using

the Primed PRT-RRT∗ No Rewire process, and 50 using the M-RRT∗ process. The

simulations were completed once the Panda was controlled to the final target joint

state. The cost of the executed path was collected for each run and the results are

shown in Table 4.2 and Figure 4.3.

(a) Starting Joint State (b) Initial Target Joint State (c) Final Target Joint State

Figure 4.2: Root Rewiring Evaluation States

Table 4.2: PRT-RRT∗ With vs. Without Root Rewiring Path Cost Results

Planning Process Path Cost† Mean (µ) Path Cost† Standard Dev (σ)
Primed PRT-RRT∗ No Rewire 7.159 1.071
Primed PRT-RRT∗ No Rewire 11.243 1.717

M-RRT∗ 8.327 3.725

N=50 samples were collected for each process (total 100 Samples).
Results showed the Primed PRT-RRT∗ and M-RRT∗ processes produced significantly lower cost
paths than Primed PRT-RRT∗ No Rewire process. The independent t-test results are presented
in Appendix A in Table 3.
† The cost of the path executed from the start state to the target state.

32

Figure 4.3: The Primed PRT-RRT∗ and M-RRT∗ processes executed significantly
lower cost paths on average than the Primed PRT-RRT∗ No Rewire pro-
cess.

4.3 Evaluation of PRT-RRT∗ Tree Maintenance vs. Planning From

Scratch

The results above from Section 4.2 show that without root rewiring, using a stored

tree with Primed PRT-RRT∗ produces significantly higher-cost paths as opposed to

re-planning from scratch with RRT∗ when changes occur in the environment. The

following methods were designed to yield results that explore the value of maintaining

a path planning tree with root rewiring compared to re-planning from scratch when

changes occur in the environment.

4.3.1 Comparative Scenarios

Three scenarios with varying environments were designed to be tested with a primed

PRT-RRT∗ process and the comparative M-RRT∗ process. In the primed PRT-RRT∗

process, the process was initially given five seconds to expand a planning tree without

knowledge of the target or obstacle states before beginning each scenario. Thus, PRT-

RRT∗ was able to build an uninformed RRT∗ tree exploring the environment before

the target or obstacle states were identified. At the beginning of each scenario, the

33

sensor component published scenario-specific target and obstacle state information so

each planner process would begin seeking the target state while avoiding the obstacles.

Each scenario was concluded when the robot reached the target state. See Table 2 in

Appendix A for the hyperparameters used during the simulations.

Scenario 1: No Obstacle. In the first scenario, a target state was set with no

obstacles in the environment. The initial and target states are illustrated in Figure 4.4.

(a) Initial joint state (b) Target joint state

Figure 4.4: No Obstacle Scenario States

Scenario 2: Ball Obstacle. In the second scenario, a target state was set along

with a ball obstacle that obstructed the shortest path between the robot start state

and the target state. The initial and target states are illustrated with the ball obstacle

in Figure 4.5.

34

(a) Initial joint state (b) Target joint state

Figure 4.5: Add Ball Scenario States

Scenario 3: Wall Obstacle. In the third scenario, a target state was set along

with a wall obstacle that obstructed the shortest path between the robot start state

and the target state and split the space in half. The initial and target states are

illustrated with the wall obstacle in Figure 4.6.

(a) Initial joint state (b) Target joint state

Figure 4.6: Add Wall Scenario States

Each of the three scenarios were run in simulation with each of the two planning

processes 50 times for a total of 300 runs. The cost of the path taken by the robot

to reach the final target state in each run was collected. The average and standard

deviation of all the samples for each scenario and process is displayed in Table 4.3.

35

The PRT-RRT∗ process required significantly less iterations to find a solution path to

the target state in all three scenarios, and found significantly better paths in scenario 2

when compared with the M-RRT∗ process. The executed path cost results are plotted

in Figure 4.7 and the initial solution iteration results are plotted in Figure 4.8.

Table 4.3: PRT-RRT∗ vs. M-RRT∗ Scenario Results

Scenario Planning Path Cost† Iterations††

Process µ± σ µ± σ

1: No Obstacle PRT-RRT∗ 6.324 ± 1.260 22.04 ± 18.19
M-RRT∗ 6.741 ± 2.477 42.70 ± 29.10

2: Ball Obstacle PRT-RRT∗ 5.498 ± 2.038 858.02 ± 3795.18
M-RRT∗ 7.218 ± 3.381 15560.30 ± 17422.90

3: Wall Obstacle PRT-RRT∗ 11.646 ± 6.635 24.98 ± 19.96
M-RRT∗ 11.181 ± 3.359 554.80 ± 1110.40

N=50 samples were collected for each scenario and process (total 300 Samples).
Results with significantly (p < 0.05) lower values are highlighted in green.
The independent t-test results are presented in Table 4.
† The cost of the path executed from the initial state to the target state.
†† The number of expansion iterations taken to find an initial solution path to
the target state.

36

Figure 4.7: The Primed PRT-RRT∗ process and the M-RRT∗ process executed sim-
ilar cost paths on average for the No Obstacle and Wall Obstacle sce-
nario. And the Primed PRT-RRT∗ process executed significantly lower
cost paths on average than the M-RRT∗ process for the Ball Obstacle
scenario.

Figure 4.8: The Primed PRT-RRT∗ process found the initial solution to all scenarios
in significantly less iterations on average than the M-RRT∗ process.

37

CHAPTER 5. DISCUSSION

5.1 Value of Parallezing RT-RRT∗

The results displayed in Table 4.1 show that the RT-RRT∗ rewiring routine is

unable to rewire a single node in the 7D path planning tree in under 1 msec. As

discussed in Section 4.1, this is a hard requirement for RT-RRT∗ to be capable of

executing at the necessary control frequency for the Panda robotic arm. Thus, if we

wish to use RT-RRT∗ on a real robotic system like the Panda, then the root rewire

routine must be disabled. The results displayed in Table 4.2 and Figure 4.3 show that

the Primed PRT-RRT∗ No Rewire process yielded significantly higher cost executed

paths than the M-RRT∗ process. This implies that we would be better off re-planning

from scratch when changes occur in the environment as opposed to storing a path

planning tree that is not rewired from the root.

The PRT-RRT∗ process we developed improves the efficiency of RT-RRT∗ such

that root rewiring can be enabled in an 7D implementation on the Panda robotic arm

while meeting the 1000hz control frequency constraint. In the PRT-RRT∗ process,

the control component is able to maintain the control frequency on a separate thread,

allowing the planner to take the required time to adequately maintain the tree on its

own thread. The results displayed in Table 4.2 shows that with root rewiring enabled,

storing and maintaining a tree produces similar executed path costs as re-planning

from scratch.

A secondary benefit to the parallelization employed in the PRT-RRT∗ algorithm is

the ability to easily plug in external controllers. The only constraint on a controller

to work within the PRT-RRT∗ framework is that it must be able to control the agent

within a neighborhood of a goal configuration in a known finite time. The RT-RRT∗

infrastructure lacks this ability because the control method is built into the planning

loop and needs to be designed to work in serial with the tree maintenance methods.

38

5.2 Value of Preserving and Maintaining a Path Planning Tree

Iterations to find initial solution. As displayed in Table 4.3, in all three sce-

narios the primed PRT-RRT∗ planner was able to find an initial solution path to the

target state in less iterations than M-RRT∗ on average. As shown in Table 4, these

results were statistically significant. Based on this evidence, we conclude that build-

ing and maintaining a tree in an environment enables a planner to find solution paths

more quickly and improves reactivity to changes in the environment. Note that some

of the iteration data collected for scenarios 2 and 3 yielded high standard deviation

due to outliers. During testing, the planner processes occasionally struggled to find

solution paths around obstructing obstacles in some simulation runs, taking far more

iterations to come up with an initial solution than the average. It is worth noting

that while the M-RRT∗ results yielded high standard deviations in both scenarios 2

and 3, the PRT-RRT∗ results only yielded high standard deviation in scenario 2.

Executed path cost. Scenario 2 was the only scenario in which the executed

path cost results was statistically significant when compared via an independent t-

test (Table 4). The primed PRT-RRT∗ process executed significantly lower cost paths

in scenario 2 as compared to the M-RRT∗ process. This result implies that for some

situations, maintaining a pre-built tree may lead to lower-cost solution paths. How-

ever, for the other two scenarios, neither planning process executed significantly lower

cost paths. Considering the nature of the dynamic path planning problem, there is

no way to know in advance what tree will be most advantageous to build and store

without any prior knowledge of obstacle or target states. Thus while storing a tree

may sometimes lead to lower-cost path solutions, a pre-built tree may also contain

many invalid or irrelevant paths once target and obstacle states change.

39

5.3 Limitations

5.3.1 Current Edge Obstructions

The collision checker employed in the PRT-RRT∗ (and RT-RRT∗) process only

checks for collisions between the current root and the next state in the current solu-

tion path. Since the agent is always being controlled to the current root, the current

edge the robot is traveling along does not get checked for collisions. Thus, if a dy-

namic obstacle obstructs the motion of the robot along the current edge, then it will

not be detected and the robot will run into it.

The current design of PRT-RRT∗ (and RT-RRT∗) has no method to handle imme-

diately obstructing obstacles while the robot is moving between solution path steps.

Detection of such an obstruction is not a complicated operation, but the reaction

requires some innovation. While a robot is traveling in between states in a solu-

tion path, there is no corresponding point in the path planning tree to represent the

current state of the robot. Only once the robot arrives at the next state will the

information maintained by the planner be relevant to the robot.

5.4 Future Work

5.4.1 Add Ability to React to Current Edge Obstructions

It is trivial to alter the collision checker component to check along the current edge

for obstructions as noted in Section 5.3.1, so here we discuss potential reactions.

Stop in place. A potential solution is to notify the controller of a current edge

obstruction and stop the robot in place. The planner could then add a node at the

current state the robot is stopped at, and attempt to connect the node to the rest of

the planning tree as the new root.

Incorporate alternative control methods. Considering the minimal constraints

placed on the controller in the PRT-RRT∗ process, another potential solution would

be to rely on an alternative controller to move away from nearby obstacles. A rein-

forcement learning, potential field, or control barrier function-based controller could

40

be employed to control the robot away from an approaching dynamic obstacle and

towards a nearby node in the planning tree when a current edge obstruction is de-

tected. Once the robot state aligns with a state in the path planning tree, the current

root can be set and rewired to update the tree to the new current state of the robot.

5.4.2 Further Parallelization

In [18] and [19], the authors introduce parallelization techniques for the algorithms

used within the planner and the collision checker. While the work presented in this

thesis parallelizes the higher-level planner, controller, and collision checker compo-

nents, for an even more efficient PRT-RRT∗ process, we propose implementing these

lower-level parallelization techniques within the planner and collision checker compo-

nents.

41

APPENDICES

Appendix A

Table 1: Panda PID Controller Gains

Joint Proportional Gain Derivative Gain Integral Gain
q1 600 30 0
q2 600 30 0
q3 600 30 0
q4 600 30 0
q5 250 10 0
q6 150 10 0
q7 50 5 0

Table 2: Simulation Hyperparameters

Hyperparameter Value
Max distance (rmax) 3.0

Goal bias (α) 0.05
Max neighbors (kmax) 100
Nearest neighbor (rmin) 0.1

Prime Tree seconds (tprime) 5.0

Table 3: Root Rewiring Evaluation Independent T-Test Results

Planner Process 1 Planner Process 2 t-value p-value

PRT-RRT∗ PRT-RRT∗ No Rewire -6.652 1.664e-09

M-RRT∗ PRT-RRT∗ No Rewire -4.335 3.424e-05
PRT-RRT∗ M-RRT∗ -0.394 0.674

A negative t-value means lower executed path cost for the Planner Pro-
cess 1 column.
p-values less than 0.05, which imply statistical significance , are high-
lighted in green

42

Table 4: Tree Maintenance vs. Planning From
Scratch Independent T-Test Results

Comparison Variable t-value p-value
Scenario 1 Mean Cost -1.0597 0.2919

Scenario 2 Mean Cost -3.0816 0.0027
Scenario 3 Mean Cost 0.4426 0.6590

Scenario 1 Mean Iterations -4.2585 4.7245e-05

Scenario 2 Mean Iterations -5.8302 7.1032e-08

Scenario 3 Mean Iterations -3.3733 0.0011

A negative t-value means lower cost/iterations for PRT-
RRT∗ compared to M-RRT∗

p-values less than 0.05, which imply
statistical significance , are highlighted in green

43

Appendix B

RRT Rapidly exploring Random Trees: An iterative process that uses random sam-
pling to quickly build a space-filling tree in search of feasible solution paths.
7–9, 11–13

RRT* Rapidly exploring Random Trees*: Optimal extension of RRT algorithm, us-
ing rewiring and a method to add new nodes to the best possible parent in the
tree to ensure only optimal paths are included in the planning tree. 1, 8, 13–16,
21–23, 30, 33

RT-RRT* Real-Time RRT*: Extension of the RRT* algorithm that maintains and
updates a path planning tree while controlling an agent along collision-free paths
to a target state. If the process runs at a high enough frequency, RT-RRT* can
be used in environments with moving obstacles and varying target states to
quickly find new solution paths when changes occur in the environment. 1, 2,
8, 15–17, 22, 28–31, 38, 40

PRT-RRT* Parallel Real-Time RRT*: Parallelization of the RT-RRT* algorithm
that enables high frequency control, collision checking, and environment sensing
sub-processes to run in parallel with the more computationally expensive tree
maintenance and expansion operations in the planner sub-process. This takes
control frequency constraints off of the planning operations which is important
when implementing tree maintenance operations in higher-dimensional spaces.
1, 2, 8, 20, 22, 24, 25, 29, 30, 33, 36, 38–41, 43

M-RRT* Monitored RRT*: Planning process that uses the same parallel sensor,
collision checker, and controller sub-processes as PRT-RRT*, but only uses
RRT* for the planning sub-process. M-RRT* throws the planning tree away
and re-plans from scratch using RRT* in response to changes in the environment
using rather than maintaining a tree as is done in PRT-RRT*. 30–33, 36–39,
43

Primed PRT-RRT* The PRT-RRT* process is initially given some time to expand
a planning tree without knowledge of the target or obstacle states. This mimics
holding on to and maintaining a planning tree for a long-running process. 31–33,
37

Primed PRT-RRT* No Rewire The Primed PRT-RRT* process where no root rewiring
is allowed. This mimics the limitations of the RT-RRT* process for a 7D Im-
plementation with control frequency constraints in which there is not enough
time to maintain the planning tree effectively and send control signals at the
required rate on a single thread. 31–33, 38

44

BIBLIOGRAPHY

[1] K. Naderi, J. Rajamäki, and P. Hämäläinen, “Rt-rrt*: A real-time path
planning algorithm based on rrt*,” in Proceedings of the 8th ACM SIGGRAPH
Conference on Motion in Games, ser. MIG ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 113–118. [Online]. Available:
https://doi.org/10.1145/2822013.2822036

[2] D. Yackzan. (2023) Panda robot arm demo. [Online]. Available: https:
//github.com/dwya222/robo demo ws

[3] J. Thumm and M. Althoff, “Provably safe deep reinforcement learning for
robotic manipulation in human environments,” in 2022 International Conference
on Robotics and Automation (ICRA). IEEE, 2022, pp. 6344–6350. [Online].
Available: https://arxiv.org/abs/2205.06311

[4] J. Choi, G. Lee, and C. Lee, “Reinforcement learning-based dynamic
obstacle avoidance and integration of path planning,” Intelligent Service
Robotics, vol. 14, no. 5, p. 663–677, 2021. [Online]. Available: https:
//doi.org/10.1007/s11370-021-00387-2

[5] O. Khatib, “The potential field approach and operational space formulation in
robot control,” Adaptive and Learning Systems: Theory and Applications, pp.
367–377, 1986. [Online]. Available: https://doi.org/10.1007/978-1-4757-1895-9
26

[6] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Proceedings. 1991 IEEE
International Conference on Robotics and Automation, 1991, pp. 1398–1404
vol.2. [Online]. Available: https://doi.org/10.1109/ROBOT.1991.131810

[7] M. Davoodi, A. Iqbal, J. M. Cloud, W. J. Beksi, and N. R. Gans, “Safe robot
trajectory control using probabilistic movement primitives and control barrier
functions,” Frontiers in Robotics and AI, vol. 9, Mar 2022. [Online]. Available:
https://doi.org/10.3389%2Ffrobt.2022.772228

[8] Y. Chen, A. Singletary, and A. D. Ames, “Guaranteed obstacle avoidance
for multi-robot operations with limited actuation: A control barrier function
approach,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 127–132, 2020.
[Online]. Available: https://doi.org/10.1109/LCSYS.2020.3000748

[9] G. Yang, B. Vang, Z. Serlin, C. Belta, and R. Tron, “Sampling-based
motion planning via control barrier functions,” in Proceedings of the 2019 3rd
International Conference on Automation, Control and Robots. ACM, oct 2019,
pp. 22–29. [Online]. Available: https://doi.org/10.1145%2F3365265.3365282

45

https://doi.org/10.1145/2822013.2822036
https://github.com/dwya222/robo_demo_ws
https://github.com/dwya222/robo_demo_ws
https://arxiv.org/abs/2205.06311
https://doi.org/10.1007/s11370-021-00387-2
https://doi.org/10.1007/s11370-021-00387-2
https://doi.org/10.1007/978-1-4757-1895-9_26
https://doi.org/10.1007/978-1-4757-1895-9_26
https://doi.org/10.1109/ROBOT.1991.131810
https://doi.org/10.3389%2Ffrobt.2022.772228
https://doi.org/10.1109/LCSYS.2020.3000748
https://doi.org/10.1145%2F3365265.3365282

[10] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968. [Online]. Available:
https://doi.org/10.1109/TSSC.1968.300136

[11] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,” Journal of Artificial Intelligence Research, vol. 1, pp. 7–27, 1985.
[Online]. Available: https://doi.org/10.1016/0004-3702(85)90084-0

[12] M. Likhachev and A. Stentz, “R* search,” Association for the Advancement of
Artificial Intelligence, Jul 2008. [Online]. Available: https://www.cs.cmu.edu/
∼maxim/files/rstar aaai08.pdf

[13] R. E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42, no.
2-3, pp. 189–211, Mar. 1990. [Online]. Available: https://doi.org/10.1016/
0004-3702(90)90054-4

[14] J. Cannon, K. Rose, and W. Ruml, “Real-time motion planning with dynamic
obstacles,” Proceedings of the International Symposium on Combinatorial
Search, vol. 3, no. 1, pp. 33–40, Aug 2021. [Online]. Available: https:
//doi.org/10.1609%2Fsocs.v3i1.18249

[15] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient planning
in dynamic environments,” in 2009 IEEE International Conference on
Robotics and Automation. IEEE, 2009, pp. 1662–1668. [Online]. Available:
https://doi.org/10.1109/ROBOT.2009.5152860

[16] M. Phillips and M. Likhachev, “SIPP: Safe interval path planning
for dynamic environments,” in 2011 IEEE International Conference on
Robotics and Automation. IEEE, May 2011. [Online]. Available: https:
//doi.org/10.1109%2Ficra.2011.5980306

[17] J. Snape, S. J. Guy, and J. van den Berg, “Independent navigation of multiple
robots and virtual agents,” in Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume 1-Volume 1, 2010, pp.
1645–1646. [Online]. Available: http://dx.doi.org/10.1145/1838206.1838522

[18] J. Pan, C. Lauterbach, and D. Manocha, “G-planner: Real-time motion planning
and global navigation using gpus,” in Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, ser. AAAI’10. AAAI Press, 2010, p.
1245–1251. [Online]. Available: https://doi.org/10.1609/aaai.v24i1.7732

[19] J. Pan and D. Manocha, “Gpu-based parallel collision detection for fast motion
planning,” The International Journal of Robotics Research, vol. 31, no. 2, pp.
187–200, 2012. [Online]. Available: https://doi.org/10.1177/0278364911429335

[20] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. D. Konidaris, “Robot
motion planning on a chip.” in Robotics: Science and Systems, vol. 6, 2016.
[Online]. Available: https://doi.org/10.15607/rss.2016.xii.004

46

https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/0004-3702(85)90084-0
https://www.cs.cmu.edu/~maxim/files/rstar_aaai08.pdf
https://www.cs.cmu.edu/~maxim/files/rstar_aaai08.pdf
https://doi.org/10.1016/0004-3702(90)90054-4
https://doi.org/10.1016/0004-3702(90)90054-4
https://doi.org/10.1609%2Fsocs.v3i1.18249
https://doi.org/10.1609%2Fsocs.v3i1.18249
https://doi.org/10.1109/ROBOT.2009.5152860
https://doi.org/10.1109%2Ficra.2011.5980306
https://doi.org/10.1109%2Ficra.2011.5980306
http://dx.doi.org/10.1145/1838206.1838522
https://doi.org/10.1609/aaai.v24i1.7732
https://doi.org/10.1177/0278364911429335
https://doi.org/10.15607/rss.2016.xii.004

[21] S. Fujii and Q.-C. Pham, “Realtime trajectory smoothing with neural nets,” in
2022 International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 7248–7254. [Online]. Available: https://doi.org/10.1109%2Ficra46639.
2022.9812418

[22] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: A
fast marching sampling-based method for optimal motion planning in many
dimensions,” The International journal of robotics research, vol. 34, no. 7, pp.
883–921, 2015. [Online]. Available: https://doi.org/10.48550/arXiv.1306.3532

[23] J. A. Sethian, “Fast marching methods,” SIAM review, vol. 41, no. 2, pp.
199–235, 1999. [Online]. Available: https://www.jstor.org/stable/2653069

[24] J. A. Sethian and A. Vladimirsky, “Fast methods for the eikonal and
related hamilton–jacobi equations on unstructured meshes,” Proceedings of the
National Academy of Sciences, vol. 97, no. 11, pp. 5699–5703, 2000. [Online].
Available: https://doi.org/10.1073/pnas.090060097

[25] J. Hou, Z. Liu, and H. Su, “Obstacle based fast marching tree for
global motion planning,” in IECON 2022 – 48th Annual Conference of
the IEEE Industrial Electronics Society, 2022, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/IECON49645.2022.9968798

[26] M. Tukan, A. Maalouf, D. Feldman, and R. Poranne, “Obstacle aware
sampling for path planning,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 13 676–13 683.
[Online]. Available: https://doi.org/10.48550/arXiv.2203.04075

[27] Z. Chai and Z. Zhang, “Mobile robot path planning in 2d space:
A survey,” in 2022 International Symposium on Control Engineering
and Robotics (ISCER), 2022, pp. 47–57. [Online]. Available: https:
//doi.org/10.1109/ISCER55570.2022.00015

[28] S. M. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” Dept. Comput. Sci., Iowa State Univ., Ames, IA,
USA, Technical Report TR 98-11, Oct. 1998. [Online]. Available: http:
//msl.cs.illinois.edu/∼lavalle/papers/Lav98c.pdf

[29] C. Urmson and R. Simmons, “Approaches for heuristically biasing rrt growth,”
in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003) (Cat. No.03CH37453), vol. 2, 2003, pp. 1178–1183
vol.2. [Online]. Available: https://doi.org/10.1109/IROS.2003.1248805

[30] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp.
846–894, 2011. [Online]. Available: https://arxiv.org/abs/1105.1186

47

https://doi.org/10.1109%2Ficra46639.2022.9812418
https://doi.org/10.1109%2Ficra46639.2022.9812418
https://doi.org/10.48550/arXiv.1306.3532
https://www.jstor.org/stable/2653069
https://doi.org/10.1073/pnas.090060097
https://doi.org/10.1109/IECON49645.2022.9968798
https://doi.org/10.48550/arXiv.2203.04075
https://doi.org/10.1109/ISCER55570.2022.00015
https://doi.org/10.1109/ISCER55570.2022.00015
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
https://doi.org/10.1109/IROS.2003.1248805
https://arxiv.org/abs/1105.1186

[31] B. Boardman, T. Harden, and S. Mart́ınez, “Improved Performance of
Asymptotically Optimal Rapidly Exploring Random Trees,” Journal of
Dynamic Systems, Measurement, and Control, vol. 141, no. 1, 08 2018, 011002.
[Online]. Available: https://doi.org/10.1115/1.4040970

[32] A. P. Matthew Jordan, “Optimal bidirectional rapidly-exploring random trees,”
CSAIL, MIT, Technical Report MIT-CSAIL-TR-2013-021, 2013. [Online].
Available: http://hdl.handle.net/1721.1/79884

[33] A. H. Qureshi, K. F. Iqbal, S. M. Qamar, F. Islam, Y. Ayaz, and
N. Muhammad, “Potential guided directional-rrt* for accelerated motion
planning in cluttered environments,” in 2013 IEEE International Conference
on Mechatronics and Automation, 2013, pp. 519–524. [Online]. Available:
https://doi.org/10.1109/ICMA.2013.6617971

[34] A. H. Qureshi, S. Mumtaz, K. F. Iqbal, B. Ali, Y. Ayaz, F. Ahmed,
M. S. Muhammad, O. Hasan, W. Y. Kim, and M. Ra, “Adaptive
potential guided directional-rrt*,” in 2013 IEEE International Conference on
Robotics and Biomimetics (ROBIO), 2013, pp. 1887–1892. [Online]. Available:
https://doi.org/10.1109/ROBIO.2013.6739744

[35] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-exploring random
trees for optimal motion planning in complex cluttered environments,” Robotics
and Autonomous Systems, vol. 68, pp. 1–11, 2015. [Online]. Available:
https://doi.org/10.1016%2Fj.robot.2015.02.007

[36] P. Xin, X. Wang, X. Liu, Y. Wang, Z. Zhai, and X. Ma, “Improved bidirectional
rrt* algorithm for robot path planning,” Sensors, vol. 23, no. 2, 2023. [Online].
Available: https://www.mdpi.com/1424-8220/23/2/1041

[37] Z. Tahir, A. H. Qureshi, Y. Ayaz, and R. Nawaz, “Potentially guided bidirection-
alized rrt* for fast optimal path planning in cluttered environments,” Robotics
and Autonomous Systems, vol. 108, pp. 13–27, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0921889017309387

[38] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-query
path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings
(Cat. No.00CH37065), vol. 2, 2000, pp. 995–1001 vol.2. [Online]. Available:
https://doi.org/10.1109/ROBOT.2000.844730

[39] S. Klemm, J. Oberländer, A. Hermann, A. Roennau, T. Schamm, J. M.
Zollner, and R. Dillmann, “Rrt*-connect: Faster, asymptotically optimal
motion planning,” in 2015 IEEE International Conference on Robotics
and Biomimetics (ROBIO), 2015, pp. 1670–1677. [Online]. Available:
https://doi.org/10.1109/ROBIO.2015.7419012

48

https://doi.org/10.1115/1.4040970
http://hdl.handle.net/1721.1/79884
https://doi.org/10.1109/ICMA.2013.6617971
https://doi.org/10.1109/ROBIO.2013.6739744
https://doi.org/10.1016%2Fj.robot.2015.02.007
https://www.mdpi.com/1424-8220/23/2/1041
https://www.sciencedirect.com/science/article/pii/S0921889017309387
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/ROBIO.2015.7419012

[40] J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng, “Neural rrt*:
Learning-based optimal path planning,” IEEE Transactions on Automation
Science and Engineering, vol. 17, no. 4, pp. 1748–1758, 2020. [Online]. Available:
https://doi.org/10.1109/TASE.2020.2976560

[41] J. Wang, J. Liu, W. Chen, W. Chi, and M. Q.-H. Meng, “Robot
path planning via neural-network-driven prediction,” IEEE Transactions on
Artificial Intelligence, vol. 3, no. 3, pp. 451–460, 2022. [Online]. Available:
https://doi.org/10.1109/TAI.2021.3119890

[42] J. Wang, X. Jia, T. Zhang, N. Ma, and M. Q.-H. Meng, “Deep neural network
enhanced sampling-based path planning in 3d space,” IEEE Transactions on
Automation Science and Engineering, vol. 19, no. 4, pp. 3434–3443, 2022.

[43] M. Otte and E. Frazzoli, “Rrt x: Real-time motion planning/replanning for
environments with unpredictable obstacles,” in Algorithmic foundations of
robotics XI: selected contributions of the eleventh international workshop on
the algorithmic foundations of robotics. Springer, 2015, pp. 461–478. [Online].
Available: http://ottelab.com/html stuff/pdf files/Otte.Frazzoli.InSubmission.
pdf

[44] M. Otte and Frazzoli, “Rrtx: Asymptotically optimal single-query sampling-
based motion planning with quick replanning,” The International Journal of
Robotics Research, vol. 35, no. 7, pp. 797–822, 2016. [Online]. Available:
https://doi.org/10.1177/0278364915594679

[45] O. Robotics. (2018) Joint trajectory controller. [Online]. Available: http:
//wiki.ros.org/joint trajectory controller

[46] F. Emika. (2017) Minimum system and network requirements - franka
control interface (fci). [Online]. Available: https://frankaemika.github.io/docs/
requirements.html

[47] Kinova. (2022) Kinova user guide. [Online]. Available: https://www.
kinovarobotics.com/uploads/User-Guide-Gen3-R07.pdf

[48] U. Robots. Ur5 technical details. [Online]. Available: https://www.
universal-robots.com/media/1802778/ur5e-32528 ur technical details .pdf

49

https://doi.org/10.1109/TASE.2020.2976560
https://doi.org/10.1109/TAI.2021.3119890
http://ottelab.com/html_stuff/pdf_files/Otte.Frazzoli.InSubmission.pdf
http://ottelab.com/html_stuff/pdf_files/Otte.Frazzoli.InSubmission.pdf
https://doi.org/10.1177/0278364915594679
http://wiki.ros.org/joint_trajectory_controller
http://wiki.ros.org/joint_trajectory_controller
https://frankaemika.github.io/docs/requirements.html
https://frankaemika.github.io/docs/requirements.html
https://www.kinovarobotics.com/uploads/User-Guide-Gen3-R07.pdf
https://www.kinovarobotics.com/uploads/User-Guide-Gen3-R07.pdf
https://www.universal-robots.com/media/1802778/ur5e-32528_ur_technical_details_.pdf
https://www.universal-robots.com/media/1802778/ur5e-32528_ur_technical_details_.pdf

VITA

David Yackzan

Education

• B.S. in Mechanical Engineering from the University of Dayton. December, 2020.

Professional positions held

• January 2021 to Present: Research Assistant

• May 2019 to Present: Robotics Software Engineer at Badger Technologies

Scholastic and professional honors

• National Science Foundation Graduate Research Fellowship Program: 2022
Honorable Mention

• Dean’s List All Semesters

50

	Parallel Real Time RRT*: An RRT* Based Path Planning Process
	Recommended Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	Introduction and Contributions
	Contributions

	Literature Review
	Reinforcement Learning (RL)
	Potential Fields (PFs)
	Control Barrier Functions (CBFs)
	Search Methods
	Real Time Search Methods
	Path Planning with Dynamic Obstacles
	Real-Time Motion Planning
	Fast Marching Trees

	Background
	Problem Definition
	Static Path Planning Problem
	Dynamic Path Planning Problem
	Path Planning Tree

	Existing Algorithms
	RRT
	RRT*

	RT-RRT*
	PRT-RRT* Software Design
	PRT-RRT* Component
	Planner Component
	Controller Component
	Collision Checker Component
	Sensor Component

	Simulation Methods and Results
	Evaluation of RT-RRT* Real Time Performance for a 7D Robotic System
	Evaluation of Root Rewiring Impact on Executed Path Cost
	Evaluation of PRT-RRT* Tree Maintenance vs. Planning From Scratch
	Comparative Scenarios

	Discussion
	Value of Parallezing RT-RRT*
	Value of Preserving and Maintaining a Path Planning Tree
	Limitations
	Current Edge Obstructions

	Future Work
	Add Ability to React to Current Edge Obstructions
	Further Parallelization

	Appendices
	Appendix A
	Appendix B

	Bibliography
	Vita

