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ABSTRACT OF DISSERTATION 

APPLICATIONS OF DIGITAL TERRAIN MODELING TO ADDRESS PROBLEMS 
IN GEOMORPHOLOGY AND ENGINEERING GEOLOGY 

This dissertation uses digital terrain modeling and computational methods to yield insight 
into three topics: 1) evaluating the influence of glacial topography on fluvial sediment 
transport in the Teton Range, WY, 2) integrating regional airborne lidar, UAV lidar, and 
structure from motion photogrammetry to characterize decadal-scale movement of slow-
moving landslides in northern Kentucky, and 3) applying machine learning methods to 
surficial geologic mapping. 

The role of topography as a boundary condition that controls the efficiency of fluvial 
erosion in the Teton Range, Wyoming, was investigated by using existing lidar data to 
delineate surficial geologic units, geometrically reconstruct the depth to bedrock, and 
estimate the sediment volume and sediment production rate in two catchments. This data 
was coupled with seismic reflection data in the bay into which these catchments drain. 
We found that while the sediment production rate of 0.17 ± 0.02 mm/yr is similar to the 
uplift rate of the Teton Range, only about 2.6% of the post-glacial sediment has been 
transported out of the catchments, and the denudation rate is just 0.004 ± 0.001 mm/yr. 
We conclude that once the topography has been altered by glaciers, which flatten the 
valley bottom and steepen the valley walls, rivers are incapable of evacuating the 
sediment effectively. Sediment will be trapped in the valleys until the next glacial 
advance, or until uplift steepens the system such that rivers can once again become 
efficient.  

Repeat digital terrain surveys can be used to quantify changes to the Earth’s surface. 
Challenges include determining the threshold of change that can be detected when 
combining topographic data acquired by different platforms and of varying quality. To 
quantify the threshold of detectible elevation change in a slow-moving colluvial landslide 
in northern Kentucky over 14 years using county-wide lidar, uncrewed aerial vehicles 



(UAV) structure from motion surveys (SfM) and a UAV lidar survey, we used the 
statistics of noise from elevation difference maps in areas outside of the landslide. We 
found that the threshold of detectable elevation change ranges from 0.05 to 0.20 m, 
depending on the survey combination, and that detectable change in the landslide was 
found between all surveys, including those separated by only 2 weeks.  

For most users, geologic maps may convey a level of certainty which obscures the 
decisions and interpretations made by the mapper. The combination of machine learning 
and digital terrain data provides a new method for producing geologic maps which can 
also convey and preserve the underlying uncertainty. We test the performance of machine 
learning methods to accurately map the surficial geology of two quadrangles in Kentucky 
using 31 variables derived from lidar data, including surface roughness, slope, 
topographic position, and residual topography. The performance of eight machine 
learning methods were compared, and the importance of each variable was measured. 
The classifier with the highest accuracy using just the most important variables was used 
to produce surficial geologic maps in 6 areas, with resulting accuracies ranging from 
0.795 to 0.931. The uncertainty resulting from the machine learning process is conveyed 
using gradations of color, which can be modified depending on the needs of the map user. 

KEYWORDS: Digital terrain modeling, change detection, landslides, machine learning, 
geologic mapping, sediment budget 

Sarah E. Johnson 
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CHAPTER 1.   THE INFLUENCE OF GLACIAL TOPOGRAPHY ON FLUVIAL 
EFFICIENCY IN THE TETON RANGE, WYOMING 

1.1 ABSTRACT 

This study examines the role of topography as a dynamic boundary condition that 
limits the efficiency of fluvial erosion in the post-glacial Teton Range landscape. The 
volume of sediment currently stored in two major catchments was estimated using high-
resolution LiDAR and geometric reconstructions of depth to bedrock. Seismic reflection 
data in Moran Bay reveals post-glacial sediment preserved behind a submerged moraine, 
which isolates the bay from the larger Jackson Lake depocenter. The volume of post-
glacial sediment stored in the canyons and bay totals 173.82 ± 19.5336.0 (x10-3 km3), 
which translates to a catchment-wide sediment production rate of 0.17 ± 0.02 mm/yr. The 
rock-equivalent sediment volume in Moran Bay is 4.4 ± 0.9 (x10-3 km3), only ~2.6% of 
the total post-glacial volume. While the estimated sediment production rate in the 
canyons is similar to the uplift rate, the denudation rate derived from Moran Bay 
sediment is 0.004 ± 0.001 mm/yr, implying highly inefficient post-glacial sediment 
transport. The fluvial system has been disequilibrated by glacial erosion such that 
interglacial valley profiles lack the steepness needed to transport sediment, delaying 
sediment evacuation until the next glacial advance, or until uplift sufficiently steepens the 
fluvial system so that it regains efficiency. Furthermore, colluvial production rates in the 
deglaciated valleys are close to long-term denudation and uplift rates, suggesting that 
once topography has been equilibrated to glacial erosion processes, subsequent glaciers 
do not need to produce much bedrock erosion, but mainly sweep out accumulated 
sediment to maintain equilibrium. 

1.2 INTRODUCTION 

The relationships and feedbacks between rock uplift, denudation and topography 
remain enigmatic, and many studies regard topography as merely a record of the interplay 
between tectonic and climatic forces.  The role of climate in driving fluvial and glacial 
processes that keep pace with (or enhance) rock uplift has been thoroughly examined 
(Mitchell & Montgomery, 2006; Egholm et al., 2009; Koppes & Montgomery, 2009; 
Whipple, 2009; Adams et al., 2020; Spotila, 2022) although a definitive consensus 
remains elusive. The potential role of topography itself as a dynamic boundary condition 
that controls the rate of denudation and sediment transport has received far less attention. 
This study examines how topography limits the efficiency of fluvial erosion, thus 
imposing a threshold that must be overcome for the fluvial system to effectively respond 
to uplift. As glaciers retreat, a paraglacial landscape with over-steepened valley walls 
produces sediment rapidly (Norton et al., 2010; Ballantyne, 2013). However, deglaciated 
valley bottoms typically lack the profile steepness to facilitate fluvial erosion and 
sediment evacuation (Dortch et al., 2011; Moon et al., 2011). Thus, if the glacial 
topographic conditioning is exhaustive, topography itself creates a protracted lag in 
fluvial response time, similar to moraine dams preventing fluvial incision in high 
mountains (e.g., Korup & Montgomery, 2008). The impacts of continued climate change 
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and glacial ablation may lead to development of numerous inefficient rivers, which can 
impact sediment transport and water supply (Herman et al., 2021). 

Although sediment volumes or production rates have been estimated for 
deglaciated valleys in a number of locations (e.g., Otto et al., 2009; Tunnicliffe & 
Church, 2011; Tranel et al., 2015; Ardelean et al., 2017), documentation of complete 
post-glacial catchment sediment budgets from source to sink is rare (e.g., Fame et al., 
2018). Studies of fluvial transport in deglaciated catchments have focused on enhanced 
sedimentation in lower reaches where fluvial processes dominate (Church & Ryder, 
1972; Ballantyne, 2013), in contrast to the upper paraglacial reaches where glacial drift is 
less abundant and rivers are smaller (Dietsch et al., 2015). Field-based denudation studies 
often rely on the assumption that short-term (days to years) observations of suspended 
sediment yields from modern rivers represent long-term (104-106 years) denudation rates, 
yet these rates can be quite variable through time (Koppes & Montgomery, 2009; Spotila, 
2022). Various strategies have also been employed to model fluvial erosion, but there are 
few studies that directly quantify mass flux (Adams et al., 2020). These knowledge gaps 
lead to uncertainty in the governing relationships between uplift, denudation and 
topography, leading to a reliance on modeling for insight (Pedersen & Egholm, 2013). 

To assess fluvial efficiency in a relict glacial landscape and address spatial-
temporal data disparities, a complete post-glacial sediment budget and long-term (104-108 
years) uplift and denudation data are necessary. The Teton Range (Wyoming, western 
USA, Fig. 1.1) provides an ideal natural setting to examine this problem, as fluvial 
sediment derived from two deglaciated catchments is trapped in a perched lacustrine 
basin (Moran Bay), thus allowing a post-glacial sediment budget to be constructed. 
Existing high-resolution light detection and ranging (LiDAR) topographic data allows 
detailed geomorphologic mapping of glacial and post-glacial sediment and the estimation 
of sediment volumes and production rates. Seismic reflection data acquired for this study 
in Moran Bay reveals a complete post-glacial (14.4 ka) sediment package from two major 
catchments in the range, from which sediment volumes can be estimated. The glacial 
history has been constrained by 10Be cosmogenic dating of glacial moraines (Pierce et al., 
2018), and the uplift history is well-constrained by multiple low-T thermochronology 
studies (Brown et al., 2017; Thigpen et al., 2021). Here, we leverage these datasets to 
quantify post-glacial sediment production and flux from source to sink. We find that 
although hillslope sediment production rates are close to uplift rates, glacially carved 
valley bottom gradients limit efficient fluvial sediment flux, stalling sediment evacuation 
until the next glacial advance, or until uplift sufficiently steepens the system to again 
become efficient. 
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Figure 1.1  a) Regional map of the Teton Range which lies at the eastern edge of the 
Basin and Range in northwestern Wyoming. Displacement along the Teton normal fault 
that bounds the eastern side of the range has produced an asymmetric uplift that dips to 
the west. b) Moran and Snowshoe Canyons drain into Moran Bay, the westernmost 
portion of Jackson Lake. The terminal moraine formed by the Pinedale glacial advance 
(14.4 ± 0.8 ka) impounded Jackson Lake. 

1.2.1 Geologic Setting 

The Teton Range lies at the eastern edge of the Basin and Range in northwestern 
Wyoming (Fig. 1.1). Normal displacement along the Teton fault on the eastern edge of 
the range has produced a west-dipping asymmetric uplift (Foster et al., 2010; Brown et 
al., 2017). Precambrian units in the range center are unconformably overlain by west-
dipping Paleozoic and Mesozoic strata (Love et al., 1992). The onset of Teton fault slip is 
~10 Ma, and displacement estimates range from 11.4-12.6 km (Thigpen et al., 2021). 
Although the Teton Range lies within the Intermountain Seismic Belt, the Teton fault 
remains quiescent, with no evidence of a major slip event in the past 5 ka (DuRoss et al., 
2019). 

Multiple glacial advances during the Quaternary carved the spectacular Teton 
relief (> 2 km, Good & Pierce, 2016) and has driven range divide migration to the west 
(Foster et al., 2010; Zhu et al., 2021). Evidence from the most recent Bull Lake (170-130 
ka) and Pinedale (20-12 ka) glaciations indicate that the Yellowstone ice cap extended 
into the Jackson Hole valley, and alpine glaciers in the Teton Range flowed east to join 
the main glacial lobe (Pierce et al., 2018). The Pinedale advance formed the terminal 
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moraine, which naturally impounded Jackson Lake and the multiple moraine lakes on the 
range front. Completion of the Jackson Lake dam in 1916 raised the natural lake level by 
~12 m. Moran and Snowshoe Canyon, two major Teton catchments, both drain into 
Moran Bay in the western part of Jackson Lake (Fig. 1.1). They are similar to other Teton 
catchments that have drainage areas of >20 km2, and their topographic signature is typical 
of glaciated topography, with deeply incised canyons and elongated and flattened valley 
profiles (Whipple et al., 1999). Modern wind and precipitation patterns are similar to 
those from the last glacial maximum (LGM) while pollen studies indicate that vegetation 
changed from alpine meadow to mixed pine-spruce-fir forest following deglaciation 
(Whitlock, 1993; Foster et al., 2010). 

1.3 METHODS 

1.3.1 Moran Bay seismic acquisition and sediment volume estimate 

Stratigraphic horizons bounding the sediment package in Moran Bay were 
mapped using a grid of CHIRP seismic profiles, acquired using an Edgetech SB-0512i 
CHIRP sub-bottom profiler. Data were acquired at a tow velocity of ~3 knots and shot 
points were collected at 2 s intervals across a frequency range of 0.4-4.0 kHz. Seismic 
data were processed in Seisware using a bandpass filter and amplitude gain. Time-depth 
conversions were calculated using a constant velocity of 1500 m/s, as unconsolidated 
sediment is in hydrostatic equilibrium with freshwater (Kindinger et al., 1994). Sediment 
volumes between mapped stratigraphic horizons were calculated using Trinity T3 
software.  

1.3.2  Geomorphologic map 

Landforms in Moran and Snowshoe Canyons were mapped using a combination 
of digital terrain analysis and photo interpretation (Otto et al., 2009. Ardelean et al., 
2017). Maps were produced in GIS software using a 0.5 m digital elevation model 
(DEM) and derivative maps produced from airborne LiDAR (National Park Service, 
2014) and 0.3 m Google Earth® satellite imagery from 2013 and 2015. Moran Canyon 
landform interpretations were field-checked in 2021. Mapped geomorphologic units 
include talus cones, debris fans, talus slopes, alluvium, glacial drift, moraines, rock 
glaciers, and bedrock.   

1.3.3 Canyon sediment volume estimates derived from modeled bedrock DEM 

The bulk sediment volume in the main trunk of Moran Canyon and two tributary 
canyons was estimated by differencing a LiDAR-based surface DEM and a modeled 
bedrock DEM. Because glacial drift is not observed to be deposited upon or 
interfingering with older colluvial or alluvial deposits, we interpret that pre- and syn-
Pinedale (14.4 ± 0.8 ka) colluvial and alluvial deposits were evacuated from the canyon 
during that glacial period. If correct, mapped colluvial and alluvial deposits should have 
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been derived from the current interglacial period. In sediment volume estimates, it is 
assumed that mapped boundaries of deposits extend vertically down to bedrock, though it 
is acknowledged that there may be underlying glacial debris. 

Cross sections of the bedrock surface beneath the canyon floor sediment were 
projected along 33 lines using exposures of bedrock on either side of the canyon; 12 of 
these cross-sections are also constrained by limited canyon floor bedrock exposures (Fig. 
1.2a), which were confirmed via field checking. Prominent irregularities in the bedrock 
surface DEM were smoothed using the focal statistics tool in ArcGIS with a circular 
radius of 10 m and then sampled every 10 m to generate the cross sections. A smoothing 
spline function within the MATLAB curve-fitting toolbox was used to project a bedrock 
surface beneath the surface for each cross section; smoothing spline values ranged 
between 0.94 and 0.99. The smoothing spline function fits a curve piecewise to each data 
point; the value ranges from 0, where it produces a least-squares straight-line fit, to 1, 
where it produces a cubic spline interpolant. This method prevents overestimation of 
bedrock depth that can be produced by a polynomial function (Fig. 1.2b). The final 
bedrock surface DEM was generated from the projected bedrock cross sections and 
supplementary points in ArcGIS using the Topo to Raster tool, which uses an iterative 
finite difference interpolation technique. Supplementary points were added along valley 
walls at the contacts of colluvium and exposed bedrock, at exposed bedrock in the valley 
bottom, and in other locations where the modeled DEM appeared to either over-estimate 
sediment depth or rise above the ground surface (Fig. 1.2b). This methodology is similar 
to Schrott et al. (2003), although that study used polynomial functions that led to an 
overestimation of bedrock depth, particularly when valleys were relatively narrow. Tranel 
et al. (2015) used exposed bedrock slopes above talus cones in the Tetons to project the 
bedrock below the talus and estimate individual talus cone volumes, which produced 
values similar to those presented here. Lastly, we conservatively incorporate a ±20% 
uncertainty for estimates of the total sediment volume and denudation rates in the 
canyons. 

1.3.4 Canyon sediment volume estimates derived from colluvial sediment production 
rate 

The bulk volume of talus cones and debris fans was divided by their contributing 
source area to calculate a catchment-averaged colluvial production rate. Outside of the 
modeled bedrock DEM area, the colluvial production rate was applied to source areas of 
talus cones and debris fans to estimate their bulk volume. 

1.3.5 Canyon sediment volume estimates derived from assigned thickness 

To estimate sediment volumes for areas where there are talus slopes, rock 
glaciers, small cirque moraines, lakes, and areas of glacial drift, sediment thicknesses 
were assigned based on geospatial data and field observations. To account for 
uncertainties associated with these estimates, total rock volume calculations and 
denudation rates are reported with and without these values. 
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Figure 1.2  a) Thirty-three cross sections in the Moran catchment were used to project the 
bedrock surface under the sediment. Four CHIRP seismic profiles (D19, D14W, D15W 
and S0S) were used to estimate the volume of sediment derived from the Moran and 
Snowshoe catchments, and lake bottom samples and gravity cores were used to support 
the seismic interpretation. b) Example of bedrock surface produced in MATLAB using 
elevations of exposed bedrock along the valley walls to project the bedrock surface under 
the sediment. 

Outside of the area covered by the bedrock DEM, glacial drift is assigned a 
thickness of 2.4 ± 1.3 m based on the average of 65 gully depth observations. The bulk 
volumes of cirque moraines and rock glaciers were individually estimated by measuring 
their heights over the surrounding terrain and multiplying by their mapped area. The 
average thickness of the nine cirque moraines and eight rock glaciers is 8.1 ± 3.6 m and 
12.3 ± 6.7 m, respectively. We have estimates of the average thickness of talus slopes and 
alluvium from the modeled bedrock DEM area, but to avoid overestimation, we reduce 
these average thicknesses in areas outside of the modeled bedrock DEM area. While talus 
slopes average 6.9 m thick in the modeled DEM area, for areas outside of this, we assign 
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an average thickness of 3.0 m. The average estimated thickness of alluvium in the main 
trunk of Moran Canyon is 14.3 m in the modeled bedrock DEM area. Other deposits of 
alluvium occupy smaller areas, and so to avoid overestimation are assigned an average 
thickness of 5.0 m. Sixteen small lakes in the canyons have formed upon areas of 
bedrock, talus, drift, and alluvium and were assigned a nominal thickness of 1.0 m.   

1.3.6 Porosity estimates 

For each material, porosity estimates are required to convert bulk sediment 
volumes to solid rock volumes. Although talus porosity is generally heterogeneous, 
previous studies, including studies in the Tetons, calculated a narrow range (0.20-0.26) of 
talus porosity (Tranel et al., 2015; Otto et al., 2009; Sass & Wollny, 2001). Alluvium and 
glacial drift porosities span large ranges of 0.06 to 0.48 (Frings et al., 2011) and 0.01 to 
0.43 (Kilfeather & van der Meer, 2008), respectively. For rock glaciers, a porosity range 
of 0.40 to 0.60 (Hauck et al., 2011) was used. A porosity range of 0.35-0.45 was used for 
Moran Bay sediments, based on porosity estimates of Moran Bay short cores and typical 
values for clay, silt and sand (Leopold et al., 1964). 

1.3.7 Monto Carlo simulation for rock volume and erosion rate calculations 

A Monte Carlo simulation with 50,000 iterations was performed to calculate rock 
volumes and denudation rates. We assumed a normal distribution of values for the bulk 
sediment volume, post-glacial time, and porosities. We built in uncertainty for the bulk 
sediment volume by incorporating ± 20% range for the volume estimates, and a post-
glacial time of 14.4 ± 0.8 ka. The range of porosity values includes standard deviations 
calculated using the range rule (range ÷ 4). An extreme minimum value for the volume of 
stored canyon sediment was also calculated by omitting volumes derived from assigned 
thicknesses. The post-glacial sediment production rate was calculated by dividing the 
post-glacial rock volume in the canyons and bay by the catchment area and the post-
glacial deposition time interval; the post-glacial fluvial erosion rate was calculated by 
dividing the rock volume in the bay by the catchment area and post-glacial time. 

1.4 RESULTS 

1.4.1 Geomorphologic mapping of Moran and Snowshoe Canyons 

The geomorphologic units in Moran and Snowshoe Canyons (Fig. 1.3) include 
talus cones, debris fans, glacial drift, alluvium, talus slopes, rock glaciers and cirque 
moraines (Fig. 1.4). In the canyons, talus cones and debris fans dominate the landscape. 
Talus cones have linear slopes of ~25⁰ and range in height from 50-400 m. Debris fans 
have gently concave slopes averaging ~17⁰, often have obvious debris flow tracks, and 
are up to 200 m high. Glacial drift deposits, present at higher elevations, are generally 
vegetated, include scattered boulders, and have either a network of gullies or are knobby 
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Figure 1.3. Geomorphologic map of the Moran and Snowshoe catchments. The base map 
is a hillshade map derived from LiDAR flown in 2014. Callouts show examples of talus 
cones, debris fans, alluvium, glacial drift, a rock glacier, and a roche moutonnée. 
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Figure 1.4. Examples of landforms in the Teton Range: a) view of Moran and Snowshoe 
Canyons from Moran Bay, b) view of Mt. Moran, Triple Glaciers, debris fan, talus cones 
and a roche moutonnée in Moran Canyon, c) alluvium in a glacially-flattened valley, d) 
talus cones, e) view from Moran Canyon of Moran Bay and the moraine that isolates it 
from Jackson Lake. 

with intermittent exposures of bedrock. Slopes with talus and periglacial debris are 
grouped together as talus slopes. Rock glaciers, which are distinguished by their interior 
arcuate lobes, reach lengths as long as 1.2 km and rise up to 25 m above the surrounding 
terrain. Some small moraines in the upper basins have crests up to 20 m above the 
surrounding terrain. Alluvial deposits are distinguished by their flat topography, which is 
cut by sinuous stream channels and meander scars. 

The 6.6 km-long main trunk of the 44.4 km2 Moran catchment is a well-defined 
glacial trough up to 1,000 m deep (Figs. 1.3 and 1.4). The trunk canyon is joined by five 
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tributary canyons up to 5.5 km in length (M1-M5, Fig. 1.5). The main trunk is lined by 
debris fans and talus cones that, in places, are nearly joined across the valley. There is a 
prominent 750 m-long by 500 m-wide roche moutonnée centrally located in the main 
trunk; its southwestern edge aligns with a NW striking dike that crosses the valley (e.g., 
Love et al., 1992). Upstream of the roche moutonnée, Moran Creek has developed a 
relatively flat 1.8 km-long by 0.3 km-wide alluvial plain. Downstream, the valley 
gradient steepens where it descends through knobby bedrock to Moran Bay. The western 
edge of Moran Bay is defined by the modern Teton fault scarp. 

Figure 1.5. Stream profiles and geomorphic units along major tributary valleys of the 
Moran and Snowshoe catchments. Geomorphic units in contact with the valley bottom 
are shown, but depths are not implied.  

Each Moran Canyon tributary displays a unique subset of landforms, longitudinal 
profiles, and channel characteristics (Fig. 1.5). Tributary M1 has a relatively smooth 
graded profile, with a valley floor lined with glacial drift and a network of gullies. Talus 
cones and debris fans are less prevalent here and do not extend far into the valley. 
Tributary M2 is similar to M1, but there is a knickpoint before it joins M1. Here the toe 
of a debris flow deposit has been eroded to produce an incised bedrock channel >5 m 
deep. Tributary M3 includes the largest lake in the catchment, Cirque Lake. M3 does not 
have a well-developed trough shape, and the valley floor is mostly knobby bedrock. The 
channel that drains the overflow from Cirque Lake flows over bedrock, glacial drift and 
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around the base of talus cones as it drops to join M1. Tributary M4 is dominated by talus 
cones and debris fans that overlap to form an irregular valley floor with no continuous 
channel. Where the slope steepens to join the main trunk, the valley floor is lined by 
glacial drift incised by a small channel. Tributary M5 drains Triple Glaciers on the 
northwestern flank of Mt. Moran (elev. 3842 m). Here the largest debris fan in the study 
area extends down the axis of the valley and across the floor of Moran Canyon (Fig. 1.4). 
A channel draining the glacier disappears underground partway down the fan.  

The Snowshoe catchment (26.4 km2) is composed of a main trunk with tributary 
canyons up to 3 km in length and several small glacial basins (S1-S4, Fig. 1.5). Unlike 
the graded longitudinal profiles in the Moran catchment, the valleys in Snowshoe have 
multiple knickpoints, and the surface topography is much rougher (Figs. 1.3 and 1.5). The 
north wall of the main trunk is lined by talus cones and the southern side consists of 
multiple small glacial basins with moraines, rock glaciers, tarns, talus cones and talus 
slopes. Snowshoe Canyon is drained by North Moran Creek, which exits the canyon and 
flows across glacial drift, where it forms a 1.3 km by 0.4 km wide alluvial plain adjacent 
to Moran Bay. 

The longitudinal profile of S1 has four knickpoints before it is joined by S3 and 
S4. The flat parts of the stepped valley floor are composed of either glacial drift at high 
elevations or alluvium at lower elevations. The steep portions of each step are composed 
of bedrock channels. S2 is distinguished by the largest rock glacier (~1.2-km-long ) in the 
catchment. The upper half of S3 is composed of knobby bedrock with several tarns, rock 
glaciers and drift, and lacks a well-developed channel. Where it is joined by tributary S4, 
the valley has a trough-shape and a channel bordered by talus cones. In tributary S4 the 
channel flows between glacial drift and debris fans, and then over bedrock as the valley 
steepens to join S3. 

1.4.2 Moran Bay seismic reflection profiling 

Seismic profile D19, which extends through the midline of Moran Bay and into 
the main depocenter of Jackson Lake, reveals that the bay is effectively perched above 
and is isolated from the main depocenter by a bathymetric ridge, essentially trapping the 
post-glacial sediment derived from the two catchments (Fig. 1.6). Moran Bay 
sedimentary packages are separated by three key horizons that are interpreted to reflect 
major changes in depositional character.  

Horizon A, which defines the top of the acoustic basement beneath which there is 
no internal reflectivity, is an uneven surface with maximum and minimum depths of ~47 
m and ~9 m below the modern lake surface, respectively. This surface also defines the 
top of the bathymetric ridge that separates Moran Bay from the main Jackson Lake 
depocenter (Fig. 1.6). Lake bottom gravity cores attempted along the ridge had limited 
penetration depth and yielded mostly sand and gravel (Table 1.1). Horizon B4 defines the 
top of a package of internally stratified yet pervasively deformed sediment that is 
overlain by an essentially undeformed sediment package. Horizon C3 defines the lake 
bottom.  
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Figure 1.6. CHIRP seismic profiles and maps of Moran Bay. a) Seismic profile D19 
showing Moran Bay is isolated from the main depocenter of Jackson Lake by a 
submerged bathymetric ridge. b) Moran Bay seismic profile with locations of lake bottom 
samples and gravity cores. c) Interpretation of the seismic profile. d) Paleobathymetric 
map of Moran Bay based on horizon A, the Pinedale moraine. e) Map showing the 
horizontal extents of horizons B and C, and the locations of seismic lines, short cores and 
lake bottom samples. 
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Table 1.1  Moran Bay gravity core and lake bottom sample locations and descriptions. 

Between Horizons A and B4, the pervasively deformed sediment package within 
which there are four distinctive subunits (Fig. 1.6c). B1 is the lowermost and is up to 9 m 
thick, discontinuous, with distorted internal reflectors. B2 is a set of parallel reflectors up 
to 14 m thick which are deformed by folding. B3 is a 6 m thick package ~20 m below the 
modern lake surface. B4 is a set of parallel reflectors that onlap B3. All of the reflectors 
between Horizons A and B are offset along two discontinuities which terminate at 
Horizon B. Intermediate reflectors between Horizons B4 and C3 appear mostly 
undeformed and three subunits can be separated (Fig. 1.6c). C1 lies atop B3, is 1 to 2 m 
thick and nearly horizontal. C2 is a 7 m-thick stack of two clinoforms ~12 m below the 
modern lake surface. It extends 450 m from the western edge of the seismic line. C3 is a 
low amplitude highly continuous package up to 9 m thick that onlaps the clinoforms and 
is ponded in the center, and the top of which gently slopes to the east. Gravity cores 
collected from the lake bottom and across Horizon C yield laminated silty and sandy clay 
with variable amounts of organic matter and muddy sand with charcoal (Fig. 1.6, Table 
1.1). For the volume estimates discussed below, we consider Horizons A and C to 
represent the bottom and top, respectively, of the Moran Bay post-glacial sediment 
package. 

1.4.3 Estimates of sediment volume, post-glacial sediment production, and erosion rates 

Monte Carlo simulations yield total post-glacial (post- 14.4 ± 0.8 ka) rock 
volumes of 169.38 ± 35.09 (x10-3 km3) for the canyon catchments, a total rock volume in 

Horizon 
Sampled 

Sample Sample type Sample ID Location Description 

A C13a Gravity core No yield 522794, 
4856242 

No core, sample of sand and 
gravel 

A C13b Gravity core No yield 522640, 
4856234 

No core, mud on top of hard 
surface 

A L132 Lake bottom JL-GB-132 522987, 
4855772 

Brown-grey pebbly muddy 
medium sand with charcoal 

C C13c Gravity core JL19-13.5A-1G 522410, 
4856188 

34 cm silty and sandy clay, 
massive to discontinuously 
laminated 

C C14b Gravity core JL19-14B-1G 522216, 
4856352 

34 cm silty and sandy clay, 
discontinuously laminated  

C C15 Gravity core JL19-15-1G 521772, 
4856401 

29 cm grey structureless mud 
with abundant coarse plant 
macrophyte fragments 

C C23 Gravity core JL19-23-1G 521774, 
4856529 

32 cm silty and sandy clay, 
discontinuously laminated 

C L128 Lake bottom JL-GB-128 522112, 
4856812 

Brown-grey sandy muddy 
charcoal 

Landward 
of seismic 

lines 

L129 Lake bottom JL-GB-129 520288, 
48571118 

Brown-grey muddy sand with 
charcoal 
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Moran ay of 4.44 ± 0.90 x 10-3 km3, and a total post-glacial rock volume of 173.82 ± 
35.99 x 10-3 km3 (Table 1.2).  These simulated volumes include uncertainties discussed in 
the methods section. These volume estimates yield a post-glacial sediment production 
rate of 0.17 ± 0.02 mm/yr and an average catchment-wide post-glacial fluvial erosion rate 
of 0.004 ± 0.001 mm/yr. Based on these estimates, the Moran Bay sediment volume 
represents only ~2.6% of the post-glacial sediment volume stored in Moran and 
Snowshoe Canyons (Table 1.2). In an end member scenario where assigned canyon 
sediment thicknesses were zeroed and the lower estimated volumes based on uncertainty 
are used, while the Moran Bay sediment column is maximized based on uncertainty 
(ignoring organic matter, autochthonous carbonate, and biogenic silica); the post-glacial 
bay sediment volume is only 4.7% of the minimum sediment estimated in the canyons.  

Table 1.2  Summary of area and sediment volume calculations in Moran Canyon, Snowshoe Canyon and 
Moran Bay. Volume analysis is based on a combination of the modeled bedrock DEM analysis, sediment 
production rate of colluvium and assigned thicknesses based on landform observations. 

Landform Bulk volume (x10-

3km3) 
Total bulk 

volume 
(x10-3 km3) 

Rock volume (x10-3 

km3) 
Post-glacial volume (%) 

Modeled 
bedrock 

DEM area 

Outside 
bedrock 
DEM 
area 

Including 
assigned 
thickness 

areas 

Without 
assigned 
thickness 

areas 

Including 
assigned 
thickness 

areas 

Without 
assigned 
thickness 

areas 

Talus cones & 
debris fans 

81.39 ± 
16.27 

84.31 ± 
16.86 

165.70 ± 
33.13 

127.59 ± 
25.63 

127.59 ± 
25.63 

73.41 89.22 

Talus slopes 5.42 ± 
1.08 

17.23 ± 
3.45 

22.65 ± 
4.53 

17.45 ± 
3.50 

4.17 ± 
0.84 

10.04 2.92 

Alluvium 9.33 ± 
1.87 

3.73 ± 
0.75 

13.06 ± 
2.62 

9.53 ± 
2.36 

6.81 ± 
1.69 

5.48 4.76 

Rock glacier - 13.54 ±
2.71

13.54 ± 
2.71 

10.56 ± 
2.56 

- 6.08 - 

Cirque moraine - 4.91 ±
0.98

4.91 ± 0.98 3.83 ± 
0.93 

- 2.20 - 

Lacustrine - 0.55 ±
0.11

0.55 ± 0.11 0.42 ± 
0.11 

- 0.24 - 

Total post-glacial 
sediment in 

canyons 

96.14 ± 
19.22 

124.27 
± 24.86 

220.41 ± 
44.08 

169.38 ± 
35.09 

138.57 ± 
28.16 

97.45 96.90 

Moran Bay - 7.40 ±
1.48

7.40 ± 1.48 4.44 ± 
0.90 

4.44 ± 
0.90 

2.55 3.10 

Total post-glacial 
sediment in the 

system 

96.14 ± 
19.22 

131.67 
± 26.34 

227.81 ± 
45.56 

173.82 ± 
35.99 

143.01 ± 
29.06 

100.00 100.00 

Glacial drift 11.45 ± 
2.29 

28.12 ± 
5.62 

39.57 ± 
7.91 

30.86 ± 
5.19 

8.95 ± 
2.18 

- - 
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1.5 DISCUSSION 

1.5.1 Moran Bay impoundment timing, geometry, and sedimentation history 

Key to making useful comparisons of different stored sediment volumes in the 
Moran/Snowshoe system is the necessity to demonstrate that the majority of post-glacial 
sediment exiting the canyons is actually deposited and remains in Moran Bay. Seismic 
imaging along line D19 shows that the Moran Bay sedimentary sequence is separated 
from the main depocenter of Jackson Lake by a submerged ridge that provides 
considerable bathymetric relief relative to the adjacent lake floor (Fig. 1.6), and other 
lines (D14W, D15W) demonstrate that this ridge is continuous to the north and south. 
The lack of internal seismic reflectivity in the units below Horizon A, the mapped 
geometry and location of the ridge, and the coarse, poorly sorted sediment sampled by the 
limited gravity cores along this feature (Table 1.1) informs the interpretation that the 
ridge is a glacial moraine. Additionally, it is positioned in the same location as the 
terminal moraines that impound Leigh and Jenny Lakes to the south (Fig. 1.1) and the 
submerged ridge is connected to the moraine units exposed at the surface (Love et al., 
1992), now referred to as Pinedale-3 (Pierce et al., 2018), which partially encloses Moran 
Bay at present (Figs. 1.3, 1.4, and 1.6). Formation of this terminal moraine ridge likely 
occurred as the combined result of the Snake River Lobe flowing southward along the 
range front, essentially limiting the valley migration of the terminal moraine exiting 
Moran Canyon. Exact glacial stratigraphic relationships remain uncertain, but it is likely 
that this ridge/moraine formed during the Pinedale-2 and Pinedale-3 glacial advances 
(Pierce et al., 2018). Assuming the age of the now-submerged Moran Bay moraine is 
equivalent to the inner Pinedale-3 moraine of Jenny Lake, this deglacial surface mapped 
in this study as Horizon A yields an age of 14.4 +/- 0.8 ka (Pierce et al., 2018), which 
requires that deposits overlying this horizon are post-glacial. 

1.5.2 Sediment production and erosion rate 

Glacial processes modify the landscape to produce U-shaped valley walls and 
flattened and elongated valley profiles (Harbor, 1992). The de-buttressing of steep glacial 
valley walls upon glacial retreat results in unstable slopes of jointed rock. Rock falls and 
debris flows then produce the talus cones and debris fans that form the majority of 
sediment in Moran and Snowshoe Canyons. The basin-wide averaged rate of post-glacial 
sediment production in Moran and Snowshoe Canyons is 0.17 ± 0.02 mm/yr, which 
assumes that all of the sediment was deposited after the Pinedale glaciation. This 
denudation rate does not include chemical weathering. The calculated sediment 
production rate is similar to the long-term denudation rate of 0.14 mm/yr calculated by 
Brown et al. (2017) using low-temperature thermochronology and the basin-wide post-
glacial sediment production rate of 0.13 mm/yr calculated for Garnet Canyon via a 
combination of hillslope and ridge erosion by Tranel (2015). While the maximum uplift 
rate along the Teton Fault at Mt. Moran is 0.28 to 0.31 mm/yr (Thigpen et al., 2021), due 
to the asymmetric uplift of the Teton Range (Byrd et al., 1994; Foster et al., 2010), the 
uplift rate at the heads of the catchments, which are near the center of the range, is 
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approximately 0.14 to 0.16 mm/yr, such that the average uplift of the catchments is 
roughly 0.21 to 0.23 mm/yr. The similarity of these rates indicates that paraglacial 
hillslope processes are an essential contributor to the overall erosion rate of the Tetons. 

While glacial erosion increased the topographic relief of the valley walls, 
producing conditions favorable to rockfall, the relief of the valley profile has been 
reduced, and it is less steep and less concave than fluvial valley profiles (Whipple et al., 
1999). This gradient reduction lowers stream power and diminishes sediment transport 
capacity out of the canyons, producing a system that is transport-limited. While the 
valleys are apparently steep enough in places for the stream to erode down to bedrock, 
mobilized sediment may be trapped by subsequent flattened step-like sections below each 
bedrock reach (Fig. 1.5). In effect, Teton valleys are almost entirely encompassed in the 
Periglacial Domain (Hobley et al., 2010; Dietsch et al., 2015), which is characterized by 
U-shaped valleys dominated by glacial debris, talus, and paraglacial fans, and which
lacks trunk streams with the power to transport sediment and incise gorges into their
valleys. The lack of transport results in the volume of alluvium stored in the canyons
being more than double the volume of sediment that has been transported and deposited
into Moran Bay.

In contrast to the rate of sediment production, the catchment-wide post-glacial 
fluvial erosion rate is just 0.004 ± 0.001 mm/yr, even lower if we constrain 
autochthonous sediments versus allochthonous sediments from the canyon, pointing to a 
disconnect between weathering production and sediment yield, a hallmark of sediment 
transport in deglaciated terrain (Church & Ryder, 1972; Ballantyne, 2002; Tunnicliffe & 
Church, 2011). Sources of Moran Bay sediment include glacial drift, periglacial debris, 
talus cones and debris fans, debris flows that enter the channel, and fluvial and glacial 
bedrock erosion (Figs. 1.3, 1.4, 1.5). In addition, lake sediments composed of sponges 
(biogenic silica), ostracods (carbonate), algae (biogenic silica, organic matter) contribute 
to accumulation patterns in Moran Bay (Rasbold et al., 2022).  

Many sediment yield studies have been based on short-term (days to years) 
observations and thus do not necessarily reflect long-term (102 – 105 years) rates (Spotila, 
2022). It is, however, interesting to compare them with the long-term erosion rate for 
Moran Bay over the past 14.4 ka. The Moran Bay rate of 0.004 ± 0.001 mm/yr is very 
low compared to similar-sized fluvial or glacial catchments but is similar to modern rates 
derived from small deglaciated basins (Fig. 1.7). In addition, it is notable that modern 
erosion rates of the larger (>1000 km2) fluvial and paraglacial basins are similar, whereas 
in the smaller basins (<1000 km2), paraglacial erosion rates plot well below the erosion 
rates of fluvial basins of the same size, suggesting that post-glacial fluvial inefficiency is 
not uncommon in small deglaciated basins. The difference in erosion rates for smaller 
catchments could imply that available discharge may play an important role in moving 
larger caliber debris. Reaches steep enough to erode down to bedrock followed by 
subsequent trapping of sediment on flattened steps were observed in Moran and 
Snowshoe Canyons, suggesting that the fluvial system has the discharge to move larger 
debris during floods but lacks the steepness to evacuate them out of the catchment.  
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1.5.3 Landscape, process, and equilibrium 

The relative contributions of glacial, fluvial and colluvial processes to an 
equilibrium state between denudation and rock uplift change over long (multi-glacial 
cycle) or interglacial timescales. Numerical models suggest that glacial erosion rates can 
be higher than rock uplift rates when the topography is adjusting from fluvial to glacial 
conditions or if there is a shift in climate periodicity (e.g., Pedersen & Egholm, 2013). 
Once the glacial valley is carved and adjusted to glacial erosion, subsequent glaciers may 
not need to erode much bedrock to maintain this equilibrium (i.e., match rock uplift 
rates), but primarily transport the hillslope sediment deposited during the interglacial, and 
do a little erosion to maintain the valley shape (Herman & Braun, 2008; Leith et al., 
2014), thus maintaining a glacial steady state (Deal & Prasicek, 2021). The similarity of 
the colluvial production rate and the long-term denudation rate in the Tetons indicates 
that hillslope processes are an essential contributor to the denudation of the Tetons over 
long timescales. In the Tetons, the larger basins (>20 km2) have hosted glaciers capable 
of keeping pace with rock uplift and maintaining a shallow longitudinal valley profile 
(Foster et al., 2010). However, since the topography has adjusted to accommodate 
glaciation, glaciers may not produce substantial primary bedrock erosion along the valley 
bottoms as they do at higher elevations; thus, the mass efflux from the larger canyons is 
dominated by interglacial colluvial sediment production and eventual transport during the 
next glacial advance (Tranel et al., 2011). Hillslope processes, with glacial advances 
providing sediment transport, may be at least as important for attaining steady state as 
canyon incision (Brocklehurst & Whipple, 2007). 
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Figure 1.7. Erosion rates of fluvial, glacial and paraglacial catchments from Koppes and 
Montgomery (2009), Church and Slaymaker (1989) and Dietch et al. (2015). The erosion 
rate of Moran Bay of 0.004 ± 0.001 mm/yr plots within the typical range for small 
paraglacial catchments. 

While glacial and colluvial processes appear to have the capacity to equilibrate 
with uplift in the Tetons, the capacity of the fluvial system to equilibrate with uplift has 
been hampered because the valley profile has been flattened by glaciers. In fluvial-
dominated landscapes, rivers govern the landscape response by setting local base level 
and controlling the hillslope angle needed for denudation rates to match rock uplift rates, 
which drives the channel systems toward graded equilibrium longitudinal profiles 
(Whipple et al., 2013). If perturbed by a change in a boundary condition, such as a 
change in base level due to fault slip, the fluvial system will respond by transiently 
adjusting to a new steady-state. For example, the longitudinal profile of a stream will 
work to adjust to fault slip through vertical incision and knickpoint migration (e.g. 
Whipple & Tucker, 1999). In the context of this study, the fluvial system has been 
“perturbed” by glacial erosion flattening the valley, to which the river system needs to 
transiently steepen to once again compete with rock uplift. Here, it is evident that the 
fluvial system is disequilibrated by such a “glacial perturbation”, with interglacial fluvial 
processes yielding a post-glacial fluvial erosion rate of just 0.004 ± 0.001 mm/yr, which 
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is far outpaced by the maximum uplift rate of 0.28 to 0.31 mm/yr for the Teton Range. 
The difference between sediment production in the canyons and sediment yield into the 
bay, means that ~97% of the canyon sediment cannot be transported until the next glacial 
advance, or the eventual relaxation of the catchment to a fluvial equilibrium landscape. 

For rivers to respond to uplift they must have the right topographic conditions to 
do so effectively. Clearly, the erosive power of rivers in Moran and Snowshoe Canyons is 
significantly diminished by a landscape that is equilibrated for glacial (and colluvial) 
processes. In this paraglacial landscape, streams do not set limits on topography but 
instead are controlled by the post-glacial topography, thus illustrating the importance of 
the topographic signature as a boundary condition that governs landscape response to 
uplift. 

1.5.4 Post-glacial landscape longevity 

The time required for a deglaciated valley to re-equilibrate to fluvial conditions is 
strongly controlled by both precipitation and catchment area (Hobley et al., 2010; Dortch 
et al., 2011), such that the fluvial system is too sluggish to re-equilibrate during 
interglacial periods. The time required to develop a classic U-shaped glacial valley that 
was previously dominated by fluvial processes has been estimated as < 100 ka (Harbor, 
1992). However, the time required to return to a fluvially equilibrated system is far 
longer, requiring a minimum of 500 ka (Hobley et al., 2010) which is longer than the 
typical time interval between periods of ice advance (Tomkin, 2009). The lack of 
modern-day landscapes that are observed to be in transition from glacial to fluvial 
process dominance highlights the longevity of glacial landscapes (Spotila, 2022). 

It is interesting to consider what the effects of a warming climate and the 
prolonged absence of glaciers might be on the Teton Range. Assuming footwall uplift 
continues due to slip on the Teton fault, the absence of major glaciers, and a consistent 
precipitation rate, the elevation of the Teton Range would be expected to increase until a 
threshold steepness is reached that yields efficient fluvial incision, perhaps eventually 
leaving a paleo-glacial “terrace” perched above the rejuvenated fluvial landscape. 
However, as past glaciers have been responsible for moving accumulated sediment out of 
the valleys and into the Snake River Valley, thus moving the sediment load across the 
Teton fault and onto the hanging wall, it is possible that the absence of major glaciers 
could cause a reduction in the rate of uplift, at least until fluvial processes attain the 
ability to move mass across the fault. Flattened valley profiles are typical of deglaciated 
catchments around the world. Future climate change and the loss of glaciers will produce 
more catchments with rivers lacking the capacity to transport sediment, which can 
potentially impact not only sediment flux, but uplift rates as well. 

1.6 CONCLUSIONS 

The Teton Range is an ideal setting to quantify fluvial efficiency in a post-glacial 
landscape. All canyon-sourced sediment is captured in a lake formed by a glacial 
moraine, allowing a complete post-glacial sediment budget to be constructed. The 
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sediment budget was constructed using existing LiDAR data and newly acquired seismic 
profiles through Moran Bay. The flattened valley profiles of these catchments are typical 
of the Tetons, and of deglaciated catchments of similar size around the world. The 
catchment-wide sediment production rate of 0.17 ± 0.02 mm/yr is close to the average 
catchment uplift rate and the long-term denudation rate of the Teton Range, illustrating 
the importance of hillslope processes to the overall denudation of the Tetons. This also 
implies that once topography is adjusted for glacial erosion, subsequent glaciers mostly 
transport accumulated sediment and may only need to provide some maintenance erosion 
of bedrock to maintain this equilibrium. 

While the combination of glacial and colluvial processes can keep pace with uplift 
in the Tetons, the interglacial fluvial system cannot, as evidenced by the fact that only 
~2.6% of the total post-glacial sediment volume has been transported to the bay. The 
fluvial system has been perturbed by glacial erosion flattening the valley profiles, 
reducing stream power and sediment transport capacity. The post-glacial fluvial erosion 
rate is just 0.004 ± 0.001 mm/yr, which is far outpaced by the maximum uplift rate of 
0.28 to 0.31 mm/yr for the Teton Range, illustrating that glacially-flattened valley 
profiles preclude fluvial efficiency. 

Rivers require the right topographic conditions to respond to uplift. As the erosive 
capability of rivers in Moran and Snowshoe Canyons has been diminished by a landscape 
equilibrated for glacial erosion, the accumulating sediment will remain in the catchments 
until the next glacial advance, or until continued uplift along the Teton fault steepens the 
topography to make fluvial processes efficient once again. Thus, glacial topography is 
demonstrated to be not only a record of climate and tectonic dynamics, but an important 
boundary condition. It appreciably limits rates of denudation and sediment transport, and 
therefore the ability of the landscape to respond to uplift. 
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CHAPTER 2.   MEASURING GROUND SURFACE ELEVATION CHANGES IN A 
SLOW-MOVING COLLUVIAL LANDSLIDE USING COMBINATIONS OF 

REGIONAL AIRBORNE LIDAR, UAV LIDAR, AND UAV 
PHOTOGRAMMETRIC SURVEYS   

2.1 ABSTRACT 

Slow-moving, chronically destructive landslides are projected to grow in number 
globally in response to precipitation increases from climate change, and land disturbances 
from wildfire, mining, and construction. In the Cincinnati and northern Kentucky 
metropolitan area, USA, landslides develop in colluvium that covers the steep slopes 
along the Ohio River and its tributaries. Here we quantify elevation changes in a slow-
moving colluvial landslide over 14 years using county-wide lidar, uncrewed aerial 
vehicle (UAV) structure from motion (SfM) surveys, and a UAV lidar survey. Because 
the technology and quality differ among surveys, the challenge was to calculate a 
threshold of detectable change for each survey combination. We introduce two methods, 
the first uses propagated elevation difference errors, and the second back-calculates the 
individual survey errors. Thresholds of detection range from ± 0.05 to ± 0.20 m. Record 
rainfall in 2011 produced the largest vertical changes. Since then, the landslide toe has 
continued to deform, and the landslide has doubled its width by extending into a 
previously undisturbed slope. While this study presents a technique to utilize older 
datasets in combination with modern surveys to monitor slow-moving landslides, it is 
broadly applicable to other studies where topographic data of differing quality is 
available. 

2.2 INTRODUCTION 

Slow-moving landslides, which move at rates from just a few millimetres (mm) 
per year to several metres (m) per year (Lacroix et al. 2020b) are chronically destructive 
and permanently damage property, infrastructure, and agricultural land (Mansour et al. 
2011; Nappo et al. 2019; Lacroix et al. 2020a). While rarely deadly themselves, they can 
be precursors to fast-moving catastrophic landslides (Palmer 2017; Handwerger et al. 
2019) and thus provide a valuable opportunity to study landslide processes prior to more 
rapid movement. The development of slow-moving landslides may result from 
perturbations to a steadily creeping slope (Chau 1999). Slow-moving landslides often 
remain inactive for years or decades, only to experience periods of rapid movement in 
response to precipitation, human disturbance, or earthquakes (Lacroix et al. 2020b). With 
increases in precipitation due to climate change, and land disturbance due to wildfire, 
landslide activity is expected to increase in the United States (Leshchinsky et al. 2017; 
Mirus et al. 2017; Coe et al. 2018), and globally the number of landslides triggered by 
human activity such as construction and mining is increasing (Froude and Petley 2018). 
Within the United States alone, they are estimated to cost billions of dollars per year in 
economic losses (US Geological Survey 2005; Crawford 2014; Burns et al. 2017).  
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The purpose of the research we describe in this paper was to document and better 
understand decadal-scale spatial and temporal variations in the activity of a slow-moving 
landslide in the Cincinnati and northern Kentucky (USA) area, which necessarily 
included the development of an approach to integrate topographic data collected using 
different technologies over a period of years. Thus, this paper presents a methodology in 
a case study. Landslides throughout the area are well-known hazards but have not been 
studied intensively for nearly 30 years (Fleming and Taylor 1980; Haneberg 1991; 
Fleming and Johnson 1994; Haneberg and Gokce 1994; Riestenberg 1994; Baum 1994; 
Baum and Johnson 1996; Crawford 2014, 2012; Crawford and Bryson 2018; Glassmeyer 
and Shakoor 2021); perhaps because the landslides, while numerous and costly, are not 
deadly, and are treated largely as an ongoing maintenance problem. Thus, there are no 
published studies of the landslides incorporating modern remote sensing methods such as 
those we describe in this paper. The previous studies were also typically limited to a year 
or two in duration, so they did not provide information about decadal patterns of activity. 
This paper provides the first documentation of decadal Cincinnati and northern Kentucky 
area landslide movement based upon modern remote sensing techniques. 

We describe a method to quantify the threshold of detectable change between 
digital elevation models (DEMs) produced using various remote sensing technologies. 
Here we use the United States Geological Survey (USGS) definition of a DEM, which is 
a bare-earth surface which excludes vegetation, buildings, and other surface objects. This 
is equivalent to a digital terrain model (DTM), as opposed to a digital surface model 
(DSM) which includes all surface features. After describing the method, we then use it to 
document changes in a slow-moving landslide near Taylor Mill in northern Kentucky 
over a 14-year period using a combination of (1) regional airborne lidar coverage 
acquired by government agencies before our study began and (2) site-specific SfM and 
UAV-lidar surveys acquired as part of our work. To calculate thresholds of detectable 
change for each pair of DEMs, we used the statistics of noise for the difference map in 
areas outside of the landslide, where no elevation change is reasonably inferred to have 
occurred. Elevation changes within the landslide are then measured relative to these no 
change areas. As we explain, this is a pragmatic approach useful in many cases of 
practical interest for which control points are limited or non-existent. We found that 
combinations of surveys yield a threshold of detection of ± 0.05 m to ± 0.20 m, 
depending on the combination, and that vertical changes in the landslide above the 
threshold of detection were found for every combination of surveys, even as short as SfM 
surveys performed two weeks apart. This approach is broadly applicable to other study 
areas with topographic and bathymetric data acquired using various technologies and of 
differing quality. Thus, this technique provides a method to utilize older survey datasets 
which may be regional scale and lower resolution in combination with site-specific high-
resolution datasets to detect real elevation change over time. 

We conclude that whereas the most significant movement of the Taylor Mill 
landslide—which formed on a slope altered by human activity—was triggered by record 
precipitation, the landslide has continued to move and expand laterally onto a previously 
unaltered slope. With climate change increasing precipitation regionally (EPA 2016), it is 
expected that landslide activity in the region will only increase, making the monitoring of 
slow-moving landslides a critical part of landslide mitigation. 
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2.2.1 Landslide Characteristics and Geologic Setting 

The Cincinnati, Ohio and Northern Kentucky region (Fig. 2.1) is plagued by slow 
moving landslides that regularly threaten infrastructure (Mirus et al. 2017). For example, 
several 2019 landslides occurring along a major road cost over $17 USD million and took 
two years to remediate (City of Cincinnati Transportation and Engineering 2019; Knight 
2021). Landslides typical of the region include slow-moving debris slides, generally < 
2m thick, that form in the colluvium, unconsolidated material weathered from the 
underlying bedrock, which covers the steep slopes along the Ohio River and tributary 
valleys (Varnes 1978; Fleming and Johnson 1994); and deeper, slow-moving slumps that 
occur on flatter slopes in thick colluvium, glacial deposits, or anthropogenic fill (Baum 
and Johnson 1996). The colluvium consists of weathered rock fragments ranging in size 
from granules to tabular limestone boulders in a clayey matrix. The colluvium most 
susceptible to landslides is derived from horizontally-bedded shale and limestone of the 
Ordovician Kope Formation (Fig. 2.1) which is composed primarily of weak illitic shale 
that slakes easily when exposed to water (Koralegedara and Maynard 2017). The 
landslide chosen for this study, referred to as the Taylor Mill landslide (39.034234, -
84.512587), is a translational debris slide that has been active since at least 2003 and has 
impacted a slope and roadway leading to an apartment complex (Fig. 2.2). Attempts to 
mitigate the slide have included regrading the slope and rebuilding part of the roadway 
(Fig. 2.3). In 2012 the debris slide measured approximately 45 m wide and 70 m long and 
by 2021 it had more than doubled its width. If we assume a constant thickness of 1.5 m, 
the volume of the landslide was initially approximately 4500 m3 and has expanded to 
11500 m3. 

Figure 2.1. Location of the Taylor Mill landslide study area in northern Kentucky 
(39.034234, -84.512587). Cincinnati, Ohio, lies directly across the Ohio River from the 
study area. 
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Figure 2.2. Landslide in Taylor Mill, Kentucky. Oblique view of slide generated from 
March 11, 2019 drone UAV imagery. The scarp has exposed the road foundation, and the 
toe has advanced into the road leading to an apartment complex. The two-lane road is 
approximately 6 metres wide. Photo of the scarp was taken April, 2018; photo of the toe 
was taken March, 2022. 
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Figure 2.3. Sequence of images that illustrate the changes to the slope between 2000 and 
2021 (Google Earth 2000, 2005, 2006, 2008, 2010, 2021). a) Image from October 2000 
showing the driveway and vegetated slope. b) Image from August 2005 showing some 
bare patches on the previously vegetated slope. c) Image from June 2006 showing the 
regraded slope. d) Image from 2008 showing a bare patch at the top of the slope that may 
represent added fill. e) Image from July 2010 showing added fill and the reconstructed 
driveway at the top of the slope. f) image from March 2021 showing drainage from the 
toe of the landslide into the driveway.  

2.3 METHODS 

2.3.1 Change Detection 

Aerial and satellite platforms have made it feasible to detect changes in slow-
moving landslides with greater spatial and temporal resolution than with traditional 
methods such as field-based mapping or repeated surveys of benchmarks (Turner et al. 
2015; Schulz et al. 2017; Okyay et al. 2019; Lacroix et al. 2020b). In particular, 
unoccupied aerial vehicle (UAV)-based lidar and structure-from-motion (SfM) 
photogrammetry have made data acquisition less expensive and easily repeatable over 
short time periods (Jaboyedoff et al. 2012). Because slow-moving landslides may be 
active for many decades, older elevation datasets, e.g. topographic maps, SRTM, or 
regional lidar, can also provide valuable past landslide information, albeit at lower spatial 
and temporal resolutions than site-specific SfM or lidar surveys. 

A critical challenge in the study of elevation change detection, including slow-
moving landslides, is addressing signal-to-noise ratios (Wheaton et al. 2009; Schaffrath 
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et al. 2015; James et al. 2017). Frequently monitored landslides often register changes so 
small that the elevation changes may not be greater than the survey errors, referred to as 
noise. There are many potential sources of digital elevation model (DEM) noise such as 
the incomplete density of observations, processing errors, measurement errors, and errors 
introduced by the interpolation of point cloud data (Wechsler 2007), all of which will 
propagate through derivative maps and calculations (Holmes et al. 2000; Haneberg 2006, 
2008). Survey noise can be quantified for SfM surveys (Clapuyt et al. 2016; Goetz et al. 
2018), and elevation data acquired from various spaceborne and airborne platforms 
(Haneberg 2006, 2008; Gonga-Saholiariliva et al. 2011). However, the noise for older 
elevation datasets may be unknown. Thus, combining surveys acquired with different 
technologies to detect decadal change in a landslide can be challenge. Few studies have 
directly used multiple technologies acquired at different times to detect change (e.g. 
(Warrick et al. 2019)), and quantifying the minimum detectable change possible using 
combinations of technologies has rarely been explored (e.g. (Warrick et al. 2017)).  

Although change detection is optimally based on comparing results obtained from 
remote methods with surveyed monument locations on the ground, it is not always 
practicably possible. For example, the study area may be inaccessible to surveyors, 
monuments may be vandalized or accidentally destroyed between surveys, or a study 
may use historical data that predate the installation of survey monuments. In our case, the 
first two lidar data sets were acquired 12 and seven years, respectively, before our work 
at the Taylor Mill site began and no historical survey monument data were available. To 
compensate for the lack of survey monuments, we expand upon an approach based upon 
the statistics of inferred areas of no change proposed by Haneberg (2017), whereby we 
quantify the noise in areas outside of the landslide where no elevation change has 
occurred, in order to calculate the threshold of detectable change. Elevation changes in 
the landslide above this threshold are measured relative to the no change areas outside of 
the landslide. If the no change area is indeed moving, then the calculated changes in the 
landslide are not absolute. However, they will still be very useful for understanding the 
movement of the landslide.   

We measured changes in the landslide surface between 2007 and 2021 using 
differences between pairs in a series of: 1) DEMs from county-wide airborne lidar 
surveys conducted in 2007 and 2012, 2) SfM DEMs derived from photographs acquired 
by a UAV in 2019 and 2020, and 3) a lidar DEM created from a UAV-lidar point cloud 
acquired in 2020. Each DEM was adjusted to the 2012 lidar DEM by removing coherent 
noise in the form of bias (an elevation difference of the same magnitude across the map 
area) and tilt (a systematic change in elevation difference across the map area) as 
described in detail below. The 2012 lidar data set was chosen instead of the 2007 lidar 
data set because it has a denser point cloud and fewer obvious artifacts compared to the 
2007 data. Once bias and tilt between datasets were removed, we calculated the threshold 
of detectible elevation change for each pair of DEMs using the statistics of errors in areas 
outside of the landslide where no elevation change is thought to have occurred using two 
methods. The methods are summarized in Figure 2.4 and described in detail in the 
following paragraphs. 
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Figure 2.4. The flowchart summarizing the data acquisition and processing of the county-
wide lidar, UAV-SfM imagery, and UAV-lidar; the corrections to the DEMs for bias and 
tilt; and the methods used to estimate the threshold of detectable change.  

2.3.2 Data Acquisition 

The county-wide lidar data and aerial photographs used in our analysis were 
obtained during leaf-off conditions in the winter of 2007 and 2012 (Table 2.1). The 2007 
lidar data covering Northern Kentucky were obtained by the Northern Kentucky Planning 
Commission, and has an average point spacing of 1.6 m. The 2012 lidar data and 
photographs were acquired as a part of the Kentucky Aerial Photography and Elevation 
Data Acquisition program (KYAPED). The 2012 lidar data were collected at an average 
of 0.68 m point spacing or better, and a required vertical accuracy of ± 0.15 m or better. 
The 2012 aerial photographs have 0.15 m pixels. The 2012 and 2007 lidar data were 
originally delivered in Kentucky state plane coordinates in feet; we projected them from 
state plane coordinates to UTM Zone 16N coordinates in metres and converted the 
vertical units from feet to metres. The Kentucky state plane and UTM coordinate systems 
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both use the same horizontal datum (NAD 1983) and ellipsoid (GRS 1980), thus errors 
introduced by this projection are negligible. 

Table 2.1  Methods and dates of data acquisition. 
Date Method Referenced in paper as Average point spacing (m) 

Winter 2007 County-wide lidar 2007 1.6 

Winter 2012 County-wide lidar 2012 0.68 

March 11, 2019 UAV-SfM 2019 0.046 

March 26, 2019 UAV-SfM 2019, 2nd survey 0.044 

March 3, 2020 UAV-SfM 2020 0.040 

December 15, 2020 UAV-lidar 2021 0.049 

We acquired digital aerial photographs for the SfM surveys in 2019 and 2020 
using Mavic Phantom 2 and Mavic Pro UAVs. Flights were planned with DroneDeploy 
software (Hinge et al. 2019) to ensure that the images had 75% front overlap and 70% 
side overlap.  

Our UAV-lidar data were acquired using a Matrice 600 Pro UAV and Yellowscan 
Surveyor lidar system in December 2020. Flights were planned using UgCS software to 
follow the topography at an elevation of 40 metres. The lidar flight extended farther to 
the south than the 2019 and 2020 SfM surveys to include a heavily vegetated area where 
the SfM surveys did not produce usable results. 

2.3.3 Data Processing 

The photographs for the SfM survey were processed to produce point clouds 
using Agisoft Metashape (James et al. 2017), and georeferenced using 19 easily 
identifiable ground control points (GCPs) in areas outside of the landslide where no 
change was inferred to have occurred. GCPs were selected using the coordinates of 
reference points such as sewer grates and light poles visible in the KYAPED 2012 aerial 
photographs and the corresponding elevations from the 2012 lidar-derived DEM. After 
image alignment, the total residual error for the GCPs is < 0.02 m. Point clouds were 
classified in Metashape using the Classify Ground Points tool, using a maximum angle of 
15 degrees, maximum distance of 0.5 m, and cell size of 50 m. The SfM point clouds 
have an average point spacing of 0.040 to 0.046 m (Table 2.1).   

The UAV lidar data were post-processed using local Continuously Operating 
Reference Station positioning data to improve their spatial accuracy (Olsen et al. 2013). 
Point elevations were further improved using strip adjustment and classified into ground 
and non-ground points using Yellowscan CloudStation software. The point cloud has an 
average point spacing of 0.049 m.  
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Point clouds from the county-wide lidar, SfM, and UAV-lidar were processed 
using ArcGIS to produce 0.1 m DEMs using natural neighbor interpolation, a technique 
used to construct a surface from irregularly distributed points, in order to fill voids 
(Sibson 1981). Although interpolating the two county-wide lidar DEMs to 0.1 m does not 
add information or increase the resolution of features, it does facilitate comparison with 
the more detailed SfM and UAV-lidar DEMs. While geomorphological change can be 
quantified from digital elevation data using grid-based (DEM) or point cloud 
comparisons (e.g. (Qin et al. 2016; Okyay et al. 2019)), we used gridded DEMs in this 
research because calculating DEM differences is easily performed using map algebra 
within GIS software and has a long history of successful application in geomorphological 
change detection studies (e.g. (Okyay et al. 2019)). An area of interest (AOI) was used to 
define the processing extent so that all DEM grids would be aligned. Without this step, 
the DEM grid would originate at the southeasternmost point of each point cloud, and thus 
the grid for each dataset would be slightly different. All datasets are georeferenced in 
UTM Zone 16N, EPSG 26916. 

2.3.4 Noise Maps 

Coherent noise in the forms of bias and tilt between each DEM and the 2012 
DEM was visually assessed using noise maps. The 2012 DEM was chosen as the surface 
that all other DEMs were corrected to because it was better quality than the 2007 DEM, 
and also had high quality aerial photographs taken at the same time, and thus allowed 
ground control points to be selected for processing the SfM data. Noise maps were 
symbolized to show apparent elevation differences only in the range of ± 0.20 m to 
visualize just the noise in areas where no real elevation change between data sets is 
expected (no-change areas). The range of ± 0.20 m was chosen because it produces a 
continuous display of noise values across the map area. The noise was then quantified by 
sampling the distribution of noise in the road above and below the landslide.  

2.3.5 Correction for bias and tilt 

Each of the DEMs we used required some correction of either bias (between lidar 
DEMs) or tilt (between SfM DEMs). Ideally, the mean elevation change in a no-change 
area should be zero; thus, a non-zero mean indicates a bias between the datasets. This 
bias was removed by adding or subtracting the calculated mean value from the DEM 
being corrected. To adjust the slight tilt observed in the SfM DEMs, the apparent 
elevation difference for each of a series of 30 points along the road above and below the 
landslide was used to create a correction surface using the Topo-to-Raster tool in ArcGIS, 
which uses an iterative finite difference interpolation technique. This correction surface 
was then subtracted from the DEM being adjusted to remove the tilt. The corrections for 
bias and tilt remove the coherent noise and the remaining random noise is then used to 
calculate the threshold of detectible change between the two datasets.  
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2.3.6 Threshold of elevation change detection 

When two elevation surveys are noisy and are then combined to calculate an 
elevation change, the errors are larger than the sum of the errors in each individual 
survey, which is often referred to as the propagation of errors (Birge 1939). Previous 
researchers have used probabilistic geomorphic change detection thresholds based upon 
the propagation of elevation errors from each of the two DEMs being compared 
(Brasington et al. 2000; Lane et al. 2003; Schaffrath et al. 2015). However, there may be 
cases of practical interest in which the individual DEM elevation errors are not available. 
For example, it is generally not feasible to directly determine DEM errors in deep-water 
seafloor change detection studies based upon repeat multibeam echosounder surveys (e.g. 
(Haneberg 2018)). Likewise, it is not unusual to encounter situations such as the one we 
describe in this paper, in which some of the DEMs were produced before our research 
began. Even if quality assurance statistics are available for previous topographic surveys, 
those data are typically collected in unobstructed, smooth, and flat areas that are not 
representative of heavily vegetated, rough, and steep landslide terrain. Such quality 
assurance error statistics can be misleading because DEM errors in areas relevant to 
landslide studies can easily be an order of magnitude larger than those collected for 
quality assurance purposes (e.g. (Haneberg 2006, 2008)). To account for those 
difficulties, we use two methods that combine error propagation theory with 
geomorphologically reasonable assumptions about areas in which no change is expected 
to have occurred. The elevation changes in the landslide that we report are relative to the 
no change areas, which we assume has an elevation change of zero.  

Both of our methods are based upon estimates of the propagated elevation 
difference error rather than the individual DEM elevation errors. This requires 
geomorphologically informed selection of one or more areas in which significant change 
can be reasonably inferred not to have occurred. We refer to those as no-change areas. 
Areas in the road above and below the landslide were used as no-change areas because 
there were no measurable elevation changes in these areas between 2007 and 2021 either 
due to the nearby landslide or alterations to the road such as repaving. The propagated 
elevation difference error is estimated by calculating the mean and standard deviation of 
the DEM difference values within the no-change area(s) or, if the area is large, a subset of 
the values within the no change area(s). In an ideal situation, the no change data would be 
noise- or error-free; both the mean and standard deviation would be zero. Non-zero 
results for a no-change area are thus an estimate of the propagated elevation error. The 
mean, or bias, is removed to create a zero-mean no-change dataset. The remaining non-
zero standard deviation, 𝜎∆", is an estimate of the total propagated elevation error if the 
no-change inference is valid. The standard deviation of the propagated elevation errors is 
related to the individual DEM elevation errors by  

𝜎∆"# = 𝜎",%&# + 𝜎",%##                 (1) 

where 𝜎",%&and 𝜎",%#, are the standard deviations of the elevation errors in DEMs 
representing times 𝑡&	and 𝑡#, respectively (e.g. (Hildebrand 1987; Brasington et al. 2000; 
Lane et al. 2003; Schaffrath et al. 2015)). Next, we calculate the threshold value of 
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detectable change using the propagated elevation difference error using two methods. 
Method I uses the statistics of errors from the difference map, while Method II uses back-
calculated error estimates for each individual survey. 

2.3.6.1 Method I: difference map errors 

We assume that the DEM difference errors are normally distributed with a zero 
mean and heuristically adopt a threshold of ±2𝜎∆", so that probability of a calculated 
elevation change being noise is < 0.05 (Fig. 2.5a). This is essentially the same approach 
taken by (Brasington et al. 2000; Lane et al. 2003; Schaffrath et al. 2015) except that 
equation (1) allows us to use the no-change area estimate of propagated error rather than 
the individual DEM errors. We also round the multiplier up from 1.96 to 2 for 
convenience. 

Figure 2.5. An illustration of the two methods to estimate the threshold of detectable 
change. (a) Method I uses the propagated errors from the difference map to estimate the 
threshold. (b) Method II uses an estimate of the individual DEM errors to calculate the 
threshold value that must be exceeded for the overlap between the two individual DEM 
error distributions to remain below a specified probability. 

2.3.6.2 Method II: individual DEM errors 

We calculate a threshold value that must be exceeded for the overlap between the 
two individual DEM error distributions to remain below a specified significance level, 𝛼, 
as shown schematically in Fig. 2.5b. If both component error distributions are known, 𝛼 
can be calculated numerically for any kind of distribution. For the work we describe in 
this paper, neither distribution is known. If it is reasonable to assume that both 
distributions are normal and have the same standard deviations, 𝜎" = 𝜎",%& = 𝜎",%# either 
of the cumulative distribution functions can then evaluated at a value of one-half the 
threshold and the result doubled to obtain 

∆𝑧'()% =	2*/#𝜎"	erfc,&(𝛼) (2)
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where ∆𝑧'()%	 is the elevation difference threshold that must be exceeded to ensure 
the overlap between the two distributions is less than 𝛼, 𝜎" is the standard deviation of 
the individual DEM errors, and erfc-1 is the inverse complementary error function. For a 
normal distribution of errors with a mean of 0 and a standard deviation of 1/√2, the error 
function erf 𝑧 = 2 #

√. ∫ 𝑒,%!𝑑𝑡"
/  gives the probability that the error lies within ± x; the 

inverse complimentary function erfc-1 uses the probability 𝛼 to find ± x. Assuming that 
both DEM error standard deviations are equal, equation (1) can be rearranged to yield 
𝜎" =	𝜎∆"/√2 and equation (2) can be rewritten in terms of the difference map standard 
deviation rather than the individual DEM standard deviation: 

∆𝑧'()% = 	2	𝜎∆"	erfc,&(𝛼) (3) 

For the significance level 𝛼 = 0.05, or 95% confidence level, which is commonly 
used in many scientific studies, ∆𝑧'()% = 	2.77	𝜎∆". Once the threshold values for each 
DEM combination are calculated, threshold maps are symbolized with a neutral color 
representing values under that threshold. 

2.3.7 Magnitude of vertical change 

We use the magnitude of vertical change between the corrected DEMs integrated 
over a specified sample in the center of the landslide area to quantify the amount of 
vertical surface deformation between each pair of DEMs. The magnitude of vertical 
change is the sum of the absolute value of the maximum change in each 0.1 m by 0.1 m 
cell in the sample area. We did not conduct a volume analysis on the landslide because 
unknown volumes of material have been added to and removed from the slide. An 
unknown volume of fill was placed on the top of the slope during road reconstruction 
between 2007 and 2012. As the landslide has repeatedly run out over the roadway, the toe 
has been excavated multiple times, removing an unknown volume of material.  

2.4 RESULTS 

2.4.1 DEM Corrections 

Each dataset required correction to vertically align it with the 2012 DEM (Fig. 
2.6, Table 2.2). The 2007 county-wide lidar DEM and the 2021 UAV-lidar DEM were 
corrected for a bias of 0.057 and 0.058 m, respectively. All three SfM DEMs were 
corrected for tilt of up to ± 0.21 m across the map area. Figure 2.6 shows examples of 
noise maps and noise distributions in no-change areas outside of the landslide. Figures 
2.6a and 2.6b show an example of the noise map before and after correction for bias 
between the 2012 county-wide lidar DEM and the 2021 UAV-lidar DEM. Figures 2.6c 
and 2.6d show an example of the noise map and noise distribution before and after 
correction for the tilt between the 2019 SfM DEM and the 2012 lidar DEM. 



33 

Table 2.2  Results of noise analysis and the thresholds of elevation change detection prior to and after 
corrections using Method I and Method II, and the sum of elevation change in the landslide for each 
survey combination. Each DEM was corrected for tilt or bias so that areas outside of the landslide 
matched the 2012 county-wide lidar DEM. The first DEM column is the older dataset, and the second DEM 
is the more recent dataset. 

First 
DEM 

Second 
DEM 

Noise before 
correction (m) 

Threshold before 
correction (m) 

Noise after 
correction (m) 

Threshold after 
correction (m) 

Magnitude 
of vertical 
change in 
landslide 
(x102 m) Method 

1 (±2s) 
Method 

2 (∆z!"#$) 
Method 
1 (±2s) 

Method 
2 (∆z!"#$) 

2007 2012 -0.057 ± 0.062 ± 0.12 ± 0.17 0.000 ± 0.062 ± 0.12 ± 0.17 708 

2019 -0.027 ± 0.068 ± 0.14 ± 0.19 -0.004 ± 0.066 ± 0.13 ± 0.18 860 

2019 2nd 
survey 

-0.051 ± 0.095 ± 0.19 ± 0.26 -0.017 ± 0.073 ± 0.15 ± 0.20 853 

2020 0.012 ± 0.064 ± 0.13 ± 0.18 0.003 ± 0.061 ± 0.12 ± 0.17 916 

2021 -0.003 ± 0.068 ± 0.14 ± 0.19 -0.004 ± 0.068 ± 0.14 ± 0.19 886 

2012 2019 0.034 ± 0.033 ± 0.07 ± 0.09 0.000 ± 0.031 ± 0.06 ± 0.09 243 

2019 2nd 
survey 

0.073 ± 0.108 ± 0.22 ± 0.30 -0.013 ± 0.043 ± 0.09 ± 0.12 235 

2020 0.074 ± 0.027 ± 0.06 ± 0.08 0.007 ± 0.025 ± 0.05 ± 0.07 294 

2021 0.058 ± 0.026 ± 0.05 ± 0.07 0.000 ± 0.026 ± 0.05 ± 0.07 300 

2019 2019 2nd 
survey 

0.039 ± 0.118 ± 0.24 ± 0.33 -0.012 ± 0.045 ± 0.09 ± 0.13 7 

2020 0.039 ± 0.037 ± 0.08 ± 0.10 0.007 ± 0.026 ± 0.05 ± 0.07 119 

2021 0.023 ± 0.037 ± 0.08 ± 0.10 0.000 ± 0.039 ± 0.08 ± 0.11 155 

2019 
2nd 

survey 

2020 0.064 ± 0.086 ± 0.17 ± 0.24 -0.020 ± 0.047 ± 0.09 ± 0.13 169 

2021 0.047 ± 0.086 ± 0.17 ± 0.24 0.012 ± 0.050 ± 0.10 ± 0.14 147 

2020 2021 -0.016 ± 0.033 ± 0.07 ± 0.09 -0.007 ± 0.036 ± 0.07 ± 0.10 105 

2.4.2 Threshold of Detectable Change 

Table 2.2 shows thresholds of detectable change prior to and after corrections for 
bias and tilt for all DEM combinations. In ten of the fifteen combinations, the threshold 
of detectable change was reduced by up to 0.20 m after corrections; in two combinations, 
the threshold of detectable change increased by < 0.01 m, and in three combinations, 
there was no change in the threshold value. After corrections, the threshold of detectible 
change ranges from ± 0.05 to ± 0.20 m, with the largest thresholds resulting from 
combinations that include the 2007 county-wide lidar DEM. 
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Figure 2.6. Examples of noise maps and noise distributions in no-change areas above and 
below the landslide before and after corrections for bias and tilt. (a) Noise map and 
distribution showing bias between the 2012 county-wide lidar DEM and the 2021 UAV-
lidar DEM. (b) Noise map and distribution after the correction. Note there is still noise in 
the vegetated areas below the slide, and linear features in the mowed grassy area on the 
other side of the driveway. (c) Noise map and distribution showing a tilt of the 2019 SfM 
DEM of up to ± 0.20 m dipping to the NW. (d) Noise map and distribution after 
correction for tilt. 

The threshold of detectable change calculated using Method I is always inherently 
smaller than Method II. For our datasets, the difference between the two methods ranges 
between 0.02 and 0.09 m, depending on the combination (Table 2.2). Threshold maps 
don’t change underlying data, just the way it is symbolized, with a neutral color 
representing elevation change under the threshold value.  Figure 2.7 shows an example of 
the threshold maps resulting from Method I (Fig. 2.7a) and Method II (Fig. 2.7b) applied 
to the 2019 and 2020 SfM DEMs. Method I results in a calculated threshold of 0.05 m, 
and Method II results in a threshold of 0.07 m.  
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Figure 2.7. Threshold maps produced for the same DEM combination (the 2019 and 2020 
SfM DEM) using Method I and Method II. (a) Threshold of 0.051 m calculated using 
Method I. (b) Threshold of 0.071 m calculated using Method II. Noise in the road and 
mowed area is reduced using either method, while there are more notable differences in 
the vegetated area below the slide and within the slide itself. 

2.4.3 Vertical Changes in the Landslide Surface 

Real elevation change in the landslide is detected in every combination of 
surveys, including those flown just two weeks apart. Elevation changes in the landslide 
are measured relative to the no change areas, which have an assumed elevation change of 
zero.  Figure 2.8 shows a sequence of maps showing elevation changes in the landslide 
between 2007 and 2021 using a gradational scale. Elevation profiles that show the 
progressive elevation change between 2007 and 2021 in the landslide are shown in Fig. 
2.9. Observations of elevation change in the landslide are summarized as follows: 

• Between 2007 and 2012 (Figs. 2.8a, 2.9a), a landslide approximately 45 m wide and
70 m long developed in fill that had been placed on the slope. During this time, the
head of the landslide dropped up to 2.2 m while the toe rose up to 1.3 m.

• Between 2012 and 2019 (Figs. 2.8b, 2.9b), most of the landslide continued to change
in elevation. The top half of the slide shows some bands of elevation gain and loss
that parallel the slope contours, while the toe mostly gains in elevation up to 1.2 m. In
addition, a new area to the south lowered in elevation up to 1.2 m, though the lateral
extent is obscured by vegetation and the topography could not be determined from the
SfM data.
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Figure 2.8. Elevation change maps using a gradational scale to show differences between 
(a) 2007 (county-wide lidar) and 2012 (county-wide lidar), (b) 2012 (county-wide lidar)
and 2019 (SfM), (c) 2019 (SfM) and 2020 (SfM), (d) 2020 (SfM) and 2021 (UAV-lidar),
and (e) 2012 (county-wide LiDAR) and 2021 (UAV-lidar).
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Figure 2.9. Topographic profiles through the landslide showing elevation change in the 
landslide between 2007 and 2021. The dashed profiles indicate the topography at the 
beginning of each time increment and the colored profiles indicate the topography at the 
end of each increment. 

• Between 2019 and 2020 (Figs. 2.8c, 2.9c), the top half of the slide again shows
parallel bands of small elevation gains and losses. Larger elevation changes are seen
in the lower half of the slide, including the excavation of the toe near the road which
lowered the elevation there up to 1.8 m, while the northern part of the toe gained
elevation of up to 0.9 m.

• Between 2020 and 2021 (Figs. 2.8d, 2.9d), elevation changes of up to 1.1 m are seen
in the lower half of the landslide, while the upper half of the landslide appears to have
little to no vertical change.

• Difference maps showing the elevation change between lidar DEMs in 2012 and 2021
(Fig. 2.8e) allow a view of the ground beneath the vegetation and show that the
landslide has extended to the south by at least 60 metres along the lower portion of
the slope. Gullies can be observed above, below and across the body of the landslide.
Other areas of smaller elevation changes are seen to the north of the slide boundary,
and in the mid-slope area above the southern part of the slide.

The sum of the positive elevation gains and the absolute value of negative 
elevation losses inside the landslide sample area for each combination of DEMs is shown 
in Fig. 2.10, along with annual rainfall between 2005 and 2021. The rate of elevation 
change is greatest between 2007 and 2012, which coincides with the annual rainfall in 
2011 of 1.86 m, the greatest annual rainfall since precipitation records have been 
collected starting in 1871. The rate of elevation change is also greater between 2019 and 
2021. When positive and negative elevation changes are viewed individually (Fig. 2.10c 
and 2.10d), the rate of elevation gain is similar in all combinations, while the rate of 
elevation loss is greatest between 2007 and 2012, and between 2019 and 2021. 
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Figure 2.10. The magnitude values for each DEM combination are calculated by 
summing the positive elevation gains with the absolute value of elevation losses for each 
square metre in the sample area. (a) landslide sample area (b) the sum of the positive 
elevation gains and the absolute value of the negative vertical losses in the landslide 
sample area, and annual precipitation from 2005 to 2021. (c) the sum of positive 
elevation gains in the landslide sample area. (d) the sum of the absolute values of 
negative elevation loss in the landslide sample area. 

2.5 DISCUSSION 

2.5.1 Threshold of detection 

Establishing thresholds of detectable change is important for two reasons. First, it 
provides a way to utilize older or noisy low-resolution datasets in combination with more 
recent higher-resolution datasets to detect real change and offer information about the 
behavior of slow-moving landslides over many years to decades. In this study, without 
the 2007 data, one might recognize a landslide from the topographic signature in the 2012 
data, but we would not have information about the timing or magnitude of the change in 
the landslide. The methods of calculating the threshold presented here are broadly 
applicable to a wide range of topographic and bathymetric change detection problems 
using combinations of DEMs from different sources and for which limited control points 
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may be available. Using the statistics of noise in no-change areas from the difference 
map, one can simply use Method I to calculate the threshold of detectible change.  
Method II, which always produces a higher threshold than Method I, can also be used, 
however Method II uses the assumption that the standard deviation of noise is equal for 
both data sets. If the older data have a markedly different standard deviation of errors, 
Equation (1) can be used to calculate the propagated error, which would require 
knowledge or estimation of the standard deviations, or at least the ratio of standard 
deviations for each dataset. This propagated error can then be used in Equation (3) to 
calculate the threshold of detectable change. 

Second, calculating a threshold of change can allow for more reliable and cost-
effective monitoring of ongoing changes in slow-moving landslides. In this study, annual 
changes to the landslide are easily detectable with either SfM or lidar, and the slight 
corrections we demonstrated here to reduce the threshold of detection may not even be 
necessary to accomplish this. However, in the case where critical infrastructure may be 
damaged by a slow-moving landslide, monitoring for small changes may be a crucial 
mitigation strategy; thus, a technique to quantify and minimize the threshold of detectable 
change, including making the small corrections for tilt and or bias, is important.  

An example of a small change in the landslide only detectible after making 
corrections and using the resulting threshold is provided by the combination of surveys 
collected just two weeks apart on March 11, 2019 and March 26, 2019. Before 
corrections to the individual DEMs, the threshold of detectable change was 0.33 m 
(Method II), in which case there was no detectable change in the slide beyond the 
excavation of the toe (Fig. 2.11a). Once corrections were made to each DEM, the 
threshold of detectable change was lowered to 0.13 m (Method II), and small changes 
within the landslide become apparent (Fig. 2.11b). A comparison with a combination of 
DEMs after an additional nine months had passed shows these small changes correlate 
with the pattern of elevation change over that longer time period (Fig. 2.11d).  

The bias between lidar DEMs or tilt between SfM DEMs were easily identified 
using the noise maps. The pattern of tilt, in particular, would have been easily obscured 
without the noise maps. In this case, samples of noise in the road would show 
inconsistent distributions of errors across the map area; or if a single noise measurement 
was made of the area outside of the slide, errors with a large standard deviation, and thus 
a larger threshold of detection would be calculated.  

When vertical changes in the landslide are large compared with the noise, they are 
easy to distinguish even without reliance on a formally calculated threshold. When the 
changes are small, however, minimizing the threshold of detection is critical for 
distinguishing real change.  
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Figure 2.11. Example of threshold maps before and after corrections for DEMs flown two 
weeks apart in March, 2019. The toe of the landslide was being excavated during the 
second flight. (a) Threshold map prior to correction, using Method II, where the threshold 
of detectable change is 0.33 m. Only the change due to the excavation of the toe is 
apparent. (b) Threshold map after survey corrections, with a threshold of detectable 
change of 0.13 m. Small elevation changes in the body of the landslide are apparent. (c)  
Landslide toe being excavated during second flight. (d) Threshold map of elevation 
change over the course of the next year. Areas of small positive and negative changes 
correlate with the changes measured over two weeks. 

2.5.2 Landslide deformation 

The series of difference maps between 2007 and 2021 show that the Taylor Mill 
debris slide developed on a slope that had been altered by road construction, regrading, 
and the addition of fill. There is some evidence that a slow-moving landslide may have 
already existed at this location, but the most significant landslide movement occurred by 
2012, likely due to record precipitation in 2011. Since 2012 the lower half of the 
landslide has continued to slowly deform and move out into the roadway, where it is 
periodically excavated, while the scarp region displays only minor elevation changes. 
The most significant change since 2012 is the major lateral expansion of the landslide 
onto the natural slope which had not been previously altered or shown any signs of 
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movement. This demonstrates that a landslide that arguably was staged by human 
activities and triggered by record rainfall can lead to the destabilization of adjacent 
undisturbed slopes. This is important for the Cincinnati and northern Kentucky region 
because there are numerous other slow-moving landslides in the area which are similarly 
sensitive to changes in precipitation (Sparling 2019). Regional precipitation has increased 
5 to 10% over the past 50 years due to climate change (EPA 2016), and an increase in 
landslide activity is expected (Coe et al. 2018; Leschinsky et al. 2017; Mirus et al. 2017). 
Furthermore, these landslides can potentially expand laterally onto previously 
undisturbed slopes, as seen at in this study, causing additional damage to property and 
infrastructure. 

Imagery accessed via Google Earth prior to the first lidar survey of 2007 indicates 
that a landslide may have already existed on the slope, as imagery from 2003 and 2005 
shows some bare patches in the otherwise vegetated slope, and the vegetation was cleared 
and slope regraded by June of 2006 (Fig. 2.3). The county-wide lidar DEM and imagery 
from 2007 shows this regraded slope, and there is no evidence of the landslide at that 
time. Between May 2007 and October 2008 fill was added to the upper slope, and 
between October 2008 and July 2010, the upper curve of the driveway was reconstructed, 
and fill again added to the upper slope (Fig. 2.3).  

The major elevation changes within the landslide between 2007 and 2012 (Figs. 
2.8a, 2.9a) were likely triggered by the record rainfall of 2011 (Fig. 2.10b). The 
magnitude of elevation loss in the scarp area (up to 2.2 m) is much larger than the 
magnitude of positive elevation gain in the lower half of the slope (up to 1.3 m), as can be 
seen in the elevation profiles and the magnitude of vertical change (Figs. 2.9a and 2.10). 
The topographic profiles, mapped elevation changes, and magnitude of vertical change 
between 2007 and 2012 all indicate that more material was lost at the scarp than gained at 
the toe. Because the landslide toe extended into the road, this material was excavated and 
moved off-site. 

Between 2012 and 2019 elevation changes continued to occur throughout the 
landslide, but the changes had a smaller magnitude (maximum of 1.2 m elevation change) 
than those that had occurred between 2007 and 2012 (Fig. 2.8b, 2.9b). Parallel bands of 
elevation gain and loss that roughly parallel contours indicate either internal deformation 
of the slide material as it moves over an irregular slip surface, or small internal slumps. 
Between 2019 and 2021 elevation changes have been greatest in the lower half of the 
slide, which has continued to advance into the driveway, and where debris has been 
periodically excavated (Figs. 2.8c, 2.8d, 2.9c, 2.9d). Elevation changes in the upper half 
of the slide appear to be confined to small slides or erosion. Between 2020 and 2021, the 
upper half of the slide appears quiescent (Figs. 2.8d, 2.9d).  

By 2019 the landslide had also expanded laterally to the south. Though the full 
extent of this expansion was obscured by vegetation in the SfM surveys in 2019 and 
2020, the lidar DEM in 2021 revealed that the landslide had laterally expanded by at least 
60 m thereby more than doubling its width (Fig. 2.8e). The landslide is possibly 
expanding to the north as well. Some of this expansion appears to involve the fill placed 
on the slope before the 2012 lidar survey but has extended significantly beyond that. The 
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2021 lidar DEM (Fig. 2.8e) also shows that several gullies had developed on the slope 
which were not observed in the 2012 lidar, indicating the contribution of surface water to 
the landslide. Thus, the mobilization of the landslide by 2012 was followed by continued 
deformation of the toe, and a significant lateral expansion into a formerly undisturbed 
natural slope. 

2.5.3 Landslide signature 

This pattern of elevation change seen in the Taylor Mills landslide is 
characteristic of a debris slide, which ideally has an even loss of elevation in the scarp 
area, internal deformation in the body of the slide, and elevation gain in the toe (Fig. 
2.12). Interbedded shale and limestone produce an uneven slip surface, which helps 
generate internal deformation of the debris slide material (Fleming and Johnson 1994). A 
slump, in contrast, would have the greatest elevation drop at the scarp, which would 
progressively diminish to the axis of rotation of the slide where the change should be 
zero, and then a gradual increase in elevation towards the toe (Fig. 2.12). Thus, we 
observe that the mapped elevation change signature reveals the nature of the slide. 

Figure 2.12. The pattern of elevation loss and gain expected for translational debris slides 
and rotational slumps. Interbedded shale and limestone produce an uneven slip surface, 
which helps generate internal deformation of the debris slide material (Fleming and 
Johnson 1994). 

Because the landslide toe where it has run out over the road has been excavated 
periodically, we do not observe as much elevation gain in the toe as might be expected 
for a pristine debris slide. Typical debris-slide thickness are up to 2m for landslide in the 
region (Fleming and Johnson 1994; Baum and Johnson 1996), and the slightly higher 
elevation loss values observed in the scarp may be due to the regrading of the slope in 
2006, and the additional fill material that was added to this slope between 2007 and 2010. 
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While differencing two DEMs produces a map of vertical change, this does not 
necessarily imply that the ground only deformed vertically. Elevation change in a 
landslide could be produced by vertical change but also by horizontal movement, or a 
combination of the two. In a translational debris slide, for example, there could be 
significant horizontal movement of the slide down the slope, while the vertical changes 
may not appear significant (Fig. 2.12). Ongoing work on landslides in the Cincinnati and 
northern Kentucky region will address the horizontal component of movement, in 
addition to the vertical changes reported here. 

2.5.4 Thermal Expansion and Contraction 

The amount of expansion and contraction for diurnal or seasonal temperature 
changes will depend on the soil characteristics, moisture conditions, and the temperature 
conditions. A recent study on a loess slope in China found that the soil expanded and 
contracted with an amplitude of about 1 mm over the course of a year due to temperature 
variations (Lan et al. 2021). In a lab study of bentonite clay under thermal loading, the 
heating and cooling resulted in expansion and contraction with a volumetric strain of 
approximately 1.0% (Tang et al. 2008). If we consider a hypothetical 2-meter-thick 
volume of bentonite which is only allowed to expand vertically as a result of thermal 
loading, an elevation change of approximately 0.02 m would result. The clayey soils in 
the northern Kentucky area likely fall somewhere between these two examples, thus 
expansion and contraction values, while non-zero, would lie below the threshold values 
calculated for this study, the smallest of which is 0.05 m. 

2.5.5 Influence of Vegetation 

The influence of vegetation on SfM DEMs is well-documented (Cook 2017; 
Zekkos et al. 2018) and is significant when comparing elevation maps over longer time 
spans when changes to vegetation can be expected. However, we found that in SfM 
DEMs conducted close in time and prior to the growing season, very little change to 
vegetation has occurred. Therefore, any vertical change to the landslide will change the 
vegetation as well, and vertical changes in the vegetation reflect real vertical change in 
the landslide. The combination of DEMs over a two-week period was able to detect small 
elevation changes in the body of the slide, and the locations and magnitudes of these 
changes were confirmed in the survey of the following year (Fig. 2.11).  

It is sometimes assumed that vegetation is completely removed in bare earth 
DEMs derived from lidar, when in fact vegetation may still influence the DEM. For 
example, elevation changes between two lidar DEMs are seen in the mowed area across 
the road from the landslide, which reflects the differing grass heights during these two 
surveys (Fig. 2.6b). 
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2.5.6 Spatial variability of uncertainty 

There is spatial variability in uncertainty related to terrain characteristics such as 
roughness (Podobnikar 2016), slope (Xiong et al. 2018), point density and vegetation 
(Clapuyt et al. 2016), and combinations of terrain characteristics (Carlisle 2005). In this 
study we used errors in the apparently stable and smooth roadways outside of the 
landslide. If no road or other smooth surface was available, we expect that thresholds of 
detectible change would be higher. For example, for the combination of the 2012 county-
wide lidar DEM and the SfM DEM of March 11, 2019, the road areas had a distribution 
of noise of 0.034 ± 0.033 m, and threshold values of 0.06 m (Method I), and 0.09 m 
(Method II). In contrast, the distribution of noise in the grassy area below the landslide 
was -0.074 ± 0.072 m, which produced threshold values of ± 0.14 m (Method I), and ± 
0.20 m (Method II). 

2.6 CONCLUSIONS 

Slow-moving landslides are chronically destructive and can permanently damage 
property and infrastructure. The purpose of this study was to better understand decadal-
scale spatial and temporal variations in a slow-moving debris slide in northern Kentucky 
over 14 years. To accomplish this, we needed to integrate existing county-wide lidar data 
acquired before our study began, along with site-specific SfM and UAV-lidar surveys. 
Because the technology and quality differ among surveys, the challenge was to devise a 
method to quantify survey noise so that a threshold of detectable change could be 
calculated. To reduce the threshold of detectable change, bias between lidar DEMs and 
tilt between SfM DEMs was first corrected to produce a zero mean elevation difference 
in areas outside of the landslide where no change is inferred to have occurred. The 
threshold of detectable change was then calculated from the remaining random noise 
using two methods, each of which use the propagated elevation difference errors for the 
DEM combination. Method I used the errors from the difference map, and Method II 
used back-calculated estimates of the individual DEM errors. The thresholds of detectible 
change range from ± 0.05 to ± 0.20 m, depending on the DEM combination and method 
used, with Method II producing a larger threshold value. 

The series of difference maps between 2007 and 2021 show the landslide 
developed on a slope that had been altered by road construction, regrading, and the 
addition of fill. The greatest change in the landslide occurred between 2007 and 2012 and 
was likely triggered by the record rainfall of 2011. Since 2012 the lower half of the slide 
has continued to slowly deform while the upper half of the slide has been generally 
quiescent. The most significant change since 2012 is that the landslide has expanded 
laterally by at least 60 m into a previously unaltered slope which had previously shown 
no signs of movement, demonstrating that a landslide that was staged by human activity 
can lead to the destabilization of adjacent slopes.  

The region has numerous other slow-moving landslides, and with precipitation 
increasing due to climate change, landslide activity is only projected to increase. Thus, 
monitoring these slow-moving landslides is a critical part of landslide mitigation. We 
found real change occurred in the landslide in all DEM combinations, including in SfM 
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DEMs separated in time by just two weeks. Thus, in addition to providing a way to utilize 
older or noisy low-resolution datasets to document the behavior of a landslide over many 
years to decades, the methods of calculating a threshold of detectable change presented 
here can also provide a reliable method of monitoring ongoing changes in a slow-moving 
landslide. This technique for calculating a threshold of detectable change is widely 
applicable to other change detection studies where various survey technologies have been 
used to capture elevation data, including older regional or low-resolution surveys that 
might predate a particular investigation. 
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CHAPTER 3. MACHINE LEARNING FOR SURFICIAL GEOLOGIC MAPPING 

3.1 ABSTRACT 

Geologic maps provide a valuable contribution to society and industry. However, 
geologic maps may convey a level of certainty that obscures the fact that we are unable to 
directly observe geologic variables at every point, and thus there is uncertainty inherent 
to any geologic map. In this study we examine the combination of machine learning and 
digital terrain data to provide a new method for producing surficial geologic maps which 
can also convey and preserve the underlying uncertainty. We measured the performance 
of eight supervised machine learning methods using data from two quadrangles in 
Kentucky by comparing the overall model accuracy and the F1 scores for each geologic 
unit, which includes residuum, colluvium, alluvial and lacustrine terraces, high level 
alluvial deposits, and modern alluvium. The importance of 31 geomorphic variables 
derived from lidar data including slope, roughness, residual topography, curvature, 
normalized topographic position, and the standard deviation of elevation, was reduced to 
11 variables by perturbing each variable in turn and measuring the resulting loss of 
accuracy. The Gradient Boosted Trees model produced the classifier with the greatest 
overall accuracy, producing maps with overall accuracies of 86.5% to 93.1% in areas of 
simple geology, and 78.3% to 79.5% in areas with more complex geology. The model 
produced high F1 scores for colluvium (up to 96.3%), but was not as good at 
distinguishing between units found in the same geomorphic position, such as high level 
alluvium and residuum, both of which are found on ridgelines. Uncertainty values are 
conveyed in the map using gradations of color while eliminating the need for drawn 
boundaries between units. We conclude that machine learning may be used to create 
accurate surficial geologic maps in areas of simple geology; in more complex areas, 
additional information obtained in the field is necessary, but ML classification provides a 
base map highlighting where areas of geologic uncertainty lie. 

3.2 INTRODUCTION 

The making of geologic maps is a fundamental contribution of geologists to 
society and industry.  However, formatting limitations require geologists and 
cartographers to make decisions about what information to display and omit, as well as 
how to show boundaries and areas of geologic uncertainty or transition. Traditionally, 
there have been few options to communicate the nuance and uncertainty in the mapping 
process. Perhaps not fully understood by many map users is that geologic maps may 
convey a level of certainty which obscures the myriad of decisions and interpretations 
made by the mapper. The combination of machine learning with surface, geophysical, 
and remote sensing data provides a new tool for producing geologic maps which can also 
convey the underlying uncertainty intrinsic to any geologic map. 

The utility of geologic maps in locating natural resources and for engineering 
projects has been recognized since the first widely published geologic map of England by 
William Smith (Smith 1815; Winchester 2009). In addition to geologic information in 
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support of mineral, energy and water resource exploration, geologic maps contribute to 
decision making processes in other areas including natural hazards such as landslides, 
rockfall, flood, earthquakes, and karst; land-use planning, climate change, environmental 
impact evaluations, identifying health hazards, and in locating, and building 
infrastructure such as roads, buildings, dams, and utilities (Bernknopf et al. 1993; GSA 
2022; Derouin 2021).  The economic value of geologic maps includes not only resource 
development, but the prevention of economic loss due to poor land-use decisions, and 
documented benefit-to-cost ratio for geologic mapping ranges from 4:1 to >100:1 (Berg, 
MacCormack, and Russell 2019). 

A map of geologic units and boundaries may convey a certainty to the user that 
the map gives exact and perfect information about the geology at every map location. In 
reality, mapped geological boundaries are inherently uncertain for several reasons: the 
boundary may be gradational as opposed to a sharp contact, the width and position of 
boundaries are generalized and dependent on the scale of the map, and boundaries may 
be obscured in the field (Lark et al. 2015). As we are unable to directly observe geologic 
variables at every point, we use models— either mental or computational—to fill in the 
gaps (Kirkwood 2022). Individual mappers might use different models and thus produce 
different maps of the same location. In addition, decisions mappers used to define 
boundaries might be poorly documented, and the depth of information that went into the 
creation of a map may not be conveyed in the final product (Kirkwood 2022). As there 
are many potential models to interpolate between direct observations, uncertainty is 
integral to geologic maps. 

Technological advances throughout history have facilitated changes in geologic 
mapping: GPS, GIS, aerial photography, satellite imagery, lidar, geophysical and 
geochemical datasets. Over the past decade, the expanded deployment of traditional 
sensors and the development of new data sources such as lidar and satellite data have 
increased the amount of data available to geoscientists (Bergen et al. 2019). The 
availability of these large datasets, in combination with advances in computational 
capacity, have made machine learning increasingly applicable to modeling a variety of 
Earth processes. Advantages of ML specific to geologic mapping are the ability to 
process datasets with numerous variables (high-dimensionality datasets) in order to 
replicate human mapping performance, to produce maps more quickly than humans can, 
to produce maps using a consistent well-documented model across large regions, to 
provide uncertainty estimates resulting from the model, and to convey that uncertainty as 
part of the final map (Bergen et al. 2019; Cracknell and Reading 2013).  There are two 
main types of machine learning (ML); supervised classification requires labeled examples 
to learn to distinguish patterns and then make predictions or classify previously unseen 
data, while unsupervised classification techniques learn to distinguish patterns in data 
without any labels provided. A ML map can document the probability for each class at 
any point on the map and provide a consistent and well-documented mapping process. 
Thus the map user can obtain information about the range of geological properties they 
might encounter at any particular location (Kirkwood 2022). 

While there are examples of geologic maps of bedrock produced using ML 
methods, there is also great potential for ML in mapping surficial geology. Maps of 
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bedrock geology in New South Wales, Australia were produced from dispersed geologic 
data in conjunction with geophysical and remote sensing data (Cracknell and Reading 
2014), and in the Eastern Goldfields of Australia using only geophysical data (Kuhn, 
Cracknell, and Reading 2018). Geochemical maps in England were generated using 
sparse geochemical data in combination with geophysical and remote sensing data 
(Kirkwood et al. 2016; 2022). However, fewer maps have been created of surficial 
geology using ML, such as regolith mapping in West Africa using airborne geophysics 
and remote sensing data (Metelka et al. 2018), though there are examples of surficial 
geologic hazards identified utilizing ML such as landslide-susceptibility maps produced 
using landslide inventories and lidar data in Kentucky (Crawford et al. 2021) and Japan 
(Dou et al. 2019), and the identification of sinkholes in Kentucky (Zhu and Pierskalla 
2016). Given the dramatic increase in the number of geophysical and other datasets 
publicly available, there is great potential for the expansion of ML to geologic mapping 
applications throughout the world which may be particularly useful where ground 
information is sparse or non-existent. 

In this study we examine the utility of machine learning to the process of mapping 
the surficial geology of Kentucky using the characteristics of the terrain derived solely 
from lidar-based digital elevation models (DEMs). Our goal was to automate the process 
of mapping surficial geologic units and produce maps where classification uncertainty is 
conveyed. The Commonwealth of Kentucky, USA is the first state with bedrock fully 
mapped at a scale of 1:24,000. The cost of mapping bedrock for all 707 quadrangles was 
initially justified by the economic development of coal, oil, natural gas, and minerals; 
today the use of maps for management of land, water and the environment has supplanted 
their use for natural resource development (Bhagwat and Ipe 2000). To address these 
needs, geologic mapping of surficial deposits began in 2004 and continues today (KGS 
2021). Mapping the surficial geology of each quadrangle using traditional means requires 
multiple steps: contacts between surficial units are mapped based on topographic features 
derived from lidar data, these initial maps are used in the field to view unclear features, 
contacts and units, and observe and collect soils and other samples to inform and update 
the maps, and final maps are produced, with the process taking approximately one year 
(Hammond et al. 2017). To test the utility of ML to create surficial geologic maps, we 
first test eight different ML models and 31 terrain variables to determine the best 
performing model and the key variables needed to produce maps efficiently. The 
Gradient Boosted Trees model generated the highest overall accuracy (up to 92%), and 
with few exceptions the highest F1 scores for each individual map unit, and provided 
robust estimates of uncertainty which can be conveyed in the resulting geologic maps. 
We conclude that maps generated from this model could be used either as an initial step 
to identify areas of geologic uncertainty where additional field observations or sampling 
are needed, or, in areas where the geologic units are relatively simple and uncertainty 
values are low, could produce near-final maps. This method has the potential to be used 
not only throughout the state, which has lidar data available for its entirety, but other 
regions where lidar data is available. 
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3.3 GEOLOGIC SETTING 

The two quadrangles used for this study are both situated within the Outer 
Bluegrass physiographic region of Kentucky, which is characterized by a dissected 
terrain that has formed in gently dipping Paleozoic carbonates and shales (McDowell 
1986). A dendritic drainage system contributes to the larger river valleys, which are 
entrenched 60-90 m below the ridges and hold a sequence of lacustrine and alluvial 
terraces above the modern floodplain. The De Mossville Quadrangle (Massey 2017) is in 
Pendleton County, KY, about 21 miles south of Cincinnati, OH, and the Ohio River (Fig. 
3.1). The Pitts Point Quadrangle (Massey et al. 2019) is in Bullitt County, approximately 
100 miles to the southeast of the De Mossville quadrangle, and 30 miles south of 
Louisville, KY. The Licking River meanders north towards the Ohio River though the De 
Mossville quadrangle and the Salt River flows to the Ohio River 9 miles to the north 
through the Pitts Point quadrangle. 

Bedrock has weathered to produce ridgetops of residuum, and moderate to steep 
slopes of colluvium. In both quadrangles, the residuum of the ridgetops is interrupted by 
high-level alluvial and lacustrine deposits or terraces that date to the Pliocene or early 
Pleistocene (KGS 2023; Massey et al. 2019; Massey 2017). These deposits record the 
presence of an ancestral river system which predates the downcutting of the Ohio River 
to its current level. (Potter 2007; McDowell 1986). As the Laurentide ice sheet advanced 
and blocked this ancestral river system, the Ohio River valley was formed (Durrell 1982; 
Granger and Smith 1998). The former plateau was dissected in a dendritic pattern as the 
landscape eroded to meet this new base level. Subsequent glacial advances and their 
deposits blocked drainages, forming lakes, their presence recorded by extensive 
lacustrine terraces (middle to late Pleistocene) found along the river valleys, including 
both quadrangles in this study. These lacustrine terraces have been dissected by late-
Pleistocene alluvial terraces into which the modern floodplain is entrenched.  

Surficial geologic units in both quadrangles form both natural resources as well as 
hazards. Outwash and alluvial terraces form resources of sand and gravel for building 
materials and freshwater aquifers. (McDowell 1986; Potter 2007). The steep slopes of 
colluvium developed from shale-rich bedrock form numerous damaging landslides 
(Baum and Johnson 1996; Crawford 2012; Johnson et al. 2023). 
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Figure 3.1. Location and surficial geology of the 7.5-minute Pitts Point and De Mossville 
quadrangles in Kentucky, USA.  

3.4 METHODS 

3.4.1 Overview 

The utility of machine learning (ML) for mapping surficial geology in Kentucky 
was assessed by training and testing eight ML methods using publicly available digital 
elevation models (DEMs) and surficial geologic maps for two quadrangles in Kentucky. 
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A summary workflow is shown in Fig. 3.2, and each step is described in detail in the 
following paragraphs.  

Figure 3.2. Overview of workflow 

3.4.2 Surficial geologic quadrangles 

Machine learning methods were applied to two surficial geologic maps published 
as 7.5-minute quadrangles by the Kentucky Geological Survey (KGS). These were 
created using traditional field-based and digital mapping methods. One quadrangle from 
each region, Pitts Point (SE corner 85° 45’, 37° 52’ 30”) and De Mossville (SE corner 
84° 22’ 30”, 38° 45’) were each chosen to include a diverse set of surficial geologic units 
including residuum and colluvium derived from bedrock units, high-level pre-glacial 
alluvial deposits, a sequence of alluvial and lacustrine terraces, modern alluvial deposits, 
and fill.  
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3.4.3 Digital elevation maps and derivative maps 

The DEMs for the Pitts Point and De Mossville Quadrangles are publicly 
available through KyFromAbove, the state’s elevation data and aerial photography 
program, which is accessible digitally at kyfromabove.ky.gov. The maps were derived 
from lidar data and have a 5 ft. (1.524 m) cell size. To test which geomorphic variables 
are the most important for the ML models, a series of 31 derivative maps were made 
from the DEMs using GIS software (Table 3.1). The derivative maps represent 
geomorphic attributes independent of their specific location (i.e. latitude, longitude and 
elevation). They measure qualities of the geomorphology ranging from local scale (1.5 to 
12.2 m) to landscape scale (760 m to 2740 m). Thus, each cell has information about its 
local vicinity as well as a comparison to or measure of the surrounding terrain.  

A series of smoothed DEMs were produced using a focal statistics tool in GIS, 
which calculates a statistic for a defined region around a particular cell, in this case the 
mean elevation within a circular radius around each cell ranging from 16 cells to 1500 
cells (49 m to 2740 m). Slope maps were made from the original unsmoothed DEM and 
smoothed DEMs. Residual topographic maps were produced by subtracting each 
smoothed DEM from the elevation for each cell, thus allowing the position of a cell 
relative to its surroundings to be represented, with positive values representing ridges or 
peaks, negative values representing depressions or valleys, and values close to zero 
representing an even slope or flat area (Weiss 2001; De Reu et al. 2013; Haneberg et al. 
2005). A normalized topographic position map was produced by dividing the difference 
between the elevation of each cell and the minimum elevation of the quadrangle, by the 
range of elevation for the quadrangle. Curvature represents the slope of the slope and was 
calculated using GIS for a radius ranging between 16 to 32 cells. Positive curvature 
values indicate an upwardly convex surface, and a negative value indicate an upwardly 
concave surface. Roughness maps were produced using the focal statistics tool to 
calculate the standard deviation of the slope angles derived from the original DEM within 
a circular radius ranging from 16 to 150 cells (Grohmann, Smith, and Riccomini 2011). 
The standard deviation of elevations from the unsmoothed original DEM was produced 
using the focal statistics tool, using a radius ranging from 100 to 500 cells (Grohmann, 
Smith, and Riccomini 2011). 
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Table 3.1 Definition of variables. 
Variable Description 

Elevation Mean height of cell measured from mean sea level. 

Smoothed DEM Mean elevation within a radius ranging from 16 to 1500 cells. Not 
used directly, but used to calculate the residual topography and 

produce slope maps. 

Slope Slope original DEM, using a 3 by 3 cell moving window. 

Slope radius 16, 24, 32 Slope of the smoothed DEM. 

Residual Topography (RT), radius 
16, 24, 32, 50, 100, 150, 200, 500, 

1000, 1500 

The elevation of the original DEM minus the smoothed DEM. 

Normalized Topographic Position 
(NTP) 

Elevation values normalized using the maximum and minimum 
elevation values in the quadrangle. 

Curvature radius 16, 24, 32 The second derivative of the surface, or the slope of the slope. 

Roughness radius 16, 24, 32, 50, 
100, 150 

Standard deviation of the slope angles derived from the original 
DEM within a radius of 16, 24, 32, 50, 100, and 150 cells. 

DEM Standard Deviation, radius 
100, 150, 200, 250, 500 

Standard deviation of the elevation values from the original DEM, 
within a circle of radius 100, 150, 200, 250, and 500 cells. 

3.4.4 Geologic classes 

The geologic units were simplified to avoid under-sampling smaller-scale features 
such as alluvial fans, colluvium accumulation zones, landslides, small-scale remnants of 
lacustrine and alluvial terraces, and different varieties of fill (Table 3.2). Colluvium is 
defined to include landslides and colluvium accumulation zones found at the base of 
some slopes. Alluvium is defined to include alluvial fans, alluvium in tributaries, old 
alluvium, and undifferentiated alluvial terraces. The lacustrine and alluvial terraces in the 
Pitts Point quadrangle are extensive and well-preserved (Fig. 3.1) and were divided into 
three terrace units: alluvial terraces 3 & 4 are at the highest level; lacustrine terraces 1 & 
2 lie below this; and alluvial terraces 1 & 2 are at a lower level nearest the modern 
floodplain. Some of these same terraces are found in the De Mossville quadrangle, but 
are not as well-preserved or extensive, thus all terraces in this instance were grouped 
together as one terrace unit. Modern floodplain deposits were mapped as a separate unit 
in the Pitts Point quadrangle but were included with the other alluvial deposits in the De 
Mossville quadrangle. Fill includes engineered and other artificial fill. 
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Table 3.2. Simplified lithological categories. 
Pitts Point De Mossville 

Residuum Residuum 

Colluvium (includes landslides and colluvial 
accumulation at the base of slopes) 

Colluvium (includes landslides and colluvial 
accumulation at base of slopes) 

High-level alluvium (high-elevation pre-glacial river 
system deposits) 

High-level alluvium (high-elevation pre-glacial 
river system deposits) 

Alluvial Terrace 3 & 4 

Terraces (lacustrine terrace 1 and alluvial terraces 
1, 3, and 4) 

Lacustrine Terraces 1 & 2  

Alluvial Terraces 1 & 2  

Floodplain (main river valley) Alluvium (includes alluvial fans, floodplain, 
alluvium in tributaries, old alluvium, 

undifferentiated alluvial terraces) Alluvium (includes alluvial fans, alluvium in 
tributaries, old alluvium, undifferentiated alluvial 

terraces) 

Artificial fill (engineered and other fill) Artificial fill (engineered and other fill) 

3.4.5 Machine Learning Methods 

Supervised machine learning methods use training data that has a known 
classification, in this case the mapped geologic unit, to train a classifier which is then 
used to classify previously unobserved data. To build the classifier and measure how well 
it performs, the data set is randomly divided into a training set, which is used to train the 
model, and a testing set which is used to measure the performance of the model. Each 
time the model is run, the data may be divided into different training and testing sets, and 
thus the resulting model performance will be slightly different. 

We measured the performance of eight supervised machine learning methods in 
Mathematica using a dataset of 10,000 random points within a training area for each 
quadrangle (Fig. 3.1), with 75% of the points used to train the model, and the remaining 
25% used to test the model. The eight machine learning methods tested represent the 
main types of supervised learning algorithms and are available in the software used for 
the analysis (Bergen et al. 2019; “Mathematica” 2022): Logistic Regression (Cox 1958), 
Nearest Neighbor, Support Vector Machine (Vapnik 1998), Decision Tree, Naïve Bayes, 
Neural Network, Random Forest (Breiman 2001), and Gradient Boosted Trees (Table 
3.3). Because the performance of the model varies depending on the randomly selected 
training and testing set values, each model was run 30 times to build a distribution of 
accuracies for each model. The model that produced the greatest overall accuracy and F1 
scores was then used for further analysis. For comparison, the model that produced the 
lowest overall accuracy and F1 scores was also used for further analysis. 
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Table 3.3. Description of different ML models. 
Machine 
Learning 
Method 

Algorithm 
Type 

Description 

Logistic 
Regression 

Binary 
classifier 

Uses a logistic function to estimate the probability that a data point 
belongs to one of two classes.  

Support Vector 
Machine 

Binary 
classifier 

Finds a hyperplane that separates training data into two classes. A 
multiclass classification is reduced to a set of binary classification 

problems. 

Nearest Neighbor Instance-
based 

Infers the class of each example by comparing to the nearest 
neighbor in the feature space and picking the commonest class or 

average value. 

Decision Tree Decision 
Tree 

A branching tree-like structure where each node represents a test on 
each feature, each branch represents the outcome of a test, each leaf 

represents a prediction or class probability.  

Random Forest Ensemble An ensemble of weaker decision trees independently trained on a 
subset of the training data. Predictions are combined. 

Gradient Boosted 
Trees 

Ensemble An ensemble of weaker decision trees is trained sequentially, 
compensating for the weaknesses of previous trees. 

Naïve Bayes Bayesian Applies Bayes’s theorem which assumes that features are 
independent given the class, regardless of possible correlations 

between features.  

Neural Network Neural 
Network 

Consists of stacked layers each of which performs a single 
computation and passes that value to the next layer. 

3.4.6 Variables & dimensionality reduction 

A total of 31 variables were initially used to train the eight machine learning 
models. The dimensionality of the dataset was then reduced to the 11 most important 
variables to lessen the computing power necessary to perform further classifications of 
larger map areas. We evaluated variable importance by randomly permuting each 
variable in turn, and comparing the resulting accuracy compared with the unaltered 
values (Breiman 2001; Antonov 2016; Zhu and Pierskalla 2016; Crawford et al. 2021). 
Each of the 31 variables was tested by training a classifier with all variables, then 
permuting the values for one of the variables in the testing data and measuring the 
resulting accuracy produced by the trained classifier. The lower the resulting accuracy, 
the more important that particular variable is to the classifier. This process was repeated 
for each variable in turn. Again, as the results will vary depending on the training and 
testing sets, this was repeated 20 times using different randomly selected training/testing 
sets. The resulting range of accuracies, those generated by the perturbed variables, was 
then plotted versus a baseline accuracy generated by the unaltered variables. The 11 
variables that had the greatest impact on the overall classifier accuracies were selected as 
the most important. A comparison of the distributions of classifier accuracy with all 31 
variables versus a model trained with just the 11 selected variables was performed to 
measure the change to the accuracy by running each version of the model 20 times. 
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3.4.7 Quantifying model performance 

The performance of eight machine learning methods was evaluated by comparing 
their overall accuracy and the F1 scores for each geologic unit. Accuracy is defined as the 
fraction of correctly classified examples: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Where TP = the number of true positive predictions, TN = the number of true 
negative predictions, FP = the number of false positive predictions (Type I errors), and 
FN = the number of false negative predictions (Type II errors). Accuracy is a useful 
metric for comparing the models which all use the same data. However, as the 
distribution of classes is not even (e.g., there are many more samples of colluvium than 
high-level alluvium or fill), accuracy is not a good way to measure model performance 
for each geologic unit (Forman and Scholz 2010). For example, a good performance of 
the model to predict colluvium might overshadow its poor performance in predicting fill. 
The F1 score, on the other hand, accounts for class imbalance through the metrics of 
Precision and Recall for each class:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 = 2 ∗	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

3.4.8 Lithologic probability maps 

Qualitative evaluations of the best and worst models were produced by creating 
maps for three 1.5 km x 1.5 km areas for each quadrangle. Map 1 for both the Pitts Point 
and De Mossville quadrangles is just outside of the training area. Map 2 is within the 
training area, and Map 3 is 4.5 to 6 km away from the training area boundary for the Pitts 
Point and De Mossville quadrangles, respectively (Fig. 3.1). The probability of every cell 
belonging to each geological unit was calculated using the ML model. These probabilities 
were then brought into GIS software, and probability map layers were produced for each 
unit. These maps were symbolized so that the darkest shade represents a probability of 
>=80%, the middle tone represents probabilities of 60% to 80%, the lightest tone 
represents probabilities of 40% to 60%, and probabilities of <40% are completely 
transparent. In this way each map layer preserves the underlying uncertainty, and 
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different map users could change the symbology according to their purpose. Map layers 
are rendered as semi-transparent, so that the multiple lithologies may be viewed at one 
time, and areas where two or more lithologies are probable, each will be visible.  

3.5 RESULTS 

3.5.1 Model Accuracy and F1 scores 

Of the eight models tested, the Gradient Boosted Trees (GBT) model produced 
the classifier with the greatest overall accuracy in the training area for both the Pitts Point 
and De Mossville Quadrangles, with an overall accuracy of 0.921 ± 0.006 and 0.904 ± 
0.008, respectively (Fig. 3.3, Tables 3.4 and 3.5), and the Naïve Bayes model produced 
the least accurate classifier in both cases, of 0.792 ± 0.008 and 0.819 ± 0.008, 
respectively. The GBT model also produced the highest F1 scores for all geologic units 
for both quadrangles. In the Pitts Point quadrangle, the colluvium, residuum, alluvial 
terraces 1&2, lacustrine terraces 1&2, and floodplain have F1 scores of 90% or greater, 
while the fill, alluvium, and alluvial terrace 4 have lower F1 scores (Table 3.4). In the De 
Mossville quadrangle, the colluvium and terraces have F1 scores of 90% or greater, while 
the fill, alluvium, high-level alluvium, and residuum have lower F1 scores (Table 3.5). 

Figure 3.3. a) Distribution of accuracies for each model tested for the Pitts Point and De 
Mossville Quadrangles. In both cases, the Gradient Boosted Trees model produced the 
greatest accuracy, and the Naïve Bayes model produced the least accurate classifier. 
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Table 3.4. F1 scores for each lithologic class for the Pitts Point quadrangle, and the overall accuracy for 
each machine learning model. 

Pitts Point 
Geologic 

Unit 

# 
sampl

es 

Gradient 
Boosted 

Trees 

Random 
Forest 

Support 
Vector 

Machine 

Neural 
Network 

Nearest 
Neighbors 

Decision 
Tree 

Logistic 
Regression 

Naïve 
Bayes 

Fill 144 0.449 
± 0.067 

0.084 
± 0.049 

0.360 
± 0.120 

0.411 
± 0.113 

0.192 
± 0.073 

0.215 
± 0.069 

0.224 
± 0.058 

0.179 
± 0.070 

Flood-
plain 

526 0.905 
± 0.021 

0.876 
± 0.021 

0.823 
± 0.023 

0.843 
± 0.024 

0.744 
± 0.023 

0.796 
± 0.026 

0.675 
± 0.035 

0.690 
± 0.025 

Alluvium 1013 0.837 
± 0.018 

0.814 
± 0.015 

0.809 
± 0.015 

0.808 
± 0.011 

0.758 
± 0.020 

0.728 
± 0.019 

0.719 
± 0.019 

0.632 
± 0.015 

Alluvial 
terraces 

1&2 

893 0.916 
± 0.015 

0.882 
± 0.013 

0.836 
± 0.021 

0.840 
± 0.029 

0.655 
± 0.028 

0.819 
± 0.022 

0.547 
± 0.060 

0.762 
± 0.015 

Lacustrine 
terraces 

1&2 

1713 0.938 
± 0.008 

0.924 
± 0.008 

0.834 
± 0.011 

0.910 
± 0.013 

0.833 
± 0.012 

0.894 
± 0.015 

0.808 
± 0.017 

0.878 
± 0.010 

Alluvial 
terrace 4 

539 0.881 
± 0.017 

0.784 
± 0.031 

0.794 
± 0.033 

0.774 
± 0.062 

0.555 
± 0.055 

0.749 
± 0.031 

0.551 
± 0.043 

0.579 
± 0.044 

Colluvium 3696 0.948 
± 0.005 

0.941 
± 0.004 

0.942 
± 0.005 

0.941 
± 0.005 

0.929 
± 0.006 

0.915 
± 0.006 

0.917 
± 0.006 

0.882 
± 0.007 

Residuum 1576 0.943 
± 0.007 

0.915 
± 0.010 

0.813 
± 0.018 

0.910 
± 0.014 

0.862 
± 0.014 

0.892 
± 0.012 

0.852 
± 0.011 

0.843 
± 0.015 

Overall 
Accuracy 10000 

0.921 
± 0.006 

0.898 
± 0.005 

0.890 
± 0.007 

0.889 
± 0.009 

0.831 
± 0.009 

0.857 
± 0.008 

0.804 
± 0.009 

0.792 
± 0.008 

Table 3.5. F1 scores for each lithologic class for the De Mossville quadrangle, and the overall accuracy for 
each machine learning model. 

De 
Mossville 
Geologic 

Unit 

# 
sampl

es 

Gradient 
Boosted 

Trees 

Random 
Forest 

Support 
Vector 

Machine 

Neural 
Networ

k 

Nearest 
Neighbors 

Decision 
Tree 

Logistic 
Regression 

Naïve 
Bayes 

Fill 349 0.311 
± 0.064 

0.095 
± 0.052 

0.231 
± 0.060 

0.227 
± 0.065 

0.017 
± 0.025 

0.237 
± 0.052 

0.123 
± 0.033 

0.139 
± 0.027 

Alluvium 1054 0.883 
± 0.011 

0.869 
± 0.019 

0.866 
± 0.015 

0.851 
± 0.020 

0.821 
± 0.022 

0.797 
± 0.017 

0.841 
± 0.016 

0.736 
± 0.018 

Alluvial & 
lacustrine 
terraces 

1518 0.907 
± 0.012 

0.892 
± 0.012 

0.889 
± 0.010 

0.873 
± 0.015 

0.857 
± 0.014 

0.851 
± 0.014 

0.867 
± 0.012 

0.828 
± 0.013 

High-level 
alluvium 

738 0.875 
± 0.023 

0.842 
± 0.023 

0.839 
± 0.019 

0.828 
± 0.023 

0.801 
± 0.021 

0.777 
± 0.037 

0.751 
± 0.025 

0.770 
± 0.019 

Colluvium 5678 0.942 
± 0.005 

0.937 
± 0.006 

0.938 
± 0.005 

0.934 
± 0.004 

0.932 
± 0.005 

0.910 
± 0.005 

0.920 
± 0.004 

0.900 
± 0.007 

Residuum 663 0.848 
± 0.018 

0.798 
± 0.017 

0.806 
± 0.022 

0.797 
± 0.028 

0.761 
± 0.027 

0.745 
± 0.024 

0.753 
± 0.021 

0.726 
± 0.024 

Overall 
Accuracy 10000 

0.904 
± 0.008 

0.892 
± 0.006 

0.893 
± 0.006 

0.883 
± 0.008 

0.872 
± 0.009 

0.844 
± 0.007 

0.864 
± 0.006 

0.819 
± 0.008 
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3.5.2 Variable Importance 

The 31 variables tried were reduced to the 11 most important variables for each 
quadrangle. (Fig. 3.4). The variables that have the greatest contribution to model 
accuracy for the Pitts Point Quadrangle were the NTP, slope, slope radius 4 and 32; RT 
radius 200, 500, 1000, and 1500; roughness radius 100, dem std radius 250 and 500 (Fig. 
3.4). The variables that have the greatest contribution to model accuracy for the De 
Mossville Quadrangle were the NTP, slope, slope radius 4, 8, and 16; RT radius 100, 
500, and 1500, roughness radius 16; dem std radius 250 and 500.  

Figure 3.4. Box and whisker plot showing the mean and quartiles for the Gradient 
Boosted Trees model for the Pitts Point quadrangle, with each of 31 variables in the 
testing data perturbed in turn, and the resulting accuracy distribution. The variables that 
return the lowest accuracy are the most important to the classifier. 

Once the 11 most important variables were identified, a new classifier was built 
using only these variables. A distribution of the resulting accuracies using just the 
important variables is compared with that from the original classifier in Figure 3.5. The 
mean accuracy using all variables for the Pitts Point and De Mossville Quadrangles is 
0.921 and 0.903, respectively, and the mean accuracy by using just the most important 
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variables is 0.914 and 0.895. The loss of accuracy then is 0.007 and 0.008, respectively, 
or <1%. 

Figure 3.5. Accuracy distribution of the Gradient Boosted Trees model with the 
original 31 variables and with the 11 most important variables for the Pitts Point and De 
Mossville quadrangles. 

3.5.3 Probability maps & F1 scores 

The most accurate classifier (GBT) with the 11 most important variables was used 
to classify all cells in three 1.5 km x 1.5 km map areas for each quadrangle (Fig. 3.1) and 
a surficial geologic map was produced using the results. The overall accuracy and F1 
scores for each geologic unit are presented in Tables 3.6 and 3.7, and the resulting 
probability maps are presented in Figures 3.6 to 3.9. For comparison, the worst classifier 
(NB) is also used to classify Map 1 for each quadrangle (Fig 3.6 and 3.8). 

3.5.3.1 Pitts Point 

For the Pitts Point quadrangle, the overall accuracy in the training area is 0.921. 
This is reduced in Map 1 (just outside the training area) to 0.795 using the GBT classifier, 
and to 0.645 using the NB classifier. The overall accuracy for Map 2 (within the training 
area) is 0.911 and for Map 3 approximately 4.5 km away from the training area, it is 
0.865. F1 scores are above 0.89 in all map areas for the colluvium and are lowest for the 
fill and alluvium. The F1 scores for most lithologies are higher in Map 2 than the other 
two map areas.  

The best classifier (GBT) does an excellent job of mapping the colluvium in Map 
1 (Fig. 3.6). The boundaries between the terraces and the colluvium are well-defined, and 
in the correct locations. The boundary between the lacustrine and alluvial terraces does 
not exactly match the boundary in the original map but is reasonably close. The 
classifier’s accuracy is weakest where it misclassifies some of the residuum in the NE 
quadrant as alluvial terrace 4, and some of the alluvial terrace 4 as residuum in the SW 
quadrant. Some of these areas have lower probability values (shown as lighter colors). In 



61 

addition, some areas of the floodplain in the SE quadrant are mis-classified as alluvium, 
alluvial terrace, and fill. One feature not mapped in the original map, a roadway that 
trends NW/SE on the east side of the floodplain, was recognized by the classifier as fill.  

The worst-performing classifier (NB) misclassifies the residuum and alluvial 
terrace 4 to a greater extent in Map 1, even showing a high probability for the incorrect 
classification for the alluvial terrace 4 in the SW quadrant, which it misclassifies as 
residuum. There are extensive areas of the floodplain that are misclassified as fill and 
alluvium. Much of the alluvial terrace 1&2 is mapped with low confidence or 
misclassified as lacustrine terrace. 

The classifications in Map 2 from Pitts Point (Fig. 3.7) are much more accurate 
across the board. The delineation of the colluvium is excellent, and the boundary between 
the lacustrine and alluvial terraces is sharp and in the correct location. There is a small 
area where alluvial terrace 4 is incorrectly classified as residuum. While most of the 
floodplain and alluvium is accurately mapped, some of floodplain is misclassified as 
alluvium, and vice-versa. One of the alluvial fans (which are grouped together with 
alluvium for the classification) in the SW quadrant is mapped as alluvium, and the other 
is classified as a combination of colluvium and lacustrine terrace. The areas of fill in the 
NW quadrant are well identified. Two isolated remnants of lacustrine terrace preserved in 
the central area of the map are partially misclassified as fill. 

In Map 3 from Pitts Point (Fig. 3.7), the boundary between the colluvium and 
residuum, and the residuum itself, is accurately delineated. The boundary of the 
lacustrine terrace and alluvium is correct in part of the map, but is misclassified as 
alluvium along its western edge. The areas of colluvium accumulation (which are 
grouped together as colluvium for the classification) are mapped as a splotchy 
combination of colluvium and alluvium. Fill is misclassified as alluvium and lacustrine 
terrace, and the heads of tributaries consisting of alluvium are misclassified as lacustrine 
terrace along the eastern edge of the map. 
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Table 3.6. F1 scores for each class and overall accuracy results for the maps in the Pitts Point Quadrangle. 

Pitts Point 

Geologic Unit 

F1 scores 
in training 

area 

Map 1 (just outside training 
area) 

Map 2 (within 
training area) 

Map 3 (4.5 km 
distant) 

# of 
samples 

F1 
score 
GBT 

F1 
score 
Naïve 
Bayes 

# of 
samples 

F1 
score 
GBT 

# of 
samples 

F1 
score 

GBT 

Fill 0.449 1470 0.022 0.009 15439 0.700 10933 0.000 

Floodplain 0.905 129278 0.624 0.375 109501 0.899 0 - 

Alluvium 0.837 30504 0.402 0.199 70806 0.770 100549 0.585 

Alluvial 
Terraces 1&2 

0.916 149391 0.671 0.234 133296 0.888 0 - 

Lacustrine 
Terraces 1&2 

0.939 152551 0.780 0.663 256506 0.955 213565 0.874 

Alluvial Terrace 
4 

0.881 8166 0.383 0.006 111024 0.953 0 - 

Colluvium 0.948 426752 0.914 0.895 265195 0.919 656125 0.933 

Residuum 0.943 101846 0.890 0.782 38197 0.898 18810 0.874 

Overall 
Accuracy 0.921 0.795 0.645 0.911 0.865 
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Figure 3.6. Map 1 in the Pitts Point quadrangle, which lies just outside of the training 
area (Fig. 3.1). The best-performing classifier (GBT) and worst performing classifier 
(Naïve Bayes) are compared with the hand digitized map. 



64 

Figure 3.7. Maps 2 and 3 in the Pitts Point quadrangle, which lies within the training area, 
and 4.5 km away from the training area, respectively (Fig. 3.1).  
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3.5.3.2 De Mossville 

For the De Mossville quadrangle, the overall accuracy in the training area is 
0.898. For Map 1 (just outside the training area), this is reduced to 0.783 using the GBT 
classifier, and to 0.756 using the NB classifier. The overall accuracy for Map 2 (within 
the training area) is 0.881; and for Map 3, it is 0.931. F1 scores are above 0.87 in all map 
areas for the colluvium, and lowest for the fill and alluvium. The F1 scores for the 
residuum and colluvium are higher in Map 3 than the other two map areas. The F1 scores 
for the residuum and high-level alluvium are low for Map 1 using either classifier, and 
for Map 2. 

Table 3.7. F1 scores for each class and overall accuracy results for the maps in the De Mossville 
Quadrangle. 

Pitts Point 

Geologic Unit 

F1 scores 
in training 

area 

Map 1 (just outside training 
area) 

Map 2 (within 
training area) 

Map 3 (4.5 km 
distant) 

# of 
samples 

F1 
score 
GBT 

F1 
score 
Naïve 
Bayes 

# of 
samples 

F1 
score 
GBT 

# of 
samples 

F1 
score 

GBT 

Fill 0.255 43851 0.146 0.177 17626 0.181 13540 0.080 

Alluvium 0.857 162757 0.881 0.812 173819 0.901 14400 0.369 

Lacustrine & 
alluvial terraces 

0.896 243511 0.799 0.767 248731 0.921 0 - 

High-level 
alluvium 

0.851 4437 0.000 0.000 27939 0.302 0 - 

Colluvium 0.940 454821 0.891 0.875 492653 0.922 778603 0.963 

Residuum 0.842 92573 0.403 0.595 39172 0.492 193540 0.878 

Overall 
Accuracy 0.898 0.783 0.756 0.881 0.931 

The probability maps for Map 1 show that the best classifier (GBT) does an 
excellent job of mapping the colluvium (Fig. 3.8). The boundaries between the terraces 
and the colluvium are quite sharp, and in the correct locations. The boundary between the 
terraces and the alluvium or colluvium are well-defined, save for the south-central map 
area where portions of the terrace are misclassified as alluvium and fill. The classifier is 
weakest on the ridgetops, where it misclassifies much of the residuum as high-level 
alluvium. In addition, the alluvial terrace 4 is also misclassified as high-level alluvium. 
Both the areas classified as residuum and high-level alluvium have significant areas 
where the probabilities are <0.80, and the boundary between residuum and colluvium 
appears gradational. Some of the areas of fill in the SW quadrant have been correctly 
classified, but larger areas of fill in the SE quadrant have not been classified correctly. 
Areas of colluvium accumulation in the NW quadrant have been incorrectly classified as 
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a combination of residuum and high-level alluvium. Overall, there is a lot of uncertainty 
in classifying the units for the NW quadrant of Map 1. 

The worst-performing classifier (NB) also misclassifies the residuum, high-level 
alluvium, and alluvial terrace 4, though it maps as having a lower probability than the 
best classifier. The boundary between the terrace and colluvium which leads down to the 
alluvium is misclassified as fill throughout the map. 

In Map 2 from the De Mossville quadrangle (Fig. 3.9), which is within the 
training area, the classifications are much more accurate overall than for Map 1. The 
delineation of the colluvium and terraces are well defined and in the correct location. 
Some of the high-level alluvium along the eastern edge of the map has been correctly 
classified, but some has been misclassified as residuum. Residuum along the ridgetops 
has a gradational contact with the colluvium. An area of residuum adjacent to the 
tributary stream has been misclassified as a terrace. Some of the fill has been correctly 
classified, particularly in the NE quadrant along the ridgetops and colluvial valleys but 
was not recognized within the terrace area. 

In Map 3 from De Mossville (Fig. 3.9), the boundary between the colluvium and 
residuum, and the residuum itself, are quite close to the original map, though the ends of 
the ridges have a lower probability of being residuum, and grade into the colluvium. In 
one valley in the SW quadrant, the alluvium in the valley bottom is not recognized by the 
classifier. Areas of fill within the colluvial valleys are correctly classified but fill along 
ridgetops is not, and there are some areas that are classified as fill but were not included 
on the original map. There are a few small areas along the ridgetops that are incorrectly 
classified as high-level alluvium. 
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Figure 3.8. Map 1 in the De Mossville quadrangle, which lies just outside of the training 
area. The best-performing classifier (GBT) and worst performing classifier (Naïve Bayes) 
are compared with the hand digitized map. 
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Figure 3.9. Maps 2 and 3 in the De Mossville quadrangle, which lies within the training 
area, and 6.0 km away from the training area, respectively (Fig. 3.1).  
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3.6 DISCUSSION 

3.6.1 Model performance 

The Gradient Boosted Trees model produced the classifier with the highest 
overall accuracy for each map area, and with some exceptions, the highest F1 score for 
each class. The Random Forest (RF) model produced the next-highest performing model. 
While GBT and the RF methods both utilize independent decision trees, GBT uses 
boosting to combine, or ensemble, individual trees in a sequence, while RF uses 
individual trees and combines them in parallel (Dhingra 2020). Ensemble methods have 
been shown to work well with sparse ground-truth data, and it gives robust estimates of 
the uncertainty of predicted lithology (Bergen et al. 2019; Kuhn, Cracknell, and Reading 
2018). In GBT each decision tree is evaluated in terms of its loss, which is high when the 
classification and prediction do not agree, and each new tree corrects the errors of the 
previous tree. GBT can thus model more complex relationships and decision boundaries 
than a random forest model (Friedman 2001). 

The Naïve Bayes model produced the classifier with the lowest overall accuracy 
for each map area, and with a few exceptions, the lowest F1 scores for each class. The 
Naïve Bayes model is a probabilistic method based on Bayes Theorem, which assumes 
that all the variables in the dataset are independent of each other, and do not affect each 
other (i.e. they are naïve). It is a simpler model than either of the ensemble methods 
described above. This type of model is often used for things like spam filtering and 
recommendation systems (Gandhi 2018). In this study, because the variables are not 
independent but correlate with each other (e.g. the terraces are at a lower elevation and 
have lower roughness than the residuum), this method did not perform as well as others. 

3.6.2 Strengths and Limitations of Machine Learning 

3.6.2.1 Class imbalance 

The selection of the training area from which the 10,000 points were randomly 
chosen influences the depiction or representation of each geologic unit, and also impacts 
the imbalance between the classes. While an effort was made to include archetypical 
areas of all map units in the training area, there is a preponderance of certain units. For 
example, in the Pitts Point and De Mossville quadrangles, 37% and 57% of the sample 
points, respectively, were colluvium. It is not surprising then that the colluvium had, with 
two exceptions, the highest F1 scores in all maps in both quadrangles (up to 0.933 and 
0.963, respectively), with the lowest F1 score of 0.875 using the worst-performing 
classifier. This study did not attempt to map geologic units with only a small arial extent, 
such as the alluvial fans or colluvial accumulation areas, as these regions were not 
adequately represented in the training area data used to build the classifiers. A future 
study might include a different sampling strategy whereby the number of samples for 
each class are balanced. This might take the form of a series of key map areas with 
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exemplars of each class, instead of a single contiguous rectangular training area as used 
in the current study. 

3.6.2.2 Ease of classification 

In addition to class imbalance having an impact on the ability of ML to correctly 
classify units, there may be some units that are easier to classify than others based on 
how unique their characteristics are in the topographic data. For example, colluvium is 
well recognized by ML, perhaps not only because it has the greatest representation in the 
training data, but also because it is found exclusively on slopes, as opposed to the units 
found on ridge tops or in the valleys. There is a persistent confusion between residuum 
and high-level alluvium and terrace deposits, which occupy a similar geomorphic 
position. It may be that distinguishing between these two deposits is beyond the capacity 
allowed by using just topographic information and may need additional data such as a 
description of the soil itself, or, as the high-level alluvium is related to the ancient Teays 
river system, information about the location of that system. That fill does not have high 
F1 scores in any map is not too surprising. While the naturally occurring surficial 
geologic units have a particular genesis that defines them, fill may be placed in a variety 
of locations that don’t conform to a general origin, such as roads along ridgetops, terraces 
or slopes, dams in small valleys in the uplands or lowlands, and as the foundations for 
buildings and other infrastructure. However, there are still examples of locations where 
fill has been correctly identified, though perhaps with not a great degree of confidence, 
but a number of dams and roads are at least sketchily mapped in the correct locations 
(e.g., figs. 3.7 & 3.9) 

3.6.2.3 Topographic control 

There is a strong correlation between elevation and the landforms, with residuum 
residing solely on ridgetops, lacustrine terraces in the valley, and so on. In addition, the 
ridges, as they are the remnants of a plateau, are confined to a small range of elevations. 
It would be informative to use this method in an area of more complex and varied terrain 
where the elevation does not have as clear a relationship with the surficial deposits. 

3.6.3 ML performance inside and out of training area 

Map areas within the training areas (Map 2 for both quadrangles) have an overall 
accuracy that is only slightly lower than that of the classifier, a drop of 0.010 and 0.017 
for the Pitts Point, and De Mossville, respectively. The F1 scores for some units, such as 
the colluvium and terraces, are even higher than in the training area for both quadrangles. 
Map 3 in both quadrangles lies 4.5-6 km away from the training area and has a relatively 
simple geology. The overall accuracy is just 0.056 lower than the classifier for the Pitts 
Point quadrangle, and 0.033 higher than the classifier for the De Mossville quadrangle.  
Map 3 from the De Mossville quadrangle has a very high F1 score for colluvium of 
0.963, and residuum, of 0.878. These somewhat overshadow the fact that the alluvium 
has a much lower F1 score of 0.369. Map 1 in both quadrangles lies just outside of the 
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training area and has a more complex geology than Map 3. There is a 0.126 and 0.115 
drop for the Pitts Point and De Mossville quadrangles, respectively, using the GBT 
classifier. There is a corresponding drop in all F1 scores for all units in Map 1 in the De 
Mossville quadrangle, and, with the exception of alluvium, a drop in all F1 scores for 
Map 1 in the Pitts Point quadrangle. This indicates that the classifier is being trained on 
samples that do not fully depict each class, suggesting a different training strategy might 
be useful. In the Pitts Point quadrangle, the main culprits appear to be the disagreement 
on the boundary between the lacustrine and alluvial terrace, and the confusion between 
residuum and alluvial terrace 4 on the ridgetops, and the misclassification of some of the 
floodplain as terrace, alluvium, and fill. In the De Mossville quadrangle, the main culprit 
is the misclassification of residuum as high-level alluvium. Then again, it may be that 
some of these areas of confusion or misclassification do in fact reflect actual geological 
uncertainty. 

3.6.4 Mapping uncertainty 

An advantage of using ML for mapping is that it communicates uncertainty in any 
mapped unit, and eliminates boundary lines which have their own uncertainty issues 
(Lark et al. 2015). If a boundary between units is desired, the user could apply a threshold 
for which a boundary can be applied. In addition, it may be that the uncertainty itself is 
useful or may coincide with lithologic transitions of key geological importance 
(Cracknell and Reading 2013). For example, most of the maps in this study show a 
gradational boundary between the residuum and colluvium, and this might be useful for 
the user to know so that this uncertainty could be incorporated into their plan to evaluate 
a site for potential slope mitigation.  

Areas of uncertainty may also point to areas of geologic complexity. For example, 
in Map 3 for the Pitts Point quad (Fig. 3.7), there are significant areas of colluvium 
accumulation, which in this study we have defined as colluvium. In these areas the ML 
model has classified this as a patchy combination of colluvium and alluvium. According 
to the Kentucky Geologic Map Service, colluvium accumulation zones consist of a 
combination of colluvium, alluvium, lacustrine deposits, alluvial terraces, and fans. Thus, 
the classifier has pointed to the multigenetic origins of these deposits. 

3.6.5 Can ML replace human mapping? 

For some geologic units, such as the colluvium, ML appears to do an excellent job 
of classifying. There are extensive areas outside of the two quadrangles used in this 
study, where the geology is dominated by colluvium and residuum with some valley 
alluvium and fill. In these areas of simple geology, ML produced maps with overall 
accuracies of 86.5% to 93.1%. This work demonstrates the strong potential for ML to 
quickly create accurate surficial geologic maps in geologically simple areas that can 
closely match human mapping. In more complex areas, particularly where some units, 
such as terraces, are not well preserved, or there are high-level alluvial deposits on the 
ridgetops, additional information obtained in the field is necessary. In such areas ML 
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could not create an accurate map without additional human mapping but could instead 
provide a base map highlighting where areas of geologic uncertainty lie. There is also the 
potential for ML performance to be enhanced by including other data sets such as soil 
samples or well log data which could help in distinguishing these geologic units from one 
another.  

3.6.6 Future directions 

This study used supervised machine learning algorithms, which use human 
classifications of geologic units as their basis for measuring model performance. A future 
line of inquiry is to use unsupervised machine learning, in which no classifications are 
provided, and the algorithm defines its own classification model. Another line of inquiry 
is to train a classifier using samples which equally sample all geologic units, thereby 
eliminating class imbalance. This may allow smaller features like alluvial fans, and 
colluvial accumulation zones to be mapped. However, it may be that some of these 
features, as they are an amalgamation of multiple types of deposits, may not be classified 
very well in any case. This study relied solely on the digital elevation model and 
derivative maps. Other data derived from the original lidar data could potentially be used 
as variables, including lidar intensity, existing county soils maps, and imagery. 
Furthermore, there is the potential for automatic feature selection from topographic data 
using a deep neural network (Kirkwood 2022). 

3.7 CONCLUSIONS 

This study demonstrates that machine learning can be a valuable tool for surficial 
geologic mapping. It can produce a near-final map in areas of simple geology, and a base 
map where the geology is more complex. A great benefit in using ML is that uncertainty 
for each geologic unit can be conveyed. This can be used to highlight areas where 
additional fieldwork is required, and also communicate to the end user the real geologic 
uncertainty between units. The Gradient Boosted Trees method produced the best 
performing classifier for both map areas tested. It produced very accurate maps of 
colluvium but had difficulty distinguishing between some units in the same topographic 
position such as residuum and high-level alluvial deposits. This method has the potential 
to be used in mapping any region where lidar data is available. 
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