
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Pharmacy College of Pharmacy 

2023 

BIOINFORMATIC ANALYSIS OF PROTEOMIC AND GENOMIC DATA BIOINFORMATIC ANALYSIS OF PROTEOMIC AND GENOMIC DATA 

FROM NSCLC TUMORS ON PROGNOSTIC AND PREDICTIVE FROM NSCLC TUMORS ON PROGNOSTIC AND PREDICTIVE 

FACTORS OF IMMUNOTHERAPY TREATMENT FACTORS OF IMMUNOTHERAPY TREATMENT 

Mark Wuenschel 
University of Kentucky, maw271190@gmail.com 
Author ORCID Identifier: 

https://orcid.org/0000-0003-2477-5065 
Digital Object Identifier: https://doi.org/10.13023/etd.2023.224 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Wuenschel, Mark, "BIOINFORMATIC ANALYSIS OF PROTEOMIC AND GENOMIC DATA FROM NSCLC 
TUMORS ON PROGNOSTIC AND PREDICTIVE FACTORS OF IMMUNOTHERAPY TREATMENT" (2023). 
Theses and Dissertations--Pharmacy. 151. 
https://uknowledge.uky.edu/pharmacy_etds/151 

This Master's Thesis is brought to you for free and open access by the College of Pharmacy at UKnowledge. It has 
been accepted for inclusion in Theses and Dissertations--Pharmacy by an authorized administrator of UKnowledge. 
For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/pharmacy_etds
https://uknowledge.uky.edu/pharmacy
https://orcid.org/0000-0003-2477-5065
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Mark Wuenschel, Student 

Penni Black, Major Professor 

David Feola, Director of Graduate Studies 



 
 
 
 
 

BIOINFORMATIC ANALYSIS OF PROTEOMIC AND GENOMIC DATA FROM 
NSCLC TUMORS ON PROGNOSTIC AND PREDICTIVE FACTORS OF 

IMMUNOTHERAPY TREATMENT 
 
 
 
 
 
 
 
 

THESIS 
 

A thesis submitted in partial fulfillment of the 
requirements for the degree of Master of Science in the 

College of Pharmacy 
at the University of Kentucky 

 
 

By 

Mark Wuenschel 

Lexington, Kentucky 

Director: Dr. Penni Black, Professor of Pharmaceutical Sciences 

Lexington, Kentucky 

2023 
 
 
 
 
 
 

Copyright © Mark Wuenschel 2023 
https://orcid.org/0000-0003-2477-5065 



 
 
 
 
 
 
 
 
 

ABSTRACT OF THESIS 
 

BIOINFORMATIC ANALYSIS OF PROTEOMIC AND GENOMIC DATA FROM 
NSCLC TUMORS ON PROGNOSTIC AND PREDICTIVE FACTORS OF 

IMMUNOTHERAPY TREATMENT 
 

Recent lung cancer research has led to advancements in molecular immunology, 
resulting in development of small molecule inhibitors, or immune checkpoint inhibitors, 
that propagate an anti-tumor T cell response. Despite increased overall and progression- 
free survival with reduced adverse effects compared to traditional chemotherapy, treating 
advanced stage lung adenocarcinoma patients remains non-curative, and evidence of non- 
responders or tumor recurrence to immune checkpoint inhibitor therapy is growing. Also, 
compared to traditional chemotherapy, there is a lower percentage of patients who respond 
to small molecule inhibitors. In this analysis of proteomic and genomic data from The 
Cancer Proteome Atlas and Global Data Commons cancer databases, as well as clinical 
outcomes data from Phase II POPLAR and Phase III OAK clinical trials, we discuss 
possible prognostic and predictive factors of immunotherapy in the treatment of advanced 
non-small-cell lung carcinoma. 
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CHAPTER 1. BACKGROUND 
 

1.1 Introduction 
 

Deceptively simple, cancer is a preventable disease that occurs when normal cell 

division propagates out of control, thus creating a tumor. Tumors can be benign, and not 

spread, or malignant, which invades other tissues. Lung cancer occurs when the tumor 

originates from lung tissue (1). There are two main categories of lung cancer, small-cell 

lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). NSCLC is the major 

histological subtype, comprising 85% of all lung cancer cases (1) and will be my focus. 

Abnormal cell growth and division in lung cancer stems from genetic cell damage, 

or mutations. In 2022, lung cancer is the 3rd most common cancer behind breast and 

prostate cancers respectively, but the deadliest cancer in the United States (6). According 

to the American Cancer Society, the 5-year survival rates for locally, or least, invasive 

non-small cell lung carcinoma (NSCLC) tumors is 59% for males and 70% for females 

(2). When lung cancer metastasizes, or moves to another organ system, the 5-year survival 

rate is 7% for males and 11% for females. 

The most common cause of lung cancer is the use of cigarettes, tobacco, and 

alternative inhaled nicotine products. The use of tobacco and inhaled nicotine products is 

why lung cancer is preventable. In the U.S., smoking is linked up to 90% of deaths due to 

lung cancer (3). In response, local and state governments designed public health initiatives 

to reduce smoking to stymy the incidence of lung cancer. In the U.S. in 1999, the age- 

adjusted rate of lung and bronchus cancer cases was 70.8 per 100,000 people. In 2019, this 

rate dropped to 52.9 per 100,000 people (3). As a clinician, we do not treat lung cancer 
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prophylactically, which led me to believe that public smoking cessation initiatives hold 

value in the United States. 

Kentucky has led the United States in the age-adjusted rate of lung and bronchus 

cancer cases, having the highest incidence of all 50 states in 14 of the past 20 years. Since 

1996, there are restrictions on municipalities and city governments for imposing stricter 

requirements for use of tobacco and alternative nicotine products, which now include e- 

cigarettes and vape products, than the applicable state law (4). From 2020 Cancer Mortality 

data available from the CDC, Kentucky has a 20.5% higher mortality rate than the overall 

United States average in lung cancer. 

 

1.2 Aspects of Lung Cancer Pathology 

 
The treatment evolution of NSCLC has developed as mechanisms of resistance 

have been uncovered, and this is reflected in the National Comprehensive Cancer Network 

(NCCN) NSCLC treatment guidelines (4). When a patient presents and is diagnosed with 

NSCLC, the tumor undergoes a CT scan and is staged according to the American Joint 

Committee on Cancer (AJCC) TNM system (5). The TNM system scores based on the 

primary tumor size, lymph node involvement, and metastasis. Based on the TNM score, 

the tumor is assigned a stage, I-IV, with stage IV being the most advanced. A locally 

advanced tumor, which is not resectable, is denoted as T3-4, N2+, M0 or T1+, N3, M0 is 

given Stage IIIb/III while any malignant cancer, no matter the size of the tumors or number 

of lymph nodes involved, is assigned Stage IV (M1). Clinical trials for targeted therapies 

begin with patients with at least Stage IIIb cancer. 

Most primary tumors are resectable, unless they are too big (> 7cm), or grew into 

a blood vessel, the mediastinum, the windpipe, the heart, or the spine; these tumors are 

assigned late Stage III, or Stage IIIb/IIIc. A retrospective study found that the 3-year overall 
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survival (OS) rate for patients with biopsy proven stage I-II NSCLC was 92.8% when the 

patients underwent only a lobectomy procedure (6). A lobectomy is a surgery to remove 

one of the lobes of the lungs with the right lung having 3 lobes and the left lung having 2 

lobes The main drawback with surgical treatments is making sure the entire tumor is 

removed, otherwise the tumor will recur when remaining cancerous cells (7). Despite the 

recurrence drawback, surgery remains our best, potentially curative, treatment for NSCLC. 

Radiation and chemotherapy (chemoradiation) combined have traditionally been 

first line for early-Stage III NSCLC. With regional tissue and lymph node involvement, 

the main treatment issues are treating both regional (with radiation) and distant 

micrometastatic disease (with chemotherapy) (8). The drawback of chemoradiation is 

twofold: poor 5-year survival outcomes under 25% (9), and subjecting the patient to 

systemic adverse effects from nonspecific cell death exposure. 

If a patient is not a candidate for surgery, and the tumor is locally advanced or 

malignant despite chemoradiation, the next step for treating NSCLC is molecular profiling 

the patient for biomarkers and oncogenic driver mutations. The major oncogenic driver 

mutations and biomarkers include epidermal growth factor receptor (EGFR) gene 

mutations, Kirsten rat sarcoma (KRAS) G12 mutations, anaplastic lymphoma kinase 

(ALK) gene rearrangements, ROS proto-oncogene receptor tyrosine kinase 1 (ROS1) 

rearrangements, BRAF V600E mutations, neurotrophic receptor tyrosine kinase (NTRK) 

gene fusions, and MET exon 14 skipping mutation (MET∆ex14). Programmed cell death 

ligand 1 (PD-L1) threshold status is concurrently tested with driver mutations and will be 

discussed later. Figure 1.1 depicts the current molecular landscape for NSCLC. Our 

current clinical treatment guidelines, from both the National Comprehensive Cancer 

Network (NCCN) and the European Society For Medical Oncology (ESMO), include a 

molecular biomarker workup testing for the presence of actionable driver mutations that 

have an associated, targeted therapy (src), (src), in addition to the immunohistochemistry 

(IHC) level of PD-L1. 
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[Figure 1.1 Molecular Landscape of Lung Cancer.] 
 

[Adapted from Wang, M., Herbst, R. S., & Boshoff, C. (2021). Incidence of oncogenic 
driver mutations and biomarkers for lung cancer based on histology of tumor cells. For 
all areas of adenocarcinoma and squamous carcinoma not linked to a biomarker, and the 
entirety of large cell and other lung cancers, PD-L1 IHC expression is used determine 
preferred treatment.]. 

Small molecule inhibitors are the treatments of choice for oncogenic biomarkers 

and driver mutations and has been reflected in NCCN guidelines for patients with locally 

advanced or metastatic NSCLC due to favorable patient outcomes. A small molecule 

inhibitor is a low molecular weight chemical compound that can easily enter cells to disrupt 

activity or the function of their target, commonly a protein (10). Historically, protein kinase 
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dysregulation is common in tumor pathogenesis due to genetic translocations and 

mutations (11). The first FDA approved protein kinase inhibitor, imatinib, revolutionized 

treatment for chronic myeloid leukemia (CML) by inhibiting a dysregulated fusion protein, 

called BCR–ABL, which is present in most cases of CML (12). Two years later, gefitinib, 

(Iressa) was approved for locally advanced or metastatic NSCLC by selectively inhibiting 

epidermal growth factor receptor's (EGFR) tyrosine kinase domain. 

Small molecule inhibitors are not limited to receptor tyrosine kinase inhibitors 

(RTKs) but have expanded to include serine/threonine-specific kinase (STK) inhibitors, 

and phosphatidylinositol 3-kinase (PI-3K) inhibitors. Each of these types of kinase 

inhibitor has at least one FDA approved drug for treatment of a driver mutation or 

biomarker in a NSCLC setting. 

Approximately 5% of NSCLC tumors harbor ALK gene rearrangements. In the 

ongoing ALEX phase III trial, alectinib (a second-generation ALK tyrosine kinase inhibitor 

[TKI]) to crizotinib (a first generation ALK TKI) showed incredible improvement in PFS 

(35 months vs. 11 months, HR 0.43), reduced of CNS progression (HR 0.16, 95% CI 0.10– 

0.28), and lower toxicities. Despite alectinib being a newer therapy, patients have an ORR 

of 82.9% (95% confidence interval 75.95 to 88.51). Nearly 1 in 5 patients will have stable 

disease (SD) or progressive disease (PD) and will need treatment with immunotherapy such 

as PD-(L)1 inhibitors with optional, adjuvant chemotherapy. 

EGFR and KRAS mutations are the most common oncogenic driver mutations in 

NSCLC, representing 10-15% of adenocarcinoma cases and 20–25% of cases, 

respectively. Less common oncogenic mutations are BRAF V600E mutations, MET exon 

14 alterations, NTRK rearrangements, and RET rearrangements, with each molecular 

alteration representing around 2% of lung adenocarcinomas (13). Small molecule 

inhibitors have exploded into all types of cancer treatment, autoimmune diseases, and 

transplant rejection treatment, with 76 FDA approved small molecule inhibitors as of 
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March 2021 (12). Figure 1.2 depicts the timeline of FDA approved small molecule 

therapies for the previously mentioned oncogene-driven NSCLC. 

 

 

[Figure 1.2 Timeline of FDA-approved targeted therapies for oncogene-driven 
NSCLC] 

 

[The red lines indicate breakthrough therapy designation. 1L, first-line; 2L, second-line; 
FDA, US Food and Drug Administration; NSCLC, non–small-cell lung cancer; TKI, 
tyrosine kinase. Tan, A. & Tan, D. (2022). Targeted Therapies for Lung Cancer Patients 
With Oncogenic Driver Molecular Alterations. Journal of Clinical Oncology, 40 (6), 611- 
625. doi: 10.1200/JCO.21.01626.] 

In contrast with low molecular weight therapies like RTKs, immune checkpoint 

inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) receptors and PD-L1 

were designed to induce T cell activity and have been found to have promising efficacy in 

locally advanced or metastatic NSCLC (14). The goal of immunotherapy is to inhibit tumor 

evasion of the immune system. 

The difference between driver mutations and PD-L1 molecular testing is that driver 

mutations are much more consistent because it’s a binary outcome; either the patient 
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expressed a KRASG12C mutation, or they did not express that mutation. PD-L1 expression 

is quite the opposite, as it exists as a continuous variable, and thresholds are used to 

determine if a patient is PD-L1 positive or negative (15). 

PD-(L)1 inhibitors are not low molecular weight small molecules, but instead are 

biological agents, specifically called monoclonal antibodies (mAbs) (16). MAbs have 

much higher specificity than small molecules due to binding surface antigens on tumor 

cells, in cancer settings. The immune response to antigens are very specific compared to 

cells with an EGFR receptor, which are known to be expressed on neurons, stem cells, and 

epithelial cells (17). 

Two major differences between small molecules and mAbs are route of 

administration and elimination half-life, both of which constitute many of the differences 

in adverse reactions patients experience. Small molecules are mostly administered orally 

and have many gastrointestinal related adverse events, while mAbs are administered 

through injection, leading to injection, infusion, and immune mediated related reactions. 

Secondly, mAbs are proteins themselves, and therefore have extremely long half-lives 

compared to small molecules; pembrolizumab has a half-life of 22 days (18) versus 17.1 

days for adults taking imatinib orally (19). 

For patients with advanced lung cancer and without an oncogenic driver mutation 

or biomarker, PD-L1 threshold status directs first line therapy for patients. PD-L1 tumor 

proportion score (TPS) is important because around 30% of NSCLC tumors do not have 

an oncogenic biomarker and the TPS score of an individual tumor remains our only other 

guideline for treatment of locally advanced or metastatic lung cancer. Patients with high, 

>50% PD-L1 immunohistochemistry (IHC) expression, are treated with a PD-1 or PD-L1 

inhibitor, such as pembrolizumab or atezolizumab, respectively. All of patients with 

positive PD-L1 status, 1-49% IHC expression, receive pembrolizumab with platinum- 

based chemotherapy. Atezolizumab added on to chemotherapy is less preferred in this 

patient population. 
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While it is difficult to compare outcomes across clinical trials due to heterogeneity 

of patient populations, the results of the KEYNOTE-021 (20) and IMpower130 (21) trials 

illustrate the rationale for PD-1 inhibitor preference over PD-L1 inhibitors in patients with 

1-49% PD-L1 IHC expression. Both trials compared an ICI monotherapy against ICI plus 

chemotherapy against chemotherapy with no ICI. The ICI in KEYNOTE-021 was 

pembrolizumab, while the ICI in IMpower130 was atezolizumab. From the results of 

KEYNOTE-021, median PFS was 8.8 months in the pembrolizumab-combination group 

and 4.9 months in the placebo-combination group (p<0.001). From IMpower130 results, 

median PFS was 7.0 months in the atezolizumab plus chemotherapy group and 5.5 months 

in the chemotherapy group (p<0.0001). Both trial populations allowed, but did not require, 

patients to be previously treated for Stage I-III lung cancer with surgery, radiation, or 

chemotherapy, but excluded patients treated with an immunotherapy for Stage IV lung 

cancer. 

Since immunotherapies are newer, there is a lack of data surrounding the length of 

response following treatment. In the landmark KEYNOTE-010 trial, pembrolizumab was 

compared to docetaxel in previously treated, PD-L1 positive advanced NSCLC (22). The 

5-year OS rates were 25.0% (pembrolizumab) versus 8.2% (docetaxel) in patients with PD- 

L1 TPS ≥50% and 15.6% (pembrolizumab) versus 6.5% (docetaxel) with PD-L1 TPS ≥1%. 

This is a marked improvement from the 5-year OS survival rate of 8.5% for NSCLC in the 

U.S. population from 2012-2018 (23). Despite pembrolizumab’s promising data, less than 

half of patients (43.0%) had an ongoing response at 5 years from randomization in patients 

with PD-L1 TPS ≥50%. This is due to tumor resistance to immunotherapies, such as tumor 

mutational burden and heterogeneity of the disease. It’s critical to explore new strategies 

to improve patient survival. 

A new strategy to improve NSCLC prognosis is to exploit advances in genetic 

engineering that specifically bind to antigens on tumor cells, very analogous to 
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immunotherapy. Instead of using monoclonal antibodies as in immuntherapy, modified T-

cells, called chimeric antigen receptor (CAR)-T cells, has attracted scientific 

attention in cancers, especially lung cancer (24) (25) 

(26). CAR-T cell therapies are already used in B-cell malignancies with promising results 

from clinical trials (27). In NSCLC, targetable antigens include EGFR, mesothelin 

(MSLN), mucin 1 (MUC1), prostate stem cell antigen (PSCA), carcinoembryonic antigen 

(CEA), PD-L1, CD80/CD86, inactive tyrosine-protein kinase transmembrane receptor 

(ROR1), and human epidermal growth factor receptor 2 (HER2) (28). Several CAR-T cell 

therapies are being explored in ongoing phase I clinical trials (29) (30) (31). 

Newly approved therapeutics improve patient outcomes; however, chemotherapy 

and ICIs are not a cure for lung cancer. The RECIST criteria is a standardized way to 

measure how well patients respond to treatment using imaging techniques, such as 

magnetic resonance imaging (MRI) to check if the tumor became smaller, larger, or no 

change (32). Most patients reach a partial response (PR) or stable disease (SD) as opposed 

to a complete response (CR), or the absence of the signs of cancer (33) 

A CR does not necessarily mean a cure, and this is because of tumor resistance 

mechanisms. There are three main types of tumor resistance with respect to therapies for 

NSCLC, acquired, adaptive, and inherited resistance (34). 

1.2.1 Inherited Resistance 
 

Inherited, or intrinsic, resistance is defined as tumor cells having resistance to 

therapy due to an innate aspect of the cells genetic code or protein structure (34), but before 

therapy is started. A common outcome of inherited resistance is failure of initial therapy 

due to a targetable protein defect that makes tumor cells insensitive to small molecule 

inhibitors. A study from Memorial Sloan Kettering (MSK) Cancer Center examined the 
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variable response of EGFR mutations to erlotinib, a TKI approved to treat EGFR mutations 

in NSCLC, in lung cancer cell lines predicted to be sensitive to erlotinib (35). They found 

overexpression of two proteins, caspase-8 or IKBKB, resulted in increased NF-kB 

activation, leading to erlotinib resistance. 

 
1.2.2 Adaptive Resistance 

 
Adaptive resistance is defined as a change in cell signaling mechanisms during 

therapy that promote resistance and make patient outcomes less favorable (34). Another 

research group from MSK Cancer Center, showed KRAS mutated tumors gain adaptive 

resistance to trametinib, a MEK inhibitor, through compensatory upregulation of fibroblast 

growth factor receptor 1 (FGFR1), a receptor tyrosine kinase (RTK), in NSCLC and 

pancreatic cell lines (36). Adaptive resistance can be overcome by inhibiting the 

compensatory mechanism, as shown in a study done from NYU’s Perlmutter Cancer Center 

(37). In their study, a SHP-2 inhibitor inhibited increased RAS and RTK activation in a 

KRAS mutated NSCLC cell line treated with sotorasib, a KRASG12C inhibitor. 

 
1.2.3 Acquired Resistance 

 
Acquired resistance is a molecular alteration in gene or protein structure that resist 

targeted therapy after an initial sensitivity (src). In a joint report from Massachusetts 

General Hospital Cancer Center and Harvard Medical School, researchers use cells from a 

NSCLC patient with a known KRASG12C patient pretreated with adagrasib, found four 

genes in the RAS-MAPK signal transduction pathway that were altered as a result of 

treatment using a KRASG12C inhibitor, causing increased incidence of other KRAS 

mutations, or reduced binding affinity of a KRASG12C inhibitor (38). 
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1.2.4 Intratumoral and Intertumoral Heterogeneity 
 

Intra- and intertumoral heterogeneity are important, and research is dedicated to 

understanding it because they may allow insight into new predictive factors of treatment. 

A concerted effort to understand intratumor heterogeneity in NSCLC is currently being 

studied an ongoing longitudinal observational study TRACERx (Tracking Cancer 

Evolution through Therapy) Lung (39). The patient population is diagnosed Stage I-IIIA 

NSCLC, and the goal is to prospectively elucidate how intratumoral heterogeneity affects 

clinical outcomes following surgical resection with appropriate adjuvant therapy. The 

study intends to follow patients from diagnosis to relapse. 

While TRACERx is trying to understand the relationship between intratumoral 

heterogeneity and clinical outcome, DARWIN II is investigating the role on intratumoral 

heterogeneity and response to therapy (40), including anti-PD-L1 inhibitors for patients 

without a driver mutation, and 3 other arms with patients having a BRAF mutation, ALK 

rearrangement, or HER2 amplification, and receiving appropriate first-line therapies for 

each mutation (41). 

Tumor tissue is genomically heterogeneous, with varying tumor mutation burden 

(TMB). TMB is defined as the total number of somatic/acquired mutations per coding area 

of a tumor genome (Mut/Mb) (42). Tumors with a higher mutation burden have more 

potential to generate a larger number of neoantigens, making them more immunogenic. 

1.2.5 The Tumor Microenvironment (TME) 
 

The tumor microenvironment (TME) is the collection of cells and extracellular 

matrix around a tumor, including T cells, B cells, cytokines, macrophages, stromal cells, 

and blood vessels (43). Interaction and secretory molecules between tumor cells and 
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immune cells in the TME helps control tumor proliferation, survival, and metastasis (44). 

Recent research indicates tumors and their surrounding TME forms a reciprocal 

relationship that can either suppress or stimulate the host’s immune system, as shown in 

Figure 1.3 (44). 

 

[Figure 1.3 Example Effect of a TME on Immune Cells. Adapted from Anderson, 
N. M., & Simon, M. C. (2020) 

 

[In an anti-tumor environment, a pro-inflammatory tumor microenvironment results 
in B cells and TH-1 cells releasing interferon-gamma (IFN-γ) helps upregulate cytotoxic T 
cells (CD8+) and M1 macrophages that attack tumor cells directly. In an anti-inflammatory 
tumor microenvironment, TH-2 cells are dominant, releasing anti-inflammatory cytokines, 
such as interleukin-2 (IL-2) that inhibits natural killer (NK) cells and interleukin-10 (IL- 
10) that simultaneously downregulates TH-1 and upregulates M2 macrophages.] 

 
Since investigating the compositions of different types of TME, new strategies to 

target and promote an anti-tumor microenvironment have surfaced. Part of the rationale for 

the effectiveness of immunotherapy is to help the host immune system identify tumor cells 

to fight tumor cell proliferation. In KEYNOTE-001, researchers gave patients 

pembrolizumab, a PD-1 inhibitor, and assessed overall response rate PFS based on PD-L1 

threshold status (45). Interestingly, the overall response rate in all participants was 19.4%, 
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while the overall response rate for participants with a PD-L1 threshold status was 45.2%. 

A possible reason, and limitation of this study, is that the T cells from the tumor biopsy 

could have been depleted, thus lowering the apparent response of therapy. Research has 

since shown in locally advanced or metastatic NSCLC, a high PD-L1 threshold expression 

is possible with low tumor infiltrating cell expression (including but not limited to T cells) 

(46). 

 

1.3 Predictive and Prognostic Factors of Treatment Outcomes 
 

Prognostic and predictive factors are important to clinical decision making but are 

susceptible to being used imprecisely and interchangeably despite being separate things 

(47). Well studied prognostic and predictive factors can identify new avenues of treatment 

and lessen patient exposure to unnecessary (immuno)chemotherapy. A prognostic factor is 

an element measured before treatment that impacts patient outcomes independently of a 

proposed treatment, because it is representative of innate tumor behavior (48). A predictive 

factor is an indicator of patients that will have a different outcome to a specific treatment, 

due to an interaction between the predictive biomarker and intervention on patient outcome 

(48). Figure 1.4 illustrates that difference between hypothetical prognostic and 
 

predictive factors. 
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[Figure 1.4 Hypothetical Predictive and Prognostic Factors in a Clinical Decision 
Setting] 

 

[Hypothetical Predictive and Prognostic Factors in a Clinical Decision Setting. The center 
line is the patient’s baseline at beginning of treatment. A negative prognostic factor would 
be tumor size. Oncogenic driver mutations before small molecule inhibitors were on the 
market would be negative predictive factors. Now, EGFR, KRASG12C, and others are all 
positive predictive factors with small molecule inhibitors targeting their respective driver 
mutation protein. PD-L1 expression >50% is also a positive predictive factor with PD-L1 
inhibitors. To make the case that PD-L1 expression is a positive prognostic factor, then 
irrespective of whether a PD-L1 inhibitor or chemotherapy was used, those patient’s 
survival outcomes would be longer, or would have a higher objective response rate, 
depending on the outcomes measured in the study.] 

 
In NSCLC, oncogenic driver mutations, like EGFR or KRASG12C, are examples 

of predictive factors; if the protein with a mutation is inhibited, the patient’s outcome has 

been shown to be favorable. PD-L1 threshold expression is another example of a predictive 

biomarker because PD-(L)1 inhibitors, such as pembrolizumab and atezolizumab, improve 

outcomes when PD-L1 expression is higher. 
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A challenge of lung cancer pathology is that the tumor microenvironment and 

intratumoral and intertumoral heterogeneity all affect the prognostic and predictive 

biomarker landscape in NSCLC. As mentioned previously, intratumoral heterogeneity can 

impact the composition of the tumor microenvironment. Using clinical outcomes data from 

the POPLAR and OAK clinical trials, researchers found a statistically significant overall 

survival benefit to patients on atezolizumab based on the intratumoral composition of 

plasma B cells, as compared to patients on chemotherapy (docetaxel) (49). 

There are several signaling pathways involved in NSCLC TME, including the SHP- 

2, interferon gamma (IFN-γ), JAK2, and STAT3 pathways. SHP-2, a protein tyrosine 

phosphatase, plays a crucial role in cell growth, differentiation, and survival by regulating 

various signaling pathways. Dysregulation of SHP-2 has been shown to promote NSCLC 

cell proliferation and survival in the TME. IFN-γ is a cytokine that regulates immune 

responses and has antitumor activity. However, IFN-γ can also promote tumor growth by 

activating the JAK2-STAT3 pathway in the TME. JAK2, a non-receptor tyrosine kinase, 

is involved in the activation of downstream signaling pathways, including STAT3. 

Dysregulation of the JAK2-STAT3 pathway has been linked to various cancers, including 

NSCLC, by altering the TME. 

In NSCLC, dysregulation of SHP-2, IFN-γ, JAK2, and STAT3 in the TME has been 

shown to promote pro-tumorigenic signaling cascades. Understanding the molecular 

mechanisms underlying their dysregulation in the TME is essential for developing effective 

therapies. Therefore, I aim to investigate the roles of SHP-2, IFN-γ, JAK2, and STAT3 in 

the NSCLC TM by examining their expression levels in various cell types in the TME and 

investigate the mechanisms underlying their dysregulation. 
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1.4 Hypothesis 
 

From results of the phase III OAK trial, we determined there is greater benefit from 

using PD-L1 inhibitors in patients with a higher PD-L1 expression. Therefore, my 

hypothesis is that increasing PD-L1 expression in all patients receiving immune checkpoint 

inhibitors will have a greater survival benefit. Specifically, I believe modulation of the 

JAK2/STAT3 signaling pathway will improve patient survival outcomes. 

To address this hypothesis, I first analyzed publicly available protein and gene 

expression data from NSCLC patient tumors to find candidate genes that are upregulated 

when PD-L1 is highly expressed. Then I confirmed previously published literature that 

upregulation of the JAK2/STAT3 pathway increases PD-L1 expression in vitro also holds 

true in real world NSCLC patients (Chapter 2). Second, I acquired data sets from two 

recently published clinical trials and retrospectively analyzed outcomes data on pretreated 

NSCLC patients receiving immunotherapy to see if survival outcomes changed based on 

the protein or gene expression of PD-L1 (Chapter 3). 



 

CHAPTER 2. AN INFORMATICS ANALYSIS OF THE INTERACTIONS BETWEEN 
CANDIDATE GENES 

 

2.1 Introduction 
 

Lung cancers remain a leading cause of cancer morbidity and mortality worldwide 

despite increased efforts toward drug discovery and implementation of personalized 

medicine approaches (51). Perhaps the most significant advance in therapy for many cancer 

types was the entry of immune checkpoint inhibitors (ICI) as a standard of care therapy for 

melanomas in 2014 (52). For non-small cell lung cancers (NSCLC), specifically those 

without targetable mutations in the epidermal growth factor receptor (EGFR) or anaplastic 

lymphoma kinase (ALK), immune checkpoint inhibitors, specifically the antibodies that 

target programmed cell death 1 (PD-1) or programmed death ligand 1 (PD-L1), have 

revolutionized cancer therapy even though response rates are relatively low (53). Both 

pembrolizumab and atezolizumab are approved ICI for frontline lung adenocarcinoma 

therapy for patients with high levels of PD-L1 expression on tumor cells (54). Durvalumab, 

an anti-PD-1 agent, is approved as maintenance therapy (55). Decisions to implement ICI 

therapy is often dependent on the PD-L1 tumor proportion score using evidence from the 

KEYNOTE-024 and -042 trials (56, 57). Importantly, PD-L1 expression may not be the 

optimal biomarker of response as suggested in pivotal clinical studies (e.g. KEYNOTE and 

OAK), but it is clear that patients with high levels of tumoral PD-L1 are likely to experience 

a robust response to checkpoint inhibition (58). While many research groups have searched 

for improved biomarkers of response for checkpoint inhibitors, others have focused on 

identification of therapies that might be combined with ICI to improve patient outcomes. 

The work presented herein falls into the latter category (59). 
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Our group found that inhibition of the tyrosine phosphatase, SHP-2, increased gene 

and cell surface protein expression of PD-L1 in KRAS-active NSCLC cell lines 

(manuscript submitted). PD-L1 is normally expressed on the surface of antigen presenting 

cells while PD-1 is expressed on T cells. It is the abnormal expression of PD-L1 on tumor 

cells, and the subsequent engagement with PD-1 on T cells, that causes tumors to be 

masked from an immune response (60). Inhibiting this interaction with antibodies against 

either PD-1 or PD-L1 can release a potent immune response toward the tumor. 

We hypothesized that because SHP-2 provides some control of expression of PD-L1 

on NSCLC cells that inhibition of SHP-2 would increase PD-L1 expression and synergize 

with ICI therapy. Supportive of our hypothesis is recently published data by Chen and 

colleagues showed in a NSCLC model system that combined SHP2 and PD-L1 inhibition, 

with accompanying radiation, can overcome resistance to PD-1 inhibitors (61). Other 

groups have suggested that SHP-2 activity may be more important in T cells, that infiltrate 

the tumor, to carry out signaling events downstream of PD-1 stimulation (62). Uncovering 

the precise mechanism of SHP-2 action on PD-L1 expression consumes many research 

groups, the model systems are expensive, and experimental time is long to get a drug to the 

clinic. In this study, we chose to go straight to real world data to determine whether SHP- 

2 activity is related to PD-L1 expression and thereby focus our research efforts. 

We took advantage of three publicly-available data sets to assess whether moving 

forward with wet lab experimentation to determine if exploring the combination of ICI and 

SHP-2 inhibition is warranted. First, The Cancer Genome Atlas, now known as the NCI 

Genetic Data Portal (NCI-GDC), holds well-annotated expression and functional 

proteomic data (The Cancer Proteome Atlas (TCPA)) for patient tumors. However, most 
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samples were collected prior to FDA approvals for ICI therapy, so no response data for ICI 

treatment is available (https://portal.gdc.cancer.gov/projects/TCGA-LUAD). 

Unfortunately, larger, industry-sponsored trials are still open (e.g. KEYNOTE and OAK), 

and full genomic and patient response datasets are not yet published. Therefore, in order to 

link expression of SHP-2 and PD-L1 with response to ICI, we uncovered two small studies: 

one in NSCLC and one in melanoma patients [63, 64]. Using real world data from the three 

studies identified, we believe that inhibition of SHP-2 activity is likely to improve response 

to PD-L1/PD-1 inhibitors and justifies continue wet-lab characterization of the 

mechanism(s) of activity. 

 

2.2 Methods 
 

First, using TCPA (https://tcpaportal.org/tcpa/index.html), a functional proteomics 

database which contains reverse phase protein array (RPPA) data from a wide variety of 

clinical tumor samples, we identified a lung adenocarcinoma (TCGA-LUAD-L4) dataset 

containing RPPA data from 362 individual patient samples. These data contain quantitative 

protein expression levels of 237 unique proteins for each subject. 

From the TCPA data, SHP-2_ pY542, the phosphorylated and active form of SHP- 

2, and PD-L1 were compared from 362 patient tumors for relative protein expression levels 

using a two-tailed, non-parametric Spearman correlation analysis with 95% confidence 

intervals. The analysis revealed that levels of SHP-2_pY542 negatively correlate with PD- 

L1 expression (r = -0.157, p-value = 0.0028**) in these subjects, suggesting that inhibition 

of SHP-2 activity may increase PD-L1 protein expression (Figs 2.1A and 2.2A). Data 

capture and analysis was automated, and the annotated code in Python is linked here: 
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(https://github.com/mwu228/Summer2021/blob/main/Correlate%20proteins%20of%20in 
 

terest.ipynb). 
 

 
[Figure 2.1 SHP-2 activity and expression correlates with expression of PD-L1 in 
NSCLC adenocarcinomas.] 

 

[A. Two-tailed non-parametric Spearman correlation analysis of RPPA protein expression 
data for Y542 phosphorylated SHP-2 and PD-L1 from 362 adenocarcinomas taken from 
The Cancer Proteome Atlas (TCPA: https://gdc.cancer.gov/about- 
data/publications/pancanatlas) LUAD-L4 dataset. B. Two-tailed non-parametric Spearman 
correlation analysis of bulk RNA-seq FPKM-UQ values taken from TCGA (GDC) for the 
362 patients that had corresponding RPPA protein expression data from TCPA. C. Two- 
tailed non-parametric Spearman correlation analysis of bulk RNA-seq FPKM-UQ values 
taken from TCGA (GDC) for all 585 patients in the TCGA-LUAD dataset. D. Two-tailed 

https://github.com/mwu228/Summer2021/blob/main/Correlate%20proteins%20of%20interest.ipynb
https://github.com/mwu228/Summer2021/blob/main/Correlate%20proteins%20of%20interest.ipynb
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
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non-parametric Spearman correlation analysis of mRNA z-scores taken from cBioPortal 
(PMID:32015526) for 169 lung adenocarcinoma tumors. The red line in each panel 
represents a linear regression line of best fit. doi: 
https://doi.org/10.1371/journal.pone.0256416.g001] 

 
 

The data contained in the TCPA contained only expression levels of the active, 

phosphorylated SHP-2, so we were unable to compare interactions with the 

unphosphorylated form. Thus, we looked to proteins in the TCPA dataset known to be in 

signaling cascades controlled by SHP-2 activity as internal controls, specifically Src, 

STAT3, and MAPK. We conducted the same correlation analysis between SHP-2_pY542 

and either Src_pY527, Src_pY416, STAT3_pY705, or MAPK_pT202Y204. We found 

that the levels of active SHP-2 maintain strong (r > 0.4) and statistically significant (p < 

1x10-15) positive correlations with each of these four proteins, providing additional 

support that the Y542 phosphorylation of SHP-2 correlation with PD-L1 protein expression 

is a meaningful interaction (Fig 2.2). 

 

https://doi.org/10.1371/journal.pone.0256416.g001


22  

[Figure 2.2 SHP2_pY542 significantly correlates with phosphorylated proteins 
found in pathways that are SHP-2 targets.] 

 

[A. Two-tailed non-parametric Spearman correlation analysis of RPPA protein 
expression data for Y542 phosphorylated SHP-2 and T202/Y204 phosphorylated MAPK 
B. Y527 phosphorylated Src kinase C. Y416 phosphorylated Src kinase D. Y705 
phosphorylated STAT3 from 362 adenocarcinomas taken from The Cancer Proteome 
Atlas (TCPA: https://gdc.cancer.gov/about-data/publications/pancanatlas) LUAD-L4 
dataset. The red line represents a linear regression line of best fit. 
https://doi.org/10.1371/journal.pone.0256416.s001] 

 
 

Next, to better understand the relationship between expression of SHP-2 (PTPN11) 

and PD-L1 (CD274) mRNA in these patient tumors, we acquired corresponding RNA- 

sequencing data from TCGA, now known as the NCI-GDC (https://portal.gdc.cancer.gov). 

In this database, the TCGA-LUAD dataset contained 585 tumor samples, 223 more than 

the TCPA data. To look at only RNA-sequencing data that matched the previously-queried 

RPPA data, the 362 patient identifiers provided by the TCPA database were used to identify 

the corresponding RNA-sequencing data deposited into the GDC. We utilized fragments 

per kilobase-upper quartile (FPKM-UQ) values. The FKPM-UQ values for the genes 

PTPN11 and CD274 for each tumor were subjected to the same Spearman correlation 

analysis as previously described. Data capture and analysis was automated, and the 

annotated code in Python is linked here: 

(https://github.com/mwu228/Summer2021/blob/main/RNAseq%20FPKM%20correlation 

%20and%20pvalue.ipynb). 
 

2.3 Results 
 

Interestingly, this analysis revealed no significant correlation (p-value = 0.3488) 

between PTPN11 and CD274 mRNA expression levels (Fig 2.1B). Following this 

observation, we wanted to know if any relationship between PTPN11 and CD274 
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expression was found using the entire TCGA-LUAD RNA-sequencing dataset (n = 585). 

We found a slight positive correlation existed (r = 0.095, p-value = 0.0211*) between 

PTPN11 and CD274 mRNA levels (Fig 2.1C). Because we are most interested in the role 

of SHP-2 in KRAS-active LUAD, we sub-grouped tumors with variants of KRAS known 

to be active from this dataset. No significant relationship was found in KRAS-active lung 

adenocarcinomas between PTPN11 and CD274 levels (Fig). Extending our observations 

from the aforementioned data that suggest a relationship between SHP-2 activity and PD- 

L1 expression, we identified another data warehouse (cBioPortal: cbioportal.org) that 

contains gene expression data from clinical cancer studies. Specifically, we located a study 

sought to characterize the genomic landscape of lung adenocarcinomas in East Asians (65). 

This study contains RNAseq data for 169 patients, from which we conducted a two-tailed, 

non-parametric Spearman correlation analysis with 95% confidence intervals between 

PTPN11 and CD274 mRNA levels (normalization method: z-score). The analysis revealed 

a positive (r = 0.267) and significant (p-value = 0.0005***) correlation between PTPN11 

and CD274 mRNA, again suggesting that SHP-2 and PD-L1 protein are coexpressed in 

LUAD tumors (Fig 2.1D). Together, these TCPA and RNA seq data suggest that SHP-2 

and PD-L1 protein are co-expressed in LUAD tumor tissue and that activation of SHP-2, 

not simply expression, may control levels of PD-L1. However, without knowing the 

expression levels of inactive SHP-2, we cannot state with certainty that SHP-2 activity is 

the primary role by which SHP-2 regulates PD-L1 expression. 
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[Figure 2.3 KRAS mutation status had no impact on PTPN11 and CD274 relationship.] 
 

[Two-tailed non-parametric Spearman correlation analysis of bulk RNA-seq FPKM-UQ 
values taken from TCGA (GDC: https://gdc.cancer.gov/about- 
data/publications/pancanatlas) for 99 patients harboring mutations in the KRAS gene 
found in the TCGA-LUAD dataset. The red line represents a linear regression line of best 
fit. https://doi.org/10.1371/journal.pone.0256416.s002] 

 
 
 

 
[Figure 2.4 Workflow scheme for evaluation of SHP2 and PD-L1 relationships] 
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[Reverse-phase protein array (RPPA) was collected from the TCPA data repository 
(https://gdc.cancer.gov/about-data/publications/pancanatlas) for 362 total patients labeled 
as the TCPA-LUAD-L4 data set. RNAseq data was collected from GDC for the full 
TCGA-LUAD dataset (n = 585). These data were parsed to include only patients for 
which there was matching RPPA data on TCPA (n = 362). Single-cell RNAseq reads for 
31 melanoma tumors were collected and separated into two groups based on ICI 
treatment status. Only single-cell reads for ‘malignant melanoma cells’ were retained for 
analysis. Tumors which had ≥ 30 unique malignant cells with non-zero PTPN11 values 
were included in the analysis. NSCLC tumors (n = 21) with sequence data were first 
separated into two groups based on response to ICI treatment. Average TPM values were 
calculated for PTPN11 and CD274, and tumors that had PTPN11 TPM value >2 standard 
deviations from the mean were excluded from the analysis. doi: 
https://doi.org/10.1371/journal.pone.0256416.g002] 

 
 
 

Having established a connection between tumoral SHP-2 activity and PD-L1 

expression, but not corresponding gene expression levels, in lung adenocarcinomas, we 

sought to understand whether PTPN11 and CD274 expression levels associate with 

response of patient tumors treated with ICIs. A study was identified that analyzed single- 

cell RNA-sequencing (scRNAseq) data from 31 melanoma tumors that were either not 

treated with ICIs or became resistant to ICIs following treatment. Importantly, the authors 

of the study were interested in characteristics of the melanoma cells that lead to immune 

evasion (63). We used the R-studio Bioconductor GEOquery package to download the raw 

scRNA-seq transcript-per-million (TPM) values, cell counts, and annotations from this 

study (GSE115978). TPM values were calculated as described in Jerby-Arnon L., et al. 

(63). We sought to answer two main questions using these data: 1) does PTPN11 mRNA 

expression correlate with CD274 mRNA levels and 2) does PTPN11 expression correlate 

with poor response to PD-1 inhibition? The scheme for the analysis workflow is found in 

Fig 2.4. To address the first question, we identified the tumors which were not treated with 

ICI (n = 15). For each of these samples, we established that scRNA-seq reads were 

https://doi.org/10.1371/journal.pone.0256416.g002
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available for several cell types, including immune cell types and malignant cells. Cell types 

were detected by fluorescence activated cell sorting using cell-type specific proteins. 

Because we are only interested in associations between PTPN11 and CD274 in tumor cells, 

we selected only single cells determined to be malignant melanoma cells. Of the 15 

untreated tumors, the analysis was narrowed to include patient tumors that have at least 30 

unique malignant cells (n = 6) resulting in an average of 108 (range, 91–487) single-cells 

per tumor. To understand the proportion of single cells in an individual tumor that 

expressed PTPN11, the percentage of cells with nonzero TPM scores for PTPN11 for each 

tumor was calculated (Fig 2.5). This processing uncovered that six untreated tumors 

(Mel71, Mel79, Mel103, Mel80, Mel81, Mel89) demonstrated ≥50% of single malignant 

cells (mean = 69%; range, 50–83%) expressed PTPN11. The TPM values for PTPN11 and 

CD274 for all single malignant cells in these six tumors were then assessed together, 

resulting in mean/standard deviation TPM values for PTPN11(1.40, 0.22) and CD274 

(0.11, 0.06). We observed a similar trend similar to that of the TCPA/NCI-GDC analysis 

above that elevated expression of PTPN11 associated with lower expression of CD274 in 

treatment naïve tumors. Finally for this dataset, we wanted to understand the relationship 

of PTPN11 and CD274 expression and response to therapy. We used the patient tumors 

which acquired resistance to ICI therapy (n = 15) to ask whether the relative levels of 

PTPN11 and CD274 levels were different than the treatment-naïve tumors. Again, the data 

were processed to include only tumors with ≥ 30 unique malignant cells (n = 6) resulting 

in an average of 79 single cells (range, 96–169) per tumor. We applied the methods used 

above to calculate the proportion of single cells expressing PTPN11 for each tumor, and 

the average TPM values for PTPN11 and CD274 when the single cells of all six tumors 
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were evaluated together. We found that these six ICI resistant tumors (Mel78, Mel88, 

Mel98, Mel102, 196 Mel110, Mel94) again showed ≥50% single malignant cells (mean = 

67%; range, 57–82%) expressed PTPN11, and the combined mean/standard deviation TPM 

values for PTPN11 (1.29, 0.12) and CD274 (0.09, 0.06). Here, similar expression patterns 

of PTPN11 and CD274 were observed compared with treatment-naïve tumors, and again 

CD274 levels remain low when PTPN11 is expressed. Importantly, we were unable to 

observe any relationship between PTPN11 or CD274 expression and acquired resistance 

to ICI in this dataset. 

 
[Figure 2.5 A. PTPN11 mRNA expression weakly associated with reduced 
CD274 mRNA expression in melanoma tumors regardless of ICI exposure. B. 
PTPN11 mRNA expression weakly associated with reduced CD274 mRNA 
expression in melanoma tumors regardless of ICI exposure. doi: 
https://doi.org/10.1371/journal.pone.0256416.t001] 

 
 

Using the data from the third study, we asked whether expression of PTPN11 and 

CD274 mRNA associates with response to ICI therapy in NSCLC. The investigators in this 

report aimed to find immune signatures predictive of response to anti- PD-1 inhibitors in 

https://doi.org/10.1371/journal.pone.0256416.t001
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NSCLC. The dataset contained bulk tumor RNA-sequencing data and clinical response 

data for 21 NSCLC subjects treated with single agent anti-PD-1 therapy [64]. As before, 

the R-studio Bioconductor GEOquery package was used to capture raw RNA-sequencing 

TPM values from this study (GSE136961). Patients demonstrating progression of disease 

or stable disease that lasted less than 24 weeks were deemed by the authors to have no 

durable clinical benefit (DCB) to anti-PD-1 therapy. Patients showing partial or complete 

response by Response Evaluation Criteria in Solid Tumor (RECIST) v1.1 or stable disease 

for more than 24 weeks were defined as receiving DCB. The analysis of these data followed 

a workflow scheme like that in Fig 2.4. Of the 21 NSCLC patients in this study, nine 

demonstrated a DCB to ICI therapy and twelve showed no DCB. We separated the data by 

DCB status and then averaged all TPM values for PTPN11 and CD274 for each patient 

tumor to generate one average TPM score for each group. An outlier analysis was 

performed on the PTPN11 TPM values for both responders and non-responders (Fig 2.7), 

resulting in final groups of 7 responders (n = 7) and 11 nonresponders (n = 11). Our analysis 

revealed no significant difference in the expression of PTPN11 mRNA between subjects 

with DCB from those that did not respond to anti-PD-1 therapy (Fig 2.6). Specifically, the 

mean/standard deviation PTPN11 TPM scores were (576.15, 281.78) and (487.73, 361.24) 

for responders and non-responders, respectively. Importantly, the mean expression of 

CD274 mRNA was nearly 3-fold higher in patients who responded to therapy (151.16, 

198.33) compared to those who did not (61.96, 64.54). We note the standard deviation was 

large for the last two groups assessed. Together, these data showed that PTPN11 expression 

does not associate with CD274 expression or response therapy in NSCLC patients. These 

findings are consistent with the results from the first study that suggested that SHP-2 
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activity, not expression, correlates with PD-L1 expression. In contrast, these data 

demonstrated a positive relationship between PD-L1 expression and response to ICI which 

was not observed in the melanoma study. 

 
[Figure 2.6 CD274, but not PTPN11, mRNA expression is associated with response to ICI 
in NSCLC tumors.] 

 
[A. PTPN11 TPM values for patients who did or did not demonstrate a durable clinical 
benefit (DCB) from ICI therapy, as determined by RECIST criteria [14]. There was no 
significant difference between groups, as measured by a student’s t-test. B. TPM values for 
CD274 in patients who did or did not demonstrate a durable clinical benefit (DCB) from 
ICI therapy, as determined by RECIST criteria. There was no significant difference 
between groups, as measured by a student’s t-test. doi: 
https://doi.org/10.1371/journal.pone.0256416.g003] 

https://doi.org/10.1371/journal.pone.0256416.g003
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[Figure 2.7 Outlier analysis of PTPN11 TPM values for NSCLC response study.] 
 

[Box and whisker plot of PTPN11 TPM values for NSCLC patients who did not respond 
to ICI therapy (A) or patients who did respond (B). Outliers, highlighted in red, were 
determined by the 1.5 interquartile range (IQR) method which adds 1.5 times the IQR to 
the third quartile and excludes data points that fall above that value, and subtracts 1.5 times 
the IQR from the first quartile and excludes data points that fall below that value. 
https://doi.org/10.1371/journal.pone.0256416.s003] 

 
 

2.4 Discussion 
 

In this study, we applied information obtained from publicly-available protein and 

gene expression datasets to gain further insight into our overarching research question: 
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does SHP-2 activity or expression influence PD-L1 mRNA and protein levels and 

subsequent response to anti-PD-1 or PD-L1 therapies in NSCLC? We used this approach 

because we believe that the utilization of real-world datasets can inform and direct wet-lab 

experimentation. The design and execution of pre-clinical and clinical studies is expensive, 

time-consuming, and labor-intensive. Here, we present a quick and efficient process that, 

when combined with bench-side techniques, can offer substantial insight into the clinical 

translatability of commonly-used, highly-controlled model systems designed for drug 

discovery applications. Through the analysis of two major cancer data repositories and two 

smaller clinical studies, we were able to take further steps towards establishing a 

connection between the activity of SHP-2 and PD-L1 expression in human tumors without 

carrying out a study de novo. 

Of the datasets chosen for this study, the most statistically-powerful and revealing 

information arose from the composite analyses of the TCPA and GDC data repositories. 

Using genomic and protein information from a large cohort of NSCLC patients, our most 

important observation was the strong negative correlation (r = -0.157, p-value = 0.0028**) 

between the active, tyrosyl-phosphorylated form of SHP-2 and PD-L1 protein expression 

(Fig 2.2A). A limitation of these data was that the RPPA data did not include expression 

levels of the unphosphorylated and inactive form of SHP-2 which would have been a useful 

control as informed by our wet-lab studies. However, to address this limitation, we 

investigated the relationship of SHP-2 at Y542 with known targets. We found strong 

positive correlations in the expression levels of SHP2_pY542 and three proteins (Src, 

MAPK, STAT3) whose activity is dependent on phosphorylation status and known to be 

regulated by SHP-2 activity (66–68). While this is not a perfect control to confirm that the 
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activity of SHP-2 predominates total SHP-2 expression as they relate to PD-L1 expression, 

it does provide additional evidence that quantifies association of SHP2_pY542 with known 

substrates. 

The conformational changes induced by phosphorylation of SHP-2 could alter 

protein-protein interactions among signaling components and intracellular signaling 

cascades that impact PD-L1 expression (69). Following from that hypothesis, we observed 

no statistically significant correlation between the levels of SHP-2 and PD-L1 mRNA in 

the patients in the NCI-GDC dataset that were initially studied in the TCPA dataset, again 

highlighting the potential importance of molecular interactions of SHP-2 dependent on its 

activated state. Interestingly, when we conducted the same analysis on the entire cohort of 

LUAD patients in the NCI-GDC repository, a weak, but inverse correlation, (r = 0.095, p- 

value = 0.0211*) between PTPN11 and CD274 mRNA was observed, suggesting that SHP- 

2 and PD-L1 are co-expressed in LUAD tumors. It is then plausible that SHP-2 activation 

may function to finetune PD-L1 expression levels. In immune cells, SHP-2 functions 

downstream of the PD-1:PD-L1 interaction by facilitating the internalization of the PD-1 

receptor which ultimately results in the deactivation of the immune cell (70). Likewise, it 

is conceivable that SHP-2 functions in a similar manner with regard to tumoral PD-L1 

expression. The significance of SHP-2 co-expression with PD-L1 mRNA may be in a 

negative feedback loop, reducing PD-L1 levels once its expression is no longer necessary. 

Mutation of SHP-2 in malignant cells may alter SHP-2 activity or expression to disrupt this 

negative feedback loop, resulting in the aberrant constitutive expression of PD-L1 protein 

and continuous T-cell deactivation. 
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2.5 Conclusion 
 

When we embarked on our studies, we most desired to understand how SHP-2 

influences response to ICI therapy in KRAS-active tumors in order to direct our drug 

discovery efforts in a wet-lab setting. A limitation of the data deposited in the NCI-GDC 

is that the clinical data are often incomplete and lacking details on drug treatment and 

associated response or perhaps pre-date a particular therapy, like ICI in this case. However, 

we were able to address the expression of SHP-2 and PD-L1 in KRAS-active LUAD (~26% 

of the tumors). KRAS status did not change the outcome of the analysis. We identified 

other studies in which RNAseq data was collected from tumors treated with ICIs, one in 

melanoma and one in NSCLC (63, 64). PLOS ONE Tumor genomic data informs benchtop 

experimental design (59-63). While the focus of our study is on NSCLC, treatment of 

melanoma using ICIs was approved a few years prior to use in NSCLC, and thus the data 

available in this cancer with respect to ICI treatment is more mature. It should be noted 

that melanomas rarely harbor KRAS mutations and more often HRAS mutations. Neither 

of the two small studies made the mutation status of Ras available. 

The melanoma study was embarked by Regev and colleagues (63) and sought 

identify a gene expression profile that is associated with immune evasion that might predict 

response to ICI treatment. They conducted scRNAseq on melanoma tumors that were either 

untreated at the time of sequencing, or had acquired resistance to ICI therapy. These data 

allowed us to determine whether PTPN11 and CD274 gene expression associated with 

response to therapy. The authors of the study were more interested with defining signatures 

of resistance that could be used to screen patients prior to ICI therapy, so the experimental 

design was not ideal and the sample size was small. Importantly, PTPN11 mRNA levels 

were roughly equivalent between the treatment naïve and ICI resistant tumors. While this 
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analysis provides some insight into the landscape of SHP-2 and PD-L1 coexpression, it is 

important to acknowledge that these tumors did not originate from the lung, have differing 

oncogenic mutations, and sample sizes were relatively low. 

Finally, we used data from the NSCLC study carried out by Hwang and colleagues 

in which they sought to identify immune gene signatures that may predict clinical response 

to anti-PD-1 therapy (64). The authors performed RNAseq on 21 NSCLC tumors that were 

divided by response to ICI therapy. For our analysis, we used average TPM values for 

PTPN11 and CD274 and compared tumors based on response to therapy. Expression of 

PTPN11 did not associate with DCB, but the tumors from patients who experienced DCB 

displayed increased expression of CD274 mRNA, consistent with other studies (71–73). 

Taken together, these two studies do not suggest that the expression of PTPN11 mRNA is 

associated with to response to ICI therapy. Given these analyses considered alongside the 

TCPA analysis, it is likely that SHP-2 activity, not expression, bears more importance to 

PD-L1 expression, and subsequently response to ICI therapy, in NSCLC. Further, our 

findings suggest that reducing SHP-2 activity by pharmacological means would increase 

tumoral PD-L1 expression. Patients with PD-L1 expression >50% respond better to ICI 

therapy, supporting the potential for synergy of the coinhibition of SHP-2 and PD-L1 in 

NSCLC (73–75). 

This study outlines the significance of using of simple and efficient methods in real- 

world data analysis to further discovery efforts at the benchtop. Each study from which we 

gathered data had limitations that we have noted. The take-home message is that there is 

likely value in combining the use of molecules that inhibit the activity of SHP-2 and ICI in 
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lung tumors and convince us that continued exploration into the role of SHP-2 on both PD- 

L1 expression is clinically important. 



 

CHAPTER 3. A RETROSPECTIVE ANALYSIS OF POPLAR/OAK TRIALS TO 
DETERMINE WHETHER SHP2/PTPN11 OR PD-L1/CD274 LEVELS PREDICT 

RESPONSE TO THERAPY 
 

3.1 Introduction 
 

In NSCLC, there is evidence that atezolizumab, a PD-L1 inhibitor, provides short- 

term OS and PFS benefit compared to docetaxel for previously treated NSCLC patients 

from the phase II POPLAR and phase III OAK clinical trials (76), (77). Overall survival is 

defined as the length of time from the randomization of treatment to death from any cause 

(78). Progression free survival is defined as the length of time from randomization of 

treatment to tumor progression or death (79). For the POPLAR and OAK trials, tumor 

progression was defined as an independent investigator assessing the tumor as progressive 

disease (PD) using response evaluation criteria in solid tumors (RECIST) v1.1. An 

unanswered question from those trials, is what happens to survival outcomes and adverse 

effect incidence if we follow these patients past the primary endpoint of 28 months? 

The published data of the combined POPLAR and OAK trials is one of the first 

studies linking immunotherapy vs chemotherapy to survival outcomes combined with PD- 

L1 threshold expression and an extensive gene expression profile for every participant (80). 

 
 

3.1.1 POPLAR Trial 
 

The POPLAR Trial was an open label Phase II randomized controlled trial 

primarily exploring superiority of atezolizumab against docetaxel in patients with locally 

advanced, metastatic, or recurrent NSCLC and were previously treated with, at minimum, 

a single platinum agent containing regimen (76). Patients were stratified by PD-L1 tumor- 

infiltrating immune cell (TIC) status, histology, and previous lines of therapy. An important 
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factor in the study design is patients must be ICI-treatment naïve to be included in the 

POPLAR trial. excluded patients included those previously treated with CTLA-4 

inhibitors, PD-1 and PD-L1 inhibitors, or a CD137 inhibitor. Therefore, the study design 

controlled for acquired resistance to atezolizumab. 

The POPLAR trial was also significant for its contribution to future exploratory 

analysis, with a full biomarker profile, mRNA expression, complete IHC in tumor cells (as 

percentage of PD-L1-expressing tumor cells TC3≥50%, TC2≥5% and <50%, TC1≥1% and 

<5%, and TC0<1%) and TICs as percentage of tumor area: IC3≥10%, IC2≥5% and <10%, 

IC1≥1% and <5%, and IC0<1%). 

The researchers found that OS significantly improved in the atezolizumab arm 

(p=0.04) and there was evidence of increasing improvement in overall survival was 

associated with increasing PD-L1 expression (TC3 or IC3 [p=0.068], TC2/3 or IC2/3 

[p=0.014], TC1/2/3 or IC1/2/3 [p=0.005], TC0 and IC0 [p=0.871]). They concluded that 

atezolizumab significantly improved OS compared with docetaxel in patients with 

previously treated NSCLC and correlated with PD-L1 IHC expression on tumor cells and 

TICs, suggesting that PD-L1 expression is predictive for atezolizumab benefit. 

 
 

3.1.2 OAK Trial 
 

The OAK Trial was an open label Phase III randomized controlled trial primarily 

exploring superiority of atezolizumab against docetaxel in patients with locally advanced, 

metastatic, or recurrent NSCLC, exploring efficacy of atezolizumab against docetaxel with 

identical inclusion and exclusion criteria as the POPLAR trial (77). The major difference 

between the trials is the scale; POPLAR had 287 patients included in the intention-to-treat 
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analysis while OAK had 1225 patients at randomization for safety analysis and 850 patients 

in the primary efficacy analysis. 

The primary endpoints for OAK was OS in the intention-to-treat (ITT) population 

and stratified PD-L1 expression population. The investigators also wanted to test a 

hypothesis from the results of the POPLAR trial, that PD-L1 expression on tumor cells or 

tumor-infiltrating immune cells independently contribute to OS. An ITT analysis analyzes 

patients in the group to which they were originally randomized, irrespective of the 

treatment the patient received (81). 

In the ITT population, overall survival was improved with atezolizumab compared 

with docetaxel (p=0.0003). Overall survival in the TC1/2/3 or IC1/2/3 population was 

improved with atezolizumab (n=241) compared with docetaxel (n=222); median overall 

survival was 15.7 months with atezolizumab vs 10.3 months with docetaxel (p=0.0102). 

The researchers concluded that atezolizumab treatment resulting in a clinically relevant 

improvement of OS versus docetaxel in previously treated non-small-cell lung cancer, 

regardless of PD-L1 expression or histology. 

3.2 Hypothesis 
 

From the POPLAR and OAK trials, OS is improved as PD-L1 TPS is higher. I 

hypothesize that OS positively correlated with CD274 (PD-L1 gene) expression. To further 

understand the mechanism behind PD-L1 and CD274 regulation, I also hypothesize that 

PD-L1 protein expression and CD274 gene expression are positively correlated. Further, 

continuing from Chapter 2, phosphorylated SHP2 and PD-L1 are negatively correlated, 

therefore I hypothesize that PTPN11 (SHP-2 gene) and CD274 are negatively correlated. 

Finally, I will be exploring the JAK2/STAT3 signaling pathway with PD-L1 and CD274 
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expression. Previous literature established JAK2 and phosphorylated STAT3 are 

upregulated with upregulated PD-L1 expression. In parallel with PTPN11, I hypothesize 

that JAK2 and STAT3 genes are both positively correlated with CD274 expression. 

3.3 Methods 
 

Deidentified patient dataset (EGAF00004681873) from the linked phase 2 POPLAR 

and phase 3 OAK trials were utilized in this analysis and provided by Genentech. 

Demographics in the dataset included age, gender, and race. Clinical data included type of 

cancer, study arm, PD-L1 status, PD-L1 tumor cell scoring (IC), PD-L1 tumor infiltrating 

cell scoring (TC), and tumor mutation burden. Clinical outcomes data included overall 

survival (OS) defined by death from any cause, progression free survival (PFS) defined by 

disease progression or death, and overall response rate (ORR) defined by the RECIST 

criteria. Patients were censored if they did not meet the OS or PFS endpoint at study cutoff. 

A separate RNAseq dataset (EGAF00004943100) was also obtained from Genentech. 

RNA encoding PD-L1 and SHP-2 were CD274 and PTPN11, respectively. 

In the POPLAR trials, patients were randomized 1:1 into atezolizumab and docetaxel 

arm. PD-L1 immunohistochemistry (IHC) positivity status was defined as previously 

reported in POPLAR (cite). Patients were stratified based on treatment arm (docetaxel or 

atezolizumab) and PD-L1 immunohistochemistry (IHC) expression (positive or negative). 

From EGAF00004943100, the data was filtered down to match the 156 patients from 

EGAF00004681873 using Python Data Analysis (pandas v1.4.1) Library in Jupyter 

Notebook (v6.4.3) into a single pandas DataFrame. From this single DataFrame, all clinical 

data types, demographic information, and RNA data were indexed and could be accessed 



40  

to produce smaller DataFrames for modular data analysis. Code is available at <github 

link> 

3.3.1 Data Analysis 
 

All data analysis was performed in GraphPad Prism (v9.0.0) between patients in the 

atezolizumab arm using simple linear regression and a two-tailed, t-test with Welch’s 

correction to compare means and a two-tailed F-test correlation analysis to compare 

variances. Both significance tests will be calculated with 95% confidence intervals. An 

alpha value of 0.05 was utilized to determine statistical significance. Cox regression was 

used for multivariable and survival analysis using R (v1.4.1103). Variables used in the 

multivariable analysis included gender, age (≥65 or <65), and race. PD-L1 IHC positivity, 

IC status, TC status, and ORR were not included in the multivariable model since these 

outcomes were correlated with improved PFS and OS. Therefore, these factors can 

contribute as confounders. 

 

3.4 Results 
 

From the POPLAR and OAK trials, there were 156 patients followed with previously 

treated NSCLC, with 119 patients PD-L1 positive and 37 patients PD-L1 negative. In PD- 

L1 positive patients, the mean CD274 RNAseq transcripts per million (TPM) was 

significantly higher at 12.57, and in PD-L1 negative patients, the mean CD274 RNAseq 

TPM was 5.518 [(95% C.I. 2.799 to 11.30), p-value 0.00129] (Fig 3.1). 
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CD274 RNASeq in POPLAR and OAK NSCLC Patients Treated with Atezolizumab or Docetaxel 
Stratified by PD-L1 Expression 
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[Figure 3.1 Two-tailed unpaired t-test comparing means between PD-L1 positive 
and PD-L1 negative patients from POPLAR trial receiving atezolizumab or 
docetaxel] 

 
 

[The mean CD274 TPM was significantly higher in PD-L1 positive patients than PD-L1 

negative patients. **** signifies p-value < 0.001] 

There were 81 patients followed that were treated with atezolizumab from the 

POPLAR trial. In these patients, the mean PTPN11 TPM was 41.9 and the mean CD274 

TPM was 36.0. I found a significant difference in mean TPM between PTPN11 and CD274 

using an unpaired t-test with Welch’s correction (p-value < 0.001). A plot of the data is 

shown in Fig. 3.2. There was a weak, negative correlation between PTPN11 TPM and 

CD274 TPM in this population (Pearson’s r = -0.067, p-value = 0.41). When stratifying by 

PD-L1 positive IHC status, the correlation is also not statistically significant (Pearson’s r 

= -0.103, p-value = 0.45). PTPN11 had a positive correlation of 0.14 with OS and a 
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negative correlation of -0.08 with PFS. Both results were not significant. CD274 had a 

positive correlation of 0.11 with OS and a positive correlation of 0.01 with PFS. Both 

results were not significant. 

PTPN11 vs CD274 TPM in all POPLAR Patients on Atezolizumab Monotherapy 
400 

 
 
 
 

300 
 
 
 
 

200 
 
 
 
 

100 
 
 
 
 

0 
PTPN11 CD274 

Gene 
 
 

[Figure 3.2 PTPN11 and CD274 TPM in POPLAR Patients on Atezolizumab 
Monotherapy] 

 
 

[Figure 3.2. Two-tailed unpaired t-test with Welch’s correction comparing mean TPM 

between PTPN11 and CD274 in both PD-L1 positive and PD-L1 negative patients from 

POPLAR trial receiving only atezolizumab monotherapy. **** signifies p-value < 0.0001] 
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PTPN11 TPM in POPLAR Patients Stratified by PD-L1 Positive or Negative IHC Expression on 
Atezolizumab Monotherapy 
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[Figure 3.3 PTPN11 TPM in POPLAR Patients Stratified by PD-L1 Positive or 
Negative IHC Expression on Atezolizumab Monotherapy] 

 
 

[Figure 3.3. Two-tailed unpaired t-test with Welch’s correction comparing mean PTPN11 
TPM in patients that are PD-L1 positive vs PD-L1 negative from POPLAR trial receiving 
only atezolizumab monotherapy. There was no significant interaction between these two 
variables. ns signifies not significant.] 
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[Figure 3.4 Pear r Correlation Matrix of Previously Treated Advanced Lung 
Cancer Patients Receiving Atezolizumab Monotherapy in POPLAR Trial] 

 
 

[Figure 3.4. Pearson’s r calculated for each independent variable on the X and Y axes. 
From the Upper Left Y Axis, Overall Survival is correlated with all 12 independent 
variables. OS is then stratified by patients with positive PD-L1 IHC expression (PDL1+) 
or negative PD-L1 IHC expression (PDL1-). A correlation of 1.0, denoted as bold blue, is 
a perfect positive correlation, while a correlation of -1.0, denoted as bold red, is a perfect 
inverse or negative correlation.]

 



45  

0

0

1.82e-009

1.17e-006

2.37e-003

0.28

0.42

0.23

0.48

0.85

0.12

0

1.17e-006

1.17e-006

0.42

0.42

0.85

0.85

0

2.37e-003

2.37e-003

0.23

0.23

0.12

0.12

1.82e-009

1.17e-006

2.37e-003

0

0

0.39

0.48

0.13

0.83

0.80

0.93

1.17e-006

1.17e-006

0

0.48

0.48

0.80

0.80

2.37e-003

2.37e-003

0

0.13

0.13

0.93

0.93

0.28

0.42

0.23

0.39

0.48

0.13

0

0

0.36

0.45

0.59

0.42

0.42

0.48

0.48

0

0.45

0.45

0.23

0.23

0.13

0.13

0

0.59

0.59

0.48

0.85

0.12

0.83

0.80

0.93

0.36

0.45

0.59

0

1.93e-168

0.85

0.85

0.80

0.80

0.45

0.45

0

0.12

0.12

0.93

0.93

0.59

0.59

1.93e-168

OS OS PDL1+

OS PDL1-

PFS
PFS PDL1+

PFS PDL1-

CD27
4

CD27
4 P

DL1+

CD27
4 P

DL1-

PTPN11

PTPN11
 PDL1+

PTPN11
 PDL1-

OS

OS PDL1+

OS PDL1-

PFS

PFS PDL1+

PFS PDL1-

CD274

CD274 PDL1+

CD274 PDL1-

PTPN11

PTPN11 PDL1+

PTPN11 PDL1-

P values: Correlation Matrix of Previously Treated Advanced Lung Cancer Patients Receiving Atezolizumab Monotherapy in POPLAR Trial

0

0.01

0.02

0.03

0.04

0.05

 

[Figure 3.5 P Values of Correlation Matrix of Previously Treated Advanced Lung 
Cancer Patients Receiving Atezolizumab Monotherapy in POPLAR Trial] 

 
[Figure #3.5. P-values for each of Pearson’s r calculated in Fig. #3.4 using a two-tailed 
unpaired t-test with Welch’s correction. Significance was defined with alpha = 0.05. 
Significant results where p < 0.05 were highlighted in cyan.] 

 
3.5 Discussion 

 
In this study, I applied correlation, survival, and significance testing to gene 

expression and survival outcomes data provided by Genentech in order to better understand 

how CD274 (PD-L1 gene) and PTPN11 (SHP-2 gene) affects overall and progression-free 

survival outcomes when treated with an immune checkpoint inhibitor (atezolizumab). 
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From Figure 3.1, CD274 TPM was significantly higher in patients stratified to PD- 

L1 positive groups, or patients with a minimum of PD-L1-expressing tumor cells ≥ 1% or 

a minimum of PD-L1 expressing tumor-infiltrating immune cells ≥ 1%. I used this 

approach to validate if PD-L1 protein expression is higher, then CD274 gene expression is 

higher, which it is in this population of patients with advanced lung cancer. 

In Chapter 2, it was shown that active SHP-2 affects PD-L1 expression. I wanted 

to test if there was a connection between gene expression of those two proteins. While there 

was a significant difference in gene expression of PTPN11 and CD274 (Figure 3.2), there 

was not a significant correlation between the TPM of those two genes. There also was not 

a significant difference in mean PTPN11 TPM between patients that were PD-L1 

expression positive and patients that were PD-L1 expression negative (Figure 3.3). Fig. 

3.4 and Fig. 3.5 answer the questions, are CD274 (PD-L1 coding gene) or PTPN11 (SHP- 

2 coding gene) correlated with each other, or with OS or PFS, and are the correlations 

statistically significant? I expected CD274 to be positively correlated with OS and PFS, 

since PD-L1 expression is associated with improved OS and PFS. CD274 was positively 

correlated with OS (r = 0.12) but inversely correlated with PFS (r = -0.27), even when 

stratified to patients that are PD-L1 positive (r = -0.11), meaning as CD274 expression 

increases, the PFS duration is expected to decrease. PTPN11 on the other hand, was slightly 

correlated with both OS (r = 0.08) and very slightly with PFS (r = 0.03). 

While phosphorylated SHP-2 negatively regulates PD-L1 expression, it may not 

necessarily be true that PD-L1 up- or down-regulates PTPN11 expression, which this data 

supports. PTPN11 has interactions with many other pro-inflammatory and signaling genes, 

such as STAT3, that could cause of the significant difference in mean TPM level. Further, 
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PTPN11 could be upstream or downstream of regulatory molecules directly affecting PD- 

L1 expression. A limitation of the data is the lack of protein expression; neither active SHP- 

2 nor total SHP-2 levels were measured in this patient population. Since phosphorylated 

SHP-2 downregulates PD-L1, regulatory molecules could affect the amount of translation 

of PTPN11 mRNA to SHP-2, or a phosphatase could be overexpressed and deactivated 

SHP-2 in PD-L1 positive patients. 

Analyzing patient populations based on PD-L1 IHC expression scores were 

considered, however the patient sample sizes were too small, with 8 patients being 

randomized to TC1, 9 patients to TC2, and 8 patients to TC3 in the atezolizumab arm of the 

POPLAR trial. The small sample sizes would make it hard to generalize predictions to the 

larger patient population of advanced stage lung cancer. 

 

3.6 Conclusion 
 

The overarching question this analysis answered is, do protein coding genes of 

oncogenic predict overall and progression free survival? With respect to CD274, the 

protein coding gene for PD-L1, the answer is no. CD274 was positively correlated with OS 

but negatively correlated with PFS, and neither was significant. Furthermore, while 

PTPN11, the SHP-2 protein coding gene, was inversely correlated with CD274, it was not 

statistically significant, nor was it statistically significant in predictive value for OS or PFS. 

For both CD274 and PTPN11, stratification based on PD-L1 positive or negative IHC did 

not play a role in changing the outcome of the analysis. 
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CHAPTER 4. CONCLUSION 

As lung cancer continues to be a Top 10 cause of death in the United States, the 

vastness of publicly available data will increase, as will the informatics approaches to 

analyze the enormous clinical and patient datasets produced from clinical trials. The work 

here describes two similar informatics-based approaches to logically analyze predictive 

biomarkers in a patient population with a very poor prognosis. Cell signaling pathways, 

such as JAK2 and STAT3, have been shown to be upregulated in NSCLC tumors, as well 

as oncogenic proteins such as SHP-2. However, the missing link is the connection to 

between oncogenic gene expression and patient survival outcomes. Therefore, I 

hypothesized that upregulated cell signaling genes, JAK2 and STAT3, would be positively 

correlated with patient overall and progression free survival. I also hypothesized PTPN11 

(the coding gene for the protein SHP-2) would be inversely correlated with patient survival 

in response to immunotherapy, since its mechanism is to inhibit PD-L1 expression. 

4.1 Summary of Results 
 

From the TCPA and GDC data repositories for NSCLC patients, the single, most 

important  observation  was  the  strong  inverse  correlation  between  the 

active ,phosphorylated form of SHP-2 and PD-L1 protein expression (r = -0.157, p-value 

= 0.0028**). 
 

Next, patient data from the POPLAR trial was made available by Genentech, and I 

could analyze relationships between genome and NSCLC patient survival outcomes, when 

treated with an immune checkpoint inhibitor (ICI). While there was a statistically 

significant difference in PTPN11 RNAseq TPM between PD-L1 IHC positive and PD-L1 

IHC negative patients (p-value < 0.001), there was no statistically significant correlation 

between PTPN11 and CD274 (p = 0.36). Despite this, gene expression of PTPN11 was 
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inversely correlated with CD274 expression (r = -0.30), similar to the inverse correlation 

of SHP-2 and PD-L1 protein expression. For each of overall and progression free survival, 

PTPN11, and CD274 expression, stratifying by PD-L1 subpopulations did not yield any 

significant correlation. 

4.2 Experimental Limitations 
 

A limitation of the data presented by Genentech in the POPLAR and OAK trials is 

only genomic data was collected. There was no data on concurrent protein expression 

(neither total nor active proteins). 

Another limitation was the possibility of patients having a driver mutation that were 

included in the analysis but were not tested prior to the clinical trial. The preferred 

treatment for patients with a driver mutation is a targeted small molecule instead of an ICI 

or chemotherapy. Therefore, patients with driver mutations may have experienced worse 

outcomes in these trials. 

A final limitation is the relatively small sample size of 156 patients with advanced 

lung cancer. Meaningful conclusions would be lost when further subdividing the patient 

population by TC or IC status. For example, the number of patients labeled as TC1, TC2, 

and TC3 in the atezolizumab arm of the POPLAR trial was 8, 9, and 8 patients, 

respectively. 

4.3 Conclusions and Future Directions 
 

The work described here suggests tumor progression is due to protein-protein 

interactions rather than changes in gene expression levels in patients with advanced 

NSCLC. However, PD-L1 IHC expression may not be as clinically valuable as once 

thought, as there were no significant differences in its correlation, with IHC positive or 
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IHC negative, with overall or progression free survival when looking at CD274 in patients 

treated with an immune checkpoint inhibitor. The inclusion of PD-L1 IHC biomarker 

testing was largely the result of the data published from the POPLAR and OAK trials 

described earlier, because there was a significant difference in outcomes with patients 

treated with an immune checkpoint inhibitor when compared to traditional chemotherapy. 

While the authors of the POPLAR trial reported “Improvement correlated with PD-L1 

immunohistochemistry expression on tumor cells and tumor-infiltrating immune cells…”, 

it is not a linear correlation, suggesting that there is other mechanism(s) affecting tumor 

pathology. 

The next steps of this project would be to ask, is PD-L1 expression still a clinically 

useful predictive factor for treatment of advanced NSCLC in the absence of driver 

mutations? Or, are there better predictive factors than PD-L1 IHC expression for survival 

outcomes? Currently, even if patients with advanced NSCLC have PD-L1 IHC expression 

< 1%, they are still treated with ICIs, the only difference being how long until 

chemotherapy is added to the regimen, and that is at the clinician’s discretion. 
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