
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2023

The BASIL technique: Bias Adaptive Statistical Inference Learning The BASIL technique: Bias Adaptive Statistical Inference Learning

Agents for Learning from Human Feedback Agents for Learning from Human Feedback

Jonathan Indigo Watson
University of Kentucky, jonathan.indigo.watson@protonmail.com
Author ORCID Identifier:

https://orcid.org/0009-0000-2101-6237
Digital Object Identifier: https://doi.org/10.13023/etd.2023.162

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Watson, Jonathan Indigo, "The BASIL technique: Bias Adaptive Statistical Inference Learning Agents for
Learning from Human Feedback" (2023). Theses and Dissertations--Computer Science. 134.
https://uknowledge.uky.edu/cs_etds/134

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It
has been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://orcid.org/0009-0000-2101-6237
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Jonathan Indigo Watson, Student

Brent Harrison, Major Professor

Simone Silvestri, Director of Graduate Studies

The BASIL technique: Bias Adaptive Statistical Inference Learning Agents for
Learning from Human Feedback

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the

University of Kentucky

By
Jonathan Indigo Watson
Lexington, Kentucky

Director: Dr. Brent Harrison, Professor of Computer Science
Lexington, Kentucky 2023

Copyright© Jonathan Indigo Watson 2023

ABSTRACT OF DISSERTATION

The BASIL technique: Bias Adaptive Statistical Inference Learning Agents for
Learning from Human Feedback

We introduce a novel approach for learning behaviors using human-provided feedback
that is subject to systematic bias. Our method, known as BASIL , models the
feedback signal as a combination of a heuristic evaluation of an action’s utility and a
probabilistically-drawn bias value, characterized by unknown parameters. We present
both the general framework for our technique and specific algorithms for biases drawn
from a normal distribution. We evaluate our approach across various environments
and tasks, comparing it to interactive and non-interactive machine learning methods,
including deep learning techniques, using human trainers and a synthetic oracle with
feedback distorted to varying degrees. We demonstrate that our algorithm can rapidly
learn even in the presence of normally distributed bias, which other methods struggle
with, while also exhibiting some resistance to other types of distortion.

KEYWORDS: Machine Learning, Reinforcement Learning, Interactive Machine Learn-
ing, Interactive Reinforcement Learning, IML, IRL, RL, ML, BASIL, TAMER,
Bias, Statistical Inference, Tetris, Bowling, Atari, Agent presentation

Author’s signature:Jonathan Indigo Watson

Date: April 25, 2023

The BASIL technique: Bias Adaptive Statistical Inference Learning Agents for
Learning from Human Feedback

By
Jonathan Indigo Watson

Director of Dissertation: Brent Harrison

Director of Graduate Studies: Simone Silvestri

Date: April 25, 2023

Dedicated to Wallace Watson Sr., Sarah Watkins, and Terry Simmons for their
support which has been unending despite their passing.

ACKNOWLEDGMENTS

We wish to acknowledge the late J. D. Hunter for providing the world with Matplotlib[18]

which we used to produce the graphs in this paper.

We wish to acknowledge the many authors and developers who produced and

contributed to Keras[9], Open A.I. Gym[3], SciPy[33], NumPy.[17], and all those who

contributed to the Python programming language and it’s many core libraries, upon

which this work has been built.

We wish to acknowledge Angelica Watson for her aid, support, insight, wisdom,

and encouragement without which this would never have been written.

iii

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . iv

List of Figures . vi

List of Tables . ix

Chapter 1 Introduction . 1
1.1 Understanding Human Bias . 2
1.2 Bias Adaptive Statistical Inference Learning (BASIL) Agents for Learn-

ing from Human Feedback . 4
1.3 BASIL and Deep Neural Networks 6

Chapter 2 Background and Related Work . 9
2.1 Reinforcement Learning and Interactive Reinforcement Learning . . . 9
2.2 Existing General Work in Interactive Machine Learning 10
2.3 Existing Work in Human Bias in Interactive Machine Learning 11
2.4 Related Work in the Social Sciences 15

Chapter 3 Algorithms . 17
3.1 The BASIL technique . 17
3.2 BASILTAMER Algorithm . 20
3.3 Deep BASILTAMER Algorithm . 27

Chapter 4 Methods: Experiments in Bias and the BASIL Technique 34
4.1 Understanding Bias in Human Trainers 34
4.2 The BASIL Technique in a Gridworld 40
4.3 BASILTAMER . 45
4.4 BASILTAMER Extensions . 47
4.5 Deep BASILTAMER . 49
4.6 Multi-Circumstance Aware Deep BASILTAMER 56

Chapter 5 Results . 61
5.1 Understanding Bias in Human Trainers: Results 61
5.2 The BASIL Technique in a Gridworld: Results 64
5.3 BASILTAMER: Results . 69
5.4 BASILTAMER Extensions: Adaptive Variance BASILTAMER Exten-

sion Results . 71
5.5 BASILTAMER Extensions: Silence Experiments Results 73
5.6 Deep BASILTAMER: Results . 74

iv

5.7 Results for Multi-Circumstance Aware Deep BASILTAMER 76

Chapter 6 Discussion . 89
6.1 Understanding Bias in Human Trainers: Discussion 89
6.2 The BASIL Technique in a Gridworld: Discussion 91
6.3 BASILTAMER: Discussion . 91
6.4 BASILTAMER Extensions: Discussion 92
6.5 Deep BASILTAMER: Discussion . 93
6.6 Multi-Circumstance Aware Deep BASILTAMER: Discussion 94

Chapter 7 Conclusion . 95

Bibliography . 98

Vita . 101

v

LIST OF FIGURES

4.1 A visual representation of the grid navigation test environment. in the
starting state of (0, 2, east). Sand textures represent fully passable tiles.
Large stones represent impassible tiles. Molten rock represents hazard
tiles that end the episode when entered and provide large negative envi-
ronmental rewards, and the portal texture represents the goal tile that also
ends the episode when entered and provide large positive environmental
rewards. All tiles out of frame are impassible. 36

4.2 Alice and William. Alice, the female agent, was designed to possess fea-
tures commonly associated in American culture with the female gender.
William, the male agent, was designed to possess features commonly as-
sociated in America with the male gender. 38

4.3 Example given to human subjects for the agent representation of William.
The example indicates William’s current state and the state that William
will be in after he takes the action. The example also indicates to the
human subject what action William will take, as well as what feedback
options are available to give William. The human subject also receives
text explaining the grid world game to the human subject. 41

4.4 A visual representation of the Atari bowling environment. 53
4.5 The application interface presented to our Human Trainers with the Sony

AIBO presentation of the agent. 54
4.6 The Tron-X robot from Festo AG. [2] 58
4.7 The PKD robot from Hanson Robotics.[2] 59
4.8 The AIBO robot from Sony.[2] . 60

5.1 Cumulative Reward for each algorithm when feedback contains no bias,
and feedback is always given. 64

5.2 Cumulative Reward for each algorithm when feedback contains moderate
positive bias µ = 0.5 with moderate variance σ = 0.3, and feedback is
always given. 65

5.3 Cumulative Reward for each algorithm when feedback contains moderate
negative bias µ = −0.5 with moderate variance σ = 0.3, and feedback is
always given. 66

5.4 Cumulative Reward for each algorithm when feedback contains large neg-
ative bias µ = +2.0 with moderate variance σ = 0.3, and feedback is
always given. 67

5.5 Cumulative Reward for each algorithm when feedback contains large neg-
ative bias µ = −2.0 with moderate variance σ = 0.3, and feedback is
always given. 68

5.6 Cumulative Reward for each algorithm when feedback contains no bias,
and positive feedback is always given, but negative feedback is only given
with probability 0.1. 69

vi

5.7 Cumulative Reward for each algorithm when feedback contains no bias,
and negative feedback is always given, but positive feedback is only given
with probability 0.1. 70

5.8 Cumulative Reward for each algorithm when feedback contains bias with
µ = 0.0 but high variance σ = 2.0, and feedback is always given. 71

5.9 Cumulative Reward for each algorithm when feedback contains moderate
positive bias µ = 0.5 with moderate variance σ = 0.3, and negative feed-
back is always given, but positive feedback is only given with probability
0.1. 72

5.10 Cumulative Reward for each algorithm when feedback contains no bias. . 74
5.11 Cumulative Reward for each algorithm when feedback contains moderately

high positive bias µ = 5.0 with no variance σ = 0.0. 75
5.12 Cumulative Reward for each algorithm in Adaptive Variance experiments

when feedback contains no bias µ = 0.0 but does contain variance σ = 1.0 76
5.13 Cumulative Reward for each algorithm in Adaptive Variance experiments

when feedback contains both bias µ = 5.0 and variance σ = 1.0 77
5.14 Cumulative Reward for each algorithm in Adaptive Variance experiments

when feedback contains bias µ = 5.0 but no variance σ = 0.0 78
5.15 Cumulative Reward for each algorithm in the silence experiments when

feedback contains no bias µ = 0.0 and is never withheld. 79
5.16 Cumulative Reward for each algorithm in the silence experiments when

feedback contains bias µ = 5.0 and is never withheld. 80
5.17 Cumulative Reward for each algorithm in the silence experiments when

feedback contains no bias µ = 0.0 and positive feedback is withheld at a
50% rate. 81

5.18 Cumulative Reward for each algorithm in the silence experiments when
feedback contains no bias µ = 0.0 and positive feedback is always withheld. 82

5.19 Cumulative Reward for each algorithm in the silence experiments when
feedback contains no bias µ = 5.0 and negative feedback is withheld at a
50% rate. 83

5.20 Cumulative Reward for each algorithm in the silence experiments when
feedback contains no bias µ = 5.0 and negative feedback is always with-
held. 84

5.21 Cumulative reward of learned policies as a function of training time for
each testing condition combination. Averaged from all applicable data.
Observe that the BASIL plots for PKD and TronX fall below the baselines,
but the BASIL-AIBO plot significantly exceeds other AIBO plots. . . . 85

5.22 Cumulative reward of learned policies as a function of training time for
each algorithm with the PKD presentation average from all applicable
data. Observe that in the PKD presentation the BASIL technique hinders
rather than helps the performance of Deep TAMER. 86

5.23 Cumulative reward of learned policies as a function of training time for
each algorithm with the AIBO presentation average from all applicable
data. Observe that in the AIBO presentation the BASIL technique signifi-
cantly improves the performance of Deep TAMER relative to the baselines. 87

vii

5.24 Cumulative Reward for epsilon greedy enhanced Deep TAMER (Eps Greedy
Deep TAMER cumulative reward), Deep BASILTAMER (BASIL Deep
TAMER cumulative reward), and Multi-Circumstance Aware Deep BASIL-
TAMER (MAA BASIL DT cumulative reward) trained offline on AIBO
and PKD training sessions recorded in earlier experiments. At each time-
step, an algorithm has received all of the feedback given during one PKD
training session and one AIBO training session up to that time-step. . . 88

viii

LIST OF TABLES

5.1 Histographic data for all feedback instances of Alice versus William rep-
resentations respectively. Note the discrepancy in the overall number of
feedback instances for Alice versus William. This is a result of a quirk in
the random number generator used to select an agent representation and
is still completely uncorrelated with any attribute of the human subject.
It is unfortunate as the statistical significance of our results is limited by
the size of the smaller sample, but the assignment of agent representation
was still done at random, just with unequal weights on the representations. 63

5.2 Histographic data for all feedback instances provided by human subjects,
Female versus Male. This table represents all populations merged to-
gether. Despite our populations turning out to be heavily segregated by
gender, the trends remained the same even if we only limit it to the sociol-
ogy student population or the machine learning reddit population. How-
ever, the machine learning reddit population is small enough for the effects
to fall below statistical significance. For that reason, we present the data
with all populations included without concern for other effects correlated
with gender among our population. 63

5.3 Averages over the last ten episodes of training across all samples for each
TAMER algorithm for each permutation of bias parameters. 73

ix

Chapter 1 Introduction

Today, machine learning plays an ever increasing role in the development of au-
tonomous agents. Fields from game design to industrial control systems require
virtual agents that react to an observed system state in a manner consistent with
some objective, such as task completion, safety, or inducing player immersion. While
the very intuitive and traditional approach to the creation of such agents involves
the hand coding of complicated sets of ad-hoc rules and this approach can produce
good results, it is immensely time consuming and becomes unfeasible as the com-
plexity of the system (number of actions available at one time, number of different
possible states, etc.) continues to grow, particularly for small teams of programmers.
This approach may also require an immense amount of domain/behavioral expertise,
which programmers may not necessarily have. It is also possible that the information
a programmer needs to hand code ad-hoc rules does not exist as it regards human
preferences or that the only information available is that which is self-reported, which
may be suspect for a variety of reasons or only relevant to one individual. For ex-
ample: a game designer may be required to create a virtual character such that the
character plays a hand of poker while conveying the quality of their hand to the op-
ponent (i.e. the character is easy to read); however, most game designers cannot be
reasonably expected to possess body language expertise.

A solution to this problem is to use sophisticated computational techniques, such
as machine learning, to learn these behaviors. One of the major approaches to ma-
chine learning is reinforcement learning [31] where the agent learns behavior from a
reward signal and trial-and-error exploration of its environment. In many traditional
approaches to reinforcement learning, the reward signal comes from the agent’s en-
vironment, possibly interpreted by a heuristic function. An agent will, more or less,
begin by behaving randomly but will receive a reward from the environment about
the quality of its behaviors. Over time, the agent will adjust its behavior to favor
actions that give it the most long-term, positive reward. This approach has been
shown to be able to teach virtual agents very complex behaviors in environments
where hand-coded rules that achieve good performance are elusive, while techniques
for evaluating performance are easy to obtain. For example, consider an agent learn-
ing to play an arcade style game. While it may be unclear how to specify behavior
rules that result in optimal behavior, it is easy to specify a performance measure to
optimize in the game’s score. For other tasks, such as creating believable or like-
able virtual characters, creating an optimization or scoring function to evaluate the
actions taken by the virtual agent can be just as difficult as hand-coding the action
rules themselves. While classic reinforcement learning techniques rely on environmen-
tal scoring or utility functions to learn optimal behaviors, interactive reinforcement
learning (IRL) allows a human trainer to provide a reward signal either in addition to
or in replacement of an environmentally produced signal [8]. This enables a human
trainer to provide direct input on how the agent learns and what behaviors that the
agent will learn. Often, this results in more robust scoring functions that can fill in

1

gaps that could exist in purely environmental scoring functions, and this can also
result in enabling agents to more quickly learn desired behaviors. Knox and Stone
even showed that without access to an environmental reward signal, an agent learning
from a human trainer could very quickly reach a high level of performance within a
small number of training episodes[23].

However, the introduction of a human trainer is not without drawbacks. By
utilizing human trainers, researchers introduce human factors that could affect how
agents learn in ways that we do not completely understand. Examples of these factors
include:

• aspects of the human instructors such as teaching style and understanding of
the problem

• aspects of the agent’s presentation to the human instructors such as a picture
representing the agent or the name an agent is referred to by

• the interaction thereof, such as bias regarding the apparent gender of the agent

Humans also have limited time to devote to training tasks and the rate at which they
can provide feedback is also limited. Understanding these human factors is important
for setting up training in a manner that facilitates learning of the desired behaviors.
If researchers and programmers can understand human biases, that understanding
should enable them to take better advantage of human feedback. However, the scope
of human biases is quite vast and understudied with few techniques available to take
into account those biases.

In this body of work we have set ourselves the following goals/tasks:

• Increase our understanding of the ways in which factors, such as agent pre-
sentation, can influence feedback given to interactive reinforcement learning
algorithms

• Develop a technique and algorithms for interactive reinforcement learning agents
that account for bias in feedback given by human trainers

• Combine our techniques for bias with techniques to address variance and incon-
sistency in feedback given by human trainers

1.1 Understanding Human Bias

This body of work focuses on developing techniques that take into account human bias
in regards to the feedback that human trainers provide to interactive reinforcement
learning agents. As human bias has been demonstrated to effect the feedback provided
in numerous ways, from withholding feedback to being overly positive or negative in
the feedback given, the development of a technique to handle this bias within the
provided feedback requires a modicum of understanding of that bias and the means to
counteract that bias within that feedback such that a learning algorithm can learn the
correct policy to complete its task or goals. However, developing a full understanding

2

of human bias as it applies to interactive learning schemes is a task beyond any one
body of work. In pursuit of developing a technique to take into account human bias
in an IRL environment, we first sought to increase our understanding of the effects of
human bias on feedback provided by conducting an experiment to study human bias,
as to fulfill our first research task. Most existing work on determining the extent of
human bias on feedback given is done with respect to anthropomorphization of the
agent presented to human trainers, whether this be by representing the agent as a
puppy or as a robotic entity among many other forms of representation. However,
there are a number of understudied factors when it comes to an agent’s representation
that will bring human bias into play. One of these understudied factors in the field
of virtual learning agents is how the presented gender of the agent effects the quality
and consistency of feedback that a human trainer will provide. The effects of an
agent’s gender representation are almost unavoidable as the mere act of applying a
name to the agent, generally the first step in anthropomorphizing it as was done
by Waytz, Heafner, and Epley[36], will typically imply a gender identity in most
Human languages and cultures. Even if a unisex name is chosen, applying a gender
is, in itself, a basic technique for anthropomorphization and anthropomorphizing an
agent is usually desired in many commercial applications[36]. Therefore, we set out
to explore how human factors involving the perceived gender of an agent can affect
how humans train said agents. This experiment in understanding bias in human
trainers presented human trainers with the task of providing feedback to a virtual
agent navigating a grid world environment in a browser-based game where the agent
was alternatively represented by a female pixel art representation with English female
pronouns named Alice, versus a presentation of a male pixel art representation with
English male pronouns namedWilliam. We also surveyed the instructors for a number
of demographic qualities to study the effect of those qualities on the feedback given.
Specifically, we sought to answer the following questions:

1. Is there a statistically significant difference in the feedback given to an agent
when presented with the female representation versus the male one across all
human subjects and of the states presented in the environment?

2. Qualitatively, how do the feedback histograms differ for feedback given to the
female representation of the agent versus the male one?

3. What demographic characteristics of human instructors have a statistically sig-
nificant effect on feedback given to the agents?

4. In particular what effect does the instructor’s reported gender have on feedback
given to the agent?

5. Is there a cross effect between instructor gender and the agent’s presented gen-
der?

By answering these questions, we can gain a greater understanding of the role that
perceived agent gender plays in training virtual characters. In this body of work, we
present the first foray into exploring this understudied effect. By studying the effects

3

of an agent’s gendered representation on human trainer provided feedback, we will
complete one of our research goals.

1.2 Bias Adaptive Statistical Inference Learning (BASIL) Agents for
Learning from Human Feedback

This work addresses the issue of human bias in the feedback provided to interactive
reinforcement learning algorithms by developing a technique that accounts for that
bias, as per our second research goal. Existing techniques are limited in handling
human factors in discrete feedback, which also limits the sorts of problems for which
they are suited to address. As far as we know, no existing technique handles hu-
man bias in numerically valued reward schemes for interactive reinforcement learning
agents. However, we argue that when provided the means to communicate more
detailed numerical rewards, human trainers can provide an agent with a heuristic
estimate of the utility of taking a given action in a given state. By using a numerical
value for the reward scheme we can numerically counteract the bias using statistical
techniques, such that we can obtain less biased reward values. Utilization of numeri-
cal values allows us to model that numerical human feedback as being separable into
an assessment of the utility of taking a given action in a given state and a biasing
value, which is drawn from a probabilistic distribution. Therefore, in this body of
work we present a novel technique for separating bias from the reward signal.

Our approach is inspired by the ISABL algorithm by Loftin et.all [25] and it
is worth taking a moment to discuss the similarities and differences between the
algorithm we present and the ISABL algorithm. Both algorithms share a similar
structure and use expectation maximization to compute the best possible action based
on imperfect human feedback. However, there are some key differences. In ISABL,
feedback is assumed to have discrete values of positive, negative, or zero and the
nature of the human factors it wishes to address is limited to the meaning of silence.
Finally, it’s use of expectation maximization is done to directly determine the human
trainer’s target policy. The limitations of this are: ISABL requires the human to have
one single on policy action for any state; it does not allow for situations in which the
human considers any of several paths as valid; and it does not allow for situations
in which the human trainer considers one action to be ’good’ and another action to
be ’better’. In ISABL’s model a human should only reward the best possible action,
however, for more complicated tasks a human trainer may not be able to determine
the best possible action, but may still provide a useful evaluation of actions taken
heuristically.

The technique which we present is a general technique that is widely applicable to
a variety of interactive machine learning environments in which one may encounter
bias in provided feedback from human trainers. This technique separates the utility of
evaluation and biasing values from a history of reward signals when given the form of
the biasing distribution, but without knowing the parameters of the distribution using
expectation maximization (EM)[10] to compute a maximum likelihood estimate of the
utility assessments. Additionally, we provide an algorithm utilizing this technique for
a normal distribution and test it against several other algorithms under a variety

4

of biasing effects and permutations of parameters using simulated human trainers.
The algorithm/technique we present, by contrast, takes numerical feedback and does
not address the meaning of silence, instead it seeks to address the issue of bias in the
feedback signal. To accomplish this, our technique does expectation maximization not
to compute the human trainer’s policy, but to compute the human trainer’s evaluation
of the utility of each action and state for which they have been provided feedback.
Our technique treats the human feedback signal as being comprised of the following:
1) a heuristic assessment of the utility provided by taking an action that is a measure
of both the actions immediate benefit and its potential for long-term benefit, and
2) a biasing factor that depends upon the human trainer and aspects of the agent’s
presentation to the human trainer. For this technique, we assume the value of the
biasing factor attached to any given feedback instance is drawn probabilistically from
a distribution determined by unknown parameters.

The goal of our technique is to learn the underlying heuristic evaluations present
in the feedback to obtain better performance on the problem where a human trainer’s
feedback signal is provided but is highly biased. This technique is the Bias Adaptive
Statistical Inference Learning algorithm, referred to from here onward as the BASIL
algorithm or BASIL technique. The BASIL technique provides a means to account
for human bias in provided feedback and is applicable to a variety of tasks and
environments, as we will demonstrate below. To test the BASIL algorithm it was
compared with other interactive reinforcement learning algorithms, primarily SABL,
ISABL, and TAMER. The BASIL technique was also hybridized with the TAMER
algorithm, producing the BASILTAMER algorithm. The goal of our experiments
utilizing the application of the BASIL technique with the TAMER algorithm was
to determine if adding normally distributed bias to the feedback signal given to the
classical TAMER and BASILTAMER algorithms would result in the classical TAMER
algorithm failing to learn the desired behavior encoded in the feedback signal while
not preventing the BASILTAMER algorithm from learning the desired behavior. We
present our findings below.

Adaptive Variance and Silence BASILTAMER Extensions

Addressing bias is only a part of dealing with human factors in feedback to interac-
tive reinforcement learning agents. In order to make the most of the feedback given
by human trainers, the variance and inconsistency in the feedback also needs to be
addressed, which also accomplishes our third goal in regards to this research. Incon-
sistencies in human feedback can take various forms such as: feedback withholding;
consistently small or neutral feedback values; and variance of feedback values around
their mean. Existing work by Loftin et. al. [25] addresses the problem of interpret-
ing feedback withholding, however the technique they presented is limited to discrete
feedback as their work assumes that feedback is defined only as positive or negative
and it does not have a numerical value. Furthermore, the algorithms they present
are extremely limited in the number of problems that they can feasibly be applied
to without significant modifications as they are designed and tested in domains with
very small state spaces. It is also unfortunate that with human trainers variance in

5

the feedback given is, generally, an inevitability. In its simplest forms, variance is
the human trainer being inconsistent with the feedback given and providing different
feedback values for the same situation. For example: taking a particular action in
a particular state such as placing a block in a Tetris game in the same spot and
orientation when the field is empty, might get a reward value of 5 from a trainer once
and a value of 6 at another time. This problem gets worse when there are multiple
human trainers, which becomes increasingly necessary for larger scale tasks. Addi-
tionally, this variance does not always mean that the human trainer made a mistake.
Depending upon the feature set provided to an algorithm, human trainers may be
able to see differences in two states that look identical to the algorithm. In our Tetris
example, perhaps the human trainer is aware of what block is to be placed next while
this information was not provided to the algorithm so as to maintain the Markov
Decision Principle. This inconsistency can easily lead to confusion as to what the op-
timal action to take is for a given state and can cause an agent’s behavior to become
erratic as it incorporates new feedback instances. Therefore, we have built upon the
BASIL technique to develop three extensions of the BASILTAMER algorithm that
handle, alternatively, variance and silence in addition to the normal capabilities of
the BASILTAMER algorithm.

The BASIL technique is already designed to calculate the observed variance in
the feedback received, particularly of distributions, such as the normal distribution
where it is a defining parameter. The first extension we developed was for the purpose
of addressing variance in feedback provided by dynamically adjusting the agent’s
learning rate. Full details for this algorithm will be described within our Methods
sections.

For addressing silence in feedback signals from human trainers, we have devel-
oped two extensions for the BASILTAMER algorithm. The first of these takes the
extremely simple approach of treating silence as though it were an explicitly given
feedback value of zero, which we refer to as the Zero Silence Extension. We also
developed a more sophisticated extension to address silence. This last extension,
which we refer to as the Average Silence Extension, calculates the average expected
feedback as given by BASILTAMER’s neural network for each observed instance of
silence. The algorithm uses the expected feedback values to calculate an average
expected feedback for silence and uses this at each EM step as the feedback value
for each instance of silence in the observation history. This is used in computing the
next phase of the neural network as the EM loop continues until it converges. The
algorithms for the Zero Silence and Average Silence Extensions can be found below.

In this work we compare these Extensions with the default BASILTAMER and
unmodified TAMER in the Tetris environment we utilize for our BASILTAMER ex-
periments.

1.3 BASIL and Deep Neural Networks

In addition to the basic BASIL technique we examined the application of the BASIL
technique within the framework of Deep Neural Networks, which, once more, ad-
dresses our secondary goal for this research. This involved applying the BASIL tech-

6

nique to the Deep TAMER algorithm. Deep Learning generally refers to machine
learning performed with Deep Neural Networks which can benefit from interactive
reinforcement learning techniques. However, some related work may also fall under
this label. In general terms, Deep Neural Networks are defined as Artificial Neu-
ral Networks with enough layers that the task of updating weights of early layers
in the network in response to error signals becomes non-trivial. Therefore, in order
to expand the scope of our work to Deep Learning tasks, we choose to apply the
BASIL technique to Deep TAMER [34]. Deep TAMER is an expansion of the origi-
nal TAMER algorithm that incorporates a Deep Neural Network in place of the single
layer preceptron used by the original TAMER algorithm.

To apply the BASIL technique to a Deep Neural Network, we applied the technique
to Deep TAMER and utilized it within an ATARI bowling environment as was done
by Warnell et. all [34] as they presented in their research for the development of Deep
TAMER. A secondary goal of this experiment was to further verify the observations of
Bartneck, Reichenback, and Carpenter [2] of how agent presentation between different
grades of anthropomorphism produced different feedback when using images of the
same robotic avatars as they did in their experiment. To incorporate the BASIL
technique into the Deep TAMER algorithm we had to use it only with the latter
fully connected, online trained portion of the Deep Neural Network. We refer to this
adaptation as the Deep BASILTAMER algorithm or as Deep BASILTAMER.

Multi-Circumstance Aware Deep BASILTAMER

When the phrase bias is used, it is often used to describe a difference that occurs be-
tween two samples. It is therefore worthwhile to consider using the BASIL technique
for multiple feedback sources, whether these sources are different human trainers,
or different presentations of the agent to human trainers, or any other factor which
might alter the way feedback is given. We have developed and tested a modification
of our Deep BASILTAMER algorithm to be multi-trainer aware for this sort of case,
which addresses our second and third goal simultaneously. We refer to this as Multi-
Circumstance Aware BASIL. We have tested Multi-Circumstance Aware BASIL on
the feedback given by human trainers who were presented with varying presentations
of the agent using data obtained from our preceding Deep BASILTAMER experi-
ments. State and actions pairs combined with feedback sourced from the AIBO and
P.K.D. sessions of the BASIL DeepTAMER experiments were used to train models
using this modification offline. In these experiments we compared Deep TAMER,
Deep BASILTAMER, and Multi-Circumstance Aware Deep BASILTAMER. As de-
scribed above, for these experiments Multi-Circumstance Aware Deep BASILTAMER
is aware that there are two feedback profiles and it is also aware of what data is from
which profile. It utilized this awareness to perform expectation maximization on
the two data sets separately in order to generate two different sets of bias distri-
bution parameters and it then modifies new feedback based on which parameter set
applies to the data. The primary goal of these experiments was to determine if Multi-
Circumstance Aware Deep BASILTAMER, which is specifically adapted for handling
multiple biasing conditions as we have put forth, performs substantially better than

7

unmodified Deep BASILTAMER, and Deep TAMER without BASIL when feedback
for each algorithm is produced under multiple biasing conditions.

8

Chapter 2 Background and Related Work

In this section we provide an explanation of reinforcement learning and interactive
reinforcement learning for those unfamiliar with them. We will then focus on general
work in IRL, in particular the TAMER algorithm which has become a standard for
IRL algorithms, followed by reviewing existing work into bias in human provided
feedback. Finally, we will discuss the related work in Social Sciences that seek to
study the manifestation of human gender bias which bears relevance to our first
experimental study to see how a gendered representation of an agent affects the
feedback it receives.

2.1 Reinforcement Learning and Interactive Reinforcement Learning

Our work primarily concerns reinforcement learning with an emphasis on the prob-
lems associated with the addition of a human trainer. Reinforcement learning is a
technique that is used to solve a Markov decision process (MDP). A MDP is a tuple
M = ⟨S,A, T,R, γ⟩ where S is the set of world states, A is the set of agent actions,
T is a transition function T : S ×A→ P (S), R is a reward function R : S ×A→ R,
and γ is a discount factor 0 ≤ γ ≤ 1.

The result of reinforcement learning is a policy π : S → A, which defines which
actions should be taken in each state in order to maximize expected future reward.
The reinforcement learning problems we consider have the addition of a human pro-
vided feedback signal. This is typically known as interactive reinforcement learning.
This feedback signal is typically not included in the cumulative reward total used to
evaluate an agent’s performance, but may assist the agent in learning.

Interactive reinforcement learning is not the only approach to interactive machine
learning. An example of another approach is apprenticeship learning where instead
of learning from human feedback given in response to the agent’s actions, the agent
learns from one or more examples of good performance from human trainers. This
type of learning is also referred to as imitation learning or learning from demonstra-
tion. An example of this approach is inverse reinforcement learning by Abbeel and
Ng [1]. The idea of this approach is to, from a demonstration by a human expert,
attempt to learn a reward function that produces the policy that the expert acted
in accordance to. To do this, Abbeel and Ng defined the concept of the feature ex-
pectation of the policy, which is the summation of all the features of all the states
visited when following given policy discounted by an exponentially decaying factor.
In practical computation, the sum can be ended after a finite number of steps because
the discount factor will have rendered the contribution of further steps minute. With
that defined algorithm for computing, a reward function is as follows:

• Start with a random policy.

• Compute the feature expectation of that policy.

9

• Compute the set of weights that maximizes the normal of the weights such that
the normal does not exceed one, that minimizes the difference in the weighted
feature expectation of all tried policies and the expert’s demonstrated policy.
If that difference is within our error tolerance, we are done and the reward
function we seek is a weighted sum of the features weighed by the weights we
just computed. If we are not, compute the policy that maximizes the reward
function determined by the weights we have just computed and add that policy
to our list of tried policies before returning to step 2.

In practice, there are optimizations to avoid the costly prospect of finding the new
optimal weights at each step however, they do not change the inherit nature of the
algorithm.

While alternative approaches to interactive machine learning, such as apprentice-
ship learning, do not necessarily suffer from the same sorts of bias as interactive
reinforcement learning, they still are affected by complex human factors and may
have other limitations. For example, apprenticeship learning techniques on their own
do not generally exceed the performance of the human trainer while interactive rein-
forcement learning techniques can as they rely only on the human’s ability to critique
performance and not to perform similarly.

2.2 Existing General Work in Interactive Machine Learning

The recent past has seen a growing body of work in the area of agents learning from
human feedback. Tomaz and Breazal [32] conducted an experiment where human
trainers helped a virtual agent to learn to perform a simulated cake baking task.
Among other findings, they observed that human trainers gave rewards in anticipation
of good actions and not just for immediate positive outcomes, and that the feedback
from human trainers corresponds more to an action’s utility than the immediate
reward it provided.

Knox and Stone [23] provided the TAMER algorithm which they showed learned
very quickly to perform moderately well in the complicated task of the game Tetris.
The TAMER algorithm remains a standard among interactive reinforcement learning
algorithms. This algorithm works very similarly to a single layered neural network or
perceptron [26]. It takes as input at each training step a vector of features describing
the difference between the before and after states of some action. What features are
used for a given problem is a task specific issue that an engineer using the algorithm
must address for their task. This need to engineer appropriate features for any new
task undertaken is one of the major limitations of the TAMER algorithm. At each
learning step, the TAMER algorithm, adjusts the weight associated with each feature
of the feature vector it considers proportionally to the change in the feature a singular
human feedback signal and a learning rate meta parameter. In order to choose an
action when given a state, the TAMER algorithm is assumed to be able to predict
the results of its action in terms of the feature vector. For each possible action the
algorithm might take, it computes the resulting change in the feature vector and
calculates the weighted sum of these changes to ”score” each possible action. It,

10

then, simply selects the highest scoring action. The issues presented for the TAMER
algorithm by needing a human engineered feature set are made worse by the need
for these features to be fairly sophisticated assessments of the task state. This is
because the single layered model used by the TAMER algorithm has no ability to
consider features in more than a linear combination. For example: it cannot consider
a high value of one feature as good only in the presence of the high value of a second
feature. The relatively recent developments in deep neural networks led to a solution
in the work of Warnell et. all [34] which presented Deep TAMER. Deep TAMER
replaces the simple single layer perceptron of the original TAMER algorithm with a
deep neural network. In Warnell et. all’s work the deep neural network is specifically
a convolutional neural network followed by several fully connected layers, however,
this is some what task specific and the term ’Deep TAMER’ could be applied to any
modification of the TAMER algorithm to use a deep neural network in place of a
single layer perceptron.

The COBOT agent in work by Isbel et.all [19] was a chat bot employed in the
online community LambdaMOO and it was trained by human feedback to promote
and engage in useful, or at least entertaining, discussions in the community chat
rooms. The COBOT agent’s reinforcement learning algorithm was very simple. From
the perspective of the RL algorithm, there were nine possible actions for COBOT to
take when it might choose to act, which it did every few minutes. One of these
actions was to do nothing, the rest can be broadly broken up into broad categories.
The first category are topic starters where it attempted to initiate a conversation by
pulling on the most recent online version of the Boston Globe, the second are role call
actions where COBOT attempted to take a role call of people tired of a given subject
by picking either a noun or a verb phrase out of recent posts, the third was a social
commentary routine that relied on a statistical database of social interaction, and the
fourth was a social introduction routine. For state features, COBOT considered which
users were active and a vector of social statistics on the conversation. For a feedback
signal, the users had a variety of phrases which were assigned different numerical
feedback values. After selecting an action, COBOT would consider all reward signals
until it’s next action to apply to its most recent action taken in the state to which
it took it and directly updated this q-value. When it came time to select an action,
COBOT would simply pick probabilisticly according to a distribution based on the
q-values of each possible action. While COBOT did not directly attempt to address
human biases in feedback to interactive reinforcement learning algorithms, Isabel
et. all did observe reliability issues in human feedback. Notably, they observed a
tendency to give less feedback over time. Our work contributes to this growing body
of work by presenting a general technique to account for human bias when utilizing
interactive machine learning techniques.

2.3 Existing Work in Human Bias in Interactive Machine Learning

There has been some work on how human factors can influence feedback given by
a human trainer such as the experiments performed by Bartneck, Reichenback, and
Carpenter’s[2], where they studied the effects of agent presentation on human inter-

11

action with an agent, although, they did not conduct their research with regards to
their agent’s gender. Instead, the researchers had their agents represented by robots
with differing degrees of anthropomorphism. The first of these is a distinctly robotic
humanoid called Tron-X with a somewhat human, although entirely hairless, face
and visibly robotic torso. The second, the PKD model by Hanson Robotics, was a
much more human-like robot modeled after legendary science fiction author, Philip
K. Dick, and is human enough looking to pass a very cursory inspection. The third
was a dog-shaped robot, AIBO, from Sony. The researchers performed experiments,
both where the robots were physically situated at computers in the same room as
the human experimental subjects, and where the robots were represented only by
photographs. They found that the human experimental subjects were more likely to
praise the agent when it was represented by the PKD robot than when represented
by the Tron-X robot, despite these agents performing the same task and using iden-
tical algorithms. They also found that the human experimental subjects were both
more likely to praise and less likely to punish the agent when it was represented by
the robotic dog, AIBO. They found that subjects often overestimated the frequency
of punishments they had given as well as underestimating the frequency of praise
given. Subjects when questioned even stated that they did not want to punish AIBO
because they found the robot dog to be “very cute”. They found that the differ-
ence in presentation had a profound impact on the way that the human instructors
gave feedback, despite there being no difference in the way that any of these agents
behaved.

Lehdonvirta et. all[24] found that a player’s avatar’s gender had an effect on the
way the player both sought out and received help in a massively multi-player online
game irrespective of the player’s actual gender, which strongly suggests that a virtual
agent’s presented gender will have an effect on feedback it receives.

In Cakmak, Chao, and Thomaz[4], a few different models for human interaction
with a learning agent were proposed, and groundwork for future research in inter-
active machine learning was laid. Their experiment utilized a “waist up” humanoid
robot with the, typically male given, name of Simon. Their experiment is also no-
table for surveying the humans who interacted with Simon for both quantitative and
qualitative information about their experience with Simon in each of three different
training modes. The researchers found that human teachers perceived Simon as being
intelligent and doing more than just passively listening to their instructions.

Research by Knox et.all[22] investigated differences in feedback provided by human
trainers when those human trainers believed that they were providing feedback to a
live agent or critiquing a completed performance, and found little difference between
the ways humans provided feedback in those scenarios. They also found that human
trainers can decrease the consistency of feedback they give over time, however, having
the agent make mistakes encouraged the human trainer to provide more feedback. The
inconsistency of feedback given over time leads us to the work of Griffith et. all [16]
which produced the Advise algorithm that interprets human feedback as a discrete
communication that reflects the policy the human trainer was attempting to teach,
which could be inconsistent and infrequent.

The work that bears the greatest similarity to our own is by Loftin et.all [25] which

12

attempts to allow for learning of desired behavior even when the human trainer does
not provide explicit feedback by using Bayesian techniques to weigh silence as positive
or negative depending upon the human trainer’s teaching strategy. They found that
aspects of the trainers had a significant impact on the feedback they supplied. In
their experiments, they utilized a population of computer savvy university students
and another population of professional dog trainers. They found, among other things,
that the professional dog trainers had a very strong bias towards positive feedback
only. The practice of only providing positive feedback is an often recommended
practice among dog trainers when training actual dogs, which suggests that the dog
trainers treated the virtual dog in the experiment the same way as they would treat
an actual dog. They also presented two algorithms: SABL, which is explicitly told
the parameters governing the trainer’s teaching strategy, and ISABl, which infers
the parameters of the human trainer’s teaching strategy from their feedback history
using maximum likelihood estimation via the Expectation Maximization algorithm
[10]. However, these algorithms assume that feedback is given only in a discrete form
of positive, negative, or zero; and that for any given state human trainers should
consider only one on policy action as worthy of receiving reward. This results in
creating significant room for the development of algorithms that account for these
human factors while also maintaining the more precise communication abilities of a
numerical reward signal. Both Advise and the SABL algorithms limit themselves
to discrete feedback. We present a technique that handles the numerical bias that
occurs in numerical feedback.

Another technique for removing error from human feedback to an interactive ma-
chine learning agent is REPaIR by Faulkner et. all. [20] REPaIR assumes that a
reward signal from a human may be noisy and contain errors. It attempts to learn
how these errors occur in the feedback from the human and then adjust or ignore
erroneous feedback. These are all things that REPaIR has in common with our tech-
nique, however, where REPaIR differs is in the method used to determine how the
feedback is erroneous and the resulting limitations. Unlike our work, REPaIR re-
quires a non-erroneous reward signal, such as an environmental reward signal, which
REPaIR uses to evaluate the feedback signal from the human trainer to determine
where it is unreliable. This frees REPaIR from one limitation of our work, which is
that our technique requires that its user chose a model for the bias signal with some
degree of accuracy. However, it requires an unbiased environmental reward, limiting
REPaIR. Furthermore, using such an environmental reward to clean the human feed-
back signal may re-introduce some of the issues of learning from an environmental
reward, such as a large degree of separation between a critical action and feedback,
ultimately resulting from that action. This should not be taken to imply that RE-
PaIR offers no benefits over learning from just the environmental reward. However, a
programmer should consider what environmental reward functions are available when
choosing between REPaIR, our work, or other algorithms for cleaning up erroneous
human feedback. An avenue for future study would be the synthesis of techniques
utilized in REPaIR and those from our work. Unfortunately, due to how recently
REPaIR has been made available, we have not had the chance to incorporate such
work into this body of research; nor to evaluate the techniques comparatively, given

13

their different limitations.
Cannon and Anwar [6] developed another technique for improving the ways in

which human interactive reinforcement learning algorithms incorporate feedback. In
particular, they studied using human attention to guide agent exploration. Explo-
ration is an aspect of reinforcement learning currently neglected by many interactive
reinforcement learning algorithms, such as Deep TAMER. They applied their tech-
nique of model calibration to Deep TAMER in the domain of Montezuma’s Revenge,
an infamously difficult Atari video game available for machine learning research as
part of the Open AI Gym package. Montezuma’s Revenge is particularly difficult for
machine learning algorithms due to a high degree of separation, not only between
tasks and rewards, but also between tasks and the reasons for carrying out the sub
task; such as the need to pick up items for use in other rooms. In their study, Cannon
and Anwar utilized uncertainty estimates to direct agent exploration and studied the
use of language as a feedback mechanism. They attempted to use language feedback
to provide supervised attention. They used language feedback to generate saliency
maps of their visual input to guide exploration, however, they saw no significant
improvement or worsened performance on Montezuma’s Revenge. After testing vari-
ations limiting the salient information that was passed to the model, they eventually
settled on a model calibration technique where they used a Bayesian neural network to
provide uncertainty estimates for each of the agent’s available actions. These calibra-
tions were then utilized with an upper confidence bound styled algorithm to choose
actions. This technique was able to take advantage of the language feedback and
saliency maps that had previously been ineffective in improving agent performance.
This combination of techniques resulted in an agent that successfully explored and
reached a much higher number of game states than the Deep TAMER baseline to
which they compared their work to. While the topic of exploration in interactive
reinforcement learning was not the primary focus of our own work, it is an issue that
we encountered. We did not incorporate calibrated models into our research due to
the recent nature of Cannon and Anwar’s work. However, studying interaction and
compatibility between their techniques and our own presents an interesting avenue
for future research.

A number of these studies show that the presentation of a learning agent has an
effect on the way that humans provide feedback to that agent, which raises many
questions regarding agent presentation and inherent human bias when it comes to
providing feedback. While many of these works sought to understand how the agent’s
appearance effected the feedback given and attempted to account for the human
factors that affect feedback being provided, most did not address or study how the
agent’s perceived gender had an effect on the feedback given. Furthermore, few
have sought to account for human bias, though some have attempted to correct
for erroneous feedback. Therefore, while there is research in this field on how the
appearance of an agent affects the amount of feedback given and possibly the quality
of feedback given, there is currently a lack of research as to how the presented gender
of an agent affects feedback given by a human subject. And while there exists some
research on accounting for human training bias as it regards providing feedback to
an agent regardless of gender or appearance, all existing techniques have their own

14

limitations regarding either the sorts of errors they can account for or the nature of
the problems upon which they can be utilized. So, while any new technique will,
undoubtedly, have its own limitations, there is currently a significant space for new
techniques with differing limitations from the existing techniques. As a result of
the lack of research into the effects of human bias regarding the presented gender of
an agent, we have taken the first steps to explore whether a statically relevant bias
exists. We have also focused our efforts on accounting for human bias as it regards
interactive reinforcement machine learning.

2.4 Related Work in the Social Sciences

Because of the psychological and sociological nature of the effects we studied, regard-
ing the gendered appearance of computer agents, work in fields other than machine
learning is relevant in order to understand how the perceived gender of an agent
could affect the feedback it receives from a human trainer. Straus and Stewart[29]
performed a nationally representative study on corporal punishment by American
Parents and found, among other things, that frequency and severity of punishment
were higher for boys. Similarly, Shaw and Braden[27] found a weak effect of race on
the use of corporal punishment in a school setting in America, and a stronger effect
of gender, with African-American students more likely to receive punishment than
white students and with male students more likely to receive corporal punishment
than female students. In further research conducted by Younger and Warrington [37],
it was discovered that teachers gave more positive attention and support to girls, with
teachers prepared to be more lenient and tolerant with girls than with boys, identi-
fying that it was the teachers’ attitudes towards the gender of the students that was
driving the discrepancies. And Gregory[15] found that school aged males accounted
for 81.6% of incidents of physical disciple, resulting in boys being four times more
likely to be stuck by school administrators and teachers than girls, and that males
were more likely to be suspended. However, this trend does not stop with school
aged children. Starr[28] found that among federal cases in the United States, males
received, on average, 63% more prison time for the same crime as a female. Starr
also found that males ’faced a modestly, but significantly higher, probability of a
charge before a district judge’ during the filing stage after an arrest. Starr also found
that female offenders were also more likely to be given the option of alternatives to
a prison sentence, such as probation or fines for the same crime. Even the entertain-
ment industry has this trend, as discovered by Downs and Gowan[11] who found that
prime-time television programs when analyzed for frequencies of positive reinforce-
ment and punishment among performers based on age and sex found that males were
more likely to receive punishment and adult males would receive more punishment
overall. These works collectively suggest a hypothesis that an agent that presents as
male will be likely to receive more punishment, and punishment of a greater intensity,
than one that presents as female; although it is unclear from this previous research
how anthropomorphic the agent’s presentation would need to be to invoke such an
effect. A limitation of the sociological research is the potential for the behavior of
the subject studied to vary with gender. Although many of these papers use statisti-

15

cal techniques to account for such an effect, the possibility must be considered that
the differences in feedback reflect primarily differences in behavior and not a bias.
This issue can be addressed by our research because it presents a situation in which
the behavior of the subjects receiving feedback is entirely identical and all statistical
differences in feedback given must result from instructor bias.

It is worth noting that there are other methods for humans to teach agents be-
yond giving feedback which include providing demonstrations such as in the work
of Cakmak and Lopes [5] or providing a curriculum as in the work by Khan, Zhu,
and Mutlu [21]. These methods are affected by human factors in different ways and
will need different techniques to address them. However they can be combined with
teaching from human feedback, and, in those cases, our technique can be used.

16

Chapter 3 Algorithms

In the following sections, we present our algorithms for handling bias in human trainer
provided feedback.

Our first entry is our general BASIL technique. We then provide the BASIL-
TAMER algorithm which is the result of applying the BASIL technique the IRL
algorithm TAMER. We also provide algorithms for our Adaptive Variance, Zero Si-
lence, and Average Silence BASILTAMER Extensions. We then provide our Deep
Learning algorithm for Deep Neural Networks, the Deep BASILTAMER Algorithm.
Finally, we provide our Multi-Circumstance Aware Deep BASILTAMER Algorithm,
which is an adaptation of the BASILTAMER Algorithm designed to incorporate mul-
tiple bias distributions into the BASIL technique.

3.1 The BASIL technique

Our efforts to complete our goal of developing a technique and algorithms for interac-
tive reinforcement learning agents that account for bias in feedback given by human
trainers begins with the Bias Adaptive Statistical Inference Learning (BASIL) tech-
nique, which is a general technique for handling bias in human provided feedback.
At a high level, the BASIL algorithm can be described as follows. We first must
determine how to model the bias distribution. Here, we assume that bias is being
drawn from some distribution that can be modeled. It is an important limitation of
the technique that the distribution chosen must be one with a computable maximum
likelihood function. Second, we collect some number of instances of feedback from the
human trainer recording both the feedback value and the combination of state and
action it was given in response to. Third, use the estimation maximization algorithm
by Dempster, Laird, Rubin [10] to compute a maximum likelihood estimate of the
human trainer’s heuristic utility evaluations using the feedback history collected. At
a high level this consists of making an initial guess for the human’s heuristic utility
evaluations, from that initial guess calculating the maximum likely values for the
parameters of the bias distribution, and, then, from the new bias distribution pa-
rameters, calculating a new guess for the human trainer’s heuristic utility evaluation.
This EM step repeats until values converge within acceptable tolerances for your ap-
plication. Finally, the computed estimate of the human’s utility function can be used
either to directly determine the agent’s policy, such as in the case of the algorithm
we present later, or to be combined with other data, such as environmental reward,
to determine policy.

BASIL Algorithm for Normal Distributions

For the purpose of our experiments with the BASIL technique, we used the BASIL
technique assuming a normal distribution for bias to develop a simple BASIL algo-
rithm that computes a new estimate of the human trainer’s utility function after

17

each feedback instance and determines the agent’s policy directly from the current
estimated utility function. A more detailed view of the BASIL algorithm is shown as
Algorithm 1.

Algorithm 1: A simple BASIL algorithm for normally distributed bias

Result: Learned Policy λ
λ←− randomPolicy(), h←− ⟨⟩, t←− 0,Q(s′a′)←− 0 for all s′a′ ∈ S,A
while Learning has not terminated do

st ←− observeState()
at ←− λ(st)
applyAction(at)
ft ←− getFeedback()
h←− ⟨h0, ...ht−1, (st, at, ft)⟩
Q’←− expectationMaximizationStep(Q, h)
while

∑
s′,a′∈S,A | Q’(s′, a′)−Q(s′, a′) | ¿ tolerance do

Q←− Q’
Q’←− expectationMaximizationStep(Q, h)

end
for s’ ∈ S do

λ(s′)←− argmaxa′∈AQ(s′, a′)
end
t←− t+ 1

end

Algorithm 2: expectationMaximizationStep()

Input: Q,h
Result: Update to the estimate of the utility function Q’
diff←− 0, c←− 0, µ←− 0,Q’(s′a′)←− 0 for all s′a′ ∈ S,A
for (s,a,f) ∈ h do

diff←− diff + f −Q(s, a)
c←− c+ 1

end

µ←− diff
c

for (s’,a’) ∋ (s’,a’,f) ∈ h do
f ′ ←− avg(f ∋ (s′, a′, f) ∈h)
Q’(s′a′)←− f − µ

end
return Q’

Our simple BASIL Algorithm, (Algorithm 1), begins by initializing a random
policy, an empty history, and q-values of zero for all state action pairs in our state
and action spaces. The q-values, in this algorithm, are related to the q-values used

18

in q-learning.[35] However, in our algorithm, the q-values are the human trainers’
estimates of the ”utility” of taking an action in a state, rather than being calculated
from the immediate environmental reward. After this initialization, the algorithm
begins a loop that lasts throughout the training process. In this loop, first the current
state is observed. Next, the current policy is consulted to determine what action to
take in the observed state. The policy here consists of a mapping of states and actions
to take in them. Then the action is executed within the state, and then feedback
is collected. In the formulation, given here, feedback is assumed to always be given,
due to the discrete non-real-time nature of our experimental environment. However,
it is a trivial matter to modify the algorithm to return to the beginning of the loop
if feedback is not given. Next, the history is updated by appending the the state
observed, action taken, and feedback received as a triple. Next, we begin a looping
process where EM is used to update our q-value estimates. In this process, we first
calculate the difference between the feedback actually received and our estimate of
the q-value for the state observed and action take within each element of our history.
We then calculate the mean of these differences and modify our q-value estimation for
each previously observed state action and action pair by subtracting the measured
mean from the previous q-value estimation for those pairs. This results in a new
estimated q-function. Then we measure the total change between our new and old
estimations of the q-function by summing the absolute values of the difference between
their estimations for each state and action. Finally, we check if the total change is
less than the user provided tolerance. If it is not, we repeat the EM loop. Once
the difference between successive versions falls below the user defined tolerance, the
most recent q-value estimate is left as the estimation that will be used going forward.
Finally, a new policy is computed by finding for each state the action that will result
in the highest estimated q-value, and this action is set as the on-policy action for the
observed state. Once the new policy is computed, we return to the beginning of the
main loop and repeat the process until training is complete.

The expectation maximization step in Algorithm 2 is the only part of the algo-
rithm that depends upon the bias values being normally distributed, by modifying
this sub-routine (seen in Algorithm 2) the algorithm can be adapted to other types
of distributions. Using a normal distribution makes the expectation maximization
step relatively simple because the symmetry and other characteristics of a normal
distribution allows the calculation to be simplified such that it does not require inte-
gration.

The algorithm, as presented, does not consider the trade-off between exploration
and exploitation as is the case with many interactive machine learning algorithms.
The reason for this is that the inclusion of a human trainer, who can react dynamically,
allows the agent to always exploit, that is to chose the action it currently believes
to the be the best course of action, while allowing the human trainer to encourage
exploration via their feedback signal. In our experiments, the BASIL algorithm and
the other interactive reinforcement learning algorithms are given the benefit of an ϵ-
greedy shell agent that, during the training episodes, probabilistically chooses between
the action chosen by the underlying algorithm and a random action. This is done
because the simulated human trainers used in our experiments, naturally, cannot be

19

as dynamic as real human trainers.

3.2 BASILTAMER Algorithm

While the general form of the BASIL technique we have already presented fulfills
our secondary goal at a theoretical level, in practice the implementation presented
so far has several limitations in its applicability and scope. Notably, the first BASIL
algorithm we present (Algorithm 1) assumes a state space that can be fully enu-
merated and one where it is reasonable to observe and receive feedback for taking
every possible action in each possible state that we intend our learned policy to cover.
Furthermore, it has no mechanism to transfer learning between similar states. Ad-
ditionally, even where the algorithm can be applied, the method of directly storing
q-values and on-policy actions can be extremely resource intensive in terms of both
computation time and memory. While these limitations are not unique to our algo-
rithm, we feel it is necessary to expand the BASIL technique so that it can be used in
problems with large state spaces as this category includes most real world problems,
and many other domains of interest. Therefore in order to more fully complete our
research, we have developed more practical algorithms using the BASIL technique.
The first of these is a modification of the TAMER algorithm to incorporate BASIL.
Here we present the BASILTAMER Algorithm as Algorithm 3.

The classical TAMER algorithm uses a vector of weight values that correspond
to the feature set chosen for a given problem. This weight vector when multiplied
with the vector of features for a particular state in the problem is intended to give
the value of the state as estimated by TAMER’s human trainer. To learn the values
of the weights, TAMER first initializes its weights to all zeros and then enters a
loop where it first selects an action, according to its current weight vector, and then
performs this action. If the human trainer then gives it feedback, it updates its weights
by calculating the utility estimate for both the state preceding the action and the
state resulting from it, taking the difference of these and comparing this difference
to the feedback given by the human trainer. Assuming that these two values are
not the same, TAMER then updates each weight by multiplying together the error,
the difference in feature values between the two states that correspond to the weight
for each weight and a learning rate hyper-parameter, and adding the result of this
multiplication to the weight whose associated feature produced it. After updating
its weights, TAMER simply continues the loop until training is terminated. TAMER
performs action selection by using its current weights to predict the difference in
utility between its current state and the state resulting from each action and choosing
the action that results in the greatest positive or least negative difference. TAMER
does assume the ability to accurately predict the feature vectors of states resulting
from taking each action available to it at all times.

For our BASILTAMER algorithm with a normal distribution we make several
additions. First, we address the parameters of a normal distribution. Mathematically,
a normal distribution is parameterized on its median µ and variance σ , however,
variance, in this case, corresponds solely to noise in the feedback signal and, as such,
cannot be helpfully addressed by BASIL techniques, as the only counter to noise is

20

Algorithm 3: The BASILTAMER Algorithm

Input: α, update interval, tolerance
t←− 0
µ←− 0
h←− ⟨⟩
steps since update←− 0

w⃗ ←− 0⃗
⃗ft−2 ←− 0⃗
⃗ft−1 ←− 0⃗

a←− ChooseAction(st, w⃗)
TakeAction(a)
while Learning has not terminated do

t←− t+ 1
steps since update←− steps since update+ 1
if steps since update ≥ update interval then

µ←− µ Update(µ, w⃗, h, tolerance)
if t ≥ 2 then

rt−2 ←− getHumanFeedback()

h←− ⟨h0, ...ht−1, (⃗ft−1, ⃗ft−2, a, rt−2)⟩
if rt−2 ̸= 0 then

w⃗ ←− UpdateWeights(rt−2 − µ, ⃗ft−1, ⃗ft−2, w⃗, α)

a←− ChooseAction(st, w⃗)
TakeAction(a)
st ←− GetState()
vecft−2 ←− vecft−1

vecft−1 ←− getFeatureV ec(st)

end

Algorithm 4: µ Update()fortheBASILTAMERAlgorithm

Input: µ, w⃗, h, tolerance
⃗new w ←− 0⃗

while | ⃗new w − w⃗| ≥ tolerance do
w⃗ ←− ⃗new w

differences←− ⟨(⃗ft−1 × w⃗ − ⃗ft−2 × w⃗ − rt−2)for(⃗ft−1, ⃗ft−2, a, rt−2) ∈ h⟩
µ←− mean(differences)

adjusted history ←− ⟨(⃗ft−1 − ⃗ft−2, rt−2 − µ)for(⃗ft−1, ⃗ft−2, a, rt−2) ∈ h⟩
⃗new w ←− LinearLeastSquaresF it(adjusted history)

end
returnµ

21

more data and a slower learning rate. Therefore, for simplicity and efficiency, this
BASILTAMER algorithm is concerned only with the median of the bias. It should be
noted that this does not necessarily hold for other non-normal distributions with more
complicated variance parameters. The median is represented by a variable µ initially
set to zero. The TAMER algorithm is then allowed to perform its main loop for
several iterations with only two changes from the classical TAMER algorithm. When
receiving feedback from the human trainer the value of the feedback is adjusted by
subtraction of µ before being used to update the weight vector, and the history of
unmodified feedback values, feature vectors, and actions taken is stored for future
use. However, after a number of iterations determined by its update interval hyper-
parameter, the value of the median is recalculated using Expectation Maximization
and, simultaneously, the weight vector is updated by the same process. To do this
Expectation Maximization step, which is the µ Update() step in the pseudo-code,
a new weight vector is first set to zero, then a loop is entered. In this loop the
new weights are used to calculate the predicted feedback for each action the agent
has taken so far in its learning history, in the same manner that TAMER normally
predicts rewards. Then these predictions are compared to the actual feedback for each
action. The average difference between predictions and the corresponding historical
rewards is then set as the new bias median. A new weight vector is then calculated by
using the newly calculated bias median to produce a modified version of the history
of actions and feedback values, where the feedback values are modified by having the
median bias subtracted from them. This modified history is then used to create the
new weight vector. Because TAMER uses a linear model for the human trainer’s
utility, the new weight vector can be calculated by performing a least squared error
fit for the features to the modified feedback. This process of using the weight vector
to calculate the median bias and then using the median bias to calculate a new weight
vector is then repeated until it converges such that the difference between the weight
vectors calculated in consecutive steps is within the predetermined tolerance of the
implementation.

The µ Update() step and the adjustment of the feedback received before each
weight update are the only parts of the algorithm that depends upon the bias values
being normally distributed. By modifying these, the algorithm can be adapted to
other types of distributions. Using a normal distribution makes the Expectation
Maximization step relatively simple because the symmetry and other characteristics
of a normal distribution allows the calculation to be simplified such that it does not
require integration and the variance parameter can be safely ignored.

Adaptive Variance BASILTAMER Extension

To address the third goal of this research, we begin by addressing variance in human
trainer provided feedback with three extensions of the BASILTAMER algorithm. The
first of these is the Adaptive Variance BASILTAMER Extension which can be seen
in Algorithm 5 and Algorithm 6.

The Adaptive Variance BASILTAMER Extension relies on dynamically adjusting
the algorithm’s learning rate to account for variance. This is possible due to the

22

Algorithm 5: The Adaptive Variance BASILTAMER Algorithm

Input: α, β, update interval, tolerance
t←− 0
µ←− 0
h←− ⟨⟩
steps since update←− 0

w⃗ ←− 0⃗
⃗ft−2 ←− 0⃗
⃗ft−1 ←− 0⃗

a←− ChooseAction(st, w⃗)
TakeAction(a)
while Learning has not terminated do

t←− t+ 1
steps since update←− steps since update+ 1
if steps since update ≥ update interval then

µ, σ ←− µ Update(µ, w⃗, h, tolerance)
if t ≥ 2 then

rt−2 ←− getHumanFeedback()

h←− ⟨h0, ...ht−1, (⃗ft−1, ⃗ft−2, a, rt−2)⟩
if rt−2 ̸= 0 then

w⃗ ←− UpdateWeights(rt−2 − µ, ⃗ft−1, ⃗ft−2, w⃗, α× e
σ
β2)

a←− ChooseAction(st, w⃗)
TakeAction(a)
st ←− GetState()
vecft−2 ←− vecft−1

vecft−1 ←− getFeatureV ec(st)

end

Algorithm 6: µ Update()forAdaptiveV arianceBASILTAMER

Input: µ, w⃗, h, tolerance
⃗new w ←− 0⃗

while | ⃗new w − w⃗| ≥ tolerance do
w⃗ ←− ⃗new w

differences←− ⟨(⃗ft−1 × w⃗ − ⃗ft−2 × w⃗ − rt−2)for(⃗ft−1, ⃗ft−2, a, rt−2) ∈ h⟩
µ←− mean(differences)
σ ←− standarddeviation(differences)

adjusted history ←− ⟨(⃗ft−1 − ⃗ft−2, rt−2 − µ)for(⃗ft−1, ⃗ft−2, a, rt−2) ∈ h⟩
⃗new w ←− LinearLeastSquaresF it(adjusted history)

end
returnµ, σ

23

fact that the BASILTAMER algorithm’s learning rate hyper-parameter controls the
impact that each feedback instance has on the agent’s model of the utility function.
This means that if the learning rate is lowered, then the agent can better handle higher
levels of variance in the feedback that it receives. However, if that learning rate is
lowered more than it needs to be to account for the variance within the provided
feedback, the result will be a dramatic increase in the time it takes the algorithm
to learn the correct policy. Therefore, in order to combat variance in the human
feedback provided to algorithms such as BASILTAMER, we dynamically adjust the
learning rate based upon the observed variance. To adjust the learning rate we use
a Gaussian function with the observed variance of the feedback, as given by BASIL,
serving as the input to the function. To control the rate at which the learning rate is
decayed with increased variance, we introduce an additional hyper-parameter, which
we represent as beta, that controls the variance of the Gaussian function.

Zero Silence BASILTAMER Extension

Silence, or feedback withholding, can result in the agent not learning the correct policy
to accomplish its task or goal, or in completing the task/goal but not optimally as
the trainer did not provide sufficient training for the agent to learn the on-policy
behavior.

The next two extensions of the BASILTAMER Algorithm address silence, another
aspect of human trainer feedback inconsistency that we seek to address as part our
third goal for this research. This first of these extensions to address the issue of
silence is the Zero Silence BASILTAMER Extension which can be seen in Algorithm
7. When it comes to the issue of silence in human provided feedback to an IRL
agent, the algorithms developed by Loftin et. all [25] address this issue, but do so
only with significant limitation. These limitations are that the algorithms, SABL and
ISABL, in provided feedback, work assume that feedback is defined only as positive
or negative. These algorithms also assume that there are no numerical values for
the feedback provided. Therefore, to address the issue of silence in the context of
numerically valued feedback, we have developed the Zero Silence and Average Silence
BASILTAMER Extensions.

The Zero Silence Extension assumes that the lack of feedback from a human trainer
means that the feedback signal that would have been provided has a numerical value of
zero. This approach is simple and limited, however, it is intuitive. The most obvious
limitation is that the feedback that ”should” have been given may not necessarily be
precisely zero. However, if the feedback that the human trainer would have given is
close to zero, then this answer will be approximately correct and it can then be further
corrected by the regular workings of the BASILTAMER algorithm. It is expected that
the majority of instances of silence would be cases where the feedback given would
have been relatively neutral, as it is generally expected that where the human trainer
would give a strongly non-neutral feedback they are unlikely to withhold it.

24

Algorithm 7: The Zero Silence BASILTAMER Algorithm

Input: α, update interval, tolerance
t←− 0
µ←− 0
h←− ⟨⟩
steps since update←− 0

w⃗ ←− 0⃗
⃗ft−2 ←− 0⃗
⃗ft−1 ←− 0⃗

a←− ChooseAction(st, w⃗)
TakeAction(a)
while Learning has not terminated do

t←− t+ 1
steps since update←− steps since update+ 1
if steps since update ≥ update interval then

µ←− µ Update(µ, w⃗, h, tolerance)
if t ≥ 2 then

rt−2 ←− getHumanFeedback()
if rt−2 = None then

rt−2 ←− 0
h←− ⟨h0, ...ht−1, (⃗ft−1, ⃗ft−2, a, rt−2)⟩
w⃗ ←− UpdateWeights(rt−2 − µ, ⃗ft−1, ⃗ft−2, w⃗, α)

a←− ChooseAction(st, w⃗)
TakeAction(a)
st ←− GetState()
vecft−2 ←− vecft−1

vecft−1 ←− getFeatureV ec(st)

end

Average Silence BASILTAMER Extension

The Average Silence Extension, in contrast to the Zero Silence Extension, is a more
sophisticated algorithm for addressing the issue of silence in human trainer provided
feedback. By calculating the average expected feedback values extracted from the
BASILTAMER neural network we can provide the algorithm with values for the
missing feedback instances. These estimated values are then used in the EM process
to generate following estimations as the end process heads towards convergence. This
involves modification of both the main body of the algorithm and the µ update. The
modifications to the main body consists of initializing the avg silence to zero at the
beginning and replacing feedback values of ”none” with the avg silence after the
”none” feedback value is recorded in the history set, but before the feedback value
is utilized to update the weight vector. This means that the ”none” value is what
is recorded in the history set for the use of the µ update. The µ update first differs

25

Algorithm 8: The Average Silence BASILTAMER Algorithm

Input: α, update interval, tolerance
t←− 0
µ←− 0
avg silence←− 0
h←− ⟨⟩
steps since update←− 0

w⃗ ←− 0⃗
⃗ft−2 ←− 0⃗
⃗ft−1 ←− 0⃗

a←− ChooseAction(st, w⃗)
TakeAction(a)
while Learning has not terminated do

t←− t+ 1
steps since update←− steps since update+ 1
if steps since update ≥ update interval then

µ, avg silence←− µ Update(µ, w⃗, h, tolerance)
if t ≥ 2 then

rt−2 ←− getHumanFeedback()

h←− ⟨h0, ...ht−1, (⃗ft−1, ⃗ft−2, a, rt−2)⟩
if rt−2 = None then

rt−2 ←− avg silence
w⃗ ←− UpdateWeights(rt−2 − µ, ⃗ft−1, ⃗ft−2, w⃗, α)

a←− ChooseAction(st, w⃗)
TakeAction(a)
st ←− GetState()
vecft−2 ←− vecft−1

vecft−1 ←− getFeatureV ec(st)

end
Our third extension, the Average Silence Extension, also addresses the issue
of silence in human trainer feedback. While the Zero Silence Extension does
meet our goal of addressing silence in provided feedback, it does so
simplistically, and may not be sufficient, depending upon the work being
done, to address silence. Therefore, we present the Average Silence
BASILTAMER Algorithm in Algorithm 8.

26

Algorithm 9: µ Update()forAverageSilenceBASILTAMER

Input: µ, w⃗, h, tolerance
⃗new w ←− 0⃗

while | ⃗new w − w⃗| ≥ tolerance do
w⃗ ←− ⃗new w

differences←− ⟨(⃗ft−1 × w⃗ − ⃗ft−2 × w⃗ − rt−2)for(⃗ft−1, ⃗ft−2, a, rt−2) ∈ h :
rt−2 ̸= None⟩
silence values←− ⟨(⃗ft−1 × w⃗− ⃗ft−2 × w⃗)for(⃗ft−1, ⃗ft−2, a, rt−2) ∈ h : rt−2 =
None⟩
µ←− mean(differences)
avg silence←− mean(silence values)

adjusted history ←− ⟨(⃗ft−1 − ⃗ft−2, rt−2 − µ)for(⃗ft−1, ⃗ft−2, a, rt−2) ∈ h :

rt−2 ̸= None⟩ ∪ ⟨(⃗ft−1 − ⃗ft−2, avg silence− µ)for(⃗ft−1, ⃗ft−2, a, rt−2) ∈ h :
rt−2 = None⟩
⃗new w ←− LinearLeastSquaresF it(adjusted history)

end
returnµ, avg silence

where the set of differences is calculated. Only elements of the history where rt−2

is not ”none” are used in the calculation. Elements where rt−2 is ”none” are used
to calculate a separate set of silence values as the products of the weight vector and
change in factors for that element of the history. The avg silence is then, simply, the
mean of the silence values. The final change is that when the new weight vector is
calculated the error value is computed as normal for elements of the history where
the feedback is not ”none”, however for elements of the history where the feedback
is ”none” the avg silence is utilized in place of the feedback. The sets resulting from
these two cases are then unionized and this union is used to perform the linear least
square fit to calculate the new weights.

3.3 Deep BASILTAMER Algorithm

Deep Learning is a subset of machine learning which results in the production of
applications and services that improve automation, as well as performing a variety
of tasks, such as data analysis, by utilizing very large data sets and it relies on
complex and layer heavy neural networks to process and identify that data which
can include an image, sound, or even texts. Many modern technologies are the result
of Deep Learning, meaning that Deep Learning lies behind many everyday products
and services, as well as emerging technologies, such as self-driving cars, voice-enabled
remotes or menus, object recognition, text processing, image processing and virtual
assistants, just to name a few. Therefore, developing the BASIL technique into a Deep
Neural Network is necessary as the field of Deep Learning is becoming more common
and prevalent. This algorithm, Algorithm 10 and Algorithm 11, was developed for
the propose of applying the BASIL technique to Deep Neural Networks in conjunction

27

with Deep TAMER to facilitate Deep Learning in accordance with our second goal
for this research. However, in order to develop the Deep BASILTAMER algorithm
we must first incorporate TAMER into a Deep Neural Network.

Adapting BASIL to Deep TAMER

The addition of the BASIL technique to the Deep TAMER algorithm does not sub-
stantially change the majority of the algorithm however we will walk through the
pseudo-code in full for unfamiliar readers. Those substantially familiar with the orig-
inal Deep TAMER algorithm will find most of the changes in the ”DDN Updates”
and ”BASIL Updates” subsections.

Deep BASILTAMER: Variable and Subroutine Meanings

′i′ is a counter variable for the number of iterations of the main loop. ′j′ is a counter
variable for the number of feedback instances processed. ′k′ is a counter variable for
the number of stochastic gradient descent updates preformed on the neural network.
′µ′ is the current estimate of the the mean bias in the feedback provided by the
human trainer. ′D′ is a record of tuples of all feedback instances and each set of
state, action, and timestamps that the feedback might apply to by the weighting
scheme. si is an observation of the state in cycle ′i′ represented by the two most
recent graphical representations at that point. ai is the action selected to take in
cycle ′i′. Ĥk(si, a) is the results of feeding i-the state and action into the k-th version
of the neural net which is an estimation of the human’s utility function by which
they judge agent actions. y is a feedback instance consisting of a feedback value h
and time stamp tf . yj is the j-th feedback instance. Similarly Dj is the subset of D
that corresponds to yj. Dadj is a subset of D such as Dj that has been adjusted such
that the feedback value of each feedback instance has had the current µ subtracted
from them.w(x, yj) is the importance weighting function and as used by Warnell et
al. is a uniform continuous distribution from 0.2 to 4 seconds and gives value 0 for
timestamps outside this range.

Action Selection

Action selection is done by simply taking the ArgMax of the available actions for
the present state. This has one significant difference from classic TAMER. In classic
TAMER, the weight vector is used as an estimate of the human evaluation of the state
and the ArgMax calculation requires predicting the resultant state of each action such
a that before and after states can be processed by the wait vector and the difference of
the resulting values can be taken. In Warnell et. all’s Deep TAMER formulation this
is avoided by treating the human trainer’s evaluation as being of a state and action
pair rather than just as a state.[34] This is analogous to the difference between a Q
value and a utility value in traditional reinforcement learning. We maintain Warnell
et. all’s technique in our action selection.

28

Handling Real Time Feedback

In order to have the agent play the game in real time while the human trainer provides
feedback, the problem of assigning feedback instances to corresponding state action
pairs had to be addressed. In Deep TAMER, this was achieved with importance
weights that were used to distribute the weight of feedback instances among state
action pairs that might have resulted in that feedback. Warnell et. all found that a
continuous uniform distribution that assigned equal weights to all time stamps that
occur between 0.2 and 4 seconds after a state action pair and 0 weight elsewhere
performed best for them. We kept this formulation and therefore associated each
feedback instance to all state action pairs such that the feedback will have fallen
within the time interval.

DNN Updates

To update the Deep Neural Network, stochastic gradient descent (SGD) is used.
SGD is an algorithm used to update the weights of a Neural Network that makes
incremental updates by approximating the gradient of the hyper-surface of the error in
the Neural Network’s prediction as a function of its weights and takes an incremental
step in the direction of the gradient and, by doing so, seeks a local minimum of the
error function. Theoretically, with an infinitesimal incremental step size, SGD will
find the global minimum. Adding BASIL makes only one substantial change to this
process which is that before feedback values are used to perform an SGD update,
they are adjusted by having the current estimated mean bias subtracted from them.
In order to make optimal use of its computational time the algorithm does not only
perform SGD updates when receiving new feedback, but instead performs the SGD
updates at regular intervals through use of an update interval hyper parameter with
sampling from all previous state actions and feedback triples used to perform these
incremental updates.

Deep BASILTAMER Updates

The primary addition to the algorithm to incorporate the BASIL technique is the
process by which the current estimate of the mean bias contained in the human feed-
back is updated. This process is performed on a regular interval of the number of
feedback instances received as determined by our hyper parameter. In order to per-
form this update, Expectation Maximization is done between the last fully connected
part of the Neural Network, the estimated parameters of the bias distribution, and
the history of feedback state and action sets observed. This consists of an iterative
process where a new mean bias value is calculated as the average difference between
the human feedback predicted by the current Neural Network for a state action pair
and what was actually observed. This new mean value is then used to compute a
new back end of the Neural Network by finding a best fit for the observed feedback
instances and state action pairs after correcting for the current mean bias estimate
using the method previously described. This new Neural Network is then used to
compute a new mean bias value and then the process repeats until the differences

29

between the Neural Networks of consecutive generations is within a pre-defined tol-
erance. Note that this iterative process is performed with two copies of the Neural
Network and does not change the weight values of the Neural Network as utilized in
the main algorithm. Rather, only the median bias estimate is changed which, in turn,
is utilized to adjust the feedback values used to update the Neural Network. This
done to prevent wild jumps in the agent’s policy, which could confuse and frustrate
a human trainer. The algorithm for the µ update can be seen in Algorithm 11.

Algorithm 10: The Deep BASILTAMER Algorithm

Input: pre-initialized Ĥ0, step size ν, buffer update interval β, bias update
interval ϵ, tolerance θ

i←− 0
j ←− 0
k ←− 0
µ←− 0
D ←− ⟨⟩
while Learning has not terminated do

i←− i+ 1
si ←− observe state()

ai ←− arg maxa Ĥk(si, a)
TakeAction(ai)
xi ←− (si, ai, ti, ti+1)
if new feedback y = (h, tf) then

j ←− j + 1
yj ←− y
Dj ←− ⟨(x, yj)|w(x, yj) ̸= 0⟩
D ←− D ∪Dj

Dadj ←− ⟨(x, yj − µ)for(x, yj) ∈ Dj⟩
ˆHk+1 ←− SGD update(Ĥk, Dadj)

k ←− k + 1
if mod(j, ϵ) = 0 then

µ←− µ Update(µ, Ĥk, Ĥ0, D, θ)

if mod(i, β) = 0 then
Ds ←− sample(D)
Dadj ←− ⟨(x, yj − µ)for(x, yj) ∈ Ds⟩
ˆHk+1 ←− SGD update(Ĥk, Dadj)

k ←− k + 1

end

Multi-Circumstance Aware Deep BASILTAMER

Typically, in experiments, IRL agents learn from one human trainer, who trains them
to fully accomplish the task. However, as the domain in which the IRL agent learns

30

Algorithm 11: µ Update()forDeepBASILTAMER

Input: µ, Ĥk, Ĥ0, D, θ
CNN,FCNN ←− split(Ĥ0)

old hatHk ←− Ĥk

new hatHk ←− Ĥ0

while |new hatHk − old hatHk| ≥ θ do
old hatHk ←− new hatHk

differences←− ⟨(new hatHk(si, ai)− yj)for((si, ai, ti, ti+1), yj) ∈ D⟩
µ←− mean(differences)
Dadj ←− ⟨(x, yj − µ)for(x, yj) ∈ D⟩
new hatHk ←− concatenate(CNN,QuadraticLeastSquaresF it(Dadj))

end
returnµ

to complete its task increase in size and complexity, the data the one human trainer
can provide will become insufficient. To apply IRL techniques to larger, real world
domains it becomes increasingly necessary to integrate data from multiple human
trainers to provide a sufficient body of feedback for the agent to learn the task. Ad-
ditionally, the ability to take feedback from multiple trainers gives us the ability to
utilize a large sample size of feedback data to compensate when domain expertise can-
not be easily sourced. This, however, introduces multiple bias distributions into the
feedback that a Deep Learning algorithm relies on to develop its policy. Therefore,
the most likely solution to account for these multiple bias distributions is to incorpo-
rate them into the BASIL technique. The simplest way to incorporate multiple bias
distributions into the BASIL technique is in a piece wise manner that treats each dis-
tribution entirely separately. We present here an algorithm for Multi-Circumstance
Aware Deep BASILTAMER. (See Algorithm 12 and Algorithm 13.) We cover only
the modified parts of the algorithm in this section and refer the reader to previous
sections for a detailed explanation of the rest of the algorithm.

Multi-Circumstance Aware Deep BASILTAMER Variable and Subroutine
Meanings

′N ′
µ is the number of separate bias distributions being considered. ′µ′

l is the current
estimate of the the mean bias in the feedback provided by the human trainer under
biasing conditions assigned index l which will be a unique integer from 1 to ′N ′

µ.
′c′ is an additional component of a feedback instance which gives the index number
of the set of biasing conditions under which the feedback was given, and cj is this
component of the j-th feedback instance. n is a counter variable for the µ Update()
subroutine which is used to have that subroutine work separately on the parameters
for the bias distribution under each set of biasing conditions being considered.

31

Algorithm 12: Multi-Circumstance Aware Deep BASILTAMER Algorithm

Input: pre-initialized Ĥ0, step size ν, buffer update interval β, bias update
interval ϵ, tolerance θ, Number of separate feedback conditions Nµ

i←− 0
j ←− 0
k ←− 0
µ1, µ2, . . . µNµ ←− 0, 0, . . . 0
D ←− ⟨⟩
while Learning has not terminated do

i←− i+ 1
si ←− observe state()

ai ←− arg maxa Ĥk(si, a)
TakeAction(ai)
xi ←− (si, ai, ti, ti+1)
if new feedback y = (h, tf , c) then

j ←− j + 1
yj ←− y
Dj ←− ⟨(x, yj)|w(x, yj) ̸= 0⟩
D ←− D ∪Dj

Dadj ←− ⟨(x, hj − µc)for(x, (hj, t
f
j , cj) ∈ Dj⟩

ˆHk+1 ←− SGD update(Ĥk, Dadj)
k ←− k + 1
if mod(j, ϵ) = 0 then

µ1, µ2, . . . µNµ ←− µ Update(Nµ, µ1, µ2, . . . µNµ , Ĥk, Ĥ0, D, θ)

if mod(i, β) = 0 then
Ds ←− sample(D)

Dadj ←− ⟨(x, hj − µc)for(x, (hj, t
f
j , cj) ∈ Ds⟩

ˆHk+1 ←− SGD update(Ĥk, Dadj)
k ←− k + 1

end

32

Algorithm 13: µ Update() for Multi-Circumstance Aware Deep BASIL-
TAMER

Input: Nµ, µ1, µ2, . . . µNµ , Ĥk, Ĥ0, D, θ
n←− 0
while n < Nµ do

n←− n+ 1

CNN,FCNN ←− split(Ĥ0)

old hatHk ←− Ĥk

new hatHk ←− Ĥ0

while |new hatHk − old hatHk| ≥ θ do
old hatHk ←− new hatHk

differences←− ⟨(new hatHk(si, ai)− yj)for((si, ai, ti, ti+1), yj) ∈ D⟩
µn ←− mean(differences)

Dadj ←− ⟨(x, hj − µn)for(x, (hj, t
f
j , cj) ∈ D|cj = n⟩

new hatHk ←− concatenate(CNN,QuadraticLeastSquaresF it(Dadj))

end

end
returnµ1, µ2, . . . µNµ

Multi-Circumstance Aware Deep BASILTAMER DNN Updates

The only change to the DNN update process is that before feedback values are ad-
justed by having the current estimated mean bias for the set of conditions that corre-
spond to the those which the feedback was given under subtracted from them. Instead
of one universal mean for all feedback instances.

Multi-Circumstance Aware Deep BASILTAMER Updates

The primary change to the algorithm to incorporate the multiple bias distributions
is to the µ Update() subroutine. This process is modified to be preformed entirely
separately for each set of biasing conditions in turn. For each set of biasing conditions
only feedback instances which have been given under that condition set are treated
as extant, and the calculation of the iterative version of the back-end of the DNN
in each iteration is preformed only with adjusted feedback instances from that set.
Once convergence is reached for every and all sets of biasing conditions under which
we have so far received feedback the subroutine returns the newly calculated means
for each distribution.

33

Chapter 4 Methods: Experiments in Bias and the BASIL Technique

In the following sections, we present our experiments in human bias. The first ex-
periment, Understanding Bias in Human Trainers, focuses on our first research goal
of increasing our understanding of the ways in which factors, such as agent presen-
tation, can influence feedback given to interactive reinforcement learning algorithms.
By focusing on developing the first foray, we hope to discover if a learning agent’s pre-
sented gender affects how the human trainer will provide feedback, i.e. if a gendered
representation induces bias.

As part of completing our secondary goal for this research, our following exper-
iment, the BASIL technique in a Gridworld, tests our technique to determine if it
does, indeed, account for human bias in provided feedback to an IRL agent.

Our third experiment, BASILTAMER, continues building upon our secondary
goal. It incorporates the BASIL technique into the TAMER algorithm to determine
if our technique when applied to an IRL algorithm results in the agent not only
learning the desired policy, but if it learns the desired policy quickly, and perhaps
even more quickly, than the algorithm does so without the technique’s application, or
if the algorithm without the technique’s application fails to learn the desired policy
due to the bias within the feedback provided.

For our BASILTAMER algorithm, we developed three extensions: the Adaptive
Variance, Zero Silence, and Average Silence BASILTAMER Extensions. These ex-
tensions seek to address our third goal for this research of combining our techniques
for bias with techniques to address variance and inconsistency in feedback given by
human trainers. These algorithm extensions were tested to determine if the tech-
niques we had developed for handling inconsistencies in human provided feedback
would improve the performance of the BASILTAMER algorithm. We compare these
algorithms performance to those of BASILTAMER and TAMER.

Continuing with completing the second goal of our research, we address the ad-
dition of the BASIL technique to Deep TAMER. By applying the BASIL technique
to Deep TAMER we seek to determine if the BASIL technique, when applied in the
setting of a Deep Neural Network, results in significant performance improvements
as human trainer bias is accounted for in the provided feedback.

Finally, in our last experiment, Multi-Circumstance Aware Deep BASILTAMER,
we complete our research by developing our Deep BASILTAMER algorithm to draw
upon multiple instances of human provided feedback which seeks to not only address
human bias, but also the inconsistencies of variance and silence within that provided
feedback. This addresses our third research goal as it concerns Deep Neural Networks.

4.1 Understanding Bias in Human Trainers

To better understand bias in human trainers, we chose to examine the effect of gen-
dered representations of agents on human feedback. Our goal was to determine if
such representations were subject to bias despite the human trainer being aware of

34

the fact that the agent is not biological in nature. In this experiment, we examined
human trainer provided feedback to a virtual agent navigating a grid world environ-
ment in a browser-based game. In this game, the agent was alternatively represented
by a female pixel art character utilizing English female pronouns, named Alice, and
by a male pixel art character utilizing English male pronouns, named William.

We also surveyed the human instructors for a number of demographic qualities to
study their effect on the feedback given as part of the process of exploring the effects
of an agent’s gender on the feedback given in the process of interactive machine
learning as certain qualities may result in a propensity for certain biases. The survey
focused on collecting data to aid the researchers in attempting to answer the following
questions:

1. Is there a statistically significant difference in the feedback given to an agent
when presented with the female representation versus the male one across all
human subjects and of the states presented in the environment?

2. Qualitatively, how do the feedback histograms differ for feedback given to the
female representation of the agent versus the male one?

3. What demographic characteristics of human instructors have a statistically sig-
nificant effect on feedback given to the agents?

4. In particular what effect does the instructor’s reported gender have on feedback
given to the agent?

5. Is there a cross effect between instructor gender and the agent’s presented gen-
der?

By answering these questions, we have gained a greater understanding of the role
that perceived agent gender plays in training virtual characters, which satisfies our
first research goal. We also briefly discuss how this knowledge can be used to improve
how humans train agents.

Understanding Bias in Human Trainers: Task and Environment

In our experiments on the effects of presented gender, agents must navigate a virtual
environment consisting of a grid of square tiles, which may be either passable, im-
passible, lethal hazards, or the goal. The agent’s state consists of integer coordinates
for it’s grid tile and a facing direction which may be north, south, west, or east. The
starting state is (0, 2, east). Valid, although not necessarily reachable states, include
any combination of facing direction and grid coordinates corresponding to a passable,
hazardous, or goal tile.

In any passable tile, the agent has the following available actions available actions:

1. Advance, which will move it onto the tile it is immediately facing, provided that
the tile is not impassible.

35

Figure 4.1: A visual representation of the grid navigation test environment. in the
starting state of (0, 2, east). Sand textures represent fully passable tiles. Large
stones represent impassible tiles. Molten rock represents hazard tiles that end the
episode when entered and provide large negative environmental rewards, and the
portal texture represents the goal tile that also ends the episode when entered and
provide large positive environmental rewards. All tiles out of frame are impassible.

2. Make no change to the current state, which is the action taken when the agent
is facing an impassible tile.

3. Turn left, which will rotate the agent’s facing position one step counterclockwise.

4. Turn right, which will rotate the agent’s facing position one step clockwise.

When the agent enters a hazardous or goal tile, the episode is considered complete
and therefore no action can be taken in states that correspond to these tile types.
Entering hazardous tiles results in a strong penalty (-1.0) for entering them in ad-
dition to ending the episode. Entering into a goal tile, by contrast, gives the agent
a large reward (1.0) before ending the episode. All other actions that do not result
in entering either a hazard or a goal tile give a very small penalty (-0.01). This is
a common practise in reinforcement learning problems and is done to encourage the
efficiency of agents, as well as to prevent learning being slowed by overly cautious
agents. The particular grid configuration used in our experiment consists of a rect-
angular area bordered by impassible tiles with two paths to the one goal tile from
the starting state (See Figure 4.1). This is an example of a popular reinforcement
learning problem often referred to as the cliff walker problem [30]. The path to the
north is shorter, but passes by hazardous tiles that a curious agent may venture into,

36

while the lower path is long, but is bordered only by impassible tiles. This type of
problem is difficult for traditional reinforcement learning agents because exploration
of the optimal path is dis-incentivised by the possibility of exploring into hazardous
states. This problem is also very suitable for our work because it has two paths to
the goal of unequal efficiency and represents a simple case of a problem with good
and better options for an agent to take. The maximum cumulative reward an agent
can receive for an evaluation episode is 0.92 which corresponds to taking the upper
path with no extraneous actions. Taking the lower path with no extraneous actions
yields a cumulative reward of 0.89

Understanding Bias in Human Trainers: Testing for Bias Between Gen-
dered Agent Representations

To evaluate the effect that perceived gender has on how humans train virtual agents,
we conducted an evaluation of the feedback human trainers provided between two
subjects with one primary independent variable. That variable was the representation
of the virtual agent being trained. The representations provided to the human trainers
are in figure 4.2. In this course of this research, human trainers were asked to watch
a series of simulated learning episodes and to provide online feedback to the agent
to help it learn to achieve the desired goal. This feedback was recorded and then
analyzed with respect to the research questions posed earlier in this body of work.

Understanding Bias in Human Trainers: Human Trainer Populations

This experiment used 140 human subjects that completed the full study, and 13 ad-
ditional subjects that partially completed the study. They were recruited via online
postings and from a university student population. These two populations formed
the vast majority of the subject pool. The online population was recruited by posting
online in the popular web forum Reddit. Specifically, participants were drawn from
a sub-reddit (a forum dedicated to a specialized topic) devoted to machine learning,
who participated without compensation. The other was a population of sociology
students who were recruited by their professors to participate voluntarily, also with-
out compensation. The remaining portion of the subject pool was recruited by online
posting on the social media platform Facebook. An attempt was made to utilize
snowball sampling with the Reddit and Facebook populations, however, we believe
that very few members of either population were recruited in this matter. Populations
were kept separate by the use of different instances of the test environment located
at different URLs that were only given in specific postings. This allowed us to draw
conclusions about each individual population. The Reddit population reported as
being universally non-female in the demographics part of the study while the sociol-
ogy students reported as being an overwhelming majority of females. The sociology
student population reported as being overwhelmingly American in both current res-
idence and the primary part of their childhood, and the Reddit population reported
as being a majority American as well.

37

Figure 4.2: Alice and William. Alice, the female agent, was designed to possess
features commonly associated in American culture with the female gender. William,
the male agent, was designed to possess features commonly associated in America
with the male gender.

Understanding Bias in Human Trainers: Agent Representation

As mentioned previously, the primary independent variable in this study is the pre-
sentation of the agent that each participant is tasked to train. To fit the overall
artistic representation of the test environment, we used two agents that were repre-
sented with pixel art sprites (see Figure 4.2). Each sprite is meant to possess features
that are commonly associated with Western perceptions of male and female genders.
The male agent, who is referred to as William, is depicted as having short hair, a
hat, pants, and a mustache. Each of these qualities is commonly associated with the
male gender. Conversely, the female agent, referred to as Alice, is depicted as having
long hair, a dress, and hair ribbons.

While it has been found that different colors are often associated with different
genders [14] [13], we chose to use the same neutral color scheme for both agents.
The reason that we chose to do this was to avoid any potential priming effects that
could coincide with different color schemes[12]. Though color is often associated with
gender, it is possible that different colors could evoke certain emotions or predispose
the human trainer towards different types of behavior. Using a neutral color scheme
mitigates these potential confounding factors.

In addition to the agent’s visual representation, we also use the agent’s name or
the appropriate gendered pronouns when referring to the agent in text. All textual
references to William, for example, uses the agent’s name or male pronouns such as
he, him, or his. Conversely, when referencing Alice we use female pronouns such as
she, her, or hers.

Understanding Bias in Human Trainers: Protocols

As mentioned previously, subjects were given URLs to visit in order to participate
in the study. Upon visiting the given URL, participants would be asked to confirm
that they are over 18, legally capable of giving consent and to confirm their consent
to participate in the study. They would then be assigned, at random, to a male or

38

female agent presentation (see Figure 4.2). They were then presented with a short
tutorial screen that consisted of an example of the test interface, an example action
to give feedback on, and instructions on how to give the agent feedback (see Figure
4.3).

The interface displayed the game world utilizing simple pixel art with a different
texture for each tile type:

• passable sand where the agent may pass through

• goal tiles where the agent must reach to end the game successfully

• lava/hazardous tiles where the agent may enter, but upon doing so the agent is
considered to have been ’killed’ and is returned to the start of the map

• impassible tiles which the agent cannot enter and will have no change in state
if it tries to enter that tile

The map is treated as being bordered by impassible tiles. A text prompt at the top of
the interface instructed the human subject to provide rewards and punishments to the
agent to help guide it towards the goal tile. The human subject could provide feed-
back in the form of punishment and reward signals that ranged from negative one to
one. The human subjects had the opportunity to provide feedback after every action
being shown both the before and after states of that action. The interface allowed
the human subjects to either directly type a feedback value they wished to provide,
or to quickly click one of several buttons to assign a default feedback value of either
0, 0.3, 0.6, 0.9, -0.3, -0.6, or -0.9. These values were labeled: No Feedback, Mild Re-
ward, Significant Reward, Major Reward, Mild Punishment, Significant Punishment,
and Major Punishment, respectively. The actual feedback numbers were displayed
beside the label of each of these buttons. The reason that multiple representations
of feedback were used was to better mitigate the effect that human perceptions of
reward or punishment had on their training. Including numeric values helps the hu-
man trainer assign value to the text descriptions, and the text descriptions help the
trainer understand what the numeric values mean.

Each human subject provided feedback on two full learning episodes consisting of
the agent taking actions until it either entered lava or reached the goal. The actions
taken by the agent were predetermined. During the first episode, it would take the
upper path, eventually turning and walking into lava. During the second episode, it
would take the slightly longer lower path and eventually make it to the goal. Both
runs contained extraneous turn actions and attempts to move into impassible tiles
and the second run contained a section where the agent turned around and headed
back towards its start for a short while before eventually “correcting itself” and
heading towards the goal. This was done to better simulate training an interactive
reinforcement learning agent. Since reinforcement learning is based on trial-and-error
learning, to accurately simulate the training process we have to simulate the agent
“randomly” exploring the environment by adding in extraneous actions. In total,
each agent took 37 actions across two simulated learning episodes.

39

Human subjects were not explicitly informed at this point that the actions were
pre-determined, but they were given a count of the number of actions left to evaluate
from which they may infer that the actions were pre-determined, this is a not a
concern as Cederborg [7] found that there is no difference between human feedback
given to live action versus recorded agents. This forms an example of a Wizard of Oz
experiment where actual machine learning techniques are replaced with an illusion
of learning or interactive behavior. These experiments are a common technique for
Interactive Machine Learning that allows multiple human subjects to face consistent
conditions or otherwise negate undesired effects of randomness.

After providing feedback on each action that the agents take and completing the
two full runs, participants were informed that the agent’s actions were pre-determined
and then were asked to complete a demographic questionnaire. The questions asked
are omitted for space. No default answers were assigned for any of these questions,
and participants were not required to answer all questions in order to proceed.

These questions were chosen because we believed that they corresponded to demo-
graphic information that could have a significant effect on the way human instructors
provided feedback to the agent. However, our sampling population was too small and
too homogeneous to allow meaningful analysis on most demographics.

After completing the questionnaire, the subject was left with a message thanking
them for their participation. In order to increase participation in the study, we also
invited participants to invite friends and family members to participate in the study.

4.2 The BASIL Technique in a Gridworld

To meet our second goal of developing a technique and algorithms for IRL agents
that account for bias in human trainer feedback, not only must we develop them, we
must test them to ensure that they complete the task for which they were developed.
In order to test our BASIL algorithm utilizing a normal distributions, we performed
a series of experiments comparing the cumulative environmental reward the BASIL
algorithm received to that received by other interactive machine learning algorithms
and a q-learner which learned from an environmental reward. The interactive ma-
chine learning algorithms received feedback from simulated humans which included
statistically generated bias. The statistically generated bias included both a normal
bias, such as that which our BASIL algorithm is designed to handle, and instances of
human silence, such as the SABL algorithm is designed to handle. The BASIL algo-
rithm was not expected to out perform all other algorithms in all conditions, rather
it was expected to maintained reasonable performance when the human feedback is
heavily biased, such that other interactive machine learning algorithms cannot learn
or find their learning heavily impacted.

The BASIL Technique in a Gridworld: MDP Environment

In our Gridworld environment, the state space consists of the coordinates of each
passable tile paired with each possible facing direction. The action space consists
of turning a quarter turn in either direction, and attempting to advance one tile

40

Figure 4.3: Example given to human subjects for the agent representation of William.
The example indicates William’s current state and the state that William will be in
after he takes the action. The example also indicates to the human subject what ac-
tion William will take, as well as what feedback options are available to give William.
The human subject also receives text explaining the grid world game to the human
subject.

41

in the current facing direction. The transition function consists of deterministic
transitions of states where the facing direction is modified by the turning actions
and the advancing action may result in changes to the occupied tile depending upon
what type of tile would be entered, as previously described. The reward function is
described above and within the Simulated Human Trainers section below.

The BASIL Technique in a Gridworld: Protocols

For our Gridworld experiments, all of the agents were placed in a ϵ-greedy ’shell’ with
ϵ set to 0.05. During evaluation episodes, learning does not occur and all actions were
taken according to the agents’ policies. Both training and evaluation episodes were
limited to 100 steps.

An evaluation episode was preformed after each training episode to test the current
quality of the learned policy. Each agent received 250 training episodes. To counteract
the non-determinism introduced by the ϵ-greedy shell, each algorithm was instantiated
with 20 independent agents that were trained separately, and the average of the
cumulative rewards for each agent for each evaluation episode was taken to obtain the
score for each algorithm as a function of the number of training episodes undergone.

The BASIL Technique in a Gridworld: Simulated Human Trainers

We used simulated human trainers in our experiments. We choose to use simulated
human trainers because this allowed us to both know and to set the ground-truth
for the feedback and bias provided in our experiments. This makes our experiments
significantly more reliable and reproducible then they could be using live humans.
This is a common practice in interactive reinforcement learning work. The simulated
human trainers used in our experiments provided feedback in two parts that were
combined before being given to the agents. The first part was the utility of the
action taken as evaluated by a heuristic function. The second part was a bias value
drawn from a normal distribution. Additionally, the simulated human trainer would
withhold feedback during some experiments according to parameters determining
separate rates for withholding positive and negative feedback. The designation of
feedback as positive or negative for the purposes of withholding happened based
solely on the utility value and did not account for bias.

In total 4 parameters determined the feedback to be given. These parameters
were: the mean of the normal distribution; the variance of the normal distribution;
the rate at which feedback was given when the utility for an action was positive; and
the rate at which feedback was given when the utility for an action was negative. The
utility of an action was determined by the following rules checked in order until one
applied:

1. Actions which caused the agent to enter a hazard have value -1.0

2. Actions which caused the agent to enter the goal have value 1.0

3. Actions which caused the agent to have no change in state have value -0.6

42

4. In the starting tile turning to face south had a value of 0.3

5. Advancing from the stating tile while facing south had a value of 0.3

6. Turning to face east while one tile below the starting tile had a value of 0.6

7. Returning to the start state had a value of -0.3

8. Any action that results in facing west had a value of -0.3

9. Any action that resulted in less total moves being needed to reach the goal
while not resulting in less total moves being needed to reach a hazard had a
value of 0.9

10. Any action that resulted in less total moves being needed to reach the goal but
also resulting in less total moves being needed to reach a hazard had a value of
0.6

11. Any action that resulted in less total moves being needed to reach a hazard
while not resulting in less total moves being needed to reach the goal had a
value of -0.9

12. Any action that did not fall under any of the above rules had a value of -0.3

The result of these rules was that actions that take the agent to the goal on either path
would receive positive feedback, but the initial steps for the upper path would receive
stronger positive feedback then the initial steps for the lower path. Approaching
the hazards while following the upper path was rewarded, but turning to face them
unnecessarily was strongly punished. Counter productive or wasteful actions were
also punished. For our experiments the mean for the normal distribution took values
of 2.0, 0.5, 0.0, -0.5, and -2.0. The variance of the normal distribution took values of
0.0, 0.3, and 2.0. The rates at which feedback was given when the utility value was
positive or negative each independently took values of 1.0, 0.8, 0.5, and 0.1. Because
we tested over a hundred permutations of parameters we will be unable to discuss all
of these experiments in our results section, therefore we will limit our discussion to
illustrative results.

The BASIL Technique in a Gridworld: Algorithms Tested

SABL As the algorithm most similar to our work, of which we are aware, we chose
the SABL algorithm by Loftin et.al. [25] as one of our points of comparison. We
also tested feedback withholding of the type SABL expects in addition to normally
distributed bias as expected by our BASIL algorithm. We choose to use SABL over
ISABL because we can provide the algorithm with the exact value of the rate at which
feedback is withheld. And by supplying these values to SABL, we have a stronger
baseline than ISABL could provide. Our implementation was based on source code
kindly provided by Loftin et.al.[25] from their experiments. To adapt it to our task,

43

our implementation treated any instance of positive feedback as an instance of reward
and any negative feedback as an instance of punishment for its calculations.

Both forms of the SABL algorithm require the user to provide an estimation of the
error rate, that is the rate at which positive feedback is given when negative feedback
is appropriate and vice versa. The SABL algorithms assume that this rate is the same
for both cases and that it is known to the users. For our experiments, calculating this
value is often infeasible because it depended upon the actions taken by the agent. It
is also important to note that the value is non-zero, as zero values can lead to the
algorithm breaking down if any mis-assignment of feedback does occur.

Lastly, it should be noted that under the SABL algorithm’s assumptions any
instance where multiple actions receive positive reward for the same state would be
considered an error. For all of these reasons, we parameterized the SABL algorithm
with an error rate of 0.2 for all experiments.

TAMER For our second algorithm to compare against, we used the TAMER algo-
rithm by Knox and Stone [23]. We chose it because it has been a reliable baseline for
interactive machine learning that has done well on a number of machine reinforce-
ment learning tasks. To apply it to our task, it was necessary to develop a feature set
for TAMER to use. TAMER weighs actions by considering the change they produce
in the feature set, using weights and sums of these changes in a linear fashion. It is
therefore important that is has access to features that directly and individually corre-
spond to desirable or undesirable changes in the environment. For our experiments we
provided TAMER with 8 features. The first two were the X and Y coordinates of the
current state; the next four represented the facing direction of the current state in a
1-hot fashion; and the last two were the minimum number of actions needed to reach
a hazard and the goal respectively. It is the last two that are particularly important
to TAMER’s performance. In particular, learning to minimize the actions needed to
reach the goal is virtually equivalent to learning the optimal policy. These features
are very domain specific, but because of it’s linear nature, without highly engineered
features, TAMER performs poorly. One other consideration that was required for
TAMER in our experiment was its learning rate. The learning rate determines how
much TAMER updates its weights when it receives feedback. For our experiments,
we used a constant learning rate of 0.1.

Environmental Q-Learner For our final baseline of comparison we used standard
Q-Learning agents[35]. These agents learn only from environmental reward. They
make no use of the feedback signal provided by the simulated human trainers. We
included these agents as a baseline to show that, even with inconsistent and biased
human trainers, it is possible to achieve better performance than using an environ-
mental reward alone in many cases. The only significant parameters for the Q-Learner
were the learning rate and discount factor. The learning rate determines how sig-
nificant the updates it makes to its internal model each time it receives feedback
and the discount factor determines how much it discounts possible long term rewards

44

versus immediate rewards. We chose 0.1 for both of these parameters in all of our
experiments.

4.3 BASILTAMER

The BASIL technique fulfills our secondary goal of developing a technique to handle
bias in human provided feedback. However, we still must test practical applications
of the technique that are more complex in nature, if we are to more fully complete this
goal. For this, we utilize the TAMER algorithm by Knox and Stone.[23] We chose
to integrate the BASIL technique into the TAMER algorithm because the TAMER
algorithm has become a standard among IRL algorithms. The addition of the BASIL
technique to the TAMER algorithm results in what we refer to as BASILTAMER.
The goal of our BASILTAMER experiment was to determine if adding normally dis-
tributed bias to the feedback signal given to classical TAMER and BASILTAMER
would result in the classical TAMER algorithm failing to learn the desired behavior
encoded in the feedback signal while not preventing the BASIL TAMER algorithm
from learning the desired behavior. To determine the performance of the algorithms,
the cumulative reward of each algorithm in an episode as a function of the number
of learning episodes previously experienced was used. The utilization of a cumulative
reward is a standard metric for these kinds of evaluations in reinforcement learning.
To compare these algorithm the game of Tetris was utilized. In the Tetris environ-
ment, one point of environmental reward was given for each line cleared and, thus,
the cumulative reward for each episode was equivalent to the total number of lines
cleared in that episode.

BASILTAMER: Task and Environment

The task chosen to test our BASILTAMER algorithm was a version of the game
”Tetris”, modified to be suitable for reinforcement learning via conversion into a
Markov Decision process. This task was chosen because it was the same task utilized
in the original presentation of TAMER. [23] In brief, Tetris is a game where the player
is presented with a series of tetrominos, which are connected shapes of four blocks.
The player’s job is to rotate and move the tetrominos until they contact a placed
tetromino or the bottom of the play field, at which point they lock in place. When
a row is completely filled, the blocks in that row disappear and blocks in all higher
rows fall by one level. While various renditions of the game use different point scoring
schemes, in general, the goal is to clear as many rows as possible.

In reinforcement learning friendly formulations of the game, the player’s options
for actions to take consists of each possible valid placement of the currently active
tetromino. While placing the active tetromino, the player has no knowledge of up-
coming tetrominos which results in the problem being an MDP. For our experiment,
both classic TAMER and BASILTAMER, utilized a vector of features that described
the current game state and those vector of features were pre-calculated for them.
These features were: the heights of each column; the height differences between each
pair of adjacent columns; the height of the highest column; the total number of holes

45

in the play field, that is empty squares with full squares above them; and a fixed
weight for computational purposes. This feature set has been used successfully in
many works including the original presentation of TAMER. [23]

BASILTAMER: MDP Environment

As described elsewhere for our BASILTAMER experiments, we use a version of the
game of Tetris that has been modified to be an Markov Decision Process. In this MDP,
the state space consists of every possible Tetris grid of settled blocks, without regard
to color, permutated by each tetromino to be placed within the grid. The action
space consists of placing the tetromino within each possible, valid, final location and
orientation within the grid. A valid, final location is any location that can be reached
through the normal moves in human playable Tetris that is supported on at least one
square. The reward function is the number of lines cleared by taking the action in the
state. The transition function maps states and actions to the grid that results from
placing the tetromino in the chosen location after full rows are removed and higher
rows are dropped, then it pairs that grid with each possible next tetromino to place
stochasticly.

BASILTAMER: Protocols

An evaluation episode was preformed after each training episode to test the current
quality of the learned policy. Each agent received 20 training episodes. In the bias free
case it took under 6 episodes for both algorithms to match the oracle’s performance,
and this result is similar to what was observed in Knox and Stone’s original publi-
cation of the TAMER algorithm. [23] During evaluation episodes, learning does not
occur and all actions are taken according to the agents’ policies. Both training and
evaluation episodes were limited to 3000 steps. To counteract the non-determinism
inherent in Tetris, each algorithm was instantiated with 30 independent agents that
were trained separately, and the average of the cumulative rewards for each agent for
each evaluation episode was taken to obtain the score for each algorithm as a function
of the number of training episodes undergone.

BASILTAMER: Hyper-parameters

Both algorithms used α values of 0.01, and tolerances of 0.000001 for all experiments.
The BASIL TAMER algorithm had two additional Hyper-parameters. It used a µ
update interval of 20 steps for all experiments, and the expectation maximization
step was limited to 3000 iterations, although we believe this was never reached in any
of the experiments.

BASILTAMER: Simulated Human Trainers

We used simulated human trainers in our BASILTAMER experiments. We choose
to use simulated human trainers for the same reasons as mentioned above in the
previous section. Being able to know and set the ground-truth for the feedback and

46

bias provided in our experiments makes our experiments significantly more reliable
and reproducible then they could be using live humans. This is a common practice
in interactive reinforcement learning work. The simulated human trainers used in
our experiments provided feedback in two parts that were combined before being
given to the agents. The first part was the utility of the action taken as evaluated
by a heuristic function. The second part was a bias value drawn from a normal
distribution. The utility of taking an action for a particular state was determined by
the weighted sum of the difference of feature vectors for the state that preceded the
action and the resulting state. The weights used are included in the source code for
our experiments. These weights were such that an agent adhering to them exactly
when deciding between actions will average 66.3 lines cleared as measured over 600
episodes. This is comparable to the peak performance for TAMER learning live
humans as observed by Knox and Stone. [23] These weights were found via the use
of an evolutionary algorithm. Two parameters determined the bias applied to the
feedback given: the mean of the normal distribution of the bias and the variance of
the normal distribution. For our experiments, the mean for the normal distribution
took values of 80, 20.0, 5.0, 0.0, -5.0, -20 and -80.0. The variance of the normal
distribution took values of 0.0, 3.0, and 30.0.

4.4 BASILTAMER Extensions

The BASIL technique is already well set up to calculate the observed variance in the
feedback received, particularly of distributions, such as the normal distribution where
variance is a parameter of the distribution function. However, the technique, on its
own, does nothing to address the observed variance, nor does it address silence from
the human trainers, in this instance silence refers to an explicit lack of feedback with
regards to a specific action as opposed to a small or neutral feedback value. With
human trainers, variance in the feedback given is, generally, an inevitability. In its
simplest forms, variance is the human trainer being inconsistent with the feedback
given and providing different feedback values for the same situation. As stated pre-
viously, this problem becomes more difficult to account for when there are multiple
human trainers, which is increasingly necessary for larger scale tasks. Additionally,
this variance does not always mean that the human trainer made a mistake. De-
pending upon the feature set provided to an algorithm, human trainers may be able
to see differences in two states that look identical to the algorithm. Inconsistency
due to variance in feedback values provided to the agent, as well as a lack of feed-
back (silence), can cause the agent’s behavior to become erratic as it attempts to
incorporate the new feedback instances or the result can be the agent appearing to
”quit” attempting to learn the correct policy as is flounders due to not receiving
enough feedback to develop a correct policy. To account for variance and silence in
human trainer provided feedback, we have developed three extensions: the Adap-
tive Variance, Zero Silence, and Average Silence Extensions. Accounting for these
inconsistencies, in regards to BASILTAMER, will address our tertiary goal for this
research.

47

The primary goal of these experiments was to determine if the techniques we had
developed for handling inconsistencies in human feedback would result in an improved
performance, in the case where the human provided feedback was subject to variance
or silence, when compared to the same algorithm using only BASILTAMER and
TAMER, respectively.

BASILTAMER Extensions: Task and Environment

The task chosen to test our BASILTAMER Extensions was the same version of the
game ”Tetris”, modified to be suitable for reinforcement learning via conversion into
a Markov Decision process, that we utilized for our BASILTAMER experiment. We
chose this environment because the framework we had previously developed for it
was highly robust and adaptable. This allowed us to easily control all aspects of the
feedback given to the learning agents including: bias, silence, and variance.

BASILTAMER Extensions: Protocols

Evaluation episodes for the BASILTAMER Extension experiments were performed
similarly to how they were performed for BASILTAMER without the addition of these
extensions. We reduced the number of episode that each experiment trained for to
10, as we had observed in the BASILTAMER experiments that this was sufficient
to see full learning of a correct policy within the environment. We also reduced the
number of independent instances of each algorithm to 10 samples, because we found
that this was sufficient for developing reasonably smooth learning curves.

For the variance experiments, we tested all permutations of average biases equal
to 0.0 and 5.0; as well as variance equal to 0.0 and 1.0. For the silence experiments,
we tested the same average biases, and tested rates of silence conditions of with-
holding: no feedback; half of all positive feedback; all positive feedback; half of all
negative feedback; and all negative feedback. However, certain combinations of bias
and feedback withholding would result in no or very little feedback being given to
any agent due to the feedback tending towards the all positive or all negative based
upon the bias. These permutations are, therefore, excluded from our testing and
include the 5.0 bias value with any degree of positive feedback withholding and the
0.0 bias value with any degree of negative feedback withholding. This results from
the simulated human trainers for this experiment and environment primarily giving
feedback in the low negative range before bias, meaning the ground truth feedback
values are within this range. This, in turn, is the result of using TAMER algorithms
with an environment and feature set that utilizes primarily values that should be
minimized for optimal play, such as the heights of each column.

BASILTAMER Extensions: Simulated Human Trainers

We used simulated human trainers in our BASILTAMER Extension experiments,
similarly to how we used them in our BASILTAMER experiments and we chose to
use simulated human trainers for the same reasons that we chose to utilize simulated
trainers in those experiments.

48

4.5 Deep BASILTAMER

We now focus on implementing the BASIL technique into a Deep Neural Network.
Incorporating BASIL into this complex deep learning algorithm will complete our
secondary goal for this research and is the most complex application of the BASIL
technique that we present in this body of work. To apply our technique within a
Deep Neural Network, we adapted the BASIL technique to Deep TAMER. We refer
to this algorithm as Deep BASILTAMER.

The primary goal of this experiment was to determine if adding normally dis-
tributed bias correction to the Deep TAMER algorithm via the BASIL technique
would result in significant performance improvement over the unmodified Deep TAMER
algorithm, as well as the exploratory epsilon-greedy Deep TAMER algorithm, when
applied to feedback from a live human trainer. An additional goal of our experi-
ment was to determine if adding artificial normally distributed bias to the feedback
provided produced a significant difference in performance among the versions of the
algorithm when compared to instances where raw feedback was given, especially when
compared to each other. We also sought to further verify the observations of Bart-
neck, Reichenback, and Carpenter [2] of how agent presentation between different
grades of anthropomorphism produced different feedback when using images of the
same robotic avatars. We also sought to determine how well the algorithms performed
as measured by the cumulative reward of each algorithm in an episode as a function
of time spent learning.

Deep BASILTAMER: Adapting BASIL to Deep TAMER

There are a few challenges that come with incorporating TAMER into a Deep Neural
Network. The main challenge is that the learning steps in a Deep Neural Network
are computationally expensive and performing this learning in an online manner, as
is necessitous for interactive machine learning, is feasible only on extremely powerful
hardware. In order to combat this issue, Deep TAMER subdivides its Deep Neural
Network into two distinct parts. The first part is a Convolutional Neural Network
that is trained entirely offline as an auto-encoder. The output of this Convolutional
Neural Network is then fed into a fully connected Neural Network consisting of a few
layers. In the case of the Atari Bowling task utilized by Warnell et. all, [34] two fully
connected layers were used. It is the second fully connected portion of the Neural
Network, exclusively, that is trained during interaction with the human trainer. To
perform real time training, Deep TAMER assigns each feedback instance to all state
action pairs such that the feedback falls into a pre-defined feedback window for the
action. All instances of feedback are then stored in a buffer and learning is performed
both on each instance of feedback as it is received and on instances of feedback
sampled from the buffer at a fixed rate.

At predetermined intervals of the training updates, Expectation Maximization is
performed between the fully connected portion of the Neural Network, which serves
as a function mapping feature sets produced by the auto-encoded Convolutional Net-
work to human feedback values, and the Bias Distribution, defined by unknown pa-

49

rameters. This is analogous to how Expectation Maximization is performed between
the weight vector and the Bias Distribution in non-Deep BASILTAMER. Because
the fully connected, online trained portion consists of more than one layer, the least
square linear approximation used in the non-Deep BASILTAMER Expectation Maxi-
mization step to produce the weight vector at each iterative step could not be applied
directly.

We originally foresaw two possible methods for replacing the linear approximation.
The first was to use a polynomial approximation. This approximation was seen as
potentially viable because of the relatively few number of layers involved and, if it was
viable, it would have been the preferred method to obtain the weight vector because
it would have produced an exact optimal answer for each iterative step. However,
this approach proved to be too computationally expensive for online training with
the computational hardware available to us. The second option we foresaw for this
work would have required approximating the layers of the Neural Network under the
hypothetical bias that would be expected for each agent. The most straightforward
means to perform this approximation would have been to train a copy of the fully
connected layers of the Neural Network on a Bias Corrected sampling of previously
observed feedback instances. For this option, as long as sufficient training was per-
formed, it should have produced workable results. However, this option also proved
to be too computationally expensive and for both of these options it would have re-
quired adjusting the interval to lengths that we considered to be unacceptable for the
agent to maintain real time training.

Ultimately, we discovered a third option for implementing the Expectation Max-
imization step. During the Expectation Maximization update, all expect the last
layers of the neural network were treated as fixed and not subject to change through-
out the iterations of Expectation Maximization. The last layers were the only layers
which changed with each iterative update and each consisted of one independent
vector per possible action. Each vector is updated by an independent linear approxi-
mation using the current bias parameter estimation. These vectors are then utilized
to generate the next estimation of the bias parameter. This iterative process contin-
ues until convergence is achieved, at which point, the convergent values for the bias
parameter are used to adjust future feedback, including instances of feedback used in
re-sampling of previous observations.

Intuitively, this approach seemed viable due to our use of a normal distribution
for the assumed bias and for the architecture of a Deep TAMER Neural Network.
Our intuition is that the auto-encoder portion of the Neural Network, which is fully
trained and formed without regard to what is and is not a good move in the game
of Atari Bowling, serves as a feature extractor. Therefore, the first of the two online
layers serves to learn which combination of features are relevant to learning the task
of achieving a high score in Atari Bowling. Because the bias is expected to be drawn
from a normal distribution, accounting for bias is a matter of adjusting feedback by
the mean of that distribution. With this method, we may treat the bias as existing
entirely in the last layer of the human’s internal reward module that we are attempting
to learn. Our results bear out the correctness of this approach. And this approach is
computationally viable with the hardware available to us. It should be noted that our

50

success with this approach may rely on the use of a normal distribution for modelling
human trainer bias. With a more complex bias model, such as one where different
actions are biased independently, this shortcut may not be viable. Furthermore, using
such models with a Deep Neural Network may require either significant computational
resources or the application/development of useful mathematical tricks. The addition,
we discovered that the application of the BASIL technique to the Deep TAMER
algorithm does not substantially change the majority of the algorithm.

In the course of conducting this research, we discovered that there were issues in
the Atari bowling environment we utilized due to Deep TAMER having no mechanism
to drive exploration. We are unclear if this was a problem that was also experienced
by Warnell et. all [34] or if the difficulty arose from the method by which our human
instructors provided feedback to the Deep TAMER agents as we could not find details
as to the interface used by Warnell et. all.

In particular, there are a handful of ways in the bowling environment in which
an agent’s policy may prevent it from making any progress whatsoever. The most
straightforward of these is when the agent uses the wait action while still holding the
ball. If this is the action dictated by the agent’s policy and the agent acts entirely
on policy, then there is no mechanism for the agent to attempt other actions and to
receive feedback upon them.

A very similar problem can arise when the agent has positioned it’s avatar near
the top or bottom of the allowed area and then continues to move the agent up or
down, respectively, resulting in no change in the game state and no exploration of
alternative actions. In theory, this situation can be corrected by the human trainer
providing sufficient negative feedback on the repeated actions to change the agent’s
policy. However, this may take a large number of feedback instances depending upon
the agent’s learning rate, which is a hyper parameter that was not given in the original
Deep TAMER research by Warnell et. all, and must be configured for a particular
programmer’s problem. Additionally, the use of the BASIL technique compounds
this issue, because the situation can arise where Deep BASILTAMER has a current
policy dictating an action which does not change the game state as described above
and then performs an update of its estimation of the average bias, which can result in
all incoming feedback being adjusted such that it is not possible for incoming feedback
to change the agent’s policy without exploring other actions. This is a consequence
of the need to only make periodic updates to bias estimation computations due to
the intense computative resources required for an update.

Conversely, we observed that Deep TAMER without the benefit of exploration or
a technique such as BASIL, can potentially be stymied by a human trainer who is
reluctant to give negative feedback, even in situations where the agent is ”stuck”. This
is not a problem reported by Warnell et. all in their work on Deep TAMER and did
not likely occur with their presentation and user interface. However, we did receive
reports of this situation occurring with the AIBO representation of the agent, which
is in line with the findings of Bartneck et. all [2], and our expectations that human
trainers would be reluctant to give negative feedback to it. Therefore, we added an
exploratory element to the Deep BASILTAMER algorithm and we performed our test
against two variations of Deep TAMER.

51

The first algorithm was an unmodified Deep TAMER, while the second was an
epsilon-greedy Deep TAMER. The epsilon-greedy module used by both Deep BASIL-
TAMER and the augmented baseline consists of a simple additional computation
when the agent selects a move. When selecting a move, the agent generates a ran-
dom number between zero and one. If this number falls below epsilon, which is itself
a number between zero and one that is selected as a hyper-parameter of the agent,
then the agent selects its move randomly from the available actions. However, if the
number is above or equal to epsilon, the agent will select the on policy action, as
is normal for Deep TAMER. We used an epsilon of 0.2 for our epsilon-greedy Deep
TAMER and our Deep BASILTAMER agents.

It is worth noting that epsilon-greedy action selection is only performed while
learning. When evaluating a currently learned policy, such as in our evaluation of the
data later in this work, actions are always selected on policy and resulting non-update
loops are dealt with by terminating the game after a maximum of five thousand steps.
For our model, one step is one execution of the EMV.step function of the open A.I.
Gym implementation of Atari Bowling.

Like Warnell et all[34] we did rely on wall clock time measures of training. Human
trainers were instructed to limit training sessions to roughly fifteen minutes. Each
algorithm was trained with each representation by human trainers in three separate
training sessions. The policies learned in the course of those training sessions were
snap-shotted at each instance of human feedback with a maximum of one snapshot
per second. These snapshots were then tested within five games of Atari bowling to
generate an average score for each algorithm at each feedback point in each training
session. These average scores were then utilized to determine how well each algorithm
performed in learning an effective policy to achieve a high score in Atari Bowling.

Deep BASILTAMER: Task and Environment

The task we utilized to test our Deep BASILTAMER algorithm was Atari Bowling
with a graphical representation. (See Figure 4.4) This task was chosen because it is
the same task utilized in the original presentation of Deep TAMER. [34] They chose
this task because it is one that even state of the art deep learning algorithms have
struggled with, and they were able to not only out preform those algorithms but,
also, out performed most of the human trainers themselves.

In the environment, players are presented with a visual representation at each
frame and can chose between taking no action and taking one of three actions con-
sisting of Up, Down, and Bowl. See figures 4.6, 4.7, and 4.8 for the virtual representa-
tions of the agents. The environment can be seen in figure 4.5. Each of these actions
does different things depending on whether or not the ball has yet been bowled. Be-
fore bowling, Up and Down adjust the position from which to launch the ball from,
and Bowl sends the ball down the track. After Bowl is selected further uses of Bowl
are equivalent to no action until moving on to the next ball. The first instance of
Up or Down used after bowling the ball result in applying spin in the corresponding
direction, and subsequent uses of either are equivalent to no action until moving on
to the next ball. The game is then scored and played like common ten pin bowling

52

Figure 4.4: A visual representation of the Atari bowling environment.

except that no extra balls are allowed after the tenth frame, therefore the maximum
score possible for a game is 270. Like Warnell et all, we used the two most recent
graphical frames in 160 x 160 grey scale as our state representation and set the rate
to approximately 20 frames per second.

Deep BASILTAMER: MDP Environment

The state space for the Atari Bowling environment is visual. It consists of two con-
secutive frames from the bowling games. The action space consists of moving the
player character up or down on the field, bowling, and taking no action. If used
in a state where the ball has been tossed but spin has not been applied, the up
and down functions apply spin to the ball instead. The transition function is highly
non-deterministic as the Atari Bowling game is played in real time, and consists of
transitioning to the state which the environment has reached since our last observa-
tion. While the player character holds the ball, the only changes in the state will
be those directly resulting from the agent’s actions, however, once the ball is tossed,
the state can be expected to change between observations, even if no action has been
taken. The reward function consists in the change to the agent’s score in the game
following the normal rules for bowling as described above.

53

Figure 4.5: The application interface presented to our Human Trainers with the Sony
AIBO presentation of the agent.

54

Deep BASILTAMER: Protocols

An evaluation episode consists of a game of Atari Bowling played according to the
policy learned by an agent in a snapshot of its training. During evaluation episodes,
learning does not occur and all actions are taken according to the agents’ policies.
Each of our algorithms being tested, the Deep TAMER baselines, with and without
epsilon-greedy exploration, and Deep BASILTAMER with epsilon-greedy exploration,
was used during nine training sessions; three with each visual representation. Each of
these training sessions, was allowed to run just over fifteen minutes. These training
sessions were performed by volunteers drawn from the researchers’ social circles. Each
trainer was given a practice training session before the recorded training session,
during which they were allowed to question one of the researchers as much as they
desired. Snapshots of each algorithms’ learned policy were saved whenever the human
trainer gave the agent feedback with a maximum of one snapshot per second. These
snapshots are the ones utilized to perform the evaluation episodes analyzed in our
results section later in this body of work. Additionally, to maximize the use we could
obtain from our limited pool of human researchers, without adding to their labor
or commitment, we recorded the feedback instances and matching state action pairs
that occurred during each human trainer’s session training the agent.

The offline training of the algorithms consists of performing SGD with the feed-
back action and state triples recorded during the online training session and offline
trained agents of this sort are used to produced our results that analyze the differ-
ence between agents with and without artificial biasing. This sort of offline trained
agent is also used in our later sections to produce their results in the Atari Bowling
environment.

In total 27 training sessions, each lasting at least 15 minutes, with a live, human
trainer were conducted. Each of the three robots used in the research by Bartneck et.
al.[2] were used as the basis of one agent representation. A presentation consisted of
the image of the robot and a short phrase describing the robot as the player the agent
was training. For the AIBO presentation, the description provided was: ”The player
is an AIBO canine robot from SONY. She has not played the game before”. For
the Tron-X robot, the description was: ”The player is the Tron-X robot from Festo
AG. It has not played the bowling game before”. The Philip K. Dick representation’s
description was: ”The player is Phil. A replica of sci-fi author Philip K. Dick from
Hanson Robotics. He has not played the bowling game before”. These pictures and
descriptions were presented in the UI as pictured in Figure 4.5.

To ensure we observed training sessions under different biases, these representa-
tions were paired with different instructions, given verbally, to the human trainers
during their pre-training practice sessions. Human trainers paired with the AIBO pre-
sentation were instructed to ”be patient” and to ”reinforce actions you want her to
take again”. Human trainers paired with the Tron-X representation were instructed
to ”give negative feedback when they felt it was necessary” and to ”remember that it
is a machine and does not have feelings to hurt nor any purpose beyond playing Atari
Bowling as well as it can”. Those paired with the Philip K. Dick representation were
instructed to ”follow your instincts when giving feedback” and that ”both positive

55

and negative feedback can help Phil learn”.
Each representation was combined with each of the three algorithms being tested:

Deep TAMER, Deep TAMER with epsilon-greedy exploration, and BASIL Deep
TAMER with epsilon-greedy exploration; to create nine distinct experimental testing
conditions. Each of these conditions was assigned randomly to three human trainers,
who completed the experiment.

During the experiment, human trainers gave the agent feedback by clicking on a
colored rectangle located at the bottom of the UI, as seen in Figure 4.5. The value
of the feedback is determined by the horizontal position at which the human trainer
clicks, with negative values on the left side of the bar and positive values on the right
side of the bar. These values range from -10.0 on the far left edge and 10.0 on the far
right edge. This range was determined by pre-experiment testing to provide sufficient
weights to new training instances relative to the Neural Network training rates which
are 0.1 in all cases, and our starting weights which were generated using a Keras
truncated normal initializer with a mean of 0.1. This feedback method was chosen
because it allowed the human trainer to rapidly give an agent feedback following a
relevant action. This feedback method is imprecise, however, it proved sufficient for
our needs. We could not find sufficient details in Warnell et. all [34] to replicate their
user feedback interface nor their feedback methodology. While our methodology
was sufficient for the experiments that we wished to conduct, deficiencies in our
methodology may be a contributing reason to the significantly lower performance we
saw for all of our agents compared to that observed by Warnell et. al., which we will
discuss further in a our analysis of this experiment.

4.6 Multi-Circumstance Aware Deep BASILTAMER

So far, we have largely addressed handling bias in interactive reinforcement learning,
but one particular circumstance still bears addressing. When the phrase bias is used,
it is often used to describe a difference that occurs between two samples. It is there-
fore worthwhile to discuss using the BASIL technique for multiple feedback sources,
whether these sources are different human trainers, or different presentations of the
agent to human trainers, or any other factor which might alter the way feedback is
given. When using such distinct sources of feedback, the simplest way to adapt the
technique is to treat each body of feedback as having its own parameters for its bias
distribution, but being offset from the same utility evaluations of state action pairs. In
the expectation maximization step, the agent should calculate the distribution param-
eters for each body of feedback separately, and then, while calculating new estimates
of the utility of each state action pair, use feedback from all bodies stripped of bias
according to the current estimates of the bias distribution for the appropriate feed-
back body. We refer to this as Multi-Circumstance Aware BASIL. And, when utilized
with Deep TAMER, we refer to this technique as Multi-Circumstance Aware Deep
BASILTAMER. For this body of work, we focused on Multi-Circumstance Aware
Deep BASILTAMER. To that end, we needed to determine if Multi-Circumstance
Aware Deep BASILTAMER, which is specifically adapted for handling multiple bi-
asing conditions as we have put forth, performs substantially better than unmodified

56

Deep BASILTAMER, and Deep TAMER without BASIL, when feedback for each
algorithm is produced under multiple biasing conditions.

To determine the performance of the algorithms, the cumulative reward of each
algorithm in an episode as a function of the number of learning episodes previously
experienced was, again, used.

The application of a Multi-Circumstance Aware BASIL technique to Deep TAMER
satisfies our secondary research goal. By being ”aware” of feedback provided by other
human trainers silence and variance can be accounted for.

Multi-Circumstance Aware Deep BASILTAMER: Task and Environment

The task we used in these experiments was the Atari bowling with graphical repre-
sentation as was used in our Deep BASILTAMER experiments. We refer the reader
to the task and environment subsection of the Deep BASILTAMER experiments sec-
tion of this paper for a full description on that environment and the results of that
experiment.

Data obtained from our Deep BASILTAMER experiment was used for this exper-
iment. State and actions pairs combined with feedback sourced from the AIBO and
P.K.D. sessions of the Deep BASILTAMER experiments were used to train models
using this modification offline.

Multi-Circumstance Aware Deep BASILTAMER: Protocols

This experiment utilized data obtained from our Deep BASILTAMER experiments.
The data sets utilized were for the AIBO and P.K.D. avatars of the algorithms. In
offline training sessions, Multi-Circumstance Aware Deep BASILTAMER was im-
plemented and tested against the baselines of Deep TAMER with epsilon greedy
exploration and Deep BASILTAMER.

Due to our findings in our previous experiments, we have chosen to utilize data
from only two of the three presentations that we previously used. The reason we chose
to utilize these data sets is because of how similarly our human trainers provided
feedback to the P.K.D. and Tron-X avatars in this task environment.

The PKD Robot is an animatronic model of Science Fiction Author Philip K. Dick
and represents a higher point on the scale of anthropomorphism as compared to the
other presentations. The last avatar is the zoomorphic robot AIBO from Sony, which
has a canine like form and provides a radically different presentation for contrast.

To perform the training, the training data from our AIBO samples and PKD
samples were paired randomly to create three feedback sets, each of which consisted
of the feedback received partnered with all game state and action tuples that fell
within the relevance window. This is similar to how Deep TAMER algorithms re-
sample previously given feedback during their training. Each algorithm being trained
was run through simulated time-steps, during which feedback instances from either
the AIBO sample or PKD sample being utilized were provided to the algorithm when
it hit the appropriate second count. In this manner, each algorithm learned from
both sessions in its training set as if they had both occurred simultaneously, although

57

Figure 4.6: The Tron-X robot from Festo AG. [2]

the states and actions taken were the ones that appeared in the original training
session from which the data is sourced and not the actions which the algorithm being
trained would have necessarily taken at that moment of its training. This approach
to offline learning is similar to learning from demonstration but, differs in that the
demonstration is provided by very similar algorithms engaged in active learning and
the feedback provided is that received by those learning algorithms, whereas learning
from demonstration uses either an environmental reward or makes the assumption
that all or most of the demonstrated actions are on policy for the desired policy to be
learned. For each tested algorithm, three sample feedback histories were created by
selecting, at random, an AIBO training session and a PKD training session from those
recorded in our Deep BASILTAMER experiments. Each of those histories was then
used to train one instance of the algorithm and at each time-step where an evaluation
was to be performed, five games were played by the algorithm with its current policy
to produce an average score for that instance of the algorithm at that time-stamp.
The cumulative reward curves of each algorithm are then interpolated and averaged
to produce the cumulative reward function for the algorithm as a whole, in the same
manner as we utilized in our earlier Deep BASILTAMER experiments.

58

Figure 4.7: The PKD robot from Hanson Robotics.[2]

59

Figure 4.8: The AIBO robot from Sony.[2]

60

Chapter 5 Results

In the following sections, we present the results of our experiments. Our first section
deals with Understanding Bias in Human Trainers where we studied the effects of an
agent’s gendered representation on the feedback provided by human trainers. Next,
we present our findings on how well the BASIL technique performs within the domain
of a Gridworld. The results of our third experiment, which incorporated the BASIL
technique into the TAMER algorithm and compared the performance of the resulting
BASILTAMER algorithm to TAMER within the domain of Tetris, are presented. We
also present our findings for the Extensions of the BASILTAMER algorithm. The
Deep BASILTAMER experimental results, where we applied the BASIL technique to
the Deep TAMER algorithm are found below. Finally, we present our findings for
the Multi-Circumstance Aware Deep BASILTAMER.

5.1 Understanding Bias in Human Trainers: Results

To understand the bias in human trainers in reference to the gendered representation
of an agent, we took the provided feedback values and grouped them into histograms
evenly spaced about the default feedback values given. In practice there was only a
single instance of a subject using the custom feedback option, so, this process was
very natural. This histogram data formed from participants that trained Alice is
then compared using a Chi-squared test against the histogram data formed from
participants that trained William to determine the probability that two histograms
come from the same distribution. Using this technique, we answered the research
questions posed earlier. We present each of these answers in greater detail below.

Research Question 1: Statistical Significance

First, we wanted to know if there was a statistically significant difference in the feed-
back given to an agent when presented as the female representation versus the male
representation across all human subjects and states presented in the environment.
The Chi-squared test that we ran shows that the feedback distributions between
both experimental groups were significantly different from one another (p=0.00015,
χ̃2 = 26.94839). This indicates that there is a strong likelihood that both histograms
were generated by different underlying processes, which provides strong support that
there was a difference in the way that each group trained their agents. Due to the
way this study was designed, this implies that the presentation of the representation
had an effect on how participants gave provided feedback to the agent.

Research Question 2: Qualitative Differences

The second research question addressed involves a qualitative analysis of the feedback
histograms for people training the female agent versus the male agent. When pre-
sented as Alice, major rewards made up a greater percentage of its reward feedback

61

instances whereas the William representation was slightly more likely to receive the
mid-level significant reward and significantly more likely to receive the minor reward.
That being said, the overall percentage of feedback instances that are rewards is very
close for both agent representations, 61% for Alice and 63% for William.

In terms of punishment, the William representation was more likely to receive
both the major and mild punishments, while the Alice representation was more likely
to receive the middling significant punishment. Both agent representations received
punishment as 34% of all feedback. The No feedback category made up a larger percent
of the feedback distribution for Alice versus William, 5% versus 3% respectively (See
Table 5.1).

Research Question 3: Demographic Effects

Answering the third research question involved analyzing if any demographic charac-
teristics of human instructors could have had a statistically significant effect on the
feedback that agents received. We preformed Chi-squared tests for direct effect of
demographic characteristics where the samples could be partitioned into binary sub-
groups along demographic lines. The only demographic effect for which our analysis
has found a statically significant effect is the instructor’s reported gender (p=0.00011,
χ̃2 = 27.67627). A very small number of subjects choose to either not report their
gender identity or reported options other then male or female, they are not included
in this analysis due to insufficient representation in our samples. It is important to
note that we believe it is likely that other demographic information does have an
influence on how human trainers provide feedback. For example training behaviors
could be affected by the subject’s experience or inexperience with providing train-
ing to siblings or children; such as the case with the dog trainers’ bias discovered
in Loftin, MacGlashan, et all.[25] We were, unfortunately, unable to analyze these
effects due to the size and homogeneity of our subject population. For example, our
participants were largely American and heterosexual, meaning that it was impossi-
ble for us to determine how nationality or sexual orientation could potentially affect
training behaviors due to lack of data.

Research Question 4: The effect of reported gender

Seeing that reported gender had a significant effect on feedback tendencies, we sought
to contextualize these results. The most notable difference we found was that the dif-
ference in feedback given by female instructors versus that given by male instructors is
strikingly similar to the overall difference in feedback given to the Alice representation
versus the William one. For example, female instructors preferred the major reward
whereas male instructors were more likely to give the mild reward. Male instructors
were also more willing to provide the major punishment whereas female instructors
preferred the less significant ones. Female instructors were also more likely to give
no feedback compared to male instructors (see Table 5.2).

62

Group
cond.

Num. of
samples

0.9
RV.

0.6
RV.

0.3
RV.

No RV -0.3
RV

-0.6
RV

-0.9
RV

Alice 3102 28% 19% 14% 5% 13% 12% 9%
William 2038 24% 20% 18% 3% 13% 11% 10%

Table 5.1: Histographic data for all feedback instances of Alice versus William rep-
resentations respectively. Note the discrepancy in the overall number of feedback
instances for Alice versus William. This is a result of a quirk in the random number
generator used to select an agent representation and is still completely uncorrelated
with any attribute of the human subject. It is unfortunate as the statistical signifi-
cance of our results is limited by the size of the smaller sample, but the assignment
of agent representation was still done at random, just with unequal weights on the
representations.

Group
cond.

Num. of
samples

0.9
RV.

0.6
RV.

0.3
RV.

No RV -0.3
RV

-0.6
RV

-0.9
RV

Female
Subject

3103 28% 19% 14% 5% 13% 12% 9%

Male
Subject

1860 25% 19% 19% 4% 12% 10% 10%

Table 5.2: Histographic data for all feedback instances provided by human subjects,
Female versus Male. This table represents all populations merged together. Despite
our populations turning out to be heavily segregated by gender, the trends remained
the same even if we only limit it to the sociology student population or the machine
learning reddit population. However, the machine learning reddit population is small
enough for the effects to fall below statistical significance. For that reason, we present
the data with all populations included without concern for other effects correlated
with gender among our population.

Research Question 5: Potential Cross Effects

The behavior outlined in research question 4 indicates that there may be a cross effect
between instructor gender and the agent’s presented gender. Such as in group bias
where human subjects would give more positive feedback to representations of their
own gender identity.

However, we found that this was not the case. To determine this, we compared
feedback distributions between the cases where gender of the agent’s representation
and the instructor’s reported gender matched verse cases where they did not. We
found that there was no significant difference in these feedback distributions according
to a Chi-squared test, which indicates that there is no in-group bias in feedback with
regards to gender.

63

Figure 5.1: Cumulative Reward for each algorithm when feedback contains no bias,
and feedback is always given.

5.2 The BASIL Technique in a Gridworld: Results

As mentioned previously, we tested on hundreds of permutations of the parameters
controlling the simulated human trainer’s feedback and we will limit our analysis here
to illustrative examples to maintain readability.

The BASIL Technique in a Gridworld: Perfectly Reliable Feedback

As can be seen in Figure 5.1, when the simulated human trainers gave perfectly
reliable feedback, TAMER preforms the best of all tested algorithms, needing only 2
episodes to learn the optimal policy for all agents. SABL needs only 4 episodes to
reach it’s peak, however because SABL does not distinguish between levels of reward,
both the upper and lower paths are equal to it, and SABL agents received an average
cumulative reward of 0.9065 rather then the value of 0.92 it would have received if all
agents learned the optimal path. The BASIL algorithm takes 11 episodes to reach a
peak where all agents take the optimal path and actually suffers a degree of instability
for over 100 episodes. The BASIL algorithm does eventually fully stabilize, but this
experiment illustrates that correcting for bias comes at a cost.

64

Figure 5.2: Cumulative Reward for each algorithm when feedback contains moderate
positive bias µ = 0.5 with moderate variance σ = 0.3, and feedback is always given.

The BASIL Technique in a Gridworld: Normally Biased Feedback

Adding a moderate bias has different effects depending on the direction of the bias
as can be seen in Figures 5.2 and 5.3. Even a moderate positive bias is enough
to prevent SABL from ever learning either path because some time wasting actions
now receive a small positive reward on average. TAMER on the other hand copes
with a moderate positive bias easily as it still learns to reduce the distance to the
goal and avoid the hazards. A moderate negative bias actually helps SABL as it
makes starting the lower path non-rewarding, but, in this case, it causes TAMER to
never stabilize over the course of 250 episodes. In both cases, the BASIL algorithm
preforms well. For the small positive bias, TAMER still out preforms the BASIL
algorithm slightly which we believe is because of the very strong feature set it has
access to, and how this small positive bias is not enough change to what weights are
attached to what features. However with an equivalent negative bias, the BASIL
algorithm maintains it’s performance while TAMER falls significantly below it. The
BASIL algorithm and SABL preform very similarly on the small negative bias, with
a slight advantage to SABL, but as we discussed above even the small positive bias
causes SABL to fail entirely, while the BASIL algorithm maintains performance.

65

Figure 5.3: Cumulative Reward for each algorithm when feedback contains moderate
negative bias µ = −0.5 with moderate variance σ = 0.3, and feedback is always given.

Introducing a large bias (2.0) in either direction leaves BASIL as the only interactive
reinforcement learning algorithm to preform well. See Figures 5.4 and 5.5. With a
large positive bias (Figure 5.4), TAMER learns self destructive behavior as it now
receives rewards for actions that take it closer to hazards. This causes it to fail
entirely, even though it coped well with smaller positive bias. SABL, which coped well
with small negative bias, fails under a large negative bias as it receives punishment
for all actions and can not distinguish between grades of punishment. Of the three
interactive reinforcement learning algorithms tested, the BASIL algorithm is the only
algorithm which maintains performance for bias values in both directions or for large
bias in one direction.

The BASIL Technique in a Gridworld: Inconsistently Provided Feedback

Withholding feedback has different results depending on whether it is positive or
negative feedback that is withheld. See Figures 5.6 and 5.7. Neither case impacts
SABL as it was designed to handle this type of feedback distortion. Withholding most
negative feedback hinders the BASIL algorithm’s learning significantly and causes it
to develop instability on this problem, and slows TAMER down some (Figure 4.6).

66

Figure 5.4: Cumulative Reward for each algorithm when feedback contains large
negative bias µ = +2.0 with moderate variance σ = 0.3, and feedback is always
given.

Withholding most positive feedback has much less effect on the BASIL algorithm’s
stability but does cause it to have difficulty distinguishing between the upper and
lower paths. TAMER has much more difficulty with this scenario, and suffers signif-
icant instability with no sign of recovery (Figure 5.7).

The BASIL Technique in a Gridworld: High Variance in Feedback

Having very high variance σ = 2.0 in the feedback signal is a problem for all the
Interactive Reinforcement Learning algorithms we tested, but was more of an issue
for TAMER then the others as can be seen in Figure 5.8. We speculate this is because
the BASIL algorithm innately averages past feedback to get it’s estimate of action
utility, and SABL is unconcerned with exact feedback values. Even at this high level
of noise in the feedback signal, the BASIL algorithm and SABL are both able to
learn behavior far faster then the environmental Q-Learner, that does not use the
simulated human feedback, when this noise is the only distortion given. Combining
the high variance with other distortions each algorithm was not built for does cause
their performance to fall below that of the environmental Q-Learner.

67

Figure 5.5: Cumulative Reward for each algorithm when feedback contains large
negative bias µ = −2.0 with moderate variance σ = 0.3, and feedback is always
given.

The BASIL Technique in a Gridworld: Mixed Feedback Distortions

Mixing multiple types of distortion has complex effects. Both the BASIL algorithm
and SABL account for one type of effect and tend to respond as they do when only
the type of distortion they don’t account for is present. TAMER suffers the worst of
both effects. For example, when a moderate positive bias µ = 0.5 is combined with
withholding most feedback that would be positive before bias is applied (Figure 5.9),
the BASIL algorithm does fairly well, just as it does when feedback is given the same
way without bias. In this scenario SABL does terribly as the bias is enough to make
it waste all of its steps. TAMER does poorly, worse in fact then it preforms with
either distortions individually. As discussed above, adding very high variance to other
factors is enough to severely hinder the performance of all Interactive Reinforcement
learning algorithms.

68

Figure 5.6: Cumulative Reward for each algorithm when feedback contains no bias,
and positive feedback is always given, but negative feedback is only given with prob-
ability 0.1.

5.3 BASILTAMER: Results

As mentioned previously, we tested on 21 permutations of the parameters controlling
the simulated human trainer’s feedback and due to space constraints, we will have
to limit our analysis here to illustrative examples. Averages of the performance of
each algorithm under each permutation of basis for the last 10 episodes of training are
provided in Table 5.3. Our full results for all experiments are available in supplemental
files.

BASILTAMER: Perfectly Reliable Feedback

As can be seen in Figure 5.10, when the simulated human trainers give perfectly
reliable feedback with no bias both TAMER and BASIL TAMER algorithms preform
very well and match the oracle weights performance before the 5th episode.

69

Figure 5.7: Cumulative Reward for each algorithm when feedback contains no bias,
and negative feedback is always given, but positive feedback is only given with prob-
ability 0.1.

BASILTAMER: Normally Biased Feedback

Adding a moderate positive bias such as 5.0 causes classic TAMER to completely fail
as can be seen in Figure 5.11. However, it is worth mentioning that for this prob-
lem classic TAMER did better with negative bias and, as can be seen in Table 5.10,
maintained a decent performance at -5.0 median bias value although its performance
was still negatively impacted with more extreme negative bias having greater conse-
quences. We believe the difference in performance for negative verse positive bias can
be attributed to the feature set which is such that all features in it should generally
be minimized as opposed to maximized and therefore feedback corresponding high
performance such as that given by the oracle will be almost entirely negative. BASIL
TAMER maintains its performance at all bias values even with very high bias values
such as 80.0 regardless of the direction of bias.

70

Figure 5.8: Cumulative Reward for each algorithm when feedback contains bias with
µ = 0.0 but high variance σ = 2.0, and feedback is always given.

BASILTAMER: High Variance in Feedback

As can be seen in Table 5.10, having higher than expected variance in the feedback
signal is a problem for both forms of TAMER we tested. This is to be expected as
this variance amounts to noise in the feedback signal and the only counter to this
is to use a smaller alpha value and collect more feedback instances. Supplemental
experiments were performed with the µ = 0.0 and σ = 3.0 values using smaller values
for alpha and this was confirmed to restore eventual performance to the levels of the
µ = 0.0 and σ = 0.0 case.

5.4 BASILTAMER Extensions: Adaptive Variance BASILTAMER Ex-
tension Results

In figures 5.12, 5.13, and 5.14 you can see the results of our tests of the Adaptive
Variance BASILTAMER Extension, when the variance and standard deviation are
equal to 1.0, with no bias and a bias of 5.0, respectively. As can be seen, from these
results, the Adaptive Variance Extension of BASILTAMER does manage to preserve
the performance of BASILTAMER in the Tetris environment to a high degree. Figure

71

Figure 5.9: Cumulative Reward for each algorithm when feedback contains moderate
positive bias µ = 0.5 with moderate variance σ = 0.3, and negative feedback is always
given, but positive feedback is only given with probability 0.1.

5.14 shows the results of the test with bias, but no variance, and demonstrates that
the Adaptive Variance Extension still functions comparably to unmodified BASIL-
TAMER when bias is present. The Adaptive Variance Extension does learn slightly
slower than the unmodified BASILTAMER which we attribute to the Adaptive Vari-
ance Extension lowering its learning rate in response to the variance that inherently
emerges from the stochastic environment of Tetris. The results of testing with nei-
ther variance nor bias are generally the same as the results depicted in figure 5.14
except that in that case TAMER performs comparatively to BASILTAMER and the
Adaptive Variance BASILTAMER Extension. It should be noted that turning down
the learning rate will result in a slower improvement in the learned policy, therefore
the Adaptive Variance version of BASILTAMER does pay some cost to maintain it’s
performance and the cumulative reward for the extension when faced with variance
does not increase as quickly as the cumulative reward for the regular BASILTAMER
algorithm when not subjected to variance, as seen in our earlier experiments. How-
ever, we believe that to be unavoidable as there are few cures for noisy data other
than increasing the sample size, as even if the noisy data points can be identified,
individually they must be discounted meaning that more data will be needed. With

72

µ σ Classic TAMER BASIL TAMER
0.0 0.0 75.2 74.3
5.0 0.0 0.0 73.5
20.0 0.0 0.0 73.8
80.0 0.0 0.0 71.7
-5.0 0.0 49.0 73.8
-20.0 0.0 3.5 76.2
-80.0 0.0 1.5 75.6
0.0 3.0 15.2 14.1
5.0 3.0 0.0 16.5
20.0 3.0 0.0 14.7
80.0 3.0 0.0 14.0
-5.0 3.0 36.8 17.0
-20.0 3.0 4.4 17.6
-80.0 3.0 1.3 18.4
0.0 30.0 1.3 0.4
5.0 30.0 1.1 0.7
20.0 30.0 0.1 0.7
80.0 30.0 0.0 1.1
-5.0 30.0 1.4 1.5
-20.0 30.0 1.3 1.0
-80.0 30.0 2.1 0.4

Table 5.3: Averages over the last ten episodes of training across all samples for each
TAMER algorithm for each permutation of bias parameters.

that in mind, we consider these results to be a success for the Adaptive Variance
Extension.

5.5 BASILTAMER Extensions: Silence Experiments Results

In figures 5.15, 5.16, 5.18, 5.19, and 5.20, you can see the results of our tests of the
Zero Silence and Average Silence BASILTAMER Extensions. Before discussing the
performance of the extensions, it is worth considering the performance of unmodified
BASILTAMER in the different conditions. Notably, in this domain, that BASIL-
TAMER maintains performance better when negative feedback is withheld rather
than positive feedback. As we previously observed, BASILTAMER, inherently, has
some resistance to feedback withholding, as an emergent property of its bias counter-
ing properties. The performance of the Average Silence Extension is disappointing,
as it, overall, performs worse than unmodified BASILTAMER in the negative feed-
back withholding cases, although, it does outperform BASILTAMER in the positive
feedback withholding cases. The standout performer in these results is the Zero Si-
lence Extension. The Zero Silence Extension maintains a reasonable performance
in all experiments and it is often a top performer across the different experimental

73

Figure 5.10: Cumulative Reward for each algorithm when feedback contains no bias.

conditions. It is important to remember that these results might not translate across
different domains, particularly as they regard the effects of withholding positive feed-
back versus withholding negative feedback. The results to demonstrate that while
the Average Silence Extension did not perform effectively, in general, the Zero Silence
Extension did. The results also reiterate that the BASIL technique, inherently, serves
as a partial counter to feedback withholding, as feedback withholding does result in
a bias in the feedback given.

5.6 Deep BASILTAMER: Results

In Figure 5.21, we have the average cumulative reward as a function of time for
each algorithm with each representation. Each plot is the average of policies learned
from three separate training sessions with a human instructor. Each training session
produced a series of checkpoints of the model as it learned from the human trainer,
specifically, only the online trained portion of the model is check-pointed as the feature
extraction portion of the model does not change. These checkpoints are taken at
irregularly timestamps based upon the training session with timestamps being taken
when the human instructor provides feedback, but no more than once per second,
with the last version of the model in a given second being the version check-pointed.

74

Figure 5.11: Cumulative Reward for each algorithm when feedback contains moder-
ately high positive bias µ = 5.0 with no variance σ = 0.0.

Each checkpoint is evaluated on five games of Atari bowling to produce an average
score for the checkpoint. This creates a curve of data points for a training session,
forming a cumulative reward curve for that training session. The reward curves for
a particular set of training conditions, meaning a pairing of algorithm and agent
presentation, are interpolated and averaged to produce the cumulative reward curve
for that training condition. We apply the same technique to produce the later figures
using groupings of testing conditions.

As can be observed in Figure 5.21, those training conditions which utilized the
BASIL algorithm and either the PKD or Tron-X agent presentations fall behind
other PKD and Tron-X testing condition curves. This suggests that the addition of
the BASIL technique had a negative effect on the performance of Deep TAMER. This
can be very clearly observed in Figure 5.22.

However, the AIBO representation curves are remarkably different. As can be
seen in Figures 5.21 and 5.23, the baseline Deep Tamer algorithms had significantly
worse performances with the AIBO representation. We believe this is because human
trainers had a tendency to avoid punishment with the AIBO representation which
is consistent with Bartneck, Reichenback, and Carpenter’s[2] as well as Loftin et.
al’s[25] findings, and our expectations in designing the experiment. Notably, as Fig-

75

Figure 5.12: Cumulative Reward for each algorithm in Adaptive Variance experiments
when feedback contains no bias µ = 0.0 but does contain variance σ = 1.0

ure 5.22 demonstrates, the BASIL technique was able to account for the bias against
punishment for the human trainers under the AIBO conditions and re-contextualized
the feedback given in a way that brought the performance of the BASIL DeepTAMER
agent in line with the performance of other agents under different conditions. From
this we can conclude that a cost is paid when adding the BASIL technique to Deep
TAMER if there is not a significant enough bias to account for. However, under
circumstances in which there is significant bias in human feedback which would den-
igrate the learning agent’s performance, the BASIL technique is effective in altering
the given feedback to counteract the bias and to achieve a better performance.

5.7 Results for Multi-Circumstance Aware Deep BASILTAMER

In Figure 5.24, our results for the Multi-Circumstance Aware Deep BASILTAMER
experiments can be seen The results show that the Multi-Circumstance Aware Deep
BASILTAMER was able to learn from the mixed presentation feedback much more
quickly than any of the algorithms tested in this and other earlier experiments. It is,
of course, expected that an algorithm with approximately twice the human feedback
at any given time-step would learn faster than an algorithm receiving the normal

76

Figure 5.13: Cumulative Reward for each algorithm in Adaptive Variance experiments
when feedback contains both bias µ = 5.0 and variance σ = 1.0

amount of feedback, if all of that feedback can be meaningfully incorporated. In this
experiment, we also observed that without explicit modification to support multi-
ple circumstances the BASIL technique does not have an advantage over non-BASIL
techniques when both are presented with feedback drawn from two very different
biasing conditions. This is unsurprising as a BASIL implementation for normally dis-
tributed bias that assumes only one set of bias parameters will inevitably determine
a feedback adjustment that is not correct for either of the independent bias distri-
butions. It is, of course, possible that a BASIL based algorithm utilizing only one
set of bias parameters, but assuming a more complicated bias distribution, such as
a bimodal distribution, in place of the normal distribution, may perform better than
the normally distributed bias BASIL algorithm used in our experiment. However,
testing this alternative approach was beyond the scope of our experiment and would
require a more computationally expensive EM step.

77

Figure 5.14: Cumulative Reward for each algorithm in Adaptive Variance experiments
when feedback contains bias µ = 5.0 but no variance σ = 0.0

78

Figure 5.15: Cumulative Reward for each algorithm in the silence experiments when
feedback contains no bias µ = 0.0 and is never withheld.

79

Figure 5.16: Cumulative Reward for each algorithm in the silence experiments when
feedback contains bias µ = 5.0 and is never withheld.

80

Figure 5.17: Cumulative Reward for each algorithm in the silence experiments when
feedback contains no bias µ = 0.0 and positive feedback is withheld at a 50% rate.

81

Figure 5.18: Cumulative Reward for each algorithm in the silence experiments when
feedback contains no bias µ = 0.0 and positive feedback is always withheld.

82

Figure 5.19: Cumulative Reward for each algorithm in the silence experiments when
feedback contains no bias µ = 5.0 and negative feedback is withheld at a 50% rate.

83

Figure 5.20: Cumulative Reward for each algorithm in the silence experiments when
feedback contains no bias µ = 5.0 and negative feedback is always withheld.

84

Figure 5.21: Cumulative reward of learned policies as a function of training time for
each testing condition combination. Averaged from all applicable data. Observe that
the BASIL plots for PKD and TronX fall below the baselines, but the BASIL-AIBO
plot significantly exceeds other AIBO plots.

85

Figure 5.22: Cumulative reward of learned policies as a function of training time for
each algorithm with the PKD presentation average from all applicable data. Observe
that in the PKD presentation the BASIL technique hinders rather than helps the
performance of Deep TAMER.

86

Figure 5.23: Cumulative reward of learned policies as a function of training time
for each algorithm with the AIBO presentation average from all applicable data.
Observe that in the AIBO presentation the BASIL technique significantly improves
the performance of Deep TAMER relative to the baselines.

87

Figure 5.24: Cumulative Reward for epsilon greedy enhanced Deep TAMER (Eps
Greedy Deep TAMER cumulative reward), Deep BASILTAMER (BASIL Deep
TAMER cumulative reward), and Multi-Circumstance Aware Deep BASILTAMER
(MAA BASIL DT cumulative reward) trained offline on AIBO and PKD training ses-
sions recorded in earlier experiments. At each time-step, an algorithm has received
all of the feedback given during one PKD training session and one AIBO training
session up to that time-step.

88

Chapter 6 Discussion

In the following sections, we discuss our experimental findings and tests of the BASIL
technique.

6.1 Understanding Bias in Human Trainers: Discussion

Our results for our experiment studying the effects of an agent’s gender representa-
tion are statistically significant, but the size of the effect is relatively mild within the
context of our experiment. It is possible the effect could be much more significant in
more complex environments that might more strongly invoke human factors. For ex-
ample, violent or competitive activities like the classic first person shooter game mode
of Death match may invoke cultural or cross-cultural gender roles regarding violence
in competition. It is also possible that stronger effects could be produced with more
detailed agent representations such as a higher resolution graphical representation,
an audible voice, or more realistic movement.

Regardless of the size of the effect, we have shown that a bias definitely exists
based on the gendered presentation of a virtual agent’s representation. The pres-
ence of this bias could have unforeseen consequences on an agent’s training if not
accounted for. Whether the bias results in overall better feedback for male or female
representations is task and algorithm dependent. For example, classic reinforcement
learning algorithms perform best with strong, consistent feedback signals. Our re-
sults indicate that this could be better achieved by using the William representation
since the feedback given to this agent was less variable than the feedback given to
Alice. If one wants to encourage primarily positive feedback during training, as is
often the case when people professionally train living beings such as dogs or children,
then our results indicate that the Alice representation would be more suitable. In
some applications, neither bias may be universally preferable.

The implications of our research for social psychology are complex. A bias is con-
firmed to exist, with the agents receiving different amounts of reward and punishment
despite behaving absolutely identically. The magnitude of this effect is small and this
could be a reflection of several different possibilities. Previous research that found
larger disparities in punishment for example, could be attributed to a mixture of bias
and behavioral differences. Our effect could be muted by the knowledge that our
agent is virtual and the limits of our agent presentation, or, a stronger effect might
be observed with a different task than grid navigation. The strong similarity between
the bias produced by the agent’s presented gender and the effect of the instructor’s
gender is intriguing. If we assume that the human subjects would provide feedback
with the same biases to a human student as they did to the virtual agent, then we
might conclude that people teach as they have been taught. In other words, trainers
may be more likely to favor harsher punishments if they were more likely to get them
and more likely to favor greater rewards if they were more likely to receive them, etc.
However we have only shown correlation here, and much more study is needed.

89

The ethical implications are similarly complex. The source of the observed bias
could be either learned or neurologically inherent, and may be a combination of those
factors. Given that bias was observed, the question of the ethicality of sculpting the
agent’s presentation to attain the best pattern of feedback is raised. On the positive
side, this could result in more effective agents who better perform a desired task and
therefore benefit from human interest, while, on the negative side, such use could
reinforce these biases in culture, which could apply to interactions between humans.
We suspect that, in practical terms, the desire to make agent training as effective as
possible will be yielded to, however, this is worthy of greater discussion and research
in the future.

An additional theoretical issue is agents that can influence their own presentation.
Given sufficient learning capabilities and data to learn from, such agents could sculpt
their presentations to maximize feedback given to them by human instructors. As
machine agents have an increasing presence in online interactions, video games, etc.,
this has the potential to create circumstances where agents manipulate humans to
give them the best possible feedback, while not performing their intended function.
This is similar to the ’Big Red Button’ problem, where an embodied agent, one with
a physical real world presence, such as a robot, learns that a large red button or
other input device terminates its learning session, thus denying it the chance for
future positive feedback and either takes steps to disable the button or to disable the
human who would push the button. While such issues may be someways out from a
practical stand point, they remain issues that must be resolved eventually.

The perceived age of the agent representations is a potential compounding factor
that we attempted to address, but cannot entirely mitigate within the limits of pixel
art representation. Effort was made in the design of the pixel art representations to
make them appear as ’adult’ as possible regarding hairstyle, the presence of facial
hair, and clothing, while, simultaneously, attempting to convey a clear gender iden-
tity. Despite these efforts, we have received some additional feedback that suggests
some subjects still perceived the pixel-art as representing children. For this study,
we failed to anticipate that there would still be confusion over the representations’
presented age, and so, did not explicitly survey subjects for what age they perceived
the representations to be. Therefore, the compounding effects of perceived age is a
matter for future work.

The grid world task is limited in that ’bad behavior’ is restricted to time wast-
ing and self-endangerment, and does not include anything more directly disruptive,
aggressive, or violent. These limitations have applications for interactive machine
learning applications which will often be using tasks that differ greatly from the grid
world game. Others may consequently observe different biases in the feedback given.
However, even in this incredibly simple environment with a very limited representa-
tion, a statistical significant bias exists and this indicates that the effects of agent
representation are something users of interactive machine learning should consider.

This research has completed our first research goal for this work by increasing
our understanding of the ways in which factors, such as agent presentation, can
influence feedback given to interactive reinforcement learning algorithms. However,
our research has revealed that there remains much work to be done in this field,

90

particularly as to how an agent’s gender representation affects the feedback given by
a human trainer and to what extent it affects the feedback given; as well as in what
way biased feedback is provided for a variety of tasks performed by gendered agents,
to provide a few examples of the avenues which this research can take.

6.2 The BASIL Technique in a Gridworld: Discussion

As demonstrated in the results, the BASIL technique allows for very rapid learning
under even very heavy biases that warp all human feedback to the negative or positive
reward values. However, this is not without cost. When bias is not present, BASIL
has a slightly more erratic performance than traditional interactive reinforcement
learning algorithms that do not account for bias.

It is also necessary to choose a correct distribution type for the bias modeling.
Depending upon the distribution chosen and the way bias is actually distorted, you
may get better results accounting for the wrong type of bias than for not accounting
for any bias at all; however, this is not guaranteed. The BASIL technique is only
applicable for distribution types where the maximum likelihood function can be cal-
culated. For some problems performing the EM calculation may be costly. This may
be offset by not preforming it at every new instance of feedback. It is up to an agent’s
engineers to find a balance that works for their problem.

In our experiments, we tested only one algorithm using the BASIL technique.
There are many ways in which the technique could be used in conjunction with
other algorithms. For example, there is no reason an engineer could not develop an
algorithm that uses feedback provided by a human trainer filtered with the BASIL
technique in addition to an environmental reward algorithm. It is also possible to
integrate the BASIL technique into existing interactive learning algorithms such that
bias is filtered before feedback is provided to the main algorithm.

The BASIL technique satisfies our secondary research goal of developing a tech-
nique and algorithms for interactive reinforcement learning agents that account for
bias in feedback given by human trainers.

6.3 BASILTAMER: Discussion

As demonstrated in the results of both the Gridworld and Tetris experiments, the
BASIL technique allows for very rapid learning under even very heavy biases that
warp all human feedback to the negative or positive reward values. This is not with-
out cost. It is necessary to choose a correct distribution type for the bias modeling.
Depending upon the distribution chosen and the way bias is actually distorted, you
may get better results accounting for the wrong type of bias than for not accounting
for bias at all; however, this is not guaranteed. The BASIL technique is only applica-
ble for distribution types where the maximum likelihood function can be calculated.
For some problems, performing the EM calculation may be costly. This may be offset
by not preforming it at every new instance of feedback. It is up to an agent’s engi-
neers to find a balance that works for their problem. In our experiments, we tested

91

only a few algorithms using the BASIL technique. There are many ways in which
the technique could be used in other algorithms. For example, there is no reason
an engineer could not develop an algorithm that uses feedback provided by a human
trainer filtered with the BASIL technique in addition to environmental reward. It is
also possible to integrate the BASIL technique into other existing interactive learning
algorithms besides TAMER such that bias is filtered before feedback is provided to
the main algorithm.

6.4 BASILTAMER Extensions: Discussion

Readers should recall that we performed a collection of experiments testing three
extensions to BASILTAMER. One of these extensions, which we refer to as Adap-
tive Variance, was intended to take advantage of BASIL’s EM process to compute
the variance in the feedback given and, in turn, utilized that to dynamically adjust
the algorithm’s learning rate to counter noisy feedback. The other extensions, were
both designed to address feedback withholding, similar to SABL and ISABL. These
two extensions were tested against each other alongside the baselines of TAMER and
BASILTAMER. An astute reader might question why these algorithms were not com-
pared to SABL or ISABL. This is because neither SABL nor ISABL effectively scale
to domains, such as Tetris, without heavy modification to their forms, as presented by
Loftin et. all[25]. While it may be possible to make such adaptions to the SABL and
ISABL algorithms, we felt that doing so would require changes that were significant
enough that the resulting algorithms would be new derived works and not clearly the
same as the original algorithms. Furthermore, as the BASIL technique does owe a
significant heritage to ISABL, we felt that implementing another baseline that was
intended to be a translation of SABL or ISABL into the more complicated domain
of Tetris would be redundant.

Regarding the experiments testing these extensions, the results were mixed. The
Adaptive Variance Extension was clearly effective at its intended purpose, although it
introduces an additional hyper-parameter that must be set and it will have a different
optimal value in different domains and circumstances. In our silence experiments, we
found that the Average Silence Extension was not generally effective for the purpose
for which it was intended, although it did outperform unmodified BASILTAMER
in some circumstances. The Zero Silence Extension, on the other hand, was fully
effective at countering silence in our experiments. This result surprised us as the
Zero Silence approach is far simpler and, some might argue, so simple as to be triv-
ial. However, our results demonstrate that, sometimes, simpler solutions are more
effective and serve as a warning against over-complicated solutions.

These Extensions complete our tertiary goal of combining our techniques for bias
with techniques to address variance and inconsistency in feedback given by human
trainers.

92

6.5 Deep BASILTAMER: Discussion

Our Deep BASILTAMER experiments demonstrated that the Deep BASILTAMER
algorithm did not preform as well as the Deep TAMER algorithms unless the bias of
the feedback was particularly high as was demonstrated by the performance of the
algorithms in regards to the AIBO representation. This was most likely due to human
trainers avoiding punishing the AIBO representation. Again, this is consistent with
effect observed by Bartneck, Reichenback, and Carpenter’s research[2] as well as with
Loftin et. all’s[25] findings, and our expectations in designing the experiment. We
were able to show that the BASIL technique, when applied to Deep TAMER, was able
to account for the bias against punishment possessed by the human trainers under the
AIBO conditions and re-contextualized the feedback given in a way that brought the
performance of the Deep BASILTAMER agent in line with the performance of other
agents under different conditions. However, we can concluded from these experiments
that the cost paid to augment Deep Tamer with the the BASIL technique is too
high when there is not a significant enough bias that needs to be accounted for.
However, under circumstances in which there is significant bias in human feedback
which would denigrate the learning agent’s performance, the BASIL technique is
effective in altering the given feedback to counteract the bias and to achieve a better
performance.

It is worth discussing the overall performance of our Deep TAMER implementa-
tion in comparison to the results of Warnell et. all[34]. Notably, our implementation
received peak scores in the 80s while Warnell et. all report Deep TAMER as being
capable of achieving a score of 160 for all of their trainers. It is our belief that this
discrepancy arises from areas where we could not uncover the details of Warnell et.
all’s implementation and had to determine our own design for the implementation.

The area of concern for our implementation involves the Deep auto-encoder that
serves for Deep TAMER as a feature extraction. While Warnell et. all provided
sufficient details on the structure of the network, as far as we are aware they have
not published information on the specifics of the training, such as hyper-parameters,
number of training steps, etc.; nor have they published the weights of their auto-
encoder, to the best of our knowledge. Our own auto-encoder was only somewhat
effective, however, as it did not reliably reconstruct the position of the ball within
the image when utilized in conjunction with the decoder and it is our belief that
our auto-encoder has significant room for improvement. Because of the limitations
of our auto-encoder, during the experimental design phase, we also pursued utilizing
hand coded feature extractors in place of an auto-encoder. We found our results with
our hand coded feature extractor comparable to our auto-encoder implementation
during our initial testing. Therefore, we utilized the hand coded feature extractor
in our experiments because it was less computationally demanding than the auto-
encoder and could be deployed on a wider variety of machines. It could be argued
that replacing the auto-encoder with a feature extractor that is not a neural network
fundamentally changes the algorithm so that it is no longer precisely Deep TAMER,
however, we hold that because of the fundamental separation between the visual
auto-encoder and the online trained portion of the network that takes features and

93

produces an evaluation of actions that it is appropriate to treat the auto-encoder
as something that can be replaced with other techniques, as even two auto-encoders
with the exact same structure may produce very different sets of features for the
agent to evaluate. We suspect that our feature extractor’s limitations is the primary
cause of the discrepancy in the performance of our Deep TAMER implementation
and Warnell et. all’s.

There is one other area that we also suspect may have contributed to the relatively
low performance of our implementation compared to Warnell et. all’s, which is the
interface for human trainers to provided feedback to the agent. While Warnell et. all
did provide a wealth of detail on the way in which feedback instances were matched
with game states, timestamps, and actions; we have been unable to find any details
on the user interface that their human subjects provided feedback through. It is very
possible that differences between Warnell et. all’s user interface and our own played
a role in the performance discrepancy.

It is worth noting that while the performance we observed was well behind Warnell
et. all’ss, it is generally comparable to or exceeds the performance of non-interactive
reinforcement learning techniques, such as those that Warnell et. all presented as
a baseline in their experiments. While our results could be interpreted as a failure
to reproduce Warnell et. all’s work, we do believe that failure stems solely from
insufficient details provided by Warnell et. all in some areas of their available research
for us to duplicate their experiment and not from any problem or issue with the Deep
TAMER algorithm.

6.6 Multi-Circumstance Aware Deep BASILTAMER: Discussion

Our experiments show that in order to gain benefits from the BASIL technique when
feedback is biased with biases drawn from two highly distinct bias distributions, such
as the feedback given to our AIBO and PKD representations, that it is beneficial to
use a modification of the BASIL technique that explicitly accounts for the multiple
distributions, such as the one we presented. We showed that without such adap-
tions the BASIL technique may not provide benefits, in this circumstance. We also
observed that our Multi-Circumstance Aware BASIL algorithm was able to reach
peak performance in approximately 400 seconds of training session time by utilizing
feedback from multiple human trainers. In comparison to the algorithms from our
earlier Deep BASILTAMER Experiments which obtained peaks of a similar score in
approximately 700 to 800 seconds, the Multi-Circumstance Aware BASIL algorithm
reached the same peaks in almost half the time. While Multi-Circumstance Aware
Deep BASILTAMER algorithm received approximately the same number of training
feedback instances to reach that peak, the ability to source that feedback from mul-
tiple human trainers may enable this technique to be used on larger problems where
it is unfeasible for individual human trainers to contribute all of the feedback needed
to achieve a desired level of performance.

Copyright© Jonathan Indigo Watson, 2023.

94

Chapter 7 Conclusion

In conclusion, Interactive Reinforcement Learning is a variant of reinforcement learn-
ing that includes humans as an additional source of information to learn behaviors
from. On many tasks, it can allow agents to learn effective behavior much more
quickly than using classical reinforcement learning. However, introducing humans
directly into the process introduces complicated human factors that can skew the
feedback given and may vary depending upon the humans in question, the presenta-
tion of the agent, the problem being presented, and myriad other factors.

In this body of work, we had three goals:

• Increasing our understanding of the ways in which factors, such as agent pre-
sentation, can influence feedback given to interactive reinforcement learning
algorithms.

• Developing a technique and algorithms for interactive reinforcement learning
agents that account for bias in feedback given by human trainers.

• Combining our techniques for bias with techniques to address variance and
inconsistency in feedback given by human trainers.

To accomplish our first goal, we explored the effects of an agent’s presented gen-
der on human feedback provided in a Wizard of Oz experiment where we compared
feedback given to a virtual agent who was presented as either male or female. Human
trainers were tasked with helping a virtual agent learn to navigate a grid environment
with obstacles and hazards present. We also gathered demographic information from
the human instructors and analyzed feedback variation between demographic groups
where possible. We found a statistically significant effect of the agent’s presented
gender on feedback given by a human subject. The size of the effect was relatively
mild within the context of our experiment; however, the effect was very statistically
significant and could be much greater in more complex environments. We also discov-
ered a very similar effect of the human instructor’s gender identity on the feedback
given. We discussed the implication of these effects and their similarity as it regards
interactive machine learning and social psychology. This experiment also provides a
template for further research in how human bias effects feedback given.

To complete our second goal, we presented a general technique called Bias Adap-
tive Statistical Inference Learning (BASIL) to filter out bias from feedback. We pre-
sented a simple algorithm using the BASIL technique for normally distributed bias
and tested it against well established interactive reinforcement learning and classical
reinforcement learning algorithms. We found that the BASIL technique was able to
filter both positive and negative bias out of feedback provided by simulated human
trainers. This allowed our algorithm to perform well on highly distorted feedback
that rendered other interactive reinforcement algorithms incapable of learning any
path to the goal state. Our BASIL based algorithm also performed relatively well

95

on other types of feedback distortions such as those that SABL [25] was designed to
handle. However, it did not perform as well under those distortions as algorithms
that specifically accounted for them.

In order to expand the scope of problems to which our BASIL technique could be
applied, we presented an algorithm using the BASIL technique applied to the existing
TAMER algorithm for normally distributed bias and tested it against classic TAMER
in the domain of Tetris. We found that our algorithm, BASILTAMER, was able to
filter both positive and negative bias out of feedback provided by simulated human
trainers. This allowed our algorithm to perform well on highly distorted feedback that
rendered classic TAMER incapable of learning how to clear any lines. We discussed
ways to integrate the BASIL technique into other interactive reinforcement learning
work and the options it provides for studying the bias in human feedback in the
future.

We also presented three extensions of the BASILTAMER algorithm designed to
handle variance and silence, completing our third goal of combining our techniques
for bias with techniques to address variance and inconsistency in feedback given by
human trainers. While one of our silence techniques was not as effective as we had
hoped, the very simple technique of treating no feedback given as an explicitly neutral
feedback, and then allowing the BASIL technique to address the bias in that value
as ’normal’ was quite successful at countering feedback withholding in the domain
of Tetris. Our Zero Silence BASILTAMER Extension is a lesson in simple solutions
and a demonstration of the inherent power of the BASIL technique. Our Adaptive
Variance Extension was also successful in serving its intended function, which was
to take advantage of the BASIL technique’s need to calculate feedback distribution
parameters to modify the learning rate and to increase resilience to noisy feedback.

In order to fully realize our second goal, we sought to adapt the BASIL technique
to Deep Learning. In order to do this, we have presented an algorithm using the
BASIL technique applied to the Deep TAMER algorithm and have determined that
the costs of implementing Deep BASILTAMER resulted in the technique being useful
for tasks where a high bias is expected. We also observed similar results to the work
of Bartneck, Reichenback, and Carpenter [2] in which the human trainers provided
avatars of varying anthropomorphism different feedback. By applying the BASIL
technique to Deep TAMER, we completed our secondary goal.

We have also produced The Multi-Circumstance Aware Deep BASILTAMER al-
gorithm and have demonstrated that it was able to learn from mixed presentation
feedback much more quickly than any of the algorithms tested. This extension to
Deep BASILTAMER adapts the technique to not only the scale of Deep Learning,
but, additionally, to separate human trainers with differing biases. With the devel-
opment of the Multi-Circumstance Aware Deep BASILTAMER algorithm we hold
that our second goal is fully realized and all of our goals have been accomplished. We
have developed a broad and general technique for handling some of the complicated
factors that introducing humans into the loop of reinforcement learning brings.

Our work has a number of implications for machine learning and society as a
whole. Our first study provides a framework for studying inter-human biases as
applied to machine learning agents. The main body of our work produced several

96

algorithms of increasing complexity and scope for training interactive machine learn-
ing agents to accomplish any task that can be modeled as a Markov Decision Process
in a manner that accounts for human biases in the feedback that they provide to
interactive reinforcement learning agents. The technique is also provided in a general
form that can be adapted to additional algorithms as needed. Consequentially, it is
now possible to apply IRL to problems where human biases would typically pollute
the feedback to a degree that would harm the agent’s potential to learn. As machine
learning becomes an increasing larger part of people’s lives, it is necessary to provide
a means to non-programmers of training an artificial intelligence to perform a variety
of tasks relevant to them and their individual needs.

In general, IRL provides a framework for fulfilling this need. However, it may be
stymied by biases in the trainer’s feedback and non-experts cannot reasonably be ex-
pected to have a full understanding of what constitutes effective training. Therefore,
the BASIL technique provides a base for producing a large variety of tools to enable
non-expert users to train machine learning agents to accomplish tasks that would
otherwise not be feasible for machine learning algorithms or to reach levels of perfor-
mance that would, otherwise, require advanced domain expertise. Furthermore, the
BASIL technique enables providers of large scale products and services to integrate
user feedback from a large user base and to address the inherent bias in the collective
feedback for IRL applications. The BASIL technique also enables a high degree of
automatic customization to fit individual users desires and preferences without the
user explicitly needing to determine or set the values for those preferences. This sort
of automatic customization will be increasingly beneficial as machine learning tech-
nology is increasingly used to provide digital personal assistants, potentially allowing
each user of such systems to have a personalized assistant uniquely tailored to their
preferences, and tasks that they would like to accomplish.

Copyright© Jonathan Indigo Watson, 2023.

97

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning, 2004.

[2] Christoph Bartneck, Juliane Reichenbach, and Julie Carpenter. The carrot and
the stick: The role of praise and punishment in human–robot interaction. Inter-
action Studies, 9(2):179–203, 2008.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[4] Maya Cakmak, Crystal Chao, and Andrea L Thomaz. Designing interactions for
robot active learners. IEEE Transactions on Autonomous Mental Development,
2(2):108–118, 2010.

[5] Maya Cakmak and Manuel Lopes. Algorithmic and human teaching of sequential
decision tasks. In AAAI, 2012.

[6] Clara Cannon and Abrar Anwar. Calibrated feedback for reinforcement learning.
Preprint, 2022.

[7] Thomas Cederborg, Ishaan Grover, Charles L Isbell, and Andrea Lockerd
Thomaz. Policy shaping with human teachers. In IJCAI, pages 3366–3372,
2015.

[8] Sonia Chernova and Andrea L Thomaz. Robot learning from human teachers.
Synthesis Lectures on Artificial Intelligence and Machine Learning, 8(3):1–121,
2014.

[9] Francois Chollet et al. Keras, 2015.

[10] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. 1977.

[11] A Chris Downs and Darryl C Gowan. Sex differences in reinforcement and
punishment on prime-time television. Sex Roles, 6(5):683–694, 1980.

[12] Andrew J Elliot. Color and psychological functioning: a review of theoretical
and empirical work. Frontiers in Psychology, 6:368, 2015.

[13] Lee Ellis and Christopher Ficek. Color preferences according to gender and sexual
orientation. Personality and Individual Differences, 31(8):1375–1379, 2001.

[14] Paolo Frassanito and Benedetta Pettorini. Pink and blue: the color of gender.
Child’s Nervous System, 24(8):881–882, 2008.

98

[15] James F Gregory. The crime of punishment: Racial and gender disparities in
the use of corporal punishment in us public schools. Journal of Negro Education,
pages 454–462, 1995.

[16] Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles Lee Isbell, and
Andrea Lockerd Thomaz. Policy shaping: Integrating human feedback with
reinforcement learning. In NIPS, 2013.

[17] Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Ŕıo, MarkWiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585:357–362, 2020.

[18] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007.

[19] Charles Lee Isbell, Christian R. Shelton, Michael Kearns, Satinder P. Singh, and
Peter Stone. A social reinforcement learning agent. In Agents, 2001.

[20] Taylor A. Kessler Faulkner, Elaine Schaertl Short, and Andrea L. Thomaz. In-
teractive reinforcement learning with inaccurate feedback. In 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 7498–7504,
2020.

[21] Faisal Khan, Xiaojin Zhu, and Bilge Mutlu. How do humans teach: On curricu-
lum learning and teaching dimension. In NIPS, 2011.

[22] W. Bradley Knox, Brian D. Glass, Bradley C. Love, W. Todd Maddox, and Peter
Stone. How humans teach agents - a new experimental perspective. International
Journal of Social Robotics, 4:409–421, 2012.

[23] W. Bradley Knox and Peter Stone. Interactively shaping agents via human
reinforcement: the tamer framework. In K-CAP, 2009.

[24] Mika Lehdonvirta, Yosuke Nagashima, Vili Lehdonvirta, and Akira Baba. The
stoic male: How avatar gender affects help-seeking behavior in an online game.
Games and culture, 7(1):29–47, 2012.

[25] Robert Tyler Loftin, James MacGlashan, Bei Peng, Matthew E Taylor, Michael L
Littman, Jeff Huang, and David L Roberts. A strategy-aware technique for
learning behaviors from discrete human feedback. In AAAI, pages 937–943,
2014.

[26] F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, pages 65–386, 1958.

99

[27] Steven R Shaw and Jeffery P Braden. Race and gender bias in the administration
of corporal punishment. School Psychology Review, 19(3):378–383, 1990.

[28] Sonja B Starr. Estimating gender disparities in federal criminal cases. American
Law and Economics Review, 17(1):127–159, 2014.

[29] Murray A Straus and Julie H Stewart. Corporal punishment by american parents:
National data on prevalence, chronicity, severity, and duration, in relation to
child and family characteristics. Clinical child and family psychology review,
2(2):55–70, 1999.

[30] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[31] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,
volume 2. MIT press Cambridge, 1998.

[32] Andrea L Thomaz and Cynthia Breazeal. Transparency and socially guided
machine learning. In 5th Intl. Conf. on Development and Learning (ICDL),
2006.

[33] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[34] Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep
tamer: Interactive agent shaping in high-dimensional state spaces. 02 2018.

[35] Chris Watkins. Learning from delayed rewards. 1989.

[36] Adam Waytz, Joy Heafner, and Nicholas Epley. The mind in the machine:
Anthropomorphism increases trust in an autonomous vehicle. Journal of Exper-
imental Social Psychology, 52:113–117, 2014.

[37] Mike Younger and Molly Warrington. Differential achievement of girls and boys
at gcse: Some observations from the perspective of one school. British Journal
of Sociology of Education, 17(3):299–313, 1996.

100

Vita

Jonathan Indigo Watson
Academic Degrees and Educational Achievements:
James Madison University- Bachelor of Science: 5/10/2014
James Madison University- Distinguished Graduate: 5/5/2016
James Madison University and the CNSS- Certified Information Systems Security

Professional: 5/5/2016
James Madison University- Master of Science: 5/7/2016
Publications:
Co-author: We Don’t Really Need Quaternions in Geometric Modeling, Computer

Graphics and Animation: Here Is Why. Computer-Aided Design and Applications
20(6), 2023, 1061-1073.

Primary author: Bias Adaptive Statistical Inference Learning Agents for Learning
from Human Feedback.FLAIRS-34 proceedings 2021-05-11.

101

	The BASIL technique: Bias Adaptive Statistical Inference Learning Agents for Learning from Human Feedback
	Recommended Citation

	Abstract
	Title Page
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Understanding Human Bias
	1.2 Bias Adaptive Statistical Inference Learning (BASIL) Agents for Learning from Human Feedback
	1.3 BASIL and Deep Neural Networks

	2 Background and Related Work
	2.1 Reinforcement Learning and Interactive Reinforcement Learning
	2.2 Existing General Work in Interactive Machine Learning
	2.3 Existing Work in Human Bias in Interactive Machine Learning
	2.4 Related Work in the Social Sciences

	3 Algorithms
	3.1 The BASIL technique
	3.2 BASILTAMER Algorithm
	3.3 Deep BASILTAMER Algorithm

	4 Methods: Experiments in Bias and the BASIL Technique
	4.1 Understanding Bias in Human Trainers
	4.2 The BASIL Technique in a Gridworld
	4.3 BASILTAMER
	4.4 BASILTAMER Extensions
	4.5 Deep BASILTAMER
	4.6 Multi-Circumstance Aware Deep BASILTAMER

	5 Results
	5.1 Understanding Bias in Human Trainers: Results
	5.2 The BASIL Technique in a Gridworld: Results
	5.3 BASILTAMER: Results
	5.4 BASILTAMER Extensions: Adaptive Variance BASILTAMER Extension Results
	5.5 BASILTAMER Extensions: Silence Experiments Results
	5.6 Deep BASILTAMER: Results
	5.7 Results for Multi-Circumstance Aware Deep BASILTAMER

	6 Discussion
	6.1 Understanding Bias in Human Trainers: Discussion
	6.2 The BASIL Technique in a Gridworld: Discussion
	6.3 BASILTAMER: Discussion
	6.4 BASILTAMER Extensions: Discussion
	6.5 Deep BASILTAMER: Discussion
	6.6 Multi-Circumstance Aware Deep BASILTAMER: Discussion

	7 Conclusion
	Bibliography
	Vita

