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ABSTRACT OF DISSERTATION 
 
 
 
 

AN EPIDEMIOLOGICAL AND PHARMACOKINETIC-PHARMACODYNAMIC 
INVESTIGATION INTO THE IMPACT OF CARBAPENEM-RESISTANT 

ENTEROBACTERALES 
 

Background: According to the 2019 CDC Antibiotic Resistance Threats Report, 
more than 2.8 million antibiotic-resistant infections occur in the United States each 
year, leading to more than 35,000 deaths. Among the most urgent threats identified 
by the CDC are carbapenem-resistant Enterobacterales (CRE). Despite efforts to 
control the spread of these organisms, the number of estimated cases between 
2012 and 2017 remained stable. In 2017, an estimated 13,100 hospitalized cases 
of CRE led to approximately 1,100 deaths and $130 million attributable healthcare 
costs. This dissertation seeks to address this issue from both a 
pharmacokinetic/pharmacodynamic and epidemiological perspective.  
 
Methods: We evaluated the susceptibility of 140 CRE clinical isolates against novel 
agents eravacycline and plazomicin using techniques standardized by the Clinical 
and Laboratory Standards Institute. We performed in-vitro static time-kill assays in 
8 Verona Integron-encoded metallo-beta-lactamase (VIM)-producing CRE using 
single and combination exposures of cefepime, meropenem, 
piperacillin/tazobactam, amikacin, and plazomicin along with aztreonam and 
aztreonam/avibactam. Additionally, we performed a 10-year, inverse probability of 
treatment weighting adjusted retrospective cohort study comparing the risk in 
observing a composite outcome of all-cause mortality or discharge to hospice in 
patients having CRE vs. carbapenem-susceptible Enterobacterales (CSE) 
infections after 14 and 30 days. In this cohort, we also reported on the prevalence 
of CRE across the decade. Additionally, we compared the organism composition 
and susceptibilities of isolates cultured in both the CRE and CSE groups.  
 
Results: Plazomicin showed higher susceptibility than eravacycline against our 
CRE isolates. In time kill studies, plazomicin was bactericidal against 5/8 isolates 



  

as monotherapy. Meropenem/amikacin or meropenem/plazomicin were 
bactericidal in all experiments, except for one isolate which regrew against 
meropenem/plazomicin. Aztreonam/avibactam was bactericidal in all experiments 
tested. Neither cefepime nor piperacillin/tazobactam improved the activity of 
plazomicin against our isolates. Cefepime with amikacin showed inconsistent 
activity. In the retrospective cohort study, the overall incidence of CRE infections 
was 1.8%. CRE isolates exhibited higher resistance across all routinely tested 
antimicrobials classes compared to CSE. The CRE population appeared to be 
largely non-carbapenemase-producing given the high susceptibility of meropenem 
and the high prevalence of E. cloacae, a known AmpC-producer. Overall, the risk 
of composite outcome only appeared to be increased among patients with a 
bloodstream infection on the index date and could only be assessed when utilizing 
an exposure of carbapenem-non-susceptible Enterobacterales (CNSE) due to 
insufficient sample size. However, the results were inconclusive as they were not 
statistically significant.  
 
Conclusions: Novel antimicrobial agents plazomicin and aztreonam/avibactam 
were highly active against a collection of CRE including both Klebsiella 
pneumoniae carbapenemase (KPC) and VIM. Aztreonam/avibactam, 
meropenem/amikacin, and meropenem/plazomicin all exhibited comparably 
bactericidal activity. Furthermore, at an academic medical center in a non-endemic 
region for CRE, it appears that CRE infection may have increased the risk of 
experiencing the composite outcome after both 14 and 30 days, but definitive 
conclusions may not be drawn given the lack of statistical significance and 
imprecision in the estimation of the effect. The difficulties in drawing definitive 
conclusions from this study owing to limited sample size in the CRE or CNSE group 
stresses the importance of developing novel strategies and performing larger, 
multicenter studies when investigating highly resistant infections with low 
prevalence. 
 
KEYWORDS: Carbapenem-resistant Enterobacterales, antimicrobial susceptibility 
testing, pharmacokinetics, pharmacodynamics, pharmacoepidemiology,  
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I. Introduction 

Burden of Antimicrobial Resistance 

Antimicrobial resistance is one of the most pressing concerns plaguing humanity 

in the 21st century. In the United States, recent CDC estimates place annual deaths 

directly contributable to antimicrobial resistance at 35,000, with the number of 

infections at 2.8 million. (1) In the European Union, similar estimates of annual 

mortality, 33,000 deaths, have been reported resulting in an estimated €1.5 billion 

in healthcare and productivity loses. (2) In a recent global estimate, 1.27 million 

[95% uncertainty interval, 0.911 – 1.71 million] deaths were directly attributable to 

antimicrobial resistance globally. However, 929,000 [660,000 – 1,270,000] of 

these estimated deaths were caused by six pathogens: E. coli, S. aureus, K. 

pneumoniae, S. pneumoniae, A. baumannii, and P. aeruginosa. (3)  

 

Most of these pathogens, excluding S. pneumoniae due to the availability of a 

vaccine, were listed in the 2019 CDC Antibiotic Resistance Threats Report among 

the highest threat levels (urgent and serious), which were separated into 4 

categories: urgent threats, serious threats, concerning threats, and a watch list. 

The factors considered for placement into one of these categories were clinical 

impact, economic impact (if available), incidence, 10-year projection of incidence, 

transmissibility, availability of effective antimicrobials, and barriers to prevention. 

The CDC considers carbapenem-resistant Acinetobacter, carbapenem-resistant 



 

 

 

 

2 

Enterobacteriaceae (CRE), Candida auris, Clostridiodes difficile, and drug-

resistant Neisseria gonorrhoeae to be urgent threats. Extended-spectrum beta-

lactamase (ESBL) -producing Enterobacteriaceae, vancomycin-resistant 

Enterococci, multidrug-resistant Pseudomonas aeruginosa, methicillin-resistant 

Staphylococcus aureus, and drug-resistant Campylobacter, Candida, Shigella, 

non-typhoidal Salmonella and Salmonella serotype typhi, Streptococcus 

pneumoniae, and tuberculosis are considered to be serious threats. The 

concerning threats were erythromycin-resistant group A Streptococcus and 

clindamycin-resistant group B Streptococcus. New to the report in 2019 was a 

watch list category, which included azole-resistant Aspergillus fumigatus and drug-

resistant Mycoplasma genitalium and Bordetella pertussis. This final category was 

added to provide information on infectious causes that are either uncommon or 

whose impact is not currently understood. Future reports may elevate these threats 

to higher levels of concern if their impact expands in the coming years. Pages 16 

and 17 of the 2019 Threats Report provide an excellent summary table of the 

updated burden of disease from 2013, the current impact of these threats, and a 

comparison between the two reports. 

 

Nearly all of these pathogens were also identified in the initial 2013 CDC Antibiotic 

Resistance Threats Report, which suggests that much more work is needed to 

curb this issue. (4) In the case of newly added threats, we are provided with 

additional examples of the resiliency of microorganism and their ability to evade 

treatment. Herein, I will briefly review the history and clinical impact of antimicrobial 
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resistance, with a specific focus on beta-lactam resistance in Gram-negative 

pathogens, to serve as a basis for the necessity of this present work and continued 

efforts in addressing this crisis.  

 

Of note, while this introduction will cover topics concerning a broad range of Gram-

negative organisms, the scope of this work is contained within those species found 

in the order Enterobacterales. The nomenclature of this order underwent a 

significant reconstruction within the previous decade which may trigger confusion 

for the unaware reader of this dissertation. Historically, the relevant Gram-negative 

bacteria belonged to the order Enterobacteriales, which contained a single family, 

the Enterobacteriaceae. (5). However, following the work of Adeolu et al 2016, the 

order Enterobacteriales was changed to Enterobacterales, and six new families 

Budviciaceae, Erwiniaceae, Hafniaceae, Morganellaceae, Pectobacteriaceae, and 

Yersiniaceae were added to the existing family Enterobacteriaceae within the 

order. (6) Of relevance to this work, the genera Morganella, Proteus, Providencia, 

and Serratia no longer belong to the Enterobacteriaceae family.  

 

This creates referential conflicts with previous studies which use the family name 

Enterobacteriaceae for total inclusion of all bacteria now contained in the order 

Enterobacterales. For all intents and purposes, previous uses of the family name 

Enterobacteriaceae and current use of the order name Enterobacterales are 

largely equivalent within their respective contexts. Therefore, I have chosen only 

to use the family name Enterobacteriaceae when directly referencing work that 
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employed this previous nomenclature. In all subsequent work I will use the order 

name Enterobacterales unless otherwise specified, even when the use of the 

family name Enterobacteriaceae may be more specific. Within this framework, the 

reader may safely assume that Enterobacteriaceae and Enterobacterales are 

synonymous. Furthermore, the American Society of Microbiology (ASM) 

recommendation to italicize names of all bacterial taxa (from species to kingdom) 

are implemented within this work to ensure consistency. 

Ancient Resistance 

Although the phenomenon of antimicrobial resistance has only recently been 

observed within the past century by humans, current evidence clearly suggests 

that this has been happening for millennia. Numerous analyses have reported that 

various resistance mechanisms are millions, if not billions, of years old by 

phylogenic analysis. Metallo-beta-lactamases, for example, are thought to have 

evolved > 2 billion years ago. (7, 8). TEM-1 and -116 beta-lactamases (named 

after a Greek patient, Temoniera, from whom the first known isolate carrying this 

resistance mechanism was isolated (9)) were characterized using metagenomics 

from sediment samples of the deep-sea Edison seamount, estimated to be ~ 

10,000 years old. (10) Hall and Barlow even estimate that TEM and SHV 

(sulphydryl variable) enzymes diverged between 300-400 million years ago. Two 

other groups sampled long isolated ecosystems (30,000 year old Alaskan 

permafrost sediments and Lechuguilla Cave which had been isolated from the 
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surface for > 4 million years), both found diverse antimicrobial resistance 

mechanisms, with the permafrost even containing a vanHAX cluster. (11, 12)  

 

In fact, it appears likely that the natural production of antimicrobials and 

development of antimicrobial resistance has coevolved. The biosynthetic 

pathways that produce erythromycin, streptomycin, vancomycin, and daptomycin 

are estimated to be 880, 610, 240, and 30 million years old. (13) Marshall et al 

suggest that glycopeptide producers may have been the ancient source of 

vancomycin resistance currently found in Enterococci species. (14) 

Aminoglycoside producers have also been implicated as a source of clinically 

relevant aminoglycoside resistance determinants. (15)  

Resistance Mechanisms 

To my knowledge, resistance to every available antimicrobial has been 

documented, though some resistance mechanisms may be more prevalent than 

others. Bacteria’s immense capacity for resistance can be condensed into three 

primary strategies: decreasing intracellular antimicrobial concentrations by 

regulating entry, alteration of the antimicrobial target stie, and enzymatic 

alteration/degradation of the antimicrobial itself. (16) Furthermore, bacteria may 

take advantage of multiple of these strategies against a single or several drug(s) 

simultaneously to achieve a multidrug resistant (MDR) phenotype. Although 

variation exists between organizations, MDR organisms are often defined as 

having acquired non-susceptibility to three separate antimicrobial classes (ex. a 
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beta-lactam, an aminoglycoside, and a fluoroquinolone). (17) MDR bacteria that 

achieve resistance against commonly used antimicrobials, especially those of last 

resort, are often colloquially referred to as “super bugs”, and these are the 

pathogens of concern previously enumerated from the CDC Threats Report. (1) 

 

 
Figure I-1: Gram-positive vs. Gram-negative outer barriers 
Shown above are the cellular membranes and walls for both Gram-negative (a) 
and -positive bacteria (b). Note the differences in the number of cellular 
membranes and the thickness of the peptidoglycan cellular wall between these 
two bacterial types. This figure is repurposed from Brown et al, 2015. (18) 

 
Bacteria limit the entry of antimicrobial compounds by either limiting how much of 

the antimicrobial enters directly or by efficiently removing it before it performs its 

action. Maybe one of the oldest of these mechanisms is the presence of an outer 

membrane, as illustrated in Figure I-1. Diderms and monoderms are separated by 

the presence or absence of an outer membrane enveloping the peptidoglycan cell 

wall, respectively. (19) In the clinical microbiological context, this distinction is often 

classified by Gram staining. Monoderms lacking an outer membrane will stain 

purple-brown upon inspection because the cell wall accepts the crystal violet or 

methylene blue dye applied, while diderms will appear a pink color due to the 
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counterstain, usually fuchsin (without this counterstain, the diderms would lack 

color as their outer membrane isn’t stained by the initial dye). (20) This led to the 

terminology of Gram-positive and Gram-negative. The ubiquity of the latter 

terminology is due to its earlier origin. Gram staining was introduced by Hans 

Christian Gram in 1882, while the earliest proposal of the monoderm/diderm 

distinction was offered by Radhey S. Gupta in 1998. (20, 21) As the Gram-stain 

indication is aptly applicable to clinically relevant pathogens, this will be employed 

for the remainder of this document. 

 

 
Figure I-2: Structure of Gram-negative lipopolysaccharide 
Repurposed from Ruiz et al, 2009. (22) 
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The outer membrane is comprised of a bilayer of phospholipids and 

lipopolysaccharides (LPS) [Figure I-2]. Antimicrobial passage through the outer 

membrane primarily occurs via diffusion through porin channels on the outer 

membrane surface for hydrophilic molecules or diffusion through the lipid bilayer 

for hydrophobic molecules. (23) A recent exception to this rule is the novel beta-

lactam cefiderocol, which utilizes both porin channel diffusion as well as active 

transport through the iron transport system by chelating ferric iron. (24) Several 

antimicrobial classes, most notably glycopeptides (vancomycin), are unable to 

cross this barrier, which imparts intrinsic resistance of Gram-negative bacteria to 

these antimicrobials. These bacteria are otherwise susceptible to the activity of 

these agents, which has prompted attempts to disrupt the membrane and 

overcome the conditional resistance. Stokes et al found that in colder 

temperatures, in-vitro vancomycin activity was restored against E. coli due to 

temperature mediated outer membrane disruption. (25) Furthermore, other groups 

have shown that combinations of vancomycin with polymyxins or colistin, which 

are potent membrane disrupters, strongly increases the potency of vancomycin 

against Gram-negative bacteria. (26, 27) Recently, van Groesen et al published 

data on a compounds they called “vancomyxins”, a vancomycin molecule linked to 

polymyxin E nonapeptide (PMEN), which demonstrated significant gains in 

potency against select Gram-negative bacteria compared to unmodified 

vancomycin. (28) 
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Porin channels 

 
Figure I-3: Gram-negative Porin Channels 
Simplified model of Gram-negative bacterial permeability of small, hydrophilic 
antibiotics, repurposed from Blair et al, 2015. (16) 

 
As mentioned before, porin channels provide passage for a variety of chemicals 

through the outer membrane of Gram-negative bacteria, including some 

antimicrobials. More specifically, these are water filled channels which selectively 

allow small, hydrophilic chemicals to cross the outer membrane, which may be 

seen in the simplified model illustrated in Figure I-3. Bacteria may selectively 

regulate these channels to adapt to noxious external stimuli, including 

antimicrobials. Bacteria may also gain mutations which may lower or completely 

stop the expression or translation of the channel, alter the composition of the 

channel, or alter regulatory proteins vital to the expression of the channel. (29) 

Alteration of porin channel expression/regulation has been observed in many 
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Gram-negative bacteria; however, Pseudomonas aeruginosa and Acinetobacter 

baumannii are two clinical pathogens which most frequently employ this resistance 

mechanism. (30, 31) Fernandez et al provide examples of clinically relevant porin 

channels expressed in various Gram-negative bacteria, notably OprD in 

Pseudomonas aeruginosa, CarO in Acinetobacter baumannii, and OmpC, OmpF, 

and OmpK found in various Enterobacterales. (29) 

Efflux pumps 

 

 
Figure I-4: Gram-negative Efflux Pumps 
Examples of efflux pumps spanning both the inner and outer membrane, 
repurposed from Du et al, 2018. (32) 

 
Both Gram-positive and -negative bacteria express active transport proteins 

designed to expel a wide variety of molecules, which are collective referred to as 

efflux pumps [Figure I-4]. These proteins provide another selective means to 
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safeguard the bacteria from harmful environmental stimuli. Efflux pumps are much 

more complex than porin channels, and, in Gram-negative bacteria, they are often 

comprised of three components (tripartite), which span the inner and outer 

membranes as well as the intermediate, periplasmic space. (29) Efflux pumps are 

energy-dependent and may directly consume ATP or operate using proton motive 

force. To prevent inefficient resource utilization, their expression is highly regulated 

by a complex network of local and global regulators. Mutations in either of these 

processes may result in over expression of a single or many efflux pumps or more 

efficient efflux pumps for specific substrates, both of which may provide an 

increased fitness towards antimicrobial exposure. (29) Complicating matters 

further is the fact that some bacteria often combine differential porin channel 

expression/regulation with simultaneous alterations of efflux pump 

expression/regulation. (29) This synergistic relationship, especially when paired 

with other resistance determinants (discussed below), can lead to resistance 

against even drugs of last resort, such as carbapenems, especially in pathogens 

such as Pseudomonas aeruginosa and Acinetobacter baumannii, as mentioned 

before.  
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Altering target site 

 
Figure I-5: Common Resistance Mechanisms involving Target Site 
Modification 
a. interaction between the antimicrobial and target site in the wild-type bacteria; 
b. inhibition of antimicrobial activity at the target site due to structural changes 
precipitated by genetic mutation; c. inhibition of antimicrobial activity at the 
target site due to competitive binding of an endogenously produced chemical; 
repurposed from Blair et al, 2015. (16) 

 
The next common strategy for bacteria to evade antimicrobial exposure is to alter 

the binding site of the antimicrobial [Figure I-5]. To accomplish this, a bacteria may 

either chemically modify or evolve a mutation, often a single nucleotide 

polymorphism (SNP), in the target site to alter the binding affinity of the 

antimicrobial or express proteins which prevent the interaction of the antimicrobial 

with the target site. (16) In Gram-negative bacteria, these mechanisms are notable 

causing for aminoglycoside and fluroquinolone resistance. Although the most 

commonly employed strategy by Gram-negative bacteria against aminoglycosides 
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is drug modification (described later), methylation of the aminoglycoside binding 

site in the 30S ribosomal subunit causes a highly resistant phenotype against all 

clinically available aminoglycosides in the US. This is mediated by 16S ribosomal 

RNA methyltransferases (16S RMTs), the most common being ArmA and RmtB, 

which are growing in prevalence among MDR strains. (33) SNPs occurring in gyrA 

and/or parC, which encode the Gram-negative DNA gyrase and topoisomerase IV, 

prevent the binding of fluroquinolones and may lead to a resistant phenotype. 

Often multiple point mutations are necessary to achieve clinical resistance. (34) 

Resistance to fluoroquinolones may also be mediated qnr genes, which are often 

found on plasmids. These genes encode pentapeptide repeat proteins, which 

appear to bind the topoisomerase IV – fluroquinolone complex resulting in the 

release of the drug and protection from double-stranded DNA breaks. (16) 
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Modifying antimicrobial 

 
Figure I-6: Common Resistance Mechanisms involving Direct Modification of 
the Antimicrobial 
a. interaction between the antimicrobial and target site in the wild-type bacteria; 
b. inactivation of the antimicrobial mediated by enzyme catalyzed hydrolysis; c. 
inactivation of the antimicrobial mediated by enzyme catalyzed addition of 
bulky chemical moieties to the antimicrobial; repurposed from Blair et al, 2015. 
(16) 

 
In addition to altering the target of the antimicrobial, bacteria may also chemically 

modify the antimicrobial itself, rendering it inert. Most commonly this involves 

hydrolysis or the addition of a molecule to the drug, both of which will disrupt the 

drug from effectively binding the target. (16) Two drug classes routinely affected 

by these mechanisms are beta-lactams and aminoglycosides. Beta-lactams are 

hydrolyzed by a wide variety of enzymes which are collectively known as beta-

lactamases. These will be discussed in greater detail below, but, briefly, the beta-
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lactamases resemble the target proteins of the beta-lactams, dd-peptidase (or 

penicillin binding protein (PBP) as it has more commonly been known). Unlike the 

PBPs, which are irreversibly inhibited by beta-lactams, beta-lactamases are able 

to efficiently catalyze the hydrolysis of the beta-lactam ring without compromising 

the function of the proteins. (35) Aminoglycoside modifying enzymes (AMEs), 

however, modify the aminoglycosides in a regiospecific manner depending on 

which molecule is used to modify the aminoglycosides. Acetyltransferases (AACs) 

modify various amino groups, while nucleotidyltransferases (ANT) and 

phosphotransferases (APHs) modify various hydroxyl groups. (36) The addition of 

these various molecules to the aminoglycoside sterically inhibits its ability to 

effectively interact with the ribosome and thereby renders it ineffective. 
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Horizontal Gene Transfer 

 
Figure I-7: Common Mechanisms of Horizontal Gene Transfer 
a. Transformation occurs by accepting DNA from damaged or lysed bacteria; 
b. Transduction occurs when bacteriophages insert foreign DNA into the 
bacterial genome; c. Conjugation occurs when genetic information is 
transferred through pili which connect two bacteria; d. Genetic information may 
also be transferred between bacteria via outer membrane vesicles, repurposed 
from Brito et al, 2021. (37) 

 
As described above, bacteria can alter the regulation of house-keeping proteins or 

mutating proteins to evade elimination; however, many resistant bacteria, 

especially MDR bacteria, utilize DNA that originated from another bacteria. The 

spread of genes between bacteria is a process known as horizontal gene transfer 

[Figure I-7]. (38) Three mechanisms of gene transfer are the most recognized: 

conjugation, transformation, and transduction. During conjugation, a “donor” 
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bacteria transfers genetic material to a “recipient” bacteria directly with the help of 

a pilus, which bridges the two cells. This is often facilitated by mobile genetic 

elements, such as plasmids, integrons, and transposons, which may carry multiple 

resistance genes. Transformation occurs when a bacteria uptakes DNA from the 

environment instead of directly receiving it from another bacteria. Transduction is 

the integration of genetic material that occurs due to bacteriophages. (39) More 

recently, bacteria have been shown to also share genetic information via outer 

membrane vesicles. (37) 

Antibiotic Era 

Discovery 

When discussing the human history of antibiotic use, Sir Alexander Fleming’s 

discovery of penicillin is often cited as the beginning. Although this discovery 

kickstarted the isolation of secondary metabolites of microorganisms for the use of 

antimicrobial therapy, evidence of tetracycline in the bones of skeletons found in 

Sudanese Nubia, dated from 350-550 CE, suggests that human interaction with 

these compounds dates back much further than the 1940’s. (40) Traditional 

Chinese medicines have long been utilized for healing, and the compound 

artemisinin, which has anti-malarial activity, was discovered by investigating 

ancient Chinese recipes. (41) 

 

Paul Ehrlich’s discovery of Salvarsan, also known as arsphenamine or compound 

606, in 1907 when studying chemical derivatives of atoxyl introduced the concept 
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of chemical modification and testing of various lead compounds in search of 

antimicrobial therapy. (42) Applying this strategy to azo-containing dyes with 

known antimicrobial activity, Gerhard Domagk discovered Prontosil, or 

sulfonamidochrysoidine, in 1932. (43) Since his discovery, more than 5,000 

derivatives of these compounds have been synthesized, including 

sulfamethoxazole, which is still routinely used today for the treatment of various 

Gram-positive and -negative infections. These antimicrobials and their derivatives 

would likely have driven the market if not for Fleming’s serendipitous discovery of 

penicillin. In fact, prior to the introduction of penicillin, Salvarsan was the most 

prescribed drug on the market due to its activity against syphilis. (44) 

 

Sir Fleming’s discovery of a mold inhibiting bacterial growth on a petri dish is widely 

known; however, the subsequent process to bring penicillin to the clinic is less 

often mentioned. Large scale production of penicillin would not be discovered until 

after the work of Howard Florey, Norman Heatley, and Ernst Chain in 1939 

(Fleming’s discovery occurred in 1928). (45) John Sheehan’s work in the 1950’s 

led to the first synthetic beta-lactam, penicillin V, and the chemical scaffold 6-

aminopenicillinic acid (6-APA), which would serve as the base for numerous 

penicillin derivatives. (45) 

 

The discovery of penicillin was followed by the work of Selman Waksman, whose 

competitive growth experiments on agar using soil bacteria shaped the next 

several decades of antimicrobial drug discovery. (46) Roughly 90% of clinically 



 

 

 

 

19 

available antimicrobials are derived from actinomycetes, mostly of the 

Streptomyces genus. (46) The discovery of novel antimicrobial classes during this 

era using the “Waksman Platform” is often noted as the golden era of antimicrobial 

drug discovery. A detailed review of the myriad compounds discovered via this 

process may be found in Procopio et al 2011. (47) Despite the rich diversity of 

compounds that entered the clinical arsenal during this era, none have been more 

important than the beta-lactams, especially in the treatment of Gram-negative 

bacteria as many of the discovered classes are primarily used for treating Gram-

positive or are used in combination with beta-lactams. 
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Beta-lactams  

 
Figure I-8: Structures of Beta-lactam Antimicrobials 
from the four primary structural classifications and the inhibitor clavulanate, 
repurposed from Montañez et al, 2015. (48) 

 
Beginning with penicillin, the beta-lactams have since evolved into the most varied 

antimicrobial class. There currently exist four structural classes of beta-lactams: 

penicillins, cephalosporins, carbapenems, and monobactams, with each class 
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containing several distinct agents (except for the monobactams which only have a 

single US Food and Drug Administration (FDA) approved agent, aztreonam). 

These classes are determined based on the composition of the heterocyclic beta-

lactam ring moiety (or unique presence of only a beta-lactam in the case of 

monobactams). The diversity of agents stems from side-chains appended to this 

core scaffold [Figure I-8]. The penicillins and cephalosporins have numerous sub-

classes of agents, which differ by spectrum of activity and indications for use, while 

the carbapenems mostly have similar, broad spectrums of activity. Ertapenem 

differs from the other widely used carbapenems (imipenem, meropenem, and 

doripenem) in that it lacks clinically meaningful activity against Pseudomonas 

aeruginosa, Acinetobacter, and Enterococci species. In addition to altering side-

chains or choosing a different structural class, beta-lactamase inhibitors have also 

been paired with select beta-lactams to protect the primary beta-lactam from 

hydrolysis (ampicillin/sulbactam, piperacillin/tazobactam, ceftolozane/tazobactam, 

ceftazidime/avibactam, meropenem/vaborbactam, and imipenem/relebactam are 

currently FDA approved). 

 

Beta-lactams are favored over other drug classes primarily because of the wide 

therapeutic window and favorable pharmacokinetics. Beta-lactams are among the 

safest antimicrobials, especially compared to other potent classes, such as 

aminoglycosides, glycylcylines, and polymyxins, which have a wide range of 

activity but a more notable adverse effect profile. They are cleared almost 

exclusively by glomerular filtration, which allows the use of creatinine clearance as 
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a reasonable biomarker for dosing adjustments in the case of renal impairment. 

Their half-life is quite short (usually in the range of 1-2 hours), but they penetrate 

most tissues well enough to remain effective in a wide range of infection types. 

Also, extending the infusion can maximize the activity of the beta-lactam and 

thereby mitigate the rapid excretion of the antimicrobial. (49–51) 

Beta-lactamases 

The wide diversity of beta-lactams available has been driven largely by the spread 

of beta-lactamases with efficient catalytic activity against each successive 

generation of beta-lactams. This relationship continues to shape the landscape of 

drug discovery and clinical practice, as beta-lactams are the first-line therapy for 

many infections. Beta-lactamases, much like their targets, display incredible 

diversity in structure and activity. Richard Ambler published a molecular 

characterization of the beta-lactamases in 1980, which has since been revised into 

the current four classes recognized today: A, B, C, and D. (52, 53) Karen Bush, 

George Jacoby, and Antone Medeiros later created a functional classification 

system based on the spectrums of activity of the beta-lactamases. (54) The Ambler 

classification system is more often cited due to its simplicity and will be used to 

describe the beta-lactamases below. 

 
a 
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b 

 
Figure I-9: Mechanisms of Beta-lactam Hydrolysis 
a. serine-based beta-lactamases and b. metallo-beta-lactamases, repurposed 
from Bush et al, 2019. (55) 

 
Though the amino-acid sequences differ widely between the beta-lactamase 

classes, most share a similar binding motif in the active site. Classes A, C, and D 

all utilize a nucleophilic serine residue to acylate the beta-lactam. The intermediate 

complex is then released by an activated water molecule. This process opens the 

beta-lactam ring and renders the molecule inert [Figure I-9a]. (56) These beta-

lactamase classes appear to have descended from a common mutant of a PBP, 

which explains the conservation of the catalytic serine. The divergence of these 

beta-lactamases is estimated to have occurred more than 2 billion years ago, 

which would allow for the considerable structural differences between them. (57) 

Class B beta-lactamases, or metallo-beta-lactamases (MBLs), differ widely from 

the other beta-lactamases both in structure and in function. The active sites of 

class B beta-lactamases facilitate the opening of the beta-lactam ring using a 

binuclear Zn2+ center, rather than the serine residue, to acidify a nucleophilic water 
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molecule [Figure I-9b]. (56) These enzymes are not thought to have descended 

from a PBP like the serine beta-lactamases; rather, they belong to a 

metallohydrolase superfamily, which catalyze myriad substrates in addition to 

beta-lactams. (56) 

 

 
Figure I-10: Geographic Distribution of the most common Carbapenemases 
Repurposed from Logan et al, 2017. (58) 

Class A 

Class A beta-lactamases, which are one of the original classes recognized by 

Ambler, are the most diverse and well-studied of the classes. (56) Within this class, 

the most clinically relevant enzymes belong to TEM, SHV, CTX-M (named for the 
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3rd generation cephalosporin cefotaxime), and Klebsiella pneumoniae 

carbapenemase (KPC). Although they are grouped within the same structural 

class, these enzymes have vastly different affinities for beta-lactam substrates, 

ranging from early penicillins to carbapenems. 

 

TEM and SHV 

TEM-1 was the first plasmid encoded beta-lactamase to be identified in a Gram-

negative bacterium in 1963. TEM-2 was also discovered in the 1960’s, and SHV-

1 was identified not too long afterwards in 1972. (57, 59) Although these early 

enzymes were only capable of hydrolyzing early penicillins/aminopenicillins and 

cephalosporins, their presence marked the beginning of an arms race between 

beta-lactams and beta-lactamases. In response to these enzymes, 3rd generation 

cephalosporins were introduced, which were more active against Gram-negative 

organisms and stable against the hydrolysis of TEM-1 and -2 and SHV-1 enzymes. 

(60) Also, beta-lactamase inhibitors were paired with beta-lactams to counteract 

these enzymes. In 1988, TEM-3, which differs from TEM-2 by only 2 amino acid 

substitutions, was reported to have activity against these broad spectrum 

cephalosporins. (61) Since then, > 90 TEM and > 25 SHV enzymes have been 

reported with this extended hydrolytic spectrum and are named accordingly 

(ESBL). (62) Mutants with resistance to beta-lactamase inhibitors have also been 

reported. (63) 
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CTX-M 

CTX-M beta-lactamases were discovered in the 1980s and are structurally distinct 

from the TEM and SHV enzyme families. (64) This gene appears to have 

originated in Kluyvera species given the high sequence similarities and substrate 

profiles with a chromosomally-encoded beta-lactamase reported in these 

organisms. (65–67) Prior to 2000, TEM and SHV enzymes were the most prevalent 

ESBL phenotype; however, CTX-M enzymes have since become the most 

commonly encountered ESBL beta-lactamase. (64) The dissemination of CTX-M-

15 specifically with E. coli sequence type 131 (ST131) has played a major role in 

this, though these enzymes may also be commonly found in K. pneumoniae. (68) 

These enzymes are inhibited in-vitro by all commercially available beta-lactamase 

inhibitors; however, clinical trial data comparing these agents to carbapenems 

(standard of care for ESBL-producing organisms) has limited their use due to 

inconsistent efficacy. (69) It appears that combining tazobactam with a novel beta-

lactam, ceftolozane, may be a viable option. (70) 

 

KPC 

KPC is the most widely distributed of the carbapenemases and poses a great 

threat to patients infected by organisms producing it [Figure I-10]. This enzyme is 

most often identified in K. pneumoniae isolates, especially those belonging to the 

ST258. (35, 58, 71) The most prevalent KPC enzymes are KPC-2 and KPC-3. (35) 

KPC efficiently hydrolyzes almost every beta-lactam, as well as many available 
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inhibitors, including clavulanic acid, sulbactam, and tazobactam. (71) The recently 

approved cefiderocol demonstrates stability to hydrolysis to many beta-

lactamases, including carbapenemases. (72) Carbapenem MICs measured in 

KPC-producing isolates varies and may be enhanced by mutations increasing the 

copy number and/or alterations in porin channels (often Omp K35 in K. 

pneumoniae). (58, 71) KPC is nearly always located on a plasmid and often with 

other resistant determinants, especially for aminoglycosides and fluoroquinolones. 

(71) 

 

The first KPC isolated was a KPC-1 from a patient in North Carolina in 1996 as 

part of the Intensive Care Antimicrobial Resistance Epidemiology (ICARE) 

surveillance project. (73) Outbreaks of KPC-producing organisms would soon 

appear across the United States (US) eastern coast; however, KPC-2 and KPC-3 

have been the most frequently isolated. KPC-2, which is a single amino acid 

variant of KPC-1, was first reported in 2003 in 4 isolates in patients from Baltimore, 

Maryland. (74) KPC-3, a single amino acid variant of KPC-2, was isolated in a 2000 

– 2001 outbreak in New York, followed by reports of KPC-2 a few years later. (73) 

Although some areas, such as New York, remain endemic, KPC-producing 

organisms rapidly spread across the US and abroad. As of 2016, the CDC reported 

that KPC-producing organisms had been isolated in 48/50 states as well as the 

District of Colombia and Puerto Rico. (58) 
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As mentioned previously, the spread of KPC-producing organisms was not 

contained to the US and is currently an international issue. The first reported KPC 

outbreak following the US was in Israel. At its peak in 2007, the monthly incidence 

rate climbed to 55.5 cases per 100,000 patient days. (75) Spread to Latin America 

also occurred in the early 2000’s, with Colombia having the first reports. (58). 

Although the US experienced the first KPC outbreaks, Greece has potentially 

experienced the worst outbreaks due to carbapenem resistant organisms. Prior to 

2001, the reported carbapenem resistance rate was <1%, but by 2008 their rates 

skyrocketed to 30% in hospital wards and 60% in intensive care units (ICUs). This 

was primarily driven by Verona integron-encoded metallo-beta-lactamases (VIMs), 

which are discussed below, until around 2006 - 2008 when KPC-producing ST258 

K. pneumoniae rapidly spread. (58) 

 

Other Class A Enzymes 

The following enzymes have not been isolated with nearly the same frequency as 

the previous enzymes; however, their ability to hydrolyze carbapenems carries a 

significant threat. Serratia marcescens enzymes (SMEs) are chromosomally-

encoded beta-lactamases found in S. marcescens which are surprisingly often 

susceptible to extended-spectrum cephalosporins like ceftazidime and cefepime 

while displaying resistance to nearly every other beta-lactam. (73, 76) This was 

also the first serine carbapenemase identified, being isolated in London in 1982, 

which is 14 years prior to the identification of KPC-1 in 1996. Imipenem-hydrolyzing 

beta-lactamase-1 (IMI-1) and not metalloenzyme carbapenemase-A (NMC-A) are 
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highly related with 97% amino acid sequence homology and share ~70% 

sequence homology to SME-1. Both of these enzymes are also chromosomally-

encoded; however, IMI-2 has been identified on a plasmid in both environmental 

and clinical Enterobacter species, which creates the possibility of future 

dissemination. (71, 77–81) Guiana extended-spectrum (GES) beta-lactamases, 

which have most often been plasmid-encoded, were initially thought to be another 

class of ESBL given the spectrum of GES-1, but subsequently identified strains 

have demonstrated carbapenem hydrolyzing activity. (35, 71, 73) 

 

Class B 

As mentioned above, Class B enzymes (MBLs) rely on Zn2+ in the active site as 

opposed to a catalytic serine, which makes them unique among the four Ambler 

classes. (71, 82) However, much like the other classes, genes encoding these 

enzymes have been identified in the chromosomes of certain species as well as 

on various mobile genetic elements. The broad-spectrum catalytic activity of most 

MBLs pose a clinical threat, especially those possessing activity against 

carbapenems. MBLs are divided into three subclasses: B1, B2, and B3. Almost all 

clinically relevant MBLs belong to the B1 class, especially those mobilized in 

plasmids. These B1 MBLs hydrolyze all beta-lactams with the exception of 

monobactams (aztreonam), and are not inhibited by clavulanic acid, sulbactam, 

tazobactam, diazabicyclooctane (DBO) inhibitors (avibactam and relebactam), or 

cyclic boronic acid inhibitors (vaborbactam). (71, 82) 
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Chromosomal MBLs 

Stenotrophomonas maltophilia is an opportunistic pathogen of growing relevance, 

especially in immunocompromised patients. S. maltophilia carries both a B3 MBL 

as well as a serine beta-lactamase, named L1 and L2, respectively. The combined 

catalytic spectrum of these enzymes imparts resistance to most every beta-lactam. 

Aeromonas species are known to produce CphA (carbapenem hydrolyzing and 

first A from Aeromonas hydrophilia), which is a narrow spectrum beta-lactamase 

having activity only against carbapenems. Additionally, a large inoculum of 

bacteria is required to reliably demonstrate the resistance phenotype caused by 

the production of this enzyme. Lastly, Elizabethkingia meningoseptica (formerly 

Chryseobacterium meningosepticum) uniquely produces two different MBLs, BlaB 

(beta-lactamase B) and GOB (Chryseobacterium meningosepticum class B)-type 

enzymes. Together these enzymes provide resistance to almost all beta-lactams. 

Like S. maltophilia, this is an opportunistic pathogen which most frequently affects 

patients with compromised immune systems. (82) 

 

NDM 

New Delhi metallo-beta-lactamase (NDM) was first reported in 2009 from a clinical 

K. pneumoniae isolate taken from a patient in Sweden who traveled to New Delhi, 

India. (83) Analysis of surveillance data collected during the SENTRY Antimicrobial 

Surveillance Program have identified the blaNDM gene in isolates dating back to 
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2006, suggesting that the enzyme had already began to spread prior to the index 

culture. (84) There are now 29 variants of NDM reported, though NDM-1 is most 

often found in Acinetobacter species, Enterobacter species, and K. pneumoniae, 

and NDM-5 is most commonly found in E. coli. (85) Alarmingly, NDM-producing 

bacteria have been found in community reservoirs including public tap water and 

in rivers near pilgrimage sites in India. (86, 87) 

 

NDM spread rapidly following its initial discovery and has now been isolated in five 

continents (North and South America, Europe, Africa, and Asia), but it is most 

prevalent in Europe and Asia [Figure I-10]. Unlike KPC, whose efficient spread 

was helped by the pathogenic ST258 K. pneumoniae strain, NDM does not appear 

to be correlated with any particular clonal strain. (64) An epidemiological study 

including 471 MBL-producing isolates collected from 202 medical centers in 40 

countries from 2012 - 2014 concluded that NDM accounted for 44.2% of all MBLs 

collected. (88) This study included mostly P. aeruginosa samples (308), though 

Klebsiella species were also collected with high frequency (85). A 2017 study from 

25 Chinese provinces reported that NDM-1 accounted for 32% of CRE. (89) NDM 

are now the second most prominent carbapenemase in the Middle East after OXA-

48-like enzymes (except for Israel) and are the most prevalent in Serbia and 

Montenegro. (82) 

 

Numerous reports of coproduction of NDM with other carbapenemases have also 

been published since its discovery. Bush and Bradford compiled 52 reports of 
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carbapenemase coproduction beginning in 2008, and NDM was most likely to be 

coproduced with an OXA-48-like carbapenemase. (64) In a 2012 study from a 

hospital in Mumbai, India not included in these 52 reports, out of 113 CRE isolates 

collected, 106 produced NDMs and 17 of these isolates coproduced an OXA-48-

like enzyme. (90) In addition to coproduction of carbapenemases, NDM-producing 

organisms have also been strongly correlated with coproduction of 16S RMTs, like 

ArmA and RmtB, which confer high level aminoglycoside resistance, including the 

novel plazomicin. (64, 82) Aminoglycosides are commonly used in combination 

with beta-lactams in patients with severe infections, which makes this combination 

of resistance determinants a serious concern. 

 

VIM 

VIM-1 was first reported in a 1999 publication detailing a clinical P. aeruginosa 

isolate obtained from a patient in the Verona University Hospital in 1997. (91) It’s 

variant, VIM-2, was soon reported in 2000 and was discovered in a clinical P. 

aeruginosa isolate obtained from a patient in Marseilles, France in 1996. (92) In 

total, 69 variants have been reported since then, and they are most often present 

in K. pneumoniae, E. cloacae, and P. aeruginosa, with VIM-2 being the most 

common variant, especially in P. aeruginosa. (64, 71, 82) A recent report from the 

Gulf Cooperation Council countries found that 39% of carbapenem-resistant P. 

aeruginosa produced a VIM enzyme. (93) In another recent report from Dubai, 

32% of the 37 carbapenem-nonsusceptible isolates tested produced a VIM. (94)  
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VIM-producing organisms have also been prevalent in Europe [Figure I-10]. Prior 

to the emergence of KPC-producing ST258 K. pneumoniae, VIM-producing K. 

pneumoniae were the most prevalent CRE in Greece. (64, 82) A recent 

retrospective analysis of carbapenem-resistant blood stream infections (BSIs) in 

the general ICU of the University General Hospital of Patras, Greece provided 

some evidence that MBL-producing organisms may be on the rise following the 

use of ceftazidime-avibactam. After having only 15 BSI with MBL-producing 

organisms (all NDM) from 2015 – 2017, once ceftazidime-avibactam was made 

available in January 2018, 23 MBL-producing infections occurred from the 2nd – 4th 

quarters. Most of these infections were caused by VIM-producing or KPC and VIM 

coproducing organisms. (95) While this correlation may not be completely 

explained by the introduction of ceftazidime-avibactam, stewardship programs 

should monitor this carefully as novel agents are introduced into clinical practice. 

Also of concern is the coproduction of VIM with other carbapenemases, namely 

KPC. In the 52 studies analyzed by Bush and Bradford, 75% of the 110 co-

carbapenemase-producing isolates which expressed KPC also expressed VIM. 

(64) 

 

IMP 

Imipenemase (IMP)-1 was the first acquired MBL to be identified and was reported 

from clinical P. aeruginosa and S. marcescens isolates in Japan in 1991, and there 

have now been 85 variants of IMP enzymes identified. (82, 96) Between the big 

three of NDM, VIM, and IMP, IMP enzymes are less frequently encountered, 
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though they have been identified on most continents (North and South America, 

Europe, Asia, and Australia) [Figure I-10]. (64, 82) IMP-producing organisms are 

most frequently isolated in Southeast Asia, especially Japan, but a recent 

surveillance study found 8 IMP-producing (all IMP-4) Klebsiella, Enterobacter, and 

Citrobacter species in Australia. (88, 97) They often have lower-level hydrolysis of 

carbapenems than either VIM or NDM, and, in some cases, are reported as 

susceptible to imipenem. (64) 

 

Other MBLs 

In addition to the above described MBL enzymes, others have been reported but 

with less frequency and often in a single geographic area. Due to their presence 

on plasmids, it is possible that they may disseminate and become more serious 

problems in the future. Most of the following are B1 MBLs, much like NDM, VIM, 

and IMP, though there are several exceptions.  

 

Sao Paulo metallo-beta-lactamase (SPM) has almost exclusively been found in P. 

aeruginosa, though it has been seen in a few clinical A. baumannii isolates. Since 

its discovery in Sao Paulo, Brazil in 2001, only has a single variant, SPM-1, has 

been reported to date. (98) It is highly associated with P. aeruginosa ST 277 and 

has caused several outbreaks across Brazil, with a high mortality rate. (98) SPM-

1 is highly efficient at hydrolyzing anti-pseudomonal beta-lactams and is able to 

efficiently mediate its resistance even in Zn2+ deprived conditions, like those 

experienced within its host. (99) Thus far, SPM-1 has primarily been isolated to 
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Brazil, but recent reports of international spread are cause for increased monitoring 

vigilance. (98) 

 

German Imipenemase (GIM) was first isolated from five carbapenem-resistant P. 

aeruginosa isolates in Germany in 2002. It has since been found in various 

Enterobacteriaceae strains, with a new variant, GIM-2, being reported in an E. 

cloacae strain in 2015. This enzyme has only been isolated in Germany, and few 

reports are currently published. (100) Dutch Imipenemase (DIM) was discovered 

in 2010 on the plasmid of a P. stutzeri clinical strain in the Netherlands, though not 

much else is reported about this enzyme. (101) Florence Italy metallo-beta-

lactamase (FIM) was reported from a clinical P. aeruginosa isolate in Florence, 

Italy in 2013, but little has been reported since. (102) 

 

Kyorin Hospital metallo-beta-lactamase (KHM) was first reported in a clinical C. 

freundii isolate in Japan in 2008 and has only been isolated there, though recent 

reports have found KHM-producing bacteria in the sewage system. Also, it has 

been isolated on mobile genetic elements. Its potential to spread and presence in 

a community reservoir show potential for future concern. (100) Tripoli metallo-beta-

lactamase (TMB) was first isolated in A. xylosoxidans from a hospital in Triploi, 

Libya. (103) Both TMB-1 and TMB-2 have subsequently been reported in 

Acinetobacter species in Japan. (100) The first and only report of TMB being 

present in Enterobacteriaceae was recently published from France in two clinical 

E. hormaechei and C. freundii isolates. (104) Seoul Imipenemase (SIM) was first 
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reported in 2005 from seven clinical A. baumannii isolates collected from a hospital 

in Seoul, Korea, which has subsequently been isolated from other Acinetobacter 

species in Korea and China. (105, 106) 

 

Serratia metallo-beta-lactamase (SMB) was reported from a urinary clinical S. 

marcescens strain in Japan in 2010. It has currently only been found in Serratia 

species, but its presence downstream of the ISCR1 element lead the authors to 

believe that this gene may likely spread to other species. (107) SMB belongs to 

the B3 subclass of MBLs. Serratia fonticola carbapenem hydrolase (SFH) is 

another carbapenemase that has only been isolated in Serratia species in 

Portugal. This enzyme belongs to the B2 subclass and only possess significant 

hydrolytic activity against carbapenems, not cephalosporins or penicillins. (100) 

 

Adelaide imipenemase (AIM) is another B3 MBL subclass which was first isolated 

in clinical P. aeruginosa isolates from Adelaide, Australia in 2002. (108) It has since 

been isolated in West Africa and China. Its hydrolytic spectrum is similar to other 

MBLs, but it interestingly lacks activity against piperacillin. (100) Linz metallo-beta-

lactamase (LMB) is the most recent MBL to be identified and was initially found in 

an Austrian patient in Salzburg, Austria in 2013. LMB also belongs to the B3 

subclass MBLs and appears to hydrolyze all beta-lactams except for aztreonam, 

like other MBLs, and cefepime. This enzyme was recently isolated from a patient 

in Buenos Aires, Argentina on a different plasmid than the initial strain, which is 
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highly interesting and suggestive that it is more disseminated than is currently 

reported. (100) 

 

Class C 

Unlike most of the other beta-lactamases discussed, Class C beta-lactamases are 

primarily chromosomally encoded. These AmpC enzymes may be expressed in 

many Gram-negative organisms but have been historically most associated with 

those belonging to the “SPACE” bug acronym: S. marcescens, P. aeruginosa, A. 

baumannii, C. freundii, and E. species (specifically cloacae and aerogenes). (109) 

Recently, this terminology has fallen out of favor as it neglects to acknowledge the 

differing induction potential of ampC that exists at both the genera and species 

level of the bacteria named within the acronym. (110, 111) The IDSA recently 

suggested that among the Enterobacterales, only the species Enterobacter 

cloacae, Enterobacter aerogenes, and Citrobacter freundii should be considered 

at a moderate-high risk of clinically relevant ampC induction. (110) 

 

AmpC production is regulated and usually occurs at low-levels normally, as 

hyperproduction imparts a fitness cost. (109) When exposed to certain beta-

lactams, the phenotype changes from the “repressed” state to the “derepressed” 

state, and high levels of AmpC expression follows. Not all beta-lactams induce this 

phenotype equally. Benzyl- and aminopenicillins, early cephalosporins, imipenem, 

and cefoxitin are among the strongest inducers, and all but imipenem and cefoxitin 
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are also strongly susceptible to hydrolysis. Oxyimino-cephalosporins, cefepime, 

piperacillin, and aztreonam are both weak inducers and substrates for hydrolysis; 

however, some hyperproducing phenotypes may express enough enzyme to 

achieve clinical resistance. Importantly, some beta-lactamase inhibitors, clavulanic 

acid and sulbactam, also strongly induce AmpC production while offering minimal 

inhibition. (71) 

 

The transfer of ampC genes to plasmids has expanded the number of clinically 

relevant species expressing these enzymes, namely E. coli and K. pneumoniae. 

The first plasmid-encoded AmpC was isolated in South Korea in 1989 in a K. 

pneumoniae. (64) It was named CMY-1 (cephamycinase) due to its high resistance 

to cefoxitin. Since then, numerous AmpC variants from different families have been 

isolated on plasmids. The following are a brief list of common AmpC variants which 

have been isolated on plasmids and the respective species from which they 

originated: CMY-1 – A. hydrophilia, CMY-2 – C. freundii, FOX (also named for 

cefoxitin) - and MOX (named for moxalactam) -type – Aeromonas species, ACC 

(Ambler class C) – H. alvei, LAT (named for latamoxef) – C. freundii, MIR (named 

for Miriam Hospital in Providence, Rhode Island) and ACT (AmpC type) – 

Enterobacter species, and DHA (named for Dhahran hospital in Saudi Arabia) – 

M. morganii. Plasmid-encoded AmpC enzymes are often constitutively active and 

express prolifically. In the presence of outer membrane protein expression 

changes, these enzymes have been known to even cause resistance to 

carbapenems. (64) 



 

 

 

 

39 

Class D 

Class D beta-lactamases are primarily composed of the OXA (named for oxacillin 

resistance) families of enzymes and will be referred to interchangeably as these 

are the most clinically relevant enzymes in this class. Though this class is not as 

varied as the Class A beta-lactamases, there are currently 926 distinct variants of 

OXA enzymes. (112) Much like the Class A beta-lactamases, OXA enzymes range 

in their substrate profiles. One feature of the class is their resistance to oxacillin 

and other penicillins as well as early cephalosporins; however, many variants have 

developed the ability to hydrolyze 3rd and 4th generation cephalosporins and 

carbapenems. Most of the OXA enzymes are not inhibited by older beta-lactamase 

inhibitors (clavulanic acid, sulbactam, and tazobactam), but avibactam provides 

inhibition against some OXA enzymes, including OXA-48. (64, 112) OXA-

producing organisms with extended-spectrum and/or carbapenemase activity are 

endemic in parts or Europe and Asia. Their impact may be underestimated due to 

the heterogeneity of their substrate profiles making it difficult to differentiate them. 

Most healthcare centers do not broadly screen against the majority of OXA 

enzymes. The GenMark ePlex Blood Culture Identification Gram-negative Panel 

only detects OXA-23 and OXA-48 groups, as a reference. (113) 

 

OXA enzymes are chromosomally expressed in many species, but the most 

clinically relevant of these belong to Acinetobacter species. Nearly all A. baumannii 

express OXA-51 or a similar variant, which imparts low level carbapenem 

resistance. (64) Acinetobacter species may also possess other OXA enzymes with 



 

 

 

 

40 

greater catalytic activity against carbapenems such as OXA-23, -24, and -58. (64, 

112) OXA-23 is most frequently isolated and was the first OXA enzyme with high 

level carbapenemase activity in 1993 from an isolate in Scotland. (71) Outside of 

Acinetobacter species, OXA enzymes are most often plasmid encoded. OXA-2 

and OXA-10 are often expressed in both P. aeruginosa, E. coli, and K. pneumoniae 

and are narrow spectrum OXA enzymes. (112) The most concerning plasmid-

encoded OXA enzyme is OXA-48 or one of the 101 OXA-48-like variants. OXA-48 

was first isolated from a K. pneumoniae in Turkey in 2001 and remains endemic 

to the area. (58, 114) OXA-48 has also caused outbreaks in surrounding countries 

but remains rare in the US currently [Figure I-10]. (64)  

Beta-lactamase Inhibitors 

As has been highlighted in the previous section, beta-lactamases are a 

considerable threat to the activity of beta-lactam antimicrobials. However, since 

the early discovery of TEM-1, scientists have fought to rescue the beta-lactams by 

partnering them with beta-lactamase inhibitors. This simple strategy consists of 

coformulating a beta-lactam with a beta-lactamase inhibitor, and when they are 

coadminstered, the inhibitor will prevent the beta-lactamase from hydrolyzing the 

beta-lactam. The beta-lactam may then sufficiently bind to the PBP and facilitate 

bacterial killing. The inhibitors may transiently inhibit the enzyme through 

reversible tautomerization or through irreversible inhibition by forming a covalent 

acyl-enzyme species. Even in the instance when a beta-lactamase hydrolyzes the 
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inhibitor to regain activity, a relatively stable acyl-enzyme intermediate may lead 

to slow hydrolysis rates, which effectively inhibits the enzyme in the process. (115) 

 

Clavulanic acid was the first beta-lactamase inhibitor introduced and was a natural 

product isolated from the species Streptomyces clavuligerus. (116) This led to the 

approval of clavulanic acid combinations with amoxicillin and ticarcillin being the 

first oral and IV formulations of beta-lactam beta-lactamase inhibitor combinations. 

Sulbactam and tazobactam were synthetically developed not long after, in 1978 

and 1980, respectively. (117, 118) These inhibitors were paired with ampicillin and 

piperacillin, although tazobactam has since been partnered with cefepime outside 

of the US and most recently with ceftolozane. These inhibitors were developed to 

contend with TEM-1 and SHV-1 which threatened the effectiveness of early beta-

lactams. Table I-1 provides a summary of the inhibition spectrum of these 

inhibitors and several novel inhibitors currently in the clinical pipeline. (55)  

 

As shown in Table I-1, all three of these inhibitors demonstrate inhibition against 

ESBLs in addition to the narrow-spectrum beta-lactamases they were originally 

intended to inhibit. The potency of this activity differs between these three 

inhibitors, with sulbactam tending to lag behind clavulanic acid and tazobactam. 

(115) However, the potency of in-vitro inhibition is far from the only consideration 

in determining the effectiveness of a beta-lactam beta-lactamase inhibitor 

combination. The partner beta-lactam’s inherent activity, bacterial killing of the 

inhibitor, the dose selected for both compounds, and the combined concentrations 
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achievable of both compounds at a particular site of infection are just a few 

additional considerations that may impact the effectiveness of a beta-lactam beta-

lactamase inhibitor combination. Increasingly, the combined 

pharmacokinetic/pharmacodynamic analysis of the partner beta-lactam and the 

inhibitor is emerging as a crucial stage of preclinical development to prevent 

incongruence between in-vitro and in-vivo activity of these combinations and the 

amplification of resistant subpopulations. (119) 

 

Except for enmetazobactam and ANT-431, the newer inhibitors included in Table 

I-1 exhibit much wider inhibitory spectrums. Notably these newer inhibitors belong 

to two novel structural classes, DBOs and cyclic boronates, which do not contain 

a beta-lactam component. These novel inhibitors are a vital response to the 

carbapenemases discussed in the previous section and will be discussed in more 

detail later in this introduction. 
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Table I-1: Spectrums of Inhibition of Clinically Available Beta-lactamase Inhibitors and Prospective Inhibitors in the Clinical 
Pipeline 
Structural 

Group Inhibitor Beta-lactam 
partner 

Development Stage 
(FDA Approval Date) 

Spectrum of Inhibition 
ESBL AmpC KPC OXA-48 MBL 

Clavam Clavulanic acid Amoxicillin Approved (1984) + - - - - Ticarcillin Approved (1985) 

Penicillanic 
acid 

sulfone 

Sulbactam Ampicillin Approved (1986) + - - - - 

Tazobactam 
Piperacillin Approved (1993) 

+ - - - - Cefepime Phase III 
Ceftolozane Approved (2014) 

Enmetazobactam Cefepime Phase III + - - - - 

DBO 

Avibactam Ceftazidime Approved (2015) + + + + -  Aztreonam Phase III 
Relebactam Imipenem Approved (2019) + + + - - 
Nacubactam Meropenem Phase I + + + - - 
Zidebactam Cefepime Phase III + + + - - 
Durlobactam Sulbactam Phase III + + + + - 

Cyclic 
Boronic 

acid 

Vaborbactam Meropenem Approved (2017) + + + - - 
Taniborbactam Cefepime Phase III + + + + + 

Pyridine-2-
carboxylic 

acid 
ANT-431 Meropenem Preclinical - - - - + 

Above are descriptions of the clinically available beta-lactamases and those in the clinical pipeline and their inhibitory spectrum. It’s 
important to note that the spectrum of inhibition should not be interpreted as a spectrum of activity as several of these beta-lactam beta-
lactamase inhibitor combinations have shown activity against organisms expressing beta-lactamases not inhibited by the inhibitor due to 
inherent activity of the partner beta-lactam and/or intrinsic activity of the inhibitor.  
(This table is reproduced with modifications from Bush et al 2019. (55)) 
DBO: Diazabicyclooctane, ESBL: Extended-spectrum beta-lactamase, KPC: Klebsiella pneumoniae carbapenemase, MBL: Metallo-
beta-lactamase 
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Issues with the Antimicrobial Pipeline 

The previous section briefly reviewed the discovery and epidemiology of various 

beta-lactamases but did not fully contextualize the importance of the emergence 

of carbapenemases. Previous iterations of novel beta-lactamases were met with 

novel beta lactams which either directly evaded hydrolysis due to structural 

novelties or were protected by a coformulated suicide inhibitor. Carbapenemases 

emerged and rapidly spread during a period of stagnation in the antimicrobial 

pipeline and were therefore unchecked by a “next generation” beta-lactam option. 

As a result, combination therapy with broad spectrum agents, mostly polymyxin B 

and colistin but also aminoglycosides and tigecycline, possessing less desirable 

pharmacokinetic profiles and dose limiting toxicities was deemed the best option. 

(120) Estimates of mortality in patients infected with CRE were reported as high 

as 50%. (121) 

 

This lull in discovery has been widely reviewed in several reports. (122–124) 

Gerard D Wright in a QA published from BMC Biology provided a succinct 

summary of the issue, which essentially states that the difficulty in developing 

agents with desired safety and efficacy standards against Gram-negative 

organisms, especially against MDR strains, combined with the economic potential 

offered by development in more chronic disease states culminated in the mass 

exodus of the private pharma sector from antimicrobial development. (125) The 

difficulties associated with the development of novel antimicrobials cannot be 
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overstated, as thorough accounts of the antimicrobial pipelines of both 

GlaxoSmithKline and AstraZeneca have demonstrated. (126, 127) In response to 

the growing crisis posed by emerging antimicrobial resistant threats, the Obama 

administration passed the Generating Antibiotic Incentives Now (GAIN) Act in 2012 

to provide financial incentives for Qualified Infectious Disease Products (QIDPs). 

 

The first of these QIDPs with activity against CRE to receive FDA approval was 

ceftazidime-avibactam. Several other agents, including beta-lactams and non-

beta-lactams, have subsequently been approved with more in the pipeline. Though 

considerable success in the treatment of CRE (discussed below) has been 

reported, nearly all these agents have been modifications to existing antimicrobial 

classes, and resistance has been noted to these agents even prior to widespread 

use. Continued vigilance will be necessary to keep pace with bacterial evolution 

lest we find ourselves losing the same battle in the near future. 
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Treatment Options 

Polymyxin 

 
Figure I-11: Polymyxin B and E Chemical Structures 
Chemical structure of two clinically relevant polymyxin compounds, polymyxin 
B and colistin, repurposed from Godoy et al, 2016. (128) 

 
In 1947, Ainsworth et al reported on a novel secondary metabolite isolated from 

the soil bacterium Bacillus polymyxa (then known also as Bacillus aerosporus), 

now belonging to the genus Paenibacillus. (129) There are two clinically available 

polymyxin products: polymyxin B and polymyxin E, or colistin as it is most often 

referred [Figure I-11]. These two products share a general composition involving 

a fatty acid tail, a tripeptide linkage, and a mostly polar polypeptide ring which 

closes at two hydrophobic residues. The difference between polymyxin B and 

colistin is the identity of the residue at position 6, D-phenylalanine for polymyxin B 

and D-leucine for colistin. Both polymyxin B and colistin exist as a mixture of similar 

compounds, polymyxin B1 and B2 and colistin A and B, which differ only by the 
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fatty chain: 6-methyl-octanoic acid for polymyxin B1 and colistin A and 6-methyl-

heptanoic acid for polymyxin B2 and colistin B. (130, 131) 

 

Mechanism of Action 

The primary mechanism of action for both compounds is thought to be disruption 

of both the outer and inner membrane of Gram-negative organisms. Briefly, the 

polar portion of the molecule interacts with the anionic head groups of the lipid A 

component of LPS, while the hydrophobic sections insert into the fatty acid portion 

of the OM. The interaction with the polymyxin compound is thought to displace 

divalent cation interactions and allows the fatty acid tail of polymyxin to insert into 

the OM, which expands and weakens it. The compound is then hypothesized to 

enter the periplasmic space via “self-promoted uptake” and subsequently disrupt 

the inner membrane resulting in cellular death. (130, 131) 
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Resistance 

 
Figure I-12: Mechanisms of Resistance to Polymyxin B and Colistin 
Repurposed from Ezadi et al, 2019. (132) 

 
The mechanism of resistance in Gram-negative organisms is to regulate the head 

groups of lipid A via the PhoP-PhoQ and PmrA-PmrB regulatory system. This 

tightly regulated system is a survival system that is also employed in low Mg2+ 

environments, as the lack of divalent cations would similarly disrupt the outer 

membrane. PhoQ is an inner membrane kinase, which will phosphorylate PhoP 

when exposed to low Mg2+ of sublethal polymyxin concentrations. The 

phosphorylated PhoP will then activate PmrA and PmrB, which activate genes 

encoding the enzymes necessary to catalyze the modification of the lipid A head 

groups. The anionic phosphate of the head groups, which are the initial target of 

polymyxins, are ultimately replaced with 4-amino-4-deoxy-L-arabinose or 
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phosphoethanolamine, both of which reduce the net negative charge of the OM. 

This functions both to remove the target of polymyxins as well as reducing 

electrostatic repulsion caused by the net charge, which strengthens the OM 

[Figure I-12]. (130) More recently, a mobile resistance gene, mcr-1, has been 

identified which facilitates the same result. MCR-1 belongs to the 

phosphoethanolamine transferase family, which allows it to directly substitute 

phosphoethanolamine into the lipid A moiety of LPS without activating the PhoP-

PhoQ PmrA-PmrB systems. (133) 

 

In-vitro Activity 

Polymyxins exhibit highly potent, broad-spectrum in-vitro activity against Gram-

negative organisms, with the exception of the Proteus, Morganella, and 

Providencia species, B. cepacia, S. marcescens, among others. (134) In a recent 

surveillance study of 238 medical centers from 44 participating countries between 

1997 – 2016, >250,000 organisms were collected from bloodstream infection 

patients. Of the 107,617 Enterobacteriaceae collected, colistin was tested on 

54,476 with a %S of 88 and MIC50/90 of ≤0.5 µg/mL / >4 µg/mL. Both colistin and 

polymyxin B were tested against P. aeruginosa. The %S and MIC50/90 for colistin 

and polymyxin B were 99.3% and 1 µg/mL / 2 µg/mL in 7,107 isolates and 99.6% 

and ≤1 µg/mL / 2 µg/mL in 8,855 isolates, respectively. Lastly, the %S and MIC50/90 

in A. baumannii and A. calcoaceticus complex for colistin was 96.9% and ≤0.5 

µg/mL / 2 µg/mL in 3,124 isolates. (135) Of particular interest, another analysis 
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reported from the same program revealed that resistance to polymyxins, either 

polymyxin B or colistin, significantly increased between the intervals 2001 – 2004 

and 2013 – 2016 from 2% - 5.5% (P < 0.0001). (136) 

 

Pharmacokinetics/Pharmacodynamics 

Another important difference between the two drugs is that colistin is administered 

as a prodrug, colistin methanesulfonate (or colistimethate, CMS), where all the 

exposed amine groups of the polypeptide ring, which are vital to its antimicrobial 

activity, are sulfonated and neutrally charged at physiological pH. (130, 131) 

Polymyxin B, on the other hand, is administered as a sulfate salt in its active form. 

(131) This creates highly different pharmacokinetics (PK) between the two 

compounds as the CMS is only slowly converted to the active metabolite, colistin. 

In patients with competent renal function, only ~ 20 - 25% of the CMS is converted 

to colistin, with the remaining prodrug being eliminated renally. (131, 134) While 

this may lead to relatively high concentrations of colistin in the urine due to 

continued conversion following glomerular filtration, achieving therapeutic 

concentrations in serum is difficult. Adding to the variability is the fact that 

considerable brand-to-brand and batch-to-batch variability in the extent of 

sulfonation of the 5 amines has been shown to affect the rate of colistin formation. 

(131) Both colistin and polymyxin B are cleared via non-renal mechanisms. (131) 

 

The PK/PD index that best correlates with the activity of polymyxins is the ratio of 

unbound exposure / minimum inhibitory concentration (fAUC0-24/MIC), which 
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indicates that the activity is best maximized not by the peak concentration but the 

average concentration over 24 hours. A steady-state plasma concentration of 2 

mg/mL is the current therapeutic target concentration to maximize the antimicrobial 

activity against organisms having an MIC of ≤ 1 while balancing the risk of 

nephrotoxicity, which is the most common adverse effect of these compounds. 

Patients with compromised renal function must have their CMS doses reduced due 

to the greater risk of acute kidney injury; however, no recommendation exists for 

polymyxin B due to its nonrenal clearance. (134) 

 

Tetracyclines 

 
Figure I-13: Tetracycline Chemical Structures 
Structures of tetracyclines arranged by generation, repurposed from Markley et 
al, 2018. (137) 

 
The discovery of aureomycin, also known as chlortetracycline, from S. 

aureofaciens was first reported in 1948 and marked the beginning of the 

tetracycline class. (138) By the mid-1950s, knowledge of the 4-ring heterocyclic 
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structure led to the creation of the semi-synthetic tetracycline, which improved the 

activity and tolerability of the class. Following the approval of doxycycline and 

minocycline, both considered second generation semi-synthetic tetracyclines with 

expanded spectrums of activity compared to tetracycline, no new antimicrobials 

from this class were introduced until the approval of tigecycline in 2005. (139) 

Tigecycline is a derivative of minocycline with an important modification of a tert-

butyl-glycyl-amide moiety at C9 of the D ring, which inspired the “glycylcycline” 

class name. Tigecycline was synthesized to address the rising resistance to the 

early tetracyclines.  

 

Modification of C9 (and C7) of the minocycline scaffold was recently used in the 

creation of three novel tetracycline products: eravacycline, omadacycline, and 

sarecycline, though eravacycline was the first fully synthetic molecule of this class. 

Eravacycline was modified with a pyrrolidine-acetamido group at C9 and a fluorine 

atom at C7, omadacycline, which strongly resembles the chemical structure of 

tigecycline, was modified with an alkyl-amino-methyl group at C9, and sarecycline 

was modified with a 7[[methoxy(methyl)amino]methyl] group at C7, which is the 

bulkiest substituent to be added at this position [Figure I-13]. (140)  

 

Mechanism of Action 

Tetracyclines enter the Gram-negative bacteria via OmpF and OmpC porin 

channels as tetracycline metal complexes. These complexes dissociate in the 

periplasmic space, freeing the tetracycline to diffuse across the inner membrane. 
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They bind reversibly to the 30S ribosomal subunit and prevent the association of 

the aminoacyl-tRNA with the acceptor (A) site. (141) This interrupts protein 

synthesis and mediates the bacteriostatic killing of tetracyclines. Tigecycline and 

eravacycline have been reported to exhibit bactericidal killing in some instances. 

(139, 142) The novel sarecycline additionally appears to interact directly with the 

A site codon with the C7 moiety extending into the mRNA channel; however, this 

agent exhibits low potency against Gram-negative organisms and will not be 

discussed further. (143) 
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Resistance 

 
Figure I-14: Mechanisms of Resistance to Tetracyclines 
a. collection of clinically relevant efflux pumps which target tetracyclines; b. 
collection of ribosomal protection proteins which limit ribosomal access; c. 
mutations in ribosomes may (uncommonly) lead to reduced tetracycline affinity; 
d. enzymatic modification of tetracyclines, repurposed from Markley et al, 
2018. (137) 

 
Bacteria have developed several means to evade tetracycline antibiotics including 

efflux pumps, ribosomal protection proteins, enzymatic degradation, and mutations 
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of the ribosome [Figure I-14]. The most encountered resistance mechanism is 

tetracycline specific efflux pumps. As of 2016, there were 30 known pumps, all of 

which extrude the molecule from the bacteria to decrease the intracellular 

concentration. (144) The modifications at C9 allow tigecycline, eravacycline, and 

omadacycline to evade most common tetracycline specific pumps, though 

increased MICs have been noted in the context of Tet(A) overexpression for both 

tigecycline and eravacycline. (145, 146) It should be noted that other innate efflux 

pump systems, such as AcrAB and MexAB, have been implicated in resistance to 

these agents.(144) Furthermore, the C9 modifications increase the binding affinity 

to the ribosomal binding site and allow these agents to also overcome common 

ribosomal binding proteins, such as Tet(M). (142) Tet(X), which is a flavin-

dependent monooxygenase with the ability to hydroxylate tetracyclines at C11a, 

and its variants possess the ability to chemically modify all tetracyclines. (147) 

Additionally, mutations to the ribosome have been found to increase the MICs of 

these agents, sometimes on the order of 62-fold; however, these mutations are 

quite rare compared to the others listed. (142, 144) 

 

In-vitro Activity 

Tigecycline, eravacycline, and omadacycline all exhibit broad spectrum activity 

against both Gram-positive and -negative organisms, as well as some anaerobic 

and atypical bacteria. (139, 140) In a sample of 20,028 Enterobacteriaceae from 

73 medical centers in the US and Europe collected from 2016 – 2018 through the 

SENTRY Antimicrobial Surveillance Program, omadacycline exhibited a %S of 
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87.5% and MIC50/90 of 1 µg/mL / 8 µg/mL. (148) Against 1,784 ESBL E. coli and 

1,383 ESBL K. pneumoniae, omadacycline achieved a %S and MIC50/90 of 98% 

and 76.4% and 1 µg/mL / 2 µg/mL and 4 µg/mL / 8 µg/mL, respectively. Against 

388 carbapenem resistant K. pneumoniae, omadacycline results were similar to 

the ESBL-producers with a %S and MIC50/90 of 72.4% and 4 µg/mL / 8 µg/mL. 

 

 In another report from the SENTRY Antimicrobial Surveillance Program in 2019, 

omadacycline achieved a %S of 86.9% and MIC50/90 of 1 µg/mL / 8 µg/mL in 2,740 

Enterobacteriaceae isolates collected from 31 US medical centers. In the same 

study, tigecycline achieved a %S of 95.7% and MIC50/90 of 0.25 µg/mL / 1 µg/mL 

in the same isolates. (149) Against 217 ESBL E. coli and 89 ESBL K. pneumoniae, 

omadacycline exhibited %S and MIC50/90 of 99.1% and 80.9% and 1 µg/mL / 2 

µg/mL and 4 µg/mL / 16 µg/mL, respectively. Tigecycline, against the same 

isolates, exhibited a %S and MIC50/90 of 100% and 92.1% and 0.25 µg/mL / 0.5 

µg/mL and 0.5 µg/mL / 2 µg/mL, respectively. 

 

In 10,531 Enterobacteriaceae isolates collected between 2013 – 2017 from 36 

countries, eravacycline achieved a %S of 92.6% and MIC50/90 of 0.25 µg/mL / 0.5 

µg/mL; while tigecycline achieved a %S of 96.8% and MIC50/90 of 0.5 µg/mL / 1 

µg/mL. Importantly in this study, when using the lower European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoint for tigecycline as 

opposed to the FDA breakpoint (0.5 µg/mL vs. 2 µg/mL), the %S of tigecycline 
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plummets to 70.6%. (150) When analyzing the MDR isolates (n = 2,186), the 

EUCAST %S and MIC50/90 of eravacycline versus tigecycline were 82% and 0.25 

µg/mL / 1 µg/mL versus 51.7% and 0.25 µg/mL / 2 µg/mL. 

 

Pharmacokinetics/Pharmacodynamics 

All of these agents may be administered intravenously; however, omadacycline is 

also formulated as an oral tablet due to its improved bioavailability imparted by the 

C9 modification. (139, 140) These agents also have large volumes of distribution 

due to their extensive penetration into peripheral tissues. Additionally, the protein 

binding of tigecycline and eravacycline is extensive (69-87% and 79-87%, 

respectively), while omadacycline is mildly bound in comparison (21%). (139) 

Another difference noted between omadacycline and both tigecycline and 

eravacycline (and also minocycline and doxycycline) is the “atypical” nonlinear 

protein binding exhibited by the latter two. With increasing total concentration, the 

free concentration of drug decreases, as opposed to the expected increase which 

would be explained by saturated binding of the drug. Omadacycline exhibited 

linear protein binding for all concentrations tested during clinical trials. (151) 

 

The PK/PD index that most highly correlates with all three drugs is the fAUC0-

24/MIC. (152–154) Notably, the AUC0-24/MIC breakpoints calculated for tigecycline 

for complicated intra-abdominal infections using pooled clinical trial data were 6.96 

and 11.07. Monte Carlo analysis of these two targets resulted in a clinical 

breakpoint between 0.25 mg/mL and 0.5 mg/mL. (153) The EUCAST breakpoint 
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for tigecycline in Enterobacteriaceae reflects this at 0.5 mg/mL. Furthermore, the 

FDA provided a clinical breakpoint of 0.5 mg/mL for eravacycline citing concerns 

about the afore mentioned nonlinear protein binding. (155) Given this evidence 

and the fact that the maximum serum concentration is only 0.87 mg/mL, caution 

should be exercised when using tigecycline for bloodstream infections. In fact, the 

FDA has issued a black box warning for an increase in mortality associated with 

the use of tigecycline following the results of a meta analysis of trial data. (156) 

 

Aminoglycosides 

 
Figure I-15: Aminoglycoside Chemical Structures 
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Structures of clinically relevant aminoglycoside antimicrobials, repurposed from 
Eljaaly et al, 2019. (157) 

 
Shortly after the discovery of penicillin, Albert Schatz, while working in the 

Waksman lab, discovered the first aminoglycoside, streptomycin, as a secondary 

metabolite of S. griseus. (158) Following this discovery, several additional 

aminoglycosides were isolated from Streptomyces and Micromonospora species 

(such as tobramycin and gentamicin, respectively), and others were developed by 

semi-synthetic pathways using an existing aminoglycoside as a scaffold 

(kanamycin A became amikacin). The synthetic modifications were designed to 

shield the original aminoglycoside from enzymatic modification by aminoglycoside-

modifying enzymes (AMEs). Much like the tetracycline class, increasing 

prevalence of resistance to existing antimicrobials led investigators to rejuvenate 

the aminoglycosides. (159) The newest addition to this class is plazomicin, which 

was synthesized from sisomicin with two modifications which allow it to evade most 

clinically relevant AMEs. These modifications include a hydroxyethyl group at the 

6’ position and a hydroxyl-aminobutyric acid at the N-1 position, much like amikacin 

[Figure I-15]. (160) 

 

Mechanism of Action 

Aminoglycosides utilize a three-step process to enter the Gram-negative bacteria. 

As they are cationic, hydrophobic molecules, they initially interact with the anionic 

head groups of lipid A, which causes displacement of the divalent cations present 

and destabilization of the outer membrane. The aminoglycoside may then enter 
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the periplasmic space where it is transported across the inner membrane in an 

energy dependent manner utilizing the proton gradient. It is thought that the initial 

aminoglycosides entering then interrupt protein synthesis or cause protein 

translation errors, which facilitates the entry of more aminoglycoside into the cell 

as these mistranslated proteins are incorporated into the membrane. This process 

is self-promoting and eventually leads to the death of the bacteria as more 

aminoglycosides enter. (159) 

 

The action of aminoglycosides on protein synthesis is facilitated by their binding to 

the 16S rRNA of the 30S ribosomal subunit in the A site. This may interrupt protein 

translation or cause mistranslation of proteins in the ribosome. The mistranslated 

proteins cause additional cellular damage, specifically in the inner membrane, 

which is thought to enhance the killing activity of these antimicrobials. (159) 

 
Resistance 
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Figure I-16: Mechanisms of Aminoglycoside Modifying Enzymes 
Enzymatic modification products of kanamycin B mediated by each type of 
aminoglycoside modifying enzyme family (AAC, ANT, and APH), repurposed 
from Houghton et al, 2010. (36) 

 
As discussed earlier in the introduction, bacteria have developed two primary 

mechanisms of directly evading aminoglycosides: enzymatic modification via 

AMEs and target site modification via 16S RMTs. The AMEs are by far the most 

prevalent resistance mechanisms, and the most prevalent of the three families 

(AAC, ANT, and APH) of AME in Enterobacteriaceae are the AACs. The enzymatic 

modifications facilitated by these enzymes may only lead to resistance if a given 

aminoglycoside has an exposed oxygen or nitrogen at the site in which the 

respective moiety is added [Figure I-16]. Notably, plazomicin evades most 

clinically relevant AMEs except for AAC(2’)-I, which is chromosomally encoded by 

P. stuartii. 16S RMTs, on the other hand, impart high level resistance to all 4,6-

disubstituted aminoglycosides, which includes gentamicin, tobramycin, amikacin, 

and plazomicin. Apramycin, which is a monosubstituted aminoglycoside currently 

being tested in clinical trials, is unaffected by the most common 16S RMTs. NpmA, 

which has only rarely been reported, effectively imparts resistance to even 

apramycin. Aminoglycoside resistance may also be facilitated by the upregulation 

of efflux pump systems, specifically the MexXY-OprM of P. aeruginosa, AdeRS of 

Acinetobacter species. The efflux pump systems of B. cepacia complex, S. 

maltophilia, and A. xylosoxidans are sufficient to provide intrinsic resistance to the 

aminoglycoside class. (159) 
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In vitro Activity 

The SENTRY Antimicrobial Surveillance Program recently published a report of 

the activities of gentamicin, tobramycin, amikacin, and plazomicin against all 8,783 

Enterobacterales isolates collected from 31 US medical centers during the years 

2016 – 2017. When using the FDA or United States Committee on Antimicrobial 

Susceptibility Testing (USCAST) breakpoints (plazomicin: ≤2 µg/mL and ≤4 µg/mL, 

amikacin: ≤16 µg/mL and ≤4 µg/mL, and gentamicin and tobramycin, ≤4 µg/mL 

and ≤2 µg/mL each), the %S for all agents was similar, though plazomicin and 

amikacin were higher than gentamicin and tobramycin (97% and 99.6%, 99.4% 

and 94.2%, 90.1% and 89.5%, and 89.9 and 87%, respectively). Importantly, when 

analyzing the susceptibility of CRE (n = 98), MDR (n = 881), and extensively drug 

resistant (XDR [n = 102]), the differences in %S between the agents is far more 

pronounced, as seen in Table I-1. (161) MDR and XDR definitions utilized in this 

study was the lack of susceptibility to ≥ 1 antimicrobial agent from ≥ 3 antimicrobial 

classes (MDR) or from all but ≤ 2 antimicrobial classes (XDR). 

 
Table I-2: Percent Susceptibilities of CRE, MDR, and XDR Enterobacterales 
collected 2016 – 2017 in SENTRY Antimicrobial Surveillance Program 
Antimicrobial CRE (n = 98) MDR (n = 881) XDR (n = 102) 
 USCAST FDA USCAST FDA USCAST FDA 

Plazomicin 98.0 95.9 97.3 89.8 92.2 89.2 

Amikacin 49.0 78.6 69.4 94.3 43.1 72.5 

Gentamicin 39.8 45.9 41.4 43.9 23.5 30.4 

Tobramycin 20.4 22.4 25.5 32.1 1.0 7.8 
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Table I-2: Percent Susceptibilities of CRE, MDR, and XDR Enterobacterales 
collected 2016 – 2017 in SENTRY Antimicrobial Surveillance Program 
Antimicrobial CRE (n = 98) MDR (n = 881) XDR (n = 102) 
All values are presented as %S, all MIC values are given as µg/mL; USCAST: 
United States Committee on Antimicrobial Susceptibility Testing, FDA: US 
Food and Drug Administration (161) 

 
In highly resistant Enterobacterales, which may often be the scenario one would 

use an aminoglycoside, gentamicin and tobramycin are not viable options in the 

US. Depending upon which breakpoint is used for interpretation would often 

determine whether or not amikacin is highly active. The interpretation of plazomicin 

activity differs little between the log2 difference between the two agencies. The 

Clinical and Laboratory Standards Institute (CLSI) and FDA breakpoints of ≤ 16 

mg/mL for amikacin are broadly considered to be too high. In fact, Ambrose et al 

reported probability of target attainment analysis for amikacin using an MIC 

distribution of Enterobacteriaceae collected in the US, which suggests that 

amikacin should have a susceptibility breakpoint of ≤ 2 mg/mL when using the 

20mg/kg/day dosing regimen. The authors opined, and probably correctly, that the 

use of outdated susceptibility breakpoints for amikacin likely contributed to the poor 

performance of plazomicin as clinicians perceived no additional benefit provided 

by the more expensive, novel agent. (162) 

 

Pharmacokinetics/Pharmacodynamics 

Aminoglycosides are mostly administered intravenously, though some other 

parenteral formulations are used situationally, such as nebulized amikacin. 

Aminoglycosides are almost exclusive excreted renally without metabolism and 
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are well distributed throughout the body, making them attractive candidates for 

several infection types. They were traditionally dosed in multiple daily dosing 

regimens, where they led to nephrotoxicity rates of 10-20%. Today, most patients 

receive once-daily dosing regimens of aminoglycosides, which have been shown 

to have similar, if not better, efficacy and better safety profiles; however, some 

indications still utilize the multiple-daily dosing. When combined with therapeutic 

drug monitoring, the once-daily regimens have been reported to have 0% - 14% 

nephrotoxicity. (163) 

 

The PK/PD index most correlated with aminoglycoside activity has traditionally 

been reported as the ratio of the unbound maximum concentration / MIC 

(fCmax/MIC); however, more recent data suggests that fAUC0-24/MIC is more 

appropriate. The history of this debate is well described by Bland et al. (164) Based 

on current evidence, and AUC/MIC ratio of 30 – 50 (stasis) seems reasonable for 

the treatment of non-critical infections in immunocompetent patients, and a ratio of 

80 – 100 (1-log10 kill) for more serious infections and/or when using 

aminoglycosides as monotherapy. (164) Analysis of the recently approved 

plazomicin found that the stasis and 1 log10 kill AUC/MIC ratios in neutropenic 

murine thigh and pneumonia CRE infection models were 24 and 89, respectively. 

(165) 
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Beta-lactams and Beta-lactamase Inhibitors 

Beta-lactam antimicrobials and their beta-lactamase counterparts have been 

discussed at length above; however, this class has also undergone a revival in 

response to the appearance of carbapenem resistant organisms. This has included 

the introduction of new beta-lactams (ceftolozane and cefiderocol) as well as new 

inhibitors (avibactam, vaborbactam, relebactam, and others still under 

investigation) to the market. While the majority of early progress has been aimed 

at serine-based active site carbapenemases, namely the Class A enzymes, efforts 

are also being made to address MBLs and non-carbapenemase-producing CRE 

phenotypes. As the mechanisms of action for the beta-lactams and beta-lactamase 

inhibitors and resistance mechanisms of the beta-lactamases have been 

previously discussed, see above for this general description. 

 

Novel beta-lactamase inhibitors currently available or in clinical phase trials mostly 

belong to two different structural groups: DBO or cyclic boronates, though the 

majority belong to the DBO group. Avibactam and relebactam, which are currently 

formulated with ceftazidime and imipenem/cilastatin, belong to the DBO group, 

while vaborbactam, formulated with meropenem, belongs to the cyclic boronates. 

These inhibitors potently inhibit Class A beta-lactamases, including 

carbapenemases, and Class C beta-lactamases. Avibactam also inhibits some 

Class D enzymes, the most important of which are OXA-48-like beta-lactamases. 

(64) None of these currently available inhibitors meaningfully inhibit any Class B 

enzymes; however, aztreonam, which is a currently available monobactam, is not 
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hydrolyzed by Class B enzymes. Combining the serine-based beta-lactamase 

inhibition of avibactam with the active component of aztreonam (and ceftazidime 

as it is coformulated with avibactam) has been an often-utilized strategy to address 

Class B enzymes. (64) Aztreonam-avibactam is currently undergoing clinical trials 

to impart this approach more directly. 

 

Other beta-lactam/beta-lactamase inhibitor combinations currently in clinical trials 

include cefepime-enmetazobactam, cefepime-zidebactam, cefepime-

taniborbactam, meropenem-nacubactam, and sulbactam-durlobactam, all of which 

are also DBO inhibitors except for enmetazobactam and taniborbactam, one being 

a penicillanic acid sulfone inhibitor and the other a cyclic boronate inhibitor, 

respectively. Nacubactam and zidebactam uniquely function as both inhibitors and 

killing agents. Both facilitate their antimicrobial activity by targeting PBP2 while 

also providing an “enhancer” effect to coadminstered beta-lactam agents with 

activity against PBP3 (both meropenem and cefepime target PBP3). Both agents 

strongly inhibit Class A and C enzymes, while providing variable Class D enzyme 

inhibition. Interestingly, while neither agent inhibits MBLs, both combinations 

exhibit activity against a high percentage of MBL-producing organisms, discussed 

more below. (166, 167) 

 

Taniborbactam, like vaborbactam, is a cyclic boronate inhibitor; however, unlike 

vaborbactam, taniborbactam inhibits beta-lactamases in all four Ambler classes. 

Of note, this inhibitor did lack activity against IMP enzymes. (168) Sulbactam-
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durlobactam is a combination of two beta-lactamase inhibitors specifically for the 

treatment of Acinetobacter species. While sulbactam is often associated with 

ampicillin as a penicillanic acid sulfone inhibitor, it exhibits direct antimicrobial 

activity against Acinetobacter species via inhibition of PBP1 and PBP3. 

Durlobactam, like zidebactam and nacubactam, also possess activity against 

PBP2 in some Enterobacteriaceae species. (169) Because this agent is primarily 

being formulated for the treatment of Acinetobacter infections, this combination will 

not be discussed further. Enmetazobactam was designed as an improvement to 

the routinely used tazobactam. It is more potent than tazobactam against several 

Class A enzymes, specifically ESBLs. The combination with cefepime expands the 

activity to AmpC-producing and certain OXA-producing bacteria; however, it does 

not have significant activity against carbapenemases outside of Class D. (170) 

 

Ceftolozane and cefiderocol are novel cephalosporin beta-lactams that have 

recently been approved, ceftolozane being coformulated with tazobactam. While 

ceftolozane exhibits broad spectrum activity against Enterobacteriaceae, its most 

common use has been in the treatment of P. aeruginosa. Ceftolozane is stable 

against the AmpC of P. aeruginosa and is unaffected by the most common efflux 

pump and porin channel resistance mechanisms, which affect most other beta-

lactams, including carbapenems. (171) The addition of tazobactam allows 

ceftolozane to evade ESBLs in vitro, which is more common expressed in 

Enterobacteriaceae instead of P. aeruginosa. (172) Cefiderocol utilizes a novel 

siderophore moiety, which allows it to gain entrance through the OM via both porin 
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channels, like other beta-lactams, and the iron-siderophore uptake system. 

Cefiderocol has broad-spectrum activity against organisms producing beta-

lactamases from all four Ambler classifications partially due to its improved entry 

into the periplasmic space and its increased stability to hydrolysis by these 

enzymes, including non-fermenters such as P. aeruginosa and A. baumannii. (72) 

 

These agents listed above are the furthest progressed in the clinical trials pipeline; 

however, several more products, many of which are variations of the DBO scaffold 

are incoming. (173) XNW4107 is a DBO being coformulated with imipenem from 

Suzhou Sinovent Pharmaceuticals Co. Ltd, which shows potent in-vitro activity 

against Class A, C, and D enzymes, with particularly strong inhibition of the OXA-

23-like and OXA-40-like beta-lactamases of A. baumannii. (174) ETX1317 is 

another DBO inhibitor with antimicrobial activity against PBP2, which shows 

stronger inhibition than avibactam against Class A, C, and D enzymes. It is being 

coformulated with cefpodoxime as a an oral prodrug (ETX0282). (175) WCK4234 

is a DBO with inhibitory activity against Class A, C, and D being coformulated with 

meropenem (combination is WCK5999). This inhibitor has much better Class D 

inhibition, even against those produced by A. baumannii, which restores 

meropenem activity. (176) VNRX7145 is an orally available prodrug of VNRX5236 

cyclic boronate inhibitor with inhibitory activity against Class A, C, and D enzymes, 

which has been studied in combination with ceftibuten. (177) QPX7728 and its 

orally available prodrug QPX7831 is a cyclic boronate with inhibitory activity 

against all Ambler Class enzymes. It is currently being evaluated with QPX2014, 
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which is an antimicrobial of undisclosed structure. (178–180) LN-1-255 is a 

penicillanic acid sulfone inhibitor specifically designed to inhibit Class D enzymes, 

especially those produced by Acinetobacter species. (181) ANT2681 is a potent 

NDM selective inhibitor, not belonging to any of the aforementioned inhibitor 

classes, with varying activity against VIM and IMP when tested in combination with 

meropenem. (182) 

 

In-vitro Activity 

Against 17,524 Enterobacterales isolates collected 2018 – 2019 in the SENTRY 

Antimicrobial Surveillance Program, ceftazidime-avibactam, cefepime-

zidebactam, and ceftolozane-tazobactam were compared with other commonly 

used agents. Assuming a breakpoint of ≤ 8 µg/mL for cefepime-zidebactam (being 

formulated as 2g cefepime 1g zidebactam q8hr, which would make the 

susceptible-dose-dependent regiment of cefepime monotherapy), the activities for 

these three agents can be found in Table I-2. Of note, cefepime-zidebactam 

maintained excellent activity regardless of phenotype, while ceftazidime-

avibactam struggled due to the presence of MBLs. Ceftolozane-tazobactam was 

ineffective against the CREs because neither component is active against 

carbapenemases; however, it was highly active against 4,808 P. aeruginosa (%S 

and MIC50/90 of 93.7% and 0.5 µg/mL / 4 µg/mL). Even against P. aeruginosa 

isolates resistant to piperacillin-tazobactam (n = 1,122), ceftolozane-tazobactam 

maintained a respectable 75.1% and 2 µg/mL / >16 µg/mL. Cefepime-zidebactam 
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activity against these P. aeruginosa isolates was virtually the same regardless of 

phenotype (99.2% and 96.5% and 1 µg/mL / 4 µg/mL and 4 µg/mL / 8 µg/mL, 

respectively). (183)  

 

Table I-3: Susceptibility Analysis of Cefepime-Zidebactam, Ceftazidime-
Avibactam, and Ceftolozane-Tazobactam against Enterobacterales Collected 
in the SENTRY Antimicrobial Surveillance Program 

Antimicrobials  Enterobacteriaceae 
(n = 17,524)a 

CRE 
(n = 681) 

ESBL 
(n = 2,889) 

Cefepime- 
zidebactam 

%S 99.9 97.8 100 

MIC50 0.03 1 0.13 

MIC90 0.25 2 0.25 

Ceftazidime- 
avibactam 

%S 98.9 72.6 99.8 

MIC50 0.13 1 0.13 

MIC90 0.5 >32 0.5 

Ceftolozane- 
tazobactam 

%S 91.7 2.1 85.1 

MIC50 0.25 >16 0.5 

MIC90 2 >16 8 

All MIC values are given as µg/mL, a. breakpoint of ≤ 8 µg/mL used for 
cefepime-zidebactam; %S: percent susceptible, MICn: minimum concentration 
needed to inhibit the nth percentile of bacteria (183) 

 
Another SENTRY Antimicrobial Surveillance Program study in 10,426 

Enterobacteriaceae isolates collected in 2014 from 82 hospitals across several 

countries showed that meropenem-vaborbactam exhibited %S and MIC50/90 of 

99.5% and ≤ 0.02 µg/mL / 0.06 µg/mL, and 79.6% and 0.5 µg/mL / 32 µg/mL 

against the 265 CRE collected. This included 66 isolates producing either an MBL 

or OXA-48-like carbapenemase, which are not inhibited by vaborbactam. In the 
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199 other CRE, including 135 KPC-producers and 63 carbapenemase-negative 

isolates, meropenem-vaborbactam had a %S and MIC50/90 of 97.5% and 0.25 

µg/mL / 1 µg/mL. (184) 

 

Yet another report published from the SENTRY Antimicrobial Surveillance 

Program compared the activity of cefiderocol against beta-lactam/beta-lactamases 

inhibitor products currently on the market. These activities may be seen in Table 

I-3. Against 8,047 Enterobacteriaceae isolates collected in 2020 from 66 hospitals 

in the US and Europe, all four agents showed excellent activity. However, against 

the subset of CREs, the %S of the beta-lactam/beta-lactamase inhibitors dropped 

significantly while the %S of cefiderocol remained virtually the same. All four 

agents required a greater concentration to inhibit the bacteria (MIC50/90). It is highly 

likely that the drop in susceptibility was due to the presence of MBL- and OXA-48-

like-producing bacteria. None of these inhibitor combinations have any activity 

against MBL-producers, but in the subsets of meropenem-vaborbactam resistant 

(n = 41) and imipenem-relebactam resistant (n = 49) isolates, the %S for 

ceftazidime-avibactam was 43.9% and 40.8%, which suggests a fair number of 

Class D enzyme production. (185) 

 

Table I-4: Activity of Novel Beta-Lactam Agents Against Enterobacteriaceae 
Collected in the SENTRY Antimicrobial Surveillance Program 
Antimicrobials  Enterobacteriaceae 

(n = 8,047) 
CRE 

(n = 169) 

Cefiderocol 
%S 99.8 98.2 

MIC50 0.06 0.5 
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Table I-4: Activity of Novel Beta-Lactam Agents Against Enterobacteriaceae 
Collected in the SENTRY Antimicrobial Surveillance Program 
Antimicrobials  Enterobacteriaceae 

(n = 8,047) 
CRE 

(n = 169) 
MIC90 0.5 4 

Ceftazidime-avibactam 

%S 99.5 81.7 

MIC50 0.13 1 

MIC90 0.25 >32 

Imipenem-relebactam 

%S 94.8 63.9 

MIC50 0.13 0.25 

MIC90 0.5 >8 

Meropenem-vaborbactam 

%S 99.4 71 

MIC50 0.03 1 

MIC90 0.06 >8 
All MIC values are given as µg/mL; %S: percent susceptible, MICn: minimum 
concentration needed to inhibit the nth percentile of bacteria (185) 

 
In another surveillance study, 18,027 Enterobacterales isolates were collected 

between 2007 – 2019 as part of the CANWARD study in Canada, of which 179 

were non-susceptible to ertapenem. Several novel agents were tested against 

these isolates, and the activities may be seen in Table I-4. All of the novel agents 

exhibited potent activity except for ceftolozane-tazobactam. Interestingly, only 

16/179 of the isolates produced a carbapenemase; however, there were some 

MBL- and OXA-producing isolates among these. Though the authors do not 

provide granular phenotypic information about the 179 isolates to investigate the 

poor activity of ceftolozane-tazobactam, the %S in 51 ertapenem-susceptible 

control isolates for ceftolozane-tazobactam was only 84.3%, no different than 

piperacillin-tazobactam. Only 13 of the ertapenem-non-susceptible isolates were 
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not susceptible to cefepime-taniborbactam at a breakpoint of ≤ 8 µg/mL. All of 

these isolates at least had a beta-lactamase along with porin alterations and 

showed elevated MICs to ceftazidime-avibactam, imipenem-cilastatin-relebactam, 

and meropenem-vaborbactam. (186) 

 

Table I-5: Activity of Novel Beta-Lactam Agents Against Ertapenem-non-
susceptible Isolates Collected in the CANWARD Surveillance Program 
Antimicrobials %S MIC50 MIC90 

Cefepime-taniborbactam 98.9a 0.5 2 

Ceftazidime-avibactam 97.8 1 4 

Ceftolozane-tazobactam 20.1 16 >32 

Imipenem-relebactam 92.2 0.25 1 

Meropenem-vaborbactam 96.1 ≤ 0.06 0.5 
All MIC values are given as µg/mL, a. breakpoint of ≤ 8 µg/mL used for 
cefepime-zidebactam; %S: percent susceptible, MICn: minimum concentration 
needed to inhibit the nth percentile of bacteria (186) 

 
Another study conducted by the GEMARA-SEIMC/REIPI Enterobacterales Study 

Group from Spain analyzed the activity of cefepime-taniborbactam along with other 

cefepime combinations. They collected 400 carbapenemase-producing 

Enterobacterales in 2018 from 24 hospitals in Spain. The activities of these agents 

are displayed in Table I-5. Once again, cefepime-zidebactam exhibited excellent 

activity no matter what carbapenemase phenotype was considered. The overall 

%S comparison between cefepime-zidebactam and -taniborbactam is slightly 

misleading due to the abundance of OXA-48-like-producing organisms. Against 

KPC- and MBL-producing organisms, the %S for cefepime-taniborbactam was ~ 

20 percentage points lower than cefepime-zidebactam. In fact, zidebactam alone 
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was more potent than cefepime-taniborbactam in KPC-producing organisms and 

exhibited the same %S as cefepime-taniborbactam against MBL-producing 

isolates. (187) 

 

 The combination with taniborbactam was not as potent even though this inhibitor 

inhibits enzymes across all Ambler classes (with IMP as a notable exception). 

Cefepime-enmetazobactam was significantly enhanced against OXA-48-like-

producing isolates when compared to cefepime alone due to the abundance of 

ESBL-coproducing isolates (n = 247). Cefepime alone had a %S of 73.7% in OXA-

48-like-producing isolates which lacked an ESBL. Most of the activity of cefepime-

enmetazobactam against KPC-producing isolates came from the ESBL-

coproducing isolates (%S 94.1% against 17 isolates with ESBL, %S 7.4% in 27 

isolates lacking ESBL). (187) 

 

Table I-6: Activity of Novel Cefepime Beta-lactamase Inhibitor Combinations in 
CRE Collected from Spanish Hospitals 

Antimicrobials  
CRE 
(n = 
400) 

KPC-
producing 

(n = 44) 

MBL-
producing 

(n = 56) 

OXA-
Producing 
(n = 304) 

Cefepime-
zidebactam 

%S 99 100 96.4 99.3 

MIC50 ≤ 0.5 ≤ 0.5 ≤ 0.5 ≤ 0.5 

MIC90 1 1 1 ≤ 0.5 

Cefepime-
taniborbactam 

%S 90 81.5 75 93.1 

MIC50 ≤ 0.5 1 1 ≤ 0.5 

MIC90 2 4 8 2 

Cefepime-
enmetazobactam 

%S 61.8 71.7 0 74.7 

MIC50 2 1 64 1 
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Table I-6: Activity of Novel Cefepime Beta-lactamase Inhibitor Combinations in 
CRE Collected from Spanish Hospitals 

Antimicrobials  
CRE 
(n = 
400) 

KPC-
producing 

(n = 44) 

MBL-
producing 

(n = 56) 

OXA-
Producing 
(n = 304) 

MIC90 >64 16 >64 16 
All MIC values are given as µg/mL, Authors used a breakpoint of ≤ 2 µg/mL for 
a cefepime combinations; %S: percent susceptible, MICn: minimum 
concentration needed to inhibit the nth percentile of bacteria (187) 

 
Castanheira et al recently analyzed the susceptibility of ceftazidime-avibactam, 

imipenem-relebactam, and meropenem-vaborbactam against a collection of 45 

non-carbapenemase-producing CRE selected from a total of 304 total CRE 

collected between 2016 – 2018 from 70 US hospitals. Ceftazidime-avibactam had 

a %S of 100% while imipenem-relebactam and meropenem-vaborbactam had %S 

of 93% and 93.3%, respectively. The isolates that were non-susceptible to the 

latter two agents possessed altered porin channel phenotypes often in association 

with overexpression of non-carbapenemase beta-lactamases and/or efflux pumps. 

(188) 

 

Livermore and Mushtaq et al tested the inhibitor nacubactam in combination with 

several antimicrobials against Enterobacteriaceae expressing various resistance 

phenotypes. Against a collection of 309 IMP-, NDM-, and VIM-producing isolates 

from UK hospitals, meropenem-nacubactam had activity against 71.2% of the 

isolates at a meropenem breakpoint of 1 µg/mL and 80.3% at a breakpoint of 4 

µg/mL when combined with 4 µg/mL of inhibitor. (189) Against another collection 

of isolates provided by the Public Health England Antimicrobial Resistance and 

Healthcare Associated Infections Reference Unit from UK diagnostic laboratory 
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including 278 CRE, biapenem combined with nacubactam had activity against 

92.1% of isolates at a biapenem breakpoint of 1 µg/mL and 95.7% at a breakpoint 

of 4 µg/mL when combined with 4 µg/mL of nacubactam. (190) 

 

Pharmacokinetics/Pharmacodynamics 

Beta-lactam pharmacokinetics were briefly highlighted in an earlier section. The 

pharmacodynamic parameter that best fits the action of beta-lactam agents has 

been widely shown to be the percent time over which the unbound drug 

concentration exceeds a target threshold, which for beta-lactams is the MIC (f%T 

> MIC). The optimized targets for the four primary structural classes against 

Enterobacterales are as follows: 30% – 40% for carbapenems, 60% - 70% for 

cephalosporins, 40% - 50% for penicillins, and 50% - 60% for aztreonam 

(monobactam). (49, 191). 

 

Table I-6 shows the PK/PD indices for novel beta-lactams and their associated 

beta-lactam inhibitors, if applicable. Notably, most of these agents have activities 

that are still best predicted by f%T > MIC. However, some of the novel inhibitor’s 

activities were best modeled by fAUC0-24/MIC. A novel index was even introduced 

in one study for imipenem/cilastatin/relebactam, that being the f%T > MICdynamic. 

The authors reasoned that the MIC of an organism would vary due to the 

concentration of the inhibitor present, especially in those resistant to the active 

compound. This approach has been offered as a new approach to conceptualize 
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all beta-lactam/beta-lactamase inhibitors but has not been used in the analysis of 

other agents. (192) 

 

Table I-7: Pharmacokinetic/Pharmacodynamic Indexes for Novel Beta-lactam 
Antimicrobials Against Enterobacteriaceae 

Antimicrobial PK/PD 
Index 

PK/PD 
Index 

(inhibitor) 
CT fAUC/MIC References 

Aztreonam-
avibactam 

60% fT > 
MIC 50% fT > CT 2.5 - (193) 

Cefepime-
enmetazobactam 

60% fT > 
MIC 45% fT > CT 2 - (194, 195) 

Cefepime-
taniborbactam 

50% fT > 
MIC fAUC0-24/MIC - 2.62a (196) 

Cefepime-
zidebactam 

~30% fT > 
MICb - 1 - 

8 - (197–199) 

Cefiderocol 75% fT > 
MIC - - - (200) 

Ceftazidime-
avibactam 

50% fT > 
MIC 50% fT > CT 1 - (193) 

Ceftolozane-
tazobactam 

30 - 40% 
fT > MICc 20% fT > CT 1 - (201, 202) 

Imipenem-
relebactam 

40% fT > 
MICdynamic fAUC0-24/MIC - 7.5 (203, 204) 

Meropenem-
nacubactam 

20 - 30% 
fT > MIC - - - (205, 206) 

Meropenem-
vaborbactam 

45% fT > 
MIC fAUC0-24/MIC - 38 (207, 208) 

CT values are measured in µg/mL, a. median fAUC0-24/MIC, b. reflects PKPD 
index of cefepime when combined with zidebactam, c. for P. aeruginosa; AUC: 
Area under the curve, CT: critical concentration threshold, MIC: minimum 
inhibitory concentration, PD: pharmacodynamics, PK: pharmacokinetics 

 

Current Clinical Evidence 

Prior to the approval of ceftazidime-avibactam, no single agent was sufficient to 

treat carbapenemase-producing CRE. Instead, combination therapy was the 

mainstay of treatment in these patients with several competing strategies being 
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investigated for optimization: anti-pseudomonal carbapenem combined with either 

polymyxin, tigecycline, aminoglycoside, multiple of these, or ertapenem (emulating 

beta-lactam/beta-lactamase inhibitor strategy). In fact, the INCREMENT 

retrospective cohort study demonstrated a significant 30-day all-cause mortality 

benefit associated with combination therapy in patients having a high (8 - 15) 

INCREMENT-CPE score versus monotherapy (HR 0.6 [0.39 – 0.93]). (209) These 

strategies are exhaustively covered by Kulengowski in his dissertation work; 

however, with the arrival of beta-lactam therapeutic options, combination therapy 

with these other agents is less favorable due to differences in safety and worse 

outcomes compared with novel beta-lactam agents. (210) For institutions who still 

require the use of combination therapy due to an inability to access these novel 

therapies, a consensus guideline for the optimal use of polymyxins has been 

released as a collaborative effort between the American College of Clinical 

Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious 

Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International 

Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine 

(SCCM), and Society of Infectious Diseases Pharmacists (SIDP). (211) For non-

urinary and non-blood stream infections (specifically intra-abdominal infections), 

the IDSA recommends that tigecycline and eravacycline may be viable options; 

however, they recommend using the high-dose tigecycline regimens as increased 

mortality has been noted with the previous dosing scheme. (212) 
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Novel beta-lactam/beta-lactamase inhibitor vs. colistin-based regimens 

The benefit of these novel beta-lactam agents, especially ceftazidime-avibactam, 

over colistin based combination therapy has been demonstrated in several 

observational studies. Shields et al were the first to demonstrate this benefit in a 

single center, retrospective study including patients 2009 – 2017. Only 13 of the 

included 109 patients received ceftazidime-avibactam; yet, statistically significant 

30-day clinical success and 90-day survival benefits were demonstrated by this 

agent (11/13 (85%) vs. 39/96 (40.6%); P = 0.006 and 12/13 [92%] vs. 53/96 

[55.2%]; P = 0.01, respectively) versus all non-ceftazidime-avibactam containing 

regimens (the majority of which contained colistin). 30-day survival (12/13 [92%] 

vs. 66/96 [68.9%]) and acute kidney injury (2/13 [18%] vs. 27/96 [28.1%]) present 

at the end of treatment were numerically improved in these patients as well. (213) 

 

Following this early report, several other observational studies have been reported, 

two of which were prospectively evaluated, though neither were randomized. The 

first was reported by Tumbarello et al in 2019 and included patients from 17 

different medical centers. Patients included in this analysis only received 

ceftazidime-avibactam as monotherapy or in combination with other agents as 

salvage therapy. Still, 30-day mortality in 138 patients treated for ≥ 72 hours was 

34.1%, and in a matched comparison between 104 pairs of patients either 

receiving ceftazidime-avibactam or other therapy (some of which included colistin 

but not as much as in other studies), 30-day mortality was improved in the 

ceftazidime-avibactam group (36.5% vs. 55.8%, P = 0.005). (214) 
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In a subgroup analysis of the CRACKLE molecular and clinical epidemiology 

prospective cohort study performed in the US, van Duin et al compared outcomes 

of patients receiving ceftazidime-avibactam versus colistin. As with the other 

studies, the sample size of the ceftazidime-avibactam group was small (38/137); 

however, ceftazidime-avibactam demonstrated a sizeable 30-day mortality benefit 

(inverse probability of treatment weight {IPTW} adjusted difference colistin minus 

ceftazidime-avibactam: 23% [9% - 35%]). This study also utilized a novel statistical 

technique to evaluate efficacy, safety, and benefit-risk ratio called desirability of 

outcome ranking (DOOR). The result of this analysis provided “the probability that 

a randomly selected patient initially treated with ceftazidime-avibactam would have 

a better overall outcome than a randomly selected patient initially treated with 

colistin.” These analyses provided probabilities of 64% [57% - 71%], 62% [52% - 

72%], and 64% [53% - 75%] of a better outcome in the ceftazidime-avibactam 

group. (215) This method warrants further investigation as it allows simultaneous 

evaluation of efficacy and safety analyses and can help tease apart the individual 

effects of composite outcomes. (216) 

 

Karaiskos et al published a more recent prospective multicenter study in 2021 

which utilized a national registry. In total, 147 patients (140 with KPC-producing 

and 7 with OXA-48-producing organisms) received ceftazidime-avibactam as 

monotherapy (46.3%) or in combination (53.7%). The 14- and 28-day mortality 

were 9% and 20% with a 14-day clinical success rate of 81%. Secondarily, 71 
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patients who were treated with non-ceftazidime-avibactam regimens, which were 

primarily colistin based, were matched with 71 patients treated with ceftazidime-

avibactam with a propensity score. The 28-day mortality was decreased in the 

ceftazidime-avibactam group (18.3% vs. 40.8%, P = 0.005). (217) 

 

Meropenem-vaborbactam and imipenem-relebactam have also shown promise in 

the TANGO II and RESTORE-IMI 1 randomized phase 3 clinical trials; however, 

the sample sizes leave wide variability in the measured outcomes. Even though 

the patient sample sizes included in these studies are smaller than other studies 

presented above for ceftazidime-avibactam, both are randomized, which provides 

the benefit of balancing both measured and unmeasured confounding. Even 

though the observational studies presented above use confounding adjustment, 

usually involving propensity score matching or IPTW, unmeasured confounding is 

not controlled with these methods.  

 

TANGO II stopped enrollment after 72 patients per recommendation by the 

independent Data Safety Monitoring Board due to the study meeting its objectives. 

Only 47 of the 72 patients were included in the microbiologically confirmed CRE 

modified intent to treat (mCRE-MITT) analysis (32 in the meropenem-vaborbactam 

group and 15 in the best available treatment group, of which 8 received colistin or 

polymyxin B containing regimens). Clinical cure at the end of therapy and test of 

cure date was significantly improved in the meropenem-vaborbactam group 

(percentage point differences of 32.8 [3.3% - 61.3%] and 32.7% [4.6% - 60.8%], 
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respectively). 28-day mortality was numerically lowered in the meropenem-

vaborbactam group (-17.7% [-44.7%] – 9.3%); however, 9 of the 32 patients 

randomized to the meropenem-vaborbactam group initially failed other therapy 

prior to randomization. In a sensitivity analysis excluding these patients, the 28-

day mortality difference was lowered further in the meropenem-vaborbactam 

group (-29% [-54.3% - -3.7%]). Renal-related treatment emergent adverse effects 

were also lower in the meropenem-vaborbactam group (4% vs. 24%). (218)  

 

Imipenem-relebactam showed similar promise when compared to imipenem-

colistin. RESTORE-IMI 1 was also a prospective, randomized phase 3 clinical trial 

in which 47 patients received either imipenem-cilastatin-relebactam (n = 31) or 

imipenem-colistin (n = 16). The mMITT analysis included 21 patients in the 

imipenem-relebactam group and 10 in the imipenem-colistin group. Favorable 

clinical response and mortality evaluated after 28 days were both improved in the 

imipenem-relebactam group (adjusted percentage point difference: 26.3% [1.3% - 

51.5%] and -17.3% [-46.4% - 6.7%], respectively); though both groups achieved 

favorable overall responses (71.4% vs. 70%). It should be noted that the vast 

majority of isolates in this study were P. aeruginosa (65%), which differs greatly 

from every other study presented in this section. (219) More data are needed to 

settle the optimal use of these agents, but current evidence certainly suggests that 

they provide increased benefit over colistin and polymyxin B. 
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CRE Treatment Recommendations 

In guidelines released recently by the IDSA, the treatment recommendations 

regarding CRE infections are separated into sections of urinary infections vs. non-

urinary source and infections caused by carbapenemase-producing vs. non-

carbapenemase producing organisms in the context of ertapenem resistance and 

meropenem susceptibility. (212) In light of this, I will follow the same structure. 

 

Urinary Tract Infection 

Several renally excreted drugs tend to achieve concentrations in the bladder 

exceeding what can be reached in plasma or in other tissues. For this reason, 

several agents are available for treating uncomplicated cystitis caused by CRE. 

The IDSA recommends that ciprofloxacin, levofloxacin, trimethoprim-

sulfamethoxazole, nitrofurantoin, or a single-dose of an aminoglycoside should be 

sufficient to treat such infections provided that the organism is susceptible to the 

chosen agent. (212, 220) Ciprofloxacin, levofloxacin, and trimethoprim-

sulfamethoxazole may also be used for complicated UTI and pyelonephritis is the 

organism is susceptible. This is often not the case as CRE tend to be MDR, 

especially in carbapenemase-producing organisms where the plasmid encoding 

the carbapenemase often carries resistance genes to these other agents leading 

to broad-spectrum resistance. (221) 
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Amikacin often retains activity against CRE at the CLSI breakpoint, but as 

mentioned before, many find this breakpoint to be too high. However, this may not 

matter in the treatment of uncomplicated cystitis given the high concentrations 

reached in the bladder. In a clinical trial of 12 patients, urine concentrations within 

the first 6 hours ranged from 470 – 1,940 mg/mL following a 7.5 mg/kg dose 

continuously infused over an hour. (222) Furthermore, plazomicin was approved 

for the treatment of complicated UTI after showing non-inferiority to meropenem 

with a statistically significantly higher percentage of patients having clinical cure in 

the plazomicin group (percentage-point difference 11.6 [95% CI: 2.7 – 20.3]). (223) 

The benefit of plazomicin is that outside of species specific AMEs found in P. 

stuartii, the only prominent resistance noted is mediated by 16S RMTs, which are 

not common in the US. This will likely ensure susceptibility against more CRE than 

amikacin and allow its use even in complicated UTI, where, unlike in cystitis, 

antimicrobials may not reach exceedingly high concentrations. 

 

If the infecting organism is resistant only to ertapenem and not an anti-

pseudomonal carbapenem and if it does not produce a carbapenemase, 

meropenem may be used for the treatment of both uncomplicated and cystitis as 

well as complicated UTI and pyelonephritis, though extended-infusion is 

recommended for the latter. It is uncertain if meropenem monotherapy would be 

successful in patients in which the organism is susceptible to meropenem but also 

produces a carbapenemase. This has only been a rarity following the CLSI 

lowering the carbapenem breakpoints in 2010. (224) One study published shortly 
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after these breakpoint changes demonstrated that mortality increased with 

carbapenem MIC from 2 µg/mL – 8 µg/mL compared to a matched cohort of 

patients with infections caused by organisms with carbapenem MICs ≤ 1mg/mL 

(38.9% vs. 5.6%, P = 0.04). These cohorts were matched 1:1 on age, Charlson 

comorbidity index, source of infection, pathogen, and ICU status at time of positive 

culture. There were only 18 patients in each group, and the carbapenem regimens 

used were not sufficient to reach the 30-40% fT > MIC target in the higher MIC 

organisms, so the strength of this evidence is questionable. (225) The abundance 

of beta-lactam/beta-lactamase inhibitor combinations with activity against CRE 

and indications for use in complicated UTI and pyelonephritis are favored in the 

context of carbapenemase-production. (226–230) 

 

Non-urinary Infections 

For infections occurring outside of the urinary tract, extended infusion meropenem 

is still recommended if the organism is susceptible and does not produce a 

carbapenemase. In the context of carbapenemase production, the phenotype of 

the carbapenemase determines what is recommended. For KPC-producing 

organisms, the use of ceftazidime-avibactam, meropenem-vaborbactam, or 

imipenem-relebactam are preferred agents, though they mentioned a preference 

for meropenem-vaborbactam given the frequency of treatment emergent 

resistance to ceftazidime-avibactam (discussed below). For infections caused by 

MBL-producers, ceftazidime-avibactam with aztreonam or cefiderocol 

monotherapy was preferred. Lastly, for OXA-48-like-producers, ceftazidime-
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avibactam was the preferred agent, with cefiderocol also being offered as an 

alternative. 

 

KPC 

Because ceftazidime-avibactam was the first of the beta-lactam agents with activity 

against carbapenemase-producing organisms, there is more data available for its 

use in the treatment of KPC-producing organisms. As discussed above, 

ceftazidime-avibactam has been shown to cause fewer adverse effects than 

combination therapy, especially polymyxin-containing combinations, and appears 

to be more effective as well. For completeness, these benefits have also been 

shown for meropenem-vaborbactam and imipenem-relebactam in the limited 

experience of these antimicrobials. However, little data exists directly comparing 

these novel agents with one another outside of in-vitro susceptibility studies. 

 

One multicenter, retrospective cohort study has been performed to compare 

treatment outcomes for patients treated with ceftazidime-avibactam or 

meropenem-vaborbactam. Overall, 131 patients (105 received ceftazidime-

avibactam and 26 received meropenem vaborbactam) were included who received 

treatment for ≥ 72 hours and had infections not specifically localized to the urinary 

tract. The primary endpoint was composite clinical success which included 30-day 

survival, resolution of signs/symptoms, sterilization of blood cultures within 7 days 

of treatment start in patients having bacteremia, and absence of recurrent infection 

within 90 days of the index culture. The patients were well balanced in regard to 
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baseline demographics and had a high degree of severity. The infections in both 

groups were dominated by K. pneumoniae (72.4% in the ceftazidime-avibactam 

group vs. 57.7% in the meropenem-vaborbactam group). KPC-production was 

also highly prevalent in both groups (23/32 in the ceftazidime-avibactam group vs. 

10/13 in the meropenem-vaborbactam group [not all isolates were tested]). (231) 

 

Clinical success was similar between groups but numerically higher in the 

meropenem-vaborbactam group (61.9% vs. 69.2%, P = 0.49). Of particular 

concern was the recurrence of CRE infections in 3 patients of the ceftazidime-

avibactam group that were resistant to ceftazidime-avibactam out of the total 15 

CRE recurrences (the meropenem-vaborbactam had 3 recurrences but all 

remained susceptible to meropenem-vaborbactam). In all of the 3 recurrent 

infections, the patients had infections with respiratory sources and required renal 

replacement therapy (RRT) at baseline, both of which were found to be 

independent predictors of ceftazidime-avibactam treatment failures in multivariate 

analysis performed by Shields et al. (231, 232) 

 

Romney et al first reported a patient having treatment emergent resistance to 

ceftazidime-avibactam while receiving compassionate care (ceftazidime-

avibactam had not yet been FDA approved). Notably this patient required 

continuous renal replacement therapy during treatment. (233) The phenotype of 

this isolate included mutations to both OmpK35 and OmpK36 in addition to 

increased expression of KPC-3. (234) Shields et al reported on the first cases in 
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which a mutant KPC-3 emerged during treatment, the most frequent of these being 

the D179Y mutation of the omega-loop. (235) This mutation was also shown to be 

the most frequently occurring during an in vitro selection experiment as well, 

though the mutational frequency remained relative low. (236) Following this report, 

numerous others have followed implicating mutant KPC-2 and KPC-3 beta-

lactamases, though mostly KPC-3, in ceftazidime-avibactam resistance, both in 

clinical and laboratory isolates. (237–240) 

 

Resistance to meropenem-vaborbactam and imipenem-relebactam have also 

been reported in KPC-producing organisms. (241–245) As opposed to 

ceftazidime-avibactam, resistance to these agents has not been driven by omega-

loop mutations in the beta-lactamase, as vaborbactam is less affected than 

avibactam from KPC mutations, but rather a combination of high copy number of 

blaKPC genes and porin mutations of both OmpK35 and OmpK36. (246, 247) The 

mutational frequencies of organisms against meropenem-vaborbactam in vitro 

were very low, but more reports of resistance are mounting with its increasing use. 

The same will likely happen to imipenem-relebactam with increased use as the 

mechanisms of resistance for these agents appear to be related. 

 

Cross resistance between all three agents has been reported, but there is often 

cross sensitivity between ceftazidime-resistant isolates and the carbapenem 

containing agents and vice versa. (237, 238, 245, 248) The KPC mutants, while 

increasing the affinity for ceftazidime and perhaps lowering the inhibitory effect of 
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avibactam, often dramatically reduces the hydrolytic activity of the enzyme against 

carbapenems to the point of susceptibility. Conversely, while high copy number 

carbapenemases and porin mutations have been shown to increase the MICs of 

ceftazidime-avibactam, there are reports of isolates being susceptible to 

ceftazidime-avibactam and resistant to the carbapenem containing agents; 

however, the cross sensitivity of carbapenems to ceftazidime-avibactam resistant 

organisms is far more predictable. (243, 244) 

 

Due to the cross sensitivity of carbapenems to ceftazidime-avibactam resistant 

isolates from KPC-mutants, meropenem monotherapy and combination therapy 

have been used successfully to treat resistant treatment emergent infections. (249, 

250) An in vitro selection study found that passage of mutant KPC-producing 

organisms with sub-inhibitory concentrations a carbapenem may lead to 

resistance developing against carbapenems while the mutant KPC phenotype is 

maintained. (251) Giddins et al also reported cross resistance to ceftazidime-

avibactam and meropenem in an isolate collected from a patient, demonstrating 

this phenotype in vivo. (245) Furthermore, the cross resistant phenotypes across 

all three beta-lactam/beta-lactamase inhibitor combinations previously mentioned 

would also affect carbapenems as the inclusion of an inhibitor does not provide 

benefit against permeability mutations. Meropenem vaborbactam has also been 

used for salvage therapy of ceftazidime-avibactam resistant infections with 

success as monotherapy or in combination. (252–254) The strong correlation of 

ceftazidime-avibactam resistance with elevated cefiderocol MICs and often frank 
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resistance may preclude this agent for the use of salvage therapy in this context. 

(255–257) On the other hand, ceftazidime-avibactam has been used in 

combination with gentamicin to treat a BSI in a patient infected with a K. 

pneumoniae resistant to both imipenem-relebactam and meropenem-

vaborbactam. (244) 

 

MBL 

MBL-producing bacteria are not inhibited by any currently approved beta-

lactamase inhibitors. Conversely, aztreonam is not a substrate for MBLs; however, 

it remains vulnerable to hydrolysis by various serine-based beta-lactamases. 

Therefore, the combination of the potent inhibitor avibactam with aztreonam to 

rescue it from hydrolysis has been used with success against MBL-producing 

organisms. Numerous in-vitro studies have demonstrated the synergy between 

avibactam and aztreonam. (258, 259) Others have demonstrated that this benefit 

extends to the other available serine-based carbapenemase inhibitors relebactam 

and vaborbactam. (260–262) However, coproduction of MBLs (namely NDM) and 

OXA-48-like carbapenemases may make the combination with avibactam a more 

attractive choice for institutions in some geographic regions. (64, 263) This 

strategy has been successful in patients as well with numerous case reports 

detailing its efficacy. (264–270) Notably, ceftazidime-avibactam with aztreonam 

was successfully used as salvage therapy in a patient with treatment emergent 

cefiderocol resistance due to increased blaNDM-5 copy number and gene 

expression. (271) 
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In a prospective observational study conducted in three hospitals (two in Italy and 

one in Greece) between 2018 – 2019, aztreonam combined with ceftazidime-

avibactam was compared against other active antibiotics (OOA). The study 

included patients who were ≥ 18 years old, had a positive blood culture of an MBL-

producing Enterobacterales, and received active therapy for ≥ 48 hours. Patients 

were followed up until 30 days after the episode. Although the patients were not 

randomized into treatment groups, the five ID physicians selecting therapy were 

blinded to the study results at the time of treatment, which may have limited some 

selection bias. The primary outcome of the study was 30-day all-cause mortality 

measured relative to the index culture, and secondary outcomes included 14-day 

clinical failure and hospital length of stay (LOS) after blood culture episode. 

Propensity scores were calculated for patients using logistic regression on 

independent predictors of mortality established in prior studies (age, ICU 

hospitalization, solid cancer, diabetes mellitus, solid organ transplantation, chronic 

obstructive pulmonary disease, cardiovascular disease, chronic kidney failure, 

septic shock, and urinary tract as a source of infection) and were included as a 

covariate in multivariate analysis and used for 1:1 matching analysis. (272) 

 

Overall, 102 patients were included in the study, 52 in the ceftazidime-avibactam-

aztreonam group and 50 in the OOA group. The infections were mostly caused by 

NDM-producing Enterobacterales (n = 82), but VIM-producing organisms were 

also present (n = 20). The vast majority of organisms were K. pneumoniae (n = 93) 
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in both MBL groups. Patient groups were similar at baseline on the basis of 

demographic, comorbidity, and infection source variables. Notably, the 

ceftazidime-avibactam-aztreonam group had significantly more ICU patients than 

the OOA group (50% vs. 18%; P = 0.001), while the OOA group had a higher 

prevalence of surgical patients and patients receiving immunosuppressive therapy 

in the previous 30 days (9.6% vs. 26%; P = 0.03 and 19.2% vs. 50%; P = 0.001, 

respectively). Despite the increased number of patients in the ICU, severity of 

infection between the groups was relatively balanced when assessing other 

variables such as median [IQR] SOFA score (4 [2 - 6] vs. 5 [2 – 7.5]), septic shock 

(25% vs. 28%), and mechanical ventilation (32.7% vs. 28%). This discrepancy was 

not discussed, but it could be that, while patients in the ceftazidime-avibactam-

aztreonam group were admitted directly to the ICU at hospitalization, their index 

cultures may have been isolated later (perhaps not in the ICU), resulting in similar 

severity of infection markers between the groups (time to index was not reported). 

 

Ceftazidime-avibactam-aztreonam displayed a sizeable improvement over the 

OOA in 30-day mortality (19.2% vs. 44%, P = 0.007). Notably, of the 22 incidences 

of 30-day mortality in the OOA group, 16 occurred in patients receiving colistin 

containing regimens (n = 27), and only 6 occurred in patients receiving non-colistin 

containing regimens (n = 23). The authors did not provide a subgroup analysis of 

these patient groups specifically, but it is possible that the sizable difference in 

mortality is biased. For example, colistin is reserved as a “last resort” treatment; 

therefore, this may be a signal of a difference in disease severity amongst the OOA 
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group rather than causal evidence of increased mortality from colistin. Clinical 

failure after 14 days was also more prevalent in the OOA group (25% vs. 52%, P 

= 0.005) as well as incidence of AKI (1/52 vs. 10/50, P = 0.003). Of the 10 patients 

having AKI in the OOA group, 9 received a regimen containing colistin, which 

carries a known risk of nephrotoxicity (though this risk is also increased in more 

critically ill patients). Median LOS following BSI onset was also improved in the 

ceftazidime-avibactam-aztreonam group numerically (14 [10 – 20.25] vs. 23 [9.5 – 

42.75], P = 0.135). The propensity score matched cohort included 50 pairs of 

patients and demonstrated the benefit of ceftazidime-avibactam-aztreonam 

therapy over OOA for both primary and secondary outcomes (30-day mortality: HR 

0.31 [0.15 – 0.66], 14-day clinical failure: HR 0.36 [0.18 – 0.7], and LOS: 0.48 [0.29 

– 0.78]). 

 

Despite having notable activity against MBL-producing organisms, resistance has 

also been noted to this combination. A mutant selection study demonstrated that 

the mutational frequency of bacteria to aztreonam-avibactam was relatively low, 

especially in MBL-, ESBL-, and OXA-producing organisms. Furthermore, the 

notable omega-loop mutations seen with ceftazidime-avibactam in KPC-producing 

organisms didn’t occur with aztreonam-avibactam.(273) Most incidents involve an 

insertion of four amino acids into the PBP3 of E. coli, almost always YRIN or YRIK, 

after residue 333, which was first reported by Alm et al. (274) In their report, they 

refer to an in vitro study published in 2011 by Livermore et al where this mechanism 

may have been the cause of elevated MICs for aztreonam-avibactam in several 
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NDM-1-producing E. coli. (275) Others have subsequently reported on these PBP3 

insertions both in NDM- and non-NDM-producing organisms. (276–278) It has 

become clear that the sole presence of this insertion is insufficient to cause frank 

resistance, but in the context of other resistance mechanisms, the aztreonam-

avibactam MICs elevate > 4 µg/mL.(276) 

 

Cefiderocol has only recently been approved, and, as such, has fewer clinical 

studies available. A handful of case reports have been published demonstrating 

its ability to treat a wide range of infections including MDR P. aeruginosa, A. 

baumannii, and MBL-producing K. pneumonia and E. coli both as monotherapy 

and in combination with other agents. (279–282) The largest collection of clinical 

data of cefiderocol use for infections caused by MBL-producing organisms are the 

two available phase III clinical trials: CREDIBLE-CR and APEKS-NP. Timsit et al 

analyzed combined results of patients in both studies who were infected with an 

MBL-producing organism. In total, 34 patients (20 Enterobacterales and 14 non-

fermenters) were included across all treatment groups. NDM was the 

overwhelmingly most abundant MBL isolated from Enterobacterales (18/20), while 

the non-fermenters expressed IMP, NDM, and VIM. Across both studies, 

cefiderocol had numerically greater rates of clinical cure at the test of cure date 

and microbiological eradication at the end of treatment (cefiderocol 70.8% vs. 

comparator 40% and cefiderocol 58.3% vs. comparator 30%). All-cause mortality 

at 28 days was also lower in the cefiderocol group than the comparators (12.5% 

vs. 50%). (283–285) 
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Treatment emergent resistance has also been reported when treating infections 

caused MBL-producing pathogens with cefiderocol. (271, 286) Most alarming is a 

recent report of an NDM-35-producing E. coli that was resistant to both cefiderocol 

and aztreonam-avibactam. This isolate coproduced CMY-145 and had a PBP3 

insertion, which led to aztreonam-avibactam resistance, while a truncated CirA iron 

transporter in combination with the NDM-35 led to cefiderocol resistance. (287) 

However, other groups have shown that the PBP3 insert may also lead to MIC 

elevations of other late-generation cephalosporins and cefiderocol, which may 

impact the susceptibility of current and future combinations including these agents. 

(288–290)  

 

OXA-48-like 

Not as much clinical data exists for the treatment of infections caused by OXA-48-

like-producing Enterobacterales with ceftazidime-avibactam as does for KPC-

producing Enterobacterales. Evaluation of what is currently published suggests 

that it should be a reasonable option for these infections. In a published case series 

in which two patients with OXA-48-producing K. pneumoniae infections were 

started on ceftazidime-avibactam following clinical failure of extensive combination 

regimens (meropenem, tigecycline, colistin, aminoglycoside [amikacin or 

gentamicin]), both patients cleared cultures with 48 hours of initiation of therapy. 

(291) 
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Three studies currently comprise most of the clinical data of ceftazidime-avibactam 

used this the context. De la Calle et al presented a single center, retrospective 

study of 23 patients (constituting 24 encounters) treated 2014 – 2016. K. 

pneumoniae was responsible for 23 of the encounters, and 15 patients started 

ceftazidime-avibactam when OXA-48 was detected while 9 others received 

salvage therapy. Overall clinical cure rate was 62.5% and didn’t differ whether 

ceftazidime-avibactam was administered as monotherapy vs. combination (64.3% 

vs. 60%; P = 1) or as initial vs. salvage therapy (60% vs. 66.7, P = 1). The 30- and 

90-day mortality rates were 8.3% and 20.8%, respectively. (292) In another 

retrospective study of 38 total patients receiving ceftazidime-avibactam as salvage 

therapy, 13 patients were infected with OXA-48-producing Enterobacterales (12 K. 

pneumoniae and 1 E. coli). Clinical cure rate (8/13 [61.5%] vs. 17/23 [73.9%]; P = 

0.48) and number of patients surviving until discharge (5/13 [38.5%] vs. 17/23 

[73.9%]; P = 0.07) were lower in the OXA-48 group than the KPC; however, the 

limited sample size hinder the application of these results. (293)  

 

The largest of these three studies was evaluated prospectively but also only had 

a ceftazidime-avibactam arm. A total of 57 patients received ceftazidime-

avibactam as salvage therapy for two primary reasons: poor clinical course with 

double-dose extended infusion carbapenem combined with colistin or had a 

contraindication or high risk of toxicity (29 and 24, respectively). The other four 

patients experienced toxicity while on previous therapy. Most patients (n = 46) 

received ceftazidime-avibactam as monotherapy. The 14- and 30-day mortality 



 

 

 

 

97 

were 14% and 22.8% and didn’t largely differ between the monotherapy and 

combination groups (7/46 [15%] vs. 1/11 [9%]; P = 0.42 and 10/46 [22%] vs. 3/11 

[27%]; P = 0.69, respectively). Clinical cure rates were high overall (77.2%) and 

were also similar between groups (37/46 [80%] vs. 7/11 [64%]; P = 0.44). (294) 

One observation across all listed studies is the fact that, while several patients had 

recurrence of disease, no incidents of emergent ceftazidime-avibactam resistance 

were reported, as has been the case with numerous KPC-producing organisms. 

Bottom line, ceftazidime-avibactam showed considerable activity in the context of 

salvage therapy and currently appears to be a valid choice for the treatment of 

these infections. 

  



 

 

 

 

98 

Summary 

Antimicrobial resistance is a modern crisis of ancient origin, which is exacerbated 

by our reliance on microbial secondary metabolites as antimicrobial agents. Over 

the millennia, bacteria have evolved mechanisms of surviving exposure to 

hazardous conditions, including to these metabolites, the manifestations of which 

remain a matter of inquiry. Regardless, our exploitation of bacterial metabolites as 

antimicrobial therapies has been hugely successful given that the vast majority of 

our antimicrobial armamentarium was either directly isolated or semi-synthetically 

constructed from these natural products. This early success was followed by a 

stagnation of the antimicrobial pipeline due to a lack of financial profitability of 

antimicrobial drug design. 

 

During this time, the emergence of carbapenem resistance by Enterobacterales 

presented a unique challenge because these antimicrobials were the “last-line” of 

therapy for MDR Gram-negative infections. The lack of highly effective 

antimicrobial agents to treat these infections led to the use of combination therapy 

with broad spectrum agents with a narrower therapeutic index and limited efficacy. 

This predictably led to worse patient outcomes, with mortality estimates as high as 

50%. (121) 

 

The arrival of new agents appears to have improved the outcomes of patients 

infected with CRE based on mostly observational data. However, the fact that 

resistance to these agents is often detected even prior to widespread use assures 



 

 

 

 

99 

that continued innovation and vigilance will be required to keep pace. Furthermore, 

additional data are required to determine the optimal use of these novel agents 

and therapeutic niches they may fill.  
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Hypotheses 

1. Plazomicin and eravacycline would exhibit high levels of in vitro activity 

against our collection of clinical CRE isolates, which include both KPC- 

and MBL-producing organisms. 

2. The combination of the broad-spectrum beta-lactams piperacillin-

tazobactam, cefepime, and meropenem would exhibit enhanced killing 

activity against MBL-producing Enterobacterales when combined with a 

novel non-beta-lactam agent as measured by synergy of the 

combination and bactericidal activity in a time-kill assay. 

3. Infection with a CRE would greatly increase the risk of composite 

outcome of mortality or discharge to hospice in patients at UK 

Healthcare over infections caused by carbapenem-susceptible 

Enterobacterales (CSE). 
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Specific Aims 

1. To evaluate the activity of the novel non-beta-lactam antimicrobial 

agents plazomicin and eravacycline against clinical CRE isolates 

collected from patient at the University of Kentucky Albert. B. Chandler 

Hospital using both broth microdilution and E-test strips. 

2. To determine the synergistic and bactericidal activity of the most active 

non-beta-lactam agent in combination with routinely utilized Gram-

negative empiric therapeutic options, piperacillin-tazobactam, cefepime, 

and meropenem, against MBL-producing CRE and compare against the 

novel combination of aztreonam-avibactam. 

3. To determine the burden of CRE at UK Healthcare between 2010 – 2019 

and compare outcomes of patients infected with CRE to those infected 

with CSE. 
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II. In-vitro Methods 

Sterilization of Instrumentation 

Maintaining sterility of equipment in the lab was paramount to preventing 

contamination during the experimental procedure. To this end, all glassware and 

autoclavable plastic materials were autoclaved at 121 oC for at least 20 minutes 

prior to use if it was not pre-sterilized before packaging. Large equipment and 

bench\sterile fume hood surfaces were routinely sterilized with 70% ethanol 

solution sprayed directly onto the surfaces. Additionally, any pipette removed from 

the hood was sterilized prior to reentry into the hood with 70% ethanol solution. 

Furthermore, prior to all experiments and frequently during each experiment, 

gloves were sterilized with 70% ethanol to prevent contamination. 

Stocks and Solutions 

Sterile Water 

Sterile water was most often used as either a primary solvent for antimicrobial 

stock solutions or for suspension of bacteria during the McFarland step of creating 

bacterial suspensions. [See Antimicrobial Stocks or McFarland Standardization] 

Filtered water (Q-POD® Millipore using a 0.22 μm Millipak® 40 filter; Merck KGaA, 

Darmstadt, Germany) was autoclaved at 121 oC for 30 minutes. When making 

broth or agar preparations, the autoclave step was performed at dissolution of the 
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media into the water. Water was refrigerated at 4 oC until use. Water was most 

often used within 1-2 months of preparation. 

Cation-adjusted Mueller-Hinton Broth  

Cation-adjusted Mueller-Hinton broth (CAMBH, Difco™; Becton Dickinson, 

Sparks, MD) was the primary growth media used in all applications of bacterial 

experimentation. Per manufacturer’s instructions, 21 g of broth powder was 

dissolved in 1 L of filtered water [See Sterile Water] and autoclaved at 121 oC for 

30 minutes. Once the broth cooled to room temperature, the broth was 

supplemented with calcium and magnesium from 10 mg/mL stock solutions to a 

final concentration of 25 µg/mL and 12.5 µg/mL, respectively, and refrigerated at 

4 oC until use. The 10 mg/mL cation stock solutions were prepared by dissolving 

either 3.68 g of CaCl2*H2O or 8.36 g of MgCl2*6H2O to 100 mL of filtered water. 

[See Sterile Water] Each solution was then vacuum filtered across a 0.22 micron 

filter (Corning®, Somerville, MA) and refrigerated at 4 oC until use. 

Mueller Hinton Agar 

Mueller-Hinton agar (MHA, Difco™; Becton Dickinson, Sparks, MD) was the media 

of choice for performing Kirby Bauer, E-test, or any other method wherein a zone 

of inhibition was to be determined. [See Kirby Bauer Procedure, E-test Strip 

Procedure or Tsakris Carbapenemase Disk Diffusion Procedure] It was also used 

in the time-kill procedure to estimate the colony count for each condition tested. 

[See Time-kill Procedure] Per manufacturer’s instructions, 38 g of agar powder 
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was dissolved in 1 L of filtered water [See Sterile Water] and autoclaved at 121 oC 

for 30 minutes. The molten agar was then poured using a PourMatic machine (MP-

1000 PourMatic 100mm; John Morris Scientific, Chatswood, Sydney, Australia) 

onto petri dishes (Falcon® 100x15 mm sterile petri dishes; Corning®, Somerville, 

MA). The plates were allowed to cool overnight, after which they were stored in 

stacks of 20 in plastic sleeves provided by the manufacturer and refrigerated at 4 

oC until use. For best results, MHA plates were stored in the incubator agar-side 

up at 35 oC overnight to ensure condensation within the plate didn’t settle on the 

MHA surface. This can disrupt the inoculation of bacteria on the plates and lead to 

erroneous results. Plates were usually stored no longer than 1-2 months prior to 

use. The manufacturer claimed stability of MHA plates up to 3-5 months after 

reconstitution, which places our storage times well within an approved time range. 

(210) 

Antimicrobial Stocks 

The materials and procedures required to prepare all antimicrobial solutions may 

be found in the Performance Standards for Antimicrobial Testing provided by CLSI. 

(295) Due to the different concentrations tested between the two methods, different 

drug stocks were created for broth microdilution (BMD) and time-kill assays. Most 

antimicrobials were purchased from Sigma Aldrich® (St. Louis, MO) as secondary 

pharmaceutical standards. Exceptions included cefepime and meropenem (USP, 

Rockville, MD), tazobactam (LKT Laboratories, Inc., St. Paul, MN), avibactam, 

plazomicin, and eravacycline. Avibactam, plazomicin, and eravacycline were 
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provided as research use only (RUO) samples directly from the pharmaceutical 

company via material transfer agreement.  

 

 
Figure II-1: Mettler Toledo XSE105 Dual Range 

 
For both BMD and time-kill assay stocks, a primary stock was initially prepared at 

x 10 concentration of the desired secondary stock to reduce the need for frequent 

measuring. To make the stock, we weighed antimicrobial powder using an 

analytical balance (XSE105 Dual Range, Mettler Toledo, Greifensee, Switzerland; 

Figure II-1). To determine the amount of powder needed to achieve the desired 

concentration, the following equation was used: 

𝑊𝑊𝑊𝑊𝑝𝑝 = 𝑊𝑊𝑊𝑊𝑎𝑎 𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�  

Equation II-1: Potency Correction 
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where Wtp is the weight of powder needed and Wta is the weight of antimicrobial 

needed. The potency was obtained from the manufacturer’s website using the 

unique Lot number. Weighed antimicrobial was transferred from the weigh boat 

into a 10 mL volumetric flask (Kimax® 10 mL volumetric flask; Kimble; Cole-

Parmer®, Vernon Hills, IL). Antimicrobials were dissolved according to 

recommendations provided by CLSI in Table 6A of the M100 document. (295). 

Most antimicrobials were dissolved in 10 mL of sterile water. 

 

Some antimicrobials required a solvent/diluent other than sterile water. For all of 

the following except for nitrofurantoin, the amount of the other solution needed was 

the minimum amount to dissolve the antimicrobial. The remaining volume was filled 

with sterile water. Aztreonam was initially dissolved into a saturated sodium 

bicarbonate solution. Cefepime, ertapenem, and meropenem were initially 

dissolved into a pH buffered phosphate solution. For cefepime, 0.1 M phosphate 

buffer at pH 6 was used, and for ertapenem and meropenem, a 0.01 M phosphate 

buffer at pH 7.2 was used. Ceftazidime was dissolved into a sodium carbonate 

solution in which the amount of sodium carbonate used was 10% of the 

antimicrobial by weight. Nitrofurantoin was completely dissolved into dimethyl 

sulfoxide (DMSO). 

 

The saturated sodium bicarbonate was prepared fresh when needed. We added 

an amount of sodium bicarbonate (Mallinckrodt Chemicals, Phillipsburg, NJ) 

slightly greater than its solubility in water and thoroughly mixed. Once the excess 
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solute collected at the bottom of the vial, the required amount of solution was drawn 

from the top. Phosphate buffers were initially prepared at 1 M and diluted to the 

needed concentration for each antimicrobial. To prepare this 1 M buffer, various 

ratios of 1 M potassium monobasic and dibasic solutions were combined per Table 

II-1. (296) The potassium monobasic (K2HPO4; VWR® BDH®, West Chester, PA) 

and dibasic (KH2PO4; VWR® BDH®, West Chester, PA) solutions were frozen at -

20 oC until needed.  

 

Table II-1: Preparation of 1 M pH Buffered Potassium Solution 
pH Volume 1 M K2HPO4 

(mL) 
Volume 1 M KH2PO4 

(mL) 
6 0.132 0.868 

7.2 0.717 0.283 
8 0.940 0.060 

 
Once dissolved, antimicrobial stocks were stored and labeled in 15 mL polystyrene 

conical vials (VWR®, Radnor, PA) and frozen at -20 oC until needed. Primary 

stocks were thawed in a lukewarm water bath prior to use. In BMD experiments, 

secondary stocks were prepared by dissolving 1 mL of antimicrobial stock into 9 

mL of CAMBH. The only exception was when an inhibitor would be used in 

combination with an antimicrobial (ex. piperacillin and tazobactam); 1.25 mL 

antimicrobial stock: 8.75 mL broth would be used for the active component. The 

inhibitor was diluted using 100 mL of inhibitor stock into 9.9 mL of CAMBH. The 

increased amount of antimicrobial added (25% increase) was to compensate for 

the additional 25 mL of inhibitor added to the plate following serial dilution. [See 

Broth Microdilution Procedure] Time-kill experiments did not require a secondary 
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stock as the drug was measured directly from the primary stock into the 50 mL 

conical vials used for the experiment [See Time-kill Procedure]. Details of stock 

creation and subsequent dilution may be found in Table II-2 and Table II-3. 
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Table II-2: Preparation/Usage of Broth Microdilution Antimicrobial Stocks 

Antimicrobial Potency 
(mg/mg) 

Desired 
Concentration 

(mg/mL) 

Antimicrobial 
Needed 

(mg) 

Bulk Powder 
Needed 

(mg) 
Dilutiona 

Secondary 
Concentration 

(mg/mL) 

Final Well 
Concentration 

(µg/mL)b 

Amikacin 0.776 20.48 204.8 263.9 1:10 2048 512 
Avibactam --- 1.6 16 --- 1:100 16 4 

Aztreonam 0.963 20.48 204.8 212.7 1:10, 
1.25:10c 

2048, 
160c 

512, 
32c 

Cefepime 0.826 10.24 102.4 124.0 1:10 1024 256 
Ceftazidime 0.882 20.48 204.8 232.2 1:10 2048 512 

Colistin 0.783 2.56 25.6 32.7 1:10 256 64 
Eravacycline --- --- --- --- 1:10 --- --- 
Ertapenem 0.962 2.56 25.6 26.6 1:10 256 64 
Gentamicin 0.655 5.12 51.2 78.2 1:10 512 128 
Imipenem 0.866 5.12 51.2 59.1 1:10 512 128 

Levofloxacin 0.99 1.28 12.8 12.9 1:10 128 32 
Meropenem 0.95 5.12 51.2 53.9 1:10 512 128 
Minocycline 0.892 2.56 25.6 28.7 1:10 256 64 

Nitrofurantoin 0.999 20.48 204.8 205.0 1:10 2048 512 
Piperacillin 0.946 20.48 204.8 216.5 1.25:10 2560 512 
Plazomicind --- --- --- --- 1:10 --- --- 
Polymyxin B 0.745 2.56 25.6 34.4 1:10 256 64 
Tazobactam 0.994 1.6 16 16.1 1:100 16 4 
Tigecycline 0.994 1.28 12.8 12.9 1:10 128 32 
Tobramycin 0.927 5.12 51.2 55.2 1:10 512 128 

a. Dilution ratios shown are antimicrobial:CAMBH;  
b. Refer to most concentrated well concentrations;  
c. Aztreonam well concentrations were targeted differently for Aztreonam and Aztreonam/Avibactam trials  
d. Provided as 50 mg/mL solution in water 
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Table II-3: Preparation/Usage of Time-kill Antimicrobial Stocks 

Antimicrobial Potency 
(mg/mg) 

Desired 
Concentration 

(mg/mL) 

Antimicrobial 
Needed 

(mg) 

Bulk Powder 
Needed 

(mg) 

Final 
Concentration 

(µg/mL) 

Volume Stock 
Neededa 

(µL) 
Amikacin 0.776 1.02 10.2 13.1 4 117 

Avibactam --- 1.6 16 --- 4 75 

Aztreonam 0.963 4.1 4.1 4.3 32 234 

Cefepime 0.826 4.1 41 49.6 32 234 

Meropenem 0.95 1.02 10.2 10.7 16 469 

Piperacillin 0.946 4.1 41 43.3 64 469 

Plazomicinb --- 1.02 --- --- 4 117 

Tazobactam 0.994 1.6 16 16.1 4 75 
a. All volumes needed assume that a total of 30 mL of final volume will be used in the experiment and 150 µL of 
McFarland standardized bacterial suspension will be added. The amount of CAMBH was adjusted when combinations 
were used. 
b. Provided as 50 mg/mL solution in water 
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Isolate Freezing Procedure 

Our lab protocol for freezing isolates is reproduced from the American Type 

Culture Collection (ATCC) Bacteriology Culture Guide with few modifications. 

(297) Isolates are recommended to be in late log-phase growth prior to freezing. 

[See Isolate Subculture Procedure] We use glycerol as the cryoprotectant, which 

is stored as a 20% stock solution and sterilized in the autoclave at 121 oC for 30 

minutes. In 2 mL cryoprotectant vials (Corning®, Somerville, MA), 1 mL of bacterial 

suspension in CAMBH and 1 mL of the glycerol (Fisher Chemicals, Fair Lawn, NJ) 

stock were combined to the final, recommended concentration of 10% glycerol. 

The vials were placed in cardboard boxes with separators for each vial and stored 

at -80 oC in a freezer (ThermoFisher Scientific Forma 900 Series -80 Ultra low 

freezer 956, Waltham, MA; Figure II-2) until needed for use. Each isolate is frozen 

in duplicate to ensure the fidelity of the bacterial strain if one of the vials is 

contaminated. 
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Figure II-2: ThermoFisher Scientific -80 oC Freezer 

 

Isolate Subculture Procedure 

Bacterial isolates may be sub-cultured from many different sources, but the overall 

procedure remains mostly the same. Regardless of the source of the subculture, 

all subculturing processes were performed inside a sterile fume hood If bacterial 

isolates were being retrieved from the -80 oC freezer, the cryo-vial containing the 

desired isolate was uncapped and a 10 mL inoculating loop (VWR®, Radnor, PA) 

was scraped across the surface of the contents of the vial. This was done until 

visible residue could be seen on the loop; then the loop was submerged into ~5 

mL of CAMBH inside a polystyrene vial and placed in a shake incubator (MaxQ 

6000; ThermoFisher Scientific, Waltham, MA; Figure II-3) with at an rpm of 200 

and temperature of 37 oC. Cryo-vials were then returned immediately to the -80 oC 
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freezer. If the source of the subculture was liquid (CAMBH/Water), a 10 mL 

inoculating loop was submerged into the medium and then transferred into a 

separate vial with fresh media as described above. If the source of the subculture 

was an agar plate, a 10 mL inoculating loop was used to scrape colony/colonies 

of interest from the agar plate and transferred as described above. Care was taken 

in this step to isolate distinct bacterial populations on the plate (colony morphology, 

texture, and/or color). Bacteria were subcultured a second time several hours (4-8 

hours) later to ensure the resulting bacterial suspension would be in log-phase 

growth. 

 

 
Figure II-3: ThermoFisher Scientific MaxQ 6000 Shake Incubator 
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Bacterial Isolates 

QC Reference Strains 

Every experiment conducted included results on at least one quality control (QC) 

isolate to ensure the fidelity of the experiment. All QC isolates utilized are 

commercially available through ATCC and are recommended by CLSI for such use 

in experiments. (295) Across all experiments, the following isolates were utilized: 

E. coli ATCC® 25922, P. aeruginosa ATCC® 27853, K. pneumoniae ATCC® 

700603, K. pneumoniae ATCC® BAA-1705, K. pneumoniae ATCC® BAA-1706, 

and K. pneumoniae ATCC® BAA-2146. E. coli ATCC® 25922 and P. aeruginosa 

ATCC® 27853 were primarily used for susceptibility testing, the Kirby Bauer 

procedure, and E-test Strip procedure. [See Broth Microdilution Procedure Kirby 

Bauer Procedure, E-test Strip Procedure] The choice of which bacteria to use 

depended upon a combination of the bacteria and/or the drugs/MIC ranges being 

tested. The remaining isolates were utilized as controls for a phenotypic disk 

diffusion method described by Tsakris et al. (298) [See Tsakris Carbapenemase 

Disk Diffusion Procedure] For detailed descriptions of each QC strain listed above, 

and many others, refer to Appendix C. QC Strains for Antimicrobial Susceptibility 

Tests of the CLSI M100. (295) 

AR Isolate Bank 

In response to The National Action Plan for Combating Antibiotic-Resistant 

Bacteria (CARB) released in 2015, the CDC and FDA began collaboration on The 

Antimicrobial Resistance (AR) Isolate Bank. (299, 300) As of January 2022, the 
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AR Isolate Bank is divided into 31 unique panels of 1,012 isolates gathered from 

national reference labs. These isolates have been sampled from numerous 

tracking projects which span multiple sectors from healthcare to food industry. 

(301) Included with the isolates, the CDC provides organism identity determined 

by matrix-assisted laser desorption ionization time of flight mass spectrometry 

(MALDI-TOF MS) or 16S rRNA gene sequencing, minimum inhibitory 

concentrations of several routinely tested antimicrobials according to CLSI 

standards, and whole genome sequencing data. (299) Our lab has received 12 

panels totaling 476 isolates. 

Clinical Isolates 

Overall, 724 non-duplicated, Gram-negative, multidrug-resistant (MDR) clinical 

isolates were collected from patients during routine clinical practice from the 

University of Kentucky Albert B. Chandler Hospital clinical microbiology laboratory 

between November 9, 2008 - 2022. MDR were defined as before where an 

organism must be non-susceptible to ≥1 agent from ≥3 different drug classes. (17) 

CRE were defined as Enterobacteriaceae that were resistant to at least one of the 

carbapenems: ertapenem, meropenem, imipenem, or doripenem. At our 

institution, this distinction was more accurately characterized as resistant to either 

ertapenem or meropenem due to infrequent susceptibility testing with either 

imipenem or doripenem.  



 

 116 

VERIGENE® Procedure 

In 2021, we received a Luminex Nanosphere VERIGENE® System (Austin, TX; 

Figure II-4) from the University of Kentucky Albert B. Chandler Hospital Clinical 

Microbiology laboratory. This automated platform provides rapid identification of 

target bacterial species and resistance mechanisms for both Gram-positive and 

Gram-negative bacteria in addition to testing for respiratory pathogens, Clostridium 

difficile, and enteric pathogens. Our primary usage for this platform was to ensure 

clinical cultures were monomicrobial and identify the presence of any one of the 

beta-lactamases tested in the Gram-negative panel: KPC, NDM, VIM, IMP, OXA, 

and CTX-M. The preparation of bacterial specimen, performance/interpretation of 

the test, and management of data are comprehensively covered in the provided 

materials with the platform, but a summary of the method may be found below. An 

additional reference guide provided by the manufacturer is provided in Figure I.1 

for Gram-negative organisms, respectively. 
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Figure II-4: Luminex Nanosphere VERIGENE® 
top left panel: VERIGENE® reader, top right panel: VERIGENE® processor SP, 
bottom panel: processor internal receiver 
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The first experiments in the lab are recommended to be performed on standardized 

isolates to ensure proper functioning of the VERIGENE® system (isolates were 

provided by manufacturer). Isolates were subcultured the day prior to the 

experiment. [See Isolate Subculture Procedure] On the day of the experiment, 4 

pieces of equipment are needed for the VERIGENE®: extraction tray, test 

cartridge, tip holder assembly, and the utility tray. Prior to the experiment, open 

each of the assembly drawers by pressing the black button on the front face. Open 

the drawer clamp by squeezing the latch and lift the clamp. Using an alcohol swab 

or Kimwipe sprayed with an alcohol solution, wipe the exposed components of the 

drawer (including the clamps) to ensure sterility of the space. Allow the alcohol to 

evaporate, then close the clamp securely (should hear a click) and press the same 

black button to return the drawer into the assembly (Figure II-4). 

 

 While this platform was designed to analyze blood samples, CAMBH is a suitable 

media for the test. Also, because the end measures are categorical instead of 

quantitative, McFarland standardization is not required. Pipette a sample of the 

bacterial suspension in the designated loading well (350 mL if Gram-positive and 

700 mL if Gram-negative). Now press the black button on the front of one of the 

drawer assemblies to open the drawer and open the clamp. There will be three 

separate, designated areas on the drawer to receive the extraction tray, tip holder 

assembly, and utility tray and an internal slot to receive the test cartridge. Load the 

inoculated extraction tray, tip holder assembly, and utility tray into their designated 

areas. Ensure the tip seal (beige/white colored T-shaped rubber piece fixed 
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between the tips) is level. Also, if testing Gram-positive organisms, be sure to 

loosen the pellet in the tube found in the utility tray and remove the lid. 

 

Before loading the cartridge, be sure to scan the barcode on the outer covering of 

the cartridge cap to import the cartridge reference number, expiration date, and lot 

number and the barcode near the handle to register the ID number of the cartridge. 

During this step, the reader will prompt the user to enter a name for the sample 

and provide options to allow/disallow specific steps in the workflow (default options 

were always accepted). Once the cartridge is registered in the reader, remove the 

cover and, while holding the handle, slide the cartridge into the internal slot of the 

open assembly drawer until it clicks into place. Once all the components are 

securely loaded, close the drawer clamp again until it clicks and close the drawer. 

Once the drawer closes, the assembly will automatically begin initialization, and, If 

no errors are detected, will begin processing the sample. This will be indicated on 

the assembly by the loading of a countdown on the display. 

 

Once the test is completed, open the drawer and remove the test cartridge. 

Remove the reagent pack from the cartridge to reveal a glass slide with a protective 

layer of tape on the back. DO NOT TOUCH the slide as this may compromise the 

experiment. To prepare the reader to accept the cartridge to interpret the results, 

scan the remaining barcode on the slide. A prompt should appear on the reader 

showing the orientation the slide should be inserted into the reader. Carefully 

remove the tape from the back of the slide, slide open the protective covering, and 
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insert the slide into the reader until it clicks. If the slide is not loaded prior to the 

end of the animated prompt, the barcode will need to be scanned again before the 

reader will process the sample. A camera icon will be displayed next to the 

corresponding icon of the current slide while the reader is reading the slide. Once 

an up arrow is displayed, the results may be viewed. If an error has occurred, 

check the manual to determine the appropriate course of action. Otherwise, the 

process is completed and all of the components may be discarded in the 

appropriate waste containers. 

 

Each session in the reader will store up to 60 cartridges before a new session will 

need to be created. These are stored in the reader; however, results may be 

transferred to a laboratory computer using the white USB drive provided by the 

manufacturer. Once a session has been transferred from the reader, it may be 

deleted to limit clutter in the reader’s memory. Be sure to extract all relevant data 

prior to this step as there is no mechanism for recovering data after that point. 

McFarland Standardization 

To ensure interexperimental and interlaboratory consistency, CLSI recommends 

that BMD and time-kill procedures target an initial bacterial density of 5.0 – 7.5 x 

105 colony forming units (CFU)/mL. (295) To achieve known concentrations of a 

late log-phase bacterial suspension, we first created a standardized suspension 

using one of two processes. In our earlier experiments, we utilized a visual 

matching technique using a 0.5 and 1 McFarland standard (Hardy Diagnostics, 
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Santa Maria, CA) with a Wickerham card (ThermoFisher Scientific, Waltham, MA). 

Following the subculture process [See Isolate Subculture Procedure], we added a 

sample of the bacterial suspension dropwise into a sterile borosilicate vial which 

contained ~ 5 mL of sterile water with routine agitation (stirring or vortex) to ensure 

homogenous mixing. This vial was situated between the 0.5 and 1 McFarland 

standards in a vial rack with the Wickerham card placed directly behind such that 

the black horizontal lines would be visible through the 3 vials. The dropwise 

instillation of the bacterial suspension was continued until the turbidity of the middle 

vial “matched” the turbidity of the 0.5 McFarland standard. The purpose of the 1 

McFarland standard was simply to provide visual contrast.  

 

 
Figure II-5: Grant Instruments McFarland Densitometer 
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For time-kill experiments, we purchased a benchtop densitometer (densitometer 

suspension turbidity detector; Grant Instruments, Cambridge, UK; Figure II-5) to 

directly measure the optical density, which were expressed in terms of McFarland 

units. Following standardization, we could meaningfully control the initial inocula 

of any given experiment. Specifically, the target of 7.5 * 105 CFU/mL may be 

achieved by taking a 1:200 dilution of a 0.5 McFarland standardized suspension. 

See Table II-4 for a conversion between McFarland Standard and estimated 

bacterial density (CFU/mL).  

 
Table II-4: McFarland Standard to Bacterial Density (CFU/mL) Conversion 

McFarland Standard Bacterial Density (CFU/mL) 

0.5 1.5 x 108 

1 3 x 108 

2 6 x 108 

3 9 x 108 

4 1.2 x 109 

5 1.5 x 109 

6 1.8 x 109 

All conversions are provided by the manufacturer 
 

E-test Strip Procedure 

E-test or concentration gradient strips provide a convenient method for evaluating 

MICs of usually a single antimicrobial, but some evaluate multiple drugs 

simultaneously. As opposed to BMD [See Broth Microdilution Procedure] which 

exposes the bacteria to a solution of antimicrobial, the E-test strip is placed on 

inoculated MHA and eludes drug into the medium over time. Prior to this 
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procedure, we prepared media (CAMBH, sterile water, and MHA) and subcultured 

the bacteria of interest twice. [See Stocks and Solutions or Isolate Subculture 

Procedure] In the hood, we filled borosilicate vials with ~5 mL of sterile water to 

perform the McFarland Standardization. [See McFarland Standardization]  

 

We then submerged a cotton applicator (Puritan®, Guilford, ME) into the 

standardized bacterial suspension and gently pressed the tip against the wall of 

the vial to remove excess liquid. Applying too much liquid to the plate can affect 

the stability of the E-test strip, which may compromise the interpretation of the test. 

Beginning from the edge of the petri dish, we then pressed the applicator across 

the surface of the MHA from side to side in a tight zig-zag motion until we covered 

the entire plate. This was repeated twice with ~60o spin of the plate each time to 

change the starting point to achieve complete coverage of the MHA. Following 

inoculation, the E-test strip was removed from its packaging using sterile forceps 

and applied to the MHA. Care was taken to minimize contact of the strip with the 

plate as it was applied, and, once applied, air gaps between the strip and MHA 

were evacuated by using gentle pressure from the forceps. Once labeled, the 

plates were incubated in an incubator (Heratherm™ Incubator; ThermoFisher 

Scientific, Waltham, MA; Figure II-6) agar-side up for 16 – 24 hours at 37 oC prior 

to interpretation.  
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Figure II-6: ThermoFisher Scientific Heratherm™ Incubator 

 
During interpretation, the MHA surface should be overgrown with a confluent lawn 

of bacteria except for an elliptical shaped “zone of inhibition” (ZOI) radiating from 

the E-test strip. The width of the ZOI should be greatest at the top of the strip where 

the antimicrobial concentration is the greatest and gradually decrease with the 

declining concentration down the strip. The MIC obtained from this procedure is 

the number of the E-test strip where the ZOI converges. The MIC will often be 

symmetrical on each side, but, if the ZOI converges asymmetrically (the MIC would 

be interpreted differently based on the side), the higher MIC is reported. If the ZOI 

converges between 2 MIC values, the higher value is reported. Please refer to 

Figure J.1 for guidance in interpreting several edge cases that may arise and to 

Figure II-7 for a visual representation of this process. This method was performed 

at least in duplicate on separate days to ensure agreement between results. In the 
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case of disagreeing results, further duplication was performed to arrive at the 

appropriate interpretation. 

 
 

 
Figure II-7: E-test Interpretation Example 
Source: bioMérieux, Inc. Durham, NC. https://www.biomerieux-
diagnostics.com/etestr  

Kirby Bauer Procedure 

The Kirby Bauer (KB) test procedure shares many similarities to the E-test strip 

procedure, a notable exception being that the KB test provides qualitative 

(categorical) results while the E-test strip procedure provides quantitative MIC 

values. Please refer to E-test Strip Procedure for details of the method up until the 

inoculation of the MHA as they are the same. Following inoculation, a KB disk 

(Hardy Diagnostics, Santa Maria, CA) was removed from the packaging using 

sterile forceps and applied to the MHA in similar fashion to the E-test strip. If 

multiple KB disks will be applied to the same plate, they should be separated to 

avoid interference of the ZOI between disks. Once labeled, the plates were 

https://www.biomerieux-diagnostics.com/etestr
https://www.biomerieux-diagnostics.com/etestr
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incubated in an incubator agar-side up for 16 – 24 hours at 37 oC prior to 

interpretation.  

 

 
Figure II-8: Kirby Bauer test example 
Source: American Society for Microbiology, Washington, DC 

 
As with the E-test strip procedure, the MHA surface should be overgrown with a 

confluent lawn of bacteria except for a circular shaped ZOI radiating from the 

center of each KB disk following incubation. The ZOI do not converge onto the 

disks as a single concentration of an antimicrobial is contained in the disk and 

eludes into the MHA equally in all directions. The interpretive value for this test is 

the diameter (in mm) of the ZOI at its smallest width when measured through the 

center of the disk, see Figure II-8 for an example. For antimicrobial susceptibility 

testing, CLSI has categorized ranges of ZOI measurements into three possible 

interpretive categories (susceptible, intermediate, and/or resistant) for each 

bacteria/antimicrobial combination. This method can be adapted for other 

purposes, such as phenotypic screening. For an example, refer to the Tsakris 
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Carbapenemase Disk Diffusion Procedure. These methods were performed at 

least in duplicate on separate days to ensure agreement between results. In the 

case of disagreeing results, further duplication was performed to arrive at the 

appropriate interpretation. 

Tsakris Carbapenemase Disk Diffusion Procedure 

Tsakris et al developed a phenotypic method using disk diffusion that could 

separate CRE into one of four phenotypes: KPC-producing, MBL-producing, both 

KPC/MBL-producing, or non-carbapenemase/other carbapenemase. (298) Prior to 

our lab receiving the VERIGENE system [See VERIGENE® Procedure], this 

method was our primary means of classifying the resistance phenotype of CRE 

obtained from the clinical microbiology laboratory. Below is a brief summarization 

of the methods including modifications introduced by our laboratory. See QC 

Reference Strains or the original manuscript for the control isolates used.  
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Figure II-9: Tsakris disk diffusion method 
Illustrated as in the original study, (a) KPC/MBL/ESBL-producing, (b) 
KPC/ESBL-producing, (c) MBL-producing, (d) AmpC/ESBL-producing (298) 

 
As this method incorporates the disk diffusion technique, the preparation and 

general method is identical to what was presented in the Kirby Bauer Procedure. 

The preparation for this experiment additionally included stock solutions of 

meropenem, ethylenediaminetetracetate (EDTA), and phenylboronic acid (PBA). 

The preparation of meropenem is discussed in the Antimicrobial Stocks section. 

The EDTA (Sigma Aldrich®, St. Louis, MO) solution was prepared by dissolving 

anhydrous EDTA into sterile water up to the 0.1 M concentration used in the 

original method. The PBA solution was prepared by dissolving PBA (Sigma 

Aldrich®, St. Louis, MO) into DMSO to a concentration of 80 mg/mL, which is 4x 
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the concentration used in the original study. The original method included a step 

for drying the disks after applying the inhibitors. The reduction of volume deposited 

onto the disk allowed us to directly apply the drug/inhibitor solutions to the disk 

without overly saturating it. Although the concentration of PBA we used was 

different than the original study, we deposited the same amount of inhibitor. 

 

Following preparation steps, rather than placing a single, drug-impregnated KB 

disk onto the inoculated MHA, 4 blank disks were positioned in a diamond pattern 

to maximize the space between them (remember to avoid converging ZOI between 

disks). To all disks, we first added 10 mg of meropenem (1.95 mL of 5.12 mg/mL 

meropenem solution). Next, 292 mg (10 mL of 0.1 M EDTA solution) of EDTA was 

added to the “left” and “bottom” disks. Lastly, 400 mg (5 mL of 80 mg/mL PBA 

solution) of PBA was added to the “right” and “bottom” disks. Once labeled, the 

plates were incubated in an incubator agar-side up for 16 – 24 hours at 37 oC prior 

to interpretation. 

 

Following incubation, the plates should be overgrown with a confluent lawn of 

bacteria except for a circular shaped ZOI radiating from the center of each KB disk. 

Measurements of the diameter of the ZOI are performed as explained in the Kirby 

Bauer Procedure, but the interpretive criteria for this test differ from antimicrobial 

susceptibility applications of the method. The difference in ZOI width was 

calculated between all inhibitor containing disks and the “top” disk which only 

contained meropenem. The interpretive criteria were as follows: KPC was defined 
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as both PBA-containing disks having a ≥ 5 mm increase in ZOI diameter compared 

to the reference meropenem disk, MBL was defined as both EDTA-containing 

disks having a ≥ 5 mm increase in ZOI diameter compared to the reference 

meropenem disk, coproduction of KPC and an MBL was defined as the PBA- 

and EDTA-containing disk having a ≥ 5 mm increase in ZOI diameter compared to 

the reference meropenem disk AND neither the PBA- nor EDTA-containing disk 

having an increase in ZOI diameter compared to the reference meropenem disk ≥ 

5 mm, and the non-carbapenemase/other carbapenemase phenotype was 

defined as none of the inhibitor containing disks having a ≥ 5 mm increase in the 

ZOI diameter compared to the reference meropenem disk. Refer to Figure II-9 for 

an illustration of these 4 possible test outcomes. 

Broth Microdilution Procedure 

BMD was the primary method for generating MIC data for clinical isolates studied 

in our laboratory, as it is the gold standard. (302) Prior to this procedure, we 

prepared media (CAMBH and sterile water) antimicrobial stocks, and subcultured 

the bacteria of interest twice. [See Stocks and Solutions, Antimicrobial Stocks, 

Isolate Subculture Procedure] In the hood, we filled borosilicate vials with ~5 mL 

of sterile water to perform the McFarland Standardization. [See McFarland 

Standardization].  We also sterilized filled pipette tip boxes along with 4 and 6 

channel reagent reservoirs. A QC organism with a desirable MIC range for each 

antimicrobial/species combination was used in all BMD experiments. MIC ranges 

for QC organisms may be found in Tables 5A-1 and 5A-2 of the CLSI M100.(295) 
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[See QC Reference Strains] Experiments in which MICs were measured outside 

of the QC MIC range were repeated for the respective antimicrobial/species pair 

to ensure fidelity of results. 

 

The BMD platform consisted of a BioStackTM and PrecisionTM Pipetting System 

controlled by Precision PowerTM software (Agilent Technologies, Santa Clara, CA). 

All 96-well microtiter plates (Corning®, Somerville, MA) were stacked into the 

receiving column of the BioStackTM with the lids removed. The PrecisionTM 

Pipetting System housed the pipette box, reagent reservoir, and the microtiter plate 

being used. Additionally, it had a robotic arm with a multichannel pipette interface 

to aspirate and deposit reagents from the reservoir into the microtiter plate. When 

a method was loaded from the computer, a separate mechanical arm would obtain 

a single microtiter plate from the receiving column of the BioStackTM and place it 

on a platform situated on the PrecisionTM Pipetting System. The pipetting arm 

would then load pipette tips from the box, aspirate the programmed amount of 

reagent from the reservoir, and deposit it into the microtiter plate. The reservoirs 

contained multiple channels, which allowed for testing multiple antimicrobials 

and/or bacteria on a single microtiter plate as the experiment dictated. Once the 

program completed, the pipette tips were deposited into a sharps container, and 

the microtiter plate was relocated by the mechanical arm into the receiving column 

of the BioStackTM. This was repeated until all of the plates in the BioStackTM were 

processed, see Figure II-10 for an illustration of the set-up. 
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Figure II-10: Broth Microdilution Automated Set-up 
The BioStackTM feeds plates to the PrecisionTM Pipetting System from the input 
tower, which then returns the plates to the output tower after completion. 1. 
BioStackTM, 2. PrecisionTM Pipetting System, A. input tower which provides 
plates to PrecisionTM Pipetting System, B. output tower to receive finished plates, 
C. transfer arm for transporting plates between the BioStackTM and the 
PrecisionTM Pipetting System D. robotic pipetting arm, E. pipette tip box for 
loading the robotic pipetting arm, F. solution reservoir, G. 96-well microtiter plate 

 
The first program executed in our method deposited 50 mL of untreated CAMBH 

into each well of the microtiter plates. The pipette tips for this program were only 

discarded after all plates had been treated. The second program executed 

performed the serial dilution of the antimicrobial. The pipetting arm deposited 50 

mL of antimicrobial into the top row of the microtiter plate resulting in a 1:2 dilution 

of the drug in each well. Rather than continuing to aspirate from the reservoir, the 

100 mL of drug in the first row of wells was mixed, then 50 mL were aspirated and 

deposited into the next row of wells. This process continued through 11/12 rows 

on the microtiter plate, after which the process terminated, and the tips were 

B 
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discarded. The 12th row served as a positive growth control for each plate as no 

drug was deposited into these wells. In experiments that included beta-lactam 

antimicrobials coformulated with a beta-lactamase inhibitor, an additional program 

was executed at this time. Because the inhibitors were studied at a fixed 

concentration, 25 mL of inhibitor was deposited into each of the first 11 rows of 

wells requiring an inhibitor. These 2 (or 3) steps were completed for all 

antimicrobials first to allow deposition of bacteria into plates to occur over a shorter 

amount of time. This allowed interpretation of all plates to comfortably fall into the 

16 – 24 hour recommended range. 

 

To prepare bacteria for the final step, we first obtained a McFarland standardized 

culture of 6 bacterial isolates. We transferred them into CAMBH with a 1:100 

dilution (100 µL McFarland standardized suspension / 9.9 mL of untreated 

CAMBH). The final program was designed to only complete 6 plates at a time 

(maximum number of separate channels). This program deposited 50 mL of 

bacterial suspension into every well, which corresponded to a further 1:2 dilution 

of both the antimicrobial already present in the well and the bacterial suspension 

deposited. The resulting dilution should ensure an initial inocula of 5.0 - 7.5 x 105 

CFU/mL in each well. The additional dilution of the antimicrobial due to the final 

program was accounted for in the preparation of the stock. A more detailed 

description of the steps involved with the automated microtiter method may be 

found in the dissertation of the author of the programs. (296) 
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The completed plates were placed into the incubator for 16 – 24 hours at 37 oC 

until interpretation was performed. The MIC was the target measurement of this 

assay and is defined as the lowest concentration tested for each serially diluted 

lane which prevented visible bacterial growth. If visible bacterial growth was not 

exhibited in any well within a lane, except for the growth control which was not 

treated with antimicrobial, the MIC interpretation was given as an inclusive 

inequality of the lowest concentration measured. For example, if the lowest 

concentration of Drug A was 2 µg/mL, the MIC of the above scenario would be 

interpreted as ≤ 2 µg/mL. If the opposite occurred and every well exhibited visible 

growth, the MIC would be interpreted as the exclusive inequality, > 2 µg/mL. 

Finally, due to the wide variability associated with a single MIC measurement, we 

measured at least 4 separate MICs (2 MICs per experiment performed on different 

days) for every tested antimicrobial/bacteria combination. The modal MIC across 

the resulting distribution was taken as the MIC with an error of ~ ±1 log2 dilution. If 

the 2 experiments provided disparate MICs, additional experiments were 

performed until a clear mode was established. 

Broth Microdilution vs. E-test Agreement 

As indicated above, numerous methods of determining bacterial MICs are 

available for most antimicrobials, but all of these methods are validated against 

BMD. (303) This creates a unique challenge as the “gold standard” has been 

widely demonstrated to be highly variable. (304, 305) Both the CLSI and FDA have 

issued standards to facilitate these comparisons. (303, 306) The basis for 
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comparisons is to determine categorical and essential agreement and error rates 

between the methods. Categorical agreement occurs when both tests provide 

MICs falling within the same susceptibility interpretive criteria, while essential 

agreement occurs when the MIC pair are within a log2 dilution (ex. if MICBMD = 2 

µg/mL, MICtest may be within the range 1 – 4 µg/mL). These two methods of 

agreement may differ greatly within the same test, especially in the instance of a 

new drug when the majority of the tested MIC distribution is expected to be 

comprised of mostly, if not all, susceptible pathogens. In this instance, categorical 

agreement may be 100%, but if there is a consistent trend of over/under calling the 

MIC in the test method, the essential agreement may be much lower. 

 

Three categorical errors are typically reported in this analysis: minor errors, major 

errors, and very major errors. Minor errors occur when either the MICBMD falls in 

the intermediate category and the MICtest does not or vice versa. These errors may 

only be calculated for antimicrobials with reported intermediate breakpoint 

categories. Major errors occur when the MICBMD is susceptible and the MICtest is 

resistant. Very major errors are the opposite of major errors, occurring when the 

MICBMD is resistant and the MICtest is susceptible. Acceptable minor error rates are 

≤ 10% and ≤ 3% for major errors and very major errors; however, the FDA requires 

a more stringent rate of ≤ 1.5% for very major errors as these are the most 

compromising errors. (302) Recently the FDA has allowed a modification in 

reporting of major and very major errors which allows adjustment for essential 
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agreement when an antimicrobial has no intermediate category. (307) This 

adjustment may also be performed on minor errors. (308) 

Time-kill Procedure 

The time-kill procedure was used to evaluate the activity of a single antimicrobial 

or combination of antimicrobials against a bacteria over time. Because only a 

single concentration of each antimicrobial is used in each trial, it is said to be a 

static model and serves as an in-vitro proxy for a continuous infusion dosing 

paradigm. This served as the basis for which we calculated the antimicrobial 

exposures used in our time-kill studies. [See Antimicrobial Stocks] In our studies, 

the time points collected to estimate the bacterial growth curves were 0, 4, 8, and 

24 hours. 

 

Prior to this procedure, we prepared media (CAMBH, sterile water, and MHA) 

antimicrobial stocks, and subcultured the bacteria of interest twice. [See Stocks 

and Solutions, Antimicrobial Stocks, Isolate Subculture Procedure] In the hood, we 

filled borosilicate vials with ~5 mL of sterile water to perform the McFarland 

Standardization and bacterial sample dilutions for plating. [See McFarland 

Standardization]. All of our time-kill studies were performed in 50 mL conical 

polystyrene vials (polypropylene conical centrifuge tubes; USA Scientific, Ocala, FL) 

in a total of 30 mL of volume. With the final volume fixed, the amount of 0.5 

McFarland standardized bacterial suspension needed to target the 5.0 – 7.5 x 105 

CFU/mL range was 150 mL. The fixed volume also determined how much of an 
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antimicrobial stock of a given concentration would be needed. [See Antimicrobial 

Stocks] The remaining volume was filled with untreated CAMBH. 

 

On the day of the experiment, the untreated broth and antimicrobials were first 

added to the experiment vials. As there were many conditions to analyze for every 

bacteria tested (Negative growth control + antimicrobial exposures), subcultured 

bacterial suspensions were McFarland standardized one at a time. As soon as the 

150 mL of bacterial suspension were added to the experiment vial, the contents 

were quickly mixed and a 0.5 mL sample was taken from the vial and diluted 

according to an algorithm designed to ensure a countable plate would be obtained 

(more details following). The vial was then placed into a shake incubator at an rpm 

of 200 and temperature of 37 oC until the next time point.  

 

Each diluted sample was poured into plastic beaker cups to be sampled by our 

spiral plater (AutoPlate® spiral plater, Advanced Instruments, Inc, Norwood, MA; 

Figure II-11). Because our goal was estimation of the original colony count in the 

vial, we needed knowledge of the volume of bacterial sample deposited on the 

plate (this rules out the inoculation method used in the Kirby Bauer and E-test Strip 

procedures). The spiral plater aspirated 50 mL of the bacterial sample into a stylus 

and deposited it onto MHA in a logarithmic spiral. Between each cycle, the stylus 

performed a cleaning cycle with 1% bleach and sterile water fed through an internal 

hose system which collected in a waste receptacle. The excess bacterial samples 

were discarded into a bleach solution and the beaker cups into the trash. During 



 

 138 

the course of the experiment, the containers of bleach and water periodically 

needed to be refilled and the waste container emptied. Following bacterial 

inoculation, the plates were stacked agar-side up in an incubator at 37 oC for 16 – 

24 hours until interpretation. All of the following procedure was repeated at 4, 8, 

and 24 hours following the start of the experiment (considered to be when the first 

experimental vial was inoculated). 

 

 
Figure II-11: Advanced Instruments AutoPlate® Spiral Plater 
A. reservoir cup mount, B. 1% bleach bottle, C. sterile water bottle, D. petri dish 
mount, E. waste reservoir, F. washing station, G. stylus applicator 

 
The following day, plates in which growth occurred showed pinpoint colonies 

arranged in a circular pattern. To determine the CFU/mL contained with the 

experimental vial at the time in which the samples were taken, the bacterial 

colonies on the plate were manually counted by tapping a permanent marker to 

the back of the plate for every colony and clicking the hand counter to increment 

the count by one. The target number of colonies on the plate was ~ 50 - 200; 

A 
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however, plates with colony counts upwards of 500 were counted. Anything larger 

was considered to be too numerous to count (TNTC). 

 

As mentioned during the sampling procedure, we used an algorithm to determine 

how many plates and how many dilutions would be needed to maximize the 

likelihood of obtaining a countable plate for each time point. The first time point is 

simple because the measurement should be ~ 5 x 108 CFU/mL (often lower in 

rapidly bactericidal antimicrobial exposures). We serially diluted the 0.5 mL sample 

into borosilicate vials each containing 4.5 mL of sterile water to obtain 1:101, 2, 3 

dilutions. This required 3 MHA plates per bacteria/exposure condition at time 0 

hours. For every subsequent time point, the bacterial density was completely 

uncertain; however, because bacterial densities of ~ 107 – 108 CFU/mL are 

necessary to induce opacity observable to the unaided eye, a categorical rule 

could be imposed. If the vial was NOT turbid at a time point, the 0.5 mL sample 

was again serially diluted to obtain 1:101, 2, 3 dilutions, but an additional undiluted 

sample was taken by sampling an additional 3 mL directly into a plastic beaker cup 

(additional volume was to ensure the stylus remained submerged during 

aspiration). Conversely, if the vial was turbid, serial dilutions were used to obtain 

1:104, 5, 6, 7 dilutions. Following this allowed algorithm allowed us to reliably obtain 

at least a single countable plate for concentrations ranging from 102 (lower limit of 

detection) to 1010 (became the maximum cut-off value). Refer to Figure II-12 for a 

graphical summary of this process. 
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Figure II-12: Time-kill Method in Brief 
The illustrated process (A) occurs at each time point in which the flasks are 
sampled. Each dilution is plated separate on MHA using the spiral plater. An 
example of a spirally plated sample following incubation is provided (B) for 
reference. 

 
Time-kill experiments for all bacteria were performed in at least duplicate runs on 

separate days. Additional replicate trials were performed in the event of 

disagreement or experimental error until a modal response was observed. In the 

final analysis, trials that were unreliable due to contamination or some other user 

errors were not included in final analysis; however, we did include all 

measurements in the final combined analysis if no apparent error was noticed even 

if the results were in disagreement with the majority of experiments. To determine 

the accepted bacterial count at each time point, a combination of factors was 

considered. If estimates from multiple dilutions provided a CV < 30%, the average 

of these estimates were accepted as the aggregated measure would be more 

accurate. Otherwise, counts that were closer to the “ideal range” of 50 – 200 were 

accepted. The more densely populated a plate, the more likely that colonies would 

result in miscounts or may overlap and bias the count lower. The more sparsely 

populated a plate, the more effect a single colony (plus or minus) would have on 

A
 

B
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the estimation. Furthermore, sampling error may also factor into the measurement 

heavily at lower bacterial densities as the 50 mL sampling volume may not be 

sufficient to collect a consistent CFU estimate. Lastly, time points were analyzed 

across experiments to aid in selecting the most consistent estimate provided by 

each experiment. This process was primarily accomplished with visual inspection 

of the numeric data and growth curves. 

 

The primary outcome of interest of the time-kill was the change in bacterial density 

(CFU/mL) from the initial inocula. When combination therapy was assessed, the 

degree to which the combination improved (or detracted) from the most active 

single component was also assessed. A categorical assessment of the change in 

bacterial density was employed: bactericidal activity was defined as a reduction of 

≥ 3 log10, bacteriostatic activity was defined as a reduction between 0 (no net 

growth) and 3 log10, and regrowth was defined as any positive net growth. A 

separate categorical evaluation was applied when assessing the relative activity 

of combination therapy to the component therapies: synergy was defined as a ≥ 2 

log10 increase in the reduction of bacterial density when comparing the 

combination to the most active component therapy, indifference was defined as 

either an increase or decrease in the reduction of bacterial density of up to 2 log10 

when comparing the combination to the most active component therapy, and 

antagonism was defined as a ≥ 2 log10 decrease in the reduction of bacterial 

density when comparing the combination to the most active component therapy. 
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These metrics were calculated for all time points but were primarily reported for 24 

hours.
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III. In-Vitro Experimental Results 

Isolate Library 

From November 2008 to January 2022, we collected 724 MDR, Gram-negative 

isolates from the University of Kentucky Albert H. Chandler Clinical Microbiology 

laboratory. These isolates included Enterobacterales and non-lactose-fermenting 

Gram-negative species. The distribution of these species may be found in Table 

III-1. Not surprisingly, E. coli (28.7%) comprised the majority of isolates followed 

closely by P. aeruginosa (23.6%) and K. pneumoniae (19.5%). These three 

species composed 72% of all MDR Gram-negative isolates collected.  

 
Table III-1: All MDR Isolates Collected During Study Period 

Species Count Percentage 
A. baumannii 44 6.1% 

A. xylosoxidans 1 0.1% 
Achromobacter sp. 4 0.6% 

B. cepacia 1 0.1% 
C. amalonaticus 3 0.4% 

C. farmeri 2 0.3% 
C. freundii 16 2.2% 
C. youngae 2 0.3% 

E. aerogenes 5 0.7% 
E. cancerogenus 1 0.1% 

E. cloacae 68 9.4% 
E. coli 208 28.7% 

E. gergoviae 2 0.3% 
E. hormaechei 2 0.3% 

E. vulneris 1 0.1% 
Enterobacter sp. 2 0.3% 

K. oxytoca 20 2.8% 
K. ozaenae 2 0.3% 
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Table III-1: All MDR Isolates Collected During Study Period 
Species Count Percentage 

K. pneumoniae 141 19.5% 
M. odoratimimus 1 0.1% 

P. aeruginosa 171 23.6% 
P. agglomerans 4 0.6% 

P. mirabilis 8 1.1% 
P. putida 4 0.6% 
P. rettgeri 1 0.1% 
P. stuartii 1 0.1% 
P. vulgaris 1 0.1% 

P. vulgaris/penneri 2 0.3% 
S. marcescens 5 0.7% 
S. paucimobilis 1 0.1% 

 
Of these 724 GNR isolates, 193 of the Enterobacterales were resistant to at least 

one tested carbapenem (ertapenem and/or meropenem). The distribution of these 

species may be found in Table III-2. Notably, E. coli, which predominated the total 

GNR population, comprised a small percentage (7.8%) of the CRE population 

(7.2% of all E. coli). Klebsiella pneumoniae was the most prevalent species (42%) 

followed by Enterobacter cloacae (28.5%) and Citrobacter freundii (7.3%). 

However, Enterobacter cloacae isolates far more consistently possessed the CRE 

phenotype than Klebsiella pneumoniae isolates overall (80.9% and 57.4%, 

respectively). 

 
Table III-2: All CRE Isolates Collected During Study Period 

Species Count Percentage 
C. amalonaticus 2 1.0% 

C. freundii 14 7.3% 
C. youngae 2 1.0% 

E. aerogenes 4 2.1% 
E. cloacae 55 28.5% 

E. coli 15 7.8% 
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Table III-2: All CRE Isolates Collected During Study Period 
Species Count Percentage 

E. gergoviae 2 1.0% 
E. hormaechei 2 1.0% 

Enterobacter sp. 2 1.0% 
K. oxytoca 7 3.6% 
K. ozaenae 2 1.0% 

K. pneumoniae 81 42.0% 
P. mirabilis 1 0.5% 
P. rettgeri 1 0.5% 

S. marcescens 3 1.6% 
 

Phenotypic Analysis 

For most experiments, the carbapenemase phenotype reported was identified via 

the disk diffusion method published by Tsakris et al. [See Tsakris Carbapenemase 

Disk Diffusion Procedure] Final phenotypes for the initial 122 isolates may be found 

in Table H.1. These results are as reported by Dr. Kulengowski who generated the 

data. (210) The results of the remaining 18 of the 140 selected CRE isolates may 

be found below in Table III-3. As was the case with the original 122 isolates, the 

most prevalent phenotype was a carbapenemase with a serine-based active. 

Given the scarcity of any other serine-based active site carbapenemases isolated 

in the United States, these isolates were assumed to express a KPC. Likewise, the 

MBLs were assumed to be VIM because genetic identification of the MBLs present 

in the initial 122 CRE isolates solely belonged to this family. 

 
Table III-3: Carbapenem-resistant Phenotype Identified with Modified Disk 
Diffusion 

Isolate Species Trial 1 Trial 2 Trial 3 Final 
536 K. pneumoniae None None  None 
558 K. pneumoniae Neither KPC KPC KPC 
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Table III-3: Carbapenem-resistant Phenotype Identified with Modified Disk 
Diffusion 

Isolate Species Trial 1 Trial 2 Trial 3 Final 
560 S. marcescens KPC KPC  KPC 
561 E. cloacae KPC KPC  KPC 
562 C. freundii MBL Both Both Both 
593 C. freundii None None  None 
599 E. cloacae KPC KPC  KPC 
604 C. freundii None KPC KPC KPC 
605 K. pneumoniae KPC KPC  KPC 
606 E. cloacae KPC KPC  KPC 
607 E. cloacae MBL MBL  MBL 
608 E. cloacae MBL MBL  MBL 
609 E. coli KPC KPC  KPC 
610 K. pneumoniae KPC KPC  KPC 
611 E. cloacae KPC KPC  KPC 
613 E. cloacae KPC KPC  KPC 
615 E. cloacae MBL MBL  MBL 
616 K. pneumoniae MBL MBL  MBL 

Each trial shown above was performed on a different day with a different 
bacterial subculture. 
KPC: Klebsiella pneumoniae carbapenemase, MBL: metallo-beta-lactamase, 
Both: KPC and MBL present, None: neither KPC nor MBL present 

 
Our lab later acquired a VERIGENE® system, which allowed us to identify select 

carbapenemase genes in the bacterial genome. [See VERIGENE® Procedure] 

Also, the VERIGENE® reported all of the genes present within the bacterial DNA, 

not just those being actively expressed. We identified all isolates to be analyzed 

by time-kill method using both the modified disk diffusion phenotypic assay and 

VERIGENE®, as shown in Table III-4. Of note, the modified disk diffusion test was 

replicated until a modal interpretation was reached (minimum 2 trials), while the 

VERIGENE® was used a single time for each isolate (assuming no errors occurred 

during the extraction/identification). 
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Table III-4: Phenotypes Reported by Modified Disk Diffusion and VERIGENE® 
Isolate Species VERIGENE® 

Species 
DD 

Phenotype 
VERIGENE® 

Phenotype 
Time-kill Isolates 

42a K. pneumoniae 
C. freundii 

Enterobacter spp 
K. pneumoniae 

MBL KPC 

53 E. cloacae Enterobacter spp MBL VIM 
134b E. cloacae Enterobacter spp MBL KPC, VIM 
167 E. cloacae Enterobacter spp MBL VIM 
169 E. cloacae Enterobacter spp MBL VIM 
173 K. pneumoniae K. pneumoniae MBL VIM 
209 E. cloacae Enterobacter spp KPC KPC 
411 K. pneumoniae K. pneumoniae MBL VIM 
416 E. cloacae Enterobacter spp MBL VIM 
449 K. pneumoniae K. pneumoniae KPC KPC 
608 E. cloacae Enterobacter spp MBL VIM 

Other Tested Isolates 
17 E. cloacae Enterobacter spp KPC KPC 
30 E. cloacae Enterobacter spp KPC KPC 

32 K. pneumoniae Enterobacter spp 
K. pneumoniae KPC KPC 

33 E. coli Enterobacter spp 
K. pneumoniae None KPC 

37 K. pneumoniae K. pneumoniae KPC KPC 

40 E. cloacae Enterobacter spp MBL KPC 
VIM 

77 K. pneumoniae K. pneumoniae None CTX-M 

95 E. gergoviae Enterobacter spp None KPC 
CTX-M 

96 E. cloacae Enterobacter spp None KPC 
116 K. pneumoniae K. pneumoniae None CTX-M 
126 E. cloacae Enterobacter spp KPC KPC 
168 E. cloacae Enterobacter spp None KPC 
189 E. cloacae Enterobacter spp MBL VIM 
284 K. pneumoniae K. pneumoniae None CTX-M 
309 E. coli Enterobacter spp None CTX-M 

324 C. freundii 
C. freundii 

Enterobacter spp 
E. coli 

None 
KPC 
VIM 

CTX-M 

476 E. cloacae Enterobacter spp Both KPC 
VIM 

593 C. freundii C. freundii None KPC 
CTX-M 
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Table III-4: Phenotypes Reported by Modified Disk Diffusion and VERIGENE® 
Isolate Species VERIGENE® 

Species 
DD 

Phenotype 
VERIGENE® 

Phenotype 
616 K. pneumoniae K. pneumoniae MBL KPC 

VIM 
a: Two separate bacterial samples isolated from time-kill plate for isolate 42 
DD: disk diffusion, KPC: Klebsiella pneumoniae carbapenemase, MBL: 
metallo-beta-lactamase, VIM: Verona integron-encoded metallo-beta-
lactamase 

 
Most phenotypic data gathered from each method agreed entirely; however, some 

discrepancies were noted both in species and resistance gene identification. 

Within the 30 isolates tested on Nanosphere, the reported species was identified 

by VERIGENE® in 28 (93%), but in 4 (13%) isolates, VERIGENE® reported multiple 

species. In the case of isolate 33, multiple species were identified by VERIGENE®, 

and neither of them matched the originally reported species. This would indicate 

that somewhere in the long process from isolating the culture from the patient to 

testing in the lab, some cultures either became contaminated or were not 

completely separated into a monomicrobial culture.  

 

While species misclassification was an infrequent occurrence during our limited 

testing, having the ability to rapidly ensure pure cultures is an excellent means to 

prevent/interpret confusing findings where the explanation stems from the 

presence of a mixed microbial community. This became apparent in the testing of 

isolate 42 in broth microdilution and time-kill analysis. During a time-kill 

experiment, two separate colony colors (bright white vs. dull off-white/gray) were 

present on several agar plates for isolate 42. The VERIGENE® results for the 

species were Klebsiella pneumoniae / Enterobacter cloacae and Citrobacter 
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freundii with both colonies positive for KPC. This is starkly different from the 

modified disk diffusion method which resulted in an MBL phenotype for both trials. 

These findings helped rapidly identify the cause of the disparate results obtained 

when testing this isolate and saved laboratory time/resources which would’ve have 

been spent undergoing further investigation. 

 

When comparing the resistance phenotypes identified by the Tsakris disk diffusion 

method and VERIGENE®, the predicted carbapenemase phenotype by disk 

diffusion was identified by VERIGENE® in 23 (77%) of isolates, with 3 (10%) 

isolates having additional resistance mechanisms identified by VERIGENE® and 7 

(23%) isolates disagreeing outright. In all three isolates in which VERIGENE® 

identified more carbapenemases than the disk diffusion test (40, 134, 616), the 

disk diffusion test correctly predicted the presence of an MBL (VIM in all cases) 

but missed the co-expression of a KPC. In 6 of the 7 instances of outright 

disagreement, VERIGENE® identified a carbapenemase when the disk diffusion 

did not. In all but one of these instances (isolate 324), the carbapenemase missed 

was KPC, and in isolate 324, both a KPC and VIM were missed.  

 

At this time, it is not known why KPC was so frequently missed between these two 

methods. In the original study, Tsakris et al reported 100% sensitivity for identifying 

KPC-production. Notably, this misclassification among our isolates occurred 

almost exclusively when E. cloacae or C. freundii were present. The original 

bacterial population (n = 225) utilized in the publication was primarily comprised of 
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K. pneumoniae (n = 146) and E. coli (n = 47), with only 21 total Enterobacter 

species and 0 Citrobacter species being test overall. These Enterobacter species 

accounted for only 6 (29%) of the KPC-producing isolates tested. Therefore, the 

excellent sensitivity and specificity of the test for KPC-producing organisms is 

largely defined within the context of K. pneumoniae isolates, and perhaps 

extrapolation into other organisms may be limited.  

 

A competing hypothesis would be that the detected gene is simply not producing 

an expected phenotype. In this scenario, both assays would be operating exactly 

within expectations, and the misclassification would simply be caused by the fact 

that the disk diffusion test is screening for phenotypic expression while the 

VERIGENE® platform is screening genetic material regardless of expression. A 

wide range of cellular processes may be consistent with a negative result of the 

disk diffusion test when kpc gene is present ranging from gene transcription to 

protein translation to shuttling the protein from the cytosol to the periplasmic 

region. Naturally, these two explanations may be simultaneously accurate and 

could also be correlated. Further investigation into this matter would be warranted. 

 

Phoenix MIC Analysis 

In addition to species identification, all clinical isolates received from the clinical 

microbiology laboratory were provided with MIC information collected during the 

course of clinical care using the BD PhoenixTM platform, which is the primary 
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means in which the laboratory assess susceptibility of clinical isolates. The MICs 

as determined by BD Phoenix® for the 193 isolates collected may be found in 

Tables A.1 and A.2. Table A.3 shows the combined MIC analysis of all collected 

CRE during the study.  

 

Most of the 20 routinely tested antimicrobials were tested against all of the CRE 

isolates, with cefuroxime being the notable exception. As expected, the CRE were 

overwhelmingly non-susceptible to all the beta-lactam antimicrobials. Meropenem 

and cefepime exhibited the highest susceptibilities (31% and 21%, respectively). 

Low susceptibility was noted for nearly all non-beta-lactam antimicrobial agents as 

well. The only antimicrobial with > 90% susceptibility was amikacin. 

Laboratory MICs 

BMD Analysis 

While the PhoenixTM MICs provided useful susceptibility information, the results 

were often left or right truncated due to the sparse sampling of concentrations in 

the panel, and most importantly, the susceptibilities were only tested a single time. 

Due to the known variability around the MIC measurement, both interexperimental 

and interlaboratory, our lab selected 140 of the eligible 193 CRE isolates to 

perform replicate trials of duplicated BMD for each antimicrobial agent to elucidate 

the modal MIC. The MICs for the initial 122 were performed by Dr. Kulengowski’s 

and are contained in his dissertation. (210) For the convenience of the reader, all 

140 MICs may be found in Tables B.1 and B.2. Table B.3 provides MICs for the 
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novel antimicrobials plazomicin and eravacycline for the initial 122 isolates. Further 

analyses of these novel agents compared to agents of the same class and 

stratified by genera and carbapenem phenotype are provided as manuscripts in 

this chapter (In-vitro activity of plazomicin compared to other clinically relevant 

aminoglycosides in carbapenem-resistant Enterobacteriaceae and In-vitro activity 

of eravacycline compared to tigecycline in carbapenem-resistant 

Enterobacteriaceae, respectively). These studies were reported as part of two 

investigator-initiated research proposals for Achaogen and Tetraphase, 

respectively. The combined MIC analysis for the other tested agents is provided in 

Table B.4. 

E-test Analysis 

In addition to providing drug solutions, research use only (RUO) E-test strips were 

provided for plazomicin and eravacycline. Also, two separate investigator-initiated 

research proposals for Merck and Shionogi provided RUO E-test strips for 

ceftolozane/tazobactam and cefiderocol. All MICs determined by E-test strips may 

be found in Tables C.1, C.2, and C.3. It is important to note that the E-test 

experiments for ceftolozane/tazobactam were performed on clinical isolates not 

cultured from patients at the University of Kentucky. Specifically, 

ceftolozane/tazobactam E-test strip experiments were performed on isolates 

belonging to the ceftolozane/tazobactam panel from the AR Isolate Bank [See 

CDC AR Isolate Bank]. Cefiderocol, in addition to being tested on 49 of the 140 

selected CRE isolates, was tested on 47 extensively drug-resistant (XDR) P. 

aeruginosa isolates cultured from patients at the University of Kentucky. These 



 

 153 

isolates were selected following the work of Dr. Gallager who performed extensive 

MIC testing on these isolates during her thesis work. (309) Due to the limited 

number of E-test gradient strips provided, many MICs obtained via this method 

were not replicated. 

Combined Analysis 

Overall susceptibility analysis as well as MIC distribution statistics (MIC50/90 and 

MIC ranges) for all novel antimicrobial agents may be found in Table D.1 for both 

BMD and E-test experiments. For the agents in which both E-test gradient strips 

and drug solution/powder were provided (plazomicin and eravacycline), we 

additionally performed an analysis of the MIC agreement between each method. 

We were able to perform this analysis for ceftolozane/tazobactam because MIC 

data were provided with the CDC AR Isolate Bank specimen used for the study 

(Note that these MIC values were gathered in different laboratories between 

methods, which has been shown to produce variation in the MIC estimate). (310) 

Table E.1 and Figures E.1, E.2, and E.3 provide the results of this agreement 

analysis. 

 

E-test MICs were measured in more isolates for plazomicin than eravacycline (122 

vs. 76) due to the supply that was provided by the manufacturers. Categorical 

agreement between the BMD and E-test MICs for both plazomicin and 

eravacycline were high (98% and 88%, respectively). For plazomicin, this was 

likely higher due to the lack of isolates near the susceptibility breakpoints, 

especially when considering the relatively poor essential agreement (78%). Non-
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essentially agreeing MIC pairs were almost always a result of the E-test “over 

calling” the MIC (25/27), usually by 2 log2 dilutions (22/25). This trend of “over 

calling” may also be seen in MIC pairs of essential agreement as 66 of 70 single 

log2 discrepancies were higher in the E-test. Eravacycline, on the other hand, had 

nearly identical essential and categorical agreement (89%). In fact, the vast 

majority of isolates tested for eravacycline had perfect agreement in the MIC 

between the methods (70%). Eravacycline did have a higher abundance of very 

major and major errors (2 of each, 4% and 8% rate, respectively. Plazomicin only 

had a single very major error and two minor errors (eravacycline was not evaluated 

for errors as it does not have an intermediate breakpoint category) even though 

nearly twice as many isolates were tested.  

 

It should be noted that this agreement analysis is not completely compliant with 

the recommendations of CLSI. Firstly, the MICs between the methods should 

ideally be performed using the same subculture for each isolate to minimize 

interculture variation. Also, in the case of major and very major errors, it is 

recommended to reproduce the MICs from both methods to ensure the errors were 

not simply chance variations due to any number of potentially contributing error 

sources. All MICs compared were collected on separate days, which could lead to 

large variations in the measured MIC (especially in the isolates that were not 

duplicated). As a result, major and very major errors were not retested. 
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A closer look at the MIC values from each experiment suggests that the actual 

error rates may be much lower if the CLSI standards were followed. For 

plazomicin, the minor errors occurred in isolates 119 and 369. Isolate 119 was 

tested four times by E-test (MICs were 3 µg/mL, 0.75 µg/mL, 1 µg/mL, and 3 

µg/mL) and three times in duplicate by BMD (0.25 µg/mL, 2 µg/mL; 0.5 µg/mL, 0.5 

µg/mL; and 1 µg/mL, 1 µg/mL). The mode of the BMD MICs is clearly either 0.5 

µg/mL or 1 µg/mL (we chose 1 µg/mL as it is more conservative), but, even though 

the literal mode of the E-test MICs is 3 µg/mL, 2 µg/mL would better fit the data. If 

the 0.75 µg/mL is rounded to the nearest log2 dilution, the E-test would have modes 

at 1 µg/mL and 3 µg/mL. Isolate 369 was more variable and was tested by E-test 

in three trials (8 µg/mL, 0.5 µg/mL, and 0.75 µg/mL) and BMD in two trials (4 µg/mL, 

8 µg/mL and 4 µg/mL, 4 µg/mL). Both of these isolates show evidence of a potential 

mixed culture or heterogenous MIC populations. It seems plausible that these tests 

would have achieved essential agreement if they were performed on the same 

subcultures. Isolate 42 was the source of the very major error; however, further 

testing of this isolate (Nanosphere and Time-kill) strongly suggests that the culture 

is mixed. Even though the BMD MICs were >32 µg/mL in both duplications of each 

replicate trial, the E-test MICs, however, were tested four times with varying result 

(0.75 µg/mL, 0.5 µg/mL, 256 µg/mL, and 16 µg/mL). These E-test MICs add to the 

above evidence that isolate 42 contains multiple populations. 

 

The source of major errors for eravacycline were isolates 10 and 55. E-tests were 

performed only once for both these isolates (4 µg/mL and 8 µg/mL, respectively). 



 

 156 

The BMD were tested numerous times for each isolate (4 µg/mL, 4 µg/mL; 0.5 

µg/mL, 0.5 µg/mL; 1 µg/mL, 1 µg/mL; and 0.5 µg/mL, 0.5 µg/mL for isolate 10 and 

8 µg/mL, 0.5 µg/mL; 0.13 µg/mL, 0.25 µg/mL; and 0.25 µg/mL, 0.5 µg/mL for 

isolate 55). Even though the BMD isolates centered around lower MICs for most 

trials in these isolates (0.5 µg/mL and 0.25 µg/mL), the higher MICs measured by 

E-test occurred at least once for both isolates in BMD. This suggests that a 

heterogenous MIC population could exist for these isolates, and the error may 

have been avoided with simultaneous testing. The very major errors occurred in 

isolates 167 and 189. These errors appeared to be due to a combination of two 

factors: (1) the MICs were measured near the susceptibility breakpoints for both 

methods (0.19 µg/mL vs. 1 µg/mL and 0.25 µg/mL and 1 µg/mL between E-test 

and BMD, respectively), (2) the BMD MICs were highly variable. Both isolates 167 

and 189 were tested in duplicate five times (1 µg/mL, 2 µg/mL; 0.25 µg/mL, 0.25 

µg/mL; 0.5 µg/mL, 2 µg/mL; 0.5 µg/mL, 2 µg/mL; and 1 µg/mL, 0.5 µg/mL for isolate 

167 and 0.5 µg/mL, 1 µg/mL; 1 µg/mL, 0.5 µg/mL; 1 µg/mL, 0.5 µg/mL; 0.25 µg/mL, 

0.5 µg/mL; 0.25 µg/mL, 0.5 µg/mL; and 1 µg/mL, 1 µg/mL for isolate 189). If 

eravacycline had an intermediate breakpoint category, these errors would have 

been minor errors, and it seems likely that simultaneous testing may have resulted 

in essentially agreeing results. Isolates 17, 77, and 98, which showed categorical 

but not essential agreement, also demonstrated variable BMD MICs; however, the 

first trial of duplicates each contained the E-test MIC in both lanes. Subsequent 

trials resulted in interpretations that were not within a single log2 dilution of the E-

test, but, again, the results may have agreed with simultaneous testing. These 
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inconsistencies for both plazomicin and eravacycline create the possibility that 

neither antimicrobial would have had a single minor, major, or very major error 

between the BMD and E-test MICs. However, we were unable to perform 

confirmatory replicate studies due to our limited supply of E-test strips. 

 

Overall, the novel agents that performed best against our CRE isolate library were 

plazomicin and cefiderocol, both having >90% susceptibility. Eravacycline showed 

surprisingly poor susceptibility even though none of the isolates had prior exposure 

to this agent. It should be noted that no BMD experiments were performed for 

cefiderocol, and these results were generated near the end of this project. 

Therefore, consideration of this agent for further experimentation, as will be 

discussed for plazomicin and eravacycline, was not possible. The following 

sections explore in more depth our analysis of the plazomicin and eravacycline 

MICs in comparison to mechanistically similar agents. 
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Abstract 

We evaluated the in-vitro activity of plazomicin against other aminoglycosides in 

122 clinical CRE isolates using several clinical susceptibility breakpoints. 

Plazomicin had excellent in-vitro activity with 98% overall susceptibility. Amikacin 

was the next most active with 86% overall susceptibility. This dropped to 55% 

when switching from CLSI to USCAST breakpoints.  

Main body 

For several years, aminoglycosides have been combined with beta-lactam 

antibiotics and other mainstay therapies to treat serious infections, including those 

caused by carbapenem-resistant Enterobacteriaceae (CRE) (311). Variable 

activity of the most commonly used aminoglycosides, amikacin, tobramycin, and 

gentamicin, due to the presence of aminoglycoside-modifying enzymes (AMEs) 

can complicate the selection of an appropriate option (312). Another obstacle is 

the lack of agreement in susceptibility breakpoints for these agents. We evaluated 

the in-vitro activity of plazomicin, a newly FDA approved aminoglycoside, against 

other clinically relevant aminoglycosides in CRE isolates using widely established 

susceptibility breakpoints from the Clinical Laboratory and Standards Institute 

(CLSI), U.S. Food and Drug Administration (FDA), European Committee on 

Antimicrobial Susceptibility Testing (EUCAST), and U.S Committee on 

Antimicrobial Susceptibility Testing (USCAST) to assess these impacts in CRE 

isolates. 
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Isolates were cultured from patients at an academic medical center as part of 

routine care. Broth microdilution was utilized to determine MICs for these isolates 

against plazomicin, amikacin, gentamicin, and tobramycin. Using a combination of 

phenylboronic acid, EDTA, or both, with meropenem, we determined the CRE 

phenotype as either Klebsiella pneumoniae carbapenemase (KPC), metallo-beta-

lactamase- (MBL) producing, both KPC- and MBL-producing, or other, undefined 

phenotype (298). Additionally, the VERIGENE® Gram-negative blood culture 

nucleic acid test (Nanosphere, Northbrook, IL, USA) was used to characterize the 

MBL produced. For plazomicin, USCAST and FDA breakpoints (4 and 2 µg/mL) 

and for amikacin, gentamicin, and tobramycin, CLSI/FDA, EUCAST, and USCAST 

breakpoints (amikacin: 16, 8, and 4 µg/mL; gentamicin and tobramycin: 4, 2, and 

2 µg/mL, respectively) were utilized (313–316). McNemar’s test was used to 

compare susceptibilities between breakpoint categories for which p-values are 

reported.  

 

We evaluated 122 clinical CRE isolates of various genera: 12 Citrobacter spp., 40 

Enterobacter spp., 6 Escherichia spp., 63 Klebsiella spp., and 1 Serratia spp. 

These isolates also produced numerous carbapenem-resistant phenotypes: 70 

produced KPC, 20 produced an MBL, 7 produced both an MBL and KPC, and 25 

contained other resistant phenotypes. All MBLs were Verona integron-encoded 

metallo-beta-lactamase (VIM) as determined by VERIGENE® system. Table III-5 

shows the percent susceptible isolates (%S) according to CLSI susceptibility 

breakpoints. Plazomicin had excellent overall activity (98% susceptible and 
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MIC50/90 = 0.5/1 µg/mL) surpassing that of all other aminoglycosides (p-value: 

<0.001 for all) and performed well against all individual resistance phenotypes and 

genera tested. Of the other aminoglycosides, only amikacin possessed reliable 

activity (86% susceptible and MIC50/90 = 4/32 µg/mL), though activity was 

inconsistent between subgroups. The %S to gentamicin and tobramycin was no 

higher than 36% for any category. Figure III-1 shows the activity of the 

aminoglycosides using all available breakpoints. As expected, using different 

interpretive breakpoints lowered activity profiles. However, the activity of amikacin 

seemed to be impacted disproportionately, especially in isolates expressing MBLs 

where the % susceptible dropped from 90% to 5% (p-value: <0.001) when moving 

from CLSI to USCAST breakpoints.  

 

Plazomicin is a novel, semi-synthetic aminoglycoside that was rationally designed 

from sisomicin to avoid deactivation from the most clinically relevant AMEs, which 

were identified to be AAC(6’)-Ib and AAC(3)-IIa in the ALERT global surveillance 

program (312, 317). According to these results, the MIC50/90 reported for 

plazomicin in isolates expressing either of these enzymes was 0.5/1 µg/mL and 

0.25/1 µg/mL in the U.S. and from European and surrounding countries, 

respectively. Furthermore, similar performance was noted against CRE with 

MIC50/90 = 0.5/1 µg/mL and 0.25/128 µg/mL, respectively. The increase in the 

MIC90 in European and Asian countries is likely due to the greater expression of 

16S rRNA methyltransferase in this area.  
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Any discussion of the activity of plazomicin in MBL-producing CRE must address 

the issue of 16S rRNA methyltransferase co-expression, specifically those 

expressing New Delhi MBL (NDM) (33). Although plazomicin evades most 

commonly expressed AMEs, it remains vulnerable to target site methylation by 

these enzymes (318). Our study only included 27 MBL-producing bacteria when 

including those co-expressing KPC and an MBL. Only one of these isolates 

demonstrated high level aminoglycoside resistance (MICs: plazomicin >32, 

amikacin = 512, tobramycin >128, gentamicin = 128 µg/mL), suggesting a low 

prevalence of 16S rRNA methyltransferase expression at our academic medical 

center, which is not surprising given the absence of NDM expression.  

 

Plazomicin demonstrated similar activity against non-MBL-producing CRE to what 

has been previously published (319, 320). Furthermore, in previously published 

results, we reported AMEs present in 4 amikacin-resistant E. cloacae isolates 

included in this study, which show AAC(6’)-Ib, among others, as causes of 

aminoglycoside resistance at our academic medical center (321). Although we did 

not perform sequencing on all isolates to identify the AMEs present, the diminished 

activity of tobramycin, gentamicin and, to a lesser extent, amikacin are evidence 

of their expression. The susceptibility of aminoglycoside non-susceptible isolates 

to plazomicin was > 99%. Given this disparity, it is safe to say that the presence of 

AMEs in our isolates did not affect the activity of plazomicin, which has been 

previously reported (322).  
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Over the past decade, more focus has been directed toward the accuracy of CLSI 

susceptibility breakpoints, leading to lowered breakpoints for several antimicrobial 

agents, the most recent being fluoroquinolones (323). Similarly, USCAST released 

more conservative aminoglycoside breakpoints on the basis of current 

pharmacokinetic/pharmacodynamic analysis (324, 325). Because these data 

suggest the CLSI breakpoints may be too liberal, we evaluated the difference in 

activity at the lowered breakpoints, which led to the most striking finding in our 

study.  Overall amikacin activity dropped more than 30% (86 – 55%; p-value = 

<0.001), with similar declines in activity occurring across CRE phenotypes and 

genera. The most notable decline occurred in MBL-producing isolates, dropping 

from 90 – 5% (p-value = <0.001) susceptibility. Drops in susceptibility of this 

magnitude are clinically significant and should raise concerns for institutions 

relying on these antibiotics for coverage of CRE.  

 

Our study provides further evidence of the excellent in-vitro activity of plazomicin 

against CRE while also raising caution about that of other aminoglycosides. Local 

distributions of AMEs largely determine the treatment efficacy of aminoglycosides, 

but clinical breakpoints are vital in determining which antibiotics are likely to 

provide adequate exposure at a given dose. Further research is necessary to 

reach agreement on the appropriate breakpoints for aminoglycosides. 
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Table III-5: Activity of Plazomicin, Amikacin, Tobramycin, and Gentamicin for Various Phenotypes and Genera of CRE 
  Phenotypes Genera  
  

KPC  
(n = 70) 

MBL  
(n = 20) 

Other  
(n = 25) 

Enterobacter  
(n = 40) 

Klebsiella  
(n = 63) 

Total  
(n = 122) 

PLZ 

% S 100% 95% 96% 97% 99% 98% 
MIC50 0.5 0.5 0.25 0.25 0.5 0.5 
MIC90 1 0.5 1 0.5 0.5 1 

MIC Range 0.13 - 1 0.06 - >32 0.13 - 4 0.06 - 4 0.13 - >32 0.06 - >32 

AMK 

% S 80% 90% 100% 94% 78% 86% 
MIC50 4 16 2 8 4 4 
MIC90 32 16 8 16 32 32 

MIC Range ≤0.5 - 64 4 - 512 ≤0.5 - 16 ≤0.5 - 32 ≤0.5 – 512 ≤0.5 – 512 

TOB 

% S 20% 0% 32% 8% 22% 18% 
MIC50 32 16 8 32 16 16 
MIC90 >128 64 32 64 128 128 

MIC Range ≤0.13 - >128 8 - >128 0.25 - 128 0.5 - >128 ≤0.13 - >128 ≤0.13 - >128 

GEN 

% S 34% 15% 36% 22% 34% 31% 
MIC50 32 16 32 32 16 16 
MIC90 128 128 64 128 128 128 

MIC Range ≤0.13 - >128 0.5 - >128 0.25 - 128 ≤0.13 - 128 ≤0.13 - >128 ≤0.13 - >128 
All MIC values have units of µg/mL. CLSI/FDA breakpoints were used for AMK (≤16 µg/mL), TOB (≤4 µg/mL), and GEN (≤4 µg/mL). FDA 
breakpoints were used for PLZ (≤2 µg/mL) 
PLZ: plazomicin, AMK: amikacin, TOB: tobramycin, GEN: gentamicin, KPC: Klebsiella pneumoniae carbapenemase, MBL: metallo-beta-
lactamase, %S: percent susceptible, MICn: MIC required to inhibit visible growth in nth percentile of all isolates tested 
[Return] 
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Figure III-1: Impact of Breakpoint Changes on Susceptibility in Isolates of Various Carbapenem Resistance Phenotypes 
Shown above are susceptibilities of tobramycin (first), gentamicin (second), amikacin (third), and plazomicin (fourth) 
listed from front to back. The bars correspond to each susceptibility criteria utilized (labeled below). Note that plazomicin 
does not have susceptibility breakpoints issued from CLSI or EUCAST at the time of this publication.  
PLZ: plazomicin, AMK: amikacin, GEN: gentamicin, TOB: tobramycin, KPC: Klebsiella pneumoniae carbapenemase, 
MBL: metallo-beta-lactamase, [Return] 
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Abstract 

Eravacycline has been shown to have broad-spectrum Gram-negative activity, 

including carbapenem-resistant Enterobacteriaceae (CRE). We compared the 

activity of eravacycline to tigecycline in CRE isolates cultured from patients at an 

academic medical center. Eravacycline was more potent than tigecycline (mean 

MIC ratio = 0.76 [95% CI: 0.66–0.87]); however, the MIC90 observed for 

eravacycline was higher than previously reported at 4 µg/mL. Future studies are 

necessary to elucidate the mechanism driving this difference. 

Main Body 

Despite major preventative efforts, carbapenem-resistant Enterobacteriaceae 

(CRE) remain a threat in 2019. In the CDC’s newly published Threats Report, the 

prevalence associated with these infections has remained static since its previous 

report released in 2013, and the mortality remains high (1, 4). Additionally, 

development of resistance to the recently approved beta-lactamase inhibitor 

avibactam has already been reported (250, 326). In light of this, the need for new 

antimicrobial agents to treat these infections remains apparent. Tigecycline has 

been utilized in the treatment of CRE infections since reaching the market in 2005; 

however, doubts about its use were raised after several meta-analyses reported 

an increased risk of mortality, which culminated in an FDA black box warning in 

2013 (327, 328). Eravacycline, a newly FDA approved glycylcycline for the 

treatment of complicated abdominal infections, has demonstrated in-vitro activity 
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against CRE isolates. We therefore compared the in-vitro activity of eravacycline 

and tigecycline against CRE. 

 

CRE isolates were cultured from patients at an academic medical center as part 

of routine patient care. Replicate BMD experiments were performed in duplicate 

according to Clinical Laboratory and Standards Institute (CLSI) standards (315). 

We utilized a phenotypic method first described by Tsakris et al that can distinguish 

between Klebsiella pneumoniae carbapenemase (KPC), metallo-beta-lactamase 

(MBL), or both KPC and MBL production (298). The U.S. Food and Drug 

Administration (FDA) susceptibility breakpoints were utilized for eravacycline (≤0.5 

µg/mL) and tigecycline (≤2 µg/mL) (329, 330). Bootstrapped 95% confidence 

intervals (CI) were reported for MIC ratios and permutation tests were performed 

to compare the MIC distributions (p-value reported) with alpha = 0.05 (331). 

McNemar’s test was used to compare susceptibility profiles. 

 

Overall, 122 clinical isolates were evaluated, of which 12 were Citrobacter spp., 40 

were Enterobacter spp., 6 were Escherichia spp., 63 were Klebsiella spp., and 1 

was Serratia spp. Additionally, 70 produced KPC, 20 produced an MBL, 7 

produced both KPC and an MBL, and 25 produced other resistant phenotypes. 

Susceptibility information can be seen in Table III-6 and illustrated in Figure III-2. 

Eravacycline demonstrated greater overall potency than tigecycline (mean MIC 

ratio [95% CI] = 0.76 [0.66–0.87]). This was more pronounced in Klebsiella spp. 

than in Enterobacter spp. (0.69 [0.58–0.82] and 0.81 [0.63–1.06], respectively) and 
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in KPC-producers than either MBL-producers or other CRE phenotypes (0.76 

[0.64–0.91], 0.81 [0.62–1.11], and 0.80 [0.59–1.09], respectively). Permutation 

hypothesis testing showed statistically significant differences in the MIC 

distributions of eravacycline and tigecycline for all isolates tested and in isolates 

expressing KPC as the only resistance mechanism (p-value: 0.0081 overall and 

0.025 for KPC). While not “statistically significant”, the differences between the 

MIC distributions in Klebsiella spp. and in isolates with CRE phenotypes other than 

KPC (including co-production of KPC with an MBL) were striking (p-value: 0.0511 

for Klebsiella and 0.0758 for non-KPC). Tigecycline, however, demonstrated 

greater susceptibility than eravacycline (%S: 84 and 27, respectively) for all 

phenotypes and genera studied (Table III-6).  

 

Eravacycline is the first fully synthetic tetracycline and is structurally similar to 

tigecycline with a few key distinctions. Eravacycline has a fluorine atom at the C-7 

position and a pyrrolidinoacetamido group at the C-9 position, which allow 

eravacycline to retain activity against bacteria expressing the two most common 

tetracycline resistant phenotypes, efflux pumps and ribosomal protective proteins. 

As a result, eravacycline has demonstrated 2- to 4-fold greater potency in-vitro 

than tigecycline (332).  In a large in-vitro study of Enterobacteriaceae isolates (n = 

3,157), the MIC50/90 for eravacycline was 0.25/1 µg/mL (333, 334). Many of these 

isolates were considered multi-drug resistant (MDR) (n = 666), in which the 

MIC50/90 increased 2-fold dilution from the overall population (0.5/2 µg/mL). 
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Furthermore, eravacycline possesses activity against CRE, as shown by 

Livermore et al (335).  

 

Due to a much lower FDA susceptibility breakpoint, ≤0.5 vs. ≤2 µg/mL, 

eravacycline is often reported as being less active than tigecycline (336, 337). The 

FDA cited concerns about non-linear plasma protein binding as a rationale (155). 

Similar concerns have been raised for tigecycline; in fact, the results of a recent 

publication suggest that the breakpoint for tigecycline may be too high (156). Both 

the United States and European Committee on Antimicrobial Susceptibility Testing 

(USCAST and EUCAST, respectively) have adopted the susceptibility breakpoint 

of ≤0.5 mcg/mL in light of current available evidence for tigecycline (313, 316). 

Applying this breakpoint rather than the FDA breakpoint precipitously lowers the 

%S for tigecycline within our isolates (84% to 12%, p value <0.001). When 

comparing the susceptibilities of tigecycline and eravacycline at this lower 

breakpoint, tigecycline appears to be less active than eravacycline (12% vs. 27%, 

p-value < 0.001). 

 

The MIC90 was higher in our study (4 µg/mL) than in others by 2- to 4-fold. Similar 

results to our study were published by Zhang et al. The MIC50/90 for eravacycline 

in 110 CRE isolates was 1/2 µg/mL, and the MIC range was 0.5–4 µg/mL with 95% 

of the isolates having MICs between 1–2 µg/mL (336). Though the majority (60%) 

of our isolates fell within this 2-dilution range, 27% were below and 13% above. 

Therefore, despite the increased eravacycline activity in our study (27% vs. 2%), 
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we have more isolates with MICs >2 µg/mL (16 vs 4). Similarly, almost all of the 

isolates in the Zhang study had tigecycline MICs = 2 µg/mL (97%), and only 9 (8%) 

isolates had MICs >2 µg/mL. Only 42% of our isolates had MICs = 2 µg/mL, and 

twice as many (18, 15%) had MICs >2 µg/mL. This wide distribution of eravacycline 

and tigecycline MICs suggests an accumulation of resistance determinants. 

Furthermore, when comparing the MIC distributions of eravacycline and 

tigecycline in Figure III-2, it appears that some of these determinants affect both 

antimicrobials similarly while others do not.  

 

Future studies are needed to characterize the high rate of non-susceptibility of our 

isolates to both eravacycline and tigecycline. Also, we demonstrated the extreme 

difference in the interpretation of activity that may result when choosing between 

the FDA and more recent USCAST and EUCAST tigecycline susceptibility 

breakpoints for CRE isolates. Differences of this magnitude may well be clinically 

significant and certainly illustrate the need for further deliberation to arrive at the 

most accurate breakpoints for the glycylcycline antimicrobials. 
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Table III-6: Activity of Eravacycline vs. Tigecycline for Various Phenotypes and Genera of CRE 
  Phenotypes Genera    

KPC MBL Other Enterobacter Klebsiella Total  
# of isolates 70 20 25 40 63 122 

ERV % S 24% 35% 28% 25% 27% 27% 
MIC50 1 1 1 1 1 1 
MIC90 4 4 4 4 2 4 

MIC Range 0.25 - >8 0.25 - 4 0.25 - >8 0.25 - >8 0.13 - 8 0.13 - >8 
TGC % S 84% 80% 86% 83% 83% 84% 

MIC50 2 1 2 2 2 2 
MIC90 4 2 8 4 4 4 

MIC Range 0.5 - 16 0.5 - 8 0.06 - 16 0.5 -16 0.5 - 16 0.06 - 16 
%S: percent susceptible, MICn: MIC required to inhibit visible growth in nth percentile of all isolates tested, KPC: 
Klebsiella pneumoniae carbapenemase, MBL: metallo-beta-lactamase, FDA: US Food and Drug Administration.  
NOTE: All MICs measured above are in units of μg/mL. FDA breakpoints were used for ERV (≤0.5 μg/mL) and TGC (≤2 
μg/mL). ERV concentrations > 8 μg/mL were not measured.  
[Return] 
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A. Overall Potency of ERV vs. TGC in CRE 

 
B. Potency of ERV vs. TGC in Klebsiella and Enterobacter Species 

 
C. Potency of ERV vs. TGC in KPC vs. non-KPC-producing CRE 

 
Figure III-2: Comparison of Potency between Eravacycline and Tigecycline 
Central (dark) line refers to equal potency. The surrounding (light) lines show dilutional 
error (±1 log2 dilution). The saturation of color corresponds to number of isolates at 
the coordinate. The numbers correspond to the isolate count at each coordinate. ERV 
concentrations > 8 µg/mL were not measured. 
ERV: eravacycline, TGC: tigecycline, KPC: Klebsiella pneumoniae carbapenemase 
[Return] 
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Comparing the activity of broad-spectrum beta-lactams in combination 

with aminoglycosides and aztreonam/avibactam against 8 VIM-

producing Klebsiella pneumoniae and Enterobacter cloacae using a 

Static Time-kill Assay 

Introduction  

  

Antibiotic resistance remains one of the most pressing issues in healthcare. In fact, 

recent estimates from the Centers of Disease Control and Prevention (CDC) 

Antibiotic Resistance Threats Report show there are more than 2.8 million 

infections with an antibiotic-resistant pathogen leading to more than 35,000 deaths 

annually just in the United States. (1) Listed among the most serious (urgent) 

threats are carbapenem-resistant Enterobacteriaceae (CRE), which have been 

recognized as an urgent threat since the initial Antibiotic Resistance Threats 

Report released in 2013. (4) CRE were estimated to cause 13,100 hospitalized 

cases in 2017 leading to an estimated 1,100 deaths and $130 million in associated 

healthcare costs. Also of concern is that, despite increased surveillance efforts and 

implementation of preventative protocols, the estimated number of annual cases 

has remained stable between 2012 – 2017, which demonstrates a need for 

continued improvements. 

  

Improvements to the antimicrobial armamentarium against CRE have been 

spearheaded by novel beta-lactam/beta-lactam inhibitor (BLBLI) combinations. 
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Ceftazidime/avibactam (Avycaz®), meropenem/vaborbactam (Vabomere®), and 

imipenem/cilastatin/relebactam (Recarbrio®) are most notably active against 

Klebsiella pneumoniae carbapenemase (KPC), which belong to Ambler Class A; 

however, they also possess activity against Class C, and ceftazidime/avibactam 

extends activity against some Class D carbapenemases (338). The addition of 

aztreonam to ceftazidime/avibactam further extends the activity of the combination 

to Class B carbapenemases, which differ from Classes A, C, and D based on their 

active site composition (metallo-beta-lactamases (MBL) vs. serine-based beta-

lactamases). Plazomicin (Zemdri®) and eravacycline (Xerava®), a novel 

aminoglycoside and glycylcycline, respectively, also claim activity against all CRE 

phenotypes as neither are beta-lactam agents. The most recently approved agent 

with CRE activity, and the only beta-lactam currently available with activity against 

all Ambler class carbapenemases, is cefiderocol (Fetroja®). The availability of 

these new agents has removed the need for riskier, older agents like colistin and 

polymyxin B.  

  

Prior to the approval of cefiderocol, no single agent was effective against MBL-

producing CRE. Combinations of beta-lactams with an aminoglycoside in addition 

to aztreonam/ceftazidime/avibactam have been studied to address these bacteria, 

but limited data is available comparing their activity. We evaluated commonly used 

beta-lactams cefepime, piperacillin/tazobactam, and meropenem both alone and 

in combination with both amikacin and plazomicin in addition to aztreonam both 
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with and without avibactam to provide much needed comparative data in MBL-

producing CRE.  

 

Methods/Materials 

Isolates  

All 8 isolates were cultured from patients at our academic medical center from 

2011 - 2019 during routine clinical care. Most of these isolates were E. cloacae 

(EC_53, EC_134, EC_167, EC_169, EC_416, and EC_608) and 2 were K. 

pneumoniae (KP_173 and KP_411). These isolates were selected principally 

based on the meropenem MICs (≥ 16 mg/mL). The Gram-negative blood culture 

(BC-GN) nucleic acid tests (Nanosphere, Inc., Northbrook, IL) was utilized to 

detect the presence of and identify the metallo-beta-lactamases. Additionally, we 

utilized a Kirby Bauer disk diffusion method described by Tsakris et al to confirm 

metallo-beta-lactamase expression. (298) 

  

Susceptibilities 

Broth microdilution (BMD) was utilized to obtain minimum inhibitory concentrations 

(MICs) per CLSI recommendations. (339) Antimicrobials (amikacin, aztreonam, 

aztreonam/avibactam, cefepime, meropenem, piperacillin/tazobactam, and 

plazomicin) were dissolved in Cation-adjusted Mueller Hinton Broth (CAMBH) and 

serially diluted in 96-well trays. All beta-lactamase inhibitors were plated at a flat 

concentration of 4 µg/mL. Bacterial suspensions were initially matched to a 0.5 
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McFarland turbidity standard in sterile water, transferred to CAMBH, and deposited 

in the prepped trays to achieve an initial bacterial concentration of approximately 

7.5 x 105 CFU/mL. E. coli ATCC 25922 was included as a quality control. 

Inoculated trays were incubated at 37 oC between 16 – 24 hours in prior to 

interpretation. BMD experiments were repeated in duplicate, at minimum, on 

separate days to report the modal MIC.  

 

Time-kill Assay  

Static concentration time-kill assays were utilized to assess the activity of 

antimicrobial exposures against the CRE isolates. For all isolates tested, 

experiments were conducted with a growth control (GC) absent of antimicrobials 

in addition to amikacin (A4), aztreonam (AZ32), aztreonam/avibactam (AV32), 

cefepime (F32), meropenem (M16), piperacillin/tazobactam (PT64), plazomicin 

(PL4), cefepime/amikacin (F32A4), meropenem/amikacin (M16A4), 

piperacillin/tazobactam/amikacin (PT64A4), cefepime/plazomicin (F32PL4), 

meropenem/plazomicin (M16PL4), and piperacillin/tazobactam/plazomicin 

(PT64PL4) exposures. The numbers refer to the concentrations used (all inhibitors 

were added at a flat concentration of 4 µg/mL). These concentrations were 

calculated as the expected hourly exposure of the following continuous infusions: 

aztreonam (± avibactam) 2,000 mg every 8 hours, cefepime 2,000 mg every 8 

hours, meropenem 2,000 mg every 8 hours, and piperacillin/tazobactam 4,500 mg 

every 6 hours. For the aminoglycosides, conservative estimates of the expected 
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exposures of amikacin 15 mg/kg and plazomicin 15 mg/kg (assuming 70 kg) every 

24 hours were utilized.   

  

As with the BMD procedure, CLSI recommendations were followed in conducting 

the time-kill procedure. Flasks containing CAMHB were inoculated with 0.5 

McFarland matched bacterial suspensions to target an initial bacterial 

concentration of 7.5 x 105 CFU/mL and stored at 35 oC with agitation. Serial 

samples were taken at 0 (immediately after inoculation), 4, 8, and 24 hours and 

logarithmically spiral plated on Mueller Hinton Agar plates. Inoculated plates were 

stored at 37 oC between 16 – 24 hours after which the colonies were counted. 

Counts were censored below 102 (lower limit of detection) and above 1010 

(maximum count) by rounding either up/down respectively. All experiments were 

duplicated at least once, twice if the results differed categorically (bactericidal, 

bacteriostatic, or regrowth).  

  

Bacterial reductions of ≥ 3 log10 CFU/mL were considered bactericidal, reductions 

between 0 (inclusive) and 3 were considered bacteriostatic, and any positive net 

growth was considered regrowth. Additionally, combinations of agents were 

considered synergistic if the combination resulted in a bacterial reduction ≥ 2 log10 

more than the most active single agent, antagonistic if the combination results in 

a bacterial increase ≥ 2 log10 more than the most active single agent, and 

indifferent if the change falls between these two categories.  
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Statistical Analysis 

The primary outcome assessed is the mean total reduction in bacterial 

concentration (CFU/mL) between each antimicrobial exposure and GC after 24 

hours. Other outcomes include a subgroup analysis of mean total bacterial 

reduction in plazomicin vs. amikacin and plazomicin vs. aztreonam/avibactam 

exposures. Additionally, categorical comparisons of synergy, indifference, and 

antagonism as well as bactericidal, bacteriostatic, and regrowth at 24 hours will be 

assessed. Comparisons of mean bacterial reduction were conducted with 

repeated measures ANOVA using Tukey’s method for pairwise comparison 

adjustment to control the family wise error rate (FWER). Alpha was defined a priori 

as 0.05. All statistics and figures were generated using Python version 3.10.  

  

Results 

Isolates 

Verona integron-encoded metal-beta-lactamases (VIM) was the only 

carbapenemase identified by Nanosphere in all of the included isolates except for 

EC_134, in which Klebsiella pneumoniae carbapenemase (KPC) was additionally 

identified. The susceptibilities for all isolates are included in Table III-7. All isolates 

were resistant to the four beta-lactam agents tested, particularly to the non-

carbapenem agents. Conversely, all isolates were susceptible to 

aztreonam/avibactam and both aminoglycosides. Of note, the MICs measured for 

plazomicin and aztreonam/avibactam were susceptible by a wide margin, while the 
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isolates susceptible to amikacin were either equal to or a single log2 dilution below 

the CLSI susceptibility breakpoint. (339)  

   

Starting inoculum and Controls 

The average bacterial concentrations for all antimicrobial agents can be found in 

Table III-8. Overall, the average bacterial concentration measured across all 

exposures at baseline was 5.85 ± 0.12 log10 CFU/mL. Furthermore, the growth 

controls reached the maximum concentration measured after 4 hours and 

sustained for the duration of the experiments (9.84 ± 0.32, 10 ± 0.0, 10 ± 0.0, 

respectively).  

  

Looking at differences from GC  

The average bacterial concentration changes from baseline can be found in Table 

III-9. The distributions of these changes are illustrated with more detail for each 

time point in Figure III-3, Figure III-4, and Figure III-5. When considering the 

relative differences of these concentration changes between the growth control 

and each agent tested, most of the monotherapy exposures didn’t significantly 

differ from growth control (regrew) on average after 24 hours exposure (M16 and 

PL4 were the exceptions). All but one of the combination exposures were 

significantly different after 24 hours (PT64A4 showed regrowth). These mean 

differences are included in Table III-10. 
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Cidality  

All the combination exposures that significantly differed from growth control were 

at least bacteriostatic on average after 24 hours, and all but one (F32A4) were 

bactericidal. These relationships are illustrated for each isolate in. In addition to 

the combination exposures, PL4 monotherapy was also bactericidal after 24 hours, 

and M16 monotherapy was bacteriostatic after 24 hours. When considering the 

median bacterial concentration reduction, M16 would be considered bactericidal 

as it was bactericidal more often than not across the 8 isolates (5/8) [Table G.1].  

  

ATM/AVI vs PLZ vs AMK  

The differences in activity between the aminoglycosides are notable. On average, 

PL4 alone was bactericidal after 24 hours, while A4 regrew nearly to the maximum 

measured value leading to a large difference between the two (mean difference 

[95% CI]: 7.09 [4.14, 10.03]). M16A4 was the most active exposure tested and was 

the only bactericidal amikacin-containing exposure (mean difference from T0 ± std: 

-3.89 ± 0.1); although, F32A4 remained bacteriostatic after 24 hours (mean 

difference from T0 ± std: -0.82 ± 3.37). The activity of M16PL4 and M16A4 were 

strongly similar after 24 hours, with M16A4 having a marginally larger bacterial 

reduction (mean difference [95% CI]: -0.25 [-3.19, 2.7]). While F32PL4 and 

PT64PL4 were much more active than the A4 combinations, the beta-lactams 

added little to the activity of PL4 monotherapy after 24 hours (mean difference 

[95% CI]: 0.05 [-2.89, 3.00] and 0.10 [-2.84, 3.05], respectively). AV32 showed 

similarly strong activity to M16A4 (mean difference from T0 ± std: -3.86 ± 0.09). 
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Both meropenem-containing combinations were the only exposures to produce 3 

log10 bacterial concentration reduction at all sampled time points, although AV32 

and all other plazomicin-containing exposures nearly accomplished the same (-

2.63 ± 1.54 was the highest point estimate across any time point for these 

exposures). All mean differences between amikacin- and plazomicin-containing 

exposures and aztreonam/avibactam can be found in Table III-11 and Table III-12. 

  

Synergy  

Amikacin combinations exhibited more synergy than plazomicin combinations after 

24 hours. All amikacin combinations were synergistic against at least 3/8 isolates, 

with F32A4 exhibiting synergy most frequently (6/8 isolates). None of the 

plazomicin combinations exhibited synergy owing to the strong activity of 

plazomicin monotherapy. AV32 exhibited synergy against all but a single isolate 

(KP_173), in which the activity of aztreonam mirrored that of aztreonam/avibactam 

after 24 hours (mean difference from T0 ± std: -3.77 ± 0.09 and -3.85 ± 0.03, 

respectively). The overall synergy categorical analysis is illustrated in Figure G.2.  

 

Discussion 

Although several beta-lactam agents have been made available with activity 

against serine-based carbapenemases, until the approval of cefiderocol, none of 

the approved options were directed towards MBLs, requiring combination therapy. 

We tested combinations of routinely used beta-lactams for Gram-negative empiric 

therapy in combination with both a novel and long existing aminoglycoside in 
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addition to the combination of aztreonam and avibactam. Utilizing clinically 

relevant doses, we noted consistent bactericidal activity for aztreonam/avibactam, 

all plazomicin exposures, and meropenem/amikacin against 8 VIM-producing 

carbapenem-resistant E. cloacae and K. pneumoniae.  

 

Although none of the recently approved novel beta-lactamase inhibitors restore 

activity to MBLs, they do potently inhibit serine-based beta-lactamases, which are 

often co-expressed in CRE isolates. (270, 340, 341) Because aztreonam 

intrinsically resists hydrolysis mediated by MBLs, the combination of this agent 

with one of the novel inhibitors restores activity of aztreonam in MBLs co-harboring 

additional beta-lactamases. Aztreonam/avibactam was among the most active 

combinations we tested, which achieved bactericidal reductions by 8 hours in all 

experiments and was maintained through 24 hours. This is starkly contrasted with 

the activity of aztreonam monotherapy, which was only bactericidal in KP_173. 

This was likely the result of KP_173 not possessing any other beta-lactamases 

with the ability to hydrolyze aztreonam. Numerous other investigators have 

demonstrated the effectiveness of aztreonam/avibactam against MBL-producing 

CRE isolates, though many of these studies have focused on the New Delhi 

metallo-beta-lactamase (NDM) phenotype. (270, 340, 341) 

 

Combination therapy, specifically with a beta-lactam and an aminoglycoside, has 

long been supported by in-vitro data (342). We have provided additional evidence 

of this relationship with both amikacin and plazomicin containing combinations. In 



 

 184 

previous studies published by our lab, Kulengowski et al demonstrated bactericidal 

activity against KPC-, VIM-, and KPC/VIM-producing isolates using combinations 

of meropenem and amikacin at similar concentrations utilized in our present study; 

however, isolates with more elevated MICs to both meropenem and amikacin 

overcame the combination. (321, 343) Other investigators have demonstrated 

either bacteriostatic or bactericidal activity for meropenem and amikacin against 

carbapenemases of all Ambler classes, though the various concentrations of 

meropenem and amikacin differed. (344–346) In our present study, we provide 

additional evidence of this combination, with every experiment resulting in 

bactericidal activity with this combination. In fact, meropenem/amikacin was 

numerically the most active exposure tested, though it didn’t strongly differ from 

several other highly active combinations. When using cefepime or 

piperacillin/tazobactam in combination with amikacin, the activity was much more 

erratic. The cefepime and amikacin combination was bactericidal in at least 2 

experiments for 5/8 isolates, while piperacillin/tazobactam only achieved this in 2/8 

isolates. While it appears that a carbapenem combined with amikacin can provide 

activity against various carbapenem phenotypes, other routinely used broad-

spectrum beta-lactams will be unreliable until we have more targeted information 

to distinguish when they will or will not be effective. 

 

Plazomicin is a novel aminoglycoside that was rationally designed to evade most 

clinically relevant aminoglycoside modifying enzymes. (160) Unlike amikacin, 

plazomicin has been shown to have potent activity in various CRE phenotypes in 
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combination with both meropenem and non-carbapenem beta-lactams 

(piperacillin/tazobactam and ceftazidime). (347–349) While these studies dosed 

plazomicin in multiples of the MIC, our concentrations were much higher than most 

of the experiments reported. At these higher concentrations, we noted bactericidal 

activity for plazomicin monotherapy for 5/8 isolates. The combinations of cefepime 

and piperacillin/tazobactam with plazomicin resulted in similar results to plazomicin 

monotherapy, suggesting that plazomicin was solely driving the activity.  

 

We noticed unusual behavior in regards to plazomicin for isolates EC_53, EC_134, 

and EC_608. Specifically, while the MICs for plazomicin were all ≤ 0.25 µg/mL, we 

only noted bacteriostatic activity in all experiments for these isolates at a 

concentration of 4 µg/mL. Even the addition of a beta-lactam to plazomicin had 

inconsistent results in these isolates. In combination with cefepime 32 µg/mL, only 

a single experiment for isolate EC_134 resulted in a bactericidal reduction; 

however, the average bacterial concentration reduction for both experiments failed 

to reach a 3 log10 decline. Piperacillin/tazobactam 64/4 µg/mL fared better with 

both experiments for EC_134 exhibiting bactericidal activity. Only when combined 

with meropenem 16 µg/mL was plazomicin bactericidal against EC_608 (in both 

experiments). No plazomicin exposure was bactericidal against EC_53. 

Interestingly, meropenem/amikacin was bactericidal in all attempted experiments 

for all three of these isolates. This is highly unusual given that the amikacin 

exposures were set at 0.25 x MIC for EC_53 and EC_608 and 0.5 x MIC for 
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EC_134 while the plazomicin exposures were at least 8 x MIC for the same 

isolates. Further investigation is required to explain these results. 

 

The potent activity of meropenem monotherapy was an unexpected result. Most 

of the isolates (6/8) had meropenem MICs of 16 µg/mL, which at best should have 

resulted in bacteriostatic activity. Of the three isolates with higher MICs (all 32 

µg/mL), only KP_411 showed consistent regrowth when exposed to meropenem. 

Furthermore, EC_134 regrew completely at 24 hours in only 1/3 experiments. In 

the other two experiments, and in both EC_416 experiments, meropenem showed 

bactericidal activity at 24 hours. EC_53 was the only other isolate to ever regrow 

when exposed to meropenem. Although we don’t have a definitive explanation for 

this behavior, one possibility may be within strain variability. While the reported 

modal MICs are all either equal to or 1 log2 dilution higher than the tested 

concentration of meropenem, isolate subcultures selected during these 

experiments may have exhibited MICs below the modal value. Care should be 

taken when extrapolating our results, especially in VIM-producing isolates with 

higher meropenem MICs, as these data may not extrapolate to such scenarios. 

 

One of the limitations of this study is the absence of data for cefiderocol. 

Cefiderocol has demonstrated activity against Enterobacteriaceae expressing 

Class A – D beta-lactamases. We tested MICs of 19 MBL-producing K. 

pneumoniae and E. cloacae (all VIM) using MIC strips, and 18/19 isolates, 

including all nine isolates tested in this study, were susceptible by the CLSI 
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breakpoint ≤ 4 µg/mL [data unpublished]. Another limitation present in the study is 

the use of only the static time kill method. This simulation of a continuous infusion 

provides a best-case scenario for the beta-lactam agents tested; however, the 

aminoglycosides are best utilized when maximizing both the peak/MIC and 

MIC/AUC ratios. We confirmed the carbapenemase phenotype using both 

Nanosphere and disk diffusion, but neither of these methods provide the specific 

VIM variant being produced. Lastly, we tested a small number of isolates from a 

single medical center. Our results should be contextualized with local resistance 

patterns when considering their application to other centers. 

 

Conclusion 

Now that we have options to address infections caused by MBL-producing CRE, it 

is vital we optimize these regimens to ensure best patient outcomes. Against 8 

clinical VIM-producing K. pneumoniae and E. cloacae, we demonstrated that 

aztreonam/avibactam and meropenem combined with amikacin or plazomicin 

exhibit bactericidal activity. In clinical practice, ceftazidime/avibactam/aztreonam 

should likely be selected over the aminoglycoside combinations in definitive 

therapy due to the favorable adverse effect profile if possible. More clinical data 

are necessary to appropriately guide the use of these new regimens. 
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Table III-7: Susceptibilities for Clinical Isolates Included in Study 

Isolate AMK ATM ATM/AVI FEP MEM TZP PLZ 

EC_53 16 256 0.13 128 16 512 0.06 

EC_134 8 256 0.06 128 32 512 0.25 

EC_167 8 128 0.06 64 16 512 0.25 

EC_169 8 256 0.06 128 16 512 0.25 

EC_416 16 16 0.06 64 32 >512 0.25 

EC_608 16 >256 0.125 128 16 >512 0.5 

KP_173 16 16 ≤0.03 32 16 >512 0.5 

KP_411 8 32 0.06 256 32 >512 0.5 
Mean inhibitory concentrations (MICs) are reported in units of µg/mL. Isolates with EC prefix 
are E. cloacae and KP are K. pneumoniae. AMK: amikacin, ATM: aztreonam, ATM/AVI: 
aztreonam/avibactam, FEP: cefepime, MEM: meropenem, TZP: piperacillin/tazobactam, 
PLZ: plazomicin 
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Table III-8: Bacterial Concentration for All Sampled Time Points 

Drug Conditions T0 T4 T8 T24 

A4 5.89 ± 0.1 4.93 ± 1.62 6.32 ± 1.97 9.88 ± 0.28 

AV32 5.86 ± 0.09 2.95 ± 0.6 2.22 ± 0.26 2.0 ± 0.0 

AZ32 5.86 ± 0.07 6.64 ± 2.95 7.99 ± 2.64 8.9 ± 2.79 

F32 5.9 ± 0.1 4.1 ± 0.89 6.85 ± 2.72 9.64 ± 0.94 

F32A4 5.87 ± 0.09 3.69 ± 0.26 2.76 ± 0.65 5.04 ± 3.42 

F32PL4 5.86 ± 0.12 3.21 ± 1.66 3.09 ± 1.53 2.7 ± 1.09 

GC 5.86 ± 0.1 9.84 ± 0.32 10.0 ± 0.0 10.0 ± 0.0 

M16 5.89 ± 0.11 2.45 ± 0.38 2.47 ± 0.79 3.6 ± 2.65 

M16A4 5.89 ± 0.1 2.86 ± 0.38 2.05 ± 0.14 2.0 ± 0.0 

M16PL4 5.87 ± 0.13 2.76 ± 1.13 2.55 ± 0.99 2.23 ± 0.52 

PL4 5.87 ± 0.12 3.2 ± 1.68 3.1 ± 1.55 2.76 ± 1.14 

PT64 5.88 ± 0.11 6.99 ± 1.99 9.97 ± 0.07 9.87 ± 0.19 

PT64A4 5.88 ± 0.07 4.08 ± 0.34 3.98 ± 1.5 7.41 ± 2.97 

PT64PL4 5.88 ± 0.15 3.26 ± 1.63 3.11 ± 1.51 2.68 ± 1.06 
Bacterial concentrations are reported as geometric mean ± standard deviation. 
A4: amikacin, AV32: aztreonam/avibactam, AZ32: aztreonam, F32: cefepime, 
F32A4: cefepime/amikacin, F32PL4: cefepime/plazomicin, GC: growth control, 
M16: meropenem, M16A4: meropenem/amikacin, M16PL4: 
meropenem/plazomicin, PL4: plazomicin, PT64: piperacillin/tazobactam, 
PT64A4: piperacillin/tazobactam/amikacin, PT64PL4: 
piperacillin/tazobactam/plazomicin. 
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Table III-9: Change in Bacterial Concentration for All Sampled Time Points 

Drug Conditions T4 T8 T24 

A4 -0.97 ± 1.6 0.43 ± 1.95 3.98 ± 0.24 

AV32 -2.91 ± 0.53 -3.65 ± 0.23 -3.86 ± 0.09 

AZ32 0.77 ± 2.92 2.12 ± 2.6 3.04 ± 2.75 

F32 -1.8 ± 0.81 0.96 ± 2.66 3.75 ± 0.86 

F32A4 -2.17 ± 0.24 -3.11 ± 0.6 -0.82 ± 3.37 

F32PL4 -2.66 ± 1.61 -2.77 ± 1.49 -3.16 ± 1.05 

GC 3.99 ± 0.3 4.14 ± 0.1 4.14 ± 0.1 

M16 -3.44 ± 0.41 -3.42 ± 0.86 -2.3 ± 2.7 

M16A4 -3.03 ± 0.44 -3.84 ± 0.16 -3.89 ± 0.1 

M16PL4 -3.11 ± 1.07 -3.32 ± 0.92 -3.64 ± 0.45 

PL4 -2.67 ± 1.62 -2.76 ± 1.49 -3.11 ± 1.09 

PT64 1.11 ± 2.05 4.09 ± 0.14 3.99 ± 0.2 

PT64A4 -1.8 ± 0.31 -1.9 ± 1.48 1.53 ± 2.98 

PT64PL4 -2.63 ± 1.54 -2.77 ± 1.42 -3.21 ± 0.96 
Bacterial concentrations are reported as geometric mean ± standard deviation. 
A4: amikacin, AV32: aztreonam/avibactam, AZ32: aztreonam, F32: cefepime, 
F32A4: cefepime/amikacin, F32PL4: cefepime/plazomicin, GC: growth control, 
M16: meropenem, M16A4: meropenem/amikacin, M16PL4: 
meropenem/plazomicin, PL4: plazomicin, PT64: piperacillin/tazobactam, 
PT64A4: piperacillin/tazobactam/amikacin, PT64PL4: 
piperacillin/tazobactam/plazomicin. 
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Table III-10: Comparison of Bacterial Concentration Changes between 
Antimicrobial Exposure and Growth Control after 24 Hours 
Drug Conditions Mean Difference [95% CI] P value 

A4 -0.16 [-3.11, 2.78] 0.9 

AV32 -8.01 [-10.96, -5.06] < 0.001 

AZ32 -1.11 [-4.05, 1.84] 0.9 

F32A4 -4.97 [-7.91, -2.02] < 0.001 

F32PL4 -7.3 [-10.25, -4.36] < 0.001 

F32 -0.4 [-3.34, 2.55] 0.9 

M16A4 -8.04 [-10.98, -5.09] < 0.001 

M16PL4 -7.79 [-10.73, -4.84] < 0.001 

M16 -6.44 [-9.39, -3.49] < 0.001 

PL4 -7.25 [-10.2, -4.3] < 0.001 

PT64A4 -2.71 [-5.66, 0.24] 0.1329 

PT64PL4 -7.42 [-10.37, -4.48] < 0.001 

PT64 -0.16 [-3.11, 2.79] 0.9 
Mean difference was calculated as Drug Conditions – GC. Groups compared 
aggregated bacterial concentration differences across each respective 
experiment. A4: amikacin, AV32: aztreonam/avibactam, AZ32: aztreonam, 
F32: cefepime, F32A4: cefepime/amikacin, F32PL4: cefepime/plazomicin, GC: 
growth control, M16: meropenem, M16A4: meropenem/amikacin, M16PL4: 
meropenem/plazomicin, PL4: plazomicin, PT64: piperacillin/tazobactam, 
PT64A4: piperacillin/tazobactam/amikacin, PT64PL4: 
piperacillin/tazobactam/plazomicin. 
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Table III-11: Comparison of Bacterial Concentration Changes between 
Amikacin- and Plazomicin-containing Exposures after 24 Hours 
Group 1 Group 2 Mean Difference [95% CI] P value 

A4 PL4 7.09 [4.14, 10.03] < 0.001 

F32A4 PL4 2.28 [-0.66, 5.23] 0.4915 

M16A4 PL4 -0.78 [-3.73, 2.16] 1 

PT64A4 PL4 4.54 [1.59, 7.49] < 0.001 

A4 F32PL4 7.14 [4.19, 10.09] < 0.001 

F32A4 F32PL4 2.34 [-0.61, 5.28] 0.4354 

M16A4 F32PL4 -0.73 [-3.68, 2.21] 1 

PT64A4 F32PL4 4.59 [1.65, 7.54] < 0.001 

A4 M16PL4 7.63 [4.68, 10.57] < 0.001 

F32A4 M16PL4 2.82 [-0.13, 5.77] 0.0858 

M16A4 M16PL4 -0.25 [-3.19, 2.7] 1 

PT64A4 M16PL4 5.08 [2.13, 8.02] < 0.001 

A4 PT64PL4 7.26 [4.31, 10.21] < 0.001 

F32A4 PT64PL4 2.45 [-0.49, 5.4] 0.3159 

M16A4 PT64PL4 -0.61 [-3.56, 2.33] 1 

PT64A4 PT64PL4 4.71 [1.76, 7.66] < 0.001 
Mean difference was calculated as Group 1 – Group 2. Groups compared 
aggregated bacterial concentration differences across each respective 
experiment. A4: amikacin, AV32: aztreonam/avibactam, AZ32: aztreonam, 
F32: cefepime, F32A4: cefepime/amikacin, F32PL4: cefepime/plazomicin, GC: 
growth control, M16: meropenem, M16A4: meropenem/amikacin, M16PL4: 
meropenem/plazomicin, PL4: plazomicin, PT64: piperacillin/tazobactam, 
PT64A4: piperacillin/tazobactam/amikacin, PT64PL4: 
piperacillin/tazobactam/plazomicin. 
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Table III-12: Comparison of Bacterial Concentration Changes between 
Aztreonam/Avibactam and Aminoglycoside-containing Exposures after 24 
Hours 
Group 1 Group 2 Mean Difference [95% CI] P value 

AV32 A4 -7.85 [-10.79, -4.9] < 0.001 

AV32 F32A4 -3.04 [-5.99, -0.1] 0.0322 

AV32 M16A4 0.03 [-2.92, 2.97] 1 

AV32 PT64A4 -5.3 [-8.24, -2.35] < 0.001 

AV32 PL4 -0.76 [-3.7, 2.19] 1 

AV32 F32PL4 -0.71 [-3.65, 2.24] 1 

AV32 M16PL4 -0.22 [-3.17, 2.73] 1 

AV32 PT64PL4 -0.59 [-3.53, 2.36] 1 
Mean difference was calculated as Group 1 – Group 2. Groups compared 
aggregated bacterial concentration differences across each respective 
experiment. A4: amikacin, AV32: aztreonam/avibactam, AZ32: aztreonam, 
F32: cefepime, F32A4: cefepime/amikacin, F32PL4: cefepime/plazomicin, GC: 
growth control, M16: meropenem, M16A4: meropenem/amikacin, M16PL4: 
meropenem/plazomicin, PL4: plazomicin, PT64: piperacillin/tazobactam, 
PT64A4: piperacillin/tazobactam/amikacin, PT64PL4: 
piperacillin/tazobactam/plazomicin. 
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Figure III-3: Activity of Antimicrobial Exposures after 4 hours 
Above are the boxplots illustrating the distributions of log bacterial reduction following 4 hours of exposure. Outliers are denoted as 
filled diamonds above/below the upper/lower fence, and geometric means are denoted as white circles. A4: amikacin, AV32: 
aztreonam/avibactam, AZ32: aztreonam, F32: cefepime, F32A4: cefepime/amikacin, F32PL4: cefepime/plazomicin, GC: growth 
control, M16: meropenem, M16A4: meropenem/amikacin, M16PL4: meropenem/plazomicin, PL4: plazomicin, PT64: 
piperacillin/tazobactam, PT64A4: piperacillin/tazobactam/amikacin, PT64PL4: piperacillin/tazobactam/plazomicin. 
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Figure III-4: Activity of Antimicrobial Exposures after 8 hours 
Above are the boxplots illustrating the distributions of log bacterial reduction following 8 hours of exposure. Outliers are denoted as 
filled diamonds above/below the upper/lower fence, and geometric means are denoted as white circles. A4: amikacin, AV32: 
aztreonam/avibactam, AZ32: aztreonam, F32: cefepime, F32A4: cefepime/amikacin, F32PL4: cefepime/plazomicin, GC: growth 
control, M16: meropenem, M16A4: meropenem/amikacin, M16PL4: meropenem/plazomicin, PL4: plazomicin, PT64: 
piperacillin/tazobactam, PT64A4: piperacillin/tazobactam/amikacin, PT64PL4: piperacillin/tazobactam/plazomicin. 
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Figure III-5: Activity of Antimicrobial Exposures after 24 hours 
Above are the boxplots illustrating the distributions of log bacterial reduction following 24 hours of exposure. Outliers are denoted as 
filled diamonds above/below the upper/lower fence, and geometric means are denoted as white circles. A4: amikacin, AV32: 
aztreonam/avibactam, AZ32: aztreonam, F32: cefepime, F32A4: cefepime/amikacin, F32PL4: cefepime/plazomicin, GC: growth 
control, M16: meropenem, M16A4: meropenem/amikacin, M16PL4: meropenem/plazomicin, PL4: plazomicin, PT64: 
piperacillin/tazobactam, PT64A4: piperacillin/tazobactam/amikacin, PT64PL4: piperacillin/tazobactam/plazomicin. 
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IV. Plazomicin Review 

Following BMD experiments comparing the susceptibilities of plazomicin and 

eravacycline in CRE isolates cultured from patients at our institution, we decided 

to investigate further the activity of plazomicin in time-kill studies, as described 

above. [See VIM Time-kill Study] During this time, an invitation for a review on 

plazomicin was offered by the Annals of Pharmacotherapy. The following was 

published in one of the sister journals of the Annals of Pharmacotherapy publisher, 

Sage. 
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Abstract 

Objective: To review the mechanism of action, mechanisms of resistance, in-vitro 

activity, pharmacokinetics, pharmacodynamics, and clinical data for a novel 

aminoglycoside. Data Sources: A PubMed search was performed from January 

2006 to August 2019 using the following search terms: plazomicin and ACHN-490. 

Another search was conducted on clinicaltrials.gov for published clinical data. 

References from selected studies were also used to find additional literature. 

Study Selection and Data Extraction: All English-language studies presenting 

original research (in-vitro, in-vivo, pharmacokinetic, and clinical) were evaluated. 

Data Synthesis: Plazomicin has in-vitro activity against several multi-drug 

resistant organisms, including carbapenem-resistant Enterobacteriaceae. It was 

FDA approved to treat complicated urinary tract infections (cUTIs), including acute 

pyelonephritis, following phase II and III trials compared to levofloxacin and 

meropenem, respectively. Despite the FDA Black Box Warning for aminoglycoside 

class effects (nephrotoxicity, ototoxicity, neuromuscular blockade, and pregnancy 

risk), it exhibited a favorable safety profile with the most common adverse effects 

being decreased renal function (3.7%), diarrhea (2.3%), hypertension (2.3%), 

headache (1.3%), nausea (1.3%), vomiting (1.3%), and hypotension (1.0%) in the 

largest in-human trial. Relevance to Patient Care and Clinical Practice: 

Plazomicin will likely be used in the treatment of multi-drug resistant cUTIs or in 

combination to treat serious carbapenem-resistant Enterobacteriaceae infections. 

Conclusions: Plazomicin appears poised to help fill the need for new agents to 

treat infections caused by MDR Enterobacteriaceae.  



 

 200 

Introduction 

Antimicrobial resistance has positioned itself as a serious threat to patient care 

with global reach. A recent projection from the World Health Organization (WHO) 

stated that mortality due to antimicrobial resistant infections could reach 10 million 

by 2050, up from ~700,000 currently. (350) Some groups have suggested that this 

projection is a bit inflated, but regardless, our current situation remains dire. In an 

effort to raise awareness of this growing crisis, the CDC released the Antibiotic 

Resistance Threats in the United States, 2013. (4, 351, 352) Many of the more 

serious threats listed were multi-drug resistant (MDR) Gram-negative organisms, 

including carbapenem-resistant Enterobacteriaceae (CRE), which was assigned 

the highest level of concern. This remains true in the most recent threats report 

from 2019, which indicates more work is needed to curb this public health issue. 

(1) 

 

The signing of the 21st Century Cures Act and the GAIN (Generating Antibiotic 

Incentives Now) ACT, which created the qualified infectious disease product 

(QIDP) indication, has helped to rejuvenate innovation to address antibiotic 

resistance. Examples of successful QIDP antimicrobials are 

ceftazidime/avibactam (Avycaz®), meropenem/vaborbactam (Vabomere®), 

imipenem/cilastatin/relebactam (Recarbrio®), eravacycline (Xerava®). All of these 

have documented activity against organisms possessing many different resistance 

phenotypes, including CRE. Another success of the QIDP indication, plazomicin 

(Zemdri®), looks to add yet another viable option. This article will review the 
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pharmacokinetics/pharmacodynamics, available pre-clinical data, and clinical trials 

for plazomicin and discuss its role in therapy. 

Search Methods 

A PubMed search was completed from January 2006 to August 2019 using the 

search “ACHN-490” or “plazomicin”. All English-speaking studies were collected 

and evaluated for inclusion in the review. The addition of other search terms, 

namely resistance phenotypes like “extended-spectrum beta-lactamase”, 

“carbapenem-resistant Enterobacteriaceae”, or “aminoglycoside modifying 

enzyme”, did not broaden the search beyond the original search. Additionally, a 

search of clinicaltrials.gov using the search term “plazomicin” was completed to 

include all available clinical trial data. References cited in published literature were 

used to identify additional information not included in either of these databases. 

Also helpful were documentation provided by the FDA website, specifically the 

package insert and the NDA documentation. Relevant posters and unpublished 

conference data were also used; however, an exhaustive search for this data was 

not performed. 

Chemistry and Mechanism of Action 

As the name suggests, aminoglycosides are amine-containing sugars linked 

together by glycosidic bonds. The most clinically relevant aminoglycosides 

(gentamicin, tobramycin, and amikacin) contain three sugars. Plazomicin is a semi-

synthetic aminoglycoside, created in an 8-step synthesis from sisomicin. During 

this synthesis, a hydroxy-aminobutyric acid (HABA) group is added to the amine 
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at C-1, similarly to amikacin. Uniquely, an additional hydroxyethyl group is added 

to the amine at C-6’. (160) These structural features allow plazomicin to evade 

almost all clinically relevant aminoglycoside-modifying enzymes (AMEs), as 

demonstrated in Figure IV-1.  

 

Aminoglycosides bind to the aminoacyl-tRNA recognition site (A-site) of the 16S 

rRNA, which is a component of the 30S ribosomal subunit. This interrupts the 

elongation of the nascent protein sequence during the translation phase and 

therefore inhibits ribosomal protein synthesis. (33) Since they are cationic, 

hydrophilic molecules, aminoglycosides are thought to enter into gram-negative 

bacterial cells via porin channels; however, it is believed that they may also enter 

cells via disruption of the lipopolysaccharide outer membrane. (353)  Passage into 

the cell across the inner membrane is reliant on electron transport. Because this is 

an aerobic process, aminoglycosides exhibit poor activity in anaerobic 

environments. Low pH also affects this transport and appears to explain the 

compromised aminoglycoside activity in these conditions. (354) 

In-vitro Studies 

Plazomicin has been assigned susceptibility breakpoints from the U.S. Food and 

Drug Administration (FDA) and U.S. Committee on Antimicrobial Susceptibility 

Testing (USCAST) for Enterobacteriaceae: ≤ 2 µg/mL and ≤ 4 µg/mL, respectively. 

(313, 314) Susceptibility data for plazomicin from selected studies are displayed in 

Table IV-1. Plazomicin has demonstrated excellent activity against 

Enterobacteriaceae. In the two largest studies, plazomicin exhibited MIC50/90 = 0.5 
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µg/mL / 2 µg/mL with % susceptibility of > 95% in both studies. Against Klebsiella, 

Escherichia, Enterobacter, Serratia, and Citrobacter species, plazomicin exhibited 

MIC50/90 = 0.25 – 0.5 µg/mL / 0.5 – 1 µg/mL. Plazomicin activity against Proteus, 

Morganella, and Providencia species was considerably lower, MIC50/90 = 1 – 4 

µg/mL / 2 – 8 µg/mL. In several of these large surveillance studies, all the other 

aminoglycosides tested demonstrated activity similar to plazomicin against 

Enterobacteriaceae. What separated plazomicin from the other aminoglycosides 

was its activity against isolates considered to be MDR and/or carbapenem-

resistant. All other aminoglycosides demonstrated significantly lower activity 

against these isolates with the exception of Enterobacteriaceae expressing 16S 

rRNA methyltransferases, which conferred resistance to all aminoglycosides as 

discussed. (312, 317, 355, 356) These MDR isolates are known to carry numerous 

determinants of resistance against aminoglycosides, namely AMEs, which explain 

this sharp decline in activity. 

 

Although plazomicin only has susceptibility breakpoints assigned for 

Enterobacteriaceae, it has demonstrated in-vitro activity against other organisms. 

In several surveillance studies, plazomicin exhibited MIC50/90 against 

Pseudomonas aeruginosa between 4 – 8 / 8 – 32 µg/mL. (317, 355, 357–359) This 

was similar to the amikacin activity in all of these studies. Similarly, in the studies 

in which these data were published, the plazomicin MIC50/90 in isolates resistant to 

amikacin jumped to 64/> 64 µg/mL. (357–359) Plazomicin also exhibited similar 

activity to amikacin against Acinetobacter species (mostly of the baumannii 
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species); however, the activity was much more variable having MIC50/90 between 

1 – 8 / 8 – > 128 µg/mL. (317, 355, 358, 359) Against Staphylococcus species, 

plazomicin displayed superior MIC50/90 to amikacin; however, gentamicin and 

tobramycin displayed MIC50/90 superior to either plazomicin or amikacin. 

Plazomicin, like other aminoglycosides, was not effective against Enterococcus, 

Streptococcus, and Stenotrophomonas species. (312, 317, 357, 358) 

Aminoglycoside Resistance 

Aminoglycoside resistance can be mediated by three types of mechanisms: 

enzymatic modification, target site modification, and porin channel/efflux pump 

expression changes. The most common mechanism in Enterobacteriaceae 

species is enzymatic modification mostly via three AME classes: n-

acetyltransferases (AAC), o-adenyltransferases (ANT), and o-

phosphotransferases (APH). Two recent publications from the Antimicrobial 

Longitudinal Evaluation and Resistance Trends (ALERT) global surveillance 

program identified AAC(6’)-Ib and AAC(3)-IIa as the enzymes most responsible for 

aminoglycoside resistance in the U.S., Europe, and select countries in Asia. (312, 

317) While uncommon in Enterobacteriaceae, down regulation of porin channels 

and/or increase in efflux pump expression can be seen in Pseudomonas 

aeruginosa, and Acinetobacter baumannii in addition to AME expression, which 

explains the higher MICs often seen in these organisms. (160) Target site 

modification is carried out by 16S rRNA methyltransferases and completely 

nullifies the activity of all 4, 6 disubstituted aminoglycosides, which includes 

gentamicin, tobramycin, and amikacin. ArmA and RmtB are the most commonly 
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expressed of these enzymes; however, they are rarely expressed in clinical 

isolates, with only 0.14% , 1.28%, and 0.05% isolates identified from the U.S., 

Europe and parts of Asia, and Canada in recent surveillance studies. (33, 312, 

317, 360) Recent concern has been raised around these enzymes due to their 

increasing co-expression with New Delhi metallo-beta-lactamase producing 

isolates. (318, 320, 361) 

 

As mentioned before, plazomicin is protected from nearly all clinically relevant 

AMEs due to structural differences. The lack of -OH groups at the C-3’ and 4’ 

positions prevent activity from APH(3’) and ANT(4’). The addition of a HABA at the 

C-1 position protects against AAC(3), ANT(2’’), and APH(2’’). Furthermore, the 

addition of the hydroxyethyl group to the amine at the C-6’ position protects against 

AAC(6’). The only AME currently identified amongst Gram-negative organisms 

with activity against plazomicin is AAC(2’)-I, which is chromosomally expressed in 

some Providencia stuartii isolates. (160) Another known AME with activity against 

plazomicin is APH(2”)-Iva; however, this enzyme has only been identified in 

Enterococcus species in which plazomicin would not be considered a treatment 

option. (362) Plazomicin remains susceptible to outer membrane changes, which 

have been noted in some Proteae species, and alterations of porin channel and 

efflux pump expression. Additionally, 16S rRNA methyltransferases prevent 

plazomicin activity as with all other clinically utilized aminoglycosides. (160) 
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Dosing and Administration 

Plazomicin is administered as a 15 mg/kg IV infusion over 30 minutes once daily 

and is dosed using total body weight (TBW) for patients with TBW < 125% ideal 

body weight (IBW). For patients with TBW > 125%, adjusted body weight (ABW) 

should be utilized and is calculated using the following equation: ABW = IBW + 0.4 

(TBW - IBW). Plazomicin is supplied as a 10 mL, 50 mg/mL vials. For 

administration, the desired dose of plazomicin should be diluted to a final volume 

of 50 mL in either 0.9% Sodium Chloride, USP or Lactated Ringers, USP. Sterilely 

compounded products between 2.5 and 45 mg/mL are stable at room temperature 

for 24 hours. (363) 

Pharmacokinetics/Pharmacodynamics 

Clinically relevant pharmacokinetic parameters from phase 1 clinical trials may be 

found in Table IV-2. Plazomicin displayed linear and dose-proportional 

pharmacokinetics following a single dose or multiple doses across a range of 

doses. These relationships can be seen when comparing the results of P1-01, 

which used half the normal dose of plazomicin (plazomicin 7.5 mg/kg), to other 

studies in Table IV-2. The maximum concentration (Cmax) and area under the curve 

0 - ∞ (AUC0 - ∞) for P1-01 are approximately half of those seen in other studies. 

Overall, Cmax ranged from 161 ± 31 to 76.0 ± 19.6 µg/mL and were reached 

immediately following the infusion in most studies. The wide range of measured 

values stems from the use of two different infusion times across phase 1 studies 

(30 and 10 minutes). Not surprisingly, the studies using a 10-minute infusion 
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measured higher Cmax and had a lower time to max (Tmax). AUC0 - ∞ ranged from 

246 ± 39 mg*h/L to 309 ± 45 mg*h/L. The volume of distribution (Vd) of plazomicin 

ranged from 36.0 ± 7.8 to 11.3 ± 1.4 L across phase 1 studies and approximated 

total body water volume, similar to other aminoglycosides. (364–369) Two studies 

calculated Vss using non-compartmental models, which resulted in higher reported 

values as seen in Table IV-2. (364, 367) Protein binding appears to be relatively 

low in plazomicin at 16% ± 5. (368) Plazomicin was also found to penetrate the 

lungs to a similar degree as amikacin in non-inflamed lungs (ELF : plasma AUC 

13% and 14% for plazomicin and amikacin, respectively). (369) Plazomicin is 

almost exclusively renally excreted. Following a single dose of plazomicin 15 

mg/kg, 97.5% of the administered dose was recovered unchanged in the urine 

(56% within the first 4 hours), while < 0.2% was recovered from feces. (367) 

 

In-vitro studies showed that plazomicin selectively inhibited multidrug and toxin 

extrusion 2-K (MATE2-K) and to a lesser extent multidrug and toxin extrusion 1 

(MATE1) and organic cation transporter 2 (OCT2), which are important 

transporters involved with tubular secretion. However, in a phase 1 randomized, 

crossover study in which patients were given a single dose of metformin 850 mg 

alone or in combination with a single dose of plazomicin 15 mg/kg, all measured 

pharmacokinetic parameters of metformin were similar between groups, even 

though metformin is a known substrate of these transporters and is 90% eliminated 

via tubular secretion. This suggests that plazomicin will not interact with drugs 

secreted via this mechanism. (365) 
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In a study that recruited patients with various degrees of renal dysfunction at 

baseline, plazomicin AUC0 - ∞ was higher in patients with lower CLCr as expected. 

AUC0 - ∞ in patients with normal (CLCr  ≥ 90 mL/min) and mild renal impairment 

(CLCr < 90 and ≥ 60 mL/min) were negligible, but was 1.98 and 4.42 fold higher on 

average in patients with moderate (CLCr < 60 and ≥ 30 mL/min) and severe renal 

impairment (CLCr < 30 and ≥ 15 mL/min), respectively. (364) In order to maintain 

similar exposures in patients with normal and impaired renal function, which may 

occur during complicated urinary tract infection (cUTI), the FDA package insert 

recommends alternate dosing regimens of 10 mg/kg once daily in patients with 

CLCr ≤ 30 and < 60 mL/min and 10 mg/kg every 48 hours in patients with CLCr ≤ 

15 and < 30 mL/min. Following the initial dose, the dosing interval may be adjusted 

1.5-fold based on therapeutic drug monitoring (TDM) to maintain plasma trough 

concentrations < 3 µg/mL. At the adjusted dosages, the AUC0 – 24h for patients with 

cUTI and mild or moderate renal impairment was 261 ±102 mg*h/L and 224 ± 147 

mg*h/L, respectively. (363) In an attempt to protocolize TDM for plazomicin, the 

group from Hartford Hospital adapted their aminoglycoside dosing nomogram for 

dosing interval selection to better assess patients in need of renal adjustment. 

(370, 371) Importantly, patients with CLCr < 15 mL/min or who are on renal 

replacement therapy were excluded from phase 1 studies, so recommendations 

for dosing adjustments in these patients are currently unavailable. 

 



 

 209 

There are currently 3 pharmacodynamic parameters that determine efficacy of 

antimicrobial agents: ƒ%T>MIC, ƒAUC:MIC, and ƒPeak:MIC. These parameters 

are often elucidated in dose fractionation studies conducted in murine models of 

infection. The groups of infected rodents are exposed to increasing doses of a drug 

using multiple dosing intervals. Non-linear regression analyses are performed 

between each PD parameter and the bacterial concentrations (CFU/mL), and the 

parameter that best fits the data is chosen. (372) Aminoglycosides have been 

shown to display optimal activity when the ratio of AUC:MIC is maximized. (164) 

Additionally, studies have shown an independent benefit gained by maximizing the 

ratio of Cmax:MIC. (373–375) For plazomicin, AUC:MIC was the parameter of best 

fit (r2 = 0.876) as opposed to Peak:MIC (r2 = 0.783) and Time>MIC (r2 = 0.712). 

Furthermore, the median AUC:MIC ratios that corresponded to stasis (exposure 

necessary to prevent growth of bacteria) and 1 log killing were 24 and 89, 

respectively. (165) Probability of target attainment analysis performed by the FDA 

using these targets, in addition to the in-vitro and clinical data, led to the 

assignment of a susceptibility breakpoint of ≤ 2 µg/mL, intermediate category of 4 

µg/mL, and resistant category of ≥ 8 µg/mL for the treatment of 

Enterobacteriaceae. (376) The approved dosing regimen of 15 mg/kg IV once daily 

ensures that a higher Cmax and AUC are achieved relative to the MIC during a 

multiple daily dosing regimen. This extended interval scheme for aminoglycosides 

has also been shown to limit nephrotoxicity. (377) 
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Clinical Trials 

Highlights from the phase 2 and 3 trials for plazomicin can be found in Table IV-3. 

Two indications have been pursued for plazomicin: cUTI in a phase 2 trial and the 

EPIC trial and serious CRE infection (included blood stream infections (BSIs), 

hospital-acquired pneumonia (HAP), and ventilator-associated pneumonia (VAP)) 

in the CARE trial. 

 

cUTI 

The FDA approved plazomicin for the treatment of cUTIs in July 2018 following the 

success of Study P2-01 and the EPIC trial. Study P2-01 was a phase 2, 

multicenter, double-blind, randomized, comparator-controlled clinical trial. Patients 

were randomized 1:1:1 to receive either plazomicin 15 mg/kg IV once daily, 

plazomicin 10 mg/kg IV once daily, or levofloxacin 750 mg IV once daily. 

Preference was later given to the plazomicin 15 mg/kg IV once daily and 

subsequent randomization proceeded 2:1 to receive plazomicin 15 mg/kg IV once 

daily or levofloxacin 750 mg IV once daily.  Patients enrolled in the study were 

between 18 and 85 years of age, ≤ 100 kg, and had a CLCr ≥ 60 mL/min based on 

Cockcroft and Gault. The primary efficacy endpoints in this trial were 

microbiological eradication (< 104 CFU/mL of causative pathogen) in both the 

modified-intent-to-treat (MITT) and microbiologically evaluable (ME) populations at 

the test-of-cure (TOC) visit (5 and 12 days post-treatment).  
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The differences in % microbiological eradication rate in the MITT and ME 

populations between groups was 2.2 [95% CI: -22.9 – 27.2] and 7.6 [95% CI: -16.0 

– 31.3], respectively, both in favor of plazomicin, though neither result was 

considered statistically significant. The number of patients experiencing any 

adverse effect (AE) was similar between groups with the most common adverse 

effects in either plazomicin group being headache (8.3%), dizziness (4.2%), 

nausea (4.2%), vomiting (4.2%), and diarrhea (4.2%), which is similar to phase 1 

trial data. Additionally, an increase in serum creatinine ≥ 0.5 mg/dL occurred in 

3.2% of patients receiving plazomicin, which did not occur in any patient receiving 

levofloxacin. (378) 

 

The EPIC trial was a phase 3 multicenter, multinational, double-blind, randomized 

clinical trial. Patients were randomized 1:1 to receive either plazomicin 15 mg/kg 

IV once daily or meropenem 1 g IV every 8 hours for 7 – 10 days. The eligibility 

criteria in the EPIC trial were similar to the previous trial; although, patients with a 

CLCr ≤ 30 mL/min were included in the EPIC trial. The primary efficacy endpoints 

were composite cure (both clinical cure and microbiological eradication) at day 5 

of therapy and at the TOC visit (15 – 19 days following initiation of IV therapy) in 

the MITT population. Clinical cure was defined as reduced symptom severity at 

day 5 or end of the infusion, complete symptom resolution at the TOC visit, or 

return to patient baseline prior to urinary tract infection and microbiological 

eradication as reduction in causative pathogen to < 104 CFU/mL. 
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At day 5 of therapy, the difference in % composite cure between groups was not 

statistically significantly different; however, at the both the TOC visit and late 

follow-up visit (days 24 - 32), the difference was 11.6 [95% CI: 2.7 – 20.3] and 16.6 

[95% CI: 7.0 – 25.7], respectively, both in favor of plazomicin. Additionally, sub-

group analysis of composite cure numerically favored plazomicin in every group 

tested. The frequency of AEs was similar between groups with 19.5% and 21.6% 

of patients reporting any event in the plazomicin and meropenem groups, 

respectively. The most common adverse effects reported for plazomicin were 

similar to Study P2-01. Similar numbers of patients experienced a ≥ 0.5 mg/dL 

increase in serum creatinine in the plazomicin (3.7%) and meropenem (3.0%) 

groups while receiving IV therapy, with full renal recovery occurring in 81.8% and 

100% of patients receiving plazomicin and meropenem, respectively. (223) 

 

Plazomicin achieved non-inferiority for all primary efficacy endpoints in both trials 

when compared to standard of care therapy for cUTI. Moreover, it exhibited 

excellent activity against numerous resistance phenotypes between the two 

studies, including aminoglycoside and fluoroquinolone resistance, ESBL and CRE, 

and multidrug resistant isolates (resistant to at least 1 agent in 3 different antibiotic 

classes). Of the 9 isolates in the plazomicin group that were CRE, 77.8% were 

eradicated at the TOC visit in the EPIC trial.  
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Serious CRE Infection 

The CARE trial was a phase 3, multicenter, randomized, open-label trial. Patients 

were randomized 1:1 to receive either plazomicin 15 mg/kg IV once daily or colistin 

5 mg/kg IV loading dose (300 mg maximum) colistin base activity followed by 5 

mg/kg/day IV maintenance dose q 8 - 12 hours for 7 -14 days. Plazomicin was 

adjusted based on TDM in patients with renal impairment to target an AUC0 – 24h of 

262 mg*h/L. Both agents were administered in combination with either meropenem 

2 g IV (3-hour extended infusion) every 8 hours or tigecycline 100 – 200 mg IV 

loading dose followed by 50 – 100 mg IV maintenance dose q 12 hours. Patients 

enrolled in the study were between 18 – 85 years of age, had an Acute Physiology 

and Chronic Health Evaluation (APACHE) II score between 15 – 30, and had either 

a BSI, HAP, or VAP suspected/confirmed to be caused by a CRE. The primary 

efficacy endpoint was a composite of all-cause mortality at 28 days or clinically 

significant disease-related complications in the microbiologic modified intention-to-

treat (MMITT) population (confirmed CRE infection who received ≥ 1 dose of trial 

drug). 

 

Unfortunately, the trial was ended prematurely due to slow enrollment. The 

difference in % occurrence of a primary endpoint event in the MMITT population 

was 26 [95% CI: -55 - 6] in favor of plazomicin. Sub-group analysis by infection 

type revealed this difference to be 39 [95% CI: -69 – (-)4] in favor of plazomicin in 

the BSI group and 27 [95% CI: -48 - 82] in favor of colistin in the HAP or VAP 

group. Kaplan-Meier estimates in the MMITT groups showed the hazard ratio for 
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all-cause mortality through day 28 (0.25 [95% CI: 0.05 – 1.19]) and day 60 (0.47 

[95% CI: 0.19 – 1.19]) both favored plazomicin combinations. Plazomicin 

combinations also had a more favorable AE profile, with fewer serious adverse 

events (50%) and ≥ 0.5 mg/dL serum creatinine increases (16.7%) occurring in the 

safety population than in the colistin group, 81% and 50%, respectively. (379) 

 

Due to the small sample size of the study, the FDA did not grant the CRE indication 

to plazomicin. Regardless, given the current lack of data in treating CRE infections 

in randomized controlled trials, these data, taken with in-vitro and in-vivo data, are 

suggestive of a role for plazomicin in the treatment of CRE infections. Additionally, 

plazomicin has demonstrated an improved AE profile when compared to other 

commonly used adjunctive agents for the treatment of CRE infections, especially 

colistin. 

 

Clinical Resistance 

Pathogens demonstrating resistance to plazomicin were rarely encountered 

across these clinical trials. Due to concerns for balancing the intervention groups, 

isolates having baseline MICs considered to be non-susceptible to either 

meropenem or plazomicin were not included in the primary analysis of the EPIC 

trial; however, 6 isolates cultured in the CARE trial (2 from the plazomicin arm and 

4 from the colistin arm) had baseline MICs resistant to plazomicin. All of these 

isolates had MICs > 128 µg/mL and were confirmed to express 16S rRNA 

methyltransferases. (379, 380) 
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Treatment emergent resistance to plazomicin was also noted in phase 3 clinical 

trials, though this too was a rare occurrence. In total, 7 isolates cultured from 6 

patients met the criteria for resistance emergence (an isolate having a ≥ 4-fold 

increase in MIC and whose baseline MIC changed from ≤ 4 µg/mL to > 4 µg/mL 

after treatment). All of these patients were enrolled in the EPIC trial. Of these 6 

patients, 4 achieved clinical cure at the TOC visit regardless, and only 1 of the 

other 2 patients required additional antimicrobial therapy following the initial 

administration of study drug. (380) 

 

Whole genome sequencing revealed that 5 of the 7 isolates shared the genetic 

profile of the baseline pathogen with the addition of a plasmid-encoded 16S rRNA 

methyltransferase. No definitive resistance mechanism was determined for the 

other two isolates, but genetic changes consistent with increased aminoglycoside 

MICs (cydA, cpxA and cpxR, and sbmA) were posited as an explanation. 

Interestingly, 5 of the isolates were cultured prior to the end of intravenous therapy, 

prompting the investigators to suggest that these emergent events were likely the 

result of a resistant subpopulation flourishing under selective pressure due to the 

rapidity with which the phenotypes appeared. Overall, the low frequency of 

emerging resistance and the resistance phenotypes isolated in these studies are 

consistent with epidemiological data of the regions from which the patients were 

enrolled and in-vitro and in-vivo data published for plazomicin. (380) 
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Safety 

Plazomicin was evaluated in 6 phase 1 clinical trials, 1 phase 2 clinical trial in 

patients with cUTI, and in 2 phase 3 clinical trials, (1 in patients diagnosed with 

severe CRE infections and 1 in patients diagnosed with cUTI). It should be noted 

that the FDA approved plazomicin with a black box warning for aminoglycoside 

class effects (nephrotoxicity, ototoxicity, neuromuscular blockade, and pregnancy 

risk) as it has for other aminoglycosides; however, plazomicin demonstrated a safe 

AE profile across all clinical trials. In the EPIC trial, which enrolled the most patients 

of any other trial (303 received plazomicin), the most common AEs reported were 

decreased renal function (3.7%), diarrhea (2.3%), hypertension (2.3%), headache 

(1.3%), nausea (1.3%), vomiting (1.3%), and hypotension (1.0%). Given that 

plazomicin is an aminoglycoside, decreases in renal function are expected as a 

class effect; however, a similar frequency of clinically significant renal function 

decreases (increase ≥ 0.5 mg/dL serum creatinine from baseline) occurred in 

patients receiving meropenem (3.0%). Furthermore, most patients in the 

plazomicin group had full renal recovery by the final follow-up visit (81.0%). (223) 

Patients experiencing any severe AE were similar between groups (1.7%). 

Although ototoxicity events were rare in clinical trials, patients should be monitored 

for these events especially if they have structural abnormalities or a history of 

otologic disease as these patients were excluded from participation. While the 

safety data provided here are promising, conditions in clinical trials often differ from 

clinical practice, especially in the duration of therapy. This should be considered 
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when using plazomicin in practice as these percentages may not extend to patients 

being treated due to the differing contexts. 

Relevance to Patient Care and Clinical Practice 

Plazomicin has received an FDA indication for the treatment of cUTIs, including 

acute pyelonephritis, following positive results in a phase 2 and 3 clinical trial 

against the current standard of care. The majority of cUTIs are not caused by MDR 

organisms and can be effectively treated with more targeted therapy. Given its 

exceptional in-vitro profile and success against cUTIs caused by antimicrobial 

resistant isolates, plazomicin will most likely be reserved to treat more resistant 

cUTIs.  

 

Newer beta-lactam/beta-lactamase inhibitors have demonstrated excellent activity 

against most major carbapenem-resistant phenotypes; yet, emergence of 

resistance to ceftazidime/avibactam (the first novel beta-lactam/beta-lactamase 

combination commercially available) has already been reported, occurring both 

prior to exposure to the antibiotic and during active treatment. (250) 

Aminoglycosides have been utilized as add-on therapy with beta-lactams for 

serious infections for decades due to their synergistic mechanisms of action. 

However, recent spread of resistance determinants against aminoglycosides has 

threatened this antimicrobial class. This is especially true in CRE isolates, which 

have been shown to harbor numerous AME phenotypes. This could be another 

avenue for plazomicin to enter routine clinical use. It bears repeating that 

plazomicin did not receive an FDA indication for treating severe CRE infections; 
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however, several data, both in-vitro and in-vivo, currently support its use in 

combination regimens for this indication. (348, 381–383) Again, prior to 

prematurely closing the CARE trial due to slow enrollment, combinations using 

plazomicin and meropenem or tigecycline appeared to be both more effective and 

safer than those using colistin. 

 

Caution should be exercised when using plazomicin to treat NDM-producing 

Enterobacteriaceae. NDM-producing phenotypes have been sporadically noted in 

the U.S; however, other countries in Europe and Asia have documented more 

endemic prevalence. (58) Increasingly, co-expression of 16S rRNA 

methyltransferases has been reported in NDM-producing Enterobacteriaceae. In 

an analysis of MBL-producing isolates identified in several studies performed 

across many countries, of the 488 isolates included, 282 (57.8%) expressed NDM, 

and 64 (22.7%) of these isolates also expressed a 16S rRNA methyltransferase. 

(384) Another surveillance study of aminoglycoside resistant isolates collected 

from the UK and Ireland reported that 592/762 (78%) of the isolates positive for a 

16S rRNA methyltransferase co-expressed NDM. Interestingly, 169/762 (22%) of 

these isolates co-expressed OXA-48-like carbapenemases. (361) 

  

This trend has not yet been associated with any other CRE phenotype, including 

other MBLs. Numerous commercially available rapid detection tests can identify 

the presence of carbapenemases, including NDM, which can guide empiric 

administration of plazomicin. (385, 386) A rapid in-vitro test to more directly detect 
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aminoglycoside resistance has recently been published; however, its 

implementation could be challenging as no commercial product is yet available. 

(387) Therefore, empiric use of plazomicin in treating infections caused by NDM-

producing Enterobacteriaceae may be questionable, especially in regions where 

co-expression with 16S rRNA methyltransferase is endemic. However, 16S rRNA 

methyltransferases may be expressed in any isolate regardless of carbapenem-

resistant phenotype. Clinicians are advised, as always, to consult their local 

antibiograms prior to recommending any empiric therapy and to deescalate 

appropriately as new patient data is made available. 

Conclusion 

Because of the persistence of bacterial evolution, it seems unlikely that a single 

agent will emerge as a panacea against infection; rather, an armamentarium 

seems necessary to keep pace in the fight against antimicrobial resistance. 

Plazomicin appears poised to help fill the need for new agents to treat infections 

caused by MDR Enterobacteriaceae. Further research and reports following its 

use in the clinical setting will help crystalize its role in therapy for these serious 

infections. 
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Table IV-1: In-vitro Activity of Plazomicin in Gram-Negative Organisms 

Organism % S MIC50/90 
(µg/mL) 

Range 
(µg/mL) 

Gram Negative    
  Enterobacteriaceae    
    Enterobacteriaceae (n = 254) (160) 80 1/4 ≤0.25 - >64 
    Enterobacteriaceae (n = 4,217) (317) 95.8 0.5/2 ≤0.06 - >128 
      blaKPC (n = 113) 92.9 0.25/2 ≤0.25 - >128 
      MBL (n = 37) 40.5 128/>128 ≤0.25 - >128 
      blaOXA-48-like (n = 54) 87 0.25/16 ≤0.25 - >128 
      Carbapenemase-negative (n = 59) 94.9 0.25/1 ≤0.25 - >128 
      AME genes (n = 728) 99 0.25/1 ≤0.25 - 16 
      aac(6’)-Ib (n = 585) 99.3 0.25/1 ≤0.25 - 16 
      aac(3)-IIa (n = 453) 98.9 0.25/1 ≤0.25 - 16 
      16S rRNA methyltransferase (n = 60) 0 >128/>128 128 - >128 
    Enterobacteriaceae (n = 499) (320) NA 0.5/64 ≤0.13 - >64 
      KPC-2 (n = 389) 85 0.5/>64 ≤0.13 - >64 
      NDM-1 (n = 81) 80 0.5/16 ≤0.13 - >64 
    Enterobacteriaceae (n = 4,362) (355) 96.4 0.5/2 ≤0.06 - >128 
      CRE (n = 97) 99a 0.5/1 ≤0.06 - >128 
      blaKPC (n = 87) 98.9a 0.25/1 ≤0.06 - >128 
    MDR Enterobacteriaceae (n = 300) (356) 96 1/2 ≤0.25 - 4 
    MBL (n = 488) (384) 76.4 1/>64 ≤0.12 - >64 
  Klebsiella species    
    K. pneumoniae (n = 1,429) (317) 95.8 0.25/0.5 ≤0.06 - >128 
    K. oxytoca (n = 317) (317) 100 0.5/0.5 0.12 - 2 
    K. aerogenes (n = 129) (317) 100 0.5/1 ≤0.06 - 2 
    K. aerogenes (n = 120) (355) 99.2 0.5/1 ≤0.06 - 4 
    K. pneumoniae (n = 1,506) (355) 99.8 0.25/0.5 ≤0.06 - >128 
    K. oxytoca (n = 359) (355) 99.2 0.5/0.5 ≤0.06 - >128 
    K. pneumoniae (n = 241) (356) 95 1/2 ≤0.5 - 4 
    K. pneumoniae (n = 395) (357) NA 0.25/0.5 ≤0.12 - >64 
    K. pneumoniae (n = 1,039) (358) 99.8 0.25/0.5 ≤0.12 - >64 
    K. oxytoca (n = 279) (358) 100 0.25/0.5 ≤0.12 - 2 
    K. pneumoniae (n = 1,155) (388) NA 0.5/1 0.12 - >8 
  Escherichia coli    
    E. coli (n = 1,399) (317) 99.4 0.5/1 0.12 - 16 
    E. coli (n = 1,346) (355) 99.4 0.5/1 ≤0.06 - >128 
    E. coli (n = 1,146) (357) NA 0.5/1 ≤0.12 - 4 
    E. coli (n = 3,094) (358) 99.5 0.5/1 ≤0.12 - >64 
      MDR (n = 358) 99.4 0.5/1 ≤0.12 - >64 
    E. coli (n = 3,050) (388) NA 0.5/1 ≤0.06 - >8 
  Enterobacter species    
    E. cloacae (n = 104) (355) 100 0.5/0.5 0.12 - 2 
    E. cloacae (n = 470) (358) 100 0.25/0.5 ≤0.12 - 2 
  Serratia marcescens    
    S. marcescens (n = 105) (317) 99 1/1 0.25 - 8 
    S. marcescens (n = 107) (355) 97.2 1/2 0.12 - 4 
    S. marcescens (n = 255) (358) 97.6 0.5/1 ≤0.12 - 8 
  Citrobacter species    
    C. freundii (n = 131) (317) 99.2 0.5/1 0.12 - 4 
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Table IV-1: In-vitro Activity of Plazomicin in Gram-Negative Organisms 

Organism % S MIC50/90 
(µg/mL) 

Range 
(µg/mL) 

    C. koseri (n = 145) (317) 100 0.25/0.5 ≤0.06 - 1 
    C. freundii (n = 159) (355) 99.4 0.5/1 0.12 - 4 
    C. koseri (n = 145) (355) 99.3 0.25/0.5 ≤0.06 - 4 
  Proteus species    
    P. mirabilis (n = 119) (317) 74.8 2/4 0.5 - >128 
    P. vulgaris group (n = 109) (317) 91.7 1/2 0.25 - 8 
    P. mirabilis (n = 124) (355) 82.3 2/4 0.25 - 8 
    P. vulgaris group (n = 116) (355) 88.8 2/4 0.5 - 16 
    P. mirabilis (n = 235) (358) 44.3 4/4 0.5 - 32 
  Other Enterobacteriaceae    
    Morganella morganii  (n = 131) (317) 68.7 2/4 0.25 - 16 
    Providencia spp. (n = 84) (317) 67.9 2/8 0.5 - >128 
    Morganella morganii (n = 118) (355) 64.4 2/4 0.5 - 64 
    Providencia spp. (n = 158) (355) 63.3 2/4 0.12 - 64 
    Morganella morganii (n = 54) (358) 66.7 2/4 0.25 - 8 
  Pseudomonas aeruginosa    
    P. aeruginosa (n = 593) (357) NA 4/16 ≤0.12 - >64 
    P. aeruginosa (n = 1,789) (358) NA 4/16 ≤0.12 - >64 
    MDR (n = 256) NA 8/64 ≤0.12 - >64 
    P. aeruginosa (n = 679) (359) NA 8/32 0.12 - >64 
  Acinetobacter species    
    Acinetobacter spp. (n = 82) (160) NA 8/32 0.5 - >64 
    Acinetobacter spp. (n = 99) (317) NA 8/>128 ≤0.06 - >128 
    Acinetobacter spp. (n = 95) (355) NA 2/16 ≤0.06 - >128 
    A. baumannii (n = 68) (358) NA 1/8 0.25 - >64 
    A. baumannii (n = 407) (359) NA 8/16 0.12 - >64 
FDA susceptibility breakpoint is used for plazomicin (≤2 µg/mL) (314), NA: Data not 
included in study, Abbreviations: bla - beta-lactamase gene, KPC - Klebsiella pneumoniae 
carbapenemase, MBL - metallo-beta-lactamase, OXA - oxacillinase, GEN - gentamicin, 
TOB - tobramycin, AMK - amikacin, S - susceptible, NS - non-susceptible, AME - 
aminoglycoside modifying enzymes, aac - n-acetyltransferase, ant - o-adenyltransferase, 
aph - o-phosphotransferase, CRE - carbapenem-resistant Enterobacteriaceae, R - 
resistant, NDM - New Delhi metallo-beta-lactamase, ESBL - extended-spectrum beta-
lactamase, MDR - multi-drug resistant, mcr - mobilized colistin resistance gene, spp - 
species, 
a. Study reported % susceptibility using a susceptibility breakpoint of ≤4 µg/mL [Return] 



 

 222 

222 

 

Table IV-2: Pharmacokinetics in Healthy Volunteers from Phase 1 Clinical Trials of Plazomicin 

 Single 7.5 mg/kg dose 

(30 min infusion) 
Single 15 mg/kg dose 

(30 min infusion) 
Single 15 mg/kg dose 

(10 min infusion) 

 P1-01a 

N = 6 
P1-02b 

N = 16 
P1-03c 

N = 54 
P1-04d 

N = 6 
P1-05e 

N = 6 
P1-06f 

N = 15 
AUC0-∞ 

(mg*h/L) 
136 ± 17.2 246 ± 30.8 265 ± 66.5 269 (11.4) 246 ± 39 309 ± 45 

Cmax 

(µg/mL) 
37.9 ± 5.01 85.2 ± 11.2 76.0 ± 19.6 92.1 (8.4) 144 ± 45 161 ± 31 

Vd 
(L/kg) 

0.43 ± 0.09 0.23 ± 0.03 0.24 ± 0.06 0.42 (21.0) 0.20 ± 0.03 0.161 ± 0.0203g 

CLT 
(mL/min/kg) 0.93 ± 0.23 1.03 ± 0.10 0.996 ± 0.195 1.00 (17.1) 1.04 ± 0.17 0.824 ± 0.116 

T1/2 
(h) 

NR 3.82 ± 0.35 3.5 ± 0.5 NR 3.4 ± 0.8 2.8 ± 0.6 

Values reported are Mean ± SD, except P1-06 which is geometric mean (CV%); NR – Not reported 
a. P1-01: NCT01462136, A. Komirenko et al, 2018 (364) 
b. P1-02: NCT03270553, T. Choi et al, 2019 (365) 
c. P1-03: NCT01514929, J. Gall et al, 2019 (366) 
d. P1-04: NCT03177278, T. Choi et al, 2018 (367) 
e. P1-05: NCT00822978, R. Cass et al, 2011 (368) 
f. P1-06: NCT01034774, R. Cass et al, 2013 (369) 
g. Vss = 0.248 L ± 0.0398 L after 5 days of 15 mg/kg 
[Return] 
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Table IV-3: Summary Table of Phase 2 and 3 Clinical Trials of Plazomicin 

Trial Phase Indication Primary Outcome Results 
No. patients (%) 

P2-01 2 cUTI Microbiological eradication at 
TOC PLZ LVX 

   MITT population: 31 (60.8) 17 (58.6) 

   Difference: 2.2% [95% CI: -22.9 – 27.2%] 

   ME population: 31 (88.6) 17 (81.0) 

   Difference: 7.6% [95% CI: -16.0 – 31.3%] 

EPIC 3 cUTI Composite Cureb PLZ MEM 

   Treatment Day 5: 168 (88.0) 180 (91.4) 

   Difference: -3.4% [95% CI: -10.0 – 3.1%] 

   TOC visit: 156 (81.7) 138 (70.1) 

   Difference: 11.6% [95% CI: 2.7 – 20.3%] 

CARE 3 CRE 
infectiona 

Composite Day 28 all-cause 
mortality and disease related 

complications 
PLZC CSTC 

   MMITT population: 4 (24) 10 (50) 

   Difference: -26% [95% CI: -55 – 6%] 
Dosages for trial drugs were: plazomicin 15 mg/kg IV once daily with therapeutic drug monitoring 
(TDM) for maintenance dosing, levofloxacin 750 mg IV once daily, meropenem 1 g IV q 8h, and 
colistin 5 mg/kg IV loading dose with 5 mg/kg/day IV divided into 8 – 12h dosing intervals 
maintenance dosing. 
Abbreviations: plazomicin (PLZ), levofloxacin (LVX), meropenem (MEM), colistin (CST)   
P2-01: NCT01096849, L. Connolly et al, 2018 (378), EPIC (223): , CARE (379):  
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Table IV-3: Summary Table of Phase 2 and 3 Clinical Trials of Plazomicin 

Trial Phase Indication Primary Outcome Results 
No. patients (%) 

a. Included blood stream infection (BSI), hospital-acquired pneumonia (HAP), and ventilator-
associated pneumonia (VAP) 
b. Composite cure defined as both clinical cure and microbiological cure. Clinical cure was 
defined as reduced symptom severity at day 5/end of the infusion, complete symptom resolution 
at the TOC visit, or return to patient baseline prior to urinary tract infection. Microbiological 
eradication was defined as reduction in causative pathogen to < 104 CFU/mL. 
c. Given in combination with either meropenem 2 g IV q 8h (3h extended-interval infusion) or 
tigecycline 100 – 200 mg IV loading dose with 50 – 100 mg IV q 12h maintenance dosing 
[Return] 
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Figure IV-1: Plazomicin Structure 
Plazomicin structure shown with clinically relevant 
aminoglycoside-modifying enzyme (AMEs) from both Gram-
negative and positive (underlined) organisms. AMEs with a 
dotted line cannot modify plazomicin. Reproduced from 
Aggen et al with permission from the American Society of 
Microbiology (160) [Return] 
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V. Epidemiological Results 

The following section contains the analysis of the prevalence, MIC distributions, 

and patient mortality associated with infections caused by CRE vs. CSE from a 

cohort study that spanned a decade (2010 - 2019). This was a single center study 

which only included patients from UK HealthCare. 
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Effect of Carbapenem-resistant vs. Carbapenem-susceptible 

Enterobacterales Infections on Patient Outcomes at an Academic 

Medical Center 

Introduction:  

 

Carbapenem-resistant Enterobacterales (CRE) infections are a serious global 

threat. In 2017, the World Health Organization (WHO) declared CRE to be a critical 

priority pathogen and emphasized the dire need for drug development and 

discovery efforts to be focused these resistant pathogens among others. (389) A 

recent estimation of the global burden of antimicrobial resistance reported 55,700 

deaths were attributable to carbapenem-resistant K. pneumoniae alone, with 

29,500 and 15,300 more being attributable to carbapenem-resistant E. coli and 

Enterobacter species, respectively. (3) In the United States alone, the most recent 

Centers for Disease Control and Prevention (CDC) Threats Report estimated that 

CRE infections were responsible for 1,100 deaths and a healthcare cost of $130 

million according to estimates from 2017. (1)  

 

Carbapenem-resistance poses such a threat because these bacteria are 

additionally resistant to most, if not all, other beta-lactam antimicrobials. Beta-

lactams are the backbone of therapy for many Gram-negative infections given their 

bactericidal activity and high therapeutic index. Critically, cross-resistance to other 

commonly used antimicrobials, such as fluoroquinolones and aminoglycosides, is 
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often present in carbapenem-resistant bacteria, leaving few viable options 

remaining. As a result, the time to appropriate therapy for these patients is delayed, 

which has been shown to increase the likelihood of mortality, especially in the 

setting of bloodstream infections. (390–392) 

 

This study seeks to investigate the impact of CRE infections on patient outcomes 

at a large academic medical center in a non-endemic region for CRE infections to 

further our understanding of these infections. 

 

Methods:  

Study design and Patient Selection 

 
This was a single-center, retrospective cohort study of patients admitted to the 

University of Kentucky Healthcare Medical Center between January 1, 2010 – 

December 31, 2019 with a culture-confirmed infection with one of the following five 

species of the Enterobacterales order: E. coli, E. cloacae, K. aerogenes, K. 

oxytoca, and/or K. pneumoniae. We chose these 5 species specifically as they 

account for a high percentage of CRE cases. (391) The study was approved by 

the University of Kentucky Institutional Review Board. Data were abstracted from 

the University of Kentucky Center for Clinical and Translational Science Enterprise 

Data Trust (EDT) and the clinical microbiology culture and susceptibility database. 

Data abstracted included patient demographics and hospital admission 
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information, comorbidity data for each admission, and culture information including 

culture source, culture date, organism identified, and susceptibility data. 

 

Inclusion/Exclusion Criteria 

Patients met inclusion criteria if they had at least one culture positive for any one 

of the 5 species previously specified. Additionally, the culture must have been 

isolated from a body site consistent with either a bloodstream, intra-abdominal, 

respiratory, skin/soft tissue, or urinary tract infection, and the patient must have 

had an ICD-9/10-CM code consistent with an infection/condition of the qualifying 

culture site. Having only a culture from one of the specified body sites or a 

qualifying ICD-9/10-CM code alone would not satisfy the inclusion criteria. Patients 

were excluded if they were < 18 years old, pregnant, or had a diagnosis of 

endocarditis, osteomyelitis, necrotizing fasciitis, or cystic fibrosis during the 

admission as determined by presence of an ICD-9/10-CM code. Patients were also 

excluded if they were culture positive for a carbapenem-non-susceptible (CNS), 

Gram-negative organism not belonging to one of the 5 targeted species. Tables 

K.1 and K.2 provide the ICD-9/10-CM codes used to define each infection group 

and exclusion criteria, respectively. Figure V-1 illustrates the study selection 

process and provides sample size changes caused by each step, and Figure V-2 

illustrates the cohort study design. For patients having multiple hospitalizations 

during the studied timeframe, each inpatient admission was assessed for 

inclusion/exclusion criteria, and the first which met the criteria was utilized in the 

study. 
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Exposure of interest 

If any organism isolated during the index culture was resistant to any carbapenem 

tested, the patient was included in the exposure (CRE) group; if all organisms 

isolated were susceptible to all carbapenems tested, the patient was included in 

the comparator (CSE) group. Clinical and Laboratory Standards Institute (CLSI) 

resistant breakpoints for ertapenem, doripenem, imipenem, and meropenem were 

used (2 µg/mL for ertapenem and 4 µg/mL for the others). For analyses using the 

carbapenem-non-susceptible Enterobacterales (CNSE) definition, the CLSI 

intermediate breakpoints for the carbapenems were used (1 µg/mL for ertapenem 

and 2 µg/mL for the others) (339) Most patients only had ertapenem and 

meropenem MICs provided due to institutional formulary considerations. 

 

Data Analysis/Outcomes 

Descriptive statistics for baseline variables were reported as mean (standard 

deviation (SD)) for parametric variables, median (interquartile range (IQR)) for non-

parametric continuous or interval variables, and counts (%) for categorical 

variables.  

 

We performed summary statistics of the routinely tested antimicrobials against 

Gram-negative bacteria on the isolates collected in the index cultures using CLSI 

clinical susceptibility breakpoints. (339) We additionally analyzed the CRE isolates 

by separating them based on whether the isolates were categorized as CRE by 
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ertapenem resistance only or had resistance to one of the anti-pseudomonal 

carbapenems (doripenem, meropenem, and/or imipenem). All MICs were 

measured as part of routine clinical practice with the vast majority being obtained 

using the BD Phoenix™ system. When the BD Phoenix™ was not used, MICs were 

obtained via E-test gradient strips. 

 

The primary outcome of interest was a composite of all-cause mortality and 

discharge to hospice assessed at 30 days and secondarily at 14 days following the 

index date. These outcomes were compared between the CRE and CSE groups 

using both relative risks (RRs) and hazard ratios (HRs). Negative binomial 

regression with a log-link function used to estimate the RR with 95% confidence 

intervals (CIs), and a Cox proportional hazard model was used to estimate the HR 

with 95% CI. Kaplan Meier (KM) curves were also generated for each outcome to 

facilitate in interpretation of the HR. To address confounding, these outcomes were 

also adjusted using inverse probability of treatment weights (IPTW) calculated 

using a propensity score (discussed below). In addition to estimating IPTW-

adjusted RR and HR, IPTW-adjusted KM curves were also generated, which used 

bootstrap 95% CIs. (393, 394) 

 

Confounders of interest/Propensity Score Model 

 
Baseline covariates to address confounding were assessed using EHR information 

available at admission and between the admission date and the index date. 

Confounders were selected for inclusion using a theory-based approach and 



 

 232 

included age at admission, sex assigned at birth, whether the index culture was 

obtained in the ICU, time to index culture from admission, Charlson Comorbidity 

Index (CCI) score (modified per Glasheen et al), isolation of a blood or respiratory 

culture on index, isolation of a lactose-non-fermenting Gram-negative organism on 

index (ex. Pseudomonas aeruginosa), isolation of methicillin-resistant 

Staphylococcus aureus (MRSA) on index, and hospital admission source. (395). 

 

The propensity score for each patient was estimated using logistic regression (396) 

Stabilized weights for IPTW were calculated using the propensity score as 

described by Xu et al. (397) These weights were utilized to generate a 

“pseudopopulation” of patients with equivalent distributions of the included 

baseline characteristics wherein the average treatment effect (ATE) could be 

estimated. To ensure that balance was achieved between the groups, 

standardized mean differences (SMDs) were calculated for each of the included 

covariates in the propensity score model before and after IPTW-adjustment. SMD 

of ≤ 0.1 were considered to be balanced following IPTW-adjustment. (396) 

 

Follow-up 

The index date was the time of the first culture of one of the identified species from 

a body site consistent with a bloodstream infection, intra-abdominal infection, 

respiratory infection, skin/soft tissue infection, or urinary tract infection during the 

eligible hospitalization. Follow up was continued from the date of the index culture 

until the patient either experienced the composite outcome or was censored. In 
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addition to being discharged from the hospital, a patient may be censored if they 

were included in the CSE group and subsequently had a culture positive for any 

CNS, Gram-negative organism. Furthermore, a patient in the CRE group may also 

be censored if they subsequently had a culture positive for a CNS, Gram-negative 

organism caused by a species other than the five species targeted for study. In 

either case, the patient would be censored on the culture date of the disqualifying 

culture.  

 

Sensitivity Analyses 

To test the robustness of our results to specific assumptions, we performed several 

sensitivity analyses. The first analysis was designed to determine the effect of 

using a composite outcome of all-cause mortality and discharge to hospice vs. 

using all-cause mortality alone. The second sensitivity analysis investigated the 

effect of how we accounted for “non-study” species not included among the 5 

targeted species of the study. In the main analysis, patients were censored when 

they had CNS cultures of non-study species, and we adjusted for the presence of 

notable non-study species in the propensity score. In the sensitivity analysis, 

patients will be censored upon being culture positive for any non-study species to 

more specifically estimate the effect caused by the 5 targeted species. The final 

sensitivity was performed post-hoc and sought to determine the effect of time-to-

index differences at baseline between the CRE and CSE groups on the composite 

outcome. This was necessary because baseline balance was not achieved in this 
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variable following IPTW-adjustment. Specific details of the sensitivity analyses 

may be found in the Sensitivity Analysis Appendix. 

 

Results:  

Baseline Characteristics: 

Overall, out of a total of 17,839 patients who were culture positive for one of the 

Gram-negative species included in the study, 6,953 were included in the CSE 

group and 128 in the CRE group after application of inclusion and exclusion 

criteria, as illustrated in Figure V-1. Baseline comparisons of measured covariates 

between the CRE and CSE groups, including those which were included in the 

propensity score model, may be found in Table V-1. Both groups were largely of 

similar age and race at baseline with a mean age of ~60 years old and ≥ 90% 

white. The CSE group had a higher prevalence of female patients (59.9%%) than 

the CRE group (48.4%). More of the CSE patients were admitted from 

nonhealthcare origins than those in the CRE group (40.1% vs. 29.7%), while the 

CRE group included more patients arriving via transfer from another hospital than 

the CSE group (51.6% vs. 36.4%). Furthermore, CRE patients were more likely to 

have an index culture from a respiratory source than those in the CSE group 

(21.9% vs. 10.9%), while the opposite was true for urinary source (44.5% vs. 

57.8%).  
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Baseline patient severity also appeared to be higher in the CRE group, having a 

higher prevalence of index cultures being isolated in an ICU (39.8% vs. 23.4%). 

The CRE group also had a higher likelihood of having a positive culture for either 

a lactose-non-fermenting species (namely P. aeruginosa) or MRSA at index 

(10.9% vs. 4.1%) and (7.8% vs. 3.0%), respectively. Patients in the CRE group 

were more likely to have index cultures collected later in the admission than the 

CSE group (5.5 [0.8, 15.0] vs. 1.0 [0.0, 5.0]). Despite this difference in apparent 

severity of illness, both groups had a similar prevalence of comorbidities, assessed 

with the Charlson Comorbidity Index.  

 

MIC Analysis: 

 

Prevalence and Species distribution 

The overall incidence of CRE infections within our patient cohort across 10 years 

was 1.8%. As illustrated in Figure V-3, the number of CSE isolates gradually 

increased over the duration of the study, except for the sharp increase between 

the years 2010-2012, which was caused by an increase in overall hospital census 

following expansion of our academic medical campus. CRE isolates were 

sporadically collected across all 10 years but averaged ~12 isolates each year. 

The overwhelming majority of isolates collected in the CSE group were E. coli 

followed by K. pneumoniae. The predominant species in the CRE group was E. 

cloacae followed by K. pneumoniae; however, the annual distribution of the CRE 

species was more varied than in the CSE group. Figure V-4 illustrates the relative 
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abundance of each culture source by the species cultured. Among CSE patients, 

E. coli was the most abundantly cultured species from all 5 sources analyzed and 

comprised ~70% of all urinary cultures, while E. cloacae was the most abundantly 

isolated species from all sources among CRE patients. 

 

Overall MIC Analysis 

Descriptive analysis of the index cultures isolated from the CRE and CSE patient 

groups are presented in Table V-2. A total of 135 index cultures were isolated from 

128 patients in the CRE group and 7,907 from 6,953 patients in the CSE group. 

Only index cultures matching the phenotype of the patient group were included in 

this analysis (ex. non-CRE cultures isolated from CRE patients were not included). 

As expected, CRE isolates often demonstrated lowered susceptibilities than the 

CSE isolates. Amikacin susceptibility was notably unaffected between groups, 

while the other aminoglycosides, gentamicin and tobramycin, exhibited 

considerable drops in susceptibility (92% to 80% and 91% to 77%, respectively). 

Surprisingly, meropenem and cefepime (when using the SDD criteria) were the 

next most active agents (71% and 65%) in the CRE group, exhibiting 

susceptibilities similar to the fluoroquinolones ciprofloxacin and levofloxacin (62% 

and 65%) and sulfamethoxazole-trimethoprim (68%). No other beta-lactam 

demonstrated susceptibilities > 20%. 
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CRE subgroup MIC Analysis 

We also performed a subgroup descriptive MIC analysis within the CRE isolates 

by separating the cultures depending upon whether they were resistant only to 

ertapenem or if they also exhibited resistance to any anti-pseudomonal 

carbapenem (doripenem, imipenem, or meropenem), which is presented in Table 

V-3. The majority of CRE isolates in this study were included based on ertapenem 

resistance alone (n = 103). The aminoglycosides were the most active class for 

either CRE phenotype, but there was a sizable drop in susceptibility for gentamicin 

and tobramycin when the isolates were resistant to ≥ 1 anti-pseudomonal 

carbapenem (88% to 54% and 84% to 53%, respectively). Both ciprofloxacin and 

levofloxacin also experienced declines in susceptibility (67% to 48% and 69% to 

53%, respectively). As before, cefepime showed a high susceptibility when using 

the SDD interpretation (80%). Nearly all of the 103 isolates which were categorized 

as CRE based off of ertapenem resistance alone were susceptible to meropenem 

(92%) 

 

Survival Analysis 

 

CRE vs. CSE 

The analysis of 14- and 30-day composite outcome between the CRE and CSE 

groups is presented in Table V-4. Overall, 29 composite outcomes were observed 

in the CRE group within 30 days of follow-up (18 mortality and 11 discharge to 

hospice), while 996 were observed in the CSE group over the same duration (632 
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mortality and 364 discharge to hospice). The total patient times included in these 

groups were 1,180 and 51,192 after 14 days of follow-up and 1,679 and 64,628 

days after 30 days. Many of these outcomes occurred within the first 14 days of 

follow-up, with 22 (14 mortality and 8 discharge to hospice) and 816 (520 mortality 

and 296 discharge to hospice) composite outcomes being observed within the 

CRE and CSE groups, respectively. These correspond to crude RRs [95% CI] of 

1.46 [0.93, 2.32] and 1.58 [1.05, 2.37] and HRs [95% CI] of 1.18 [0.77, 1.8] and 

1.14 [0.79, 1.65] after 14 and 30 days, respectively. 

 

In the IPTW-adjusted analysis, baseline balance was achieved with respect to all 

covariates included in the propensity score model between the patients in the CRE 

and CSE groups except for time-to-index culture and, to a lesser degree, 

admission source (discussed in a later section). The SMD values obtained before 

and after IPTW-adjustment are reported in Table K.8 and displayed visually in 

Figure K.7. The IPTW adjusted RRs [95% CI] were 1.11 [0.7, 1.74] and 1.19 [0.8, 

1.77] after 14 and 30 days, while the IPTW-adjusted HRs [95% CI] were 0.98 [0.61, 

1.57] and 0.99 [0.65, 1.51] during the same follow-up. Crude and IPTW-adjusted 

KM curves for 30-day follow-up are illustrated in Figures 5 and 6. The same are 

included for 14-day follow-up in the supplementary materials (Figures K.1 and 

K.2). 
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CNSE vs. CSE 

Due to sufficient similarities noted between most of the CRE isolates in our study 

and the CNSE isolates (discussed later), we decided to additionally perform the 

proposed study in a cohort with the CNSE exposure definition, with all other 

methodology consistent with the main analysis. The results of this follow-up study 

may be found in Table K.5. In this analysis, 228 patients were included in the 

CNSE group with 6,946 patients being included in the CSE. After 14 days, 40 and 

816 composite outcome events were observed in the CNSE and CSE groups with 

55 and 999 occurring after 30 days. The total patient times observed in these 

groups were 2,094 and 51,152 days after 14 days of follow-up and 2,904 days and 

64,695 days after 30 days of follow-up. The crude RRs [95% CI] and HRs [95% 

CI] were 1.49 [1.06, 2.11] and 1.21 [0.88, 1.66] after 14 days and 1.68 [1.24, 2.27] 

and 1.25 [0.95, 1.64] after 30 days. After IPTW-adjustment, these estimates were 

1.11 [0.79, 1.57] and 0.95 [0.66, 1.36] after 14 days and 1.25 [0.93, 1.68] and 1.02 

[0.75, 1.4] after 30 days, respectively. Note that baseline balance was achieved 

following IPTW-adjustment in this analysis as well except for time-to-index, as 

presented in Table K.9 and Figure K.8. KM curves of this analysis were not 

included in the Supplementary Materials as the estimates were highly similar to 

the CRE vs. CSE analysis. 

 

Bloodstream Infection on the Index Date 

We were also interested in determining the comparative risk of composite outcome 

in patients having a bloodstream infection on the index date. The results of this 
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analysis are presented in Table K.6. In this subgroup analysis, 26 patients in the 

CRE group and 1,337 in the CSE group had bloodstream infections on the index 

date. The number of composite outcomes observed in these groups were 11 and 

276 after 14 days and 13 and 311 after 30 days. The patient times observed were 

211 and 10,435 days after 14 days of follow-up and 311 and 13,405 days after 30 

days of follow-up. The crude RRs [95% CI] and HRs [95% CI] estimated were 2.05 

[1.0, 4.2] and 2.05 [1.12, 3.75] after 14 days and 2.15 [1.09, 4.23] and 1.99 [1.14, 

3.47] after 30 days. Due to the limited sample size included in the CRE group in 

this subgroup analysis, statistical adjustment was not performed. 

 

Following the results observed in the CRE subgroup analysis, we investigated a 

cohort of patients in which a bloodstream infection was present on the index date 

using the CNSE exposure (see discussion), the results of which are presented in 

Table K.7. In this analysis, 69 patients were included in the CNSE group and 1,405 

in the CSE group. The number of composite outcomes observed in these groups 

were 23 and 289 after 14 days and 27 and 327 after 30 days. The total patient 

times observed were 577 and 10,964 days after 14 days of follow-up and 788 and 

14,070 days after 30 days of follow-up. These observations resulted in crude RRs 

[95% CI] and HRs [95% CI] of 1.62 [0.99, 2.64] and 1.56 [1.02, 2.38] after 14 days 

and 1.68 [1.06, 2.67] and 1.56 [1.05, 2.31] after 30 days. Following IPTW-

adjustment, the RRs [95% CI] and HRs [95% CI] observed were 1.50 [0.93, 2.43] 

and 1.42 [0.85, 2.36] after 14 days and 1.48 [0.96, 2.29] and 1.38 [0.85, 2.24] after 

30 days. As with the previous analyses, baseline balance with regard to the SMD 
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values was reached following IPTW-adjustment; although, the SMD values were 

higher in this analysis, with several values remaining slightly higher than 0.1. 

These data are presented in Table K.10 and Figure K.9. Crude and IPTW KM 

curves of 14- and 30-day composite outcome between the CNSE and CSE groups 

of this cohort are also presented in Figures K.3, K.4, K.5, and K.6. 

 

Sensitivity Analysis 

When performing the analysis using the outcome all-cause mortality after 14 and 

30 days instead of the composite outcome, the crude estimates for both RR and 

HR largely remained the same with increases in the width of the 95% CI due to 

fewer events being observed. The IPTW-adjusted estimates also tended to agree 

with the direction of the point estimate obtained in the main analysis, but the point 

estimates showed a decrease in magnitude. In the second sensitivity analysis, the 

more restricted study design led to a decrease in the sample size included. In terms 

of the effect measures, the crude estimates of RR and HR remained largely the 

same, while the IPTW-adjusted estimates tended to decrease in magnitude from 

the main analysis as before. In the final sensitivity analysis, when stratified by time-

to-index being ≤ 72 hours or > 72 hours, the RRs [95% CI] were 1.5 [0.74, 3.05] 

and 1.23 [0.67, 2.25] after 14 days and 1.97 [1.09, 3.54] and 1.11 [0.63, 1.96] after 

30 days. The HRs [95% CI] were 1.33 [0.69, 2.57] and 1.06 [0.61, 1.85] after 14 

days and 1.53 [0.9, 2.61] and 0.92 [0.55, 1.54] after 30 days. The results obtained 

from all the sensitivity analyses may be found in the Sensitivity Analysis 
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Appendix. Details about the sensitivity analysis of the CNSE vs. CSE comparison 

are also found in this resource. 

 

Discussion: 

 

To maintain vigilance against CRE infections, the most up-to-date estimates of 

their impact against patients must be understood. However, reliable estimates of 

these outcomes are difficult to achieve in healthcare systems in which CRE are 

not endemic. At a large academic medical center, we estimated the difference in 

a composite outcome of all-cause mortality and discharge to hospice between 

patients with CRE infections vs. those with CSE infections over the course of a 

decade in a retrospective cohort design. The use of a composite outcome along 

with a longer study period were utilized to improve our ability to detect any effect 

of CRE infections at our institution. 

 

In both our crude and IPTW-adjusted analysis, we provided estimates of the 

cumulative incidence as well as the incidence density of the composite outcome 

with the RR and HR, respectively. Previous studies have often reported only 

measures of cumulative incidence, often adjusted odds ratios obtained from 

logistic regression. While valuable, interpretation of cumulative incidence 

estimates obtained from heavily right censored data requires a strong assumption 

that patients do not experience the desired outcome after they are lost to follow-

up, often due to hospital discharge. In our study, after confounding adjustment 
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using IPTW, we observed RRs [95% CI] of the composite outcome of 1.11 [0.7, 

1.74] after 14 days and 1.19 [0.8, 1.77] after 30 days; however, the HRs [95% CI] 

were 0.98 [0.61, 1.57] and 0.99 [0.65, 1.51]. Although neither of these estimates 

are statistically significant at an alpha = 0.05, the incidence density between the 

overall CRE and CSE groups were highly similar even if a greater proportion of 

outcomes were observed within the CRE group than the CSE group relative to 

their total populations. Inspection of the IPTW-adjusted KM curves also supports 

this conclusion, as the survival curves are strongly overlapping for both durations 

of follow-up. 

 

When considering the MIC comparisons between the CRE and CSE isolates, a 

high degree of cross resistance was noted in the CRE group, especially among 

beta-lactam agents, as agents from every tested antimicrobial class showed 

decreases in susceptibility. Notably, the susceptibility of meropenem observed in 

the CRE isolates (71%) was higher than would be expected in a collection of 

isolates in which carbapenemase-production was the prevailing phenotype. (184) 

The same is true of cefepime, especially when using the SDD cut-off (65% 

susceptible). Taken together with the high prevalence of Enterobacter species 

(59%) in the CRE group, our CRE population appears to be largely driven by a 

non-carbapenemase-producing-CRE (NCP-CRE) phenotype rather than a 

carbapenemase-producing-CRE (CP-CRE) phenotype. In fact, the NCP-CRE 

population identified in our study shares strong similarities to those reported by 



 

 244 

Tamma et al in a recent study comparing outcomes between CP-CRE and NCP-

CRE. (398) 

 

While genetic testing was not available to definitively separate these two 

phenotypes, we divided the CRE isolates into subgroups determined by whether 

the isolate was classified as a CRE only by ertapenem resistance or if the isolate 

demonstrated resistance to a carbapenem with anti-pseudomonal activity, namely 

meropenem. Tamma et al have shown that ertapenem MICs in the range of 0.5, 

1, and 2 may be used as pragmatic cut-off points with high sensitivity. (399) 

Furthermore, in a recent analysis of the isolates contributed to the CDC AR 

Resistance Laboratory Network from 2017 – 2019, 89.8% of the 8,529 CP-CRE in 

which ertapenem was tested were resistant. Conversely, only 10% of the 8,404 

CP-CRE in which meropenem was tested were susceptible. (400) For 

conciseness, we will refer to those CRE isolates selected based on ertapenem 

resistance only as NCP-CRE and the others as CP-CRE. 

 

The majority of CRE isolates in the main analysis would be considered NCP-CRE 

(76%) under this assumption. Large differences were observed between the MIC 

distributions of the NCP-CRE and CP-CRE. Several non-beta-lactam agents, such 

as ciprofloxacin, gentamicin, levofloxacin, sulfamethoxazole/trimethoprim, and 

tobramycin showed differences in susceptibility of ≥ 15% points. Furthermore, 

these agents displayed similar susceptibilities to those observed in the CSE 

isolates, which suggests that much of the observed decline in susceptibilities was 
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driven by the CP-CRE isolates. When considering the beta-lactam susceptibilities, 

similar susceptibility profiles were noted between all but cefepime and meropenem 

once again. The cefepime susceptibility was much higher at the susceptibility 

breakpoint (51% vs. 13%) and even higher at the SDD breakpoint (80% vs. 23%) 

in the NCP-CRE isolates than the CP-CRE isolates. Also, the NCP-CRE isolates 

overwhelmingly exhibited susceptibility to meropenem (92%).  

 

Due to the similarities that would be expected between the resistance mechanisms 

produced by NCP-CRE and CNSE isolates, we decided to perform the cohort 

study identically as the main analysis in a cohort of patients where the exposure 

group was defined using the CLSI intermediate breakpoints for the carbapenems 

instead of the resistance breakpoints as before. Theoretically, this would allow us 

to investigate our study question in a larger sample size of patients with infections 

caused by bacteria with similar resistance profiles to NCP-CRE and estimate the 

composite outcome incidence more precisely. Comparisons of the MICs obtained 

from the CRE isolates and the non-CRE CNSE isolates additionally included in this 

cohort are presented in Tables K.3 and K.4. Notably, the non-CRE CNSE isolates 

compared more favorably to the NCP-CRE isolates specifically (Tables K.4) than 

the combination of CP-CRE and NCP-CRE isolates (Tables K.3). The most 

intriguing MIC difference between the NCP-CRE and non-CRE CNSE isolates was 

the susceptibility to meropenem. As mentioned before, the % susceptibility of 

meropenem against the NCP-CRE isolates was 92%, but this fell to 62% in the 

non-CRE CNSE isolates.  
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When comparing the risk of composite outcome in this new cohort, the estimates 

were nearly identical to the CRE vs. CSE comparison with greater precision due 

to the increased sample size. Following confounding adjustment in the IPTW-

analysis, the RRs [95% CI] of the composite outcome observed were 1.11 [0.79, 

1.57] after 14 days and 1.25 [0.93, 1.68] after 30 days, and the HRs [95% CI] of 

the composite outcome were 0.95 [0.66, 1.36] and 1.02 [0.75, 1.4]. Again, the risk 

of observing a composite outcome event appears to be elevated across the entire 

exposure population, but the incidence density did not differ between the groups. 

However, it should be noted that none of these estimates were statistically 

significantly at alpha = 0.05 following confounding adjustment. 

 

We were also interested in pursuing this question specifically in patients 

experiencing a bloodstream infection on the index date. Restricting analysis to this 

subgroup of patients provides several benefits, and many previous studies have 

specifically investigated only patients with bloodstream infections. (401–403) 

Infections of the bloodstream would be among the most likely to present with a 

difference in the desired outcome if in fact one does exist. Furthermore, patients 

having cultures positive from a critical sterile site are more likely to constitute a 

“true infection” compared to, for example, the urine where inclusion of patients with 

asymptomatic bacteriuria may be unavoidable. The major drawback of 

investigating only bloodstream infections is that the sample size of patients 

included in the analysis will be limited, which was a concern when designing the 



 

 247 

present study. When assessing the subgroup of patients having a bloodstream 

infection on the index date, only 26 patients were included in the CRE group and 

1,337 in the CSE group. However, 68 patients were included in this subgroup when 

the CNSE exposure definition was used. With this increased patient sample size, 

we decided to investigate our study question specifically in patients which had a 

bloodstream infection on the index date.  

 

It was important to create a new cohort built around the first qualifying hospital 

admission rather than analyzing the bloodstream infection subgroup of the overall 

CNSE vs. CSE analysis. Patients may have had subsequent qualifying admissions 

in the decade in which they had bloodstream infections which would not be 

assessed in the subgroup of the previous cohort. This would likely bias the results 

away from the null as several events would be missed, and the comparator group 

would likely have been affected to a greater extent due to the low prevalence of 

exposure. In the new cohort, the propensity score model did not include every 

variable used in the analysis of all infection types. Firstly, the composite variable 

of blood/respiratory culture on the index date was not considered appropriate 

because all these patients had bloodstream infections on the index. Furthermore, 

to prevent saturating the model, the variables encoding the presence of MRSA or 

a lactose-non-fermenting bacterial culture on the index date were also dropped 

from the model. The number of patients in which either of these variables were 

positive were few and would’ve been of little benefit compared to the cost of 

including them in the model with so few patients in the exposure group. 
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The bloodstream infection cohort included 69 patients in the CNSE group and 

1,405 in the CSE group. As mentioned earlier in the results, IPTW-adjustment 

reduced the SMD between the included variables in the propensity score for this 

subgroup analysis; however, the balance achieved was less than in the previous 

analyses with several variables essentially having SMD values near to or slightly 

higher than 0.1. Nevertheless, the IPTW-adjusted RRs [95% CI] and HRs [95% CI] 

of composite outcome observed in this patient subgroup were 1.50 [0.93, 2.43] 

and 1.42 [0.85, 2.36] after 14 days and 1.48 [0.96, 2.29] and 1.38 [0.85, 2.24] after 

30 days. While we cannot dismiss the possibility of no effect at an alpha = 0.05, 

these data are far less compatible with the null hypothesis than the overall analysis 

of CRE or CNSE patients and are suggestive of an increased risk caused by these 

resistant infections. These results also strongly suggest that the inclusion of 

patients having non-bloodstream infections diluted our ability to detect a difference 

in effect between the CRE or CNSE and CSE groups, especially given the large 

difference in the point estimates of the HRs after both 14 and 30 days of follow-up. 

Still, any precise estimate of the composite outcome in this cohort remains elusive 

due to the wide 95% CI.  

 

A strength of this study is the use of an “target trial” design, which strives to emulate 

a prospective trial through causal analysis of observational data. (404, 405) By 

utilizing IPTW-adjustment, we were able to provide estimates of RR and HR in a 

balanced population conditional on the included confounding variables. Within this 
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design, confounders and independent risk factors for experiencing the outcome 

were specified a priori from subject-matter expertise rather than statistical 

associations present within the data, as recommended by Hernan et al. (406) 

Strategies relying on statical criteria for confounder selection may lead to bias by 

adjusting on non-confounding variables or by omitting important confounders from 

the statistical model. One such example of inappropriate adjustment often utilized 

in studies measuring the overall comparative effect of CRE infections on patient 

outcomes is the inclusion of one or more variables encoding the resulting 

antimicrobial therapy. This may be the time-to-appropriate definitive therapy, 

receipt of appropriate empiric therapy, or similar constructions where the 

appropriateness is assessed by the MIC of the respective antimicrobial agent 

being used. As discussed in the introduction, delayed appropriate therapy due to 

resistance to routinely used treatments is thought to be a major contributor to the 

mortality associated with CRE infections. Conditioning on these variables would 

therefore make the estimation of the overall effect of CRE exposure on the 

outcome impossible. 

 

Another strength of our study was the long duration of the study timeline. This 

allowed us to estimate the risk of composite of all-cause mortality or discharge 

from hospice across at a medical center in a non-endemic area for CRE infections. 

We also performed an extensive sensitivity analysis to better understand the effect 

of key assumptions upon our results, which has not routinely been performed in 

similar studies. Along similar lines, we also performed extensive follow-up studies 
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to better estimate the desired composite outcome in patient cohorts which were 

highly similar to the primary CRE exposure group. These sensitivity analyses also 

allowed our study to examine the influence of possible biases implicit in our study 

design (discussed below). The added robustness and confidence in our estimates 

following these tests improves interpretability of the results. 

 

One potential limitation in this study is a possibility for misclassification bias. 

Because discharge ICD-9/10-CM codes may encode outcomes experienced 

during any point of the admission, a bacterial culture occurring before or after the 

index culture may be the “true infection”. The copresence of the index culture and 

the ICD-9/10-CM code would not meet the inclusion criteria if in fact the code 

referred to an event caused by a different culture. The result of the sensitivity 

analysis in which all “non-study” cultures were explicitly controlled using restriction 

suggests that this did not impact our findings, as the effect measures estimates 

remained largely unchanged with the exception of 95% CI precision loss caused 

by a more limited sample size. This was also the case in the CNSE vs. CSE 

bloodstream infection cohort (data not included).  

 

Another potential limitation remains in the consistency of the exposure definition. 

This may present as a patient which is included in the CRE group due to a urine 

tract infection but also has a CSE culture, which may be obtained from the blood. 

Without additional information, it may be reasoned that the risk of a patient 

experiencing the measured outcome would be driven more by the culture 
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consistent with the comparator group than with the exposure group in which the 

patient is included. This inconsistency cannot exist within the comparator group 

because co-isolation of a non-CSE culture was established as a censoring event. 

The result would be a biasing of the estimation away from the null hypothesis. 

However, using similar restriction on the CRE group as the CSE group, for 

example censoring patients in the CRE group on the culture date of a CSE isolate, 

would almost certainly initiate a selection bias. As CRE infections are largely 

healthcare associated infections, as evidenced by their later time-to-index, there 

would be a greater chance of isolating other non-CRE cultures. Furthermore, this 

inconsistency only threatens to introduce strong bias in situations similar to the 

example in which the infection caused by the non-exposure group isolate carries 

a higher risk of experiencing the composite outcome.  

 

Therefore, within the cohort specifically investigating the comparative risk of 

composite outcomes in patients having CNSE vs. CSE bloodstream infections, this 

risk would be unlikely to impact the outcome because the comparator group would 

never have an infection from a more critical site than the exposure group. More 

concretely, the co-isolation of a CRE and CSE blood culture occurred infrequently 

(11/69 [16%] patients) in the bloodstream infection cohort. This was similar in the 

sensitivity analysis which restricted “non-study” isolates (8/56 [14%] patients). 

When restricting this cohort even further by censoring patients on the date in which 

they have a culture from a different species than the index culture, only 3/50 (6%) 

patients in the exposure group also had a blood culture of a CSE bacteria. In all 
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instances, the RR and HR were nearly identical, which suggests that this issue 

had limited effect if any on our estimates. 

 

Another limitation in our study was the sample size in the intervention group being 

insufficiently large to allow more precise estimates. Furthermore, defining a “true 

infection” remains difficult to do in studies which lack expert chart review. Some 

studies have equated the presence of a culture with the presence of an infection, 

which, while pragmatic, likely overestimates the number of infections. We 

incorporated an additional condition that the patient must have had the culture and 

an ICD-9/10-CM code consistent with an infection/condition of the cultured body 

site. While this almost certainly improved our estimation given the number of 

patients excluded on this basis, we likely suffered from the same issue. Further 

study is needed to accurately distinguish active infections retrospectively with high 

specificity and sensitivity. Lastly, due to our cohort study being retrospective in 

design, there remains a possibility for unmeasured or residual confounding 

affecting the results.  

 

Conclusion: 

CRE infections remain a critical threat to healthcare. Considerable efforts have 

been made to address this treat, from infection control measures to novel 

antimicrobials. Our study sought to estimate the impact of these infections on 

patient outcomes compared to susceptible infections but was unable to provide 

conclusive evidence. Follow-up analyses were suggestive of an effect among 
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patients with bloodstream infections caused by CRE or CNSE, but even after a 10-

year study timeline, an insufficient number of patients were observed to precisely 

estimate the magnitude of effect. This study highlights the importance of 

multicenter collaboration in the study of CRE infections, as they will likely be 

necessary to observe an appropriately sized patient population. Future and 

present endeavors must continue to investigate best practices for the rapid 

identification and treatment of both CP-CRE and NCP-CRE in the ongoing struggle 

with this massive threat. 
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Table V-1: Baseline Covariates of Patients in CRE and CSE Groups 

Covariatesa Overall 
(N = 7,081) 

CRE 
(N = 128) 

CSE 
(N = 6,953) 

Age: Mean (SD) † 60.3 (16.4) 59.5 (15.5) 60.3 (16.4) 
Sex assigned at birth: Female† 4,224 (59.7%) 62 (48.4%) 4,162 (59.9%) 
Race 

   

    American Indian/Alaskan Native 5 (0.1%) 0 (0%) 5 (0.1%) 
    Black/African American 599 (8.5%) 6 (4.7%) 593 (8.5%) 
    Hispanic 11 (0.2%) 0 (0%) 11 (0.2%) 
    Native Hawaiian/Pacific Islander 7 (0.1%) 0 (0%) 7 (0.1%) 
    Unspecified 70 (1.0%) 2 (1.6%) 68 (1.0%) 
    White 6,389 (90.2%) 120 (93.8%) 6,269 (90.2%) 
Admission Source† 

   

    Clinic/physician office 783 (11.1%) 11 (8.6%) 772 (11.1%) 
    Hospital transfer 2,595 (36.6%) 66 (51.6%) 2,529 (36.4%) 
    Nonhealthcare origin 2,827 (39.9%) 38 (29.7%) 2,789 (40.1%) 
    Other health facility 469 (6.6%) 9 (7.0%) 460 (6.6%) 
    Unspecified 407 (5.7%) 4 (3.1%) 403 (5.8%) 
Infection Type at Indexb‡ 

   

    Blood 1,363 (19.2%) 26 (20.3%) 1,337 (19.2%) 
    Intra-abdominal 324 (4.6%) 7 (5.5%) 317 (4.6%) 
    Respiratory 784 (11.1%) 28 (21.9%) 756 (10.9%) 
    Skin/soft tissue 600 (8.5%) 11 (8.6%) 589 (8.5%) 
    Urine 4,074 (57.5%) 57 (44.5%) 4,017 (57.8%) 
Index Culture taken in ICU† 1,678 (23.7%) 51 (39.8%) 1,627 (23.4%) 
Time to Index (in days): Median (IQR) † 1.0 (0.0, 5.0) 5.5 (0.8, 15.0) 1.0 (0.0, 5.0) 
Post Index Length of Stay: Median (IQR) 6.0 (3.0, 13.0) 11.0 (5.0, 

20.3) 
6.0 (3.0, 13.0) 

Lactose-non-fermenting Culture at 
Index† 

296 (4.2%) 14 (10.9%) 282 (4.1%) 

MRSA Culture at Index† 219 (3.1%) 10 (7.8%) 209 (3.0%) 
Charlson Comorbidity Index 

   

    CCI Score at Index: Median (IQR) † 5.0 (3.0, 7.0) 5.0 (3.0, 7.0) 5.0 (3.0, 7.0) 
    Myocardial Infarction 1,050 (14.8%) 14 (10.9%) 1,036 (14.9%) 
    Congestive Heart Failure 1,590 (22.5%) 35 (27.3%) 1,555 (22.4%) 
    Peripheral Vascular Disease 780 (11.0%) 20 (15.6%) 760 (10.9%) 
    Cerebral Vascular Disease 877 (12.4%) 19 (14.8%) 858 (12.3%) 
    Dementia 717 (10.1%) 7 (5.5%) 710 (10.2%) 
    Chronic Pulmonary Disease 2,049 (28.9%) 48 (37.5%) 2,001 (28.8%) 
    Rheumatologic Disease 232 (3.3%) 7 (5.5%) 225 (3.2%) 
    Peptic Ulcer Disease 220 (3.1%) 5 (3.9%) 215 (3.1%) 
    Mild Liver Disease 1,035 (14.6%) 26 (20.3%) 1,009 (14.5%) 
    T2DM without Chronic Complications 2,225 (31.4%) 44 (34.4%) 2,181 (31.4%) 
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Table V-1: Baseline Covariates of Patients in CRE and CSE Groups 

Covariatesa Overall 
(N = 7,081) 

CRE 
(N = 128) 

CSE 
(N = 6,953) 

    T2DM with Chronic Complications 762 (10.8%) 17 (13.3%) 745 (10.7%) 
    Hemiplegia/Paraplegia 547 (7.7%) 10 (7.8%) 537 (7.7%) 
    Mild - Moderate Renal Disease 1,295 (18.3%) 28 (21.9%) 1,267 (18.2%) 
    Severe Renal Disease 445 (6.3%) 18 (14.1%) 427 (6.1%) 
    Any malignancyc 1,115 (15.7%) 15 (11.7%) 1,100 (15.8%) 

    Moderate-Severe Liver Disease 531 (7.5%) 19 (14.8%) 512 (7.4%) 
    Metastatic Solid Tumor 564 (8.0%) 5 (3.9%) 559 (8.0%) 
    Human Immunodeficiency Virus 29 (0.4%) 0 (0.0%) 29 (0.4%) 
Abbreviations: CCI: Charlson Comorbidity Index, CRE: Carbapenem-resistant 
Enterobacterales, CSE: Carbapenem-susceptible Enterobacterales, ICU: Intensive care unit, 
IQR: Interquartile range, MRSA: Methicillin-resistant Staphylococcus aureus, SD: Standard 
deviation, T2DM: Type 2 diabetes mellitus;  
a. Continuous variables are presented as Mean (SD) if parametric or Median (IQR) if 
otherwise, and ordinal/nominal variables are presented as N (%) 
b. Percentages may sum to > 100% because some patients have multiple infection types at 
index 
c. Includes lymphoma and leukemia, but excludes malignant non-melanoma neoplasm of skin 
†. Variable included in the propensity score model 
‡. Variable included in the propensity score model as dichotomous variable indicating whether 
patient had either a bloodstream or respiratory isolate cultured at index or not 

 



 

  

256 

 

Table V-2: Susceptibility Analysis of Index Cultures collected from Patients in CRE vs. CSE groups 

Antimicrobials 
CRE (n = 135) CSE (n = 7,907) 

n Min 
MIC MIC50 MIC90 Max 

MIC %S n Min 
MIC MIC50 MIC90 Max 

MIC %S 

Amikacin 134 2 8 8 64 99 7,891 1 8 8 64 100 
Ampicillin 135 16 32 32 128 0 7,834 4 32 32 512 29 
Ampicillin-Sulbactam 115 4 32 32 32 2 7,646 1 8 32 64 53 
Aztreonam 130 0.02 32 32 32 19 7,667 0.03 2 2 32 92 
Ceftazidime 132 0.5 32 32 32 14 7,822 0.13 0.5 2 32 93 
Ceftriaxone 121 0.25 64 64 64 5 4,102 0.02 1 64 128 78 
Cefepime 118 0.25 4 32 32 42 7,853 0.03 1 1 32 93 
Cefepime (SDD) 118 0.25 4 32 32 65 7,853 0.03 1 1 32 95 
Cefoxitin 132 4 32 32 32 8 7,765 4 4 32 512 81 
Cefazolin 130 2 32 32 32 2 6,709 1 2 32 32 51 
Ciprofloxacin 116 0.5 0.5 4 4 62 7,582 0.06 0.5 4 4 74 
Ertapenem 133 0.5 2 8 32 2 7,769 0.004 0.5 0.5 0.5 100 
Nitrofurantoin 105 16 128 128 128 28 6,821 2 16 128 128 75 
Gentamicin 128 0.5 2 16 16 80 7,773 0.5 2 2 64 92 
Levofloxacin 131 0.25 1 8 8 65 7,784 0.03 1 8 64 76 
Meropenem 132 0.03 1 8 32 71 7,846 0.02 1 1 1 100 
Piperacillin-Tazobactam 130 2 128 512 512 12 7,701 1 2 16 512 94 
Sulfamethoxazole-Trimethoprim 135 0.25 0.5 4 4 68 7,792 0.06 0.5 4 64 77 
Tetracycline 127 2 2 16 16 65 7,743 2 2 16 512 76 
Tobramycin 134 1 2 16 16 77 7,824 0.13 2 2 64 91 
Abbreviations: %S: percent susceptible, MICn: MIC necessary for inhibiting nth percent of isolates tested, SDD: Susceptible-dose-dependent 
CLSI susceptibility breakpoints were utilized for all antimicrobials. *Ceftriaxone was not routinely assessed for Gram-negative cultures 
throughout the entire study duration 
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Table V-3: Susceptibility Analysis of Index Cultures collected from Patients in CRE group Stratified on Carbapenem Resistant Phenotype 

Antimicrobials 
CRE resistant ≥ 1 anti-pseudomonal carbapenem 

(n = 27) CRE resistant only to Ertapenem (n = 92) 

n Min 
MIC MIC50 MIC90 Max 

MIC %S n Min 
MIC MIC50 MIC90 Max 

MIC %S 

Amikacin 31 8 8 16 64 97 103 2 8 8 8 100 
Ampicillin 32 16 32 32 32 0 103 16 32 32 128 0 
Ampicillin-Sulbactam 29 8 32 32 32 3 86 4 32 32 32 1 
Aztreonam 31 2 32 32 32 19 99 0.02 32 32 32 19 
Ceftazidime 31 0.5 32 32 32 13 101 0.5 32 32 32 14 
Ceftriaxone 28 1 64 64 64 4 93 0.25 64 64 64 5 
Cefepime 30 1 32 32 32 13 88 0.25 2 32 32 51 
Cefepime (SDD) 30 1 32 32 32 23 88 0.25 2 32 32 80 
Cefoxitin 31 4 32 32 32 19 101 4 32 32 32 5 
Cefazolin 30 4 32 32 32 0 100 2 32 32 32 2 
Ciprofloxacin 29 0.5 4 4 4 48 87 0.5 0.5 4 4 67 
Ertapenem 30 0.5 2 8 8 10 103 2 2 8 32 0 
Nitrofurantoin 26 16 128 128 128 31 79 16 128 128 128 27 
Gentamicin 28 2 2 16 16 54 100 0.5 2 16 16 88 
Levofloxacin 32 1 1 8 8 53 99 0.25 1 8 8 69 
Meropenem 31* 1 8 16 32 3* 101 0.03 1 1 2 92 
Piperacillin-Tazobactam 32 2 128 512 512 16 98 2 128 512 512 10 
Sulfamethoxazole-Trimethoprim 32 0.5 2 4 4 53 103 0.25 0.5 4 4 73 
Tetracycline 30 2 2 16 16 70 97 2 4 16 16 63 
Tobramycin 32 2 4 16 16 53 102 1 2 8 16 84 
Abbreviations: %S: percent susceptible, MICn: MIC necessary for inhibiting nth percent of isolates tested, SDD: Susceptible-dose-dependent 
CLSI susceptibility breakpoints were utilized for all antimicrobials 
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Table V-4: Composite Outcome Assessment of CRE vs. CSE Infections 
 14-day Composite Outcome 
 CRE (n = 128) CSE (n = 6,953) 
# observed events 
(mortality, hospice) 

22 
(14, 8) 

816 
(520, 296) 

Patient Follow-up 
(Patient days) 1,180 51,192 

 Crude IPTW 
RR [95% CI] 1.46 [0.93, 2.32] 1.11 [0.7, 1.74] 
HR [95% CI] 1.18 [0.77, 1.8] 0.98 [0.61, 1.57] 
 30-day Composite 
# observed events 
(mortality, hospice) 

29 
(18, 11) 

999 
(634, 365) 

Patient Follow-up 
(Patient days) 1,679 64,751 

 Crude IPTW 
RR [95% CI] 1.58 [1.05, 2.37] 1.19 [0.8, 1.77] 
HR [95% CI] 1.14 [0.79, 1.65] 0.99 [0.65, 1.51] 
Abbreviations: HR: Hazard Ratio, IPTW: Inverse Probability of Treatment Weighting, RR: Relative Risk 
Composite outcomes included either all-cause mortality or discharge to hospice at the specified follow-up. Relative risks 
and 95% confidence intervals were estimated using negative binomial regression with log link function. Hazard ratios 
and 95% confidence intervals were estimated using Cox proportional hazard regression. 
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Figure V-1: Inclusion and Exclusion Criteria 
*Some patients had multiple exclusion criteria met, so the overall count will be less than the sum of the counts of each 
variable. 
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Figure V-2: Cohort Study Design Diagram 
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Figure V-3: Annual distributions of Index Cultures for CRE and CSE groups by Species 
The line plot above each year corresponds to the total number of CRE or CSE isolates cultured on the index date. The bar 
plot below this count represents the relative contribution of each species to the overall count. 
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Figure V-4: Breakdown of Index Culture Sources by Species 
This figure compares the relative contribution of each species to the culture source between the index 
cultures of the CRE vs. CSE groups. 
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Figure V-5: Crude Kaplan Meier Survival Curve Comparing 30-day Mortality between CRE and CSE Infections 
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Figure V-6: IPTW-adjusted Kaplan Meier Survival Curve Comparing 30-day Mortality between CRE and CSE Infections 
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VI. Conclusions and Future Prospects 

 CRE infections have routinely been reported to be associated with a higher 

mortality risk than infections caused by less resistant pathogens. (121, 407, 408) 

Even in patients who survive, the longer hospital stay and complications lead to a 

larger healthcare cost burden. (391, 392) CRE are a continuing global health crisis 

and, despite infection prevention and control measures, the number of cases in 

the United States has remained stable. (1) Widespread use of broad-spectrum 

antibiotics will continue to provide selection pressures favorable for the persistence 

and spread of CRE. This study aimed to contribute to the knowledge of CRE by 

investigating in-vitro susceptibilities of novel agents with activity against CRE, 

evaluating simulated antimicrobial exposures using static a time-kill model and 

analyzing a large retrospective collection of patient EHR data to determine the 

impact of CRE at an academic medical center over the course of a decade.  

 

We report susceptibility findings similar to those which have been published by 

others in a collection of isolates which includes both KPC- and VIM-producing CRE 

as well as those not presenting with an identified carbapenemase-producing 

phenotype. These antimicrobials include plazomicin, cefiderocol, and aztreonam-

avibactam. (185, 409, 410) The high levels of susceptibility demonstrated against 

our isolates is further evidence of the potent activity these agents possess against 

CRE and the current lack of readily employable resistance mechanisms identified 

in our CRE population against these agents.  
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The exception to this was eravacycline, which did not exhibit potent activity against 

our CRE isolates. This was surprising as eravacycline was rationally designed to 

evade many of the commonly encountered tetracycline resistance determinants 

and has demonstrated more consistent activity elsewhere. (411) When comparing 

the MICs of eravacycline to an earlier antimicrobial from the same class, 

tigecycline, we noted that, while eravacycline tended to be the more potent 

antimicrobial, neither agent produced MICs ≤ 0.5 for most isolates. This strongly 

suggests that our CRE isolates possess a collection of resistance determinants 

which have not been widely reported. Given that neither of these drugs are widely 

used at our institution, even in the context of CRE, this implies patients may be 

receiving selection pressures independent of our institution (antimicrobial use from 

another institution, unknown antimicrobial resistance reservoir) or more likely that 

co-selection of this phenotype is being favored within our CRE isolates. The latter 

scenario would be especially concerning because it would represent an already 

existent resistance population evading next generation therapies. As tetracycline 

resistance determinants are not readily identifiable using the methods presented 

in this study, future study will be necessary to determine the underlying 

mechanisms leading to the observed lack of eravacycline and tigecycline activity. 

 

Another finding we reported was the significant impact breakpoint changes would 

have upon the susceptibility demonstrated by aminoglycosides and tetracyclines 

against our CRE population. Beginning with aminoglycosides, plazomicin exhibited 

the most consistent susceptibility against our CRE isolates, though amikacin was 
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also highly susceptible at the current CLSI breakpoint. This perceived activity 

drops precipitously when applying a breakpoint of ≤4 µg/mL, which has been 

suggested as a more reasonable cutoff. (162) This was also demonstrated in a 

large collection of CRE, MDR, and XDR isolates from the SENTRY study (1,081 

isolates in total). (161) Similarly, we found that when applying more conservative 

breakpoints recommended for tigecycline in our CRE, the susceptibility fell even 

more dramatically than that of amikacin.  

 

These results are alarming because they suggest that many patients may be 

receiving suboptimal therapy. The primary use of aminoglycosides and tigecycline 

in combination therapy regimens likely limits the noticeable impact on patients, as 

suggested by Ambrose, and breakpoints for combinatory use are not currently 

available to systematically assess these regimens. (162) However, artificially 

inflated susceptibility may steer clinicians to select the existing therapy which will 

be more affordable and have more associated clinical data available. This may 

increase the likelihood of microbiological failure and put the patient at risk, 

especially if the agent is administered as monotherapy.  

 

Our study is one of the only studies to date which combined plazomicin or amikacin 

with non-carbapenem beta-lactams to investigate their ability to synergize with 

these aminoglycosides in CRE. Furthermore, our exclusive focus on VIM-

producing CRE provided some much-needed data on the use of plazomicin in 

these isolates. We found that plazomicin exhibited bactericidal activity in all but 3 
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isolates as a monotherapy exposure. This was a particularly interesting finding as 

the concentrations of plazomicin greatly exceeded the modal MICs for these 

isolates. The expression of AMEs would not explain this disparity as an AME or 

collection of AMEs able to limit plazomicin to bacteriostatic activity in the time-kill 

assay would likely have also led to an elevated MIC in BMD. Adaptive resistance 

may offer a viable explanation, though this may be mediated by several 

mechanisms. Efflux pumps have been shown to extrude aminoglycosides from 

several species, leading to variable protection. (412, 413) Also, disruption of the 

outer membrane can trigger the PhoP-PhoQ and PmrA-PmrB systems to modify 

the LPS to evade further insult. (130) Because aminoglycosides are known to enter 

the outer membrane via disruption of the interaction between the Lipid A 

component of LPS and stabilizing cations, this rearranging of the LPS outer 

membrane may affect the ability of the aminoglycoside to enter the cell. (159, 414) 

The fact that PhoP-PhoQ have been implicated in aminoglycoside resistance in 

Pseudomonas aeruginosa gives further credence to this possibility. 

 

Of similar interest is the comparative activity of the meropenem/amikacin and 

meropenem/plazomicin combinations against isolate EC_53. This is the lone 

isolate in which meropenem/plazomicin did not achieve bactericidal activity, yet 

the meropenem/amikacin achieved bactericidal activity in all tested isolates, 

including EC_53. Non-selective adaptive measures such as the PhoP-PhoQ 

PmrA-PmrB systems would be expected to affect both aminoglycosides as they 

both enter the Gram-negative bacterial outer membrane via disruption of the 
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divalent cation interaction with the negatively charged LPS head groups. Efflux 

pumps can selectively target specific agents given their physiochemical 

composition, but the similarities between these aminoglycosides would likely make 

them substrates for the same pumps. Additional work is needed to elucidate the 

underlying mechanisms involved. 

 

Combining cefepime or piperacillin/tazobactam with plazomicin resulted in killing 

activity that mirrored the activity of plazomicin alone, which suggested that these 

beta-lactams did not meaningfully add to this combination in our CRE at the tested 

time points. This study did not employ an early sampling strategy sufficient to 

investigate the impact of these combinations on the early killing curve. However, 

the combination of these beta-lactams with amikacin achieved sustained killing 

activity against several isolates in which either monotherapy exposure led to total 

regrowth. This occurred similarly for both combinations against 3 isolates, with the 

cefepime/amikacin combination additionally strongly synergizing with an additional 

2 isolates. Although the activity of these combinations was rather inconsistent, the 

ability to achieve bactericidal killing with a non-carbapenem beta-lactam in 

combination with an aminoglycoside against CRE suggests that there may be a 

role for these agents. Further investigation is required to uncover predictors of 

when these combinations may serve as viable options.  

 

Aztreonam/avibactam was among the most active exposures tested, achieving 

bactericidal activity in all experiments tested. This combination in patients has 
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additionally been administered in combination with ceftazidime because avibactam 

may only be acquired in combination with ceftazidime, but this agent was not 

required for aztreonam/avibactam to exhibit potent bactericidal killing. 

Furthermore, ceftazidime would not be expected to meaningfully contribute to this 

combination as it would rapidly be hydrolyzed by the VIM enzyme. In comparison 

to meropenem/amikacin or meropenem/plazomicin, the other most active agents 

tested in this study, aztreonam/avibactam likely presents the best adverse effect 

profile when considering use in patients. However, since performing this study, 

cefiderocol has become available, and numerous other beta-lactam options with 

activity against MBLs are in last-phase clinical trials. Future work will be needed to 

identify the appropriate treatment selection algorithm for treating patients with MBL 

infections.  

 

This study also sought to investigate CRE infections at UK HealthCare using a 

retrospective cohort study design, which evaluated patients from 2010 – 2019. 

Among patents having an infection caused by E. coli, E. cloacae, K. aerogenes, K. 

oxytoca, and/or K. pneumoniae during their first hospitalization of the decade, the 

incidence of CRE infection was 1.8% across the 10 years. This finding is consistent 

with other reported values, though considerable variability may be seen depending 

on the endemicity of CRE in the surveyed region and whether or not CRE 

colonization was also considered in the prevalence calculation. A recent study 

performed in a non-endemic academic medical center reported a prevalence of 

0.3% from 2014 – 2016; however, this study analyzed all Enterobacteriaceae 
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cultures during this time. (415) On the other hand, in a multicenter study performed 

in New York and New Jersey, which are known to be endemic for KPC, the 

prevalence of bloodstream infections caused by carbapenem-resistant K. 

pneumoniae, E. coli, and E. cloacae were 9.7%, 0.1%, and 2.2%, respectively. 

(416) 

 

As has been shown before, CRE isolates demonstrated cross-resistance profiles 

across many antimicrobial classes, likely due to the accumulation of multiple 

resistance phenotypes. (410, 417) As expected, the susceptibility to other beta-

lactams sharply declined in the CRE isolates compared to CSE isolates. 

Meropenem and cefepime were less impacted than other beta-lactams, especially 

meropenem which remained susceptible in 71% of CRE isolates. When using the 

susceptible-dose-dependent category for cefepime, 65% of the CRE isolates 

remained susceptible. Aside from the beta-lactam agents, most other agents 

dropped in % susceptibility by ~ 10 % points. Amikacin and nitrofurantoin are the 

notable exceptions with the former changing very little while the latter dropped from 

75% to 28% susceptible. Furthermore, when comparing the susceptibilities 

between the presumed NCP-CRE vs. CP-CRE, the % susceptible for the 

fluoroquinolones, aminoglycosides, and sulfamethoxazole-trimethoprim were 

notable higher in the NCP-CRE and return to nearly the same % susceptible 

reported in the CSE group. A similar finding was recently reported in a prospective, 

multicenter cohort study of CRE infections. (418) Taken together these findings 

may suggest that the acquisition of mobile genetic elements bearing resistance 
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determinants to non-beta-lactam antimicrobials may be less frequent among NCP-

CRE. 

 

Although the NCP-CRE phenotype exhibited a less resistant phenotype than the 

CP-CRE, NCP-CRE was by far the most prevalent CRE phenotype observed at 

our academic medical center during the study. According to a large sampling of 

CRE isolates from 2017 – 2019 by the Antibiotic Resistance Laboratory Network, 

only 35% of the 42,006 tested Enterobacterales had a detectable carbapenemase 

gene, which suggests that NCP-CRE is a highly prevalent CRE phenotype across 

the US. (400) NCP-CRE infections present a unique challenge because, unlike 

with CP-CRE, the carbapenem resistance phenotype is not mediated largely by 

one easily detectable gene. This will make efforts of early detection challenging 

and may lead to prolonged inappropriate empiric therapy for these patients even 

with the benefit of rapid diagnostic testing. Furthermore, David van Duin et al 

recently demonstrated similar outcomes between CP- and NCP-CRE in a 

prospective, multicenter cohort study, which emphasizes the need to focus on both 

of these phenotypes. (418) 

 

As previously discussed in Chapter V, many similar publications have reported 

only a measure of cumulative incidence, often an adjusted odds ratio (aOR) 

obtained from a logistic regression. Cumulative incidence is a useful measure but 

is not as informative as the incidence density for multiple reasons. Firstly, the 

cumulative measure only reports the proportion of patients experiencing the 



 

 273 

outcome within the respective population; however, incidence density considers 

not only the number of observed events, but their timing during follow-up as well 

as the risk set of patients at any given time. This last point is especially applicable 

when using hospital admission data because observation of outcomes may only 

be made when patients remain admitted. Following discharge or any other 

censoring event, patients may no longer be observed, and knowledge of whether 

they experience the outcome is unknown without using other outside data. 

Because cumulative incidence measures do not account for this right-censoring, 

their interpretation requires an assumption be made that the patient did not 

experience the outcome within the timeframe between their censoring date and 

the end of follow-up. For this reason, the present study reported estimates of both 

cumulative incidence and incidence density. 

 

Another unique approach utilized in our study was the use of the “target trial” 

design. (404, 405) This design strives to use observational data to emulate the 

analogous prospective study which would ideally be performed to answer the 

proposed question. While concepts such as blinding and randomization may not 

be applied to retrospective data, many biases commonly associated with 

observational studies may be mitigated, and in some cases, avoided altogether 

through careful application of trial design and causal inference principles. Among 

these considerations are the confounders and independent predictors of mortality 

which need to be adjusted to obtain unbiased estimates of the effect being 

investigated. Consideration of the causal framework using subject-matter 
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expertise in an a priori manner allows for selection of a covariate set sufficient to 

control confounding while mitigating the risk of introducing bias to the study 

through inappropriate adjustment practices, which may be more likely when using 

automated selection techniques based strictly on statistical associations. (406)  

 

Overall, the estimation of the RR and HR of a composite outcome of all-cause 

mortality or discharge to hospice after 14 and 30 days of follow-up between the 

overall CRE vs. CSE groups were not statistically significant at the a priori specified 

alpha = 0.05, with IPTW-adjusted RRs [95% CI] and HRs [95% CI] of 1.11 [0.7, 

1.74], and 0.98 [0.61, 1.57] and 1.19 [0.8, 1.77] and 0.99 [0.65, 1.51], respectively. 

This remained true when performing the study identically using an exposure 

definition of carbapenem-non-susceptible instead of carbapenem-resistant; 

although, the precision of the estimation improved. Although the RR [95% CI] 

following IPTW adjustment was 1.25 [0.93, 1.68], the HR [95% CI] was 1.02 [0.75, 

1.4]. This cumulative incidence estimate suggests an effect across the population, 

but, again, the assumption that patients don’t experience the outcome following 

discharge during the follow-up window is unverifiable given our data and may be 

unreasonable. However, the use of the CNSE exposure is likely a more 

appropriate definition for our institution given the similarities expected between 

CNSE and NCP-CRE. Furthermore, the similarity of the point estimates when 

applying this broader exposure term suggests that the crude and IPTW-adjusted 

composite outcome rates may also be similar between patients experiencing these 

infections.  
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The observed comparative risk of composite outcome after both 14- and 30-day 

follow-up were more strongly suggestive of an effect in a cohort which only 

included patients which had a bloodstream infection on the index date with an 

exposure definition of CNSE. The IPTW-adjusted RRs [95% CI] and HRs [95% CI] 

were 1.50 [0.93, 2.43] and 1.42 [0.85, 2.36] after 14 days and 1.48 [0.96, 2.29] and 

1.38 [0.85, 2.24] after 30 days of follow-up. Inspection of the IPTW-adjusted KM 

curves reinforces the notable difference observed in this cohort compared to the 

CRE vs. CSE cohorts which included all infection types at index, which were 

largely overlapping following IPTW-adjustment. The stark contrast between the 

bloodstream infection cohort vs. those including all infection types supports the 

conclusion that the effect of the more resistant infection on composite outcome 

would be greater in bloodstream infections.  

 

While the evidence strongly suggested there was an increase in the comparative 

risk of experiencing a composite outcome event in CNSE bloodstream infections, 

precise estimation of any effect remained elusive, even when assessing patients 

at a large academic center over a long timeframe. The wide 95% CI of the IPTW-

adjusted RRs and HRs after 14 and 30 days in the bloodstream infection cohort, 

where the greatest effect was estimated, were consistent with a range of values 

from a ~15% protective effect all the way to an increased risk of ~125%. The low 

prevalence of CRE, or even CNSE, at our institution provided too few patients in 

the exposure group to provide conclusive evidence of an effect of any size. This 
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encourages the need for studies conducted across multiple health centers and 

longer durations to include enough patients to obtain more precise estimates. 

Large databases, such as the Premier Healthcare Database, which contain 

hospital admission data across a wide range of healthcare centers have been one 

option utilized by investigators investigating similar questions. (391, 419) The 

Antibacterial Resistance Leadership Group (ARLG) have recently combined novel 

methodologies with a prospective, multicenter cohort design to evaluate CRE 

outcomes, though these outcomes were compared between CRE phenotypes 

instead of a CSE control. (420)  

 

In summation, this study has contributed to our understanding of CRE through 

multiple methods, and in the process has generated subsequent questions worthy 

of investigation. First and foremost, during these studies, novel antimicrobial 

agents have become clinically available, and several are in late phase clinical 

trials. To maintain an upper hand in the ongoing struggle with antimicrobial 

resistance, it is imperative that these new agents be rationally and responsibly 

used to increase their longevity and minimize the selective pressure for 

antimicrobial resistance. These agents could be tested on the same CRE library 

utilized in these studies to provide needed comparative data between novel agents 

and combinations of agents with CRE activity. 

 

Given the most recent breakpoint changes made by CLSI to the aminoglycosides, 

plazomicin may soon receive an increase in use due to its relatively high potency. 
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(421) Plazomicin was among the most active agents tested in our studies and 

showed great promise as a combination partner with a beta-lactam. Testing of this 

agent against other CRE phenotypes, including KPC- and OXA-48-like-producing 

CRE, with various partner beta-lactams will increase our understanding of how 

best to utilize this agent. Investigation into other MDR Gram-negative resistance 

phenotypes, such as ESBL and AmpC, may also be of value, especially in areas 

with a high prevalence of AME production where the lowered breakpoints may limit 

the predicted activity of other aminoglycosides. Lastly, identifying the 

mechanism(s) by which isolates 53, 134, and 608 evaded bactericidal killing of 

plazomicin may provide valuable information on adaptive resistance against this 

antimicrobial. 

 

The investigation of CRE at UK HealthCare over the previous decade has provided 

additional avenues for future studies. The considerable population of CRE patients 

which appeared to exhibit an NCP-CRE phenotype increases the urgency to 

analyze this CRE phenotype further. More importantly, the most recent data 

reported from the CDC AR Isolate Laboratory Network suggest that this phenotype 

is a highly prevalent CRE phenotype in the United States. (400) The IDSA currently 

recommends treatment of organisms which are resistant to ertapenem but 

susceptible to meropenem with 2 grams meropenem every 8 hours using a 

prolonged infusion of 3 hours. However, this recommendation currently has limited 

supporting data. (212) Ideally this matter would be settled with a prospective 
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randomized controlled trial; however, the low prevalence of CRE would likely 

require a large multicenter study to enroll a sufficient number of patients.  

 

Instead, in-vitro time-kill models could be used to rapidly analyze various simulated 

meropenem concentrations against NCP-CRE of various resistance backgrounds. 

Ideally, dynamic time-kills performed for durations longer than 24 hours would also 

be performed to interpret the effect of prolonged infusion versus intermittent bolus 

exposures and assess the development of resistance to therapy. Additionally, the 

use of retrospective cohort studies may be used to investigate this exposure in 

patients by querying larger EHR repositories, such as the Premier Healthcare 

Database, to ensure sufficient sample sizes for comparison. Of particular interest 

would be the comparison of meropenem for the treatment of non-carbapenemase-

producing CRE vs. treatment of carbapenem-susceptible ESBL infections, for 

which meropenem has long been the recommended therapy. Another study of 

interest would be the comparative effectiveness of combination therapy vs. 

treatment with meropenem monotherapy against non-carbapenemase-producing 

CRE. In both studies, the effect on patient mortality would be investigated. Across 

a large population of patients, these studies would assess both the effectiveness 

of meropenem monotherapy in this patient population in addition to comparing it 

against potential alternatives. However, the latter study proposal assumes that 

there exists a sufficient population of NCP-CRE patients which receive an 

alternative to meropenem monotherapy. 
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The number of questions worthy of pursuit in the effort to combat antimicrobial 

resistance are numerous, but the undertaking is absolutely essential to ensure the 

safety of current and future patients. Bacteria have been thriving and evolving for 

longer than humans have roamed the Earth, and all evidence suggests this will 

continue to be the case. To prevent a return to the pre-antibiotic age, continued 

progress will be necessary from infection control and prevention, antibiotic 

stewardship, antimicrobial discovery and development, rapid diagnostic platforms, 

regulatory agencies, and no doubt many other disciplines. 
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Appendices 
Appendix A. BD Phoenix MICs from UK HealthCare Clinical Microbiology 

 

Tables A.1 and A.2 provide MICs determined by the BD PhoenixTM platform by 

the UK HealthCare Clinical Microbiology laboratory (N = 193). 

 

Table A.3 provides combined susceptibility and MIC distribution data on all 

carbapenem-resistant Enterobacteriaceae provided from UK HealthCare during 

the study period (N = 193) 

 

Abbreviations used in Table A.1 were: AM - Ampicillin, AS - 

Ampicillin/Sulbactam, ATM - Aztreonam, CFZ - Cefazolin, CFPM - Cefepime, 

FOX - Cefoxitin, CAZ - Ceftazidime, CAX - Ceftriaxone, ETP - Ertapenem, MEM - 

Meropenem, PTC - Piperacillin/Tazobactam 

 

Abbreviations used in Table A.2 were: AK - Amikacin, GM - Gentamicin, TOB - 

Tobramycin, CP - Ciprofloxacin, LEV - Levofloxacin, FD - Nitrofurantoin, TET - 

Tetracycline, SXT - Sulfamethoxazole/Trimethoprim 

 

Abbreviations used in Table A.3 were: %S - percent susceptible, MICn - MIC 

required to inhibit visible growth in nth percentile of all isolates tested 
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Table A.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined using BD 
Phoenix® by UK HealthCare Clinical Microbiology Laboratory (n = 193) 
Isolate Species AM AS AZT CFZ CFPM FOX CAZ CAX CRM ERT MEM PTC 

36 C. amalonaticus >16 >16/8 >16 >16 <=1 >16 >16 >32 >16 4 4 >64/4 
91 C. amalonaticus >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 4 >64/4 
6 C. freundii >16 >16/8 >16 >16 8 >16 4 >32 >16 2 <=1 >64/4 
27 C. freundii >16 >16/8 >16 >16 8 >16 8 >32 >16 2 <=1 >64/4 
50 C. freundii >16 >16/8 >16 >16 >16 16 >16 >32 >16 4 <=1 >64/4 
54 C. freundii >16 >16/8 >16 >16 4 >16 8 >32 >16 4 <=1 >64/4 
101 C. freundii >16 >16/8 >16 >16 2 >16 >16 32 >16 2 <=1 >64/4 
127 C. freundii >16 >16/8 >16 >16 2 >16 >16 >32 >16 >4 2 >64/4 
135 C. freundii >16 >16/8 <=2 >16 >16 >16 >16 >32 >16 <=0.5 4 >64/4 
145 C. freundii >16 >16/8 >16 >16 2 >16 >16 >32 >16 2 <=1 >64/4 
147 C. freundii >16 >16/8 >16 >16 8 >16 >16 >32 >16 2 <=1 >64/4 
324 C. freundii >16 >16/8 >16 >16 >16 >16 4 >32 -- 1 <=0.5 >64/4 
562 C. freundii >16 >16/8 <=2 >16 >16 >16 >16 >32 -- >1 4 >64/4 
593 C. freundii >16 >16/8 >16 >16 >16 >16 >16 R -- >1 <=0.5 >64/4 
604 C. freundii >16 >16/8 >16 >16 >16 >16 >16 -- -- >1 <=0.5 >64/4 
674 C. freundii >16 >16/8 >16 >16 >16 >16 16 >32  >1 >8 >64/4 
136 C. youngae >16 >16/8 >16 >16 16 >16 8 >32 >16 >4 4 >64/4 
435 C. youngae >16 >16/8 >16 >16 >16 >16 >16 >32  >1 8 >64/4 
97 E. aerogenes >16 >16/8 >16 >16 2 >16 >16 >32 >16 1 <=1 >64/4 
179 E. aerogenes >16 >16/8 <=2 >16 <=1 >16 >16 >32 >16 4 >8 >64/4 
187 E. aerogenes >16 >16/8 >16 >16 >16 >16 >16 >32 >16 2 <=1 >64/4 
438 E. aerogenes >16 >16/8 >16 >16 16 >16 >16 >32 -- -- 8 >64/4 
1 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 8 >64/4 
3 E. cloacae >16 >16/8 >16 >16 8 >16 >16 >32 >16 >4 <=1 >64/4 
4 E. cloacae >16 >16/8 >16 >16 4 >16 >16 >32 >16 >4 <=1 >64/4 
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Table A.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined using BD 
Phoenix® by UK HealthCare Clinical Microbiology Laboratory (n = 193) 
Isolate Species AM AS AZT CFZ CFPM FOX CAZ CAX CRM ERT MEM PTC 

5 E. cloacae >16 >16/8 >16 >16 16 >16 8 >32 >16 >4 2 >64/4 
9 E. cloacae >16 >16/8 >16 >16 16 >16 >16 >32 >16 4 >8 >64/4 
10 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
12 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
15 E. cloacae >16 >16/8 >16 >16 4 >16 >16 >32 >16 2 <=1 >64/4 
16 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 <=1 >64/4 
17 E. cloacae >16 >16/8 >16 >16 4 >16 >16 >32 >16 >4 <=1 >64/4 
19 E. cloacae >16 >16/8 >16 >16 8 >16 >16 >32 >16 2 <=1 >64/4 
20 E. cloacae >16 >16/8 >16 >16 8 >16 >16 >32 >16 >4 8 >64/4 
23 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 2 >64/4 
30 E. cloacae >16 >16/8 >16 >16 -- >16 >16 >32 >16 >4 <=1 >64/4 
39 E. cloacae >16 >16/8 >16 >16 8 >16 16 >32 >16 >4 <=1 >64/4 
40 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 4 8 >64/4 
41 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 4 >8 >64/4 
52 E. cloacae >16 >16/8 >16 >16 16 >16 8 >32 >16 >4 >8 >64/4 
53 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 8 >64/4 
70 E. cloacae >16 >16/8 >16 >16 2 >16 >16 >32 >16 2 <=1 8/4 
96 E. cloacae >16 >16/8 >16 >16 <=1 >16 >16 >32 >16 1 >8 64/4 
107 E. cloacae >16 >16/8 >16 >16 8 >16 8 >32 >16 >4 8 >64/4 
121 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 8 >64/4 
126 E. cloacae >16 >16/8 >16 >16 >16 >16 4 >32 >16 >4 >8 >64/4 
134 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 2 8 >64/4 
144 E. cloacae >16 >16/8 >16 >16 2 >16 16 >32 >16 >4 4 >64/4 
167 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 2 4 >64/4 
168 E. cloacae >16 >16/8 >16 >16 8 >16 16 >32 >16 >4 >8 >64/4 



 

  

283 

 

Table A.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined using BD 
Phoenix® by UK HealthCare Clinical Microbiology Laboratory (n = 193) 
Isolate Species AM AS AZT CFZ CFPM FOX CAZ CAX CRM ERT MEM PTC 

169 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 2 4 >64/4 
171 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
175 E. cloacae >16 >16/8 <=2 >16 >16 >16 >16 >32 >16 2 4 >64/4 
189 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 4 4 >64/4 
200 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 4 <=1 >64/4 
203 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
209 E. cloacae >16 >16/8 >16 >16 >16 >16 16 >32 >16 >4 >8 >64/4 
266 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 4 >64/4 
335 E. cloacae >16 >16/8 >16 >16 >16 >16 16 >32 -- >1 <=0.5 32/4 
339 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
369 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 4 >64/4 
416 E. cloacae >16 >16/8 <=2 >16 >16 >16 >16 >32 -- >1 4 >64/4 
476 E. cloacae >16 >16/8 <=2 >16 >16 >16 >16 >32 -- 1 8 >64/4 
515 E. cloacae >16 >16/8 >16 >16 16 >16 >16 >32 -- >1 2 >64/4 
561 E. cloacae >16 >16/8 >16 >16 4 >16 8 >32 -- >1 <=0.5 >64/4 
599 E. cloacae >16 >16/8 >16 >16 8 >16 >16 >32 --  2 >64/4 
606 E. cloacae >16 >16/8 >16 >16 16 >16 >16 >32 -- >1 4 >64/4 
607 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 8 >64/4 
608 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
611 E. cloacae >16 >16/8 16 >16 2 >16 16 >32 -- >1 1 >64/4 
613 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 8 >64/4 
615 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 8 >64/4 
633 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
677 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 --  >8 >64/4 
696 E. cloacae >16 >16/8 >16 >16 <=1 >16 >16 >32 -- >1 <=0.5 >64/4 
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Table A.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined using BD 
Phoenix® by UK HealthCare Clinical Microbiology Laboratory (n = 193) 
Isolate Species AM AS AZT CFZ CFPM FOX CAZ CAX CRM ERT MEM PTC 

708 E. cloacae >16 >16/8 >16 >16 2 >16 >16 >32 -- >1 <=0.5 64/4 
724 E. cloacae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 <=0.5 >64/4 
25 E. coli >16 >16/8 4 >16 <=1 8 4 >32 >16 4 <=1 >64/4 
33 E. coli >16 >16/8 >16 >16 8 >16 >16 >32 >16 4 <=1 >64/4 
103 E. coli >16 >16/8 >16 >16 >16 >16 >16 >32 >16 1 <=1 32/4 
172 E. coli >16 >16/8 <=2 >16 >16 >16 >16 >32 >16 2 8 >64/4 
176 E. coli >16 >16/8 >16 >16 16 16 >16 >32 >16 >4 <=1 >64/4 
309 E. coli >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 4 64/4 
390 E. coli >16 >16/8 >16 >16 >16 >16 >16 >32 -- 1 <=0.5 8/4 
508 E. coli >16 >16/8 >16 >16 >16 16 >16 >32 -- 1 <=0.5 >64/4 
609 E. coli >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
646 E. coli >16 >16/8 4 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
690 E. coli >16 >16/8 >256 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
703 E. coli >16 >16/8 <=2 >16 >16 >16 >16 >32 -- >1 8 >64/4 
714 E. coli >16 >16/8 >16 >16 16 >16 >16 >32 -- >1 2 >64/4 
718 E. coli >16 >16/8 >16 >16 >16 <=4 >16 >32 -- >1 4 -- 
722 E. coli >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 2 8/4 
13 E. gergovia >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
95 E. gergovia >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 <=1 >64/4 
186 E. hormaechei >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
398 E. hormaechei >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 8 >64/4 
146 Enterobacter sp. >16 >16/8 >16 >16 8 >16 16 >32 >16 >4 >8 >64/4 
210 Enterobacter sp. >16 >16/8 >16 >16 >16 >16 16 >32 >16 >4 >8 >64/4 
8 K. oxytoca >16 >16/8 >16 >16 <=1 8 4 16 >16 >4 <=1 >64/4 
14 K. oxytoca >16 >16/8 >16 >16 8 8 8 >32 >16 >4 <=1 >64/4 
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Table A.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined using BD 
Phoenix® by UK HealthCare Clinical Microbiology Laboratory (n = 193) 
Isolate Species AM AS AZT CFZ CFPM FOX CAZ CAX CRM ERT MEM PTC 

166 K. oxytoca >16 >16/8 >16 >16 8 <=4 2 >32 >16 >4 8 64/4 
177 K. oxytoca >16 >16/8 >16 >16 <=1 8 8 >32 >16 4 2 >64/4 
330 K. oxytoca >16 >16/8 >16 >16 >16 >16 8 >32 -- >1 8 >64/4 
697 K. oxytoca >16 >16/8 >16 >16 >16 16 >16 >32 -- >1 >8 >64/4 
713 K. oxytoca >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 <=0.5 32/4 
128 K. ozaenae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 <=1 >64/4 
407 K. ozaenae >16 >16/8 >16 >16 4 16 >16 >32 -- >1 <=0.5 >64/4 
2 K. pneumoniae >16 >16/8 8 >16 2 <=4 4 32 >16 4 <=1 >64/4 
7 K. pneumoniae >16 >16/8 >16 >16 >16 16 8 >32 >16 >4 8 >64/4 
11 K. pneumoniae >16 >16/8 >16 >16 8 >16 4 >32 >16 >4 <=1 >64/4 
18 K. pneumoniae >16 >16/8 >16 >16 8 >16 16 >32 >16 >4 <=1 >64/4 
21 K. pneumoniae >16 >16/8 16 >16 2 >16 >16 32 >16 2 <=1 >64/4 
22 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 <=1 >64/4 
24 K. pneumoniae >16 >16/8 >16 >16 16 >16 >16 >32 >16 >4 2 >64/4 
26 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 8 >16 >4 8 >16/4 
28 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
29 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 >16 >4 >8 >64/4 
31 K. pneumoniae >16 >16/8 8 >16 4 <=4 4 >32 >16 >4 <=1 >64/4 
32 K. pneumoniae >16 >16/8 >16 >16 >16 >16 4 >32 >16 >4 <=1 >64/4 
34 K. pneumoniae >16 >16/8 <=2 >16 <=1 <=4 2 >32 >16 >4 <=1 >64/4 
35 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
37 K. pneumoniae >16 >16/8 16 >16 -- 16 16 >32 >16 >4 >8 >64/4 
42 K. pneumoniae >16 >16/8 <=2 >16 >16 >16 >16 >32 >16 2 <=1 >64/4 
43 K. pneumoniae >16 >16/8 >16 >16 16 >16 16 >32 >16 >4 >8 >64/4 
44 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 >16 >4 >8 >64/4 
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Table A.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined using BD 
Phoenix® by UK HealthCare Clinical Microbiology Laboratory (n = 193) 
Isolate Species AM AS AZT CFZ CFPM FOX CAZ CAX CRM ERT MEM PTC 

45 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 >16 >4 >8 >64/4 
46 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
47 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
48 K. pneumoniae >16 >16/8 >16 >16 >16 16 >16 >32 >16 >4 <=1 >64/4 
49 K. pneumoniae >16 >16/8 >16 >16 16 >16 16 >32 >16 >4 >8 >64/4 
51 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
55 K. pneumoniae >16 >16/8 >16 >16 8 8 >16 >32 >16 >4 >8 >64/4 
69 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 >16 2 <=1 8/4 
77 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 2 >64/4 
93 K. pneumoniae >16 >16/8 >16 >16 >16 >16 16 >32 >16 >4 >8 >64/4 
98 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 >16 2 <=1 >64/4 
99 K. pneumoniae >16 >16/8 >16 >16 8 >16 8 >32 >16 >4 8 >64/4 
105 K. pneumoniae >16 >16/8 >16 >16 8 8 16 >32 >16 >4 >8 >64/4 
116 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 8 >64/4 
119 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 >16 >4 >8 >64/4 
123 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 >16 >4 >8 >64/4 
129 K. pneumoniae >16 >16/8 >16 >16 8 8 >16 >32 >16 >4 >8 >64/4 
130 K. pneumoniae >16 >16/8 >16 >16 >16 8 >16 >32 >16 >4 8 >64/4 
142 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 >16 >4 >8 >64/4 
143 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 >16 4 2 >64/4 
152 K. pneumoniae >16 >16/8 <=2 >16 16 >16 16 <=2 >16 4 <=1 >64/4 
165 K. pneumoniae >16 >16/8 >16 >16 8 >16 16 >32 >16 >4 8 >64/4 
170 K. pneumoniae >16 >16/8 <=2 >16 >16 >16 >16 >32 >16 4 >8 >64/4 
173 K. pneumoniae >16 >16/8 <=2 >16 >16 >16 >16 >32 >16 2 8 >64/4 
174 K. pneumoniae >16 >16/8 <=2 >16 >16 >16 >16 >32 >16 2 >8 >64/4 
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Table A.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined using BD 
Phoenix® by UK HealthCare Clinical Microbiology Laboratory (n = 193) 
Isolate Species AM AS AZT CFZ CFPM FOX CAZ CAX CRM ERT MEM PTC 

230 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
243 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 <=0.5 >64/4 
256 K. pneumoniae >16 >16/8 >16 >16 >16 >16 16 >32 -- >1 >8 >64/4 
269 K. pneumoniae >16 >16/8 -- >16 <=1 >16 >16 >32 -- >1 <=0.5 >64/4 
284 K. pneumoniae >16 >16/8 -- >16 4 >16 >16 >32 -- >1 8 >64/4 
349 K. pneumoniae >16 >16/8 <=2 >16 <=1 >16 >16 >32 -- >1 2 >64/4 
352 K. pneumoniae >16 >16/8 >16 >16 >16 >16 16 >32 -- >1 <=0.5 >64/4 
372 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 -- >1 4 >64/4 
385 K. pneumoniae >16 >16/8 >16 >16 -- >16 >16 >32 -- >1 1 >64/4 
391 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 4 >64/4 
411 K. pneumoniae >16 >16/8 <=2 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
418 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 -- >1 1 >64/4 
423 K. pneumoniae >16 >16/8 >16 >16 >16 16 >16 >32 -- >1 4 >64/4 
445 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
446 K. pneumoniae >16 >16/8 -- >16 <=1 >16 >16 >32 -- >1 >8 >64/4 
449 K. pneumoniae >16 >16/8 >16 >16 16 >16 >16 >32 -- >1 8 >64/4 
452 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 -- >1 2 >64/4 
466 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 2 >64/4 
482 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 -- >1 2 >64/4 
492 K. pneumoniae >16 >16/8 >16 >16 <=1 >16 >16 >32 -- >1 2 >64/4 
536 K. pneumoniae >16 >16/8 >16 >16 4 >16 >16 >32 -- >1 1 >64/4 
558 K. pneumoniae >16 >16/8 >16 >16 >16 >16 16 >32 -- >1 8 >64/4 
605 K. pneumoniae >16 >16/8 >16 >16 2 16 >16 >32 -- >1 8 >64/4 
610 K. pneumoniae >16 >16/8 >16 >16 8 8 >16 >32 -- >1 4 >64/4 
616 K. pneumoniae >16 >16/8 <=2 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
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Table A.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined using BD 
Phoenix® by UK HealthCare Clinical Microbiology Laboratory (n = 193) 
Isolate Species AM AS AZT CFZ CFPM FOX CAZ CAX CRM ERT MEM PTC 

617 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 4 >64/4 
619 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 2 >64/4 
628 K. pneumoniae >16 >16/8 >16 >16 >16 8 >16 >32 -- >1 4 >64/4 
632 K. pneumoniae >16 >16/8 <=2 >16 >16 16 >16 >32 -- >1 -- >64/4 
640 K. pneumoniae >16 >16/8 <=2 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
644 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
668 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 8 >64/4 
675 K. pneumoniae 8 4/2 <=2 >16 16 >16 >16 32 -- >1 4 4/4 
678 K. pneumoniae >16 8/4 >16 >16 2 -- -- >32 -- >1 4 >64/4 
684 K. pneumoniae >16 >16/8 >16 >16 >16 8 >16 >32 -- >1 8 >64/4 
695 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 1 >64/4 
712 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 4 >64/4 
727 K. pneumoniae >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 4 >64/4 
684 P. mirabilis <=4 <=1/0.5 <=2 16 <=1 <=4 <=0.5 <=1 -- <=0.25 >64 <=2/4 
244 P. rettgeri >16 8/4 <=2 >16 <=1 >16 2 2 -- >1 2 <=2/4 
514 S. marcescens >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
560 S. marcescens >16 >16/8 >16 >16 >16 >16 >16 >32 -- >1 >8 >64/4 
705 S. marcescens >16 >16/8 >16 >16 16 >16 >16 >32 -- >1 >8 >64/4 

MIC values reported as µg/mL, “--” were inserted for antimicrobials that were not tested; 
Abbreviations: AM – Ampicillin, AS – Ampicillin/Sulbactam, AZT – Aztreonam, CFZ – Cefazolin, CFPM – Cefepime, FOX – 
Cefoxitin, CAZ – Ceftazidime, CAX – Ceftriaxone, CRM – Cefuroxime, ERT – ertapenem, MEM – meropenem, PTC  - 
Piperacillin/Tazobactam 
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Table A.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined using BD Phoenix® by UK 
HealthCare Clinical Microbiology Laboratory (n = 193) 

Isolate Species AK GM TOB CP LEV FD TET SXT 
36 C. amalonaticus <=8 >8 >8 >2 >4 32 4 >2/38 
91 C. amalonaticus <=8 >8 >8 >2 >4 64 4 >2/38 
6 C. freundii <=8 <=2 <=2 >2 4 <=16 4 >2/38 
27 C. freundii >32 >8 >8 >2 >4 <=16 <=2 >2/38 
50 C. freundii <=8 >8 >8 >2 4 <=16 4 >2/38 
54 C. freundii <=8 >8 >8 >2 >4 <=16 4 <=0.5/9.5 
101 C. freundii <=8 8 4 >2 >4 <=16 >8 >2/38 
127 C. freundii <=8 >8 >8 >2 >4 <=16 >8 >2/38 
135 C. freundii <=8 <=2 8 <=0.5 <=1 <=16 <=2 >2/38 
145 C. freundii <=8 <=2 <=2 >2 >4 <=16 4 <=0.5/9.5 
147 C. freundii <=8 <=2 <=2 <=0.5 <=1 <=16 <=2 <=0.5/9.5 
324 C. freundii <=8 <=2 <=2 2 <=1 <=16 <=2 >2/38 
562 C. freundii <=8 <=2 8 <=0.5 <=1 <=16 <=2 >2/38 
593 C. freundii <=8 >8 8 >2 >4 <=16 >8 >2/38 
604 C. freundii <=8 >8 8 >2 >4 <=16 >8 >2/38 
674 C. freundii <=8 >8 8 >2 >4 <=16 >8 2/38 
136 C. youngae <=8 <=2 <=2 >2 >4 <=16 >8 >2/38 
435 C. youngae <=8 <=2 <=2 >2 >4 <=16 >8 <=0.5/9.5 
97 E. aerogenes <=8 <=2 <=2 <=0.5 <=1 <=16 <=2 <=0.5/9.5 
179 E. aerogenes <=8 8 >8 <=0.5 <=1 >64 <=2 >2/38 
187 E. aerogenes <=8 <=2 <=2 <=0.5 <=1 >64 >8 <=0.5/9.5 
438 E. aerogenes <=8 <=2 <=2 <=0.5 <=1 32 <=2 <=0.5/9.5 
1 E. cloacae <=8 >8 >8 >2 >4 >64 >8 >2/38 
3 E. cloacae <=8 >8 >8 1 <=1 64 <=2 >2/38 
4 E. cloacae <=8 >8 >8 1 <=1 64 <=2 >2/38 
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Table A.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined using BD Phoenix® by UK 
HealthCare Clinical Microbiology Laboratory (n = 193) 

Isolate Species AK GM TOB CP LEV FD TET SXT 
5 E. cloacae <=8 >8 >8 <=0.5 <=1 64 <=2 >2/38 
9 E. cloacae <=8 >8 >8 >2 >4 64 8 <=0.5/9.5 
10 E. cloacae <=8 >8 >8 >2 >4 64 8 <=0.5/9.5 
12 E. cloacae <=8 >8 >8 >2 >4 64 8 <=0.5/9.5 
15 E. cloacae <=8 8 >8 1 <=1 32 <=2 <=0.5/9.5 
16 E. cloacae <=8 >8 >8 >2 >4 32 8 >2/38 
17 E. cloacae <=8 >8 >8 >2 >4 64 4 >2/38 
19 E. cloacae <=8 8 >8 1 <=1 64 <=2 <=0.5/9.5 
20 E. cloacae <=8 >8 >8 >2 >4 64 8 <=0.5/9.5 
23 E. cloacae <=8 >8 >8 >2 >4 64 8 <=0.5/9.5 
30 E. cloacae <=8 >8 >8 >2 >4 >64 >8 >2/38 
39 E. cloacae <=8 >8 >8 >2 2 32 <=2 <=0.5/9.5 
40 E. cloacae <=8 >8 >8 >2 >4 >64 4 >2/38 
41 E. cloacae 16 >8 >8 1 <=1 64 >8 >2/38 
52 E. cloacae <=8 8 >8 >2 >4 32 8 <=0.5/9.5 
53 E. cloacae <=8 >8 >8 >2 >4 >64 >8 >2/38 
70 E. cloacae <=8 >8 8 >2 >4 >64 >8 >2/38 
96 E. cloacae <=8 <=2 <=2 <=0.5 <=1 <=16 <=2 <=0.5/9.5 
107 E. cloacae <=8 >8 >8 >2 >4 32 4 <=0.5/9.5 
121 E. cloacae <=8 >8 >8 1 <=1 >64 4 >2/38 
126 E. cloacae <=8 >8 >8 >2 >4 32 8 <=0.5/9.5 
134 E. cloacae <=8 >8 >8 1 <=1 >64 <=2 >2/38 
144 E. cloacae <=8 >8 >8 >2 2 <=16 <=2 <=0.5/9.5 
167 E. cloacae <=8 <=2 8 1  64 <=2 >2/38 
168 E. cloacae <=8 8 >8 >4 >4 64 8 <=0.5/9.5 
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Table A.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined using BD Phoenix® by UK 
HealthCare Clinical Microbiology Laboratory (n = 193) 

Isolate Species AK GM TOB CP LEV FD TET SXT 
169 E. cloacae <=8 <=2 8 1 <=1 64 <=2 >2/38 
171 E. cloacae <=8 >8 >8 >2 >4 64 8 <=0.5/9.5 
175 E. cloacae <=8 >8 >8 1 <=1 32 <=2 >2/38 
189 E. cloacae <=8 <=2 8 <=0.5 <=1 64 <=2 >2/38 
200 E. cloacae <=8 >8 >8 >2 >4 64 8 >2/38 
203 E. cloacae <=8 >8 >8 1 <=1 64 <=2 >2/38 
209 E. cloacae <=8 >8 >8 >2 >4 >64 8 <=0.5/9.5 
266 E. cloacae <=8 >8 >8 <=0.5 <=1 64 <=2 >2/38 
335 E. cloacae <=8 <=2 <=2 >2 >4 >64 >8 >2/38 
339 E. cloacae <=8 >8 >8 >2 >4 >64 >8 >2/38 
369 E. cloacae <=8 <=2 <=2 >2 4 >64 >8 <=0.5/9.5 
416 E. cloacae <=8 >8 >8 <=0.5 <=1 64 <=2 >2/38 
476 E. cloacae <=8 <=2 >8 <=0.5 <=1 >64 <=2 >2/38 
515 E. cloacae <=8 4 4 >2 >4 64 8 >2/38 
561 E. cloacae <=8 >8 >8 >2 4 32 8 >2/38 
599 E. cloacae <=8 >8 >8 <=0.5 <=1 -- <=2 >2/38 
606 E. cloacae <=8 >8 >8 >2 >4 -- <=2 >2/38 
607 E. cloacae 16 >8 >8 <=0.5 <=1 64 <=2 >2/38 
608 E. cloacae 16 >8 >8 >2 4 >64 >8 >2/38 
611 E. cloacae <=8 >8 >8 <=0.5 <=1 64 <=2 >2/38 
613 E. cloacae <=8 >8 >8 >2 >4 -- >8 >2/38 
615 E. cloacae <=8 <=2 8 1 <=1 -- <=2 >2/38 
633 E. cloacae <=8 <=2 8 2 2 >64 8 1/19 
677 E. cloacae 32 <=2 >8 >2 4 -- 8 >2/38 
696 E. cloacae <=8 <=2 <=2 >2 2 -- <=2 <=0.5/9.5 
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Table A.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined using BD Phoenix® by UK 
HealthCare Clinical Microbiology Laboratory (n = 193) 

Isolate Species AK GM TOB CP LEV FD TET SXT 
708 E. cloacae <=8 4 4 <=0.5 <=1 -- 8 <=0.5/9.5 
724 E. cloacae <=8 >8 >8 >2 >4 -- >8 >2/38 
25 E. coli <=8 <=2 <=2 >2 >4 <=16 >8 >2/38 
33 E. coli <=8 >8 8 >2 >4 >64 <=2 <=0.5/9.5 
103 E. coli <=8 <=2 >8 >2 >4 64 >8 >2/38 
172 E. coli <=8 <=2 >8 1 <=1 <=16 <=2 >2/38 
176 E. coli <=8 <=2 <=2 >2 >4 <=16 <=2 >2/38 
309 E. coli <=8 <=2 <=2 >2 >4 32 >8 <=0.5/9.5 
390 E. coli <=8 >8 8 >2 >4 <=16 >8 >2/38 
508 E. coli <=8 >8 >8 >2 >4 <=16 >8 >2/38 
609 E. coli <=8 >8 8 >2 >4 <=16 >8 >2/38 
646 E. coli <=8 >8 >8 >2 >4 <=16 >8 >2/38 
690 E. coli <=8 <=2 >8 >2 >4 64 >8 >2/38 
703 E. coli <=8 4 >8 >2 >4 -- >8 >2/38 
714 E. coli <=8 >8 >8 1 <=1 -- 4 <=0.5/9.5 
718 E. coli <=8 <=2 <=2 >2 >4 -- >8 <=0.5/9.5 
722 E. coli <=8 <=2 <=2 >2 >4 -- >8 >2/38 
13 E. gergovia <=8 >8 >8 >2 >4 64 8 <=0.5/9.5 
95 E. gergovia <=8 <=2 <=2 <=0.5 <=1 64 >8 <=0.5/9.5 
186 E. hormaechei <=8 >8 >8 >2 4 >64 8 >2/38 
398 E. hormaechei <=8 >8 >8 <=0.5 <=1 64 <=2 >2/38 
146 Enterobacter sp. <=8 >8 >8 >2 >4 64 8 <=0.5/9.5 
210 Enterobacter sp. <=8 8 >8 >2 >4 <=16 4 <=0.5/9.5 
8 K. oxytoca <=8 <=2 <=2 <=0.5 <=1 <=16 <=2 1/19 
14 K. oxytoca <=8 >8 >8 2 2 <=16 4 >2/38 
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Table A.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined using BD Phoenix® by UK 
HealthCare Clinical Microbiology Laboratory (n = 193) 

Isolate Species AK GM TOB CP LEV FD TET SXT 
166 K. oxytoca <=8 <=2 <=2 <=0.5 <=1 32 <=2 <=0.5/9.5 
177 K. oxytoca <=8 >8 >8 <=0.5 <=1 <=16 <=2 <=0.5/9.5 
330 K. oxytoca <=8 8 8 >2 4 <=16 8 >2/38 
697 K. oxytoca <=8 <=2 <=2 >2 2  4 2/38 
713 K. oxytoca <=8 >8 >8 >2 <=1 32 >8 >2/38 
128 K. ozaenae <=8 4 4 >2 >4 <=16 4 >2/38 
407 K. ozaenae <=8 >8 >8 2 2 <=16 4 <=0.5/9.5 
2 K. pneumoniae <=8 >8 >8 <=0.5 <=1 64 >8 >2/38 
7 K. pneumoniae <=8 <=2 <=2 <=0.5 <=1 64 <=2 >2/38 
11 K. pneumoniae <=8 <=2 <=2 <=0.5 <=1 >64 8 2/38 
18 K. pneumoniae <=8 <=2 <=2 <=0.5 <=1 >64 8 >2/38 
21 K. pneumoniae <=8 4 >8 1 <=1 <=16 <=2 >2/38 
22 K. pneumoniae 32 >8 >8 >2 >4 >64 >8 >2/38 
24 K. pneumoniae <=8 8 >8 >2 >4 >64 4 <=0.5/9.5 
26 K. pneumoniae >32 >8 >8 >2 >4 >64 <=2 >2/38 
28 K. pneumoniae 32 4 >8 >2 >4 >64 8 >2/38 
29 K. pneumoniae 32 4 >8 >2 >4 >64 4 2/38 
31 K. pneumoniae <=8 >8 >8 <=0.5 <=1 >64 <=2 2/38 
32 K. pneumoniae <=8 <=2 <=2 >2 4 64 8 <=0.5/9.5 
34 K. pneumoniae <=8 <=2 <=2 <=0.5 <=1 64 <=2 <=0.5/9.5 
35 K. pneumoniae <=8 >8 >8 >2 >4 >64 8 <=0.5/9.5 
37 K. pneumoniae >32 >8 >8 <=0.5 <=1 32 <=2 <=0.5/9.5 
42 K. pneumoniae <=8 >8 >8 2 <=1 <=16 <=2 >2/38 
43 K. pneumoniae <=8 >8 >8 >2 >4 64 4 <=0.5/9.5 
44 K. pneumoniae <=8 >8 >8 >2 >4 >64 >8 1/19 
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Table A.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined using BD Phoenix® by UK 
HealthCare Clinical Microbiology Laboratory (n = 193) 

Isolate Species AK GM TOB CP LEV FD TET SXT 
45 K. pneumoniae <=8 >8 >8 >2 >4 >64 4 2/38 
46 K. pneumoniae >32 >8 >8 >2 >4 >64 4 >2/38 
47 K. pneumoniae >32 >8 >8 >2 >4 >64 <=2 >2/38 
48 K. pneumoniae >32 >8 >8 >2 >4 >64 4 <=0.5/9.5 
49 K. pneumoniae <=8 >8 >8 >2 4 32 4 <=0.5/9.5 
51 K. pneumoniae <=8 8 8 >2 >4 64 4 <=0.5/9.5 
55 K. pneumoniae 16 <=2 >8 >2 >4 64 >8 >2/38 
69 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 >8 >2/38 
77 K. pneumoniae <=8 >8 8 >2 4 >64 <=2 <=0.5/9.5 
93 K. pneumoniae <=8 >8 >8 >2 >4 64 4 <=0.5/9.5 
98 K. pneumoniae <=8 4 >8 <=0.5 <=1 <=16 >8 <=0.5/9.5 
99 K. pneumoniae <=8 <=2 <=2 <=0.5 <=1 >64 >8 2/38 
105 K. pneumoniae <=8 <=2 <=2 <=0.5 <=1 64 <=2 1/19 
116 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 >8 >2/38 
119 K. pneumoniae 16 >8 >8 >2 >4 >64 4 >2/38 
123 K. pneumoniae <=8 >8 >8 >2 >4 >64 4 >2/38 
129 K. pneumoniae 16 <=2 >8 >2 >4 32 <=2 >2/38 
130 K. pneumoniae <=8 >8 >8 1 <=1 >64 <=2 <=0.5/9.5 
142 K. pneumoniae <=8 <=2 <=2 <=0.5 <=1 64 <=2 <=0.5/9.5 
143 K. pneumoniae <=8 >8 8 >2 >4 >64 >8 >2/38 
152 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 >8 >2/38 
165 K. pneumoniae <=8 >8 >8 >2 >4 64 8 <=0.5/9.5 
170 K. pneumoniae <=8 >8 >8 >2 4 32 >8 >2/38 
173 K. pneumoniae <=8 <=2 8 1 <=1 32 <=2 >2/38 
174 K. pneumoniae <=8 >8 >8 1 <=1 <=16 >8 >2/38 
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Table A.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined using BD Phoenix® by UK 
HealthCare Clinical Microbiology Laboratory (n = 193) 

Isolate Species AK GM TOB CP LEV FD TET SXT 
230 K. pneumoniae <=8 4 >8 >2 >4 >64 8 >2/38 
243 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 4 >2/38 
256 K. pneumoniae <=8 8 >8 >2 >4 64 8 <=0.5/9.5 
269 K. pneumoniae <=8 <=2 <=2 >2 >4 64 4 >2/38 
284 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 >8 >2/38 
349 K. pneumoniae <=8 >8 8 >2 >4 >64 >8 >2/38 
352 K. pneumoniae <=8 >8 >8 >2 >4 >64 4 >2/38 
372 K. pneumoniae <=8 >8 >8 >2 >4 >64 >8 >2/38 
385 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 4 >2/38 
391 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 >8 >2/38 
411 K. pneumoniae <=8 8 8 >2 >4 32 >8 >2/38 
418 K. pneumoniae <=8 >8 8 >2 >4 >64 4 >2/38 
423 K. pneumoniae <=8 <=2 <=2 >2 4 >64 8 >2/38 
445 K. pneumoniae 32 >8 >8 >2 >4 >64 8 >2/38 
446 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 >8 >2/38 
449 K. pneumoniae 16 >8 >8 >2 2 32 8 >2/38 
452 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 4 >2/38 
466 K. pneumoniae <=8 <=2 <=2 >2 >4 <=16 >8 >2/38 
482 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 8 >2/38 
492 K. pneumoniae <=8 >8 8 >2 >4 >64 >8 2/38 
536 K. pneumoniae <=8 >8 8 >2 >4 >64 8 >2/38 
558 K. pneumoniae <=8 <=2 <=2 <=0.5 <=1 <=16 8 <=0.5/9.5 
605 K. pneumoniae <=8 8 >8 2 2 -- 4 <=0.5/9.5 
610 K. pneumoniae <=8 >8 >8 <=0.5 <=1 -- <=2 <=0.5/9.5 
616 K. pneumoniae <=8 <=2 8 <=0.5 <=1 -- <=2 <=0.5/9.5 
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Table A.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined using BD Phoenix® by UK 
HealthCare Clinical Microbiology Laboratory (n = 193) 

Isolate Species AK GM TOB CP LEV FD TET SXT 
617 K. pneumoniae <=8 <=2 <=2 <=0.5 <=1 >64 4 1/19 
619 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 4 >2/38 
628 K. pneumoniae <=8 <=2 8 <=0.5 <=1 <=16 4 >2/38 
632 K. pneumoniae <=8 >8 8 >2 >4 >64 >8 >2/38 
640 K. pneumoniae <=8 <=2 8 >2 2 >64 8 >2/38 
644 K. pneumoniae <=8 <=2 <=2 <=0.5 <=1 >64 4 1/19 
668 K. pneumoniae <=8 <=2 <=2 >2 >4 >64 >8 >2/38 
675 K. pneumoniae <=8 <=2 8 <=0.5 <=1 32 <=2 <=0.5/9.5 
678 K. pneumoniae <=8 <=2 <=2 -- <=1 -- <=2 2/38 
684 K. pneumoniae <=8 >8 >8 2 2 <=16 4 <=0.5/9.5 
695 K. pneumoniae <=8 >8 8 >2 >4 -- >8 >2/38 
712 K. pneumoniae <=8 >8 8 >2 >4 >64 >8 >2/38 
727 K. pneumoniae <=8 <=2 <=2 >2 <=2 -- 4 >2/38 
684 P. mirabilis <=8 <=2 <=2 <=0.5 <=1 -- >8 <=0.5/9.5 
244 P. rettgeri <=8 >8 8 >2 >4 >64 >8 >2/38 
514 S. marcescens <=8 <=2 <=2 >2 >4 >64 >8 -- 
560 S. marcescens <=8 <=2 <=2 >2 >4 >64 >8 -- 
705 S. marcescens <=8 <=2 <=2 >2 >4 -- >8 -- 

MIC values reported as µg/mL, “--” were inserted for antimicrobials that were not tested; 
Abbreviations: AK – Amikacin, GM – Gentamicin, TOB – Tobramycin, CP – Ciprofloxacin,  LEV – Levofloxacin, FD – Nitrofurantoin, TET – 
Tetracycline, SXT – Trimethoprim/Sulfamethoxazole 
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Table A.3: Descriptive Statistics of Combined Minimum Inhibitory Concentrations against CRE isolates as determined by BD 
Phoenix® by the UK HealthCare Clinical Microbiology Laboratory (n = 193) 

Antimicrobial Na %S MIC50 MIC90 MIC Range 
Ampicillin 193 1% >16 >16 <=4 - >16 

Ampicillin/Sulbactam 193 2% >16/8 >16/8 <=1/0.5 - >16/8 
Aztreonam 190 13% >16 >16 <=2 - >256 
Cefazolin 193 0% >16 >16 16 - >16 
Cefepime 190 21% >16 >16 <=1 - >16 
Cefoxitin 192 9% >16 >16 <=4 - >16 

Ceftazidime 192 7% >16 >16 <=0.5 - >16 
Ceftriaxone 192 1% >32 >32 <=1 - >32 
Cefuroxime 108 0% >16 >16 >16 - >16 
Ertapenem 190 1% >1 >4 <=0.25 - >4 
Meropenem 192 31% 4 >8 <=0.5 - >64 

Piperacillin/Tazobactam 192 4% >64/4 >64/4 <=2/4 - >64/4 
Amikacin 193 94% <=8 <=8 <=8 - >32 

Gentamicin 193 42% >8 >8 <=2 - >8 
Tobramycin 193 30% >8 >8 <=2 - >8 

Ciprofloxacin 192 31% >2 >2 <=0.5 - >4 
Levofloxacin 192 39% >4 >4 <=1 - >4 
Nitrofurantoin 172 36% 64 >64 <=16 - >64 
Tetracycline 193 50% 8 >8 <=2 - >8 

Sulfamethoxazole/Trimethoprim 190 39% >2/38 >2/38 <=0.5/9.5 - >2/38 
MIC values reported as µg/mL, a: Note not all antimicrobials tested for all isolates 
%S: percent susceptible, MICn: MIC required to inhibit visible growth in nth percentile of all isolates tested 
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Appendix B.  MICs Determined by Broth Microdilution 

Tables B.1 and B.2 provide MIC data determined by broth microdilution in our 

laboratory against CRE. All MICs reported are the modal values of duplicated 

MIC experiments replicated at least once unless otherwise designated. (n = 140) 

 

Table B.3 provides MIC data determined by both microdilution in our laboratory 

for two novel antimicrobial agents, eravacycline and plazomicin, against CRE (n 

= 122) 

 

Table B.4 provides combined susceptibility and MIC distribution data on all 

carbapenem-resistant Enterobacteriaceae (N = 140) 

 

Abbreviations used in Table B.1 were: ATM - Aztreonam, CAZ - Ceftazidime, 

FEP - Cefepime, ETP - Ertapenem, MEM - Meropenem, IPM - Imipenem 

 

Abbreviations used in Table B.2 were: AK - Amikacin, GM - Gentamicin, TOB - 

Tobramycin, CST – Colistin, PMB – Polymyxin B, MIN – Minocycline, TGC – 

Tigecycline, LEV - Levofloxacin, FD - Nitrofurantoin 

 

Abbreviations used in Table B.3 were: ERV - Eravacycline, PLZ – Plazomicin 

 

Abbreviations used in Table B.4 were: %S - percent susceptible, MICn - MIC 

required to inhibit visible growth in nth percentile of all isolates tested 
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Table B.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n = 
140) 

Isolate Species AZT CAZ CFPM ERT IPM IMR MEM PTC 
36 C. amalonaticus 512 >512 32 64 4 1 16 >512 
91 C. amalonaticus 512 512 >256 32 4 1 64 >512 
27 C. freundii 64 8 4 4 2 0.5 2 256 
50 C. freundii 256 >512 32 128 16 0.25 64 >512 
54 C. freundii 256 256 32 8 2 0.5 2 512 

101 C. freundii >512 >512 16 8 4 1 2 >512 
127 C. freundii 256 256 16 64 32 1 4 512 
135 C. freundii 256 >512 128 8 8 16 8 >512 
145 C. freundii 128 256 4 16 16 8 8 512 
324 C. freundii 256 64 16 8 16 0.5 4 512 
562 C. freundii <=0.25 256 64 4 16 4 4 512 
593 C. freundii 128 256 16 64 16 0.25 16 128 
604 C. freundii 128 256 16 4 2 <=0.125 1 128 
136 C. youngae >512 512 128 128 128 0.25 32 >512 
435 C. youngae 512 512 >256 32 32 32 16 >512 
97 E. aerogenes 128 128 64 4 1 0.5 0.25 512 

179 E. aerogenes 32 512 32 2 16 16 4 512 
187 E. aerogenes 512 >512 64 64 16 0.5 32 >512 
438 E. aerogenes 512 512 128 16 4 0.25 8 >512 
10 E. cloacae 512 128 256 128 64 0.5 64 >512 
17 E. cloacae >512 512 256 64 8 0.25 4 >512 
30 E. cloacae 512 >512 128 128 8 0.5 64 >512 
39 E. cloacae 512 >512 64 64 4 1 32 >512 
40 E. cloacae 256 512 128 128 64 32 64 >512 
41 E. cloacae 128 512 32 4 16 16 8 512 
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Table B.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n = 
140) 

Isolate Species AZT CAZ CFPM ERT IPM IMR MEM PTC 
52 E. cloacae 512 512 128 128 4 0.25 64 >512 
53 E. cloacae 256 >512 128 16 16 32 16 512 
70 E. cloacae 256 512 128 2 0.25 0.125 0.25 256 
96 E. cloacae 256 512 >256 8 4 0.5 2 512 

107 E. cloacae 512 256 32 64 8 1 32 512 
121 E. cloacae >512 >512 64 128 64 1 32 >512 
126 E. cloacae 512 512 64 128 128 0.5 64 512 
134 E. cloacae 256 >512 128 64 64 32 32 512 
144 E. cloacae 512 512 256 64 16 1 64 >512 
167 E. cloacae 128 >512 64 8 64 >32 16 512 
168 E. cloacae 256 512 64 32 32 1 16 >512 
169 E. cloacae 256 >512 128 8 64 >32 16 512 
171 E. cloacae 512 512 128 32 8 0.25 32 >512 
175 E. cloacae 32 512 32 4 32 >32 8 512 
189 E. cloacae 128 >512 256 8 32 >32 16 >512 
200 E. cloacae >512 >512 >256 8 8 8 1 >512 
203 E. cloacae 256 >512 128 4 32 32 4 >512 
209 E. cloacae 512 512 64 64 8 0.125 32 >512 
266 E. cloacae 128 >512 64 8 32 32 8 512 
335 E. cloacae 128 512 128 4 1 0.5 0.25 256 
339 E. cloacae 512 >512 128 32 16 1 8 >512 
369 E. cloacae 256 >512 32 8 1 1 0.5 >512 
416 E. cloacae 16 >512 64 128 64 >32 32 >512 
476 E. cloacae 512 512 >256 128 16 32 32 >512 
515 E. cloacae >512 >512 32 16 16 0.5 4 >512 
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Table B.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n = 
140) 

Isolate Species AZT CAZ CFPM ERT IPM IMR MEM PTC 
561 E. cloacae >256 128 32 32 32 <=0.125 32 512 
599 E. cloacae >256 256 256 16 16 1 16 >512 
606 E. cloacae >256 >256 64 32 8 0.5 16 512 
607 E. cloacae 128 >256 64 4 8 8 8 256 
608 E. cloacae >256 >256 128 16 8 8 16 >512 
611 E. cloacae >256 128 16 8 4 0.5 4 512 
613 E. cloacae 256 >256 32 32 8 <=0.125 8 >512 
615 E. cloacae 128 >256 64 8 16 8 8 >512 
33 E. coli 512 >512 64 128 16 0.125 64 >512 

103 E. coli 512 >512 >256 8 1 1 0.5 >512 
172 E. coli 64 256 32 8 16 16 4 >512 
176 E. coli 512 512 32 32 2 0.25 8 >512 
309 E. coli 128 256 >256 32 1 0.5 2 32 
390 E. coli 256 >512 >256 4 1 0.25 0.5 512 
609 E. coli >256 >256 128 64 16 0.5 16 >512 
95 E. gergovia 128 512 >256 64 2 0.25 4 512 

186 E. hormaechei 512 >512 128 16 32 32 8 >512 
398 E. hormaechei 256 >512 256 32 16 16 16 >512 
146 Enterobacter sp. 512 512 64 64 64 1 32 >512 
210 Enterobacter sp. 512 128 >256 128 128 1 32 >512 
166 K. oxytoca 64 32 4 16 64 0.5 4 256 
177 K. oxytoca 32 512 64 8 32 4 4 256 
330 K. oxytoca 256 128 128 64 64 1 32 >512 
128 K. ozaenae 256 256 256 128 >128 0.25 128 512 
407 K. ozaenae 128 512 16 32 16 0.5 16 512 
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Table B.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n = 
140) 

Isolate Species AZT CAZ CFPM ERT IPM IMR MEM PTC 
21 K. pneumoniae 64 128 2 32 2 0.5 2 256 
22 K. pneumoniae 512 512 >256 64 4 0.25 16 >512 
24 K. pneumoniae 512 >512 64 128 16 1 64 >512 
28 K. pneumoniae >512 >512 >256 >128 >128 1 >128 >512 
29 K. pneumoniae 512 >512 >256 128 32 1 32 >512 
31 K. pneumoniae 32 256 1 1 0.25 0.5 0.25 >512 
32 K. pneumoniae 512 512 128 64 8 0.25 16 >512 
34 K. pneumoniae 256 16 128 16 8 0.25 16 >512 
35 K. pneumoniae >512 >512 >256 128 64 0.5 128 >512 
37 K. pneumoniae 512 512 >256 128 16 0.125 32 >512 
43 K. pneumoniae >512 >512 >256 128 8 0.5 64 >512 
44 K. pneumoniae 512 512 >256 >128 64 0.5 128 >512 
45 K. pneumoniae >512 >512 >256 >128 64 0.25 128 >512 
46 K. pneumoniae >512 512 >256 128 16 1 64 >512 
47 K. pneumoniae >512 512 >256 128 128 1 64 >512 
48 K. pneumoniae 512 512 32 16 2 0.0625 8 >512 
49 K. pneumoniae 512 512 >256 64 32 0.25 64 >512 
51 K. pneumoniae >512 >512 >256 128 32 0.25 128 >512 
55 K. pneumoniae 256 512 256 64 4 0.125 64 512 
69 K. pneumoniae 256 256 >256 4 1 0.5 0.25 256 
77 K. pneumoniae 128 128 128 16 0.25 0.25 0.25 >512 
93 K. pneumoniae >512 256 >256 64 16 1 128 >512 
98 K. pneumoniae >512 >512 32 8 0.25 0.25 1 >512 
99 K. pneumoniae >512 >512 >256 64 8 1 32 >512 

105 K. pneumoniae >512 >512 >256 128 32 0.25 32 >512 
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Table B.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n = 
140) 

Isolate Species AZT CAZ CFPM ERT IPM IMR MEM PTC 
116 K. pneumoniae 256 256 >256 8 1 0.5 4 512 
119 K. pneumoniae >512 >512 >256 >128 >128 1 128 >512 
123 K. pneumoniae >512 >512 >256 >128 128 1 128 >512 
129 K. pneumoniae 256 512 256 32 64 1 32 >512 
130 K. pneumoniae 256 256 256 32 4 0.25 16 >512 
142 K. pneumoniae >512 256 >256 64 64 1 32 >512 
143 K. pneumoniae 256 256 >256 8 1 0.5 1 >512 
152 K. pneumoniae 4 128 16 2 0.5 0.25 <=0.125 >512 
165 K. pneumoniae 512 256 64 64 32 1 16 >512 
170 K. pneumoniae 64 >512 32 8 32 32 8 >512 
174 K. pneumoniae 64 512 16 2 32 32 8 512 
230 K. pneumoniae 256 512 >256 128 32 0.25 64 >512 
243 K. pneumoniae 256 512 >256 4 0.5 0.5 0.5 >512 
256 K. pneumoniae 256 256 32 32 8 0.25 16 512 
269 k. pneumoniae 512 512 >256 8 0.5 1 1 >512 
284 K. pneumoniae 512 512 >256 32 1 0.125 4 >512 
349 K. pneumoniae 256 >512 >256 8 0.5 0.5 1 >512 
352 K. pneumoniae 128 256 >256 4 2 0.25 0.25 64 
372 K. pneumoniae 256 512 >256 8 1 0.5 1 >512 
385 K. pneumoniae 512 >512 >256 4 0.5 0.25 0.5 >512 
391 K. pneumoniae 256 512 >256 16 16 0.5 8 >512 
418 K. pneumoniae 256 >512 >256 4 1 0.5 0.5 >512 
423 K. pneumoniae 256 512 >256 32 16 1 16 512 
445 K. pneumoniae >512 >512 >256 128 32 0.5 128 >512 
446 K. pneumoniae 512 512 >256 >128 64 0.25 >128 >512 
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Table B.1: Minimum Inhibitory Concentrations of Beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n = 
140) 

Isolate Species AZT CAZ CFPM ERT IPM IMR MEM PTC 
452 K. pneumoniae 512 >512 >256 >128 128 0.5 128 >512 
466 K. pneumoniae 512 512 >256 128 4 0.25 32 >512 
482 K. pneumoniae 512 >512 >256 128 4 0.125 64 >512 
492 K. pneumoniae 512 512 >256 8 0.5 0.5 1 >512 
536 K. pneumoniae >256 256 >256 8 0.25 0.25 1 >512 
42 K. pneumoniae 64 >512 64 64 32 32 16 >512 

173 K. pneumoniae 16 512 32 8 16 >32 16 >512 
411 K. pneumoniae 32 >512 256 16 32 32 32 >512 
449 K. pneumoniae 512 >512 128 >128 8 0.0625 64 >512 
558 K. pneumoniae >256 16 128 64 8 0.25 16 >512 
605 K. pneumoniae >256 256 64 32 8 0.25 16 512 
610 K. pneumoniae >256 256 32 16 8 1 8 >512 
616 K. pneumoniae 128 >256 32 16 8 4 16 512 
514 S. marcescens 512 512 128 >128 >128 1 64 512 
560 S. marcescens >256 128 256 64 >128 0.25 64 >512 

Not replicated, Replicated with disagreement; 
MICs reported as µg/mL, 
Abbreviations: AZT – Aztreonam, CAZ – Ceftazidime, CFPM – Cefepime, ERT – Ertapenem, IPM – Imipenem, IMR – Imipenem/Relebactam, 
MEM – Meropenem, PTC – Piperacillin/Tazobactam 
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Table B.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n 
= 140) 

Isolate Species AK GM TOB CST PMB MIN TGC LEV FD 
36 C. amalonaticus 16 32 128 2 2 16 2 32 256 
91 C. amalonaticus 8 128 >128 0.25 0.125 >64 2 >32 256 
27 C. freundii 2 0.25 0.5 <=0.06 <=0.06 8 1 32 64 
50 C. freundii 2 4 32 32 16 8 1 32 256 
54 C. freundii 2 32 16 <=0.06 0.125 64 2 16 8 
101 C. freundii 1 8 8 0.125 <=0.06 64 2 32 128 
127 C. freundii 16 32 32 0.125 <=0.06 16 1 32 128 
135 C. freundii 8 64 8 0.125 <=0.06 64 1 0.5 256 
145 C. freundii 1 4 8 <=0.06 0.125 32 1 16 256 
324 C. freundii 4 64 16 <=0.06 <=0.06 0.25 0.06 >32 2 
562 C. freundii 16 64 32 >64 >512 16 4 16 8 
593 C. freundii 4 128 32 0.5 0.5 >128 >128 64 128 
604 C. freundii 2 128 32 0.25 0.25 64 1 32 64 
136 C. youngae 4 64 16 <=0.06 <=0.06 64 1 >32 64 
435 C. youngae 4 16 8 <=0.06 <=0.06 64 1 32 256 
97 E. aerogenes 4 32 16 <=0.06 <=0.06 4 1 16 64 
179 E. aerogenes 8 8 8 <=0.06 <=0.06 16 0.5 32 64 
187 E. aerogenes 4 16 64 <=0.06 <=0.06 8 1 32 64 
438 E. aerogenes 1 <=0.125 0.25 0.25 0.125 16 1 0.06 32 
10 E. cloacae 2 32 32 <=0.06 <=0.06 8 1 4 16 
17 E. cloacae 4 64 32 0.125 0.125 16 4 16 64 
30 E. cloacae 16 128 64 8 4 16 2 >32 256 
39 E. cloacae 1 8 16 >64 >64 4 2 1 32 
40 E. cloacae 32 128 >128 0.125 0.25 8 2 8 256 
41 E. cloacae 32 128 >128 0.125 0.125 32 2 >32 128 
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Table B.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n 
= 140) 

Isolate Species AK GM TOB CST PMB MIN TGC LEV FD 
52 E. cloacae 4 64 32 >64 >64 8 2 16 256 
53 E. cloacae 16 128 64 <=0.06 0.125 >64 8 8 256 
70 E. cloacae 16 64 32 0.125 <=0.06 64 2 16 256 
96 E. cloacae 4 64 32 32 32 64 2 32 256 
107 E. cloacae 4 4 16 >64 64 64 2 16 16 
121 E. cloacae 16 64 64 <=0.06 <=0.06 64 2 >32 256 
126 E. cloacae 16 32 128 >64 >64 16 2 >32 256 
134 E. cloacae 8 128 16 <=0.06 <=0.06 32 0.5 2 256 
144 E. cloacae 4 32 32 0.125 0.125 64 0.5 >32 256 
167 E. cloacae 8 0.5 8 0.125 <=0.06 4 0.5 0.5 64 
168 E. cloacae 4 4 16 >64 64 32 2 16 64 
169 E. cloacae 8 0.5 8 <=0.06 0.125 4 0.5 1 64 
171 E. cloacae 2 32 64 0.125 0.125 32 4 8 64 
175 E. cloacae 16 8 32 <=0.06 <=0.06 32 1 1 64 
189 E. cloacae 8 8 8 <=0.06 0.125 32 1 1 128 
200 E. cloacae 2 128 16 <=0.06 <=0.06 16 2 32 64 
203 E. cloacae 16 16 32 <=0.06 <=0.06 4 1 2 64 
209 E. cloacae 16 32 64 0.25 0.125 16 4 8 32 
266 E. cloacae 8 128 16 0.125 0.125 2 2 2 64 
335 E. cloacae 2 16 8 0.125 0.25 64 16 >32 256 
339 E. cloacae 16 64 32 <=0.06 <=0.06 32 4 >32 64 
369 E. cloacae 2 0.25 0.5 8 4 >64 16 16 128 
416 E. cloacae 16 16 32 0.125 0.25 16 1 0.5 64 
476 E. cloacae 8 1 32 >64 >64 16 2 0.5 128 
515 E. cloacae 1 2 4 >64 >64 16 2 32 64 
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Table B.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n 
= 140) 

Isolate Species AK GM TOB CST PMB MIN TGC LEV FD 
561 E. cloacae 8 256 32 0.5 0.25 64 8 32 128 
599 E. cloacae 1 128 32 0.0625 0.125 4 0.5 32 128 
606 E. cloacae 4 256 64 0.0625 0.0625 4 0.5 64 128 
607 E. cloacae 8 256 64 0.25 0.25 4 0.5 32 64 
608 E. cloacae 16 >256 64 1 1 32 8 8 64 
611 E. cloacae 16 256 64 0.0625 0.25 32 1 32 64 
613 E. cloacae 2 64 16 <=0.0625 0.0625 32 2 32 64 
615 E. cloacae 8 32 32 0.125 0.125 16 1 16 64 
33 E. coli 16 64 16 8 4 8 2 >32 256 
103 E. coli 16 2 32 <=0.06 <=0.06 >64 2 >32 256 
172 E. coli 16 8 32 <=0.06 <=0.06 4 1 4 32 
176 E. coli 2 4 4 <=0.06 <=0.06 8 2 32 32 
309 E. coli 4 0.5 1 <=0.06 <=0.06 4 0.5 32 32 
390 E. coli 4 128 8 <=0.06 <=0.06 16 0.25 16 16 
609 E. coli 4 128 16 0.125 0.25 4 0.25 64 32 
95 E. gergovia 1 64 32 0.125 <=0.06 64 1 8 256 
186 E. hormaechei 8 32 32 <=0.06 <=0.06 8 2 8 128 
398 E. hormaechei 16 16 16 <=0.06 <=0.06 16 2 1 128 
146 Enterobacter sp. 2 32 64 <=0.06 <=0.06 32 2 8 128 
210 Enterobacter sp. <=0.5 <=0.125 0.5 >64 64 8 2 4 32 
166 K. oxytoca 2 16 32 0.125 0.25 8 1 4 32 
177 K. oxytoca 4 8 8 <=0.06 <=0.06 8 2 32 32 
330 K. oxytoca 2 4 2 <=0.06 <=0.06 4 1 16 32 
128 K. ozaenae 8 32 64 >64 >64 8 1 >32 256 
407 K. ozaenae 4 8 16 0.25 0.5 4 1 8 16 
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Table B.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n 
= 140) 

Isolate Species AK GM TOB CST PMB MIN TGC LEV FD 
21 K. pneumoniae 16 128 >128 1 0.5 8 2 >32 16 
22 K. pneumoniae 32 >128 >128 <=0.06 <=0.06 8 4 >32 256 
24 K. pneumoniae 2 4 8 0.125 0.125 4 2 >32 256 
28 K. pneumoniae 32 128 32 16 8 16 2 >32 512 
29 K. pneumoniae 32 128 64 64 64 8 2 >32 256 
31 K. pneumoniae 16 4 16 0.25 0.25 4 0.5 32 256 
32 K. pneumoniae 16 128 32 0.5 0.125 8 0.5 >32 256 
34 K. pneumoniae 1 >128 0.25 0.25 0.125 2 0.5 0.06 128 
35 K. pneumoniae 32 128 32 4 4 16 2 >32 256 
37 K. pneumoniae 64 64 >128 0.25 0.125 4 0.5 8 128 
43 K. pneumoniae 32 64 >128 0.125 <=0.06 16 2 16 128 
44 K. pneumoniae 8 32 32 0.125 <=0.06 4 2 >32 512 
45 K. pneumoniae 4 32 64 >64 >64 8 4 >32 512 
46 K. pneumoniae 64 128 >128 16 16 8 1 >32 256 
47 K. pneumoniae 64 64 >128 64 64 8 1 >32 256 
48 K. pneumoniae 32 4 32 0.125 0.125 8 1 >32 512 
49 K. pneumoniae 32 32 128 <=0.06 0.125 8 1 >32 128 
51 K. pneumoniae 1 8 16 64 32 16 2 8 512 
55 K. pneumoniae 32 0.5 16 <=0.06 0.125 4 0.5 16 64 
69 K. pneumoniae 1 0.25 0.5 0.25 0.125 64 2 32 256 
77 K. pneumoniae 2 128 128 0.125 0.125 16 0.5 8 256 
93 K. pneumoniae 8 32 64 32 8 32 2 16 256 
98 K. pneumoniae <=0.5 2 16 0.125 <=0.06 8 1 0.25 32 
99 K. pneumoniae 2 2 8 0.125 <=0.06 32 2 8 128 
105 K. pneumoniae 4 2 16 0.125 0.125 64 1 32 64 
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Table B.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n 
= 140) 

Isolate Species AK GM TOB CST PMB MIN TGC LEV FD 
116 K. pneumoniae 2 0.5 0.5 0.125 <=0.06 >64 4 >32 256 
119 K. pneumoniae 32 64 >128 64 32 4 1 >32 512 
123 K. pneumoniae 2 32 128 >64 >64 8 4 >32 256 
129 K. pneumoniae 32 2 32 <=0.06 <=0.06 4 1 >32 64 
130 K. pneumoniae 4 32 16 0.125 0.125 8 2 32 128 
142 K. pneumoniae 16 4 16 0.125 0.125 >64 1 >32 64 
143 K. pneumoniae 2 64 8 <=0.06 0.125 64 1 32 256 
152 K. pneumoniae 2 4 4 0.25 0.125 >64 2 16 256 
165 K. pneumoniae 1 32 64 >64 >64 16 4 8 32 
170 K. pneumoniae 4 16 16 <=0.06 <=0.06 16 2 4 64 
174 K. pneumoniae 16 8 16 0.125 0.125 32 1 2 64 
230 K. pneumoniae 4 16 32 >64 64 64 16 >32 256 
243 K. pneumoniae 2 <=0.125 0.25 <=0.06 0.125 16 1 32 256 
256 K. pneumoniae 2 16 8 >64 >64 32 2 >32 64 
269 k. pneumoniae 1 8 16 8 8 8 1 >32 256 
284 K. pneumoniae 1 0.25 0.25 32 16 >64 1 32 256 
349 K. pneumoniae 1 64 4 16 16 >64 8 >32 256 
352 K. pneumoniae 16 64 16 <=0.06 <=0.06 8 2 >32 256 
372 K. pneumoniae 1 64 8 32 32 >64 4 >32 256 
385 K. pneumoniae 1 0.25 0.25 2 2 8 2 >32 256 
391 K. pneumoniae 1 <=0.125 <=0.125 32 16 16 2 8 128 
418 K. pneumoniae 1 64 8 2 0.25 4 2 >32 256 
423 K. pneumoniae 2 0.25 0.25 0.25 0.125 8 1 4 128 
445 K. pneumoniae 32 >128 128 0.25 0.125 32 1 >32 256 
446 K. pneumoniae <=0.5 <=0.125 <=0.125 0.125 0.125 32 8 >32 256 
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Table B.2: Minimum Inhibitory Concentrations of Non-beta-lactam antimicrobials against CRE isolates as determined by Broth Microdilution (n 
= 140) 

Isolate Species AK GM TOB CST PMB MIN TGC LEV FD 
452 K. pneumoniae 1 0.25 0.25 0.125 0.125 32 8 >32 256 
466 K. pneumoniae 1 <=0.125 <=0.125 0.125 0.25 64 2 32 128 
482 K. pneumoniae 4 16 16 64 >64 8 2 >32 256 
492 K. pneumoniae 1 32 8 32 64 >64 2 >32 256 
536 K. pneumoniae 4 32 4 >64 >64 16 8 128 64 
42 K. pneumoniae 512 >128 128 8 8 32 4 >32 128 
173 K. pneumoniae 16 4 16 <=0.06 0.125 8 0.5 2 128 
411 K. pneumoniae 8 8 8 <=0.06 0.125 8 2 8 32 
449 K. pneumoniae 16 8 32 0.125 <=0.06 16 2 2 128 
558 K. pneumoniae 4 16 2 0.5 0.5 16 1 64 32 
605 K. pneumoniae 2 8 16 8 8 64 8 16 64 
610 K. pneumoniae 2 64 32 1 0.25 8 0.5 32 32 
616 K. pneumoniae 8 32 16 0.25 0.125 4 1 16 64 
514 S. marcescens 2 0.25 1 >64 >64 16 8 16 128 
560 S. marcescens 1 16 0.5 >64 >64 16 2 64 128 

Not replicated, Replicated with disagreement; 
MICs reported as µg/mL, 
Abbreviations: AK – Amikacin, GM – Gentamicin, TOB – Tobramycin, CST – Colistin, PMB – Polymyxin B, MIN – Minocycline, TGC – 
Tigecycline, LEV – Levofloxacin, FD - Nitrofurantoin 
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Table B.3: Minimum Inhibitory Concentrations of Novel Antimicrobial Agents 
against CRE isolates as determined by Broth Microdilution (n = 122) 

Isolate Species PLZ ERV 
36 C. amalonaticus 0.25 1 
91 C. amalonaticus 0.5 >8 
27 C. freundii 1 2 
50 C. freundii 0.5 1 
54 C. freundii 0.125 2 

101 C. freundii 0.25 1 
127 C. freundii 0.5 1 
135 C. freundii 0.125 1 
145 C. freundii 0.25 0.5 
324 C. freundii 0.5 0.25 
136 C. youngae 0.5 0.5 
435 C. youngae 0.25 1 
97 E. aerogenes 0.5 1 

179 E. aerogenes 0.5 0.25 
187 E. aerogenes 0.5 2 
438 E. aerogenes 0.25 0.5 
10 E. cloacae 0.25 0.5 
17 E. cloacae 0.25 1 
30 E. cloacae 0.5 1 
39 E. cloacae 0.125 1 
40 E. cloacae 0.25 2 
41 E. cloacae 0.25 1 
52 E. cloacae 1 >8 
53 E. cloacae 0.0625 2 
70 E. cloacae 0.25 0.5 
96 E. cloacae 0.25 1 

107 E. cloacae 0.25 2 
121 E. cloacae 0.5 0.5 
126 E. cloacae 0.5 4 
134 E. cloacae 0.25 0.5 
144 E. cloacae 0.25 0.5 
167 E. cloacae 0.25 1 
168 E. cloacae 0.125 4 
169 E. cloacae 0.25 0.5 
171 E. cloacae 0.5 2 
175 E. cloacae 0.5 0.25 
189 E. cloacae 0.5 1 
200 E. cloacae 0.5 2 
203 E. cloacae 0.5 0.5 
209 E. cloacae 0.5 2 
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Table B.3: Minimum Inhibitory Concentrations of Novel Antimicrobial Agents 
against CRE isolates as determined by Broth Microdilution (n = 122) 

Isolate Species PLZ ERV 
266 E. cloacae 0.5 4 
335 E. cloacae 0.25 >8 
339 E. cloacae 0.125 4 
369 E. cloacae 4 8 
416 E. cloacae 0.25 4 
476 E. cloacae 1 2 
515 E. cloacae 0.25 2 
33 E. coli 0.125 0.5 

103 E. coli 0.5 1 
172 E. coli 0.5 1 
176 E. coli 1 0.5 
309 E. coli 1 0.5 
390 E. coli 1 1 
95 E. gergoviae 0.25 1 

186 E. hormaechei 0.5 2 
398 E. hormaechei 0.5 2 
146 Enterobacter sp. 0.25 2 
210 Enterobacter sp. 0.25 1 
166 K. oxytoca 1 1 
177 K. oxytoca 0.5 0.125 
330 K. oxytoca 0.25 8 
128 K. ozaenae 0.5 1 
407 K. ozaenae 0.25 2 
21 K. pneumoniae 0.125 1 
22 K. pneumoniae 1 2 
24 K. pneumoniae 0.5 1 
28 K. pneumoniae 0.5 2 
29 K. pneumoniae 0.5 2 
31 K. pneumoniae 0.25 0.5 
32 K. pneumoniae 0.25 0.5 
34 K. pneumoniae 0.125 0.5 
35 K. pneumoniae 0.25 1 
37 K. pneumoniae 0.25 1 
43 K. pneumoniae 0.5 1 
44 K. pneumoniae 0.25 1 
45 K. pneumoniae 1 1 
46 K. pneumoniae 1 1 
47 K. pneumoniae 0.5 0.5 
48 K. pneumoniae 0.5 1 
49 K. pneumoniae 0.5 1 
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Table B.3: Minimum Inhibitory Concentrations of Novel Antimicrobial Agents 
against CRE isolates as determined by Broth Microdilution (n = 122) 

Isolate Species PLZ ERV 
51 K. pneumoniae 0.5 1 
55 K. pneumoniae 0.5 0.25 
69 K. pneumoniae 0.125 2 
77 K. pneumoniae 0.25 0.5 
93 K. pneumoniae 0.5 1 
98 K. pneumoniae 0.25 1 
99 K. pneumoniae 0.5 1 

105 K. pneumoniae 0.5 0.5 
116 K. pneumoniae 0.5 4 
119 K. pneumoniae 1 0.5 
123 K. pneumoniae 0.5 2 
129 K. pneumoniae 0.5 0.5 
130 K. pneumoniae 0.5 0.5 
142 K. pneumoniae 0.125 0.5 
143 K. pneumoniae 0.25 0.5 
152 K. pneumoniae 0.25 2 
165 K. pneumoniae 0.25 2 
170 K. pneumoniae 0.25 1 
174 K. pneumoniae 0.5 0.25 
230 K. pneumoniae 0.25 2 
243 K. pneumoniae 0.25 0.5 
256 K. pneumoniae 0.5 4 
269 k. pneumoniae 0.5 2 
284 K. pneumoniae 0.5 2 
349 K. pneumoniae 0.125 2 
352 K. pneumoniae 0.125 1 
372 K. pneumoniae 0.125 2 
385 K. pneumoniae 0.125 0.5 
391 K. pneumoniae 0.25 4 
418 K. pneumoniae 0.125 1 
423 K. pneumoniae 0.125 1 
445 K. pneumoniae 0.5 1 
446 K. pneumoniae 0.25 4 
452 K. pneumoniae 0.25 2 
466 K. pneumoniae 0.25 2 
482 K. pneumoniae 0.5 2 
492 K. pneumoniae 0.25 2 
42 K. pneumoniae 64 4 

173 K. pneumoniae 0.5 0.5 
411 K. pneumoniae 0.5 1 
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Table B.3: Minimum Inhibitory Concentrations of Novel Antimicrobial Agents 
against CRE isolates as determined by Broth Microdilution (n = 122) 

Isolate Species PLZ ERV 
449 K. pneumoniae 0.25 2 
514 S. marcescens 0.5 8 

MICs reported as µg/mL, 
ERV: Eravacycline, PLZ: Plazomicin 
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Table B.4: Descriptive Statistics of Combined Minimum Inhibitory 
Concentrations against CRE isolates as determined by Broth Microdilution (n = 
140) 
Antimicrobial %S MIC50 MIC90 MIC Range 
Amikacin 88% 4 32 <=0.5 - 512 
Gentamicin 27% 32 128 <=0.125 - >256 
Tobramycin 18% 16 128 <=0.125 - >128 
Colistin 71% 0.125 >64 <=0.06 - >64 
Polymyxin_B 71% 0.125 >64 <=0.06 - >512 
Minocycline 18% 16 64 0.25 - >128 
Tigecycline 82% 2 4 0.06 - >128 
Levofloxacin 5% 32 64 0.06 - 128 
Nitrofurantoin 17% 128 256 2 - 512 
Aztreonam 1% >256 >512 <=0.25 - >512 
Ceftazidime 0% 512 >512 8 - >512 
Cefepime 1% 128 >256 1 - >256 
Piperacillin/Tazobactam 0% >512 >512 32 - >512 
Ertapenem 0% 32 128 1 - >128 
Imipenem/Relebactam 78% 0.5 32 0.0625 - >32 
Meropenem 16% 16 64 <=0.125 - >128 
MIC values reported as µg/mL, a: Note not all antimicrobials tested for all 
isolates 
%S: percent susceptible, MICn: MIC required to inhibit visible growth in nth 
percentile of all isolates tested 
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Appendix C. MICs Determined by E-test 

 
Tables C.1 - C.3 provide MICs determined by E-test in our laboratory. All MICs 

reported are the modal values of replicated MIC experiments unless otherwise 

designated. 

 

P. aeruginosa isolates included in Table C.3 were collected from patients along 

with carbapenem-resistant Enterobacteriaceae isolates and provided by the UK 

HealthCare Clinical Microbiology laboratory. 

 

Isolates included in Table C.4 were sampled from the Centers for Disease 

Control and Prevention’s Antibiotic Resistance Isolate Bank 

 

Abbreviations used in Table C.1 were: ERV - Eravacycline, PLZ - Plazomicin, 

CFD - Cefiderocol 

 

Abbreviation used in Table C.2 was: CFD - Cefiderocol 
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Table C.1: Minimum Inhibitory Concentrations of Novel 
Antimicrobial Agents against CRE as determined by E-test (n 
= 140) 

Isolate Species PLZ ERV CFD 
36 C. amalonaticus 0.5 1 -- 
91 C. amalonaticus 0.5 >8 -- 
27 C. freundii 0.5 2 -- 
50 C. freundii 0.5 1 -- 
54 C. freundii 0.5 2 -- 

101 C. freundii 0.38 1 -- 
127 C. freundii 0.75 0.5 -- 
135 C. freundii 0.5 0.5 -- 
145 C. freundii 0.5 -- -- 
324 C. freundii 1 -- -- 
562 C. freundii 0.75 0.023 -- 
593 C. freundii 8 0.25 -- 
604 C. freundii 0.75 0.38 -- 
136 C. youngae 0.5 0.5 -- 
435 C. youngae 0.5 -- -- 
97 E. aerogenes 1 1 -- 

179 E. aerogenes 0.5 0.19 -- 
187 E. aerogenes 0.75 -- -- 
438 E. aerogenes 0.5 -- -- 
10 E. cloacae 0.19 4 0.125 
17 E. cloacae 0.75 8 -- 
30 E. cloacae 1 1 0.19 
39 E. cloacae 0.5 1 0.25 
40 E. cloacae 1 1.5 4 
41 E. cloacae 0.5 1 -- 
52 E. cloacae 0.75 >8 1 
53 E. cloacae 0.75 3 4 
70 E. cloacae 0.5 0.5 -- 
96 E. cloacae 0.75 1 -- 

107 E. cloacae 0.38 2 0.5 
121 E. cloacae 1 1 0.75 
126 E. cloacae 0.38 8 0.38 
134 E. cloacae 0.75 1 0.5 
144 E. cloacae 0.75 -- 0.19 
167 E. cloacae 0.5 0.19 1 
168 E. cloacae 0.38 -- -- 
169 E. cloacae 0.5 0.19 1 
171 E. cloacae 0.38 -- -- 
175 E. cloacae 0.5 0.25 0.38 
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Table C.1: Minimum Inhibitory Concentrations of Novel 
Antimicrobial Agents against CRE as determined by E-test (n 
= 140) 

Isolate Species PLZ ERV CFD 
189 E. cloacae 0.75 0.25 1 
200 E. cloacae 1 -- -- 
203 E. cloacae 0.38 0.25 8 
209 E. cloacae 1 -- 0.38 
266 E. cloacae 0.75 3 0.75 
335 E. cloacae 0.5 -- -- 
339 E. cloacae 0.38 -- -- 
369 E. cloacae 0.75 -- -- 
416 E. cloacae 0.5 0.75 0.38 
476 E. cloacae 1 -- -- 
515 E. cloacae 0.5 -- -- 
561 E. cloacae 1 3 0.19 
599 E. cloacae 0.5 0.19 1.5 
606 E. cloacae 0.5 0.25 0.25 
607 E. cloacae 1 0.25 1.5 
608 E. cloacae 1 3 3 
611 E. cloacae 0.75 0.19 -- 
613 E. cloacae 1 1 -- 
615 E. cloacae 0.75 0.25 0.38 
33 E. coli 1 0.5 -- 

103 E. coli 0.75 1 -- 
172 E. coli 0.75 2 -- 
176 E. coli 0.75 -- -- 
309 E. coli 1.5 -- -- 
390 E. coli 0.5 -- -- 
609 E. coli 0.75 0.25 -- 
95 E. gergoviae 0.5 1 -- 

186 E. hormaechei 0.38 0.75 -- 
398 E. hormaechei 1 1 -- 
146 Enterobacter sp. 0.5 -- -- 
210 Enterobacter sp. 0.38 -- -- 
166 K. oxytoca 0.38 -- -- 
177 K. oxytoca 0.75 -- -- 
330 K. oxytoca 0.38 -- -- 
128 K. ozaenae 0.19 1 -- 
407 K. ozaenae 1 -- -- 
21 K. pneumoniae 0.5 1 -- 
22 K. pneumoniae 1 2 -- 
24 K. pneumoniae 0.5 1 -- 
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Table C.1: Minimum Inhibitory Concentrations of Novel 
Antimicrobial Agents against CRE as determined by E-test (n 
= 140) 

Isolate Species PLZ ERV CFD 
28 K. pneumoniae 1 2 0.125 
29 K. pneumoniae 1 2 -- 
31 K. pneumoniae 0.5 0.5 -- 
32 K. pneumoniae 0.5 0.5 -- 
34 K. pneumoniae 0.38 0.5 -- 
35 K. pneumoniae 0.38 1 0.25 
37 K. pneumoniae 0.5 1 -- 
42 K. pneumoniae 0.75 3 0.047 
43 K. pneumoniae 1 1 0.75 
44 K. pneumoniae 0.38 1 0.125 
45 K. pneumoniae 1 1 1 
46 K. pneumoniae 0.75 1 0.38 
47 K. pneumoniae 0.75 0.5 -- 
48 K. pneumoniae 0.38 1 -- 
49 K. pneumoniae 0.75 1 0.38 
51 K. pneumoniae 0.75 1 0.38 
55 K. pneumoniae 0.5 8 0.047 
69 K. pneumoniae 0.38 2 -- 
77 K. pneumoniae 0.5 0.03125 -- 
93 K. pneumoniae 0.75 1 0.38 
98 K. pneumoniae 0.38 4 -- 
99 K. pneumoniae 0.75 1 -- 

105 K. pneumoniae 0.38 0.5 -- 
116 K. pneumoniae 1 4 -- 
119 K. pneumoniae 3 1 0.5 
123 K. pneumoniae 1 2 0.75 
129 K. pneumoniae 0.75 0.25 -- 
130 K. pneumoniae 1 0.5 -- 
142 K. pneumoniae 0.5 0.5 -- 
143 K. pneumoniae 0.38 0.25 -- 
152 K. pneumoniae 0.5 -- -- 
165 K. pneumoniae 0.25 -- -- 
170 K. pneumoniae 0.5 0.75 0.25 
173 K. pneumoniae 1 0.19 0.094 
174 K. pneumoniae 0.75 0.25 0.25 
230 K. pneumoniae 0.5 -- 0.25 
243 K. pneumoniae 0.5 -- -- 
256 K. pneumoniae 0.5 -- -- 
269 K. pneumoniae 0.5 -- -- 
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Table C.1: Minimum Inhibitory Concentrations of Novel 
Antimicrobial Agents against CRE as determined by E-test (n 
= 140) 

Isolate Species PLZ ERV CFD 
284 K. pneumoniae 0.5 -- -- 
349 K. pneumoniae 0.38 -- -- 
352 K. pneumoniae 0.5 -- -- 
372 K. pneumoniae 0.38 -- -- 
385 K. pneumoniae 0.38 -- -- 
391 K. pneumoniae 0.38 -- -- 
411 K. pneumoniae 0.5 1 0.032 
418 K. pneumoniae 0.38 -- -- 
423 K. pneumoniae 0.5 -- -- 
445 K. pneumoniae 1 -- 0.094 
446 K. pneumoniae 0.38 -- 0.094 
449 K. pneumoniae 0.75 -- 0.5 
452 K. pneumoniae 0.5 -- 0.094 
466 K. pneumoniae 0.5 -- -- 
482 K. pneumoniae 0.75 -- 0.5 
492 K. pneumoniae 0.38 -- -- 
536 K. pneumoniae 1.5 0.5 -- 
558 K. pneumoniae 0.38 0.38 -- 
605 K. pneumoniae 0.5 0.38 -- 
610 K. pneumoniae 0.75 0.19 -- 
616 K. pneumoniae 0.75 0.125 0.38 
514 S. marcescens 0.75 -- -- 
560 S. marcescens 1 0.75 -- 

Not replicated, Replicated with disagreement; 
MICs reported as µg/mL, 
ERV: Eravacycline, PLZ: Plazomicin, CFD: Cefiderocol 
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Table C.2: Minimum Inhibitory Concentrations of 
Cefiderocol against MDR P. aeruginosa determined by E-
test (n = 47) 
Isolate Species CFD 

12 P. aeruginosa 0.032 
17 P. aeruginosa 0.125 
24 P. aeruginosa 0.094 
28 P. aeruginosa 2 
29 P. aeruginosa 3 
36 P. aeruginosa 0.19 
47 P. aeruginosa 0.125 
61 P. aeruginosa 0.094 
66 P. aeruginosa 0.125 
83 P. aeruginosa 0.032 
84 P. aeruginosa 0.047 
85 P. aeruginosa 0.064 
88 P. aeruginosa 1.5 
92 P. aeruginosa 0.125 
93 P. aeruginosa 0.094 
96 P. aeruginosa 0.094 

107 P. aeruginosa 0.047 
115 P. aeruginosa 0.047 
128 P. aeruginosa 0.125 
131 P. aeruginosa 0.032 
136 P. aeruginosa 0.094 
144 P. aeruginosa 0.19 
151 P. aeruginosa 0.75 
157 P. aeruginosa 0.38 
184 P. aeruginosa 0.19 
208 P. aeruginosa 0.047 
211 P. aeruginosa 0.094 
234 P. aeruginosa 0.023 
251 P. aeruginosa 0.094 
259 P. aeruginosa 0.032 
279 P. aeruginosa 0.125 
297 P. aeruginosa 0.094 
300 P. aeruginosa 0.094 
313 P. aeruginosa 0.094 
326 P. aeruginosa 0.094 
327 P. aeruginosa 0.047 
337 P. aeruginosa 0.047 
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Table C.2: Minimum Inhibitory Concentrations of 
Cefiderocol against MDR P. aeruginosa determined by E-
test (n = 47) 
Isolate Species CFD 

338 P. aeruginosa 0.125 
346 P. aeruginosa 0.125 
360 P. aeruginosa 0.19 
363 P. aeruginosa 0.064 
381 P. aeruginosa 0.047 
436 P. aeruginosa 0.064 
437 P. aeruginosa 0.023 
489 P. aeruginosa 0.5 
497 P. aeruginosa 0.25 
498 P. aeruginosa 0.38 

Not replicated; 
MICs reported as µg/mL, 
CFD: Cefiderocol 
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Table C.3: Minimum Inhibitory Concentrations of 
Ceftolozane/Tazobactam against MDR Gram-
negative Pathogens as determined by E-test and 
Broth Microdilution 

Isolate Speciesa E-test BMDb 

351 P aeruginosa 1 4 
352 P aeruginosa 16 32 
353 P aeruginosa 64 128 
354 P aeruginosa 1 2 
355 P aeruginosa 2 2 
356 P aeruginosa 8 32 
357 P aeruginosa 8 128 
358 P aeruginosa 1 8 
359 P aeruginosa 1 2 
360 P aeruginosa 0.5 1 
361 K pneumoniae 32 64 
362 K pneumoniae 16 64 
363 K pneumoniae 16 32 
364 K pneumoniae 16 32 
365 E cloacae 4 16 
366 E cloacae 4 8 
367 E cloacae 8 16 
368 E coli 0.25 0.25 
369 E coli 0.125 0.25 
370 E coli 0.25 2 
371 E coli 16 64 
372 E coli 8 32 
373 E coli 4 4 
374 E coli 2 8 
375 K oxytoca 0.125 0.25 
376 K pneumoniae 2 16 
377 P mirabilis 2 8 
378 E coli 0.125 0.125 
379 P mirabilis 0.25 0.125 
380 K oxytoca 2 4 

Replicated with disagreement;  
MICs reported as µg/mL, BMD – broth 
microdilution;  
a: Isolates belonged to CDC AR Isolate Bank  
b: MICs measured with BMD were provided by 
CDC with AR Isolate Bank 
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Appendix D. Combined MIC Analysis of Novel Antimicrobials 

 
Table D.1 provides combined susceptibility and MIC distribution data of four 

novel antimicrobial agents tested on select carbapenem-resistant 

Enterobacterales and P. aeruginosa isolates via broth microdilution and E-test 

 

P. aeruginosa isolates included in Table D.1 for testing with cefiderocol were 

collected from patients along with carbapenem-resistant Enterobacterales 

isolates and provided by the UK HealthCare Clinical Microbiology laboratory. 

 

Isolates included in Table D.1 for testing with ceftolozane/tazobactam were 

sampled from the Centers for Disease Control and Prevention’s Antibiotic 

Resistance Isolate Bank 

 

Abbreviations used in Table D.1 were: N - number of isolates tested, %S - 

percent susceptible, MICn - MIC required to inhibit visible growth in nth percentile 

of all isolates tested, ENT - Enterobacterales, PSA - P. aeruginosa 
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Table D.1: Descriptive Statistics of Combined Minimum Inhibitory Concentrations of Novel Antimicrobial Agents 
against CRE isolates as determined by Broth Microdilution and E-test 

Antimicrobial N %S MIC50 MIC90 MIC Range 
Eravacycline (E-test) 94 39% 1 3 0.023 - >8 
Eravacycline (BMD) 122 27% 1 4 0.125 - >8 
Plazomicin (E-test) 140 99% 0.5 1 0.19 – 8 
Plazomicin (BMD) 122 98% 0.5 1 0.0625 – 64 

Cefiderocol (E-test, ENT) 49 98% 0.38 1.5 0.032 – 8 
Cefiderocol (E-test, PSA) 47 94% 0.094 0.5 0.023 - 3 

Ceftolozane/Tazobactam (E-test, PSA) 10a 60% 1 16 0.5 - 64 
Ceftolozane/Tazobactam (E-test, ENT) 20a 50% 2 16 0.125 - 32 

MICs reported as µg/mL, a: Isolates belonged to CDC AR Isolate Bank 
N: number of isolates tested, %S: percent susceptible, MICn: MIC required to inhibit visible growth in nth percentile 
of all isolates tested, ENT: Enterobacterales, PSA: P. aeruginosa 
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Appendix E. BMD E-test Agreement 

 
Figures E.1 - E.3 illustrate the agreement between MICs determined by broth 

microdilution and E-test for plazomicin, eravacycline, and 

ceftolozane/tazobactam. 

 

Isolates included in Figure E.3, and Table E.1 for testing with 

ceftolozane/tazobactam were sampled from the Centers for Disease Control and 

Prevention’s Antibiotic Resistance Isolate Bank 

 

Abbreviations used for Figures E1 - E.3 were: PLZ - Plazomicin, ERV - 

Eravacycline, CFD - Cefiderocol, respectively 

 

Abbreviations used for Table E.1 were: ERV - Eravacycline, PLZ - Plazomicin, 

CT - Ceftolozane/Tazobactam, N - Number of isolates, EA - Essential 

Agreement, CA - Categorical Agreement, VME - Very Major Error, ME - Major 

Error, miE - Minor Error, miE Adj - Minor Error Adjusted 
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Table E.1: Agreement between MICs determined by Broth Microdilution or 
E-test for Novel Antimicrobial Agents 

 PLZ ERV CT 
N Tested 122 76 30a 

EA: N (%) 95 (78.0%) 68 (89.0%) 18 (60.0%) 
CA: N (%) 119 (98.0%) 67 (88.0%) 21 (70.0%) 

VME: N (%) 1 (100.0%) 2 (4.0%) 3 (19.0%) 
ME: N (%) 0 (0.0%) 2 (8.0%) 0 (0.0%) 
miE: N (%) 2 (2.0%) NAb 6 (20.0%) 

miE Adj: N (%) 2 (2.0%) NAb 4 (13.0%) 
a: Isolates tested belong to CDC AR Isolate Bank, b: ERV has no 
intermediate breakpoint category, 
ERV: Eravacycline, PLZ: Plazomicin, CT: Ceftolozane/Tazobactam, N: 
Number of isolates, EA: Essential Agreement, CA: Categorical Agreement, 
VME: Very Major Error, ME: Major Error, miE: Minor Error, miE Adj: Minor 
Error Adjusted 
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Figure E.1: Agreement between broth microdilution and E-test 
determined MICs for plazomicin. Numeric annotations and shading of 
points correspond to the number of isolates at each coordinate, BMD: 
Broth Microdilution, PLZ: Plazomicin 
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Figure E.2: Agreement between broth microdilution and E-test 
determined MICs for eravacycline. Numeric annotations and shading of 
points correspond to the number of isolates at each coordinate, BMD: 
Broth Microdilution, ERV: Eravacycline 
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Figure E.3: Agreement between broth microdilution and E-test 
determined MICs for ceftolozane/tazobactam. Numeric annotations and 
shading of points correspond to the number of isolates at each 
coordinate, BMD: Broth Microdilution, CT: Ceftolozane/Tazobactam 
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Appendix F. Time Kill Analysis for all Isolates Tested 

Tables F.1 and F.2 provide the individual and geometric means, respectively, of 

the bacterial densities estimated for each time point (0-, 4-, 8-, and 24-hours) 

following exposure. 

 

Table F.3 provides the means ± standard deviations of the geometric means of 

bacterial density measured across each experiment for all time points (0, 4, 8, 

and 24 hours following exposure). 

 

Table F.4 provides the modal MICs for all antimicrobials used for each isolate 

determined by broth microdilution in our laboratory. 

 

Table F.5 provides the mean difference [95% confidence intervals] of geometric 

means of the bacterial densities measured for aztreonam/avibactam and each 

amikacin- or plazomicin-containing condition at 24 hours following exposure. 

 

Table F.6 provides the geometric mean difference [95% confidence intervals] of 

geometric means of the bacterial densities measured for the growth control and 

every other condition at 24 hours following exposure. 

 

Table F.7 provides the geometric mean difference [95% confidence intervals] of 

geometric means of the bacterial densities measured for all amikacin- and 

plazomicin-containing conditions at 24 hours following exposure. 
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Figure F.1 provides an analysis of synergy of the geometric means for all 

isolate/antimicrobial combination pairs tested following 24 hours of exposure. 

 

Figures F.2 and F.3 provide an analysis of bactericidality of each individual 

experiment and the geometric means across experiments, respectively, 

measured following 24 hours of exposure. 

 

Figures F.4 - F.17 illustrate the growth curves for all tested isolates by exposure 

(amikacin, aztreonam/avibactam, aztreonam, cefepime, cefepime/amikacin, 

cefepime/plazomicin, growth control, meropenem, meropenem/amikacin, 

meropenem/plazomicin, piperacillin/tazobactam, 

piperacillin/tazobactam/amikacin, and piperacillin/tazobactam/plazomicin, 

respectively) for each experiment and the geometric means across all 

experiments. 

 

Figures F.18 - F.31 illustrate the differences between the initial bacterial densities 

and those measured at each time point for all tested isolates by exposure 

(amikacin, aztreonam/avibactam, aztreonam, cefepime, cefepime/amikacin, 

cefepime/plazomicin, growth control, meropenem, meropenem/amikacin, 

meropenem/plazomicin, piperacillin/tazobactam, 

piperacillin/tazobactam/amikacin, and piperacillin/tazobactam/plazomicin, 
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respectively) for each experiment and the geometric means across all 

experiments. 

 

Figures F.32 - F.34 illustrate the central tendencies and variation of the 

geometric mean differences between the bacterial concentrations measured at 

T0 and 4, 8, and 24 hours following exposure across all experiments for each 

condition. 

 

Figures F.35 - F.37 illustrate the initial inocula concentration under three different 

conditions: T0 measurements for each condition by species, T0 measurements 

of only the growth controls, and adjusted T0 measurements which show the 

maximum value between the growth control and T0 measurement for each 

experiment, respectively. 

 

Abbreviations common across most figures and tables of this section include: A4: 

Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, 

F32A4: Cefepime/Amikacin, F32PL4: Cefepime/Plazomicin, GC: Growth Control, 

M16: Meropenem, M16A4: Meropenem/Amikacin, M16PL4: 

Meropenem/Plazomicin, PL4: Plazomicin, PT64: Piperacillin/Tazobactam, 

PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 

Piperacillin/Tazobactam/Plazomicin, EC - E. cloacae, KP - K. pneumoniae, CFU - 

Colony Forming Units, and T0, 4, 8, 24 - hours following exposure 
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Abbreviations used in Figure F.1 not included above were S - Synergy and I - 

Indifferent 

 

Abbreviations used in Figure F.3 not included above were C - Bactericidal, S - 

Bacteriostatic, and R - Regrowth 
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Time-kill Colony Count at each Time Point  

Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
134A4 7/12/21 E. cloacae 6.04 6.04 4.09 5.89 10.00 
134A4 7/19/21 E. cloacae 5.92 5.92 3.87 5.20 10.00 

134AV32 10/18/21 E. cloacae 5.88 5.88 2.34 2.00 2.00 
134AV32 11/4/21 E. cloacae 5.88 5.88 2.56 2.00 2.00 
134AZ32 10/18/21 E. cloacae 5.81 5.81 10.00 10.00 10.00 
134AZ32 11/4/21 E. cloacae 5.88 5.88 8.56 10.00 10.00 
134F32 7/12/21 E. cloacae 5.91 5.91 4.38 10.00 10.00 
134F32 7/19/21 E. cloacae 5.90 5.90 5.11 10.00 10.00 

134F32A4 7/12/21 E. cloacae 5.92 5.92 3.68 3.25 2.15 
134F32A4 7/19/21 E. cloacae 5.91 5.91 3.33 2.70 10.00 
134F32A4 7/26/21 E. cloacae 5.70 5.91 3.42 3.41 9.44 
134F32PL4 7/12/21 E. cloacae 6.11 6.11 5.34 4.95 4.16 
134F32PL4 7/19/21 E. cloacae 5.68 5.88 5.17 4.50 2.34 

134GC 7/12/21 E. cloacae 5.85 5.85 9.98 10.00 10.00 
134GC 7/19/21 E. cloacae 5.88 5.88 10.00 10.00 10.00 
134GC 7/26/21 E. cloacae 5.91 5.91 10.00 10.00 10.00 
134M16 7/12/21 E. cloacae 6.06 6.06 2.00 2.00 2.00 
134M16 7/19/21 E. cloacae 5.90 5.90 2.00 3.87 10.00 
134M16 7/26/21 E. cloacae 5.85 5.91 2.00 2.00 2.00 

134M16A4 7/12/21 E. cloacae 5.89 5.89 2.20 2.00 2.00 
134M16A4 7/19/21 E. cloacae 5.92 5.92 2.20 2.00 2.00 
134M16PL4 7/12/21 E. cloacae 5.79 5.85 2.90 2.00 2.00 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
134M16PL4 7/19/21 E. cloacae 5.86 5.88 3.43 2.20 2.00 

134PL4 7/12/21 E. cloacae 6.02 6.02 5.40 5.20 4.64 
134PL4 7/19/21 E. cloacae 5.83 5.88 5.40 4.79 2.98 

134PT64 7/12/21 E. cloacae 5.85 5.85 10.00 10.00 10.00 
134PT64 7/19/21 E. cloacae 5.89 5.89 7.42 10.00 10.00 
134PT64 7/26/21 E. cloacae 5.80 5.91 7.58 10.00 10.00 

134PT64A4 7/12/21 E. cloacae 5.92 5.92 3.93 4.94 10.00 
134PT64A4 7/19/21 E. cloacae 5.90 5.90 3.51 2.56 9.81 
134PT64A4 7/26/21 E. cloacae 5.78 5.91 3.63 3.09 10.00 

134PT64PL4 7/12/21 E. cloacae 6.08 6.08 5.41 5.06 4.48 
134PT64PL4 7/19/21 E. cloacae 5.70 5.88 5.26 4.81 2.68 
134PT64PL4 7/26/21 E. cloacae 5.71 5.91 5.05 4.51 2.56 

167A4 10/14/21 E. cloacae 5.98 5.98 4.57 5.04 10.00 
167A4 10/18/21 E. cloacae 5.93 5.93 4.19 4.71 10.00 

167AV32 11/4/21 E. cloacae 5.91 5.91 3.49 2.64 2.00 
167AV32 11/11/21 E. cloacae 5.93 5.93 3.54 2.58 2.00 
167AZ32 11/4/21 E. cloacae 5.91 5.91 7.65 7.96 10.00 
167AZ32 11/11/21 E. cloacae 5.83 5.83 7.58 7.99 9.57 
167F32 10/14/21 E. cloacae 6.01 6.01 3.71 6.19 10.00 
167F32 10/18/21 E. cloacae 5.89 5.90 3.64 3.85 10.00 

167F32A4 10/14/21 E. cloacae 5.88 5.93 3.86 2.53 10.00 
167F32A4 10/18/21 E. cloacae 5.78 5.90 3.82 2.64 2.00 
167F32A4 11/11/21 E. cloacae 5.89 5.89 4.36 2.58 2.00 
167F32PL4 10/14/21 E. cloacae 5.55 5.93 2.00 2.00 2.00 
167F32PL4 10/18/21 E. cloacae 5.37 5.90 2.00 2.00 2.00 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
167GC 10/14/21 E. cloacae 5.93 5.93 10.00 10.00 10.00 
167GC 10/18/21 E. cloacae 5.90 5.90 10.00 10.00 10.00 
167M16 10/14/21 E. cloacae 5.89 5.93 3.06 2.56 2.00 
167M16 10/18/21 E. cloacae 5.91 5.91 2.90 2.00 2.00 

167M16A4 10/14/21 E. cloacae 5.97 5.97 3.03 2.00 2.00 
167M16A4 10/18/21 E. cloacae 5.82 5.90 3.06 2.00 2.00 
167M16PL4 10/14/21 E. cloacae 5.49 5.93 2.00 2.00 2.00 
167M16PL4 10/18/21 E. cloacae 4.93 5.90 2.00 2.00 2.00 

167PL4 10/14/21 E. cloacae 5.37 5.93 2.00 2.00 2.00 
167PL4 10/18/21 E. cloacae 5.20 5.90 2.00 2.00 2.00 

167PT64 10/14/21 E. cloacae 5.86 5.93 5.21 10.00 10.00 
167PT64 10/18/21 E. cloacae 5.87 5.90 4.35 10.00 9.01 

167PT64A4 10/14/21 E. cloacae 5.93 5.93 4.10 2.79 10.00 
167PT64A4 10/18/21 E. cloacae 5.80 5.90 3.87 2.70 2.00 
167PT64A4 11/11/21 E. cloacae 5.89 5.89 4.45 2.99 2.00 

167PT64PL4 10/14/21 E. cloacae 5.62 5.93 2.00 2.00 2.00 
167PT64PL4 10/18/21 E. cloacae 5.24 5.90 2.00 2.00 2.00 

169A4 10/14/21 E. cloacae 5.90 5.90 4.40 4.93 10.00 
169A4 10/18/21 E. cloacae 5.92 5.99 4.36 4.96 9.63 

169AV32 11/4/21 E. cloacae 5.94 5.94 3.68 2.86 2.00 
169AV32 11/11/21 E. cloacae 5.93 5.93 3.52 2.30 2.00 
169AZ32 11/4/21 E. cloacae 5.92 5.92 7.81 7.66 10.00 
169AZ32 11/11/21 E. cloacae 5.88 5.88 7.32 8.63 9.47 
169F32 10/14/21 E. cloacae 5.89 5.89 3.51 5.16 10.00 
169F32 10/18/21 E. cloacae 5.81 5.99 3.62 4.03 9.64 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
169F32A4 10/14/21 E. cloacae 5.85 5.85 3.74 2.00 2.00 
169F32A4 10/18/21 E. cloacae 5.89 5.99 3.68 2.51 2.00 
169F32PL4 10/14/21 E. cloacae 5.41 5.78 2.00 2.00 2.00 
169F32PL4 10/18/21 E. cloacae 5.81 5.99 2.00 2.00 2.00 

169GC 10/14/21 E. cloacae 5.78 5.78 10.00 10.00 10.00 
169GC 10/18/21 E. cloacae 5.99 5.99 10.00 10.00 10.00 
169M16 10/14/21 E. cloacae 5.87 5.87 2.73 2.08 2.00 
169M16 10/18/21 E. cloacae 6.04 6.04 2.51 2.00 2.00 

169M16A4 10/14/21 E. cloacae 5.87 5.87 2.86 2.00 2.00 
169M16A4 10/18/21 E. cloacae 5.92 5.99 2.76 2.08 2.00 
169M16PL4 10/14/21 E. cloacae 5.52 5.78 2.00 2.00 2.00 
169M16PL4 10/18/21 E. cloacae 5.68 5.99 2.00 2.00 2.00 

169PL4 10/14/21 E. cloacae 5.56 5.78 2.00 2.00 2.00 
169PL4 10/18/21 E. cloacae 5.63 5.99 2.00 2.00 2.00 

169PT64 10/14/21 E. cloacae 5.92 5.92 4.82 10.00 10.00 
169PT64 10/18/21 E. cloacae 5.90 5.99 4.15 9.61 10.00 

169PT64A4 10/14/21 E. cloacae 5.83 5.83 3.93 2.60 3.67 
169PT64A4 10/18/21 E. cloacae 5.91 5.99 3.89 2.66 2.00 
169PT64A4 11/11/21 E. cloacae 5.84 5.84 4.32 2.93 2.20 

169PT64PL4 10/14/21 E. cloacae 5.46 5.78 2.00 2.00 2.00 
169PT64PL4 10/18/21 E. cloacae 5.72 5.99 2.00 2.00 2.00 

173A4 8/16/21 K. pneumoniae 5.68 5.68 4.03 6.36 10.00 
173A4 8/23/21 K. pneumoniae 5.78 5.78 4.17 6.52 10.00 

173AV32 10/18/21 K. pneumoniae 5.87 5.87 3.00 2.00 2.00 
173AV32 11/4/21 K. pneumoniae 5.83 5.83 2.00 2.00 2.00 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
173AZ32 10/18/21 K. pneumoniae 5.83 5.83 3.41 2.00 2.00 
173AZ32 11/4/21 K. pneumoniae 5.70 5.70 2.00 2.00 2.00 
173F32 8/16/21 K. pneumoniae 5.68 5.68 2.26 3.18 10.00 
173F32 8/23/21 K. pneumoniae 5.65 5.70 2.75 2.00 2.00 
173F32 11/11/21 K. pneumoniae 5.71 5.71 2.76 2.26 10.00 

173F32A4 8/16/21 K. pneumoniae 5.68 5.68 3.57 2.00 2.00 
173F32A4 8/23/21 K. pneumoniae 5.73 5.73 3.61 2.00 2.00 
173F32PL4 8/16/21 K. pneumoniae 4.75 5.61 2.15 2.00 2.00 
173F32PL4 8/23/21 K. pneumoniae 5.48 5.70 2.00 2.00 2.00 

173GC 8/16/21 K. pneumoniae 5.61 5.61 10.00 10.00 10.00 
173GC 8/23/21 K. pneumoniae 5.70 5.70 10.00 10.00 10.00 
173M16 8/16/21 K. pneumoniae 5.72 5.72 2.08 2.00 2.00 
173M16 8/23/21 K. pneumoniae 5.70 5.70 2.20 2.00 2.00 

173M16A4 8/16/21 K. pneumoniae 5.70 5.70 3.56 2.00 2.00 
173M16A4 8/23/21 K. pneumoniae 5.70 5.70 3.49 2.00 2.00 
173M16PL4 8/16/21 K. pneumoniae 4.79 5.61 2.00 2.00 2.00 
173M16PL4 8/23/21 K. pneumoniae 5.06 5.70 2.00 2.00 2.00 

173PL4 8/16/21 K. pneumoniae 4.73 5.61 2.00 2.00 2.00 
173PL4 8/23/21 K. pneumoniae 5.45 5.70 2.00 2.00 2.00 

173PT64 8/16/21 K. pneumoniae 5.58 5.61 7.21 10.00 10.00 
173PT64 8/23/21 K. pneumoniae 5.67 5.70 9.86 10.00 9.45 

173PT64A4 8/16/21 K. pneumoniae 5.68 5.68 3.77 4.26 10.00 
173PT64A4 8/23/21 K. pneumoniae 5.91 5.91 3.87 4.20 10.00 

173PT64PL4 8/16/21 K. pneumoniae 4.62 5.61 2.00 2.00 2.00 
173PT64PL4 8/23/21 K. pneumoniae 5.31 5.70 2.00 2.00 2.00 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
209A4 7/26/21 E. cloacae 5.91 5.92 2.56 5.51 2.00 
209A4 8/9/21 E. cloacae 5.81 5.91 3.61 2.00 6.00 
209A4 8/16/21 E. cloacae 5.63 5.90 2.67 2.62 10.00 
209A4 11/11/21 E. cloacae 5.80 5.80 3.64 2.00 2.00 

209AV32 11/4/21 E. cloacae 5.82 5.82 2.60 2.00 2.00 
209AV32 11/11/21 E. cloacae 5.76 5.76 2.00 2.00 2.00 
209AZ32 11/4/21 E. cloacae 5.91 5.91 7.63 10.00 10.00 
209AZ32 11/11/21 E. cloacae 5.73 5.73 9.60 10.00 10.00 
209F32 7/26/21 E. cloacae 5.91 5.92 2.30 4.74 9.10 
209F32 8/9/21 E. cloacae 5.86 5.91 2.20 2.00 10.00 
209F32 8/16/21 E. cloacae 5.79 5.90 2.51 2.00 10.00 

209F32A4 7/26/21 E. cloacae 5.91 5.92 2.00 2.99 2.00 
209F32A4 8/9/21 E. cloacae 5.95 5.95 2.30 2.00 2.00 
209F32A4 8/16/21 E. cloacae 5.70 5.90 2.08 2.00 2.00 
209F32PL4 7/26/21 E. cloacae 5.49 5.92 2.00 2.00 2.00 
209F32PL4 8/9/21 E. cloacae 5.45 5.91 2.00 2.00 2.00 
209F32PL4 8/16/21 E. cloacae 5.65 5.90 2.00 2.00 2.00 

209GC 7/26/21 E. cloacae 5.92 5.92 10.00 10.00 10.00 
209GC 8/9/21 E. cloacae 5.91 5.91 10.00 10.00 10.00 
209GC 8/16/21 E. cloacae 5.90 5.90 10.00 10.00 10.00 
209M16 7/26/21 E. cloacae 5.92 5.92 2.08 5.20 10.00 
209M16 8/9/21 E. cloacae 5.86 5.91 2.00 2.00 10.00 
209M16 8/16/21 E. cloacae 5.81 5.90 2.41 2.00 10.00 

209M16A4 7/26/21 E. cloacae 5.93 5.93 2.48 2.00 2.00 
209M16A4 8/9/21 E. cloacae 5.91 5.91 2.45 2.00 2.00 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
209M16A4 8/16/21 E. cloacae 5.61 5.90 2.26 2.00 2.00 
209M16PL4 7/26/21 E. cloacae 5.53 5.92 2.00 2.96 2.00 
209M16PL4 8/9/21 E. cloacae 5.28 5.91 2.00 2.00 2.00 
209M16PL4 8/16/21 E. cloacae 5.59 5.90 2.00 2.00 2.00 

209PL4 7/26/21 E. cloacae 5.55 5.92 2.00 2.00 2.00 
209PL4 8/9/21 E. cloacae 5.86 5.91 2.00 2.00 2.00 
209PL4 8/16/21 E. cloacae 5.54 5.90 2.00 2.00 2.00 

209PT64 7/26/21 E. cloacae 5.92 5.92 10.00 10.00 10.00 
209PT64 8/9/21 E. cloacae 5.84 5.91 10.00 10.00 10.00 
209PT64 8/16/21 E. cloacae 5.73 5.90 10.00 10.00 10.00 

209PT64A4 7/26/21 E. cloacae 5.97 5.97 2.53 3.31 5.74 
209PT64A4 8/9/21 E. cloacae 5.86 5.91 3.50 2.00 2.00 
209PT64A4 8/16/21 E. cloacae 5.72 5.90 2.65 2.00 2.00 

209PT64PL4 7/26/21 E. cloacae 5.52 5.92 2.00 4.10 2.00 
209PT64PL4 8/9/21 E. cloacae 5.26 5.91 2.00 2.00 2.00 
209PT64PL4 8/16/21 E. cloacae 5.69 5.90 2.00 2.00 2.00 

411A4 7/12/21 K. pneumoniae 5.72 5.80 3.87 3.97 8.92 
411A4 7/19/21 K. pneumoniae 5.68 5.68 3.74 4.02 9.47 

411AV32 11/4/21 K. pneumoniae 5.59 5.59 2.00 2.00 2.00 
411AV32 11/11/21 K. pneumoniae 5.75 5.75 2.00 2.00 2.00 
411AZ32 11/4/21 K. pneumoniae 5.80 5.80 3.16 8.56 10.00 
411AZ32 11/11/21 K. pneumoniae 5.73 5.73 2.72 5.96 9.93 
411F32 7/12/21 K. pneumoniae 5.75 5.80 3.81 6.11 10.00 
411F32 7/19/21 K. pneumoniae 5.76 5.76 3.28 6.41 10.00 

411F32A4 7/12/21 K. pneumoniae 5.36 5.80 3.70 2.00 2.00 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
411F32A4 7/19/21 K. pneumoniae 5.71 5.71 3.29 2.00 2.00 
411F32PL4 7/12/21 K. pneumoniae 5.74 5.80 2.00 2.00 2.00 
411F32PL4 7/19/21 K. pneumoniae 4.82 5.64 2.00 2.00 2.00 

411GC 7/12/21 K. pneumoniae 5.80 5.80 8.79 10.00 10.00 
411GC 7/19/21 K. pneumoniae 5.64 5.64 10.00 10.00 10.00 
411GC 7/26/21 K. pneumoniae 5.76 5.76 8.60 10.00 10.00 
411M16 7/12/21 K. pneumoniae 5.72 5.80 2.58 4.00 8.86 
411M16 7/19/21 K. pneumoniae 5.66 5.66 2.75 4.68 10.00 

411M16A4 7/12/21 K. pneumoniae 5.75 5.80 2.81 2.00 2.00 
411M16A4 7/19/21 K. pneumoniae 5.72 5.72 2.78 2.00 2.00 
411M16PL4 7/12/21 K. pneumoniae 5.74 5.80 2.00 2.00 2.00 
411M16PL4 7/19/21 K. pneumoniae 5.00 5.64 2.00 2.00 2.00 

411PL4 7/12/21 K. pneumoniae 5.20 5.80 2.00 2.00 2.00 
411PL4 7/19/21 K. pneumoniae 5.02 5.64 2.00 2.00 2.00 

411PT64 7/12/21 K. pneumoniae 5.64 5.80 9.89 10.00 10.00 
411PT64 7/19/21 K. pneumoniae 5.72 5.72 9.59 10.00 10.00 
411PT64 7/26/21 K. pneumoniae 5.86 5.86 10.00 10.00 10.00 

411PT64A4 7/12/21 K. pneumoniae 5.56 5.80 3.91 3.51 8.36 
411PT64A4 7/19/21 K. pneumoniae 5.70 5.70 3.39 2.00 2.00 
411PT64A4 7/26/21 K. pneumoniae 5.77 5.77 3.74 3.22 10.00 

411PT64PL4 7/19/21 K. pneumoniae 4.82 5.64 2.00 2.00 2.00 
411PT64PL4 7/26/21 K. pneumoniae 5.35 5.76 2.93 2.38 2.00 

416A4 8/23/21 E. cloacae 5.98 6.00 4.59 7.16 10.00 
416A4 9/16/21 E. cloacae 5.91 5.91 4.29 5.97 10.00 

416AV32 10/18/21 E. cloacae 5.88 5.88 3.56 2.00 2.00 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
416AV32 11/4/21 E. cloacae 5.92 5.92 3.60 2.00 2.00 
416AZ32 10/18/21 E. cloacae 5.90 5.90 4.81 7.89 9.46 
416AZ32 11/4/21 E. cloacae 6.00 6.00 3.29 9.15 10.00 
416F32 8/23/21 E. cloacae 5.98 6.00 5.01 10.00 10.00 
416F32 9/16/21 E. cloacae 5.91 5.91 4.06 6.94 10.00 

416F32A4 8/23/21 E. cloacae 5.97 6.00 3.97 3.21 2.53 
416F32A4 9/16/21 E. cloacae 5.91 5.91 3.99 3.03 4.29 
416F32A4 11/11/21 E. cloacae 5.82 5.82 3.78 2.75 2.00 
416F32PL4 8/23/21 E. cloacae 5.69 6.00 2.00 2.00 2.00 
416F32PL4 9/16/21 E. cloacae 5.91 5.91 2.00 2.00 2.00 

416GC 8/23/21 E. cloacae 6.00 6.00 10.00 10.00 10.00 
416GC 9/16/21 E. cloacae 5.91 5.91 10.00 10.00 10.00 
416M16 8/23/21 E. cloacae 5.98 6.00 2.00 2.00 2.00 
416M16 9/16/21 E. cloacae 6.03 6.03 2.00 2.00 2.00 

416M16A4 8/23/21 E. cloacae 5.98 6.00 3.01 2.00 2.00 
416M16A4 9/16/21 E. cloacae 5.91 5.91 2.94 2.00 2.00 
416M16PL4 8/23/21 E. cloacae 5.34 6.00 2.00 2.00 2.00 
416M16PL4 9/16/21 E. cloacae 5.91 5.91 2.00 2.00 2.00 

416PL4 8/23/21 E. cloacae 5.63 6.00 2.00 2.00 2.00 
416PL4 9/16/21 E. cloacae 5.91 5.91 2.00 2.00 2.00 

416PT64 8/23/21 E. cloacae 5.99 6.00 5.79 10.00 9.44 
416PT64 9/16/21 E. cloacae 5.91 5.91 6.48 10.00 10.00 

416PT64A4 8/23/21 E. cloacae 5.96 6.00 4.33 3.43 10.00 
416PT64A4 9/16/21 E. cloacae 5.91 5.91 4.34 3.33 3.87 
416PT64A4 11/11/21 E. cloacae 5.98 5.98 4.06 2.82 2.00 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
416PT64PL4 8/23/21 E. cloacae 5.38 6.00 2.00 2.00 2.00 
416PT64PL4 9/16/21 E. cloacae 5.91 5.91 2.00 2.00 2.00 

42A4 9/20/21 K. pneumoniae 6.08 6.08 6.72 10.00 10.00 
42A4 10/14/21 K. pneumoniae 5.67 5.67 4.73 8.20 10.00 

42AV32 10/18/21 K. pneumoniae 5.74 5.74 3.15 2.00 2.00 
42AV32 11/4/21 K. pneumoniae 5.65 5.65 2.00 2.00 2.00 
42AZ32 10/18/21 K. pneumoniae 5.75 5.75 4.42 7.16 9.38 
42AZ32 11/4/21 K. pneumoniae 5.65 5.65 4.29 7.58 9.14 
42F32 9/20/21 K. pneumoniae 6.03 6.03 3.99 7.19 10.00 
42F32 10/14/21 K. pneumoniae 5.69 5.69 3.41 6.64 10.00 

42F32A4 9/20/21 K. pneumoniae 5.68 5.69 3.49 5.73 9.58 
42F32A4 10/14/21 K. pneumoniae 5.65 5.65 3.42 6.09 10.00 

42F32PL4 9/20/21 K. pneumoniae 5.64 5.69 2.38 2.41 2.00 
42F32PL4 10/14/21 K. pneumoniae 4.90 5.61 2.00 2.00 6.51 
42F32PL4 10/18/21 K. pneumoniae 5.40 5.40 2.00 2.00 2.00 

42GC 9/20/21 K. pneumoniae 5.69 5.69 10.00 10.00 10.00 
42GC 10/14/21 K. pneumoniae 5.61 5.61 8.23 10.00 10.00 
42M16 9/20/21 K. pneumoniae 5.69 5.69 3.40 6.62 10.00 
42M16 10/14/21 K. pneumoniae 5.63 5.63 2.53 2.00 2.00 
42M16 11/11/21 K. pneumoniae 5.76 5.76 2.93 2.00 2.00 

42M16A4 9/20/21 K. pneumoniae 5.79 5.79 3.40 6.21 9.35 
42M16A4 10/14/21 K. pneumoniae 5.58 5.61 3.52 2.08 2.00 
42M16A4 11/11/21 K. pneumoniae 5.71 5.71 3.39 2.00 2.00 

42M16PL4 9/20/21 K. pneumoniae 5.64 5.69 2.00 2.00 2.00 
42M16PL4 10/14/21 K. pneumoniae 5.04 5.61 2.00 2.00 2.00 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
42PL4 9/20/21 K. pneumoniae 5.83 5.83 2.81 2.64 2.00 
42PL4 10/14/21 K. pneumoniae 5.10 5.61 2.15 3.97 10.00 
42PL4 11/11/21 K. pneumoniae 5.68 5.68 2.00 2.00 2.00 

42PT64 9/20/21 K. pneumoniae 5.90 5.90 8.05 10.00 10.00 
42PT64 10/14/21 K. pneumoniae 5.66 5.66 7.80 9.24 10.00 

42PT64A4 9/20/21 K. pneumoniae 5.71 5.71 6.51 10.00 10.00 
42PT64A4 10/14/21 K. pneumoniae 5.61 5.61 4.44 7.59 9.80 
42PT64PL4 9/20/21 K. pneumoniae 5.88 5.88 2.60 2.51 2.00 
42PT64PL4 10/14/21 K. pneumoniae 5.01 5.61 2.15 3.06 10.00 
42PT64PL4 11/11/21 K. pneumoniae 5.39 5.39 2.00 2.00 2.00 

449A4 7/26/21 K. pneumoniae 5.76 5.76 7.15 10.00 10.00 
449A4 8/9/21 K. pneumoniae 5.66 5.75 6.40 10.00 10.00 

449AV32 11/4/21 K. pneumoniae 5.75 5.75 2.08 2.00 2.00 
449AV32 11/11/21 K. pneumoniae 5.72 5.72 2.87 2.00 2.00 
449AZ32 11/4/21 K. pneumoniae 5.77 5.77 7.92 10.00 10.00 
449AZ32 11/11/21 K. pneumoniae 5.72 5.72 9.14 9.11 10.00 
449F32 7/26/21 K. pneumoniae 5.75 5.75 4.81 10.00 10.00 
449F32 8/9/21 K. pneumoniae 5.70 5.75 10.00 10.00 10.00 

449F32A4 7/26/21 K. pneumoniae 5.76 5.76 2.00 4.13 10.00 
449F32A4 8/9/21 K. pneumoniae 5.57 5.75 3.53 4.94 9.45 
449F32PL4 7/26/21 K. pneumoniae 4.91 5.75 2.00 2.00 2.00 
449F32PL4 8/9/21 K. pneumoniae 5.87 5.87 2.00 2.00 2.00 

449GC 7/26/21 K. pneumoniae 5.75 5.75 10.00 10.00 10.00 
449GC 8/9/21 K. pneumoniae 5.75 5.75 10.00 10.00 10.00 
449M16 7/26/21 K. pneumoniae 5.74 5.75 2.66 6.01 10.00 



 

 

346 

 

Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
449M16 8/9/21 K. pneumoniae 5.68 5.75 5.54 10.00 10.00 

449M16A4 7/26/21 K. pneumoniae 5.78 5.78 2.00 3.45 10.00 
449M16A4 8/9/21 K. pneumoniae 5.60 5.75 2.34 3.35 10.00 
449M16PL4 7/26/21 K. pneumoniae 5.07 5.75 2.00 2.00 2.00 
449M16PL4 8/9/21 K. pneumoniae 5.86 5.86 2.00 2.00 2.00 

449PL4 7/26/21 K. pneumoniae 5.10 5.75 2.00 2.00 2.00 
449PL4 8/9/21 K. pneumoniae 5.34 5.75 2.00 2.00 2.00 

449PT64 7/26/21 K. pneumoniae 5.69 5.75 10.00 10.00 10.00 
449PT64 8/9/21 K. pneumoniae 5.82 5.82 10.00 10.00 10.00 

449PT64A4 7/26/21 K. pneumoniae 5.76 5.76 6.53 10.00 10.00 
449PT64A4 8/9/21 K. pneumoniae 5.60 5.75 10.00 10.00 10.00 

449PT64PL4 7/26/21 K. pneumoniae 5.01 5.75 2.00 2.00 2.00 
449PT64PL4 8/9/21 K. pneumoniae 5.88 5.88 2.00 2.00 2.00 

53A4 9/16/21 E. cloacae 5.85 5.91 4.92 6.43 10.00 
53A4 9/20/21 E. cloacae 5.82 5.95 6.39 10.00 10.00 

53AV32 10/18/21 E. cloacae 5.94 5.94 3.13 2.60 2.00 
53AV32 11/4/21 E. cloacae 5.93 5.93 2.76 2.00 2.00 
53AZ32 10/18/21 E. cloacae 5.90 5.90 9.64 10.00 10.00 
53AZ32 11/4/21 E. cloacae 5.93 5.93 8.52 10.00 10.00 
53F32 9/16/21 E. cloacae 5.96 5.96 5.19 7.77 10.00 
53F32 9/20/21 E. cloacae 5.96 5.96 4.85 8.25 10.00 

53F32A4 9/16/21 E. cloacae 5.92 5.92 3.60 3.00 9.60 
53F32A4 9/20/21 E. cloacae 5.79 5.95 4.41 3.62 9.50 

53F32PL4 9/16/21 E. cloacae 5.82 5.91 5.61 5.63 4.96 
53F32PL4 9/20/21 E. cloacae 5.73 5.95 5.54 5.32 4.78 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
53F32PL4 10/18/21 E. cloacae 5.90 5.90 5.54 5.56 5.06 

53GC 9/16/21 E. cloacae 5.91 5.91 10.00 10.00 10.00 
53GC 9/20/21 E. cloacae 5.95 5.95 9.21 10.00 10.00 
53M16 9/16/21 E. cloacae 5.91 5.91 2.08 2.00 2.00 
53M16 9/20/21 E. cloacae 5.89 5.95 3.20 2.72 10.00 
53M16 11/11/21 E. cloacae 5.93 5.93 3.24 2.73 2.00 

53M16A4 9/16/21 E. cloacae 5.85 5.91 2.48 2.00 2.00 
53M16A4 9/20/21 E. cloacae 5.81 5.95 3.38 2.78 2.00 

53M16PL4 9/16/21 E. cloacae 5.85 5.91 4.64 4.39 3.58 
53M16PL4 9/20/21 E. cloacae 6.23 6.23 4.69 4.44 3.41 

53PL4 9/16/21 E. cloacae 5.80 5.91 5.69 5.56 5.11 
53PL4 9/20/21 E. cloacae 5.98 5.98 5.40 5.33 4.79 

53PT64 9/16/21 E. cloacae 5.83 5.91 5.18 9.94 10.00 
53PT64 9/20/21 E. cloacae 5.85 5.95 6.02 10.00 10.00 

53PT64A4 9/16/21 E. cloacae 5.88 5.91 3.69 4.36 10.00 
53PT64A4 9/20/21 E. cloacae 5.76 5.95 5.04 9.31 10.00 
53PT64PL4 9/16/21 E. cloacae 5.94 5.94 5.70 5.61 5.11 
53PT64PL4 9/20/21 E. cloacae 6.29 6.29 5.50 5.31 4.63 

608A4 9/16/21 E. cloacae 5.91 5.91 10.00 10.00 10.00 
608A4 9/20/21 E. cloacae 5.92 5.92 7.38 10.00 10.00 

608AV32 10/18/21 E. cloacae 5.81 5.81 2.76 2.08 2.00 
608AV32 11/4/21 E. cloacae 5.83 5.83 3.32 2.38 2.00 
608AZ32 10/18/21 E. cloacae 5.81 5.81 10.00 10.00 10.00 
608AZ32 11/4/21 E. cloacae 5.99 5.99 9.72 10.00 10.00 
608F32 9/16/21 E. cloacae 5.91 5.91 5.34 10.00 10.00 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
608F32 9/20/21 E. cloacae 6.04 6.04 4.87 10.00 10.00 

608F32A4 9/16/21 E. cloacae 5.91 5.91 3.20 3.95 10.00 
608F32A4 9/20/21 E. cloacae 5.81 5.88 3.48 3.64 10.00 
608F32PL4 9/16/21 E. cloacae 5.76 5.91 4.63 4.36 3.16 
608F32PL4 9/20/21 E. cloacae 5.76 5.88 4.75 4.41 3.33 
608F32PL4 10/18/21 E. cloacae 5.72 5.72 4.87 4.73 3.81 

608GC 9/16/21 E. cloacae 5.91 5.91 10.00 10.00 10.00 
608GC 9/20/21 E. cloacae 5.88 5.88 10.00 10.00 10.00 
608M16 9/16/21 E. cloacae 5.94 5.94 2.00 2.00 2.00 
608M16 9/20/21 E. cloacae 5.83 5.88 2.72 2.00 2.00 

608M16A4 9/16/21 E. cloacae 5.93 5.93 2.34 2.00 2.00 
608M16A4 9/20/21 E. cloacae 6.08 6.08 2.85 2.00 2.00 
608M16PL4 9/16/21 E. cloacae 5.91 5.91 4.27 3.88 2.41 
608M16PL4 9/20/21 E. cloacae 5.79 5.88 4.30 3.84 2.20 

608PL4 9/16/21 E. cloacae 5.91 5.91 4.61 4.33 3.28 
608PL4 9/20/21 E. cloacae 5.93 5.93 4.69 4.43 3.39 

608PT64 9/16/21 E. cloacae 5.91 5.91 8.47 10.00 10.00 
608PT64 9/20/21 E. cloacae 6.04 6.04 8.02 10.00 10.00 

608PT64A4 9/16/21 E. cloacae 5.91 5.91 4.93 6.10 10.00 
608PT64A4 9/20/21 E. cloacae 5.84 5.88 4.37 5.11 10.00 

608PT64PL4 9/16/21 E. cloacae 5.70 5.91 4.74 4.38 3.32 
608PT64PL4 9/20/21 E. cloacae 5.78 5.88 4.74 4.50 3.29 
Bacterial density (CFU/mL) estimated at 0, 4, 8, and 24 hours (T0 - 24) following beginning of 
exposure. T0 concentrations were adjusted (T0 Adj) with growth control for combinations that rapidly 
reduced bacterial density. Condition is formatted to show Isolate number | drug exposure. A4: 
Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: 
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Table F.1: Bacterial Colony Count (Log CFU) after Serial Sampling during Time-kill Assay 
Experiments 

Condition Date Species T0 Adj_T0 T4 T8 T24 
Cefepime/Amikacin, F32PL4: Cefepime/Plazomicin, GC: Growth Control, M16: Meropenem, M16A4: 
Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, PL4: Plazomicin, PT64: 
Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin 
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Table F.2: Averaged Bacterial Colony Counts (Log CFU) and Variability across all duplicated Time-kill Assay 
Experiments 

Condition Species N T0 T0 SD Adj 
T0 

Adj T0 
SD T4 T4 

SD T8 T8 
SD T24 T24 

SD 
134A4 E. cloacae 2 5.98 0.08 5.98 0.08 3.98 0.16 5.54 0.49 10.00 0.00 

134AV32 E. cloacae 2 5.88 0.00 5.88 0.00 2.45 0.15 2.00 0.00 2.00 0.00 
134AZ32 E. cloacae 2 5.85 0.05 5.85 0.05 9.28 1.02 10.00 0.00 10.00 0.00 
134F32 E. cloacae 2 5.91 0.01 5.91 0.01 4.74 0.51 10.00 0.00 10.00 0.00 

134F32A4 E. cloacae 3 5.84 0.13 5.92 0.01 3.48 0.18 3.12 0.37 7.20 4.38 
134F32PL4 E. cloacae 2 5.90 0.31 6.00 0.17 5.25 0.13 4.73 0.32 3.25 1.29 

134GC E. cloacae 3 5.88 0.03 5.88 0.03 9.99 0.01 10.00 0.00 10.00 0.00 
134M16 E. cloacae 3 5.94 0.11 5.95 0.09 2.00 0.00 2.62 1.08 4.67 4.62 

134M16A4 E. cloacae 2 5.91 0.02 5.91 0.02 2.20 0.00 2.00 0.00 2.00 0.00 
134M16PL4 E. cloacae 2 5.82 0.05 5.86 0.02 3.16 0.37 2.10 0.14 2.00 0.00 

134PL4 E. cloacae 2 5.93 0.13 5.95 0.10 5.40 0.00 5.00 0.29 3.81 1.17 
134PT64 E. cloacae 3 5.85 0.04 5.88 0.03 8.33 1.45 10.00 0.00 10.00 0.00 

134PT64A4 E. cloacae 3 5.87 0.07 5.91 0.01 3.69 0.22 3.53 1.25 9.94 0.11 
134PT64PL4 E. cloacae 3 5.83 0.22 5.96 0.11 5.24 0.18 4.79 0.27 3.24 1.07 

167A4 E. cloacae 2 5.95 0.03 5.95 0.03 4.38 0.27 4.88 0.23 10.00 0.00 
167AV32 E. cloacae 2 5.92 0.01 5.92 0.01 3.52 0.04 2.61 0.05 2.00 0.00 
167AZ32 E. cloacae 2 5.87 0.06 5.87 0.06 7.62 0.05 7.97 0.02 9.79 0.30 
167F32 E. cloacae 2 5.95 0.09 5.95 0.08 3.68 0.05 5.02 1.66 10.00 0.00 

167F32A4 E. cloacae 3 5.85 0.06 5.90 0.02 4.02 0.30 2.58 0.06 4.67 4.62 
167F32PL4 E. cloacae 2 5.46 0.12 5.91 0.02 2.00 0.00 2.00 0.00 2.00 0.00 

167GC E. cloacae 2 5.91 0.02 5.91 0.02 10.00 0.00 10.00 0.00 10.00 0.00 
167M16 E. cloacae 2 5.90 0.01 5.92 0.01 2.98 0.11 2.28 0.39 2.00 0.00 

167M16A4 E. cloacae 2 5.90 0.10 5.93 0.05 3.05 0.02 2.00 0.00 2.00 0.00 
167M16PL4 E. cloacae 2 5.21 0.39 5.91 0.02 2.00 0.00 2.00 0.00 2.00 0.00 
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Table F.2: Averaged Bacterial Colony Counts (Log CFU) and Variability across all duplicated Time-kill Assay 
Experiments 

Condition Species N T0 T0 SD Adj 
T0 

Adj T0 
SD T4 T4 

SD T8 T8 
SD T24 T24 

SD 
167PL4 E. cloacae 2 5.28 0.11 5.91 0.02 2.00 0.00 2.00 0.00 2.00 0.00 

167PT64 E. cloacae 2 5.86 0.01 5.91 0.02 4.78 0.60 10.00 0.00 9.50 0.70 
167PT64A4 E. cloacae 3 5.87 0.07 5.90 0.02 4.14 0.29 2.83 0.15 4.67 4.62 

167PT64PL4 E. cloacae 2 5.43 0.27 5.91 0.02 2.00 0.00 2.00 0.00 2.00 0.00 
169A4 E. cloacae 2 5.91 0.01 5.95 0.06 4.38 0.03 4.95 0.03 9.81 0.26 

169AV32 E. cloacae 2 5.94 0.01 5.94 0.01 3.60 0.11 2.58 0.39 2.00 0.00 
169AZ32 E. cloacae 2 5.90 0.03 5.90 0.03 7.57 0.35 8.14 0.68 9.73 0.38 
169F32 E. cloacae 2 5.85 0.06 5.94 0.07 3.56 0.08 4.60 0.80 9.82 0.25 

169F32A4 E. cloacae 2 5.87 0.03 5.92 0.10 3.71 0.04 2.25 0.36 2.00 0.00 
169F32PL4 E. cloacae 2 5.61 0.28 5.88 0.15 2.00 0.00 2.00 0.00 2.00 0.00 

169GC E. cloacae 2 5.88 0.15 5.88 0.15 10.00 0.00 10.00 0.00 10.00 0.00 
169M16 E. cloacae 2 5.95 0.12 5.95 0.12 2.62 0.16 2.04 0.06 2.00 0.00 

169M16A4 E. cloacae 2 5.89 0.04 5.93 0.09 2.81 0.07 2.04 0.06 2.00 0.00 
169M16PL4 E. cloacae 2 5.60 0.12 5.88 0.15 2.00 0.00 2.00 0.00 2.00 0.00 

169PL4 E. cloacae 2 5.60 0.05 5.88 0.15 2.00 0.00 2.00 0.00 2.00 0.00 
169PT64 E. cloacae 2 5.91 0.01 5.95 0.05 4.49 0.47 9.80 0.28 10.00 0.00 

169PT64A4 E. cloacae 3 5.86 0.04 5.89 0.09 4.05 0.24 2.73 0.18 2.62 0.91 
169PT64PL4 E. cloacae 2 5.59 0.19 5.88 0.15 2.00 0.00 2.00 0.00 2.00 0.00 

173A4 K. pneumoniae 2 5.73 0.07 5.73 0.07 4.10 0.10 6.44 0.11 10.00 0.00 
173AV32 K. pneumoniae 2 5.85 0.03 5.85 0.03 2.50 0.71 2.00 0.00 2.00 0.00 
173AZ32 K. pneumoniae 2 5.77 0.09 5.77 0.09 2.71 1.00 2.00 0.00 2.00 0.00 
173F32 K. pneumoniae 3 5.68 0.03 5.70 0.02 2.59 0.29 2.48 0.62 7.33 4.62 

173F32A4 K. pneumoniae 2 5.70 0.04 5.70 0.04 3.59 0.03 2.00 0.00 2.00 0.00 
173F32PL4 K. pneumoniae 2 5.11 0.52 5.66 0.07 2.07 0.10 2.00 0.00 2.00 0.00 
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Table F.2: Averaged Bacterial Colony Counts (Log CFU) and Variability across all duplicated Time-kill Assay 
Experiments 

Condition Species N T0 T0 SD Adj 
T0 

Adj T0 
SD T4 T4 

SD T8 T8 
SD T24 T24 

SD 
173GC K. pneumoniae 2 5.66 0.07 5.66 0.07 10.00 0.00 10.00 0.00 10.00 0.00 
173M16 K. pneumoniae 2 5.71 0.01 5.71 0.01 2.14 0.09 2.00 0.00 2.00 0.00 

173M16A4 K. pneumoniae 2 5.70 0.00 5.70 0.00 3.53 0.05 2.00 0.00 2.00 0.00 
173M16PL4 K. pneumoniae 2 4.92 0.19 5.66 0.07 2.00 0.00 2.00 0.00 2.00 0.00 

173PL4 K. pneumoniae 2 5.09 0.51 5.66 0.07 2.00 0.00 2.00 0.00 2.00 0.00 
173PT64 K. pneumoniae 2 5.63 0.06 5.66 0.07 8.54 1.87 10.00 0.00 9.73 0.39 

173PT64A4 K. pneumoniae 2 5.80 0.17 5.80 0.17 3.82 0.07 4.23 0.05 10.00 0.00 
173PT64PL4 K. pneumoniae 2 4.97 0.49 5.66 0.07 2.00 0.00 2.00 0.00 2.00 0.00 

209A4 E. cloacae 4 5.78 0.11 5.88 0.06 3.12 0.59 3.03 1.68 5.00 3.83 
209AV32 E. cloacae 2 5.79 0.04 5.79 0.04 2.30 0.43 2.00 0.00 2.00 0.00 
209AZ32 E. cloacae 2 5.82 0.13 5.82 0.13 8.62 1.39 10.00 0.00 10.00 0.00 
209F32 E. cloacae 3 5.85 0.06 5.91 0.01 2.34 0.15 2.91 1.58 9.70 0.52 

209F32A4 E. cloacae 3 5.85 0.13 5.92 0.02 2.13 0.16 2.33 0.57 2.00 0.00 
209F32PL4 E. cloacae 3 5.53 0.11 5.91 0.01 2.00 0.00 2.00 0.00 2.00 0.00 

209GC E. cloacae 3 5.91 0.01 5.91 0.01 10.00 0.00 10.00 0.00 10.00 0.00 
209M16 E. cloacae 3 5.86 0.05 5.91 0.01 2.16 0.22 3.07 1.85 10.00 0.00 

209M16A4 E. cloacae 3 5.82 0.18 5.92 0.02 2.39 0.12 2.00 0.00 2.00 0.00 
209M16PL4 E. cloacae 3 5.47 0.17 5.91 0.01 2.00 0.00 2.32 0.56 2.00 0.00 

209PL4 E. cloacae 3 5.65 0.18 5.91 0.01 2.00 0.00 2.00 0.00 2.00 0.00 
209PT64 E. cloacae 3 5.83 0.09 5.91 0.01 10.00 0.00 10.00 0.00 10.00 0.00 

209PT64A4 E. cloacae 3 5.85 0.12 5.93 0.04 2.89 0.53 2.44 0.75 3.25 2.16 
209PT64PL4 E. cloacae 3 5.49 0.22 5.91 0.01 2.00 0.00 2.70 1.21 2.00 0.00 

411A4 K. pneumoniae 2 5.70 0.03 5.74 0.09 3.80 0.10 3.99 0.04 9.19 0.39 
411AV32 K. pneumoniae 2 5.67 0.11 5.67 0.11 2.00 0.00 2.00 0.00 2.00 0.00 
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Table F.2: Averaged Bacterial Colony Counts (Log CFU) and Variability across all duplicated Time-kill Assay 
Experiments 

Condition Species N T0 T0 SD Adj 
T0 

Adj T0 
SD T4 T4 

SD T8 T8 
SD T24 T24 

SD 
411AZ32 K. pneumoniae 2 5.77 0.05 5.77 0.05 2.94 0.31 7.26 1.84 9.96 0.05 
411F32 K. pneumoniae 2 5.75 0.01 5.78 0.03 3.54 0.37 6.26 0.22 10.00 0.00 

411F32A4 K. pneumoniae 2 5.53 0.24 5.75 0.06 3.49 0.29 2.00 0.00 2.00 0.00 
411F32PL4 K. pneumoniae 2 5.28 0.65 5.72 0.12 2.00 0.00 2.00 0.00 2.00 0.00 

411GC K. pneumoniae 3 5.73 0.08 5.73 0.08 9.13 0.76 10.00 0.00 10.00 0.00 
411M16 K. pneumoniae 2 5.69 0.04 5.73 0.10 2.66 0.12 4.34 0.48 9.43 0.81 

411M16A4 K. pneumoniae 2 5.74 0.02 5.76 0.05 2.79 0.02 2.00 0.00 2.00 0.00 
411M16PL4 K. pneumoniae 2 5.37 0.52 5.72 0.12 2.00 0.00 2.00 0.00 2.00 0.00 

411PL4 K. pneumoniae 2 5.11 0.13 5.72 0.12 2.00 0.00 2.00 0.00 2.00 0.00 
411PT64 K. pneumoniae 3 5.74 0.11 5.79 0.07 9.83 0.21 10.00 0.00 10.00 0.00 

411PT64A4 K. pneumoniae 3 5.68 0.11 5.76 0.05 3.68 0.26 2.91 0.80 6.79 4.23 
411PT64PL4 K. pneumoniae 2 5.08 0.38 5.70 0.09 2.47 0.66 2.19 0.27 2.00 0.00 

416A4 E. cloacae 2 5.94 0.04 5.96 0.06 4.44 0.21 6.56 0.84 10.00 0.00 
416AV32 E. cloacae 2 5.90 0.03 5.90 0.03 3.58 0.03 2.00 0.00 2.00 0.00 
416AZ32 E. cloacae 2 5.95 0.07 5.95 0.07 4.05 1.08 8.52 0.88 9.73 0.38 
416F32 E. cloacae 2 5.95 0.04 5.96 0.06 4.54 0.67 8.47 2.16 10.00 0.00 

416F32A4 E. cloacae 3 5.90 0.07 5.91 0.09 3.91 0.12 3.00 0.24 2.94 1.20 
416F32PL4 E. cloacae 2 5.80 0.16 5.96 0.06 2.00 0.00 2.00 0.00 2.00 0.00 

416GC E. cloacae 2 5.95 0.07 5.95 0.07 10.00 0.00 10.00 0.00 10.00 0.00 
416M16 E. cloacae 2 6.01 0.04 6.02 0.02 2.00 0.00 2.00 0.00 2.00 0.00 

416M16A4 E. cloacae 2 5.95 0.05 5.96 0.06 2.98 0.05 2.00 0.00 2.00 0.00 
416M16PL4 E. cloacae 2 5.63 0.40 5.96 0.06 2.00 0.00 2.00 0.00 2.00 0.00 

416PL4 E. cloacae 2 5.77 0.20 5.96 0.06 2.00 0.00 2.00 0.00 2.00 0.00 
416PT64 E. cloacae 2 5.95 0.06 5.96 0.06 6.13 0.49 10.00 0.00 9.72 0.39 
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Table F.2: Averaged Bacterial Colony Counts (Log CFU) and Variability across all duplicated Time-kill Assay 
Experiments 

Condition Species N T0 T0 SD Adj 
T0 

Adj T0 
SD T4 T4 

SD T8 T8 
SD T24 T24 

SD 
416PT64A4 E. cloacae 3 5.95 0.03 5.96 0.04 4.24 0.16 3.19 0.33 5.29 4.18 

416PT64PL4 E. cloacae 2 5.65 0.38 5.96 0.06 2.00 0.00 2.00 0.00 2.00 0.00 
42A4 K. pneumoniae 2 5.88 0.29 5.88 0.29 5.73 1.41 9.10 1.27 10.00 0.00 

42AV32 K. pneumoniae 2 5.70 0.06 5.70 0.06 2.57 0.81 2.00 0.00 2.00 0.00 
42AZ32 K. pneumoniae 2 5.70 0.07 5.70 0.07 4.35 0.09 7.37 0.30 9.26 0.17 
42F32 K. pneumoniae 2 5.86 0.25 5.86 0.25 3.70 0.41 6.92 0.38 10.00 0.00 

42F32A4 K. pneumoniae 2 5.66 0.03 5.67 0.03 3.46 0.05 5.91 0.25 9.79 0.30 
42F32PL4 K. pneumoniae 3 5.32 0.38 5.57 0.15 2.13 0.22 2.14 0.24 3.50 2.60 

42GC K. pneumoniae 2 5.65 0.05 5.65 0.05 9.11 1.25 10.00 0.00 10.00 0.00 
42M16 K. pneumoniae 3 5.69 0.06 5.69 0.06 2.96 0.44 3.54 2.67 4.67 4.62 

42M16A4 K. pneumoniae 3 5.69 0.11 5.70 0.09 3.44 0.07 3.43 2.41 4.45 4.24 
42M16PL4 K. pneumoniae 2 5.34 0.43 5.65 0.05 2.00 0.00 2.00 0.00 2.00 0.00 

42PL4 K. pneumoniae 3 5.54 0.39 5.71 0.11 2.32 0.43 2.87 1.01 4.67 4.62 
42PT64 K. pneumoniae 2 5.78 0.17 5.78 0.17 7.92 0.18 9.62 0.54 10.00 0.00 

42PT64A4 K. pneumoniae 2 5.66 0.07 5.66 0.07 5.47 1.47 8.80 1.70 9.90 0.14 
42PT64PL4 K. pneumoniae 3 5.43 0.44 5.63 0.24 2.25 0.31 2.52 0.53 4.67 4.62 

449A4 K. pneumoniae 2 5.71 0.07 5.76 0.01 6.78 0.52 10.00 0.00 10.00 0.00 
449AV32 K. pneumoniae 2 5.73 0.02 5.73 0.02 2.47 0.56 2.00 0.00 2.00 0.00 
449AZ32 K. pneumoniae 2 5.75 0.04 5.75 0.04 8.53 0.86 9.55 0.63 10.00 0.00 
449F32 K. pneumoniae 2 5.72 0.03 5.75 0.00 7.40 3.67 10.00 0.00 10.00 0.00 

449F32A4 K. pneumoniae 2 5.66 0.13 5.75 0.01 2.77 1.08 4.53 0.57 9.73 0.39 
449F32PL4 K. pneumoniae 2 5.39 0.68 5.81 0.09 2.00 0.00 2.00 0.00 2.00 0.00 

449GC K. pneumoniae 2 5.75 0.00 5.75 0.00 10.00 0.00 10.00 0.00 10.00 0.00 
449M16 K. pneumoniae 2 5.71 0.04 5.75 0.00 4.10 2.03 8.00 2.82 10.00 0.00 
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Table F.2: Averaged Bacterial Colony Counts (Log CFU) and Variability across all duplicated Time-kill Assay 
Experiments 

Condition Species N T0 T0 SD Adj 
T0 

Adj T0 
SD T4 T4 

SD T8 T8 
SD T24 T24 

SD 
449M16A4 K. pneumoniae 2 5.69 0.12 5.76 0.02 2.17 0.24 3.40 0.07 10.00 0.00 
449M16PL4 K. pneumoniae 2 5.46 0.56 5.80 0.08 2.00 0.00 2.00 0.00 2.00 0.00 

449PL4 K. pneumoniae 2 5.22 0.17 5.75 0.00 2.00 0.00 2.00 0.00 2.00 0.00 
449PT64 K. pneumoniae 2 5.76 0.09 5.78 0.05 10.00 0.00 10.00 0.00 10.00 0.00 

449PT64A4 K. pneumoniae 2 5.68 0.11 5.75 0.01 8.27 2.45 10.00 0.00 10.00 0.00 
449PT64PL4 K. pneumoniae 2 5.45 0.61 5.81 0.10 2.00 0.00 2.00 0.00 2.00 0.00 

53A4 E. cloacae 2 5.84 0.02 5.93 0.03 5.66 1.04 8.21 2.53 10.00 0.00 
53AV32 E. cloacae 2 5.94 0.00 5.94 0.00 2.95 0.26 2.30 0.43 2.00 0.00 
53AZ32 E. cloacae 2 5.92 0.02 5.92 0.02 9.08 0.79 10.00 0.00 10.00 0.00 
53F32 E. cloacae 2 5.96 0.00 5.96 0.00 5.02 0.24 8.01 0.34 10.00 0.00 

53F32A4 E. cloacae 2 5.85 0.09 5.93 0.02 4.01 0.58 3.31 0.44 9.55 0.07 
53F32PL4 E. cloacae 3 5.82 0.09 5.92 0.03 5.56 0.04 5.50 0.16 4.93 0.15 

53GC E. cloacae 2 5.93 0.03 5.93 0.03 9.61 0.56 10.00 0.00 10.00 0.00 
53M16 E. cloacae 3 5.91 0.02 5.93 0.02 2.84 0.66 2.48 0.42 4.67 4.62 

53M16A4 E. cloacae 2 5.83 0.03 5.93 0.03 2.93 0.64 2.39 0.55 2.00 0.00 
53M16PL4 E. cloacae 2 6.04 0.27 6.07 0.22 4.66 0.04 4.41 0.04 3.49 0.12 

53PL4 E. cloacae 2 5.89 0.13 5.95 0.05 5.54 0.20 5.45 0.16 4.95 0.22 
53PT64 E. cloacae 2 5.84 0.02 5.93 0.03 5.60 0.60 9.97 0.04 10.00 0.00 

53PT64A4 E. cloacae 2 5.82 0.08 5.93 0.03 4.37 0.95 6.83 3.50 10.00 0.00 
53PT64PL4 E. cloacae 2 6.11 0.25 6.11 0.25 5.60 0.14 5.46 0.21 4.87 0.33 

608A4 E. cloacae 2 5.92 0.01 5.92 0.01 8.69 1.86 10.00 0.00 10.00 0.00 
608AV32 E. cloacae 2 5.82 0.01 5.82 0.01 3.04 0.39 2.23 0.21 2.00 0.00 
608AZ32 E. cloacae 2 5.90 0.12 5.90 0.12 9.86 0.20 10.00 0.00 10.00 0.00 
608F32 E. cloacae 2 5.98 0.09 5.98 0.09 5.10 0.33 10.00 0.00 10.00 0.00 
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Table F.2: Averaged Bacterial Colony Counts (Log CFU) and Variability across all duplicated Time-kill Assay 
Experiments 

Condition Species N T0 T0 SD Adj 
T0 

Adj T0 
SD T4 T4 

SD T8 T8 
SD T24 T24 

SD 
608F32A4 E. cloacae 2 5.86 0.08 5.90 0.03 3.34 0.20 3.79 0.22 10.00 0.00 
608F32PL4 E. cloacae 3 5.75 0.02 5.84 0.10 4.75 0.12 4.50 0.20 3.43 0.33 

608GC E. cloacae 2 5.90 0.03 5.90 0.03 10.00 0.00 10.00 0.00 10.00 0.00 
608M16 E. cloacae 2 5.89 0.08 5.91 0.05 2.36 0.51 2.00 0.00 2.00 0.00 

608M16A4 E. cloacae 2 6.01 0.10 6.01 0.10 2.59 0.36 2.00 0.00 2.00 0.00 
608M16PL4 E. cloacae 2 5.85 0.09 5.90 0.03 4.29 0.02 3.86 0.03 2.31 0.15 

608PL4 E. cloacae 2 5.92 0.01 5.92 0.01 4.65 0.06 4.38 0.07 3.34 0.08 
608PT64 E. cloacae 2 5.98 0.09 5.98 0.09 8.24 0.32 10.00 0.00 10.00 0.00 

608PT64A4 E. cloacae 2 5.88 0.05 5.90 0.03 4.65 0.40 5.61 0.70 10.00 0.00 
608PT64PL4 E. cloacae 2 5.74 0.06 5.90 0.03 4.74 0.00 4.44 0.09 3.30 0.02 
Bacterial density (CFU/mL) estimated at 0, 4, 8, and 24 hours (T0 - 24) following beginning of exposure. T0 
concentrations were adjusted (T0 Adj) with growth control for combinations that rapidly reduced bacterial density. N 
refers to the number of repetitions of a given experiment contribute to geometric mean (SD). Condition is formatted to 
show Isolate number | drug exposure. A4: Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: 
Cefepime, F32A4: Cefepime/Amikacin, F32PL4: Cefepime/Plazomicin, GC: Growth Control, M16: Meropenem, 
M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, PL4: Plazomicin, PT64: Piperacillin/Tazobactam, 
PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: Piperacillin/Tazobactam/Plazomicin 
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Table F.3: Average Bacterial Concentrations (Log CFU) averaged across all Time-kill 
Experiments 
All Drug Groups T0 T4 T8 T24 

A4 5.88 ± 0.09 5.0 ± 1.6 6.61 ± 2.42 9.46 ± 1.5 
AV32 5.83 ± 0.1 2.82 ± 0.56 2.16 ± 0.24 2.0 ± 0.0 
AZ32 5.83 ± 0.08 6.78 ± 2.71 8.26 ± 2.34 9.13 ± 2.38 
F32 5.88 ± 0.1 4.2 ± 1.4 6.79 ± 2.78 9.71 ± 0.8 

F32A4 5.84 ± 0.1 3.45 ± 0.56 3.17 ± 1.2 5.62 ± 3.63 
F32PL4 5.83 ± 0.13 2.89 ± 1.49 2.81 ± 1.37 2.65 ± 0.99 

GC 5.83 ± 0.11 9.8 ± 0.36 10.0 ± 0.0 10.0 ± 0.0 
M16 5.86 ± 0.12 2.62 ± 0.61 3.13 ± 1.78 4.86 ± 3.39 

M16A4 5.86 ± 0.11 2.81 ± 0.45 2.3 ± 0.57 2.95 ± 2.45 
M16PL4 5.85 ± 0.13 2.56 ± 1.01 2.43 ± 0.86 2.16 ± 0.45 

PL4 5.85 ± 0.11 2.9 ± 1.49 2.88 ± 1.37 2.8 ± 1.18 
PT64 5.87 ± 0.1 7.62 ± 2.05 9.95 ± 0.12 9.9 ± 0.17 

PT64A4 5.85 ± 0.1 4.48 ± 1.41 4.83 ± 2.64 7.5 ± 3.03 
PT64PL4 5.86 ± 0.15 2.94 ± 1.47 2.92 ± 1.31 2.73 ± 1.12 

Values are geometric means ± geometric standard deviation 
A4: Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: 
Cefepime/Amikacin, F32PL4: Cefepime/Plazomicin, GC: Growth Control, M16: Meropenem, 
M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, PL4: Plazomicin, PT64: 
Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin 
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Minimum Inhibitory Concentrations of Antimicrobials utilized in Time-kill Assay Experiments 

Table F.4: Modal Minimum Inhibitory Concentrations of all CRE Isolates assayed with Time-kill 
Isolate AMK ATM FEP MEM TZP PLZ ATM_AVI 
EC_53 16 256 128 16 512 0.06 0.13 

EC_134 8 256 128 32 512 0.25 0.06 
EC_167 8 128 64 16 512 0.25 0.06 
EC_169 8 256 128 16 512 0.25 0.06 
EC_209 16 512 64 32 >512 0.5 -- 

EC_416 16 16 64 32 >512 0.25 0.06 
EC_608 16 >256 128 16 >512 0.5 0.13 
KP_42 512 64 64 16 >512 64 0.25 

KP_173 16 16 32 16 >512 0.5 ≤0.03 
KP_411 8 32 256 32 >512 0.5 0.06 
KP_449 16 512 128 64 >512 0.25 -- 

Replicated with disagreement, 
MIC values reported as µg/mL, “--” were inserted for antimicrobials that were not tested; 
AMK: Amikacin, ATM: Aztreonam, FEP: Cefepime, MEM: Meropenem, TZP: 
Piperacillin/Tazobactam, PLZ: Plazomicin, ATM_AVI: Aztreonam/Avibactam, EC: E. cloacae 
KP: K. pneumoniae 
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Comparisons of Bacterial Concentration Reduction 

Table F.5: Average Difference of Bacterial Concentration between Aminoglycoside-
containing Exposures vs. Aztreonam/Avibactam at 24 hours 

Group 1 Group 2 Mean Difference [95% CI] P value 
AV32 A4 -7.41 [-10.21, -4.61] 0 
AV32 F32A4 -3.61 [-6.41, -0.81] 0.0004 
AV32 M16A4 -0.92 [-3.72, 1.88] 1 
AV32 PT64A4 -5.47 [-8.27, -2.67] 0 
AV32 PL4 -0.78 [-3.58, 2.02] 1 
AV32 F32PL4 -0.64 [-3.44, 2.16] 1 
AV32 M16PL4 -0.15 [-2.95, 2.65] 1 
AV32 PT64PL4 -0.71 [-3.51, 2.09] 1 

Differences are measured in log CFU/mL and represent differences between the 
geometric means of Group 1 and Group 2 after 24 hours of exposure; 
A4: Amikacin, AV32: Aztreonam/Avibactam, F32A4: Cefepime/Amikacin, F32PL4: 
Cefepime/Plazomicin, M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, 
PL4: Plazomicin, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin, CFU: Colony Forming Units 

  



 

 

360 

 

Figure F.6: Average Difference of Bacterial Concentration between Positive Growth 
Control and all Antimicrobial-containing Exposures at 24 hours 

Group 1 Group 2 Mean Difference [95% CI] P value 
A4 GC -0.59 [-3.39, 2.21] 1 

AV32 GC -8.0 [-10.8, -5.2] 0 
AZ32 GC -0.87 [-3.67, 1.93] 1 
F32A4 GC -4.39 [-7.19, -1.59] 0 

F32PL4 GC -7.35 [-10.15, -4.55] 0 
F32 GC -0.34 [-3.14, 2.47] 1 

M16A4 GC -7.08 [-9.88, -4.28] 0 
M16PL4 GC -7.85 [-10.65, -5.05] 0 

M16 GC -5.17 [-7.97, -2.37] 0 
PL4 GC -7.22 [-10.02, -4.42] 0 

PT64A4 GC -2.53 [-5.33, 0.27] 0.1643 
PT64PL4 GC -7.29 [-10.09, -4.49] 0 

PT64 GC -0.13 [-2.93, 2.67] 1 
Differences are measured in log CFU/mL and represent differences between the 
geometric means of Group 1 and Group 2 after 24 hours of exposure; 
A4: Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: 
Cefepime/Amikacin, F32PL4: Cefepime/Plazomicin, GC: Growth Control, M16: 
Meropenem, M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, PL4: 
Plazomicin, PT64: Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, 
PT64PL4: Piperacillin/Tazobactam/Plazomicin 
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Table F.7: Average Difference of Bacterial Concentration between Amikacin-containing  
vs. Plazomicin-containing Exposures at 24 hours 

Group 1 Group 2 Mean Difference [95% CI] P value 
A4 PL4 6.63 [3.83, 9.43] 0 

F32A4 PL4 2.83 [0.03, 5.63] 0.0431 
M16A4 PL4 0.14 [-2.66, 2.94] 1 
PT64A4 PL4 4.69 [1.89, 7.49] 0 

A4 F32PL4 6.76 [3.96, 9.56] 0 
F32A4 F32PL4 2.97 [0.17, 5.77] 0.0216 
M16A4 F32PL4 0.27 [-2.53, 3.07] 1 
PT64A4 F32PL4 4.83 [2.03, 7.63] 0 

A4 M16PL4 7.26 [4.46, 10.06] 0 
F32A4 M16PL4 3.46 [0.66, 6.26] 0.0012 
M16A4 M16PL4 0.77 [-2.03, 3.57] 1 
PT64A4 M16PL4 5.33 [2.53, 8.13] 0 

A4 PT64PL4 6.7 [3.9, 9.5] 0 
F32A4 PT64PL4 2.9 [0.1, 5.7] 0.03 
M16A4 PT64PL4 0.21 [-2.59, 3.01] 1 
PT64A4 PT64PL4 4.77 [1.96, 7.57] 0 

Differences are measured in log CFU/mL and represent differences between the 
geometric means of Group 1 and Group 2 after 24 hours of exposure; 
A4: Amikacin, F32A4: Cefepime/Amikacin, F32PL4: Cefepime/Plazomicin, M16A4: 
Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, PL4: Plazomicin, PT64A4: 
Piperacillin/Tazobactam/Amikacin, PT64PL4: Piperacillin/Tazobactam/Plazomicin 
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Assessment of Synergy and Bactericidal Activity at 24 Hours 

 
Figure F.1: Analysis of Synergy evaluated on aggregate bacterial density estimates at 24 
hours across all duplicated experiments. A4: Amikacin, AV32: Aztreonam/Avibactam, 
AZ32: Aztreonam, F32: Cefepime, F32A4: Cefepime/Amikacin, F32PL4: 
Cefepime/Plazomicin, GC: Growth Control, M16: Meropenem, M16A4: 
Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, PL4: Plazomicin, PT64: 
Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin, S: Synergy, I: Indifferent, EC: E. cloacae, KP: K. 
pneumoniae 
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Figure F.2: Analysis of cidality evaluated on bacterial density estimates at 24 hours for each 
experiment. A4: Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: 
Cefepime/Amikacin, F32PL4: Cefepime/Plazomicin, GC: Growth Control, M16: Meropenem, M16A4: 
Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, PL4: Plazomicin, PT64: 
Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.3: Combined analysis of synergy evaluated on aggregate bacterial density estimates 
at 24 hours across all duplicated experiments. A4: Amikacin, AV32: Aztreonam/Avibactam, 
AZ32: Aztreonam, F32: Cefepime, F32A4: Cefepime/Amikacin, F32PL4: Cefepime/Plazomicin, 
GC: Growth Control, M16: Meropenem, M16A4: Meropenem/Amikacin, M16PL4: 
Meropenem/Plazomicin, PL4: Plazomicin, PT64: Piperacillin/Tazobactam, PT64A4: 
Piperacillin/Tazobactam/Amikacin, PT64PL4: Piperacillin/Tazobactam/Plazomicin, C: 
Bactericidal, S: Bacteriostatic, R: Regrowth, EC: E. cloacae, KP: K. pneumoniae 
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Growth Curves of each Antimicrobial against all Isolates tested in Time-kill Assay Experiments 

 
Figure F.4: Growth curves of all tested CRE isolates exposed to amikacin 4 µg/mL. Log bacterial concentrations are plotted 
for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric means across all 
experiments. Transparent lines represent individual experimental values. 
A4: Amikacin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.5: Growth curves of all tested CRE isolates exposed to aztreonam/avibactam 32/4 µg/mL. Log bacterial 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the 
plot of geometric means across all experiments. Transparent lines represent individual experimental values. 
AV32: Aztreonam/Avibactam, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 

  



 

 

367 

 

 
Figure F.6: Growth curves of all tested CRE isolates exposed to aztreonam 32 µg/mL. Log bacterial concentrations are 
plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric 
means across all experiments. Transparent lines represent individual experimental values. 
AZ32: Aztreonam, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.7: Growth curves of all tested CRE isolates exposed to cefepime 32 µg/mL. Log bacterial concentrations are 
plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric 
means across all experiments. Transparent lines represent individual experimental values. 
F32: Cefepime, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.8: Growth curves of all tested CRE isolates exposed to cefepime/amikacin 32/4 µg/mL. Log bacterial 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the 
plot of geometric means across all experiments. Transparent lines represent individual experimental values. 
F32A4: Cefepime/Amikacin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.9: Growth curves of all tested CRE isolates exposed to cefepime/plazomicin 32/4 µg/mL. Log bacterial 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the 
plot of geometric means across all experiments. Transparent lines represent individual experimental values. 
F32PL4: Cefepime/Plazomicin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.10: Positive growth curves of all tested CRE isolates. Log bacterial concentrations are plotted for each 
experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric means across all 
experiments. Transparent lines represent individual experimental values. 
GC: Growth Control, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.11: Growth curves of all tested CRE isolates exposed to meropenem 16 µg/mL. Log bacterial concentrations 
are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric 
means across all experiments. Transparent lines represent individual experimental values. 
M16: Meropenem, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.12: Growth curves of all tested CRE isolates exposed to meropenem/amikacin 16/4 µg/mL. Log bacterial 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the 
plot of geometric means across all experiments. Transparent lines represent individual experimental values. 
M16A4: Meropenem/Amikacin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.13: Growth curves of all tested CRE isolates exposed to meropenem/plazomicin 16/4 µg/mL. Log bacterial 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the 
plot of geometric means across all experiments. Transparent lines represent individual experimental values. 
M16PL4: Meropenem/Plazomicin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.14: Growth curves of all tested CRE isolates exposed to plazomicin 4 µg/mL. Log bacterial concentrations are 
plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric 
means across all experiments. Transparent lines represent individual experimental values. 
PL4: Plazomicin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.15: Growth curves of all tested CRE isolates exposed to piperacillin/tazobactam 64/4 µg/mL. Log bacterial 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the 
plot of geometric means across all experiments. Transparent lines represent individual experimental values. 
PT64: Piperacillin/Tazobactam, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.16: Growth curves of all tested CRE isolates exposed to piperacillin/tazobactam/amikacin 64/4/4 µg/mL. Log 
bacterial concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines 
represent the plot of geometric means across all experiments. Transparent lines represent individual experimental 
values. 
PT64A4: Piperacillin/Tazobactam/Amikacin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 

  



 

 

378 

 

 
Figure F.17: Growth curves of all tested CRE isolates exposed to piperacillin/tazobactam/plazomicin 64/4/4 µg/mL. Log 
bacterial concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines 
represent the plot of geometric means across all experiments. Transparent lines represent individual experimental 
values. 
PT64PL4: Piperacillin/Tazobactam/Plazomicin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.18: Changes in log bacterial concentrations from T0 following exposure to amikacin 4 µg/mL. Delta concentrations are 
plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric means across 
all experiments. Transparent lines represent individual experimental values. The green horizontal line represents the bactericidal 
cutoff (3 log10 reduction) 
A4: Amikacin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.19: Changes in log bacterial concentrations from T0 following exposure to aztreonam/avibactam 32/4 µg/mL. Delta 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of 
geometric means across all experiments. Transparent lines represent individual experimental values. The green horizontal line 
represents the bactericidal cutoff (3 log10 reduction) 
AV32: Aztreonam/Avibactam, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.20: Changes in log bacterial concentrations from T0 following exposure to aztreonam 32 µg/mL. Delta concentrations are 
plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric means across 
all experiments. Transparent lines represent individual experimental values. The green horizontal line represents the bactericidal 
cutoff (3 log10 reduction) 
AZ32: Aztreonam, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.20: Changes in log bacterial concentrations from T0 following exposure to cefepime 32 µg/mL. Delta concentrations are 
plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric means across 
all experiments. Transparent lines represent individual experimental values. The green horizontal line represents the bactericidal 
cutoff (3 log10 reduction) 
F32: Cefepime, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.22: Changes in log bacterial concentrations from T0 following exposure to cefepime/amikacin 32/4 µg/mL. Delta 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of 
geometric means across all experiments. Transparent lines represent individual experimental values. The green horizontal line 
represents the bactericidal cutoff (3 log10 reduction) 
F32A4: Cefepime/Amikacin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.23: Changes in log bacterial concentrations from T0 following exposure to cefepime/plazomicin 32/4 µg/mL. Delta 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of 
geometric means across all experiments. Transparent lines represent individual experimental values. The green horizontal line 
represents the bactericidal cutoff (3 log10 reduction) 
F32PL4: Cefepime/Plazomicin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.24: Changes in log bacterial concentrations from T0 of positive growth control. Delta concentrations are plotted for each 
experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric means across all experiments. 
Transparent lines represent individual experimental values. The green horizontal line represents the bactericidal cutoff (3 log10 
reduction) 
GC: Growth Control, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.25: Changes in log bacterial concentrations from T0 following exposure to meropenem 16 µg/mL. Delta concentrations 
are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric means 
across all experiments. Transparent lines represent individual experimental values. The green horizontal line represents the 
bactericidal cutoff (3 log10 reduction) 
M16: Meropenem, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.26: Changes in log bacterial concentrations from T0 following exposure to meropenem/amikacin 32/4 µg/mL. Delta 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of 
geometric means across all experiments. Transparent lines represent individual experimental values. The green horizontal line 
represents the bactericidal cutoff (3 log10 reduction) 
M16A4: Meropenem/Amikacin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 

  



 

 

388 

 

 
Figure F.27: Changes in log bacterial concentrations from T0 following exposure to meropenem/plazomicin 32/4 µg/mL. Delta 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of 
geometric means across all experiments. Transparent lines represent individual experimental values. The green horizontal line 
represents the bactericidal cutoff (3 log10 reduction) 
M16PL4: Meropenem/Plazomicin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.28: Changes in log bacterial concentrations from T0 following exposure to plazomicin 4 µg/mL. Delta concentrations are 
plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of geometric means across 
all experiments. Transparent lines represent individual experimental values. The green horizontal line represents the bactericidal 
cutoff (3 log10 reduction) 
PL4: Plazomicin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 

  



 

 

390 

 

 
Figure F.29: Changes in log bacterial concentrations from T0 following exposure to piperacillin/tazobactam 64/4 µg/mL. Delta 
concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent the plot of 
geometric means across all experiments. Transparent lines represent individual experimental values. The green horizontal line 
represents the bactericidal cutoff (3 log10 reduction) 
PT64: Piperacillin/Tazobactam, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.30: Changes in log bacterial concentrations from T0 following exposure to piperacillin/tazobactam/amikacin 64/4/4 
µg/mL. Delta concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent 
the plot of geometric means across all experiments. Transparent lines represent individual experimental values. The green 
horizontal line represents the bactericidal cutoff (3 log10 reduction) 
PT64A4: Piperacillin/Tazobactam/Amikacin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Figure F.31: Changes in log bacterial concentrations from T0 following exposure to piperacillin/tazobactam/plazomicin 64/4/4 
µg/mL. Delta concentrations are plotted for each experiment at 0-, 4-, 8-, and 24-hours following exposure. Dark lines represent 
the plot of geometric means across all experiments. Transparent lines represent individual experimental values. The green 
horizontal line represents the bactericidal cutoff (3 log10 reduction) 
PT64PL4: Piperacillin/Tazobactam/Plazomicin, CFU: Colony Forming Units, EC: E. cloacae, KP: K. pneumoniae 
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Boxplots of Overall Antimicrobial Activity at each Time Point between Time-kill Assay Experiments 

 
Figure F.32: Above are the boxplots illustrating the distributions of log bacterial reduction following 4 hours of exposure. Outliers 
are denoted as filled diamonds above/below the upper/lower fence, and geometric means are denoted as white circles. A4: 
Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: Cefepime/Amikacin, F32PL4: 
Cefepime/Plazomicin, GC: Growth Control, M16: Meropenem, M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, 
PL4: Plazomicin, PT64: Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin 
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Figure F.33: Above are the boxplots illustrating the distributions of log bacterial reduction following 8 hours of exposure. Outliers 
are denoted as filled diamonds above/below the upper/lower fence, and geometric means are denoted as white circles. A4: 
Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: Cefepime/Amikacin, F32PL4: 
Cefepime/Plazomicin, GC: Growth Control, M16: Meropenem, M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, 
PL4: Plazomicin, PT64: Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin 
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Figure F.34: Above are the boxplots illustrating the distributions of log bacterial reduction following 24 hours of exposure. Outliers 
are denoted as filled diamonds above/below the upper/lower fence, and geometric means are denoted as white circles. A4: 
Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: Cefepime/Amikacin, F32PL4: 
Cefepime/Plazomicin, GC: Growth control, M16: Meropenem, M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, 
PL4: Plazomicin, PT64: Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin 
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Analysis of Initial Inocula Collected at Time 0 of Time-kill Assay Experiments 

 
Figure F.35: Shown above are measurements taken at T0 for all experiments across all conditions. 
A4: Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: Cefepime/Amikacin, F32PL4: 
Cefepime/Plazomicin, GC: Growth Control, M16: Meropenem, M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, 
PL4: Plazomicin, PT64: Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin 

  



 

 

397 

 

 
Figure F.36: Shown above are measurements taken at T0 for all experiments across for GC. Values for AV32 and AZ32 are 
missing as GC values from previous experiments were used. 
A4: Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: Cefepime/Amikacin, F32PL4: 
Cefepime/Plazomicin, GC: Growth Control, M16: Meropenem, M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, 
PL4: Plazomicin, PT64: Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin 
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Figure F.37: Shown above are measurements taken at T0 for all experiments across all conditions. Values are corrected using the 
GC values if the initial inocula were greatly reduced prior to measurement.  
A4: Amikacin, AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: Cefepime/Amikacin, F32PL4: 
Cefepime/Plazomicin, GC: Growth Control, M16: Meropenem, M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, 
PL4: Plazomicin, PT64: Piperacillin/Tazobactam, PT64A4: Piperacillin/Tazobactam/Amikacin, PT64PL4: 
Piperacillin/Tazobactam/Plazomicin 
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Appendix G. Supplemental Data for VIM Time-kill Publication 

Figures G.1 and G.2 are supplemental figures for the VIM Time-kill Publication. 

These figures function similarly to Figures F.1 and F.3 but only include the 8 VIM 

isolates included in the study. 

 

Abbreviations common across both figures of this section include: A4: Amikacin, 

AV32: Aztreonam/Avibactam, AZ32: Aztreonam, F32: Cefepime, F32A4: 

Cefepime/Amikacin, F32PL4: Cefepime/Plazomicin, GC: Growth Control, M16: 

Meropenem, M16A4: Meropenem/Amikacin, M16PL4: Meropenem/Plazomicin, 

PL4: Plazomicin, PT64: Piperacillin/Tazobactam, PT64A4: 

Piperacillin/Tazobactam/Amikacin, PT64PL4: 

Piperacillin/Tazobactam/Plazomicin, EC - E. cloacae, KP - K. pneumoniae, CFU - 

Colony Forming Units, and T0, 4, 8, 24 - hours following exposure 

 

Abbreviations used in Figure G.1 not included above were S - Synergy and I - 

Indifferent 

 

Abbreviations used in Figure G.2 not included above were C - Bactericidal, S - 

Bacteriostatic, and R - Regrowth 
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Figure G.1: Illustrated is a heatmap showing the categorical bactericidal 
analysis for each drug combination against all isolates tested. The average 
bacterial concentration differences measured across all duplicate trials for each 
isolate were utilized for this assessment. C: bactericidal, S: bacteriostatic, R: 
regrowth A4: amikacin, AV32: aztreonam/avibactam, AZ32: aztreonam, F32: 
cefepime, F32A4: cefepime/amikacin, F32PL4: cefepime/plazomicin, GC: 
growth control, M16: meropenem, M16A4: meropenem/amikacin, M16PL4: 
meropenem/plazomicin, PL4: plazomicin, PT64: piperacillin/tazobactam, 
PT64A4: piperacillin/tazobactam/amikacin, PT64PL4: 
piperacillin/tazobactam/plazomicin.  
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Figure G.2: Illustrated is a heatmap showing the categorical synergy analysis 
for each drug combination against all isolates tested. The average bacterial 
reductions measured across all duplicate trials for each isolate were utilized for 
this assessment. S: synergistic, I: indifferent, A: antagonistic, AV32: 
aztreonam/avibactam, F32A4: cefepime/amikacin, F32PL4: 
cefepime/plazomicin, M16A4: meropenem/amikacin, M16PL4: 
meropenem/plazomicin, PT64A4: piperacillin/tazobactam/amikacin, PT64PL4: 
piperacillin/tazobactam/plazomicin. 
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Appendix H. Tsakris Disk Diffusion for Carbapenemase Detection of Initial 122 

CRE Isolates 

Table H.1 provides the final interpretations of the phenotypic disk diffusion test 

adapted from Tsakris et al. (298) This test was performed on 122 CRE isolates 

and was used to distinguish between KPC-, MBL-, KPC/MBL-, or non-

carbapenemase-producing phenotypes. These results are as demonstrated in 

the dissertation of Dr. Kulengowski. (210) 
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Table H.1: Final Carbapenemase Phenotype Determined by Disk Diffusion 
Test using Phenylboronic Acid and EDTA (n = 122) 

Isolate Species Disk Diffusion Phenotype 
36 C. amalonaticus KPC 
91 C. amalonaticus KPC 
27 C. freundii KPC 
50 C. freundii KPC 
54 C. freundii KPC 

101 C. freundii None 
127 C. freundii KPC 
135 C. freundii MBL 
145 C. freundii Both 
324 C. freundii None 
136 C. youngae KPC 
435 C. youngae Both 
97 E. aerogenes KPC 

179 E. aerogenes MBL 
187 E. aerogenes KPC 
438 E. aerogenes KPC 
10 E. cloacae KPC 
17 E. cloacae KPC 
30 E. cloacae KPC 
39 E. cloacae KPC 
40 E. cloacae MBL 
41 E. cloacae Both 
52 E. cloacae KPC 
53 E. cloacae MBL 
70 E. cloacae None 
96 E. cloacae None 

107 E. cloacae KPC 
121 E. cloacae KPC 
126 E. cloacae KPC 
134 E. cloacae MBL 
144 E. cloacae KPC 
167 E. cloacae MBL 
168 E. cloacae None 
169 E. cloacae MBL 
171 E. cloacae Both 
175 E. cloacae MBL 
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Table H.1: Final Carbapenemase Phenotype Determined by Disk Diffusion 
Test using Phenylboronic Acid and EDTA (n = 122) 

Isolate Species Disk Diffusion Phenotype 
189 E. cloacae MBL 
200 E. cloacae Both 
203 E. cloacae MBL 
209 E. cloacae KPC 
266 E. cloacae MBL 
335 E. cloacae None 
339 E. cloacae KPC 
369 E. cloacae None 
416 E. cloacae MBL 
476 E. cloacae Both 
515 E. cloacae KPC 
33 E. coli None 

103 E. coli KPC 
172 E. coli MBL 
176 E. coli KPC 
309 E. coli None 
390 E. coli None 
95 E. gergoviae None 

186 E. hormaechei MBL 
398 E. hormaechei MBL 
146 Enterobacter sp. KPC 
210 Enterobacter sp. KPC 
166 K. oxytoca KPC 
177 K. oxytoca Both 
330 K. oxytoca KPC 
128 K. ozaenae KPC 
407 K. ozaenae KPC 
21 K. pneumoniae KPC 
22 K. pneumoniae KPC 
24 K. pneumoniae KPC 
28 K. pneumoniae KPC 
29 K. pneumoniae KPC 
31 K. pneumoniae KPC 
32 K. pneumoniae KPC 
34 K. pneumoniae KPC 
35 K. pneumoniae KPC 
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Table H.1: Final Carbapenemase Phenotype Determined by Disk Diffusion 
Test using Phenylboronic Acid and EDTA (n = 122) 

Isolate Species Disk Diffusion Phenotype 
37 K. pneumoniae KPC 
43 K. pneumoniae KPC 
44 K. pneumoniae KPC 
45 K. pneumoniae KPC 
46 K. pneumoniae KPC 
47 K. pneumoniae KPC 
48 K. pneumoniae KPC 
49 K. pneumoniae KPC 
51 K. pneumoniae KPC 
55 K. pneumoniae KPC 
69 K. pneumoniae None 
77 K. pneumoniae None 
93 K. pneumoniae KPC 
98 K. pneumoniae None 
99 K. pneumoniae KPC 

105 K. pneumoniae KPC 
116 K. pneumoniae None 
119 K. pneumoniae KPC 
123 K. pneumoniae KPC 
129 K. pneumoniae KPC 
130 K. pneumoniae KPC 
142 K. pneumoniae KPC 
143 K. pneumoniae None 
152 K. pneumoniae None 
165 K. pneumoniae KPC 
170 K. pneumoniae MBL 
174 K. pneumoniae MBL 
230 K. pneumoniae KPC 
243 K. pneumoniae KPC 
256 K. pneumoniae KPC 
269 K. pneumoniae None 
284 K. pneumoniae None 
349 K. pneumoniae None 
352 K. pneumoniae None 
372 K. pneumoniae None 
385 K. pneumoniae None 
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Table H.1: Final Carbapenemase Phenotype Determined by Disk Diffusion 
Test using Phenylboronic Acid and EDTA (n = 122) 

Isolate Species Disk Diffusion Phenotype 
391 K. pneumoniae KPC 
418 K. pneumoniae None 
423 K. pneumoniae KPC 
445 K. pneumoniae KPC 
446 K. pneumoniae KPC 
452 K. pneumoniae KPC 
466 K. pneumoniae KPC 
482 K. pneumoniae KPC 
492 K. pneumoniae None 
42 K. pneumoniae MBL 

173 K. pneumoniae MBL 
411 K. pneumoniae MBL 
449 K. pneumoniae KPC 
514 S. marcescens KPC 

The disk diffusion procedure used was adapted from Tsakris et al. (298) 
EDTA: ethylenediaminetetraacetate, KPC: Klebsiella pneumoniae 
carbapenemase, MBL: metallo-beta-lactamase,  
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Appendix I. Nanosphere Manufacturer Summary Guide 

Figure H.1 contains a summary of how to analyze a Gram-negative culture on 

the VERIGENE® system. This is included for the reader’s reference. More 

detailed materials are provided in a manual with the system. 
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Figure I.1: Nanosphere Summary guide for analyzing Gram-negative cultures 
on VERIGENE® 
Source: Luminex, materials provided with set-up of machine 
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Appendix J. E-test Interpretation Guide 

Figure J.1 is a guide for interpreting many common E-test results provided by the 

manufacturer. This resource was utilized in the interpretation of E-test results 

published in this study. 
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Figure J.1: Guide to interpreting E-test in various unique situations. 
Source: AB Biodisk; https://www.ilexmedical.com/files/ETEST_RG.pdf 

 

https://www.ilexmedical.com/files/ETEST_RG.pdf
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Appendix K. CRE vs. CSE Cohort Supplemental Materials 

ICD-9/10-CM Codes 

Tables K.1 and K.2 provide the ICD-9/10-CM codes that were used to identify 

infections and exclusion criteria. 

 

CRE vs. CNSE MIC Analysis 

Table K.3 provides MIC comparisons between CRE isolates and non-CRE CNSE 

isolates included in the cohort study which used CNSE as the exposure 

definition. Table K.4 specifically compares NCP-CRE vs. non-CRE CNSE 

isolates from the same cohort. 

 

Kaplan Meier Curves 

This section contains all the supplementary Kaplan Meier curves produced 

across the primary and follow-up analyses contained in the study. Figures K.1 

and K.2 display the KM curves of crude and IPTW-adjusted 14-day composite 

outcome in the CRE vs. CSE cohort. KM curves for the 14- and 30-day 

composite outcomes in the CNSE vs. CSE cohort were not provided as the 

estimates were highly similar to the CRE vs. CSE comparison. The only 

difference was in precision of estimates. Figures K.3- K.6 display the KM curves 

of the crude and IPTW-adjusted 14- and 30-day composite outcome between the 

CNSE vs. CSE groups in a follow-up cohort analysis specifically analyzing 

patients with bloodstream infections on the index date. 
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Composite Outcome Summaries of Follow-up Analyses 

This section includes analyses of composite outcome include supplementary to 

the primary CRE vs. CSE analysis provided in Table V 4 [need to crossref]. Table 

K.5 provides composite outcome analysis of the CNSE vs. CSE cohort. Table 

K.6 provides composite outcome analysis of the subgroup of patients in the CRE 

vs. CSE cohort which had a bloodstream infection on the index date. Table K.7 

provides the composite outcome analysis of the cohort of patients having a 

bloodstream infection on the index date in the CNSE vs. CSE groups. 

 

Baseline Covariate Balance Before and After IPTW-adjustment 

This section provides evidence of balance achieved before and after the 

application of IPTW-adjustment for each of the composite outcome analyses in 

which it was utilized. Table K.8 and Figure K.7 provide the SMD of the variables 

included in the propensity score model used in the CRE vs. CSE cohort. Table 

K.9 and Figure K.8 provide the SMD of the variables included in the propensity 

score model used in the CNSE vs. CSE cohort. Table K.10 and Figure K.9 

provide the SMD of the variables included in the propensity score model used in 

the CNSE vs. CSE bloodstream infection cohort. 

 

Sensitivity Analyses 

This section provides the results of several sensitivity analyses performed in the 

CRE vs. CSE cohort study. A brief description of each sensitivity analysis may be 

found in a summary statement provided prior to the data. 
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Sensitivity Analysis 1 

Tables K.10 and K.11 provide the crude and IPTW-adjusted RRs [95% CI] and 

HRs [95% CI] for the first sensitivity analysis. 

 

Sensitivity Analysis 2 

Tables K.12 and K.13 provide the crude and IPTW-adjusted RRs [95% CI] and 

HRs [95% CI] for the second sensitivity analysis. 

 

Sensitivity Analysis 3 

Tables K.14 and K.15 provide the crude and IPTW-adjusted RRs [95% CI] and 

HRs [95% CI] for the final sensitivity analysis. 
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ICD-9/10-CM Codes 

Table K.1: ICD-9/10 Codes for Inclusion Criteria 
 ICD-9-CM ICD-10-CM 

Blood Stream Infection 038.40, 038.42, 038.49, 
038.8, 038.9, 422.92, 
790.7, 995.91, 995.92, 
996.62, 999.31 

A41.150, A41.151, 
A41.159, A41.89, A41.9, 
R65.2x, R78.81, 
T80.211, T80.218, 
T80.219, T81.44x 

Intra-abdominal 
Infection 

531.x, 532.x, 533.1x, 
533.2x, 533.5x, 533.6x, 
534.1x, 534.2x, 534.5x, 
534.6x, 539.01, 539.81, 
540.0x, 540.1x, 541, 
542, 562.01, 562.03, 
562.11, 562.13, 567, 
569.5, 569.61, 569.81-
569.83, 572.0, 575.0, 
575.4, 575.5, 576.1, 
576.3, 577.0 

A04.4, A04.8, A04.9, 
K25.x, K26.x, K27.1, 
K27.2, K27.5, K27.6, 
K28.1, K28.2, K28.5, 
K28.6, K35.2x, K35.3x, 
K57.0x, K57.2x, K57.4x, 
K57.8x, K63.0-K63.2, 
K65.0-K65.2, K65.8, 
K65.9, K67, K68.11, 
K68.12, K68.19, K68.9, 
K81.0, K82.A2, K83.0x, 
K83.2, K85.02, K85.12, 
K85.22, K85.32, K85.82, 
K85.92, K94.02, K94.12, 
K94.22, K95.01, K95.81 

Respiratory Infection 482.0, 482.82, 482.83, 
482.89, 482.9, 483.8, 
484.8, 485, 486, 510, 
513, 997.3 

J15.0, J15.5, J15.6, 
J15.8, J15.9, J16.8, J17, 
J18.x, J85.x, J86.x, 
J95.851 

Skin/Soft Tissue 
Infection 

035, 611.0x, 771.5x, 
68x.x, 704.8x, 707.x, 
910.1, 910.3, 910.5, 
910.7, 910.9, 911.1, 
911.3, 911.5, 911.7, 
911.9, 912.1, 912.3, 
912.5, 912.7, 912.9, 
913.1, 913.3, 913.5, 
913.7, 913.9, 914.1, 
914.3, 914.5, 914.7, 
914.9, 915.1, 915.3, 
915.5, 915.7, 915.9, 
916.1, 916.3, 916.5, 
916.7, 916.9, 917.1, 
917.3, 917.5, 917.7, 
917.9, 919.1, 919.3, 

A46, N61.1, L01.x-
L08.x**, L72.8, L72.9, 
L76, L88, L89, L92.8, 
L97.x, L98.0x, L98.4x, 
T80.212x, T81.41x, 
T81.42x,  
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Table K.1: ICD-9/10 Codes for Inclusion Criteria 
 ICD-9-CM ICD-10-CM 

919.5, 919.7, 919.9, 
998.83, 999.34, 86.0, 
86.2 

Urinary Tract Infection 580.x-583.x, 590.x, 
595.x*, 597.x, 598.0, 
598.5, 598.9, 599.0, 
599.2, 599.3, 996.64, 
996.65 

N10.x, N11.0, N11.8, 
N11.9, N12, N13.5, 
N13.6, N15.1, N28.84-
N28.86, N30.x*, N34.0, 
N34.2, N34.3, N39.0 

Included are the ICD-9/10-CM codes utilized when assessing agreement with 
the index cultures from respective body sites. The included codes directly 
codify infection or a condition of the cultured areas. 
*Except for irradiation cystitis, **Except for Staph scalded skin syndrome 
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Table K.2: ICD-9/10-CM Codes for Exclusion Criteria 
 ICD-9-CM ICD-10-CM 
Cystic Fibrosis 277.0x E84.x 
Endocarditis 421.0, 421.9 I33.0, I33.9 
Necrotizing Fasciitis 728.86 M72.6 
Osteomyelitis 730.x M86.x 

Pregnancy 63x.x-679.x, V22.x, 
V23.x 

O0x.x-O7x.x, O80.x, 
O82.x, O9x.x, Z3x.x 
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CRE vs. CNSE MIC Analysis 

Table K.3: Susceptibility Analysis of Index Cultures collected from Patients in CRE vs. non-CRE CNSE in Main Analysis of CNSE vs. CSE 

Antimicrobials 
CRE (n = 135) Non-CRE CNSE (n = 100) 

n Min 
MIC MIC50 MIC90 Max 

MIC %S n Min 
MIC MIC50 MIC90 Max 

MIC %S 

Amikacin 134 2 8 8 64 99 100 8 8 8 32 99 
Ampicillin 135 16 32 32 128 0 100 4 32 64 64 6 
Ampicillin-Sulbactam 115 4 32 32 32 2 85 4 32 32 64 15 
Aztreonam 130 0.02 32 32 32 19 92 2 32 32 64 9 
Ceftazidime 132 0.5 32 32 32 14 96 0.5 32 32 32 39 
Ceftriaxone 121 0.25 64 64 64 5 74 1 64 64 64 5 
Cefepime 118 0.25 4 32 32 42 89 1 4 32 32 36 
Cefepime (SDD) 118 0.25 4 32 32 65 89 1 4 32 32 89 
Cefoxitin 132 4 32 32 32 8 94 4 32 32 32 28 
Cefazolin 130 2 32 32 32 2 95 2 32 32 64 1 
Ciprofloxacin 116 0.5 0.5 4 4 62 88 0.5 0.5 8 8 76 
Ertapenem 133 0.5 2 8 32 2 93 0.5 1 1 1 33 
Nitrofurantoin 105 16 128 128 128 28 87 16 64 128 256 41 
Gentamicin 128 0.5 2 16 16 80 100 2 2 16 32 88 
Levofloxacin 131 0.25 1 8 8 65 99 1 1 8 16 80 
Meropenem 132 0.03 1 8 32 71 100 0.03 1 2 2 62 
Piperacillin-Tazobactam 130 2 128 512 512 12 100 4 64 512 512 40 
Sulfamethoxazole-Trimethoprim 135 0.25 0.5 4 4 68 100 0.5 0.5 8 512 55 
Tetracycline 127 2 2 16 16 65 94 2 2 16 16 85 
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Table K.3: Susceptibility Analysis of Index Cultures collected from Patients in CRE vs. non-CRE CNSE in Main Analysis of CNSE vs. CSE 

Antimicrobials 
CRE (n = 135) Non-CRE CNSE (n = 100) 

n Min 
MIC MIC50 MIC90 Max 

MIC %S n Min 
MIC MIC50 MIC90 Max 

MIC %S 

Tobramycin 134 1 2 16 16 77 100 2 2 8 32 86 
Abbreviations: %S: percent susceptible, MICn: MIC necessary for inhibiting nth percent of isolates tested, SDD: Susceptible-dose-dependent 
CLSI susceptibility breakpoints were utilized for all antimicrobials.  
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Table K.4: Susceptibility Analysis of Index Cultures collected from Patients Classified in CRE Group due to Ertapenem-resistance alone vs. 
Non-CRE CNSE in Main Analysis of CNSE vs. CSE 

Antimicrobials 

CRE resistant only to Ertapenem 
(n = 103) 

Non-CRE CNSE 
(n = 100) 

n Min 
MIC MIC50 MIC90 Max 

MIC %S n Min 
MIC MIC50 MIC90 Max 

MIC %S 

Amikacin 103 2 8 8 8 100 100 8 8 8 32 99 
Ampicillin 103 16 32 32 128 0 100 4 32 64 64 6 
Ampicillin-Sulbactam 86 4 32 32 32 1 85 4 32 32 64 15 
Aztreonam 99 0.02 32 32 32 19 92 2 32 32 64 9 
Ceftazidime 101 0.5 32 32 32 14 96 0.5 32 32 32 39 
Ceftriaxone 93 0.25 64 64 64 5 74 1 64 64 64 5 
Cefepime 88 0.25 2 32 32 51 89 1 4 32 32 36 
Cefepime (SDD) 88 0.25 2 32 32 80 89 1 4 32 32 89 
Cefoxitin 101 4 32 32 32 5 94 4 32 32 32 28 
Cefazolin 100 2 32 32 32 2 95 2 32 32 64 1 
Ciprofloxacin 87 0.5 0.5 4 4 67 88 0.5 0.5 8 8 76 
Ertapenem 103 2 2 8 32 0 93 0.5 1 1 1 33 
Nitrofurantoin 79 16 128 128 128 27 87 16 64 128 256 41 
Gentamicin 100 0.5 2 16 16 88 100 2 2 16 32 88 
Levofloxacin 99 0.25 1 8 8 69 99 1 1 8 16 80 
Meropenem 101 0.03 1 1 2 92 100 0.03 1 2 2 62 
Piperacillin-Tazobactam 98 2 128 512 512 10 100 4 64 512 512 40 
Sulfamethoxazole-Trimethoprim 103 0.25 0.5 4 4 73 100 0.5 0.5 8 512 55 
Tetracycline 97 2 4 16 16 63 94 2 2 16 16 85 
Tobramycin 102 1 2 8 16 84 100 2 2 8 32 86 
Abbreviations: %S: percent susceptible, MICn: MIC necessary for inhibiting nth percent of isolates tested, SDD: Susceptible-dose-dependent 
CLSI susceptibility breakpoints were utilized for all antimicrobials 
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Kaplan Meier Curves 

 
Figure K.1: Crude Kaplan Meier Survival Curve Comparing 14-day Composite Outcome between CRE and CSE 
Infections 
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Figure K.2: IPTW-adjusted Kaplan Meier Survival Curve Comparing 14-day Composite Outcome between CRE and 
CSE Infections 
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Figure K.3: Crude Kaplan Meier Survival Curve Comparing 14-day Composite Outcome between CNSE and CSE 
Bloodstream Infections 
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Figure K.4: IPTW-adjusted Kaplan Meier Survival Curve Comparing 14-day Composite Outcome between CNSE and 
CSE Bloodstream Infections 
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Figure K.5: Crude Kaplan Meier Survival Curve Comparing 30-day Composite Outcome between CNSE and CSE 
Bloodstream Infections 
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Figure K.6: IPTW-adjusted Kaplan Meier Survival Curve Comparing 30-day Composite Outcome between CNSE and 
CSE Bloodstream Infections 
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Composite Outcome Summaries of Follow-up Analyses 

Table K.5: Composite Outcome Assessment of CNSE vs. CSE Infections 
14-day Composite Outcome 

 CNSE (n = 228) CSE (n = 6,946) 
# observed events 
(mortality, hospice) 

40 
(24, 16) 

816 
(520, 296) 

Patient Follow-up 
(Patient days) 2,094 51,152 

 Crude IPTW 
RR [95% CI] 1.49 [1.06, 2.11] 1.11 [0.79, 1.57] 
HR [95% CI] 1.21 [0.88, 1.66] 0.95 [0.66, 1.36] 

30-day Composite Outcome 
# observed events 
(mortality, hospice) 

55 
(35, 20) 

999 
(634, 365) 

Patient Follow-up 
(Patient days) 2,904 64,695 

 Crude IPTW 
RR [95% CI] 1.68 [1.24, 2.27] 1.25 [0.93, 1.68] 
HR [95% CI] 1.25 [0.95, 1.64] 1.02 [0.75, 1.4] 
Abbreviations: HR: Hazard Ratio, IPTW: inverse probability treatment weight, 
RR: Relative Risk 
Composite outcomes included either all-cause mortality or discharge to hospice 
at the specified follow-up. Relative risks and 95% confidence intervals were 
estimated using negative binomial regression with log link function. Hazard ratios 
and 95% confidence intervals were estimated using Cox proportional hazard 
regression. 
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Table K.6: Composite Outcome Assessment of CRE vs. CSE Infections in a 
Subgroup of Patients with Bloodstream Infections on the Index Date in the 
Main Analysis of CRE vs. CSE 

14-day Composite Outcome 
 CRE (n = 26) CSE (n = 1,337) 

# observed events 
(mortality, hospice) 

11 
(9, 2) 

276 
(196, 80) 

Patient Follow-up 
(Patient days) 211 10,435 

 Crude IPTW 
RR [95% CI] 2.05 [1.0, 4.2] -- 
HR [95% CI] 2.05 [1.12, 3.75] -- 

30-day Composite Outcome 
# observed events 
(mortality, hospice) 

13 
(11, 2) 

311 
(216, 95) 

Patient Follow-up 
(Patient days) 311 13,405 

 Crude IPTW 
RR [95% CI] 2.15 [1.09, 4.23] -- 
HR [95% CI] 1.99 [1.14, 3.47] -- 
Abbreviations: HR: Hazard Ratio, IPTW: inverse probability treatment weight, 
RR: Relative Risk 
Composite outcomes included either all-cause mortality or discharge to hospice 
at the specified follow-up. Relative risks and 95% confidence intervals were 
estimated using negative binomial regression with log link function. Hazard ratios 
and 95% confidence intervals were estimated using Cox proportional hazard 
regression. IPTW adjustment for this subgroup analysis was not performed due 
to lack of sufficient sample size in the CRE group. 
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Table K.7: Composite Outcome Assessment of CNSE vs. CSE Infections in 
Patients with Bloodstream Infections on the Index Date 

14-day Composite Outcome 
 CNSE (n = 69) CSE (n = 1,405) 

# observed events 
(mortality, hospice) 

23 
(15, 8) 

289 
(205, 84) 

Patient Follow-up 
(Patient days) 577 10,964 

 Crude IPTW 
RR [95% CI] 1.62 [0.99, 2.64] 1.5 [0.93, 2.43] 
HR [95% CI] 1.56 [1.02, 2.38] 1.42 [0.85, 2.36] 

30-day Composite Outcome 
# observed events 
(mortality, hospice) 

27 
(19, 8) 

327 
(226, 101) 

Patient Follow-up 
(Patient days) 788 14,070 

 Crude IPTW 
RR [95% CI] 1.68 [1.06, 2.67] 1.48 [0.96, 2.29] 
HR [95% CI] 1.56 [1.05, 2.31] 1.38 [0.85, 2.24] 
Abbreviations: HR: Hazard Ratio, IPTW: inverse probability treatment weight, 
RR: Relative Risk 
Composite outcomes included either all-cause mortality or discharge to hospice 
at the specified follow-up. Relative risks and 95% confidence intervals were 
estimated using negative binomial regression with log link function. Hazard ratios 
and 95% confidence intervals were estimated using Cox proportional hazard 
regression. 
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Baseline Covariate Balance Before and After IPTW-adjustment 

Table K.8: Baseline Balance of Covariates included in Propensity Score Model Before 
and After IPTW Adjustment for CRE vs. CSE Analysis 
Variable Unadjusted SMD Adjusted SMD 
Age (years) -0.055 0.084 
Gender 0.231 0.077 
Index Culture in ICU 0.359 0.016 
Time to Index Culture 0.449 0.201 
CCI Score 0.129 0.085 
Lactose-non-fermenting Culture on Index 0.264 0.080 
MRSA culture on Index 0.214 0.051 
Blood/Respiratory Culture at Index 0.255 0.044 
Admission Source 0.330 0.127 
Abbreviations: CCI: Charlson Comorbidity Index, IPTW: inverse probability treatment 
weight, MRSA: methicillin-resistant Staphylococcus aureus, SMD: standardized mean 
difference, ICU: intensive care unit. 
The standardized mean differences above were measured before and after the 
application of IPTW-adjustment to ensure balance on the included covariates was 
achieved. A value of ≤ 0.1 was considered to be sufficiently balanced. 
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Figure K.7: Standardized Mean Difference of Covariates included in the 
Propensity Score Model Before and After IPTW Adjustment for CRE vs. CSE 
Analysis 
Abbreviations: CCI: Charlson Comorbidity Index, IPTW: inverse probability 
treatment weight, MRSA: methicillin-resistant Staphylococcus aureus, SMD: 
standardized mean difference, ICU: intensive care unit. 
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Table K.9: Baseline Balance of Covariates included in Propensity Score Model Before 
and After IPTW Adjustment for CNSE vs. CSE Analysis 
Variable Unadjusted SMD Adjusted SMD 
Age (years) 0.021 0.088 
Gender 0.244 0.007 
Index Culture in ICU 0.240 0.009 
Time to Index Culture 0.367 0.192 
CCI Score 0.118 0.050 
Lactose-non-fermenting Culture on Index 0.223 0.059 
MRSA culture on Index 0.113 0.048 
Blood/Respiratory Culture at Index 0.371 -0.014 
Admission Source 0.374 0.078 
Abbreviations: CCI: Charlson Comorbidity Index, IPTW: inverse probability treatment 
weight, MRSA: methicillin-resistant Staphylococcus aureus, SMD: standardized mean 
difference, ICU: intensive care unit. 
The standardized mean differences above were measured before and after the 
application of IPTW-adjustment to ensure balance on the included covariates was 
achieved. A value of ≤ 0.1 was considered to be sufficiently balanced. 
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Figure K.8: Standardized Mean Difference of Covariates included in the 
Propensity Score Model Before and After IPTW Adjustment for CNSE vs. CSE 
Analysis 
Abbreviations: CCI: Charlson Comorbidity Index, IPTW: inverse probability 
treatment weight, MRSA: methicillin-resistant Staphylococcus aureus, SMD: 
standardized mean difference, ICU: intensive care unit 

  



 

 433 

Table K.10: Baseline Balance of Covariates included in Propensity Score Model Before 
and After IPTW Adjustment for CNSE vs. CSE Analysis Bloodstream Infection Analysis 
Variable Unadjusted SMD Adjusted SMD 
Age (years) -0.103 -0.088 
Gender 0.333 0.120 
Index Culture in ICU 0.242 0.088 
Time to Index Culture 0.205 0.115 
CCI Score -0.039 -0.104 
Admission Source 0.763 0.077 
Abbreviations: CCI: Charlson Comorbidity Index, IPTW: inverse probability treatment 
weight, MRSA: methicillin-resistant Staphylococcus aureus, SMD: standardized mean 
difference, ICU: intensive care unit. 
The standardized mean differences above were measured before and after the 
application of IPTW-adjustment to ensure balance on the included covariates was 
achieved. A value of ≤ 0.1 was considered to be sufficiently balanced. 
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Figure K.9: Standardized Mean Difference of Covariates included in the 
Propensity Score Model Before and After IPTW Adjustment 
Note that the unadjusted SMD value (0.763) is not shown on the figure. The 
decision was made to leave it off the figure in order to keep the same units with 
the other balancing figures. 
CCI: Charlson Comorbidity Index, IPTW: inverse probability treatment weight, 
MRSA: methicillin-resistant Staphylococcus aureus, SMD: standardized mean 
difference, ICU: intensive care unit 
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Sensitivity Analysis Appendix 

In this study three sensitivity analyses were performed to determine the robustness 

of our findings to key assumptions. The first sensitivity analysis was specified a 

priori and investigated the decision to use a composite outcome of all-cause 

mortality and discharge to hospice. In this analysis, the cohort study was 

performed using all-cause mortality alone as the outcome of interest. The crude 

and IPTW-adjusted RRs and HRs after 14 and 30 days for the outcome of interest 

may be found in Tables K.10 and K.11. 

 

The second sensitivity analysis was designed to analyze the difference between 

controlling the effect of cultured species other than the 5 targeted species (E. coli, 

E. cloacae, K. aerogenes, K. oxytoca, and K. pneumoniae) through a combination 

of restriction and adjustment versus the use of restriction only. In the primary study, 

patients which have a carbapenem-non-susceptible (CNS) culture from a species 

not among the targeted species are either censored at the culture date if it occurs 

during follow-up or are not included if it occurs prior to the index date of a qualifying 

hospitalization. Furthermore, to control for confounding which might be incurred 

from other culture species, namely methicillin-resistant Staphylococcus aureus 

(MRSA) and lactose-non-fermenting species, the presence of these cultures on 

the index date were included as variables in the propensity score model. For 

clarity, isolates included in the lactose-non-fermenting variable were Acinetobacter 

baumannii, Acinetobacter lwoffii, Burkholderia cepacia, Morganella morganii, 

Proteus mirabilis, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. 
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In the sensitivity analysis, patients which have ANY culture from a species not 

among the targeted species are censored as described above. Note that the 

variables used to construct the propensity score model in the sensitivity analysis 

were the same as the primary analysis with the exception of lactose-non-

fermenting and MRSA cultured on the index date (because the effect of both of 

these variables would be controlled through restriction, they are not included in the 

model). The sample sizes included in these analyses may be found in Table K.12, 

and the crude and IPTW-adjusted RRs and HRs after 14 and 30 days for the 

outcome of interest may be found in Tables K.13 and K.14. 

 

The final sensitivity analysis is a post-hoc analysis of the effect of time-to-index on 

14- and 30-day mortality. This analysis was initiated due to the imbalance 

remaining in this variable following IPTW-adjustment. While CRE patients had a 

higher median time-to-index than CSE (5.5 vs. 1 days), CRE isolates were 

identified within the first 72 hours 50.4% of the time compared to 70.3% for the 

CSE isolates. The distributions appeared to be similar with the time-to-index in the 

CRE being more right skewed. After dichotomizing the time-to-index variable at 72 

hours there did appear to be an uneven effect of mortality caused by time-to-index. 

However, this relationship was in the opposite direction of the imbalance in time-

to-index (Tables K.15 and K.16). While patients in the CRE group were more likely 

to have their index cultures later in their hospital stay, those who had their index 

cultures early were more likely to experience the composite outcome when 

compared to the CSE. In fact, patients with index cultures after the initial 72 hours 
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appeared to have similar risks of mortality between the CRE and CSE groups. This 

likely suggests that the imbalance of the time-to-index between CRE and CSE did 

not inappropriately impact the estimated outcomes. 
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Sensitivity Analysis 1 

Table K.10: Relative Risk of Outcome of Interest after 14- and 30-day Follow-up in Sensitivity Analysis 1  
CNSE vs. CSE CRE vs. CSE 

14-day Outcome 30-day Outcome 14-day Outcome 30-day Outcome 
Crude IPTW Crude IPTW Crude IPTW Crude IPTW 

1 1.49 
[1.06, 2.11] 

1.11 
[0.79, 1.57] 

1.68 
[1.24, 2.27] 

1.25 
[0.93, 1.68] 

1.46 
[0.93, 2.32] 

1.11 
[0.7, 1.74] 

1.58 
[1.05, 2.37] 

1.19 
[0.8, 1.77] 

2 1.41 
[0.91, 2.16] 

0.92 
[0.59, 1.43] 

1.68 
[1.17, 2.42] 

1.09 
[0.74, 1.61] 

1.46 
[0.84, 2.56] 

0.98 
[0.56, 1.7] 

1.54 
[0.94, 2.54] 

1.0 
[0.61, 1.63] 

Row 1 followed the methodology described for the primary analysis using composite outcome, and Row 2 utilized all-
cause mortality as the outcome of interest. All reported values are the RR [95% CI] when comparing the respective 
exposure and comparator groups. 
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Table K.11: Hazard Ratio of Outcome of Interest after 14- and 30-day Follow-up in Sensitivity Analysis 1  
CNSE vs. CSE CRE vs. CSE 

14-day Outcome 30-day Outcome 14-day Outcome 30-day Outcome 
Crude IPTW Crude IPTW Crude IPTW Crude IPTW 

1 1.21 
[0.88, 1.66] 

0.95 
[0.66, 1.36] 

1.25 
[0.95, 1.64] 

1.02 
[0.75, 1.4] 

1.18 
[0.77, 1.8] 

0.98 
[0.61, 1.57] 

1.14 
[0.79, 1.65] 

0.99 
[0.65, 1.51] 

2 1.17 
[0.77, 1.76] 

0.8 
[0.5, 1.26] 

1.28 
[0.91, 1.79] 

0.91 
[0.61, 1.35] 

1.21 
[0.71, 2.06] 

0.88 
[0.5, 1.55] 

1.14 
[0.72, 1.83] 

0.84 
[0.5, 1.42] 

Row 1 followed the methodology described for the primary analysis, and Row 2 utilized all-cause mortality as the outcome 
of interest. All reported values are the HR [95% CI] when comparing the respective exposure and comparator groups. 
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Sensitivity Analysis 2 

Table K.12: Sample Sizes in the Exposure and Comparator Groups in Sensitivity 
Analysis 2 

 CNSE vs. CSE CRE vs. CSE 
Overall CNSE CSE Overall CRE CSE 

1 7174 228 6946 7081 128 6953 
2 6159 169 5990 6085 90 5995 
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Table K.13: Relative Risk of Composite Outcome after 14- and 30-day Follow-up in Sensitivity Analysis 2  
CNSE vs. CSE CRE vs. CSE 

14-day 
Composite Outcome 

30-day 
Composite Outcome 

14-day 
Composite Outcome 

30-day 
Composite Outcome 

Crude IPTW Crude IPTW Crude IPTW Crude IPTW 
1 1.49 

[1.06, 2.11] 
1.11 

[0.79, 1.57] 
1.68 

[1.24, 2.27] 
1.25 

[0.93, 1.68] 
1.46 

[0.93, 2.32] 
1.11 

[0.7, 1.74] 
1.58 

[1.05, 2.37] 
1.19 

[0.8, 1.77] 
2 1.53 

[1.03, 2.27] 
1.01 

[0.67, 1.51] 
1.6 

[1.11, 2.3] 
1.15 

[0.79, 1.67] 
1.34 

[0.76, 2.36] 
0.89 

[0.5, 1.59] 
1.55 

[0.94, 2.55] 
1.07 

[0.65, 1.76] 
Row 1 followed the methodology described for the primary analysis, and Row 2 follows the methodology described for 
the sensitivity analysis limiting the inclusion of species other than the targeted 5 through restriction. All reported values 
are the RR [95% CI] when comparing the respective exposure and comparator groups. 
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Table K.14: Hazard Ratio of Composite Outcome after 14- and 30-day Follow-up in Sensitivity Analysis 2  
CNSE vs. CSE CRE vs. CSE 

14-day 
Composite Outcome 

30-day 
Composite Outcome 

14-day 
Composite Outcome 

30-day 
Composite Outcome 

Crude IPTW Crude IPTW Crude IPTW Crude IPTW 
1 1.21 

[0.88, 1.66] 
0.95 

[0.66, 1.36] 
1.25 

[0.95, 1.64] 
1.02 

[0.75, 1.4] 
1.18 

[0.77, 1.8] 
0.98 

[0.61, 1.57] 
1.14 

[0.79, 1.65] 
0.99 

[0.65, 1.51] 
2 1.26 

[0.88, 1.82] 
0.87 

[0.57, 1.32] 
1.23 

[0.88, 1.71] 
0.94 

[0.64, 1.38] 
1.09 

[0.64, 1.85] 
0.77 

[0.43, 1.39] 
1.11 

[0.71, 1.76] 
0.85 

[0.51, 1.43] 
Row 1 followed the methodology described for the primary analysis, and Row 2 follows the methodology described for 
the sensitivity analysis limiting the inclusion of species other than the targeted 5 through restriction. All reported values 
are the HR [95% CI] when comparing the respective exposure and comparator groups. 
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Sensitivity Analysis 3 

Table K.15: Relative Risk of 14- and 30-day Composite Outcome in CRE vs. 
CSE Stratified by Time-to-Index  

14-Day 
Composite Outcome 

30-Day 
Composite Outcome 

T ≤ 72 hours 1.5 [0.74, 3.05] 1.97 [1.09, 3.54] 
T > 72 hours 1.23 [0.67, 2.25] 1.11 [0.63, 1.96 

All reported values are RR [95% CI]; T: time-to-index 
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Table K.16: Hazard Ratio of 14- and 30-day Composite Outcome in CRE vs. 
CSE Stratified by Time-to-Index  

14-Day 
Composite Outcome 

30-Day 
Composite Outcome 

T ≤ 72 hours 1.33 [0.69, 2.57] 1.53 [0.9, 2.61] 
T > 72 hours 1.06 [0.61, 1.85] 0.92 [0.55, 1.54] 

All reported values are HR [95% CI]; T: time-to-index 
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Appendix L. Code Repository 

This appendix contains the code used to clean/process/analyze data in this 
project. The code is organized by the publications in which it is used and 

subsequently separated by function of the code for efficient navigation. The vast 
majority of this code library is written in Python; however, one R script was used 
in the cohort study to analyze the standardized mean difference balance before 
and after IPTW-adjustment as the smd library in R was the best fit for my use 

case out of the box. 
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In-Vitro Activity of Plazomicin Compared to other Clinically Relevant 

Aminoglycosides in Carbapenem-resistant Enterobacteriaceae Code 

Setup 

import numpy as np 
import pandas as pd 
from mlxtend.evaluate import mcnemar 
 
# Converting the MIC values at the ends of the tested range 
df = pd.read_excel('aminoglycoside_mics.xlsx', index_col='Isolate') 
 
df.loc[df['Plazomicin']=='>32', 'Plazomicin'] = '64' 
df['Plazomicin'] = pd.to_numeric(df['Plazomicin'], downcast='signed') 
 
df.loc[df['Amikacin']=='<=0.5', 'Amikacin'] = '0.25' 
df['Amikacin'] = pd.to_numeric(df['Amikacin'], downcast='signed') 
 
df.loc[df['Tobramycin']=='>128', 'Tobramycin'] = '256' 
df.loc[df['Tobramycin']=='<=0.125', 'Tobramycin'] = '0.0625' 
df['Tobramycin'] = pd.to_numeric(df['Tobramycin'], downcast='signed') 
 
# Setting up Susc columns according to named breakpoint category 
df.loc[df['Gentamicin']=='>128', 'Gentamicin'] = '256' 
df.loc[df['Gentamicin']=='<=0.125', 'Gentamicin'] = '0.0625' 
df['Gentamicin'] = pd.to_numeric(df['Gentamicin'], downcast='signed') 
 
df['AMK_Susc_CLSI'] = (df['Amikacin'] <= 16).map({True:'S', False:'NS'}) 
df['AMK_Susc_EUCAST'] = (df['Amikacin'] <= 8).map({True:'S', False:'NS'}) 
df['AMK_Susc_USCAST'] = (df['Amikacin'] <= 4).map({True:'S', False:'NS'}) 
 
df['GENT_Susc_CLSI'] = (df['Gentamicin'] <= 4).map({True:'S', False:'NS'}) 
df['GENT_Susc_EUCAST'] = (df['Gentamicin'] <= 2).map({True:'S', False:'NS'}) 
df['GENT_Susc_USCAST'] = (df['Gentamicin'] <= 2).map({True:'S', False:'NS'}) 
 
df['TOB_Susc_CLSI'] = (df['Tobramycin'] <= 4).map({True:'S', False:'NS'}) 
df['TOB_Susc_EUCAST'] = (df['Tobramycin'] <= 2).map({True:'S', False:'NS'}) 
df['TOB_Susc_USCAST'] = (df['Tobramycin'] <= 2).map({True:'S', False:'NS'}) 
                                                          
df['PLZ_Susc_USCAST'] = (df['Plazomicin'] <= 4).map({True:'S', False:'NS'}) 
df['PLZ_Susc_FDA'] = (df['Plazomicin'] <= 2).map({True:'S', False:'NS'}) 
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Stats 

# Stats of PLZ FDA vs AMK CLSI/EUCAST/USCAST 
# The following pattern was also used to make comparisons between other aminoglycosides at 
different breakpoints. Just need to pass different columns to the  
list_of_tables = [] 
list_of_results = [] 
for name in [‘AMK_Susc_CLSI’, ‘AMK_Susc_EUCAST’, ‘AMK_Susc_USCAST’]: 
    table, res = rp.crosstab(df['PLZ_Susc_FDA'], df[str(name)], test= 'mcnemar', exact=True) 
    list_of_tables.append(table) 
    list_of_results.append(res) 
 
zipped_list = zip(list_of_tables, list_of_results) 
amk_susc_list = list(zipped_list) 
 
for i, tup in enumerate(amk_susc_list): 
    print(tup) 
    print('**************************') 
    crosstab = np.array(amk_susc_list[i][0])[:2, 0:2] 
    print(crosstab) 
    chi2, p = mcnemar(ary=crosstab, exact=True) 
 
    print('chi-squared: ', chi2) 
    print('p_value: ', p) 
 



 

 448 

In-Vitro Activity of Eravacycline Compared to Tigecycline and Minocycline in 

Carbapenem-resistant Enterobacteriaceae Code 

Setup 

import pandas as pd 
import numpy as np 
import matplotlib 
import matplotlib.pyplot as plt 
import seaborn as sns 
from matplotlib import rc, rcParams 
from matplotlib.ticker import FixedFormatter 
 
# Define functions 
def permutation_sample(data1, data2): 
    """Generate a permutation sample from two data sets.""" 
 
    # Concatenate the data sets: data 
    data = np.concatenate((data1, data2)) 
 
    # Permute the concatenated array: permuted_data 
    permuted_data = np.random.permutation(data) 
 
    # Split the permuted array into two: perm_sample_1, perm_sample_2 
    perm_sample_1 = permuted_data[:len(data1)] 
    perm_sample_2 = permuted_data[len(data1):] 
 
    return perm_sample_1, perm_sample_2 
 
def draw_mic_ratio_perm_reps(data_1, data_2, func, size=1): 
    """Generate multiple permutation replicates.""" 
 
    # Initialize array of replicates: perm_replicates 
    perm_replicates = np.empty(size) 
 
    for i in range(size): 
        # Generate permutation sample 
        perm_sample_1, perm_sample_2 = permutation_sample(data_1, data_2) 
 
        # Generate MIC ratio 
        mic_ratio = perm_sample_1/perm_sample_2 
        log2_mic_ratio = np.log2(mic_ratio) 
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        # Compute the test statistic 
        perm_replicates[i] = func(log2_mic_ratio) 
 
    return perm_replicates 
 
def draw_mic_ratio_bs_pairs(x, y, func, size=1): 
    """Perform pairs bootstrap for MIC ratio. The function will take two array inputs,  
    calculate bootstrap replicates of those arrays, then divide them to create a new array 
    of MIC ratios. A func can be passed to aggregate the array into a statistic""" 
 
    # Set up array of indices to sample from: inds 
    inds = np.arange(len(x)) 
 
    # Initialize replicates: bs_replicates 
    bs_replicates = np.empty(size) 
 
    # Generate replicates 
    for i in range(size): 
        bs_inds = np.random.choice(inds, len(inds)) 
        bs_x, bs_y = x[bs_inds], y[bs_inds] 
        mic_ratio_array = bs_x/bs_y 
        log2_mic_ratio = np.log2(mic_ratio_array) 
        bs_replicates[i] = 2 ** func(log2_mic_ratio) 
 
    return bs_replicates 
 

df = pd.read_excel('ERV Python.xlsx', index_col='Isolate') 
 
df.loc[df['ERV']=='>8', 'ERV'] = '16' 
df['ERV'] = pd.to_numeric(df['ERV']) 
df.loc[df['Minocycline']== '>64', 'Minocycline'] = '128' 
df['Minocycline'] = pd.to_numeric(df['Minocycline']) 
 
# Working on histogram here 
erv_kpc = np.array(df[df['Phenotype']=='KPC']['ERV']) 
erv_no_kpc = np.array(df[df['Phenotype']!='KPC']['ERV']) 
erv_mbl = np.array(df[df['Phenotype']=='MBL']['ERV']) 
erv_enterobacter = np.array(df[df['Genus']=='Enterobacter']['ERV']) 
erv_klebsiella = np.array(df[df['Genus']=='Klebsiella']['ERV']) 
 
tgc_kpc = np.array(df[df['Phenotype']=='KPC']['Tigecycline']) 
tgc_no_kpc = np.array(df[df['Phenotype']!='KPC']['Tigecycline']) 
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tgc_mbl = np.array(df[df['Phenotype']=='MBL']['Tigecycline']) 
tgc_enterobacter = np.array(df[df['Genus']=='Enterobacter']['Tigecycline']) 
tgc_klebsiella = np.array(df[df['Genus']=='Klebsiella']['Tigecycline']) 
 
mino_kpc = np.array(df[df['Phenotype']=='KPC']['Minocycline']) 
mino_mbl = np.array(df[df['Phenotype']=='MBL']['Minocycline']) 
mino_enterobacter = np.array(df[df['Genus']=='Enterobacter']['Minocycline']) 
mino_klebsiella = np.array(df[df['Genus']=='Klebsiella']['Minocycline']) 
 
# Add susc columns for comparison between TETs 
df['Erv_Susc'] = (df['ERV'] <= 0.5).map({True:'S', False:'NS'}) 
df['Tgc_Susc_FDA'] = (df['Tigecycline'] <= 2).map({True:'S', False:'NS'}) 
df['Tgc_Susc_EUCAST'] = (df['Tigecycline'] <= 1).map({True:'S', False:'NS'}) 
df['Tgc_Susc_PKPD_AUC/MIC'] = (df['Tigecycline'] <= 0.5).map({True:'S', False:'NS'}) 
df['Tgc_Susc_PKPD_fAUC/MIC'] = (df['Tigecycline'] <= 0.25).map({True:'S', False:'NS'}) 
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Plotting 

plt.rcParams['axes.labelweight'] = 'bold' 
plt.rcParams['axes.titleweight'] = 'bold' 
 
erv = np.array(df['ERV']) 
tgc = np.array(df['Tigecycline']) 
 
# Create figure and subplots 
fig, ax1 = plt.subplots(1, 1, figsize=(12, 10), dpi=120) 
plt.subplots_adjust(wspace=0.10) 
# fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(25, 10), dpi=120) 
# plt.subplots_adjust(wspace=0.15) 
 
plt.style.use('bmh') 
 
# Plot 
ax1.plot( 
    tgc,  
    erv,  
    'o',  
    c='black',  
    alpha=0.1,  
    markersize=24 
) 
 
hist_bin_tgc = np.array([0.06, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32]) 
hist_bin_erv = np.array([0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32]) 
 
# Returns the bins for each direction as seen above and a 2D numpy array of the counts at each 
# coordinate, which is unpacked into hist 
hist, xbins, ybins = np.histogram2d(erv, tgc, bins=(hist_bin_erv, hist_bin_tgc)) 
 
X, Y = np.meshgrid(xbins[:-1], ybins[:-1]) 
X_t = np.transpose(X); Y_t = np.transpose(Y) 
 
X_t = X_t[hist != 0] 
Y_t = Y_t[hist != 0] 
Z = hist[hist != 0] 
 
for i in range(len(Z)): 
    ax1.annotate( 
        str(int(Z[i])), 
        xy = (Y_t[i],X_t[i]), 
        xytext = (-5,20),  
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        textcoords = "offset points", 
        size = '24', 
        weight = 'bold' 
    ) 
 
# Title, labels, limits, scale and ticks, formatted tick names for ax1 
 
#ax1.set_title('Figure 1. Potency of ERV vs. TGC', fontsize=44, fontname='Arial') 
ax1.set_xlabel(u'TGC MICs \u03bcg/mL', fontsize=36, fontname='Arial') 
ax1.set_ylabel(u'ERV MICs \u03bcg/mL', fontsize=36, fontname='Arial') 
 
ax1.set_xlim(0.046875, 24) 
ax1.set_ylim(0.09375, 24) 
 
ax1.set_xscale('log', basex=2) 
ax1.set_yscale('log', basey=2) 
 
ax1.set_xticks([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]) 
ax1.set_yticks([0.125, 0.25, 0.5, 1, 2, 4, 8, 16]) 
 
x_majors = ['0.06','0.125','0.25', '0.5', '1', '2', '4', '8', '16'] 
ax1.xaxis.set_major_formatter(FixedFormatter(x_majors)) 
y_majors = ['0.125', '0.25', '0.5', '1', '2', '4', '8', '>8'] 
ax1.yaxis.set_major_formatter(FixedFormatter(y_majors)) 
 
# Plot the lines for comparison for ERV vs TGC 
x = np.array([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128]) 
y = np.array([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128]) 
 
ax1.plot(x,  
         y,  
         linestyle='-',  
         color='black',  
         alpha=1,  
         label='Equal Potency' 
        ) 
 
ax1.plot(x,  
         y/2,  
         linestyle='dotted',  
         color='gray',  
         alpha=0.75, 
         label='Dilutional Error' 
        ) 
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ax1.plot(x,  
         y*2,  
         linestyle='dotted',  
         color='gray',  
         alpha=0.75, 
        ) 
 
# Final formatting changes 
plt.rc('ytick', labelsize=24) 
plt.rc('xtick', labelsize=24) 
 
# Legend settings 
leg1 = ax1.legend( 
            frameon=True, 
            edgecolor='k', 
            framealpha=1, 
            shadow=True, 
            title_fontsize=24, 
            fontsize=24, 
            loc='best' 
) 
 
plt.savefig('scatter_erv_tgc.tiff') 
 

# Klebsiella and Enterobacter Scatter Plots for ERV vs. TGC 
 
# rcParams['mathtext.fontset'] = 'custom' 
# rcParams['mathtext.bf'] = 'STIXGeneral:italic:bold' 
 
# Create figure and subplots 
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(25, 10), dpi=120) 
plt.subplots_adjust(wspace=0.15) 
 
# Plot 
ax1.plot( 
    tgc_klebsiella,  
    erv_klebsiella,  
    'o',  
    c='black',  
    alpha=0.1,  
    markersize=24 
) 
 
hist_bin_tgc = np.array([0.06, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32]) 
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hist_bin_erv = np.array([0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32]) 
hist, xbins, ybins = np.histogram2d(erv_klebsiella, tgc_klebsiella, bins=(hist_bin_erv, 
hist_bin_tgc)) 
 
X, Y = np.meshgrid(xbins[:-1], ybins[:-1]) 
X_t = np.transpose(X); Y_t = np.transpose(Y) 
 
X_t = X_t[hist != 0] 
Y_t = Y_t[hist != 0] 
Z = hist[hist != 0] 
 
for i in range(len(Z)): 
    ax1.annotate( 
        str(int(Z[i])), 
        xy = (Y_t[i],X_t[i]), 
        xytext = (-5,20),  
        textcoords = "offset points", 
        size = '24', 
        weight = 'bold' 
    ) 
 
ax2.plot( 
    tgc_enterobacter, 
    erv_enterobacter, 
    'o', 
    c='black', 
    alpha=0.1, 
    markersize=24 
) 
 
hist_bin_tgc = np.array([0.06, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32]) 
hist_bin_erv = np.array([0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32]) 
hist2, xbins2, ybins2 = np.histogram2d(erv_enterobacter, tgc_enterobacter, bins=(hist_bin_erv, 
hist_bin_tgc)) 
 
X2, Y2 = np.meshgrid(xbins2[:-1], ybins2[:-1]) 
X_t2 = np.transpose(X2); Y_t2 = np.transpose(Y2) 
 
X_t2 = X_t2[hist2 != 0] 
Y_t2 = Y_t2[hist2 != 0] 
Z2 = hist2[hist2 != 0] 
 
for i in range(len(Z2)): 
    ax2.annotate( 
        str(int(Z2[i])), 
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        xy = (Y_t2[i],X_t2[i]), 
        xytext = (-5,20),  
        textcoords = "offset points", 
        size = '24', 
        weight = 'bold' 
    ) 
 
# Title, labels, limits, scale and ticks, formatted tick names for ax1 
 
ax1.set_title('Klebsiella species', fontsize=36, fontname='Arial') 
ax1.set_xlabel('TGC MICs (\u03bcg/mL)', fontsize=36, fontname='Arial') 
ax1.set_ylabel('ERV MICs (\u03bcg/mL)', fontsize=36, fontname='Arial') 
 
ax1.set_xlim(0.046875, 24) 
ax1.set_ylim(0.09375, 24) 
 
ax1.set_xscale('log', basex=2) 
ax1.set_yscale('log', basey=2) 
 
ax1.set_xticks([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]) 
ax1.set_yticks([0.125, 0.25, 0.5, 1, 2, 4, 8, 16]) 
 
x_majors = ['0.06','0.125','0.25', '0.5', '1', '2', '4', '8', '16'] 
ax1.xaxis.set_major_formatter(FixedFormatter(x_majors)) 
y_majors = ['0.125', '0.25', '0.5', '1', '2', '4', '8', '>8'] 
ax1.yaxis.set_major_formatter(FixedFormatter(y_majors)) 
 
# Title, labels, limits, scale and ticks, formatted tick names for ax2 
 
ax2.set_title('Enterobacter species', fontsize=36, fontname='Arial') 
ax2.set_xlabel('TGC MICs (\u03bcg/mL)', fontsize=36, fontname='Arial') 
 
ax2.set_xlim(0.046875, 24) 
ax2.set_ylim(0.09375, 24) 
 
ax2.set_xscale('log', basex=2) 
ax2.set_yscale('log', basey=2) 
 
ax2.set_xticks([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]) 
ax2.set_yticks([0.125, 0.25, 0.5, 1, 2, 4, 8, 16]) 
 
#x_majors = ['0.06','0.125','0.25', '0.5', '1', '2', '4', '8', '16'] 
ax2.xaxis.set_major_formatter(FixedFormatter(x_majors)) 
#y_majors = ['0.125', '0.25', '0.5', '1', '2', '4', '8', '>8'] 
ax2.yaxis.set_major_formatter(FixedFormatter(y_majors)) 
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# Plot the lines for comparison for ERV vs TGC 
x = np.array([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128]) 
y = np.array([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128]) 
 
ax1.plot(x,  
         y,  
         linestyle='-',  
         color='black',  
         alpha=1,  
         label='Equal Potency' 
        ) 
ax1.plot(x,  
         y/2,  
         linestyle='dotted',  
         color='gray',  
         alpha=0.75, 
         label='Dilutional Error' 
        ) 
ax1.plot(x,  
         y*2,  
         linestyle='dotted',  
         color='gray',  
         alpha=0.75, 
        ) 
 
# Plot the lines for comparison for ERV vs MIN 
ax2.plot(x,  
         y,  
         linestyle='-',  
         color='black',  
         alpha=1 
        ) 
ax2.plot(x,  
         y/2,  
         linestyle='dotted',  
         color='gray',  
         alpha=0.75 
        ) 
ax2.plot(x,  
         y*2,  
         linestyle='dotted',  
         color='gray',  
         alpha=0.75 
        ) 
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# Final formatting changes 
plt.rc('axes', labelsize=24)    # fontsize of the x and y labels 
ax2.yaxis.set_ticks_position('none') 
ax2.get_yaxis().set_visible(True) 
 
# Legend settings 
leg1 = ax1.legend( 
            frameon=True, 
            edgecolor='k', 
            framealpha=1, 
            shadow=True, 
            title_fontsize=20, 
            fontsize=20, 
            loc='best' 
) 
 
plt.savefig('scatter_klebvsent_erv_tgc.tiff') 
 
# KPC vs non-KPC in ERV vs. TGC 
 
# Create figure and subplots 
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(25, 10), dpi=120) 
plt.subplots_adjust(wspace=0.15) 
 
# Plot 
ax1.plot( 
    tgc_kpc,  
    erv_kpc,  
    'o',  
    c='black',  
    alpha=0.1,  
    markersize=24 
) 
 
hist_bin_tgc = np.array([0.06, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32]) 
hist_bin_erv = np.array([0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32]) 
hist, xbins, ybins = np.histogram2d(erv_kpc, tgc_kpc, bins=(hist_bin_erv, hist_bin_tgc)) 
 
X, Y = np.meshgrid(xbins[:-1], ybins[:-1]) 
X_t = np.transpose(X); Y_t = np.transpose(Y) 
 
X_t = X_t[hist != 0] 
Y_t = Y_t[hist != 0] 
Z = hist[hist != 0] 
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for i in range(len(Z)): 
    ax1.annotate( 
        str(int(Z[i])), 
        xy = (Y_t[i],X_t[i]), 
        xytext = (-5,20),  
        textcoords = "offset points", 
        size = '24', 
        weight = 'bold' 
    ) 
 
ax2.plot( 
    tgc_no_kpc, 
    erv_no_kpc, 
    'o', 
    c='black', 
    alpha=0.1, 
    markersize=24 
) 
 
hist_bin_tgc = np.array([0.06, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32]) 
hist_bin_erv = np.array([0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32]) 
hist, xbins, ybins = np.histogram2d(erv_no_kpc, tgc_no_kpc, bins=(hist_bin_erv, hist_bin_tgc)) 
 
X, Y = np.meshgrid(xbins[:-1], ybins[:-1]) 
X_t = np.transpose(X); Y_t = np.transpose(Y) 
 
X_t = X_t[hist != 0] 
Y_t = Y_t[hist != 0] 
Z = hist[hist != 0] 
 
for i in range(len(Z)): 
    ax2.annotate( 
        str(int(Z[i])), 
        xy = (Y_t[i],X_t[i]), 
        xytext = (-5,20),  
        textcoords = "offset points", 
        size = '24', 
        weight = 'bold' 
    ) 
 
# Title, labels, limits, scale and ticks, formatted tick names for ax1 
 
ax1.set_title('KPC-producing CRE', fontsize=36, fontname='Arial') 
ax1.set_xlabel('TGC MICs(\u03bcg/mL)', fontsize=36, fontname='Arial') 



 

 459 

ax1.set_ylabel('ERV MICs (\u03bcg/mL)', fontsize=36, fontname='Arial') 
 
ax1.set_xlim(0.046875, 24) 
ax1.set_ylim(0.09375, 24) 
 
ax1.set_xscale('log', basex=2) 
ax1.set_yscale('log', basey=2) 
 
ax1.set_xticks([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]) 
ax1.set_yticks([0.125, 0.25, 0.5, 1, 2, 4, 8, 16]) 
 
x_majors = ['0.06','0.125','0.25', '0.5', '1', '2', '4', '8', '16'] 
ax1.xaxis.set_major_formatter(FixedFormatter(x_majors)) 
y_majors = ['0.125', '0.25', '0.5', '1', '2', '4', '8', '>8'] 
ax1.yaxis.set_major_formatter(FixedFormatter(y_majors)) 
 
# Title, labels, limits, scale and ticks, formatted tick names for ax2 
 
ax2.set_title('non-KPC-producing CRE', fontsize=36, fontname='Arial') 
ax2.set_xlabel('TGC MICs(\u03bcg/mL)', fontsize=36, fontname='Arial') 
ax2.set_xlim(0.046875, 24) 
ax2.set_ylim(0.09375, 24) 
 
ax2.set_xscale('log', basex=2) 
ax2.set_yscale('log', basey=2) 
 
ax2.set_xticks([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]) 
ax2.set_yticks([0.125, 0.25, 0.5, 1, 2, 4, 8, 16]) 
 
#x_majors = ['0.06','0.125','0.25', '0.5', '1', '2', '4', '8', '16'] 
ax2.xaxis.set_major_formatter(FixedFormatter(x_majors)) 
#y_majors = ['0.125', '0.25', '0.5', '1', '2', '4', '8', '>8'] 
ax2.yaxis.set_major_formatter(FixedFormatter(y_majors)) 
 
# Plot the lines for comparison for ERV vs TGC 
x = np.array([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128]) 
y = np.array([0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128]) 
 
ax1.plot(x,  
         y,  
         linestyle='-',  
         color='black',  
         alpha=1,  
         label='Equal Potency' 
        ) 
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ax1.plot(x,  
         y/2,  
         linestyle='dotted',  
         color='gray',  
         alpha=0.75, 
         label='Dilutional Error' 
        ) 
ax1.plot(x,  
         y*2,  
         linestyle='dotted',  
         color='gray',  
         alpha=0.75, 
        ) 
 
# Plot the lines for comparison for ERV vs MIN 
ax2.plot(x,  
         y,  
         linestyle='-',  
         color='black',  
         alpha=1 
        ) 
ax2.plot(x,  
         y/2,  
         linestyle='dotted',  
         color='gray',  
         alpha=0.75 
        ) 
ax2.plot(x,  
         y*2,  
         linestyle='dotted',  
         color='gray',  
         alpha=0.75 
        ) 
 
# Final formatting changes 
plt.rc('axes', labelsize=24)    # fontsize of the x and y labels 
ax2.yaxis.set_ticks_position('none') 
ax2.get_yaxis().set_visible(True) 
 
# Legend settings 
leg1 = ax1.legend( 
            frameon=True, 
            edgecolor='k', 
            framealpha=1, 
            shadow=True, 
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            title_fontsize=20, 
            fontsize=20, 
            loc='best' 
) 
 
plt.savefig('scatter_kpcvnonkpc_erv_tgc.tiff') 
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Stats 

# MIC ratio analysis by phenotype 
# This was subsequently performed using the genera with minimal modification 
 
# phenotypes = np.unique(phenotype) 
phen_names = ['Both', 'KPC', 'MBL', 'Other', 'Non-KPC'] 
 
mean_ervtgc_phen_mic_ratio = [] 
for i, j in enumerate(phen_names): 
    if not j == 'Non-KPC': 
        erv_phen = np.array(df['ERV'].loc[df['Phenotype'] == j]) 
        tgc_phen = np.array(df['Tigecycline'].loc[df['Phenotype'] == j]) 
    else: 
        erv_phen = np.array(df['ERV'].loc[df['Phenotype'] != 'KPC']) 
        tgc_phen = np.array(df['Tigecycline'].loc[df['Phenotype'] != 'KPC']) 
     
    # Must convert the values to the log2 value of the ratio, but have to do afterwards 
    # otherwise division by zero error will occur. Convert the value back 
    # using 2 to the power of value to get true mean ratio 
    ratio = erv_phen/tgc_phen 
    log2_ratio = np.log2(ratio) 
    mean_ratio = 2 ** np.mean(log2_ratio) 
     
    # Bootstrapped 95% CI are generated for the mean MIC ratio using this stats 
    # func found in Stats_functions notebook. It is imported earlier 
    bs_ratio = draw_mic_ratio_bs_pairs(erv_phen, tgc_phen, np.mean, size=10000) 
    bs_ratio_conint = np.percentile(bs_ratio, [2.5, 97.5]) 
     
    # Permutation hypothesis testing is used to determine whether or not erv and tgc mics 
    # are sampled from the same distribution 
    ratio_perm = draw_mic_ratio_perm_reps(erv_phen, tgc_phen, np.mean, size=10000) 
    pvalue = np.sum(ratio_perm <= np.mean(log2_ratio))/len(ratio_perm) 
     
    data = (phen_names[i], mean_ratio, bs_ratio_conint, pvalue) 
    mean_ervtgc_phen_mic_ratio.append(data) 
     
for i, j in enumerate(mean_ervtgc_phen_mic_ratio): 
    print('The MIC ratio for isolates with '+ str(j[0]) + ' phenotype is ' + str(j[1]) + ' with 95% CI ' + 
str(j[2]) + ' with pvalue from permutation test = ' + str(j[3])) 
 
# The following was used to provide the mic ratio with bootstrap CI with each abx combination 
with minimal alteration between runs 
ervtgc_ratio_bs = draw_mic_ratio_bs_pairs(erv, tgc, np.mean, size=10000) 
pd.Series(ervtgc_ratio_bs).value_counts() 
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ervtgc_ratio_bs_conint = np.percentile(ervtgc_ratio_bs, [2.5, 97.5]) 
print('ERV/TGC MIC ratio is', exp_mean_ervtgc_ratio, 
      'with 95% CI', ervtgc_ratio_bs_conint) 
 
# The following was used to run permutation hypothesis testing 
ervtgc_ratio_perm = draw_mic_ratio_perm_reps(erv, tgc, np.mean, size=10000) 
counts = pd.Series(ervtgc_ratio_perm).value_counts() 
pvalue = np.sum(ervtgc_ratio_perm <= mean_log2_ervtgc_ratio)/len(ervtgc_ratio_perm) 
 
# The following analysis was performed to compare our MIC distributions to the Zhang et al paper 
referenced in the Study 
below_zhang = erv[erv<0.5] 
above_zhang = erv[erv>4] 
erv_outside_zhang = np.sum(np.logical_or(erv >4, erv<0.5)) 
perc_outside_zhang = (erv_outside_zhang/len(erv)) * 100 
print(below_zhang, above_zhang, perc_outside_zhang) 
 
erv_outside_zhang_2 = np.sum(np.logical_or(erv >4, erv<1)) 
inverse_erv_outside_z_2 = 122 - erv_outside_zhang_2 
perc_outside_zhang_2 = (erv_outside_zhang_2/len(erv)) * 100 
perc_inverse = (inverse_erv_outside_z_2/len(erv)) * 100 
print('We have ' + str(inverse_erv_outside_z_2) + ' isolates inside the range 1-4, which 
corresponds to ' + str(perc_inverse) + '% of our isolates. Zhang had 98% isolates in this range.') 
 
below_zhang_2 = np.sum(erv<1) 
above_zhang_2 = np.sum(erv>4) 
above_zhang_3 = np.sum(erv>2) 
perc_below_zhang = (below_zhang_2/len(erv)) * 100 
perc_above_zhang = (above_zhang_2/len(erv)) * 100 
perc_above_zhang2 = (above_zhang_3/len(erv)) * 100 
print('There were ' + str(below_zhang_2) + ' (' + str(perc_below_zhang) + '%) below and ' + 
str(above_zhang_2) + ' (' + str(perc_above_zhang) + '%) above the 1-4 range and ' + 
str(above_zhang_3) + ' (' + str(perc_above_zhang2) + '%) above the 1-2 range in our study') 
 
erv_counts = pd.Series(erv).value_counts() 
erv_percs = (erv_counts/122) * 100 
print(erv_counts, erv_percs) 
print(np.sum(erv_percs)) 
 
zhang = np.empty(110) 
zhang[:2] = 0.5 
zhang[2:70] = 1 
zhang[70:106] = 2 
zhang[106:] = 4 
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zhang_counts = pd.Series(zhang).value_counts() 
zhang_percs = (zhang_counts/len(zhang)) * 100 
zhang_percs2 = (np.sum(np.logical_or(zhang == 1, zhang == 2))/len(zhang)) * 100 
print(zhang_counts, zhang_percs, zhang_percs2) 
 
zhang_tgc = np.empty(110) 
zhang_tgc[:4] = 1 
zhang_tgc[4:101] = 2 
zhang_tgc[101:] = 4 
 
zhang_tgc_counts = pd.Series(zhang_tgc).value_counts() 
zhang_tgc_percs = (zhang_tgc_counts/len(zhang_tgc)) * 100 
 
print(zhang_tgc_counts, zhang_tgc_percs) 
 
below_zhang_tgc = tgc[tgc<1] 
above_zhang_tgc = tgc[tgc>4] 
tgc_outside_zhang_2 = np.sum(np.logical_or(tgc >4, tgc<1)) 
print(tgc_outside_zhang_2) 
tgc_perc_outside_zhang = (tgc_outside_zhang_2/len(tgc)) * 100 
print(below_zhang_tgc, above_zhang_tgc, tgc_perc_outside_zhang) 
print('*********************************') 
 

inverse_tgc_outside_z_2 = 122 - tgc_outside_zhang_2 
tgc_perc_outside_zhang_2 = (tgc_outside_zhang_2/len(tgc)) * 100 
tgc_perc_inverse = (inverse_tgc_outside_z_2/len(tgc)) * 100 
print('We have ' + str(inverse_tgc_outside_z_2) + ' isolates inside the range 1-4, which 
corresponds to ' + str(tgc_perc_inverse) + '% of our isolates. Zhang had 100% isolates in this 
range.') 
 
tgc_below_zhang_2 = np.sum(tgc<1) 
tgc_above_zhang_2 = np.sum(tgc>4) 
tgc_below_zhang_3 = np.sum(tgc<4) 
 
tgc_perc_below_zhang = (tgc_below_zhang_2/len(tgc)) * 100 
tgc_perc_above_zhang = (tgc_above_zhang_2/len(tgc)) * 100 
 
print('There were ' + str(tgc_perc_below_zhang) + '% below and ' + str(tgc_perc_above_zhang) + 
'% above the 1-4 range in our study') 
print('*********************************') 
tgc_counts = pd.Series(tgc).value_counts() 
tgc_percs = (tgc_counts/122) * 100 
print(tgc_counts, tgc_percs) 
 



 

 465 

print('There were ' + str(np.sum(tgc>2)) + ' isolates above MIC 2 for tigecycline in our study') 
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Time Kill Code 

# The following was used to process the raw counts files obtained from the experiments and 
produce growth curves 

Process raw tk data and graph initial curves 

import pandas as pd 
import numpy as np 
import os 
import re 
from IPython.display import display 
import matplotlib.pyplot as plt 
import shutil 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
 
def setup_bmd(bmd_path): 
    bmd = pd.read_excel(bmd_path) 
    bmd['LN'] = bmd['LN'].astype(str) 
    # print(bmd.shape) 
    bmd = bmd\ 
        .drop(bmd.loc[(bmd['LN'].isna())|(bmd['LN'].str.contains(r'[a-zA-Z]', na=False))].index)\ 
        .set_index('LN')\ 
        .fillna('UNK') 
    # print(bmd.shape) 
    return bmd 
 
def find_and_open_file_to_process(file_name): 
    file_to_process = process_folder_path 
    if not re.search(r'[.](?:csv|xlsx?$)', file_name): 
        raise ValueError('Please either enter the file extension (.csv, .xls, .xlsx).') 
 
    if not file_name in os.listdir(r'Process_Folder'): 
        if file_name in os.listdir(r'Processed_Raw_Data'): 
            overwrite = input( 
            ''' 
            Are you sure you want to process this file again? All outputs generated by this process will 
be overwritten? (Y/N) 
            ''' 
            ) 
            if not re.search(r'^y(?:es)?$', overwrite, flags=re.I): 
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                sys.exit( 
                ''' 
                Script ending now. 
                ''' 
                ) 
            else: 
                file_to_process = processed_raw_data_folder_path 
 
        else: 
            raise FileNotFoundError('Please add {} to Process_Folder'.format(file_name)) 
 
    tk_path = r'{}/{}'.format(file_to_process, file_name) 
 
    if re.search(r'[.]csv$', tk_path): 
        tk = pd.read_csv(tk_path) 
    elif re.search(r'[.]xlsx?$', tk_path): 
        tk = pd.read_excel(tk_path) 
 
    return tk 
 
def add_concentrations(df): 
    drug_conc_map = { 
        'GC':'GC', 
        'M':'M16', 
        'F':'F32', 
        'PT':'PT64', 
        'PL':'PL4', 
        'V':'DMSO30', 
        'AZ':'AZ32', 
        'AV':'AV32', 
        'A':'A4', 
        'MA':'M16A4', 
        'PTA':'PT64A4', 
        'FA':'F32A4', 
        'MPL':'M16PL4', 
        'PTPL':'PT64PL4', 
        'FPL':'F32PL4' 
    } 
#     display(df) 
     
    df.loc[:, 'Condition'] = df['Plate ID'] 
     
    for drug, drug_conc in drug_conc_map.items(): 
        df['Condition'] = df['Condition'].str.replace(r'(\d+)({})(#.+)'.format(drug), 
r'\1{}'.format(drug_conc), regex = True) 



 

 468 

         
#     display(df) 
    return df 
 
def set_floor_ceiling_values(data): 
    if data < 100: 
        return 100 
    elif data >= 10000000000: 
        return 10000000000 
    else: 
        return data 
 
def format_tk_data(df, debug = False): 
    # Small formatting 
    df['Plate ID'] = df['Plate ID'].str.replace(r'$', r'#') 
    df = df.loc[df['Flag'] == 'X'] 
#     df.loc[:, 'Condition'] = df['Plate ID'].str.replace(r'#T\d+#\d', '') 
    df = add_concentrations(df) 
 
    # This helps to find duplicate values when the code errors. 
#     display(df.groupby(['Condition', 'Time_Point'])['Final_Total_Count'].agg(['nunique', 'count'])) 
     
    # Pivot the data into long format on the time points and generate the log columns 
    if debug == True: 
        test = df.groupby('Plate ID')['Time_Point'].agg('count') 
        display(test[test > 1]) 
#     display(df) 
    df_pivot = df.pivot(index = 'Condition', columns = 'Time_Point', values = 'Final_Total_Count') 
    for col in df_pivot.columns: 
        df_pivot[col] = df_pivot[col].apply(set_floor_ceiling_values) 
    df_pivot = df_pivot.rename( 
        columns = dict( 
            zip( 
                df_pivot.columns, ['T{}'.format(col) for col in df_pivot.columns] 
            ) 
        ) 
    ) 
    log_cols = ['Log_{}'.format(col) for col in df_pivot.columns] 
    for time, log_time in zip(df_pivot.columns, log_cols): 
        df_pivot.loc[:, log_time] = df_pivot[time].apply(np.log10) 
    df_pivot.columns = [re.sub(r'[.]0', '', col) for col in df_pivot.columns] 
    df_pivot.columns.name = None 
#     print(df_pivot.columns) 
    df_pivot = df_pivot.join(df_pivot.apply(kill_analysis, axis=1), how='inner') 
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    return df_pivot.reset_index() 
 
def kill_analysis(row): 
    """ 
    This function is used to create 3 new columns in the desired dataframe, the column names will 
be passed during the variable assignment. The first 
    is the Earliest_cidal column, which returns the first time point in which each condition reaches 
cidality if at all, otherwise it returns Nan. 
    The second column is Kill_24, which returns either Bactericidal, Bacteriostatic, or Regrowth 
depending on the interpretation of the difference of  
    the 24 hour time point and the inital time point. It is applied to the _log columns to facilitate an 
easier calculation. If the 24hr column is 
    <= Time_0 - 3, Bactericidal, elif <= Time_0, Bacteriostatic, else, Regrowth. If there are no 
recorded measurements, Nan is returned. The same 
    process is applied to the Kill_48 column. 
    """ 
     
    row = row.loc['Log_T0':'Log_T24']  
    initial = row.loc['Log_T0'] 
 
    if not np.isnan(initial): 
        cidal_bkpt = initial - 3 
        cidal_times = row.loc[row <= cidal_bkpt].index 
    else: 
        cidal_bkpt = np.nan 
        cidal_times = [] 
 
    # Calculate Minimum time necessary to reach cidality 
    if len(cidal_times) > 0: 
        min_cidal_time = re.search(r'\d+', cidal_times[0]).group() + '_hr' 
    else: 
        min_cidal_time = np.nan 
         
    # Report kill status at 24 hr 
    cidal_24 = row.loc['Log_T24'] 
    if not np.isnan([cidal_bkpt, cidal_24]).any(): 
        if cidal_24 <= cidal_bkpt: 
            interp_24 = 'Bactericidal' 
        elif cidal_24 <= initial: 
            interp_24 = 'Bacteriostatic' 
        else: 
            interp_24 = 'Regrowth' 
    else: 
        interp_24 = np.nan 
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    # Report kill status at 48 hr 
#     cidal_48 = row.loc['Log_T48'] 
#     if not np.isnan([cidal_bkpt, cidal_48]).any(): 
#         if cidal_48 <= cidal_bkpt: 
#             interp_48 = 'Bactericidal' 
#         elif cidal_48 <= initial: 
#             interp_48 = 'Bacteriostatic' 
#         else: 
#             interp_48 = 'Regrowth' 
#     else: 
#         interp_48 = np.nan 
 
    return pd.Series({'Earliest_cidal': min_cidal_time, 'Kill_24':interp_24}).fillna('Not Cidal') 
 
def split_plate_id(df): 
    # Some of Brandon's data has the phenotype in the front, so this will grab that if it's there, but 
otherwise will not look for letters. 
    # I have labeled starting with the isolate number, which should be extracted first 
    # Next it looks for at least one letter but more if they're there followed by at least one digit but 
multiple if they are there. It can also handle decimal places 
    # It does this twice to capture all of the combination flask data separately as well. 
 
    extraction_pattern = r'([a-zA-Z]+)?(\d+)((?:[a-zA-Z]+?\d+(?:[.]\d+)?)|(?:GC))([a-zA-
Z]+?\d+(?:[.]\d+)?)?' 
    tk_plate_id_extraction = df['Condition']\ 
                            .str\ 
                            .extract(extraction_pattern) 
    tk_plate_id_extraction = tk_plate_id_extraction.dropna(axis=1, how = 'all') # Code will always 
look for 4 capture groups and return Nan if not extracted 
    old_extract_names = tk_plate_id_extraction.columns 
     
#     print(tk_plate_id_extraction) 
     
    if tk_plate_id_extraction.shape[1] > 4: 
        raise ValueError( 
        ''' 
        The formatting of the Plate ID may be incorrect. The extraction should pull a maximum of 4 
groups from any ID, but at least {} groups were pulled from 
        one of the IDs. The format should be the standard isolate # followed by a drug abbreviation 
and concentration tested. For combination flasks, there  
        should be two groups of drug abbreviations and concentrations. Optionally, the ID may being 
with a group of letters (ex: the phenotype). Previous 
        examples would be 22M16PB1 or KPC22M16PB1. Please ensure all Plate IDs follow this 
format and try again. 
        '''.format(tk_plate_id_extraction.shape[1]) 
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        ) 
 
    elif ((tk_plate_id_extraction.iloc[:, 0].str.isalpha() == True).all()) and 
(tk_plate_id_extraction.shape[1] == 4): 
        new_col_names = ['Phenotype', 'Isolate No', 'Drug Group 1', 'Drug Group 2'] 
        tk_plate_id_extraction = tk_plate_id_extraction.rename(columns = 
dict(zip(old_extract_names, new_col_names))) 
 
    elif ((tk_plate_id_extraction.iloc[:, 0].str.isdigit() == True).all()) and 
(tk_plate_id_extraction.shape[1] == 3): 
        new_col_names = ['Isolate No', 'Drug Group 1', 'Drug Group 2'] 
        tk_plate_id_extraction = tk_plate_id_extraction.rename(columns = 
dict(zip(old_extract_names, new_col_names))) 
 
    elif (((tk_plate_id_extraction.iloc[:, 0].str.isdigit() == True).all()) and 
(tk_plate_id_extraction.shape[1] == 2)) or (((tk_plate_id_extraction.iloc[:, 0].str.isalpha() == 
True).all()) and (tk_plate_id_extraction.shape[1] == 3)): 
        is_comb_present = input('Does this experiment contain combination flasks? (Y/N)') 
        if re.search(r'^y(?:es)?$', is_comb_present, flags=re.I): 
            raise ValueError( 
            ''' 
            If an experiment contains any combination flasks, there should be at least 3 groups 
captured from the Plate ID: the isolate number and 2 sets of 
            drug abbreviations followed by a concentration, or, in the case of a phenotype being 
present, there should be 4 capture groups. These conditions 
            were not met. Please check the format and try again. 
            ''' 
            ) 
 
        if tk_plate_id_extraction.shape[1] == 3: 
            new_col_names = ['Phenotype', 'Isolate No', 'Drug Group 1'] 
            tk_plate_id_extraction = tk_plate_id_extraction.rename(columns = 
dict(zip(old_extract_names, new_col_names))) 
 
        elif tk_plate_id_extraction.shape[1] == 2: 
            new_col_names = ['Isolate No', 'Drug Group 1'] 
            tk_plate_id_extraction = tk_plate_id_extraction.rename(columns = 
dict(zip(old_extract_names, new_col_names))) 
 
    else: 
        raise ValueError( 
        ''' 
        The formatting of Plate ID isn't correct. Be sure that it follows one of the following patterns: 
KPC22M16PB1, KPC22M16, 22M16PB1, or 22M16. 
        ''' 
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        ) 
     
    tk_plate_id_extraction = tk_plate_id_extraction.fillna('') 
     
    if 'Drug Group 2' in tk_plate_id_extraction.columns: 
        tk_plate_id_extraction.loc[:, 'All Drug Groups'] = tk_plate_id_extraction['Drug Group 1'] + 
tk_plate_id_extraction['Drug Group 2'] 
    else: 
        tk_plate_id_extraction = tk_plate_id_extraction.rename(columns={'Drug Group 1':'All Drug 
Groups'}) 
 
    return df.join(tk_plate_id_extraction, how = 'inner') 
 
def tk_leg_format(ax): 
    """ 
    This function will take in the current ax as the only argument. It calls the ax.legend method to 
create a legend using the values and keys, respectively, of  
    the by_label dictionary created. The purpose of this function is two-fold. Without formatting, the 
legend produces a label for each condition tested for every 
    condition tested due to the plotting strategy in the for loop. The number of times each condition 
is present is important and should be maintained. Therefore, 
    each unique condition is stored in the key variable, and the number of occurances in the count 
variable. These are zipped into the n_counts dict and a formatted 
    string consisting of the n = count is added to the original labels variable to maintain the num of 
conditions. This new label is then passed to the legend method. 
     
    The new_labels variable is used as the key to the by_label dictionary because I only need one 
label for each condition. Dictionaries may only have a single  
    occurance of any key; therefore, the extra labels are "removed". Only one "handle" is retained 
as a value for each key, but this is fine since each condition 
    is plotted with the same format each time. 
    """ 
    handles, labels = ax.get_legend_handles_labels() 
 
    key, count = np.unique(labels, return_counts=True) 
    n_counts = dict(zip(key, count)) 
    new_labels = [item + ' (n = {})'.format(n_counts[k]) for item in labels for k in n_counts.keys() if 
item == k]     
     
    by_label = dict(zip(new_labels, handles)) 
     
    ax.legend(by_label.values(), by_label.keys()) 
    ax.legend(  
        handles,  
        new_labels,  
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        title = 'Timekill Conditions', 
        fancybox = True,  
        frameon=True,  
        edgecolor = 'black', 
        facecolor = 'lavender', 
        fontsize = 'medium', 
        bbox_to_anchor = (1, 1.01), 
        loc = 'upper left' 
    ) 
     
def graph_tk_data(df, bmd): 
    markers = ['.', 'v', '^', '<', '>', '8', 's', 'p', 'P', '*', 'H', 'D', 'X', '.', 'v', '^', '<', '>'] 
     
    graph_folder = re.sub(r'[.](?:csv|xlsx?)$', '', file_name) 
    if not os.path.exists('{}/{}'.format(timekill_graphs_folder_path, graph_folder)): 
        os.mkdir('{}/{}'.format(timekill_graphs_folder_path, graph_folder)) 
                  
    for iso in df['Isolate No'].unique(): 
        fig, axes = plt.subplots(figsize = (15, 10)) 
 
        subset = df.loc[df['Isolate No'] == iso].reset_index() 
        log_cols = [col for col in df.columns if re.search('Log', col) if not re.search('48', col)] 
        growth_curves = subset[log_cols].interpolate(axis=1) 
        growth_curves = growth_curves.fillna(0) 
         
        conditions = subset['All Drug Groups'] 
 
        num_markers = len(conditions.values) + 1 
        marker_dict = dict(zip(list(conditions.values), markers[:num_markers])) 
         
        # need to implement code to allow for graphing 48 hour time points. Will need to make an x 
axis break to comfortably fit it 
        # matplotlib code sample shows how to do this at 
https://matplotlib.org/3.1.0/gallery/subplots_axes_and_figures/broken_axis.html 
         
        x_vals = [int(re.search(r'\d+', col).group()) for col in log_cols if col != 'Log_T48'] # all graphs 
have the same x axes 
 
        num_of_colors = growth_curves.shape[0] 
        colors = plt.cm.gist_rainbow(np.linspace(0, 1, num_of_colors)) 
 
        # y_vals are going to be each row of the dataframe contained in each key of the dictionary 
        # condition is held in a separate dataframe also with the LN as a key 
        # write each row of the dataframe to the graph making the lines a bit transparent to see them 
and coloring them based on their condition tested 
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        collect_y_max = [] 
        for row in growth_curves.index: 
            y_vals = growth_curves.loc[row, :].to_numpy() 
            condition = conditions.iloc[row] 
            axes.plot(x_vals, y_vals, c = colors[row], marker = marker_dict[condition], markersize = 
16, alpha=0.5, linewidth=4, label=condition) 
            collect_y_max.append(max(y_vals)) 
 
        # Set remaining chart attributes 
        axes.set_xlim(0, 25) 
        axes.set_xticks(x_vals) 
         
        axes.set_ylim(0, max(collect_y_max) + 1) 
 
        plt.rc('ytick', labelsize=12) 
        plt.rc('xtick', labelsize=12) 
         
        axes_title = 'Isolate {}: {}, {}, A: {}, PL: {}, M: {}, F: {}, PT: {}, AZT: {}'.format( 
                                                                                        iso, 
                                                                                        bmd.loc[iso, 'Bug'], 
                                                                                        bmd.loc[iso, 'MBL Phenotypic'], 
                                                                                        bmd.loc[iso, 'Amikacin'], 
                                                                                        bmd.loc[iso, 'PLZ'], 
                                                                                        bmd.loc[iso, 'Meropenem'], 
                                                                                        bmd.loc[iso, 'Cefepime'], 
                                                                                        bmd.loc[iso, r'Pip/Tazo'], 
                                                                                        bmd.loc[iso, 'Aztreonam'], 
#                                                                                         bmd.loc[iso, r'AZT/AVI'] 
                                                                                    ) 
#         axes.set_title('Isolate {}'.format(iso), fontsize = 20, fontweight = 'bold') 
        axes.set_title(axes_title, fontsize = 20, fontweight = 'bold') 
        axes.set_xlabel('Time (hr)', fontsize=16, fontweight='bold') 
        axes.set_ylabel('Bacterial Concentration (Log CFU/mL)', fontsize=16, fontweight='bold') 
 
        axes.grid(b=True, which = 'major', axis = 'both') 
        axes.set_facecolor('lavender') 
 
        tk_leg_format(axes) 
 
        plt.savefig(r'{}/{}/Isolate_{}.tiff'.format(timekill_graphs_folder_path, graph_folder, iso), 
facecolor = 'white', bbox_inches = 'tight') 
        plt.show() 
        plt.clf() 
         
home_folder_path = os.getcwd() 
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process_folder_path = r'{}/Process_Folder'.format(home_folder_path) 
investigate_folder_path = r'{}/Investigate_Folder'.format(home_folder_path) 
extracted_timekill_data_folder_path = r'{}/Extracted_Timekill_Data'.format(home_folder_path) 
processed_raw_data_folder_path = r'{}/Processed_Raw_Data'.format(home_folder_path) 
timekill_graphs_folder_path = r'{}/Timekill_Graphs'.format(home_folder_path) 
bmd_path = r'{}/BMD_w_pheno.xlsx'.format(home_folder_path) 
bmd = setup_bmd(bmd_path) 
 
file_name = input('Please enter file name. (ex: TK_1-1-21.csv)') 
 
tk = find_and_open_file_to_process(file_name) 
# Format 
tk = format_tk_data(tk) 
# display(tk) 
tk = split_plate_id(tk) 
display(tk) 
graph_tk_data(tk, bmd) 
 
# Write out data and manage file locations following analysis 
tk_out_path = r'{}/Extracted_data_from_{}'.format(extracted_timekill_data_folder_path, file_name) 
investigate_out_path = r'{}/Investigate_for_{}'.format(investigate_folder_path, file_name) 
raw_data_new_folder_path = r'{}/{}'.format(processed_raw_data_folder_path, file_name) 
 
if file_name in os.listdir('Process_Folder'): 
    shutil.move('{}/{}'.format(process_folder_path, file_name), raw_data_new_folder_path) 
     
tk.to_excel(tk_out_path, index=False) 
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Setup for Combining tk data and stats 

# This is the beginning of the aggregated analysis script 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
import os 
import re 
import glob 
from IPython.display import display 
import itertools 
import scipy 
import statsmodels.api as sm 
from statsmodels.formula.api import ols 
from statsmodels.stats.anova import AnovaRM 
from statsmodels.stats.multicomp import pairwise_tukeyhsd 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
 
def setup_bmd(bmd_path): 
    bmd = pd.read_excel(bmd_path) 
    bmd['LN'] = bmd['LN'].astype(str) 
    # print(bmd.shape) 
    bmd = bmd\ 
        .drop(bmd.loc[(bmd['LN'].isna())|(bmd['LN'].str.contains(r'[a-zA-Z]', na=False))].index)\ 
        .set_index('LN')\ 
        .fillna('UNK') 
    # print(bmd.shape) 
    return bmd 
 
def fetch_date(file): 
    date = re.search(r'TK_(\d{1,2}-\d{1,2}-\d{1,2})_.+\.xlsx', file).group(1) 
    return date 
 

def tk_leg_format(ax, combined_label_count = None, combined = False): 
    """ 
    This function will take in the current ax as the only argument. It calls the ax.legend method to 
create a legend using the values and keys, respectively, of  
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    the by_label dictionary created. The purpose of this function is two-fold. Without formatting, the 
legend produces a label for each condition tested for every 
    condition tested due to the plotting strategy in the for loop. The number of times each condition 
is present is important and should be maintained. Therefore, 
    each unique condition is stored in the key variable, and the number of occurances in the count 
variable. These are zipped into the n_counts dict and a formatted 
    string consisting of the n = count is added to the original labels variable to maintain the num of 
conditions. This new label is then passed to the legend method. 
     
    The new_labels variable is used as the key to the by_label dictionary because I only need one 
label for each condition. Dictionaries may only have a single  
    occurance of any key; therefore, the extra labels are "removed". Only one "handle" is retained 
as a value for each key, but this is fine since each condition 
    is plotted with the same format each time. 
    """ 
    handles, labels = ax.get_legend_handles_labels() 
    if combined == False: 
        new_labels = [item + ' (n = {})'.format(combined_label_count[item]) for item in labels] 
    else: 
        key, count = np.unique(labels, return_counts=True) 
        n_counts = dict(zip(key, count)) 
        new_labels = [item + ' (n = {})'.format(n_counts[k]) for item in labels for k in n_counts.keys() 
if item == k]     
     
    by_label = dict(zip(new_labels, handles)) 
     
#     ax.legend(by_label.values(), by_label.keys()) 
    legend_1 = ax.legend(  
        handles,  
        new_labels,  
        title = 'Timekill Conditions', 
        fancybox = True,  
        frameon=True,  
        edgecolor = 'black', 
        facecolor = 'lavender', 
        fontsize = 'medium', 
        bbox_to_anchor = (1, 1.01), 
        loc = 'upper left' 
    ) 
     
    plt.gca().add_artist(legend_1) 
#     plt.gca().add_artist(legend_2) 
     
# def graph_tk_data_by_condition(conditions_list, all_tk): 
#     for condition in conditions_list: 
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# #         print(condition) 
#         markers = ['.', 'v', '^', '<', '>', '8', 's', 'p', 'P', '*', 'H', 'D', 'X', '.', 'v', '^', '<', '>'] 
#         fig, axes = plt.subplots(figsize = (15, 10)) 
 
#         subset = all_tk.loc[all_tk['Condition'] == condition].reset_index(drop = True) 
#         log_cols = [col for col in df.columns if re.search('Log', col) if not re.search('48', col)] 
#         growth_curves = subset[log_cols].interpolate(axis=1).reset_index(drop = True) 
#         growth_curves = growth_curves.fillna(0) 
         
# #         display(growth_curves) 
         
#         num_markers = len(subset['DATE'].values) + 1 
#         marker_dict = dict(zip(list(subset['DATE'].values), markers[:num_markers])) 
 
#         x_vals = [int(re.search(r'\d+', col).group()) for col in log_cols if col != 'Log_T48'] # all graphs 
have the same x axes 
 
#         num_of_colors = growth_curves.shape[0] 
# #         print(num_of_colors) 
#         colors = plt.cm.gist_rainbow(np.linspace(0, 1, num_of_colors)) 
 
#         collect_y_max = [] 
#         for row in growth_curves.index: 
# #             print('row: {}'.format(row)) 
#             y_vals = growth_curves.loc[row, :].to_numpy() 
#             date_for_marker_dict = subset.loc[row, 'DATE'] 
# #             print('date_for_marker_dict: {}'.format(date_for_marker_dict)) 
#             plot_label = '{}_{}'.format(date_for_marker_dict, condition) 
# #             print('plot_label: {}'.format(plot_label)) 
# #             print(marker_dict[date_for_marker_dict]) 
# #             print('x vals: {}'.format(x_vals)) 
# #             print('y vals: {}'.format(y_vals)) 
# #             print(row) 
# #             print('colors: {}'.format(colors[row])) 
#             axes.plot(x_vals, y_vals, c = colors[row], marker = marker_dict[date_for_marker_dict], 
markersize = 16, alpha=0.5, linewidth=4, label=plot_label) 
#             collect_y_max.append(max(y_vals)) 
 
#         # Set remaining chart attributes 
#         axes.set_xlim(0, 25) 
#         axes.set_xticks(x_vals) 
 
#         axes.set_ylim(0, max(collect_y_max) + 1) 
 
#         plt.rc('ytick', labelsize=12) 
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#         plt.rc('xtick', labelsize=12) 
 
#         axes.set_title('Isolate {}'.format(condition), fontsize = 20, fontweight = 'bold') 
#         axes.set_xlabel('Time (hr)', fontsize=16, fontweight='bold') 
#         axes.set_ylabel('Bacterial Concentration (Log CFU/mL)', fontsize=16, fontweight='bold') 
 
#         axes.grid(b=True, which = 'major', axis = 'both') 
#         axes.set_facecolor('lavender') 
 
#         tk_leg_format(axes) 
 
# #         if save == True: 
# #             plt.savefig(r'{}/{}/Isolate_{}.tiff'.format(), bbox_inches = 'tight') 
#         plt.show() 
#         plt.clf() 
 
def graph_tk_data_by_isolate(df, combined_label_count, bmd, save = True, mics = False): 
    for isolate in df['Isolate No'].unique(): 
#         print(condition) 
        markers = ['.', 'v', '^', '<', '>', '8', 's', 'p', 'P', '*', 'H', 'D', 'X', '.', 'v', '^', '<', '>'] 
        fig, axes = plt.subplots(figsize = (15, 10)) 
 
        subset = df.loc[df['Isolate No'] == isolate].reset_index(drop = True) 
#         log_cols = [col for col in df.columns if re.search('Log', col) if not re.search('48', col) and not 
re.search('std', col)] 
        log_cols = ['Log_T0', 'Log_T4', 'Log_T8', 'Log_T24'] 
        growth_curves = subset[log_cols].interpolate(axis=1).reset_index(drop = True) 
        growth_curves = growth_curves.fillna(0) 
         
#         display(growth_curves) 
         
        num_markers = len(subset['Condition'].values) + 1 
        marker_dict = dict(zip(list(subset['Condition'].values), markers[:num_markers])) 
 
        x_vals = [int(re.search(r'\d+', col).group()) for col in log_cols if col != 'Log_T48'] # all graphs 
have the same x axes 
        num_of_colors = growth_curves.shape[0] 
#         print(num_of_colors) 
        colors = plt.cm.gist_rainbow(np.linspace(0, 1, num_of_colors)) 
 
        collect_y_max = [] 
        for row in growth_curves.index: 
#             print('row: {}'.format(row)) 
            y_vals = growth_curves.loc[row, :].to_numpy() 
            condition_for_marker_dict = subset.loc[row, 'Condition'] 
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#             print('date_for_marker_dict: {}'.format(date_for_marker_dict)) 
#             plot_label = '{}_{}'.format(condition_for_marker_dict, condition) 
#             print('plot_label: {}'.format(plot_label)) 
#             print(marker_dict[date_for_marker_dict]) 
#             print('x vals: {}'.format(x_vals)) 
#             print('y vals: {}'.format(y_vals)) 
#             print(row) 
#             print('colors: {}'.format(colors[row])) 
            axes.plot(x_vals, y_vals, c = colors[row], marker = 
marker_dict[condition_for_marker_dict], markersize = 16, alpha=0.5, linewidth=4, 
label=condition_for_marker_dict) 
            collect_y_max.append(max(y_vals)) 
 
        # Set remaining chart attributes 
        axes.set_xlim(0, 25) 
        axes.set_xticks(x_vals) 
 
        axes.set_ylim(0, max(collect_y_max) + 1) 
 
        plt.rc('ytick', labelsize=12) 
        plt.rc('xtick', labelsize=12) 
        axes_title = 'Isolate {}: {}, {}, A: {}, PL: {}, M: {}, F: {}, PT: {}, AZT: {}'.format( 
                                                                                        isolate, 
                                                                                        bmd.loc[isolate, 'Bug'], 
                                                                                        bmd.loc[isolate, 'MBL Phenotypic'], 
                                                                                        bmd.loc[isolate, 'Amikacin'], 
                                                                                        bmd.loc[isolate, 'PLZ'], 
                                                                                        bmd.loc[isolate, 'Meropenem'], 
                                                                                        bmd.loc[isolate, 'Cefepime'], 
                                                                                        bmd.loc[isolate, r'Pip/Tazo'], 
                                                                                        bmd.loc[isolate, 'Aztreonam'] 
                                                                                    ) 
        if mics == False: 
            axes.set_title('Isolate {}'.format(isolate), fontsize = 20, fontweight = 'bold') 
        else: 
            axes.set_title(axes_title, fontsize = 20, fontweight = 'bold') 
             
        axes.set_xlabel('Time (hr)', fontsize=16, fontweight='bold') 
        axes.set_ylabel('Bacterial Concentration (Log CFU/mL)', fontsize=16, fontweight='bold') 
 
        axes.grid(b=True, which = 'major', axis = 'both') 
        axes.set_facecolor('lavender') 
 
        tk_leg_format(axes, combined_label_count) 
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        if save == True: 
            graph_folder_path = 
r'/Users/justinclark/Desktop/Timekill_tool/Timekill_Graphs/Combined_Graphs/Graphs_by_isolate' 
            plt.savefig(r'{}/Isolate_{}.tiff'.format(graph_folder_path, isolate), facecolor = 'white', 
bbox_inches = 'tight') 
        plt.show() 
        plt.clf() 
         
 
def format_tukey_out(df, time_point, conditions): 
     
    # first ensure conditions is a list 
    if not isinstance(conditions, list): # This will only occur if a singe string is passed 
        conditions = [conditions] 
     
    # need to grab the appropriate time and grab the conditions desired 
    condition_1 = df['group1_time'] == time_point 
    condition_2 = df['group2_time'] == time_point 
    condition_3 = df.isin(conditions).any(axis = 1) 
     
    out_df = df.loc[condition_1 & condition_2 & condition_3] 
     
    return out_df 
 
def format_condition_tukey(df, to_be_condition2): 
    collect_rows = [] 
    for row in df.itertuples(): 
        idx, group1, group2, meandiff, p, lower, upper, reject, group1_time, condition_1, 
group2_time, condition_2 = row 
        # The default behavior of statsmodels is to make the meandiff sign correspond to what 
direction the second mean is from the first 
        # i.e. if second > first, meandiff will be positive 
        meandiff, lower, upper = [val * -1 for val in [meandiff, upper, lower]]     
        if not condition_2 == to_be_condition2: 
            assert condition_1 == to_be_condition2, 'This df contains comparisons between 
conditions other than {}.'.format(to_be_condition2) 
            # Flip numeric values 
            meandiff *= -1 
            new_lower = upper * -1 
            new_upper = lower * -1 
             
            # Collect outputs / To flip the string values, just put them in the new order 
            col_data = [group2, group1, meandiff, p, new_lower, new_upper, reject, group2_time, 
condition_2, group1_time, condition_1] 
            out_data = {col_name:data for col_name, data in zip(df.columns, col_data)} 
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            out_df = pd.DataFrame(index = [idx], data = out_data) 
            collect_rows.append(out_df) 
         
        else: # If GC is already in the group2 position, leave everything the same 
            col_data = [group1, group2, meandiff, p, lower, upper, reject, group1_time, condition_1, 
group2_time, condition_2] 
            out_data = {col_name:data for col_name, data in zip(df.columns, col_data)} 
            out_df = pd.DataFrame(index = [idx], data = out_data) 
            collect_rows.append(out_df) 
             
    return pd.concat(collect_rows, sort = False) # combine all rows into a single df 
 
def combine_meandiff_ci(x): 
    return '{} [{}, {}]'.format(round(x['meandiff'], 2), round(x['lower'], 2), round(x['upper'], 2)) 
  



 

 483 

 

Combine tk data 

home_folder_path = os.getcwd() 
bmd_path = r'/Users/justinclark/Desktop/Timekill_tool/BMD_w_pheno.xlsx' 
bmd = setup_bmd(bmd_path) 
time_kill_files = glob.glob('*.xlsx') 
file_filename_dict = {} 
for file in time_kill_files: 
    path = '{}/{}'.format(home_folder_path, file) 
    df = pd.read_excel(path) 
     
    date = fetch_date(file) 
#     print(file) 
#     print(date) 
    df.loc[:, 'DATE'] = date 
    file_filename_dict[file] = df 
     
all_tk = pd.concat(file_filename_dict.values(), sort = False) 
all_tk = all_tk.reset_index(drop = True) 
all_tk['DATE'] = pd.to_datetime(all_tk['DATE']).dt.date 
all_tk['Isolate No'] = all_tk['Isolate No'].astype(str) 
 
# Desired Conditions to view 
isolates_to_view = all_tk['Isolate No'].unique() 
 
# Need to exclude the DMSO PT runs 
dmso_exclude = [ 
    ('134PT64', pd.to_datetime('07-12-2021').date()), 
    ('134PT64A4', pd.to_datetime('07-12-2021').date()), 
    ('134PT64PL4', pd.to_datetime('07-12-2021').date()), 
    ('411PT64', pd.to_datetime('07-12-2021').date()), 
    ('411PT64A4', pd.to_datetime('07-12-2021').date()), 
    ('411PT64PL4', pd.to_datetime('07-12-2021').date()) 
] 
 
erroneous_exclude = [ 
    ('209GC', pd.to_datetime('07-26-21').date()), 
    ('209M16', pd.to_datetime('07-26-21').date()), 
    ('209PT64', pd.to_datetime('07-26-21').date()), 
    ('209F32', pd.to_datetime('07-26-21').date()), 
    ('209A4', pd.to_datetime('07-26-21').date()), 
    ('209PL4', pd.to_datetime('07-26-21').date()), 
    ('209M16A4', pd.to_datetime('07-26-21').date()), 
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    ('209PT64A4', pd.to_datetime('07-26-21').date()), 
    ('209F32A4', pd.to_datetime('07-26-21').date()), 
    ('209M16PL4', pd.to_datetime('07-26-21').date()), 
    ('209PT64PL4', pd.to_datetime('07-26-21').date()), 
    ('209F32PL4', pd.to_datetime('07-26-21').date()), 
] 
 
exclude = dmso_exclude + erroneous_exclude 
 
all_tk = all_tk.loc[~all_tk.set_index(['Condition', 'DATE']).index.isin(exclude)] 
 
# Inpute missing T0 values as the average of the GC of that same isolate 
gc_averages = all_tk.loc[all_tk['All Drug Groups'] == 'GC'].groupby('Isolate No')['T0'].agg('mean') 
 
condition_1 = all_tk['T0'] <= 100 
condition_2 = all_tk['T0'].isna() 
 
for iso_num in all_tk['Isolate No'].unique(): 
    condition_3 = all_tk['Isolate No'] == iso_num 
    all_tk.loc[(condition_1 | condition_2) & condition_3, 'T0'] = gc_averages.loc[iso_num] 
     
# Fix the Log_T0 column for when there were missing values or low values for the initial inoculum 
measurement 
all_tk['Log_T0'] = all_tk['T0'].apply(np.log10) 
 
# Bring in phenotypic, species, and relevant MIC data from bmd for reference 
bmd_cols = [ 
    'LN', 
    'Bug', 
    'MBL Phenotypic', 
    'Amikacin', 
    'PLZ', 
    'Meropenem', 
    'Pip/Tazo', 
    'Cefepime', 
    'Aztreonam' 
] 
all_tk = all_tk\ 
    .merge(bmd.reset_index()[bmd_cols], how = 'inner', left_on = 'Isolate No', right_on = 'LN')\ 
    .drop('LN', axis = 1) 
 
# Sorted results by isolate without taking average for overall view 
all_tk = all_tk\ 
    .loc[~all_tk['Condition'].str.contains('DMSO')]\ 
    .sort_values(['Isolate No', 'Condition', 'DATE']) 
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print(all_tk.shape) 
gc_t0 = all_tk.loc[all_tk['All Drug Groups'] == 'GC', ['Isolate No', 'DATE', 
'T0']].rename(columns={'T0':'GC_T0'}) 
gc_t0.loc[:, 'Log_GC_T0'] = np.log10(gc_t0['GC_T0']) 
all_tk = all_tk.merge(gc_t0, how = 'left', on = ['Isolate No', 'DATE']) 
print(all_tk.shape) 
 
# The PL combos are spread out heavily at T0, but I didn't use GCs on the AZ/AV experiments 
because I already had multiple replications of this 
# This will take the max value between these numbers (will pull the T0 more tightly together) 
all_tk.loc[:, 'Log_ADJ_T0'] = all_tk[['Log_T0', 'Log_GC_T0']].max(axis=1) 
 
# Generate delta columns to show the change in log CFU/mL for each (averaged) time point 
for time_point in ['T4', 'T8', 'T24']: 
    log_time_pt = 'Log_{}'.format(time_point) 
    delta_time_pt = 'Delta_{}'.format(time_point) 
    all_tk.loc[:, delta_time_pt] = all_tk[log_time_pt] - all_tk['Log_T0'] 
     
for time_point in ['T4', 'T8', 'T24']: 
    log_time_pt = 'Log_{}'.format(time_point) 
    delta_time_pt = 'Delta_GC_{}'.format(time_point) 
    all_tk.loc[:, delta_time_pt] = all_tk[log_time_pt] - all_tk['Log_GC_T0'] 
 
for time_point in ['T4', 'T8', 'T24']: 
    log_time_pt = 'Log_{}'.format(time_point) 
    delta_time_pt = 'Delta_ADJ_{}'.format(time_point) 
    all_tk.loc[:, delta_time_pt] = all_tk[log_time_pt] - all_tk['Log_ADJ_T0'] 
 
# Old Kill_24 and Earliest_Cidal are inaccurate for the PL combos because when they were 
created, all the data wasn't used.  
# Building these off of the Delta 24 variable would be best 
 
# Earliest_Cidal 
cidal_bool = all_tk[['Delta_ADJ_T4', 'Delta_ADJ_T8', 'Delta_ADJ_T24']] <= -3 
rows, columns = np.where(cidal_bool == True) 
earliest_cidal = pd.DataFrame(data = {'Rows':rows, 'Columns':columns}).drop_duplicates(subset 
= ['Rows']) 
earliest_cidal['Earliest_Cidal'] = earliest_cidal['Columns'].map({col_idx:colname for col_idx, 
colname in zip([0, 1, 2], cidal_bool.columns)}) 
earliest_cidal.set_index('Rows', inplace = True) 
# Use outer join to provide NaN when any row is not found in earliest_cidal then remap and only 
keep that column for output 
earliest_cidal = cidal_bool.join(earliest_cidal['Earliest_Cidal'], how = 'outer').fillna('Not 
Cidal')['Earliest_Cidal'] 
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# Kill_24 
cidal_condition = all_tk['Delta_ADJ_T24'] <= -3 
static_condition = (all_tk['Delta_ADJ_T24'] <= 0) & (all_tk['Delta_ADJ_T24'] > -3) 
regrowth_condition = all_tk['Delta_ADJ_T24'] > 0 
 
kill_24 = pd.DataFrame(data = {'Bactericidal':cidal_condition, 'Bacteriostatic':static_condition, 
'Regrowth':regrowth_condition}) 
for col in kill_24.columns: 
    kill_24[col] = kill_24[col].map({True:col, False:np.nan}) 
     
kill_24.loc[:, 'Kill_24'] = kill_24.apply(lambda x: x.dropna().iloc[0], axis = 1) 
 
all_tk.loc[:, 'Earliest_Cidal'] = earliest_cidal.values 
all_tk.loc[:, 'Kill_24'] = kill_24['Kill_24'].values 
 
all_tk = all_tk.drop('Earliest_cidal', axis = 1) 
 
combined_each_exp_path = r'{}/Combined_TK_data_by_exp.csv'.format(home_folder_path) 
all_tk.to_csv(combined_each_exp_path, index = False) 
 
# Get the mean and std of all the time points 
combined_tk = all_tk.loc[~all_tk['Condition'].str.contains('DMSO')]\ 
    .groupby('Condition')[['T0', 'T4', 'T8', 'T24']]\ 
    .agg([np.mean, np.std])\ 
    .reset_index()\ 
    .sort_values('Condition') 
 
new_cols = ['{}_{}'.format(time, stat) if time != 'Condition' else time for time, stat in 
combined_tk.columns] 
new_cols = [re.sub('_mean', '', col) for col in new_cols] 
combined_tk.columns = new_cols 
 
# Get the mean and std of all the log time points 
combined_tk_log = all_tk.loc[~all_tk['Condition'].str.contains('DMSO')]\ 
    .groupby('Condition')[['Log_T0', 'Log_ADJ_T0', 'Log_T4', 'Log_T8', 'Log_T24']]\ 
    .agg([np.mean, np.std])\ 
    .reset_index()\ 
    .sort_values('Condition') 
 
new_cols = ['{}_{}'.format(time, stat) if time != 'Condition' else time for time, stat in 
combined_tk_log.columns] 
new_cols = [re.sub('_mean', '', col) for col in new_cols] 
combined_tk_log.columns = new_cols 
 
# Get the mean and std of the Delta from T0 counts and merge to combined_tk 
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combined_tk_diffs = all_tk.loc[~all_tk['Condition'].str.contains('DMSO')]\ 
    .groupby('Condition')[['Delta_T4', 'Delta_T8', 'Delta_T24']]\ 
    .agg([np.mean, np.std])\ 
    .reset_index()\ 
    .sort_values('Condition') 
 
new_cols = ['{}_{}'.format(time, stat) if time != 'Condition' else time for time, stat in 
combined_tk_diffs.columns] 
new_cols = [re.sub('_mean', '', col) for col in new_cols] 
combined_tk_diffs.columns = new_cols 
# combined_tk = combined_tk.merge(combined_tk_diffs, how = 'inner', on = 'Condition') 
 
# Get the mean and std of the Delta from the GC T0 counts and merge to combined_tk 
combined_tk_gc_diffs = all_tk.loc[~all_tk['Condition'].str.contains('DMSO')]\ 
    .groupby('Condition')[['Delta_GC_T4', 'Delta_GC_T8', 'Delta_GC_T24']]\ 
    .agg([np.mean, np.std])\ 
    .reset_index()\ 
    .sort_values('Condition') 
 
new_cols = ['{}_{}'.format(time, stat) if time != 'Condition' else time for time, stat in 
combined_tk_gc_diffs.columns] 
new_cols = [re.sub('_mean', '', col) for col in new_cols] 
combined_tk_gc_diffs.columns = new_cols 
 
# Get the mean and std of the Delta from the ADJ T0 counts and merge to combined_tk 
combined_tk_adj_diffs = all_tk.loc[~all_tk['Condition'].str.contains('DMSO')]\ 
    .groupby('Condition')[['Delta_ADJ_T4', 'Delta_ADJ_T8', 'Delta_ADJ_T24']]\ 
    .agg([np.mean, np.std])\ 
    .reset_index()\ 
    .sort_values('Condition') 
 
new_cols = ['{}_{}'.format(time, stat) if time != 'Condition' else time for time, stat in 
combined_tk_adj_diffs.columns] 
new_cols = [re.sub('_mean', '', col) for col in new_cols] 
combined_tk_adj_diffs.columns = new_cols 
 
combined_tk = combined_tk\ 
                .merge(combined_tk_log, how = 'inner', on = 'Condition')\ 
                .merge(combined_tk_diffs, how = 'inner', on = 'Condition')\ 
                .merge(combined_tk_gc_diffs, how = 'inner', on = 'Condition')\ 
                .merge(combined_tk_adj_diffs, how = 'inner', on = 'Condition') 
 
# Important to know how many times each experiment is performed bc some will take more than 
duplicate exp to achieve 
# results 
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combined_label_count = all_tk.groupby('Condition')['Condition'].agg('count').to_dict() 
combined_tk.loc[:, 'Number_of_Repetitions'] = 
combined_tk['Condition'].map(combined_label_count) 
 
# Get non duplicated scaffold to hook the averaged results to 
to_merge_from_all_tk = all_tk[ 
                                [ 
                                    'Condition',  
                                    'Isolate No',  
                                    'Drug Group 1',  
                                    'Drug Group 2',  
                                    'All Drug Groups', 
                                    'Bug', 
                                    'MBL Phenotypic', 
                                    'Amikacin', 
                                    'PLZ', 
                                    'Meropenem', 
                                    'Pip/Tazo', 
                                    'Cefepime', 
                                    'Aztreonam' 
                                ] 
                        ].drop_duplicates() 
 
# Combine everything and determine cidality @ 24 hrs 
combined_tk = combined_tk.merge(to_merge_from_all_tk, how = 'inner', on = 'Condition') 
# There is a mistake that leaves the Drug Group 1 nan and only fills the All Drug Groups 
combined_tk.loc[combined_tk['Drug Group 1'].isna(), 'Drug Group 1'] = 
combined_tk.loc[combined_tk['Drug Group 1'].isna(), 'All Drug Groups'] 
combined_tk = combined_tk.drop_duplicates() 
 
# combined_tk = combined_tk.join(combined_tk.apply(kill_analysis, axis=1), how = 'inner') 
 
# Kill_24 
cidal_condition = combined_tk['Delta_ADJ_T24'] <= -3 
static_condition = (combined_tk['Delta_ADJ_T24'] <= 0) & (combined_tk['Delta_ADJ_T24'] > -3) 
regrowth_condition = combined_tk['Delta_ADJ_T24'] > 0 
 
kill_24 = pd.DataFrame(data = {'Bactericidal':cidal_condition, 'Bacteriostatic':static_condition, 
'Regrowth':regrowth_condition}) 
for col in kill_24.columns: 
    kill_24[col] = kill_24[col].map({True:col, False:np.nan}) 
     
kill_24.loc[:, 'Kill_24'] = kill_24.apply(lambda x: x.dropna().iloc[0], axis = 1) 
combined_tk.loc[:, 'Kill_24'] = kill_24['Kill_24'].values 
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# Prepare column order for output 
combined_tk_col_order = [ 
    'Isolate No', 
    'Bug', 
    'MBL Phenotypic', 
    'Condition', 
    'Number_of_Repetitions', 
    'Drug Group 1', 
    'Drug Group 2', 
    'All Drug Groups', 
    'Kill_24', 
    'T0', 
    'T0_std', 
    'T4', 
    'T4_std', 
    'T8', 
    'T8_std', 
    'T24', 
    'T24_std', 
    'Log_T0', 
    'Log_T0_std', 
    'Log_ADJ_T0', 
    'Log_ADJ_T0_std', 
    'Log_T4', 
    'Log_T4_std', 
    'Log_T8', 
    'Log_T8_std', 
    'Log_T24', 
    'Log_T24_std', 
    'Delta_T4', 
    'Delta_T4_std', 
    'Delta_T8', 
    'Delta_T8_std', 
    'Delta_T24', 
    'Delta_T24_std', 
    'Delta_GC_T4', 
    'Delta_GC_T4_std', 
    'Delta_GC_T8', 
    'Delta_GC_T8_std', 
    'Delta_GC_T24', 
    'Delta_GC_T24_std', 
    'Delta_ADJ_T4', 
    'Delta_ADJ_T4_std', 
    'Delta_ADJ_T8', 
    'Delta_ADJ_T8_std', 
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    'Delta_ADJ_T24', 
    'Delta_ADJ_T24_std', 
    'Amikacin', 
    'PLZ', 
    'Meropenem', 
    'Pip/Tazo', 
    'Cefepime', 
    'Aztreonam' 
] 
combined_tk = combined_tk.reindex(combined_tk_col_order, axis = 1) 
 
display(combined_tk.head()) 
# Graph Kill Curves 
# graph_tk_data_by_isolate(combined_tk, combined_label_count, bmd, save = True, mics = 
True) 
 
# Save results 
# combined_averaged_exp_path = 
r'{}/Combined_TK_data_averaged.csv'.format(home_folder_path) 
# combined_tk.to_csv(combined_averaged_exp_path, index = False) 
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Plotting and Figures for synergy and bactericidality 

def graph_single_iso_condition(combined_tk, all_tk, isolate, condition, save = False): 
    plt.style.use('ggplot') 
    fig, ax = plt.subplots(figsize = (15, 10)) 
    condition_1 = combined_tk['Isolate No'] == isolate 
    condition_2 = combined_tk['All Drug Groups'] == condition 
    n_rep = combined_tk.loc[condition_1&condition_2, 'Number_of_Repetitions'].values[0] 
    #         display(combined_tk.loc[condition_1&condition_2, ['Log_T0', 'Log_T4', 'Log_T8', 
'Log_T24']]) 
    x_vals = [0, 4, 8, 24] 
    y_vals = combined_tk.loc[condition_1&condition_2, ['Log_T0', 'Log_T4', 'Log_T8', 
'Log_T24']].values[0] 
    error_vals = combined_tk.loc[condition_1&condition_2, ['Log_T0_std', 'Log_T4_std', 
'Log_T8_std', 'Log_T24_std']].values[0] 
 
    #             ax.plot(x_vals, y_vals, marker = '*', color = 'blue') 
    ax.errorbar(x_vals, y_vals, error_vals, ecolor = 'black', color = 'blue', marker = '*', mfc = 'red', 
mec = 'red', markersize = 14, linewidth = 2, elinewidth = 2) 
     
    condition_3 = all_tk['Isolate No'] == isolate 
    condition_4 = all_tk['All Drug Groups'] == condition 
    ind_y_vals = all_tk.loc[condition_3&condition_4, ['Log_T0', 'Log_T4', 'Log_T8', 'Log_T24']] 
    for row in ind_y_vals.iterrows(): 
        data = row[1:][0] 
        ax.plot(x_vals, data, color = 'blue', marker = '*', mfc = 'red', mec = 'red', markersize = 14, 
alpha = 0.1) 
 
    ax.set_title(r'Isolate: {}, Condition: {}, N = {}'.format(isolate, condition, n_rep), fontsize = 24, 
fontweight = 'bold') 
 
    ax.set_ylim(0, 10.5) 
 
    ax.set_ylabel('Bacterial Concentration(Log CFU/ML)', fontsize = 20, fontweight = 'bold') 
    ax.set_yticks(np.arange(0, 11, 1)) 
    ax.set_yticklabels([str(val) for val in np.arange(0, 11, 1)], fontsize = 14, fontweight = 'bold') 
 
    ax.set_xlabel('Time (hr)', fontsize = 20, fontweight = 'bold') 
    ax.set_xticks(x_vals) 
    ax.set_xticklabels([str(val) for val in x_vals], fontsize = 14, fontweight = 'bold') 
     
    if save == True: 
        graph_folder_path = 
r'/Users/justinclark/Desktop/Timekill_tool/Timekill_Graphs/Combined_Graphs/Isolate_Condition_
Lineplots' 
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        plt.savefig('TK_lineplot_iso_{}_condition{}.tiff'.format(graph_folder_path, isolate, condition), 
facecolor = 'white', bbox_inches = 'tight') 
    plt.show() 
    plt.clf() 
     
def graph_change_from_T0(combined_tk, isolate, condition, save = False): 
    plt.style.use('ggplot') 
    fig, ax = plt.subplots(figsize = (15, 10)) 
    condition_1 = combined_tk['Isolate No'] == isolate 
    condition_2 = combined_tk['All Drug Groups'] == condition 
    #         display(combined_tk.loc[condition_1&condition_2, ['Log_T0', 'Log_T4', 'Log_T8', 
'Log_T24']]) 
    x_vals = [4, 8, 24] 
    y_vals = combined_tk.loc[condition_1&condition_2, ['Delta_T4', 'Delta_T8', 
'Delta_T24']].values[0] 
    print(y_vals) 
#     error_vals = combined_tk.loc[condition_1&condition_2, ['Log_T0_std', 'Log_T4_std', 
'Log_T8_std', 'Log_T24_std']].values[0] 
 
    sns.barplot(x = x_vals, y = y_vals, palette = 'cool') 
    ax.axhline(0, color = 'black') 
    ax.axhline(-3, color = 'red', alpha = 0.5) 
#     ax.errorbar(x_vals, y_vals, error_vals, ecolor = 'black', color = 'blue', marker = '*', mfc = 'red', 
mec = 'red', markersize = 14, linewidth = 2, elinewidth = 2) 
 
    ax.set_title(r'Isolate: {}, Condition: {}'.format(isolate, condition), fontsize = 24, fontweight = 
'bold') 
 
    ax.set_ylim(-5.5, 5.5) 
 
    ax.set_ylabel('Change in Bacterial Concentration from T0 (Log CFU/ML)', fontsize = 20, 
fontweight = 'bold') 
    ax.set_yticks(np.arange(-5, 6, 1)) 
    ax.set_yticklabels([str(val) for val in np.arange(-5, 6, 1)], fontsize = 14, fontweight = 'bold') 
 
    ax.set_xlabel('Time (hr)', fontsize = 20, fontweight = 'bold') 
#     ax.set_xticks() 
    ax.set_xticklabels([str(val) for val in x_vals], fontsize = 14, fontweight = 'bold') 
    if save == True: 
        graph_folder_path = 
r'/Users/justinclark/Desktop/Timekill_tool/Timekill_Graphs/Combined_Graphs/Isolate_Condition_
Delta_T0' 
        plt.savefig('TK_DeltaT0_iso_{}_condition{}.tiff'.format(graph_folder_path, isolate, condition), 
facecolor = 'white', bbox_inches = 'tight') 
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    plt.show() 
    plt.clf() 
 
# Select only the vim isolates 
vim_iso = all_tk.loc[all_tk['MBL Phenotypic'] == 'MBL', 'Isolate No'].unique() 
# Must remove isolate 42 because it is a mixed culture of KPNE, ENTC, and CITF by nanosphere 
# Explains morphology differences and variable results 
vim_iso = vim_iso[vim_iso != 42] 
 
# Combine the Isolate number and Species information into a single variable 
bug_abbr_dict = {'E. cloacae':'EC', 'K. pneumoniae':'KP'} 
for df in [combined_tk, all_tk]: 
    df.loc[:, 'Publication_ID'] = df['Bug'].map(bug_abbr_dict) + '_' + df['Isolate No'].astype(str) 
 
# Synergy Heatmap 
 
# subset = combined_tk.loc[combined_tk['Isolate No'] == 173] 
def synergy_table(data): 
     
    def calc_syn_result(diff): 
        if diff <= -2: 
            syn_result = 'S' 
        elif (diff > -2) & (diff < 2): 
            syn_result = 'I' 
        elif diff >= 2: 
            syn_result = 'A' 
             
        return syn_result 
     
    collect_syn_results = {} 
    for ag in ['A4', 'PL4']: 
        for mono in ['M16', 'F32', 'PT64']: 
            combo = '{}{}'.format(mono, ag) 
            most_effective_mono = data.loc[data['All Drug Groups'].isin([ag, mono]), 
'Delta_ADJ_T24'].min() 
            combo_delta = data.loc[data['All Drug Groups'] == combo, 'Delta_ADJ_T24'].values[0] 
 
            diff = combo_delta - most_effective_mono 
            syn_result = calc_syn_result(diff) 
            collect_syn_results[combo] = syn_result 
             
    az, av = data.loc[data['All Drug Groups'] == 'AZ32', 'Delta_ADJ_T24'].min(), data.loc[data['All 
Drug Groups'] == 'AV32', 'Delta_ADJ_T24'].min() 
     
    diff = av - az 
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    syn_result = calc_syn_result(diff) 
    collect_syn_results['AV32'] = syn_result 
     
    return pd.Series(collect_syn_results) 
 
# ************************************************************** 
only_vim = True 
save = True 
 
if only_vim == True: 
    heat = combined_tk.loc[combined_tk['Isolate No'].isin(vim_iso)] 
else: 
    heat = combined_tk 
 
print(sorted(heat['Isolate No'].unique())) 
     
syn_df_annot = heat\ 
    .groupby(['Bug', 'Isolate No', 'Publication_ID'])\ 
    .apply(synergy_table)\ 
    .reset_index()\ 
    .sort_values(['Bug', 'Isolate No'])\ 
    .drop(['Bug', 'Isolate No'], axis = 1)\ 
    .set_index('Publication_ID') 
 
syn_df = syn_df_annot.replace({'S':1, 'I':0, 'A':-1}) # Need to have numbers to create the heatmap, 
will annotate with test 
 
linecolor = 'darkgrey' 
fontcolor = 'black' 
annot_dict = {'family':'Arial', 'fontsize':12, 'fontweight':'bold'} 
 
fig, ax = plt.subplots(constrained_layout = True, figsize = (6, 4)) 
sns.heatmap(syn_df, annot = syn_df_annot.to_numpy(), annot_kws = annot_dict, cmap = 'binary', 
linecolor = linecolor, linewidth = 1, fmt = '', cbar = False, ax = ax) 
 
# ax.set_title('Analysis of Synergy in CRE Clinical Isolates', family = 'Arial', fontsize = 12, 
fontweight = 'bold') 
 
ax.set_xlabel('Drug Conditions', family = 'Arial', fontsize = 12, fontweight = 'bold', color = 
fontcolor) 
ax.set_xticks(list(ax.get_xticks())) 
ax.set_xticklabels(syn_df.columns, family = 'Arial', fontsize = 12, fontweight = 'bold', color = 
fontcolor) 
 
ax.set_ylabel('Isolate', family = 'Arial', fontsize = 12, fontweight = 'bold', color = fontcolor) 
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ax.set_yticks(ax.get_yticks()) 
ax.set_yticklabels(syn_df.index, rotation = 45, family = 'Arial', fontsize = 12, fontweight = 'bold', 
color = fontcolor) 
 
for spine in ['top', 'bottom', 'left', 'right']: 
    ax.spines[spine].set_visible(True) 
    ax.spines[spine].set_color(linecolor) 
 
if save == True: 
    graph_folder_path = 
r'/Users/justinclark/Desktop/Timekill_tool/Timekill_Graphs/Combined_Graphs/Heatmaps' 
#     graph_folder_path = r'/Users/justinclark/Desktop/Dissertation/Appendix/Time_kill' 
    plt.savefig('{}/Analysis_of_synergy_vim_no_42_no_title.jpeg'.format(graph_folder_path), 
facecolor = 'white', bbox_inches = 'tight') 
     
plt.show() 
 
Bactericidal Heatmap for each experiment 
 
def sort_publication_index(df): 
    df.index = df.index.str.split('_', expand = True) 
    df.reset_index(inplace = True) 
    df['level_1'] = df['level_1'].astype(int) 
    df = df.sort_values(['level_0', 'level_1']) 
    df.loc[:, 'Publication_ID'] = df['level_0'] + '_' + df['level_1'].astype(str) 
    df = df.drop(['level_0', 'level_1'], axis = 1) 
    df.set_index('Publication_ID', inplace = True) 
     
    return df 
 
def build_heatmap_df(df, annot = False): 
    # Can't sort this the same way as with synergy because the pivot function sorts the index by 
string and undoes the work 
    # Break Publication_ID in two and use the same strategy as before, then rebuild Publication_ID 
and use as sorted index 
    if annot == False: # Build the integer version to build sns.heatmap 
        heat = df\ 
            .groupby(['Publication_ID', 'All Drug Groups'])['Kill_24'].apply(lambda x: (x == 
'Bactericidal').sum()/len(x))\ 
            .reset_index()\ 
            .pivot(index = 'Publication_ID', columns = 'All Drug Groups', values = 'Kill_24') 
     
    else: # Build the annotation version 
        heat = df\ 



 

 496 

            .groupby(['Publication_ID', 'All Drug Groups'])['Kill_24'].apply(lambda x: '{}/{}'.format((x == 
'Bactericidal').sum(), len(x)))\ 
            .reset_index()\ 
            .pivot(index = 'Publication_ID', columns = 'All Drug Groups', values = 'Kill_24') 
     
    heat = sort_publication_index(heat) 
     
    return heat 
# ************************************************************** 
only_vim = True 
save = True 
 
if only_vim == True: 
    heat_input = all_tk.loc[all_tk['Isolate No'].isin(vim_iso)] 
else: 
    heat_input = all_tk 
 
print(sorted(heat_input['Isolate No'].unique()))     
 
heat = build_heatmap_df(heat_input, annot = False) 
heat_annot = build_heatmap_df(heat_input, annot = True) 
 
linecolor = 'darkgrey' 
fontcolor = 'black' 
annot_dict = {'family':'Arial', 'fontsize':12, 'fontweight':'bold'} 
fig, ax = plt.subplots(constrained_layout = True, figsize = (7,5)) 
sns.heatmap(heat, annot = heat_annot.to_numpy(), annot_kws = annot_dict, cmap = 'binary', 
linecolor = linecolor, linewidth = 1, fmt = '', cbar = False, ax = ax) 
 
# ax.set_title('Analysis of Cidality in CRE Clinical Isolates', family = 'Arial', fontsize = 12, 
fontweight = 'bold') 
 
ax.set_xlabel('Drug Conditions', family = 'Arial', fontsize = 12, fontweight = 'bold', color = 
fontcolor) 
ax.set_xticks(list(ax.get_xticks())) 
ax.set_xticklabels(heat.columns, family = 'Arial', rotation = 45, fontsize = 12, fontweight = 'bold', 
color = fontcolor) 
 
ax.set_ylabel('Isolate', family = 'Arial', fontsize = 12, fontweight = 'bold', color = fontcolor) 
ax.set_yticks(ax.get_yticks()) 
ax.set_yticklabels(heat.index, rotation = 45, family = 'Arial', fontsize = 12, fontweight = 'bold', color 
= fontcolor) 
 
for spine in ['top', 'bottom', 'left', 'right']: 
    ax.spines[spine].set_visible(True) 
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    ax.spines[spine].set_color(linecolor) 
 
if save == True: 
    graph_folder_path = 
r'/Users/justinclark/Desktop/Timekill_tool/Timekill_Graphs/Combined_Graphs/Heatmaps' 
#     graph_folder_path = r'/Users/justinclark/Desktop/Dissertation/Appendix/Time_kill' 
    
plt.savefig('{}/Analysis_of_cidality_all_experiments_vim_no_42_no_title.jpeg'.format(graph_folder
_path), facecolor = 'white', bbox_inches = 'tight') 
     
plt.show() 
 
# Bactericidal heatmap for aggregated data 
 
only_vim = True 
save = True 
 
if only_vim == True: 
    heat_input = combined_tk.loc[combined_tk['Isolate No'].isin(vim_iso)] 
else: 
    heat_input = combined_tk 
 
print(sorted(heat_input['Isolate No'].unique())) 
     
heat_annot = heat_input\ 
    .pivot(index = 'Publication_ID', columns = 'All Drug Groups', values = 'Kill_24')\ 
    .replace({'Bactericidal':'C', 'Bacteriostatic':'S', 'Regrowth':'R'}) 
 
heat_annot = sort_publication_index(heat_annot) 
heat = heat_annot.replace({'C':1, 'S':0, 'R':-1}) 
 
linecolor = 'darkgrey' 
fontcolor = 'black' 
annot_dict = {'family':'Arial', 'fontsize':12, 'fontweight':'bold'} 
 
fig, ax = plt.subplots(constrained_layout = True, figsize = (7,5)) 
sns.heatmap(heat, annot = heat_annot.to_numpy(), annot_kws = annot_dict, cmap = 'binary', 
linecolor = linecolor, linewidth = 1, fmt = '', cbar = False, ax = ax) 
 
# ax.set_title('Analysis of Cidality in CRE Clinical Isolates', family = 'Arial', fontsize = 12, 
fontweight = 'bold') 
 
ax.set_xlabel('Drug Conditions', family = 'Arial', fontsize = 12, fontweight = 'bold', color = 
fontcolor) 
ax.set_xticks(list(ax.get_xticks())) 
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ax.set_xticklabels(heat.columns, family = 'Arial', rotation = 45, fontsize = 12, fontweight = 'bold', 
color = fontcolor) 
 
ax.set_ylabel('Isolate', family = 'Arial', fontsize = 12, fontweight = 'bold', color = fontcolor) 
ax.set_yticks(ax.get_yticks()) 
ax.set_yticklabels(heat.index, rotation = 45, family = 'Arial', fontsize = 12, fontweight = 'bold', color 
= fontcolor) 
 
for spine in ['top', 'bottom', 'left', 'right']: 
    ax.spines[spine].set_visible(True) 
    ax.spines[spine].set_color(linecolor) 
 
if save == True: 
    graph_folder_path = 
r'/Users/justinclark/Desktop/Timekill_tool/Timekill_Graphs/Combined_Graphs/Heatmaps' 
#     graph_folder_path = r'/Users/justinclark/Desktop/Dissertation/Appendix/Time_kill' 
    
plt.savefig('{}/Analysis_of_cidality_combined_experiments_vim_no_42_no_title.jpeg'.format(graph
_folder_path), facecolor = 'white', bbox_inches = 'tight') 
     
plt.show() 
 
# Plot each condition for every isolate on same plot 
 
def graph_all_iso_condition(combined_tk, all_tk, condition, nrows = 3, ncols = 4, save = False): 
    plt.style.use('ggplot') 
#     fig, axes = plt.subplots(nrows = 3, ncols = 4, sharex = True, sharey = True, 
constrained_layout = True, figsize = (30, 20)) 
    fig, axes = plt.subplots(nrows = 3, ncols = 4, constrained_layout = True, figsize = (10, 6)) 
     
    isolates = sorted([int(iso) for iso in all_tk['Isolate No'].unique()]) 
#     isolates = [str(iso) for iso in isolates] 
    num_iso = len(isolates) 
     
    # Figure out which idxs will be left columns and bottom row 
    left_most = [val for val in np.arange(0, num_iso, 1) if val % ncols == 0] 
    bottom_row = np.arange(0, num_iso, 1)[-4:] 
     
    extra_axes = axes.flatten()[num_iso:] 
    for ax in extra_axes: 
        plt.delaxes(ax) 
         
    for idx, (iso, ax) in enumerate(zip(isolates, axes.flatten()[:num_iso])): 
        condition_1 = combined_tk['Isolate No'] == iso 
        condition_2 = combined_tk['All Drug Groups'] == condition 
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        n_rep = combined_tk.loc[condition_1&condition_2, 'Number_of_Repetitions'].values[0] 
        pub_id = combined_tk.loc[condition_1&condition_2, 'Publication_ID'].values[0] 
        #         display(combined_tk.loc[condition_1&condition_2, ['Log_T0', 'Log_T4', 'Log_T8', 
'Log_T24']]) 
        x_vals = [0, 4, 8, 24] 
        y_vals = combined_tk.loc[condition_1&condition_2, ['Log_T0', 'Log_T4', 'Log_T8', 
'Log_T24']].values[0] 
        error_vals = combined_tk.loc[condition_1&condition_2, ['Log_T0_std', 'Log_T4_std', 
'Log_T8_std', 'Log_T24_std']].values[0] 
         
        lower = y_vals - error_vals 
        lower_diff = np.array([0 if (2 - val < 0) else 2 - val for val in lower]) 
        lower_error = error_vals - lower_diff 
 
        upper = y_vals + error_vals 
        upper_diff = np.array([0 if (val - 10 < 0) else val - 10 for val in upper]) 
        upper_error = error_vals - upper_diff 
 
        yerr = np.vstack([lower_error, upper_error]) 
 
        #             ax.plot(x_vals, y_vals, marker = '*', color = 'blue') 
        ax.errorbar(x = x_vals, y = y_vals, yerr = yerr, ecolor = 'black', color = 'blue', marker = '.', mfc 
= 'red', mec = 'red', markersize = 8, linewidth = 2, elinewidth = 2) 
 
        condition_3 = all_tk['Isolate No'] == iso 
        condition_4 = all_tk['All Drug Groups'] == condition 
        ind_y_vals = all_tk.loc[condition_3&condition_4, ['Log_T0', 'Log_T4', 'Log_T8', 'Log_T24']] 
        for row in ind_y_vals.iterrows(): 
            data = row[1:][0] 
            ax.plot(x_vals, data, color = 'blue', marker = '.', mfc = 'red', mec = 'red', markersize = 8, 
alpha = 0.2) 
 
        ax.set_title(r'{}, {}, N = {}'.format(pub_id, condition, n_rep), family = 'Arial', fontsize = 12, 
fontweight = 'bold') 
 
        ax.set_ylim(0, 10.5) 
 
        # Need to put the axis labels on the left most ax in each row 
        if idx in left_most: 
            ax.set_yticks(np.arange(0, 11, 1)) 
            ax.set_yticklabels([str(val) for val in np.arange(0, 11, 1)], family = 'Arial', fontsize = 12, 
fontweight = 'bold', color = 'black') 
        else: 
            ax.set_yticks(np.arange(0, 11, 1)) 
            ax.set_yticklabels([]) 
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        # Need to put the axis labels on the bottom most ax in each column 
        if idx in bottom_row: 
            ax.set_xticks(x_vals) 
            ax.set_xticklabels([str(val) for val in x_vals], family = 'Arial', fontsize = 12, fontweight = 
'bold', color = 'black') 
        else: 
            ax.set_xticks(x_vals) 
            ax.set_xticklabels([]) 
#     fig.suptitle('Growth Curves of {} for all Isolates'.format(condition), family = 'Arial', fontsize = 
24, fontweight = 'bold') 
    fig.supxlabel('Time (hr)', family = 'Arial', fontsize = 12, fontweight = 'bold') 
    fig.supylabel('Bacterial Concentration(Log CFU/ML)', family = 'Arial', fontsize = 12, fontweight = 
'bold') 
     
    if save == True: 
#         graph_folder_path = 
r'/Users/justinclark/Desktop/Timekill_tool/Timekill_Graphs/Combined_Graphs/Isolate_Condition_
Lineplots' 
        graph_folder_path = 
r'/Users/justinclark/Desktop/Dissertation/Appendix/Time_kill/Bacterial_Count_Lineplots_by_Condi
tion' 
        plt.savefig('{}/TK_lineplot_condition_{}.jpeg'.format(graph_folder_path, condition), facecolor 
= 'white', bbox_inches = 'tight') 
    plt.show() 
# ************************************************************************ 
only_vim = False 
 
if only_vim == True: 
    gc_combined_tk = combined_tk.loc[combined_tk['Isolate No'].isin(vim_iso)] 
    gc_all_tk = all_tk.loc[all_tk['Isolate No'].isin(vim_iso)] 
else: 
    gc_combined_tk = combined_tk 
    gc_all_tk = all_tk 
 
print(sorted(gc_combined_tk['Isolate No'].unique())) 
print(sorted(gc_all_tk['Isolate No'].unique())) 
# for condition in sorted(all_tk['All Drug Groups'].unique()): 
#     graph_all_iso_condition(gc_combined_tk, gc_all_tk, condition, save = True) 
 
# Plot each Delta for every isolate on same plot 
 
def graph_change_from_T0(combined_tk, all_tk, condition, nrows = 3, ncols = 4, save = False): 
    plt.style.use('ggplot') 
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    fig, axes = plt.subplots(nrows = nrows, ncols = ncols, constrained_layout = True, figsize = (10, 
6)) 
     
    isolates = sorted([int(iso) for iso in all_tk['Isolate No'].unique()]) 
#     isolates = [str(iso) for iso in isolates] 
    num_iso = len(isolates) 
     
    # Figure out which idxs will be left columns and bottom row 
    left_most = [val for val in np.arange(0, num_iso, 1) if val % ncols == 0] 
    bottom_row = np.arange(0, num_iso, 1)[-4:] 
     
    extra_axes = axes.flatten()[num_iso:] 
    for ax in extra_axes: 
        plt.delaxes(ax) 
         
    for idx, (iso, ax) in enumerate(zip(isolates, axes.flatten()[:num_iso])): 
        condition_1 = combined_tk['Isolate No'] == iso 
        condition_2 = combined_tk['All Drug Groups'] == condition 
        n_rep = combined_tk.loc[condition_1&condition_2, 'Number_of_Repetitions'].values[0] 
        pub_id = combined_tk.loc[condition_1&condition_2, 'Publication_ID'].values[0] 
 
        x_vals = [0, 4, 8, 24] 
         
        # There will only initialy be 3 values. I will make the first value always be 0 
        y_vals = combined_tk.loc[condition_1&condition_2, ['Delta_ADJ_T4', 'Delta_ADJ_T8', 
'Delta_ADJ_T24']].values[0] 
        y_vals = np.insert(y_vals, 0, 0) 
        error_vals = combined_tk.loc[condition_1&condition_2, ['Delta_ADJ_T4_std', 
'Delta_ADJ_T8_std', 'Delta_ADJ_T24_std']].values[0] 
        error_vals = np.insert(error_vals, 0, 0) 
         
        ax.errorbar(x_vals, y_vals, error_vals, ecolor = 'black', color = 'blue', marker = '.', mfc = 'red', 
mec = 'red', markersize = 8, linewidth = 2, elinewidth = 2) 
#         sns.barplot(x = x_vals, y = y_vals, palette = 'cool') 
        ax.axhline(0, color = 'black') 
        ax.axhline(-3, color = 'green') 
    #     ax.errorbar(x_vals, y_vals, error_vals, ecolor = 'black', color = 'blue', marker = '*', mfc = 
'red', mec = 'red', markersize = 14, linewidth = 2, elinewidth = 2) 
        condition_3 = all_tk['Isolate No'] == iso 
        condition_4 = all_tk['All Drug Groups'] == condition 
        ind_y_vals = all_tk.loc[condition_3&condition_4, ['Delta_ADJ_T4', 'Delta_ADJ_T8', 
'Delta_ADJ_T24']] 
        for row in ind_y_vals.iterrows(): 
            data = row[1:][0].values 
            data = np.insert(data, 0, 0) 
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            ax.plot(x_vals, data, color = 'blue', marker = '.', mfc = 'red', mec = 'red', markersize = 8, 
alpha = 0.2) 
             
        ax.set_title(r'{}, {}, N = {}'.format(pub_id, condition, n_rep), family = 'Arial', fontsize = 12, 
fontweight = 'bold') 
 
        ax.set_ylim(-5.5, 5.5) 
 
        # Need to put the axis labels on the left most ax in each row 
        if idx in left_most: 
            ax.set_yticks(np.arange(-5, 6, 1)) 
            ax.set_yticklabels([str(val) for val in np.arange(-5, 6, 1)], family = 'Arial', fontsize = 12, 
fontweight = 'bold', color = 'black') 
        else: 
            ax.set_yticks(np.arange(-5, 6, 1)) 
            ax.set_yticklabels([]) 
 
        # Need to put the axis labels on the bottom most ax in each column 
        if idx in bottom_row: 
            ax.set_xticks(x_vals) 
            ax.set_xticklabels([str(val) for val in x_vals], family = 'Arial', fontsize = 12, fontweight = 
'bold', color = 'black') 
        else: 
            ax.set_xticks(x_vals) 
            ax.set_xticklabels([]) 
#     fig.suptitle('Growth Curves of {} for all Isolates'.format(condition), family = 'Arial', fontsize = 
24, fontweight = 'bold') 
    fig.supxlabel('Time (hr)', family = 'Arial', fontsize = 12, fontweight = 'bold') 
    fig.supylabel('Change in Bacterial Concentration from T0 (Log CFU/ML)', family = 'Arial', 
fontsize = 12, fontweight = 'bold') 
    if save == True: 
#         graph_folder_path = 
r'/Users/justinclark/Desktop/Timekill_tool/Timekill_Graphs/Combined_Graphs/Isolate_Condition_
Delta_Lineplots' 
        graph_folder_path = 
r'/Users/justinclark/Desktop/Dissertation/Appendix/Time_kill/Delta_T0_Lineplots_by_Condition' 
        plt.savefig('{}/TK_DeltaT0_condition_{}.jpeg'.format(graph_folder_path, condition), facecolor 
= 'white', bbox_inches = 'tight') 
         
    plt.show() 
# ************************************************************************ 
only_vim = False 
 
if only_vim == True: 
    gc_combined_tk = combined_tk.loc[combined_tk['Isolate No'].isin(vim_iso)] 
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    gc_all_tk = all_tk.loc[all_tk['Isolate No'].isin(vim_iso)] 
else: 
    gc_combined_tk = combined_tk 
    gc_all_tk = all_tk 
 
print(sorted(gc_combined_tk['Isolate No'].unique())) 
print(sorted(gc_all_tk['Isolate No'].unique())) 
# for condition in sorted(all_tk['All Drug Groups'].unique()): 
#     graph_change_from_T0(gc_combined_tk, gc_all_tk, condition, save = True) 
 
# Stripplot showing differences between T0 adjustments 
 
save = True 
plt.style.use('grayscale') 
for time_col in ['Log_T0', 'Log_GC_T0', 'Log_ADJ_T0']: 
    fig, axes = plt.subplots(nrows = 2, ncols = 1, constrained_layout = True, figsize = (10.5, 6)) 
#     for bug, palette, ax in zip(all_tk['Bug'].unique(), ['turbo', 'magma'], axes): 
    palette = 'binary' 
    for bug, ax in zip(all_tk['Bug'].unique(), axes): 
        subset = all_tk.loc[all_tk['Bug'] == bug] 
#         if time_col == 'Best': 
#             subset.loc[:, 'Best'] = subset[['Log_T0', 'Log_GC_T0']].max(axis=1) 
        sns.stripplot(x = 'All Drug Groups', y = time_col, data = subset, palette = palette, hue = 
'Isolate No', size = 7, alpha = 0.85, jitter = 1, linewidth = 1, edgecolor = 'black', ax = ax) 
        ax.set_title(bug, family = 'Arial', fontsize = 12, fontproperties = {'style':'italic'}) 
 
        ax.set_ylim(4.5, 6.5) 
        ax.set_ylabel('') 
        ax.yaxis.set_major_locator(plt.MaxNLocator(8)) 
        ax.set_yticklabels(ax.get_yticks().round(1), family = 'Arial', fontsize = 12, fontweight = 'bold') 
         
        ax.set_xlabel('') 
        ax.set_xticklabels(subset['All Drug Groups'].unique(), family = 'Arial', fontsize = 12, 
fontweight = 'bold') 
         
        ax.yaxis.grid(alpha = 0.25) 
         
        ax.legend( 
            title = 'Isolates', 
            fancybox = True,  
            frameon=True,  
            edgecolor = 'black', 
            prop = {'family':'Arial'}, 
            fontsize = 12, 
            bbox_to_anchor = (1, 1.01), 
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            loc = 'upper left' 
        ) 
    axes[0].set_xticks([]) 
#     fig.suptitle('All Experimental Data at {} for each Drug Condition'.format(time_col), family = 
'Arial', fontsize = 24, fontweight = 'bold') 
    fig.supxlabel('Drug Conditions', family = 'Arial', fontsize = 12, fontweight = 'bold') 
    fig.supylabel('Bacterial Concentration (Log CFU/mL)', family = 'Arial', fontsize = 12, fontweight 
= 'bold') 
    fig.set_facecolor('white') 
    if save == True: 
        graph_folder_path = 
r'/Users/justinclark/Desktop/Timekill_tool/Timekill_Graphs/Combined_Graphs/Data_stripplot_by_
condition_species' 
#         graph_folder_path = 
r'/Users/justinclark/Desktop/Dissertation/Appendix/Time_kill/T0_Stripplots_Adjustment' 
        plt.savefig('{}/TK_{}_data.jpeg'.format(graph_folder_path, time_col)) 
 
    plt.show() 
 
# Repeated measures anova of Delta Tn – T0 Overall 
 
color = True 
palette = 'Greys_r' 
if color == True: 
    palette = uk_palette 
     
fontsize = 11 
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Stats and tables of comparisons 

# Run the RM ANOVA 
anova_folder_path = r'/Users/justinclark/Desktop/Timekill_tool/Delta_ANOVA_Analysis' 
dissertation_path = r'/Users/justinclark/Desktop/Dissertation/Appendix/Time_kill' 
tukey_folder_path = r'{}/ANOVA_TUKEY'.format(anova_folder_path) 
boxplot_folder_path = r'{}/Average_delta_boxplots'.format(anova_folder_path) 
# boxplot_folder_path = r'{}/Anova_Boxplots'.format(dissertation_path) 
stats_dict = {} 
for col in ['Delta_ADJ_T4', 'Delta_ADJ_T8', 'Delta_ADJ_T24']: 
    stats_key = '{}_stats'.format(col) 
    cols_of_interest = ['Isolate No', 'All Drug Groups', col] 
    # Data to run AnovaRM 
#     anova_data = all_tk[cols_of_interest].rename(columns = {col:re.sub('\s', '_', col) for col in 
cols_of_interest}) 
    anova_data = combined_tk[cols_of_interest].rename(columns = {col:re.sub('\s', '_', col) for col 
in cols_of_interest}) 
    anova_data = anova_data.loc[anova_data['Isolate_No'].isin(vim_iso)] 
    # Data for Pairwise comparison 
    tukey_data = anova_data\ 
        .groupby(['Isolate_No', 'All_Drug_Groups'])[col]\ 
        .agg(np.mean)\ 
        .reset_index()\ 
     
    rm_anova_model = AnovaRM(data = anova_data, depvar = col, subject = 'Isolate_No', within = 
['All_Drug_Groups']).fit() 
    rm_anova_model_out = pd.read_html(rm_anova_model.summary().as_html(), header = 0)[0] 
    rm_anova_model_out.to_csv('{}/{}_ANOVA_RM_vim_no_42.csv'.format(tukey_folder_path, 
col)) 
 
    # Run Pairwise adjustment 
    tukey = pairwise_tukeyhsd(endog = tukey_data[col], groups = tukey_data['All_Drug_Groups'], 
alpha = 0.05).summary() 
    tukey = pd.read_html(tukey.as_html(), header=0)[0] 
    tukey.to_csv(r'{}/{}_Tukey_vim_no_42.csv'.format(tukey_folder_path, col)) 
     
    stats_dict[stats_key] = {'ANOVA':rm_anova_model, 'TUKEY':tukey} 
     
    plt.style.use('ggplot') 
    fontcolor = 'black' 
    fig, ax = plt.subplots(figsize = (6, 4)) 
    mean_attr = {'marker':'o', 'markerfacecolor':'white', 'markeredgecolor':'black', 'markersize':'6'} 



 

 506 

    sns.boxplot(data = tukey_data, x = 'All_Drug_Groups', y = col, ax = ax, palette = palette, 
showmeans = True, meanprops = mean_attr) 
     
    y_ticks = [-4, -2, 0, 2, 4] 
    ax.set_ylabel(r'$\Delta$ Bacterial Concentration (Log CFU/mL)', family = 'Arial', fontsize = 
fontsize, fontweight = 'bold', color = fontcolor) 
    ax.set_yticks(y_ticks) 
    ax.set_yticklabels([str(tick) for tick in y_ticks], family = 'Arial', fontsize = fontsize, color = 
fontcolor, fontweight = 'bold') 
     
    x_ticks = tukey_data['All_Drug_Groups'].unique() 
    ax.set_xlabel('Drug Conditions', family = 'Arial', fontsize = fontsize, fontweight = 'bold', color = 
fontcolor) 
    ax.set_xticks(range(len(x_ticks))) 
    ax.set_xticklabels(x_ticks, rotation = 45, family = 'Arial', fontsize = fontsize, color = fontcolor, 
fontweight = 'bold') 
     
    time_point = col.split('_')[-1] 
#     title = 'Average Change in Bacterial Concentration between T0 and {}'.format(time_point) 
#     ax.set_title(title, family = 'Arial', fontsize = 24, fontweight = 'bold') 
     
    # Make mean line in the black boxes white for visibility 
    line_color = 'white' 
    for line in ax.get_lines()[4:49:7]: 
        line.set_color(line_color) 
     
    boxplot_path = f'{boxplot_folder_path}/{col}_boxplot_vim_no_42.tiff' 
    if color == True: 
        boxplot_path = f'{boxplot_folder_path}/{col}_boxplot_vim_no_42_color.tiff' 
    plt.tight_layout() 
    plt.savefig(boxplot_path) 
    plt.show() 
 
# Average log counts conditions X time points 
 
pub_folder_path = r'/Users/justinclark/Desktop/Timekill_tool/Publication_Materials' 
# dissertation_path = r'/Users/justinclark/Desktop/Dissertation/Appendix/Time_kill/Tukey_Tables' 
means = ['Log_ADJ_T0', 'Log_T4', 'Log_T8', 'Log_T24']  
stds = ['Log_ADJ_T0_std', 'Log_T4_std', 'Log_T8_std', 'Log_T24_std']  
log_counts = combined_tk\ 
                .loc[combined_tk['Isolate No'].isin(vim_iso)]\ 
                .groupby('All Drug Groups')[[col for col in combined_tk.columns if re.search('Log', col) 
and not re.search('std', col)]].agg([np.mean, np.std]) 
 
# log_counts = combined_tk\ 
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#                 .groupby('All Drug Groups')[[col for col in combined_tk.columns if re.search('Log', col) 
and not re.search('std', col)]].agg([np.mean, np.std]) 
# flatten the columns into a single level 
new_cols = ['{}_{}'.format(time, stat) for time, stat in log_counts.columns] 
new_cols = [re.sub('_mean', '', col) for col in new_cols] 
log_counts.columns = new_cols 
 
for mean, std in zip(means, stds): 
    new_col = mean.split('_')[-1] 
    log_counts.loc[:, new_col] = log_counts[mean].round(2).astype(str) + u' \u00b1 ' + 
log_counts[std].round(2).astype(str) 
log_counts = log_counts[['T0', 'T4', 'T8', 'T24']] 
log_counts.to_excel(r'{}/Average_log_counts_vim_no_42.xlsx'.format(pub_folder_path)) 
# log_counts.to_csv(r'{}/Average_log_counts.csv'.format(dissertation_path)) 
display(log_counts) 
 
# Delta T0 table 
 
pub_folder_path = r'/Users/justinclark/Desktop/Timekill_tool/Publication_Materials' 
means = ['Delta_ADJ_T4', 'Delta_ADJ_T8', 'Delta_ADJ_T24'] 
stds = ['Delta_ADJ_T4_std', 'Delta_ADJ_T8_std', 'Delta_ADJ_T24_std'] 
delta_table = combined_tk\ 
                .loc[combined_tk['Isolate No'].isin(vim_iso)]\ 
                .groupby('All Drug Groups')[[col for col in combined_tk.columns if 
re.search('Delta_ADJ', col) and not re.search('std', col)]].agg([np.mean, np.std]) 
 
# delta_table = combined_tk\ 
#                 .groupby('All Drug Groups')[[col for col in combined_tk.columns if 
re.search('Delta_ADJ', col) and not re.search('std', col)]].agg([np.mean, np.std]) 
# flatten the columns into a single level 
new_cols = ['{}_{}'.format(time, stat) for time, stat in delta_table.columns] 
new_cols = [re.sub('_mean', '', col) for col in new_cols] 
delta_table.columns = new_cols 
for mean, std in zip(means, stds): 
    new_col = mean.split('_')[-1] 
    delta_table.loc[:, new_col] = delta_table[mean].round(2).astype(str) + u' \u00b1 ' + 
delta_table[std].round(2).astype(str) 
delta_table = delta_table[['T4', 'T8', 'T24']] 
delta_table.to_excel(r'{}/Average_delta_table_vim_no_42.xlsx'.format(pub_folder_path)) 
display(delta_table) 
 
# Conditions vs. GC @ 24 hours  
 
pub_folder_path = r'/Users/justinclark/Desktop/Timekill_tool/Publication_Materials' 
# dissertation_path = r'/Users/justinclark/Desktop/Dissertation/Appendix/Time_kill/Tukey_Tables' 
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t24_gc = format_condition_tukey(format_tukey_out(tukey, 'T24', 'GC'), 'GC') 
t24_gc.loc[:, 'Mean Difference [95% CI]'] = t24_gc.apply(combine_meandiff_ci, axis=1) 
t24_gc = t24_gc[['condition_1', 'condition_2', 'Mean Difference [95% CI]', 'p-adj']]\ 
    .rename(columns = {'condition_1':'Group 1', 'condition_2':'Group 2', 'p-adj':'P value'}) 
t24_gc.to_excel(r'{}/Conditions_vs_GC_vim_no_42.xlsx'.format(pub_folder_path), index = False) 
# t24_gc.to_csv(r'{}/Conditions_vs_GC.csv'.format(dissertation_path), index = False) 
display(t24_gc) 
 
# A4 vs PL4 @ 24 hours pairwise 
pub_folder_path = r'/Users/justinclark/Desktop/Timekill_tool/Publication_Materials' 
 
collector = [] 
for col in ['PL4', 'F32PL4', 'M16PL4', 'PT64PL4']: 
    collector.append(format_condition_tukey(format_tukey_out(tukey, 'T24', col), col)) 
df = pd.concat(collector, sort = False) 
df.loc[:, 'Mean Difference [95% CI]'] = df.apply(combine_meandiff_ci, axis=1) 
df = df[['condition_1', 'condition_2', 'Mean Difference [95% CI]', 'p-adj', 'reject']]\ 
    .rename(columns = {'condition_1':'Group 1', 'condition_2':'Group 2', 'p-adj':'P value'}) 
df = df.loc[df['Group 1'].str.contains('A4')] 
df.to_excel(r'{}/A4_vs_PL4_vim_no_42.xlsx'.format(pub_folder_path), index = False) 
# df.to_csv(r'{}/A4_vs_PL4.csv'.format(dissertation_path), index = False) 
display(df) 
 
# AV32 vs A4/PL4 @ 24 hours pairwise 
pub_folder_path = r'/Users/justinclark/Desktop/Timekill_tool/Publication_Materials' 
 
collector = [] 
for col in ['A4', 'F32A4', 'M16A4', 'PT64A4', 'PL4', 'F32PL4', 'M16PL4', 'PT64PL4']: 
    collector.append(format_condition_tukey(format_tukey_out(tukey, 'T24', col), col)) 
df = pd.concat(collector, sort = False) 
df.loc[:, 'Mean Difference [95% CI]'] = df.apply(combine_meandiff_ci, axis=1) 
df = df[['condition_1', 'condition_2', 'Mean Difference [95% CI]', 'p-adj', 'reject']]\ 
    .rename(columns = {'condition_1':'Group 1', 'condition_2':'Group 2', 'p-adj':'P value'}) 
df = df.loc[df['Group 1'].str.contains('AV32')] 
df.to_excel(r'{}/AV32_vs_A4_and_PL4_vim_no_42.xlsx'.format(pub_folder_path), index = False) 
# df.to_csv(r'{}/AV32_vs_A4_and_PL4.csv'.format(dissertation_path), index = False) 
display(df) 
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Effect of Carbapenem-resistant vs. Carbapenem-susceptible Enterobacterales 

Infections on Patient Outcomes at an Academic Medical Center Code 

Combine_raw_data.ipynb 

import pandas as pd 
import re 
import glob 
import os 
from IPython.display import display 
 
pd.set_option('display.max_rows', 500) 
pd.set_option('display.max_columns', 200) 
 
home_folder_path = os.path.abspath(os.getcwd()) 
# os.listdir(home_folder_path) 
 
raw_folders = sorted(glob.glob('20*_raw')) 
# print(raw_folders) 
 
abbr_species_dict = { 
    'ABAUM': 'Acinetobacter baumannii', 
    'ACLW': 'Acinetobacter lwoffii', 
    'ALPH': 'viridans group Streptococci', 
    'BCEPA': 'Burkholderia cepacia complex', 
    'CITF': 'Citrobacter freundii', 
    'ECOL': 'Escherichia coli', 
    'EF': 'Enterococcus faecalis', 
    'EFM': 'Enterococcus faecium', 
    'ENTA': 'Enterobacter aerogenes', 
    'ENTC': 'Enterobacter cloacae', 
    'HFLU': 'Haemophilus influenzae', 
    'KLOX': 'Klebsiella oxytoca', 
    'KLPN': 'Klebsiella pneumoniae', 
    'MGMG': 'Morganella morganii', 
    'PMIRA': 'Proteus mirabilis', 
    'PSAR': 'Pseudomonas aeruginosa', 
    'SAUR': 'Staphylococcus aureus', 
    'SEPI': 'Staphylococcus epidermidis', 
    'SERM': 'Serratia marcescens', 
    'SMALT': 'Stenotrophomonas maltophilia', 
    'SPNE': 'Streptococcus pneumoniae' 
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} 
 
total_combined_list = [] 
for folder in raw_folders: 
    year_df_list = [] 
    year = re.search('\d+', folder).group() 
    print('*' * 40) 
    print('Year: ', year) 
    for file in sorted(os.listdir(folder)): 
        if not re.search('Store', file): 
            org_abbr = file.split('_RAW')[0] 
            species = abbr_species_dict[org_abbr] 
 
            file_path = '{}/{}/{}'.format(home_folder_path, folder, file) 
             
            df = pd.read_csv(file_path, low_memory=False) 
            df = df.drop_duplicates() 
            df['FILE'] = file 
            df['ORG_ABBR'] = org_abbr 
            df['SPECIES'] = species 
             
            species_count = df.loc[df['SPECIES'] == species, 'SPECIES'].count() 
            print('Org_abbr: {}; Species: {}; Count: {}'.format(org_abbr, species, species_count)) 
            year_df_list.append(df) 
             
    year_df = pd.concat(year_df_list, sort=False) 
    year_df_out_path = '{}/Combined_raw/combined_raw_{}.csv'.format(home_folder_path, year) 
    year_df.to_csv(year_df_out_path, index=False) 
    display(year_df['SPECIES'].value_counts(dropna=False).reset_index().sort_values('index').T) 
    total_combined_list.append(year_df) 
    print('*' * 40) 
    print('\n') 
 
total_combined = pd.concat(total_combined_list, sort=False) 
total_combined_out_path = '{}/Combined_raw/combined_raw_2010-
2019.csv'.format(home_folder_path) 
total_combined.to_csv(total_combined_out_path, index=False) 
 
display(total_combined['SPECIES'].value_counts(dropna=False).reset_index().sort_values('index'
)) 
display(total_combined.isna().sum()) 
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Long_to_wide.ipynb 

# Transform susc data from long to wide format such that each row contains all data for a given 
culture 
# NOTE: 
- Begin by dropping where the NAM column is missing 
    - there are very few of these instances and most important information is also missing from these rows 
- I convert CDATE to a datetime object 
    - From this column I build the YEAR_DT and MONTH_DT columns 
- I pulled all the contents out of the parentheses of the MIC column and saved to MIC_CONTENTS 
    - There are many times when a letter (R, I, or SS) are reported inside without a number 
    - 1800 ERT R wouldve been missed otherwise 
    - This also allows any manipulation desired for non numeric data inside 
    - The MIC column is used in the antibiogram. The MICVAL column isn't consistently reported correctly 
        - Often the MICVAL obs will be the mic number when the MIC column may have a > sign 
        - Also, when the MIC column data is to be hidden from the providers, MICVAL is often (maybe always) = 
0 
- I read in PSAR, ABAUM, and ENTERO bkpt files to use in the convert_alpha_to_numeric_mic function 
- Create a sub-dataframe containing only the rows where MIC_CONTENTS is SS, I, or R 
    - Pulling this data out gives fewer rows for the function to be called which saves time (axis 1 apply takes 
time) 
    - Use the bkpt files to conver SS and R to number with convert_alpha_to_numeric_mic 
        - the fillna is to serve as a placeholder 
        - missing data comes from rows where the antibiotics aren't in the bkpt files 
        - for I, the output is Between _ and _ 
    - Select the lowest dilution between the S and R to serve as MIC for I using fix_between 
    - Fix any odd decimal MICs due to bkpt files using fix_bkpt_decimal 
        - For strategic reasons, the R breakpoint put into the bkpt file is just the S bkpt + 0.1 
        - This prevents MICs taken from E tests that may fall between S and R (ex. S = 1, R = 2, but I = 1.5) 
        - It also causes the value to have a .1 above 
    - Assign the data to the appropriate rows in combined 
    - Use the logical compliment to fill in the remaining values for MIC_CONTENTS_2 with the correpsonding 
data in MIC_CONTENTS 
- Created Num_MIC_CONTENTS to keep all the values in MIC_CONTENTS_2 that had numeric data 
- Used the Num_MIC_CONTENTS to build the MIC_FINAL column using mic_final func 
    - Presents all numeric MIC data without logical operator 
- Skip this point 
    - I made a copy of the original MICVAL column called MICVAL_original to maintain the initial data 
        - MICVAL is missing for all of 2012 because the data was put in a column called fnlmic 
        - I set the MICVAL rows for 2012 to be equal to the fnlmic rows where the MICVAL information was 
missing 
        - In the final result, there are still 22 missing values for each of these columns, all occuring in 2012 
            - There is no usable information in the MIC column either, so it is fine to drop these rows 
- I made a BATT_AGGR column to have broader indications to report (i.e. blood, urine, etc) **57 missing 
BATT_AGGR values** 
    - I used Mike's BATT_dict to map the information from BATT 
- antibiotic_abx_drop contains all the ANTIBIOTIC values that are antibiotics not used in Gram negatives 
- antibiotic_non_abx_out contains all ANTIBIOTIC values that arent antibiotics 
- remaining_abx_to_pull is a string of ANTIBIOTIC values that remained after removing meth_exclude and 
Surveillance methods 
    - This should pull all of the ID and surveillance rows out and leave just antibiotics in the column 
- extra_info is a dataframe pulled aside to be written out containing all the ANTIBIOTIC information not an 
antibiotic 
- Removed surveillance cultures and cultures using unwanted methods (See meth_exclude) 
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    - Saved this data into the surv dataframe for output if needed later for analysis 
- Used groupby transform to make FINAL_is_max and NUM_METH_COUNT 
    - FINAL_is_max is the max MIC for each antibiotic for each group in the groupby statement 
        - This makes it easy to select only rows where the MIC_FINAL is the max MIC when there are multiple 
observations for groups 
    - NUM_MIC_FINAL_COUNT gives the number of MIC_FINAL values contained in each group 
        - This can be used to create the dataset mult_mics for analysis of mic agreement 
- select only the columns that are desired for output 
    - A handful of rows still had multiple counts when not grouping ORG and METH, but only 8 had duplicate 
rows when including these columns in the group 
        - All of the duplications were caused by MIC column entries that had repetitive information, but one was 
designed to report and the other was designed to hide 
        - All of the information was confined to a single patient, so this was an unusual entry 
        - Selecting only the columns that were desired to keep going forward, I was able to call drop_duplicates 
to remove the final 6 rows 
    - It will be easier to filter the information further in wide format 
- I use the multiindex_pivot function to widen the Num_MIC_CONTENTS and MIC_FINAL columns 
    - No longer need MIC because the needed info was pulled into the MIC_CONTENTS column 
    - No longer needed any of the interpretation columns or MICVAL because I don't use this information. I will 
create my own interpretation columns that only have S R or I 
- Join these two widened dataframes on the shared MultiIndex after restructuring the names of the columns 
- Add back BATT_AGGR column 
    - Had to drop this during the pivot because of the QTC issue cited in code comment 
 
import pandas as pd 
import numpy as np 
import re 
import os 
from IPython.display import display 
 
pd.set_option('display.max_rows', 700) 
pd.set_option('display.max_columns', 200) 
 
BATT_dict = { 
    'URNC':'Urine', 
    'URCATH':'Urine', 
    'MDRT':'Surveillance', 
    'BLC':'Blood', 
    'WDC':'Skin/Soft Tissue', 
    'RESP':'Respiratory', 
    'ABSCUL':'Skin/Soft Tissue', 
    'TISC':'Skin/Soft Tissue', 
    'ROUTC':'???', 
    'FLDC':'Intra-abdominal', 
    'BRESP':'Respiratory', 
    'PRBB':'Respiratory', 
    'CFRESP':'Cystic Fibrosis Respiratory', 
    'STLC':'Stool', 
    'GENTL':'Genitals', 
    'ADDSUS':'???', 
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    'ICAP':'???', 
    'BIL':'Intra-abdominal', 
    'ENVC':'Surveillance', 
    'ARBLC':'Blood', 
    'QBPB':'Respiratory', 
    'BONC':'Bone', 
    'ANAC':'Blood', 
    'CTC':'Blood', 
    'EYEC':'HEENT', 
    'EARC':'HEENT', 
    'CSFC':'CSF', 
    'DUOSV':'Surveillance', 
    'MISCBA':'Urine', 
    'ANBLC':'Blood', 
    'THRC':'HEENT', 
    'RSFR':'Surveillance', 
    'ISOBC':'Blood', 
    'AFBCNR':'Skin/Soft Tissue', 
    'MYCOEV':'Respiratory', 
    'QTC':'???' 
} 
 
def pull_out_parentheses(x): 
    data = re.search(r'\((.*)\)', x) 
    if data is not None: 
        return data.group(1) 
    else: 
        data = re.search(r'\((.*)', x) 
        if data is not None: 
            return data.group(1) 
        else: 
            print('Code cannot grab {}'.format(x)) 
             
def mic_search(item): 
    mic_pattern_exp = [# [r'([><=]{0,2}\d+\.?\d{0,5})' 
     r'(', # opening raw string and open the parentheses group 
     '[<>=]', # match any of the characters in the class 
     '{0,2}', # match anywhere from 0 to 2 times 
     '\d+', # match any number of digits 
     '\.?', # match a decimal point if there is one 
     '\d', # match a digit after the decimal point 
     '{0,5}', #...anywhere from 0 to 5 times 
     ')' # closes the group 
    ] 
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    mic_pattern = ''.join(mic_pattern_exp) 
    lookup = re.compile(mic_pattern) 
     
    data = re.search(lookup, item) 
    if data is not None: 
        return data.group(1) 
    else: 
        mic_pattern = r'([<>=]{0,2}\.\d{1,5})' 
        lookup = re.compile(mic_pattern) 
         
        data = re.search(lookup, item) 
        if data is not None: 
            return data.group(1) 
        else: 
            return 'Non-mic' 
 
def convert_alpha_to_numeric_mic(x, **kwargs): 
    if x['ORG_ABBR'] == 'PSAR' and x['ANTIBIOTIC'] in psar_bkpt.index: 
        if x['MIC_CONTENTS'] == 'R': 
            return '{}'.format(psar_bkpt.loc[x['ANTIBIOTIC'], 'r']) 
        elif x['MIC_CONTENTS'] == 'I': 
            return 'Between {} and {}'.format(psar_bkpt.loc[x['ANTIBIOTIC'], 's'], 
psar_bkpt.loc[x['ANTIBIOTIC'], 'r']) 
        elif x['MIC_CONTENTS'] == 'SS': 
            return '<={}'.format(psar_bkpt.loc[x['ANTIBIOTIC'], 's']) 
        else: 
            return x['MIC_CONTENTS'] 
 
    elif x['ORG_ABBR'] == 'ABAUM' and x['ANTIBIOTIC'] in abaum_bkpt.index: 
        if x['MIC_CONTENTS'] == 'R': 
            return '{}'.format(abaum_bkpt.loc[x['ANTIBIOTIC'], 'r']) 
        elif x['MIC_CONTENTS'] == 'I': 
            return 'Between {} and {}'.format(abaum_bkpt.loc[x['ANTIBIOTIC'], 's'], 
abaum_bkpt.loc[x['ANTIBIOTIC'], 'r']) 
        elif x['MIC_CONTENTS'] == 'SS': 
            return '<={}'.format(abaum_bkpt.loc[x['ANTIBIOTIC'], 's']) 
        else: 
            return x['MIC_CONTENTS'] 
 
    elif x['ANTIBIOTIC'] in ent_bkpt.index: 
        if x['MIC_CONTENTS'] == 'R': 
            return '{}'.format(ent_bkpt.loc[x['ANTIBIOTIC'], 'r']) 
        elif x['MIC_CONTENTS'] == 'I': 
            return 'Between {} and {}'.format(ent_bkpt.loc[x['ANTIBIOTIC'], 's'], 
ent_bkpt.loc[x['ANTIBIOTIC'], 'r']) 
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        elif x['MIC_CONTENTS'] == 'SS': 
            return '<={}'.format(ent_bkpt.loc[x['ANTIBIOTIC'], 's']) 
        else: 
            return x['MIC_CONTENTS'] 
         
def fix_between(x): 
    if re.search('Between', x): 
        nums = re.search('Between (.*) and (.*)', x).groups() 
        low, high = int(float(nums[0])), int(float(nums[1])) 
        exp1, exp2 = int(np.log2(low)), int(np.log2(high)) 
        if exp2 - exp1 == 1: 
            return 'Empty' 
        else: 
            func_num = (exp2 - exp1) + 1 
            mic_range = np.logspace(exp1, exp2, num=func_num, base=2) 
            return str(float(mic_range[1])) 
    else: 
        return x       
     
def fix_bkpt_decimal(x): 
    if re.search('\.1$', x): 
        num = float(x) 
        num = (num - 0.1) * 2 
        return str(num) 
    else: 
        return x             
 
def round_mics(mic): 
    exponent = round(np.log2(mic)) 
    return (2 ** exponent) 
 
def mic_final(x): 
    if x == 'Non-mic': 
        return 'Non-mic' 
    
    elif re.search('>|>=', x): 
        mic = re.search(r'>[=]?(\d+\.?\d{0,5})', x).group(1) 
        mic = round_mics(float(mic)) 
        mic = mic * 2 
        return str(mic) 
 
    elif re.search('<|<=', x): 
        mic = re.search(r'<[=]?(\d+\.?\d{0,5})', x).group(1) 
        mic = round_mics(float(mic)) 
        return str(mic) 
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    else: 
        mic = round_mics(float(x)) 
        return str(mic) 
 
def multiindex_pivot(df, columns=None, values=None): 
    #https://github.com/pandas-dev/pandas/issues/23955 
    names = list(df.index.names) 
    df = df.reset_index() 
    list_index = df[names].values 
    tuples_index = [tuple(i) for i in list_index] # hashable 
    df = df.assign(tuples_index=tuples_index) 
    df = df.pivot(index="tuples_index", columns=columns, values=values) 
    tuples_index = df.index  # reduced 
    index = pd.MultiIndex.from_tuples(tuples_index, names=names) 
    df.index = index 
    return df 
 
# Setup paths 
home_folder_path = os.path.abspath(os.getcwd()) 
combined_folder_path = '{}/Combined_raw'.format(home_folder_path) 
combined_in_path = '{}/combined_raw_2010-2019.csv'.format(combined_folder_path) 
out_folder_path = '{}/Long_to_wide_output'.format(home_folder_path) 
 
bkpt_path = '{}/BKPTs'.format(home_folder_path) 
ent_bkpt_path = '{}/CLSI ENTERO (corrections).csv'.format(bkpt_path) 
psar_bkpt_path = '{}/CLSI PSAR.csv'.format(bkpt_path) 
abaum_bkpt_path = '{}/CLSI ABAUM.csv'.format(bkpt_path) 
 
# Read in data 
combined = pd.read_csv(combined_in_path, low_memory=False) 
 
# Remove lines that have no information for NAM 
print('Initial shape: ', combined.shape) 
combined = combined.loc[~combined['NAM'].isna()] 
print('Shape after dropping missing NAM: ', combined.shape) 
 
# Convert CDATE to datetime object and create year and month columns 
combined['CDATE'] = pd.to_datetime(combined['CDATE']) 
combined['YEAR_DT'] = combined['CDATE'].dt.year 
combined['MONTH_DT'] = combined['CDATE'].dt.month 
 
# Get data out of parentheses 
combined['MIC_CONTENTS'] = combined['MIC'].apply(pull_out_parentheses) 
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# Read in bkpt files 
ent_bkpt = pd.read_csv(ent_bkpt_path, index_col = 'abx') 
psar_bkpt = pd.read_csv(psar_bkpt_path, index_col = 'abx') 
abaum_bkpt = pd.read_csv(abaum_bkpt_path, index_col = 'abx') 
 
# Replace R, I and SS with appropriate value in MIC_CONTENTS_2 
subset = combined.loc[combined['MIC_CONTENTS'].str.contains('^R$|^I$|^SS$')].copy() 
subset['MIC_CONTENTS_2'] = subset.apply(convert_alpha_to_numeric_mic, axis=1) 
subset['MIC_CONTENTS_2'] = subset['MIC_CONTENTS_2'].fillna('Empty') 
subset['MIC_CONTENTS_2'] = subset['MIC_CONTENTS_2'].apply(fix_between) 
subset['MIC_CONTENTS_2'] = subset['MIC_CONTENTS_2'].apply(fix_bkpt_decimal) 
 
# Assign the updated data in the main combined dataframe 
combined.loc[subset.index, 'MIC_CONTENTS_2'] = subset['MIC_CONTENTS_2'] 
 
# Copy over the MIC_CONTENTS data to MIC_CONTENTS_2 in rows not written by 
## the previous loc statement 
compliment = combined.index[~combined.index.isin(subset.index)] 
combined.loc[compliment, 'MIC_CONTENTS_2'] = combined.loc[compliment, 'MIC_CONTENTS'] 
 
# Create a column with all the numeric data in MIC_CONTENTS_2 without the 
## logical operator attached (<>=) 
combined['Num_MIC_CONTENTS'] = combined['MIC_CONTENTS_2'].apply(mic_search) 
 
# Clean operator signs from MICs and round to nearest log_2 dilution 
combined['MIC_FINAL'] = combined['Num_MIC_CONTENTS'].apply(mic_final) # Might change 
 
# # Fix MICVAL in 2012 when fnlmic was used 
# combined['MICVAL_original'] = combined['MICVAL'] 
# combined.loc[combined['MICVAL'].isna(), 'MICVAL'] = combined.loc[combined['MICVAL'].isna(), 
'fnlmic'] 
# combined = combined.loc[~combined['MICVAL'].isna()] 
# print('Shape after dropping missing MICVAL: ', combined.shape) 
 
# Aggregated BATT column and pull MIC data from MIC text 
combined['BATT_AGGR'] = combined['BATT'].map(BATT_dict) 
 
antibiotic_abx_drop = [ 
    'CD', 
    'CEFTA', 
    'DAPT', 
    'ERYT', 
    'FOSA', 
    'GMS', 
    'LZD', 
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    'MXFL', 
    'OX', 
    'PEN', 
    'RIF', 
    'STS', 
    'SYD', 
    'TIM', 
    'VAN' 
] 
 
antibiotic_non_abx_out = [ 
    'ACN', 
    'ACNI', 
    'ACNIR', 
    'AMPC', 
    'CEPH', 
    'CFX30', 
    'CHLR', 
    'DXC1', 
    'DXC10', 
    'DXC2', 
    'DXC3', 
    'DXC4', 
    'DXC5', 
    'DXC6', 
    'DXC7', 
    'DXC8', 
    'DXC9', 
    'ECT', 
    'ECTL', 
    'ECTR', 
    'EPM', 
    'EPML', 
    'EPMR', 
    'ESBLP', 
    'ETZ', 
    'ETZL', 
    'ETZR', 
    'MBLAC', 
    'MBLI', 
    'MBLIE', 
    'MBLIER', 
] 
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# Antibiotic items left after pulling out the surveillance methods, meth exclude, and 
antibiotic_non_abx_out 
remaining_abx_to_pull = 'HTEST ZSCOM MCIM DTEST SUSCOM ADDCOM STRPID ^ME$ 
^TIC$' 
remaining_abx_to_pull = re.sub(' ', '|', remaining_abx_to_pull) 
 
# Get rid of antibiotics that are irrelevant to Gram-negatives 
combined = combined.loc[~combined['ANTIBIOTIC'].isin(antibiotic_abx_drop)] 
 
extra_info = combined.loc[ 
    (combined['ANTIBIOTIC'].isin(antibiotic_non_abx_out))| 
    (combined['ANTIBIOTIC'].str.contains(remaining_abx_to_pull)) 
] 
extra_info_path = '{}/Non-mic_information.csv'.format(out_folder_path) 
extra_info.to_csv(extra_info_path, index=False) 
 
# Methods to disinclude in analysis 
# Save out the filtered data for later use if needed 
meth_exclude = ['AERID', 'SEROL', 'SYNRGY', 'YTID', 'ZBLSUS', 'STLC'] 
meth_string_exclude = '|'.join(meth_exclude) 
 
surv = combined.loc[combined['METH'].str.contains(meth_string_exclude)] 
add_surv = combined.loc[combined['BATT_AGGR'] == 'Surveillance'] 
surv = pd.concat([surv, add_surv], sort=False) 
surv_out_path = '{}/surveillance_data_with_other_methods.csv'.format(out_folder_path) 
surv.to_csv(surv_out_path, index=False) 
 
combined = combined.loc[~combined['METH'].str.contains(meth_string_exclude)] 
print('Shape after removing METH rows in meth_exclude', combined.shape) 
combined = combined.loc[combined['BATT_AGGR'] != 'Surveillance'] 
print('Final shape of surv: ', surv.shape) 
print('Shape after removing surveillance isolates', combined.shape) 
combined = combined.loc[ 
    (~combined['ANTIBIOTIC'].isin(antibiotic_non_abx_out)) & 
    (~combined['ANTIBIOTIC'].str.contains(remaining_abx_to_pull)) 
] 
print('Shape after removing the rows not associated with an MIC: ', combined.shape) 
 
# Save data where MIC data is missing for later processing if needed 
missing_mic = combined.loc[ 
    (combined['MIC_FINAL'] == 'Non-mic') | 
    (combined['MIC_FINAL'] == '0.0') 
] 
combined = combined.loc[ 
    (combined['MIC_FINAL'] != 'Non-mic') & 
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    (combined['MIC_FINAL'] != '0.0') 
] 
missing_out_path = '{}/data_missing_numeric_mic.csv'.format(out_folder_path) 
missing_mic.to_csv(missing_out_path, index=False) 
 
print('Shape of missing_mic dataframe: ', missing_mic.shape) 
print('Shape after removing "Missing" and "0.0" values in MIC_FINAL: ', combined.shape) 
 
# When using groupby-transform to get tags for reducing data, have to remove BATT_AGGR 
because the BATT code QTC is not in BATT_dict 
# I fixed this issue by adding 'QTC' to the dictionary and mapping it with ??? 
 
transform_group_cols = [ 
    'FILE', 
#     'NAM', 
    'HOSP',  
#     'BATT',  
    'BATT_AGGR',  
#     'ORGCOD3',  
#     'btorgcode',  
#     'ORG_ABBR',  
#     'SPECIES',  
    'CDATE', 
    'ACC',  
#     'SOURCE', 
#     'LOC',  
#     'YEAR_DT', 
#     'MONTH_DT', 
    'ANTIBIOTIC' 
] 
 
# Using transform to add tags for selection (See Notes for more detail) 
combined['MIC_FINAL'] = pd.to_numeric(combined['MIC_FINAL']) 
combined['FINAL_is_max'] = 
combined.groupby(transform_group_cols)['MIC_FINAL'].transform('max') 
combined['NUM_MIC_FINAL_COUNT'] = 
combined.groupby(transform_group_cols)['MIC_FINAL'].transform('count') 
 
# Saving isolates with multiple mics per group for later analysis 
mult_mics = combined.loc[combined['NUM_MIC_FINAL_COUNT'] >= 2] 
print('Shape of mult_mics is: ', mult_mics.shape) 
 
mult_mics_out_path = 
'{}/Have_multiple_mic_values_per_isolate_group.csv'.format(out_folder_path) 
mult_mics.to_csv(mult_mics_out_path, index=False) 
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combined = combined.loc[combined['MIC_FINAL'] == combined['FINAL_is_max']] 
print('Shape after dropping the rows not containing the max MIC for any given antibiotic, this is 
useful to remove some duplicate rows: ', combined.shape) 
 
pivot_cols = [ 
    'FILE', 
    'NAM', 
    'HOSP',  
    'BATT',  
    'BATT_AGGR', 
    'ORG', 
    'ORGCOD3',  
    'btorgcode',  
    'ORG_ABBR',  
    'SPECIES',  
    'ACC',  
    'SOURCE', 
    'LOC',  
    'CDATE', 
    'YEAR_DT', 
    'MONTH_DT', 
    'METH', 
    'ANTIBIOTIC', 
    'Num_MIC_CONTENTS', 
    'MIC_FINAL', 
#     'INTERPFNL' 
] 
 
# Remove the pesky 6 rows in groupby remaining (See NOTES) 
# remove_dup_cols = pivot_cols[:15] 
combined = combined[pivot_cols].drop_duplicates() 
print('Shape after dropping the last duplicates: {}'.format(combined.shape)) 
 
# Long to wide conversion and joining of data 
index_cols = [col for col in pivot_cols if col not in ['ANTIBIOTIC', 'Num_MIC_CONTENTS', 
'MIC_FINAL']] 
combined = combined.set_index(index_cols) 
 
wide_raw_mic = multiindex_pivot(combined, columns='ANTIBIOTIC', 
values='Num_MIC_CONTENTS') 
wide_mic_final = multiindex_pivot(combined, columns='ANTIBIOTIC', values='MIC_FINAL') 
# wide_interpfnl = multiindex_pivot(combined, columns='ANTIBIOTIC', values='INTERPFNL') 
 
cols = wide_raw_mic.columns 
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cols = [col + '_Raw_MIC' for col in cols] 
wide_raw_mic.columns = cols 
 
cols = wide_mic_final.columns 
cols = [col + '_MIC_FINAL' for col in cols] 
wide_mic_final.columns = cols 
 
# cols = wide_interpfnl.columns 
# cols = [col + '_INTERPFNL' for col in cols] 
# wide_interpfnl.columns = cols 
 
print('Shape of wide_raw_mic: ', wide_raw_mic.shape, 'Shape of wide_mic_final: ', 
wide_mic_final.shape) #'Shape of wide_interpfnl: ', wide_interpfnl.shape) 
 
joined = wide_raw_mic.join(wide_mic_final, how='left')#.join(wide_interpfnl, how='left') 
joined = joined.reset_index() 
# joined['BATT_AGGR'] = joined['BATT'].map(BATT_dict) 
print('Shape of joined dataframe: ', joined.shape) 
 
# Write the final output of analysis 
joined_out_path = '{}/wide_combined_data_no_surv_max_mic_final.csv'.format(out_folder_path) 
joined.to_csv(joined_out_path, index=False) 
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Create_micro_index_cultures_V2.ipynb 

# This file will combine the susceptibiltity data with the CCTS demographic data 
# It will also perform some cleaning steps in the process 
# This is also where a patient will be classified as CRE, CNS, or CSE or not included 
 
import pandas as pd 
import numpy as np 
import re 
import os 
import datetime as dt 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 500) 
pd.set_option('max_colwidth', None) 
 
home_folder_path = os.getcwd() 
 
cohort_path = r'{}/COHORT_with_id.csv'.format(home_folder_path) 
cohort = pd.read_csv(cohort_path) 
 
ods_path = r'{}/ENCNTR_ODS_with_id.csv'.format(home_folder_path) 
ods = pd.read_csv(ods_path) 
 
scm_path = r'{}/SCM_BED_ORDER_with_id.csv'.format(home_folder_path) 
scm = pd.read_csv(scm_path) 
 
patnt_path = r'{}/PATNT_ODS_with_id.csv'.format(home_folder_path) 
patnt = pd.read_csv(patnt_path) 
 
def return_merged_susc_and_key(): 
    home_folder_path = os.getcwd() 
    susc_path = r'{}/entero_wide_interp_needs_dedup.csv'.format(home_folder_path) 
    key_path = r'{}/Patient_id_key_w_peds_col.csv'.format(home_folder_path) 
 
    susc = pd.read_csv(susc_path, parse_dates = ['CDATE'], low_memory=False) 
    key = pd.read_csv(key_path, parse_dates = ['ADMT_DT', 'DISCHRG_DT']) 
 
    susc['HOSP'] = susc['HOSP'].astype(str) 
    key['MRN'] = key['MRN'].astype(str) 
     
    print(f'Susc shape: {susc.shape}, Num unique pts: {susc["HOSP"].nunique()}') 
    print(f'Key shape: {key.shape}, Num unique pts: {key["MRN"].nunique()}') 
    merge = susc.merge(key, 'inner', left_on = 'HOSP', right_on = 'MRN') 
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    print(f'Merge shape after merging susc and key on HOSP/MRN: {merge.shape}, Num unique 
pts: {merge["HOSP"].nunique()}') 
    # Changing to date removes the hr,min,sec 
    ## Many CDATEs didn't match because the extra info 
    # Create a CDATE that is adjusted by 24 hours to allow cultures in the ER 
    # ^^ This is likely an issue because it doesn't usually happen and creates incongruence when 
calculating time to index from admission date 
    ## When looking in the ORDERS file where these culture orders are entered, the date time is 
slightly before that ADMT_DT 
    one_day = dt.timedelta(days = 1) 
    merge['CDATE'] = merge['CDATE'].dt.date 
    merge['ADMT_DT_ROUNDED'] = merge['ADMT_DT'].dt.date 
    merge['DISCHRG_DT_ROUNDED'] = merge['DISCHRG_DT'].dt.date 
#     merge.loc[:, 'CDATE_ADJ'] = merge['CDATE'] + one_day 
    merge.loc[ 
        (merge['CDATE'] <= merge['DISCHRG_DT_ROUNDED'])& 
        (merge['CDATE'] >= merge['ADMT_DT_ROUNDED']), 
        'IN_DT_RANGE' 
    ] = True 
 
    merge['IN_DT_RANGE'] = merge['IN_DT_RANGE'].fillna(False) 
    # Investigate MRNs that do not have True in any IN_DT_RANGE 
    merge = merge.loc[merge['IN_DT_RANGE'] == True] 
    print(f'Merge shape after dropping rows where CDATE didnt fall in ADMT-DISCHARGE 
interval: {merge.shape}, Num unique pts: {merge["HOSP"].nunique()}') 
    # Weird issue where this column is read in as string, but when trying to convert to bool, only 
True values left. 
    # This should ensure that the data are boolean type no matter what 
    # If for whatever reason it was read in as boolean next time, using replace instead of map will 
prevent NaNs. 
    merge['PEDIATRIC_ENCNTR'] = merge['PEDIATRIC_ENCNTR'].replace({'True':True, 
'False':False}) 
    merge = merge.loc[merge['PEDIATRIC_ENCNTR'] == False] 
    merge = merge.drop('PEDIATRIC_ENCNTR', axis=1) 
    print(f'Merge shape after dropping pediatric pts: {merge.shape}, Num unique pts: 
{merge["HOSP"].nunique()}') 
    return merge 
 
def gather_earliest_admission_dates(x): 
    ''' 
    This will be a function to pass to pandas.groupby.apply so it needs to take a whole dataframe. I 
will 
    ensure that I dont lose cultures that happen maybe in the ER and then IP if the ENCNTR_ID 
changes 
    ''' 
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    one_day = dt.timedelta(days=1) 
    earliest_admission = x.unique().min() 
    possible_times = [ 
        earliest_admission + one_day, 
        earliest_admission, 
        earliest_admission - one_day 
    ] 
    return possible_times 
 
def tested_min_admt(x): 
    """ 
    Will be used to create a boolean column to test whether the admit date is found in a list 
    of dates before, equal to, or after the minimum admit date for any given MRN. More robust 
    selection of patients to avoid different admission dates in the ED and outpatient clinics 
    than the hospitalization (these dates will always come after) 
    """ 
    date = x['ADMT_DT_ROUNDED'] 
    dt_range = x['MIN_ADMT_DT_LIST'] 
    if date in dt_range: 
        return True 
    else: 
        return False 
 
# Combine susceptibility information with file key 
key = return_merged_susc_and_key() 
 
# Perform appropriate type conversions 
for df in [key, cohort, ods, scm, patnt]: 
    for col in ['MRN', 'ENCNTR_ID', 'FULL_ENCNTR_ID', 'ID_combined']: 
        df[col] = df[col].astype(str) 
    df['ENCNTR_ID'] = df['ENCNTR_ID'].str.replace('\.0', '', regex = True) 
    df['FULL_ENCNTR_ID'] = df['FULL_ENCNTR_ID'].apply(lambda x: str(round(float(x)))) 
    for col in ['ADMT_DT', 'DISCHRG_DT', 'ADMIT_DTM', 'DISCHARGE_DTM']: 
        if col in df: 
            df[col] = pd.to_datetime(df[col]) 
            new_col_name = '{}_ROUNDED'.format(col) 
            df.loc[:, new_col_name] = df[col].dt.date 
# shared columns 
cohort_ods_merge_cols = [ 
    'MRN', 
    'ENCNTR_ID', 
    'FULL_ENCNTR_ID', 
    'ID_combined', 
    'ADMT_DT', 
    'DISCHRG_DT', 
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    'ADMT_DT_ROUNDED', 
    'DISCHRG_DT_ROUNDED', 
] 
 
# Modifying other shared columns to merge nicely or dropping if they are irrelevant (File_name) 
cohort = cohort.drop('File_name', axis=1) 
cohort['ADMT_SRVC_CD_DES'] = cohort['ADMT_SRVC_CD_DES'].fillna('MISSING') 
 
ods = ods.drop('File_name', axis=1) 
ods['ADMT_SRVC_CD_DES'] = ods['ADMT_SRVC_CD_DES'].fillna('MISSING') 
 
print(f'There are {cohort["MRN"].nunique()} patients in cohort and {ods["MRN"].nunique()} in ods') 
# Combine cohort and ods info while limiting the dataframes to the patients who have culture data 
cohort_ods = cohort.\ 
                merge(ods, how='inner', on = [col for col in cohort.columns if col in ods.columns]).\ 
                merge(key[cohort_ods_merge_cols].drop_duplicates(), how='inner', 
on=cohort_ods_merge_cols) 
cohort_ods = cohort_ods.drop_duplicates() 
print(f'There are {cohort_ods["MRN"].nunique()} patients in cohort ods') 
# Set up the scm the same way 
patient_ids = ['MRN', 'ENCNTR_ID', 'FULL_ENCNTR_ID', 'ID_combined'] 
scm = scm.merge(key[patient_ids], how='inner', on = patient_ids).drop_duplicates() 
 
# Only keep patients who are ever considered inpatient during their first decade admission 
cohort_ods = cohort_ods.loc[cohort_ods['PATNT_TYP_CD_DES'] == 'INPATIENT'] 
print(f'Number of patients in cohort_ods remaining after dropping non-INPATIENT encounters: 
{cohort_ods["MRN"].nunique()}') 
 
# Get the Full encounter id df and separate it from the main df 
full_encntr_df = key.loc[key['ENCNTR_ID'] != key['FULL_ENCNTR_ID']] 
key = key.loc[key['ENCNTR_ID'] == key['FULL_ENCNTR_ID']] 
print(f'Number of patients in key when only keeping encntr == full_encntr: 
{key["HOSP"].nunique()}') 
 
# Ensure patient has bed orders 
cohort_ods = cohort_ods.loc[cohort_ods['MRN'].isin(scm['MRN'].unique())] 
 
# Remove Negative LOS 
def calculate_los(df, date_1, date_2): 
    los_days = (df[date_1] - df[date_2]).dt.days 
    los_seconds = (df[date_1] - df[date_2]).dt.seconds 
    los_days_decimal = los_seconds / (60 * 60 * 24) 
    los_final = los_days + los_days_decimal 
    return los_final.apply(round) 
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cohort_ods.loc[:, 'LOS'] = calculate_los(cohort_ods, 'DISCHRG_DT', 'ADMT_DT') 
cohort_ods = cohort_ods.loc[cohort_ods['LOS'] >= 0] 
print(f'Number of patients in cohort_ods after removing those who had negative LOS: 
{cohort_ods["MRN"].nunique()}') 
 
# Extract and attach ICU info to cohort_ods 
def extract_icu_data(df): 
    icu_ever = df.groupby('MRN')['ICU'].agg(**{'ICU_EVER':lambda x: (x == 1).any()}).reset_index() 
    icu_data = df.loc[scm['ICU'] == 1].drop_duplicates(subset=['ORDER_END_DTM', 
'ORDER_START_DTM']) 
    icu_data.loc[:, 'ICU_LOS'] = icu_data.groupby('MRN')['ORDER_DAYS'].transform(np.sum) 
    return icu_ever.merge(icu_data[['MRN', 'ICU_LOS']].drop_duplicates(), how='left', on = 'MRN') 
 
scm_icu_data = extract_icu_data(scm) 
cohort_ods = cohort_ods.merge(scm_icu_data, how = 'inner', on = 'MRN') 
 
# Separate patients into CR groups and build time to event variables 
def group_selection(df): 
    # Anywhere that the CRE_GROUP is true is CRE. CSE should be the same between the 
CNS/CRE_GROUPs, so if I label the CRE_GROUP the same as the CNS GROUP 
    # I should then be able to map the False values to be something like DROP to signifiy that 
these patients are CNS but not CRE and don't belong in that  
    # part of the study 
    earliest_culture = df.loc[df['CDATE'] == df['EARLIEST_CULTURE']] 
    earliest_culture.loc[:, 'CRE_GROUP'] = 
earliest_culture.groupby('ID_combined')['Carbapenem_resistent'].transform(lambda x: 
(x==True).any()) 
    earliest_culture.loc[:, 'CNS_GROUP'] = 
earliest_culture.groupby('ID_combined')['Carbapenem_non_susceptible'].transform(lambda x: 
(x==True).any()) 
    earliest_culture.loc[:, 'CNS_GROUP'] = earliest_culture['CNS_GROUP'].map({True:'CNS', 
False:'CSE'}) 
    earliest_culture.loc[earliest_culture['CNS_GROUP'] == 'CSE', 'CRE_GROUP'] = 
earliest_culture.loc[earliest_culture['CNS_GROUP'] == 'CSE', 'CNS_GROUP'] 
    earliest_culture['CRE_GROUP'] = earliest_culture['CRE_GROUP'].map({True:'CRE', 
False:'CNS', 'CSE':'CSE'}) 
    return earliest_culture[['MRN', 'ENCNTR_ID', 'FULL_ENCNTR_ID', 'CRE_GROUP', 
'CNS_GROUP']].drop_duplicates() 
 
     
# key.loc[:, 'EARLIEST_CULTURE'] = key.groupby('MRN')['CDATE'].transform(np.min) 
# I think I have to use ENCNTR_ID here because I want the earliest culture from each 
hospitalization 
key.loc[:, 'EARLIEST_CULTURE'] = key.groupby('ID_combined')['CDATE'].transform(np.min) 
resistance_group = group_selection(key) 
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key = key.merge(resistance_group, how = 'inner', on = ['MRN', 'ENCNTR_ID', 
'FULL_ENCNTR_ID']) 
key.loc[:, 'TIME_TO_CULTURE'] = (pd.to_datetime(key['CDATE']).dt.date - 
pd.to_datetime(key['ADMT_DT']).dt.date).dt.days 
print(f'Number of patients in key after doing earliest culture: {key["MRN"].nunique()}') 
 
# patnt has extra demographic columns other than cohort 
cohort_ods = cohort_ods.merge(patnt, how = 'inner', on = [col for col in patnt.columns if col in 
cohort_ods.columns]) 
 
# It coerces the values to floating point values and adds trailing .0 
cohort_ods['ZIP_CD'] = cohort_ods['ZIP_CD'].str.replace(r'\.0', '') 
cohort_ods['ZIP_CD'] = cohort_ods['ZIP_CD'].fillna('Missing Zipcode') 
cohort_ods = cohort_ods.drop_duplicates() 
 
# Missing demographic data 
remove_race_cd_des = r'|'.join([ 
    'UNREPORT', 
    'RACIAL' 
]) 
 
# print(cohort_ods.loc[cohort_ods['RACE_CD_DES'].str.contains(remove_race_cd_des, flags = 
re.I, na = False), 'MRN'].nunique()) 
 
# Unneeded columns 
cohort_cols_to_drop = [ 
    'ETHNCTY_CD_DES', 
    'ZIP_CD_4', 
    'CNTRY_CD_DES', 
    'MARTL_STAT_CD_DES' 
] 
 
# Clean race column data 
race_cd_des_map = { 
    'WHITE':'CAUCASIAN', 
    'BLACK/AFR AMERI':'BLACK/AFRICAN AMERICAN', 
    'SPANISH AMRICAN':'SPANISH AMERICAN', 
    'HAWAIIAN/PACISL':'HAWAIIAN/PACIFIC ISLANDER', 
    'AM INDIAN/ALASK':'AMERICAN INDIAN/ALASKAN', 
    'OTHER PACIF ISL':'HAWAIIAN/PACIFIC ISLANDER' 
} 
cohort_ods['RACE_CD_DES'] = cohort_ods['RACE_CD_DES'].apply(lambda x: 
race_cd_des_map.get(x, 'UNSPECIFIED')) 
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# cohort_ods = 
cohort_ods.loc[~cohort_ods['ADMT_SRC_CD_DES'].str.contains(remove_admt_src_cd_des)] 
# Since I am not conditioning on Race, this being missing is not an issue 
# cohort_ods = cohort_ods.loc[~cohort_ods['RACE_CD_DES'].str.contains(remove_race_cd_des, 
na=False)] 
cohort_ods = cohort_ods.drop(cohort_cols_to_drop, axis=1) 
# cohort_ods.loc[:, 'MORTALITY'] = cohort_ods.apply(combine_dischrg_stat_disp, axis=1) 
cohort_ods.loc[:, 'MORTALITY'] = 
(cohort_ods['DISCHRG_DISP_CD_DES'].str.contains('DEATH')|cohort_ods['DISCHRG_STAT_C
D_DES'].str.contains('DEATH')) 
cohort_ods.loc[:, 'HOSPICE'] = 
(cohort_ods['DISCHRG_DISP_CD_DES'].str.contains('HOSPICE')|cohort_ods['DISCHRG_STAT
_CD_DES'].str.contains('HOSPICE')) 
cohort_ods.loc[:, 'COMPOSITE_OUTCOME'] = 
cohort_ods['MORTALITY']|cohort_ods['HOSPICE'] 
 
# Some patients have mult rows because they used two different insurances 
def fix_duplicate_insurance_data(data): 
    # These patients had duplicated Insurance info, so I joined the values into a single string 
    if data['MRN'].unique()[0] in ['12868147', '3397403', '8435158']: 
        return ', '.join(data['PRIM_INSRNC_CD_DES'].unique()) 
    else: 
        return data['PRIM_INSRNC_CD_DES'].unique()[0] 
     
dedup_insurance = cohort_ods\ 
                    .groupby('ID_combined')\ 
                    .apply(fix_duplicate_insurance_data)\ 
                    .reset_index()\ 
                    .rename(columns={0:'PRIM_INSRNC_CD_DES_MODIFIED'}) 
cohort_ods = cohort_ods.merge(dedup_insurance, how = 'inner', on = 
'ID_combined').drop('PRIM_INSRNC_CD_DES', axis=1) 
 

key = key.loc[key['ID_combined'].isin(cohort_ods['ID_combined'].unique())] 
print(f'Shape of data after merging susc data with demographic data: {key.shape}, Num unique 
pts: {key["HOSP"].nunique()}') 
 
# out_key_path = r'{}/micro_index_cultures_final.csv'.format(susc_folder_path) 
# out_cohort_ods_path = r'{}/index_cultures_demographics.csv'.format(susc_folder_path) 
 
# I am testing what will happen if I omit the step of removing patients who didn't have an abx 
order 
all_hosp_folder = 'all_hospitalizations' 
out_key_path = r'{}/micro_index_cultures_final.csv'.format(all_hosp_folder) 
out_cohort_ods_path = r'{}/index_cultures_demographics.csv'.format(all_hosp_folder) 
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cohort_ods.to_csv(out_cohort_ods_path, index=False) 
key.to_csv(out_key_path, index=False) 
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Validate_index.ipynb 

# This script creates a more accurate aggregation of batt and source data into the BATT_AGGR 
column 
# It also ensures that only a single encounter is included for each patient 
  # could break if the discharge of one encounter is the admit of another encounter, which did 
occur 
 
import pandas as pd 
import os 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
 
home_folder_path = os.getcwd() 
 
index_path = r'{}/micro_index_cultures_final.csv'.format(home_folder_path) 
index = pd.read_csv(index_path) 
 
demo_path = r'{}/index_cultures_demographics.csv'.format(home_folder_path) 
demo = pd.read_csv(demo_path) 
 
batt_aggr_of_interest = [ 
    'Blood', 
    'Intra-abdominal', 
    'Respiratory', 
    'Skin/Soft Tissue', 
    'Urine', 
] 
 
batt_source_map = { 
    "('ROUTC', 'ABD', 'Other')":'Intra-abdominal', 
    "('ROUTC', 'ABSC', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'ABDNL', 'Other')":'Intra-abdominal', 
    "('ROUTC', 'ABFL', 'Other')":'Intra-abdominal', 
    "('ROUTC', 'WND', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'BILE', 'Other')":'Intra-abdominal', 
    "('ROUTC', 'PERI', 'Other')":'Intra-abdominal', 
    "('ICAP', 'GROIN', 'Other')":'Genitals', 
    "('ROUTC', 'PENIS', 'Other')":'Genitals', 
    "('ROUTC', 'PERIN', 'Other')":'Genitals', 
    "('ROUTC', 'FOOT', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'LEG', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'BRST', 'Other')":'Skin/Soft Tissue', 
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    "('ICAP', 'WND', 'Other')":'Skin/Soft Tissue', 
    "('ICAP', 'FOOT', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'ANKL', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'KID', 'Other')":'Urine', 
    "('ROUTC', 'ARM', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'INCN', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'BILED', 'Other')":'Intra-abdominal', 
    "('ICAP', 'TRAC', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'FING', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'DCATH', 'Other')":'Blood', 
    "('ROUTC', 'SNDR', 'Other')":'HEENT', 
    "('ROUTC', 'BRONCH', 'Other')":'Respiratory', 
    "('ROUTC', 'PRENAL', 'Other')":'Genitals', 
    "('ROUTC', 'NECK', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'PEGS', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'HIP', 'Other')":'Skin/Soft Tissue', 
    "('ICAP', 'URINE', 'Other')":'Urine', 
    "('ICAP', 'SACRUM', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'PERITO', 'Other')":'Intra-abdominal', 
    "('ADDSUS', 'BLUD', 'Other')":'Blood', 
    "('ROUTC', 'TOE', 'Other')":'Skin/Soft Tissue', 
    "('ICAP', 'ABD', 'Other')":'Intra-abdominal', 
    "('ROUTC', 'PANCR', 'Other')":'Intra-abdominal', 
    "('ROUTC', 'SIN', 'Other')":'HEENT', 
    "('ROUTC', 'CFSIN', 'Other')":'Cystic Fibrosis Respiratory', 
    "('ROUTC', 'GROIN', 'Other')":'Genitals', 
    "('ROUTC', 'LIVER', 'Other')":'Intra-abdominal', 
    "('ROUTC', 'PELVIS', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'ORBIT', 'Other')":'HEENT', 
    "('ICAP', 'STOL', 'Other')":'Stool', 
    "('ROUTC', 'HAND', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'THIGH', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'FACE', 'Other')":'HEENT', 
    "('ROUTC', 'CHEST', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'PNEAL', 'Other')":'Genitals', 
    "('ROUTC', 'LLLO', 'Other')":'Respiratory', 
    "('ROUTC', 'KNEE', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'IABD', 'Other')":'Intra-abdominal', 
    "('ROUTC', 'PELV', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'STUMP', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'AORT', 'Other')":'Blood', 
    "('ICAP', 'HAND', 'Other')":'Skin/Soft Tissue', 
    "('ROUTC', 'BONE', 'Other')":'Bone', 
    "('ROUTC', 'MOUTH', 'Other')":'HEENT', 
    "('ROUTC', 'TONG', 'Other')":'HEENT', 
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    "('ICAP', 'NARES', 'Other')":'SURV', 
    "('ICAP', 'AXIL', 'Other')":'SURV' 
} 
 
index['BATT_AGGR'] = index['BATT_AGGR'].replace('???', 'Other') 
index.loc[:, 'BATT_SOURCE_TO_MAP'] = index.apply(lambda x: (x['BATT'], x['SOURCE'], 
x['BATT_AGGR']), axis = 1).astype(str) 
index.loc[:, 'Mapped'] = index.apply(lambda x: 
batt_source_map.get(x['BATT_SOURCE_TO_MAP'], x['BATT_AGGR']), axis = 1) 
 
index.loc[index['BATT_AGGR'] == 'Other', 'BATT_AGGR'] = index.loc[index['BATT_AGGR'] == 
'Other', 'Mapped'] 
index = index.drop(['BATT_SOURCE_TO_MAP', 'Mapped'], axis = 1) 
 
# None of the surveillance cultures here are CRE, so won't have biasing effect 
index = index.loc[index['BATT_AGGR'] != 'SURV'] 
 
# Maybe drop this patient because can't determine whether she got culture at end of first 
encounter and returned to hospital or got it at the beginning 
# of the second encounter 
index = index.loc[index['MRN'] != 7148265] 
 
demo = demo.loc[demo['MRN'] != 7148265] 
demo = demo.drop_duplicates(subset = 'ID_combined') 
# Some patients only had surveillance cultures still, so I need to remove them demo also 
demo = demo.loc[demo['ID_combined'].isin(index['ID_combined'].unique())] 
 
# Write files 
index_out = r'{}/micro_index_cultures_final_validate.csv'.format(home_folder_path) 
demo_out = r'{}/index_cultures_demographics_validate.csv'.format(home_folder_path) 
 
index.to_csv(index_out, index = False) 
demo.to_csv(demo_out, index = False) 
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PULL_ACCESSION_DATE_FROM_ORDERS.ipynb 

# The culture date provided with the original culture data is only DD-MM-YYYY, which limits 
# Assessment of timing especially when admission and discharge dates are full datetimes 
# The orders file contains datetime information for culture data, so this was instead 
# used 
import pandas as pd 
import numpy as np 
import re 
import datetime 
import os 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 500) 
pd.set_option('max_colwidth', None) 
 
home_folder_path = os.getcwd() 
 
index_path = r'{}/micro_index_cultures_final_validate.csv'.format(home_folder_path) 
index = pd.read_csv(index_path) 
 
orders_path = r'{}/ORDERS_index_culture.csv'.format(home_folder_path) 
orders = pd.read_csv(orders_path) 
 
def group_selection(df): 
    earliest_culture = df.loc[df['CDATE_DT'] == df['EARLIEST_CULTURE_V2']] 
    earliest_culture.loc[:, 'CRE_GROUP_V2'] = 
earliest_culture.groupby('MRN')['Carbapenem_resistent'].transform(lambda x: (x==True).any()) 
    earliest_culture.loc[:, 'CNS_GROUP_V2'] = 
earliest_culture.groupby('MRN')['Carbapenem_non_susceptible'].transform(lambda x: 
(x==True).any()) 
    earliest_culture.loc[:, 'CNS_GROUP_V2'] = 
earliest_culture['CNS_GROUP_V2'].map({True:'CNS', False:'CSE'}) 
    earliest_culture.loc[earliest_culture['CNS_GROUP_V2'] == 'CSE', 'CRE_GROUP_V2'] = 
earliest_culture.loc[earliest_culture['CNS_GROUP_V2'] == 'CSE', 'CNS_GROUP_V2'] 
    earliest_culture['CRE_GROUP_V2'] = earliest_culture['CRE_GROUP_V2'].map({True:'CRE', 
False:'CNS', 'CSE':'CSE'}) 
    return earliest_culture[['ID_combined', 'CRE_GROUP_V2', 
'CNS_GROUP_V2']].drop_duplicates() 
 
# Find the appropriate orders 
cx = orders.loc[ 
    (orders['ORDER_NAME'].str.contains('accession', na = False, flags = re.I))| 
    (orders['SUMMARY_LINE'].str.contains('accession', na = False, flags = re.I))| 
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    (orders['TASK_SUMMARY_LINE'].str.contains('accession', na = False, flags = re.I)) 
] 
 
# extract the accession numbers 
assession_extract = cx['SUMMARY_LINE']\ 
                    .str.extract(r'Accession #: (.+)')\ 
                    .rename(columns = {0:'ACC'}) 
assession_extract['ACC'] = assession_extract['ACC'].str.strip() 
assession_extract.loc[:, 'ACC_strip'] = assession_extract['ACC'].apply(lambda x: str(x).split(' ')[0]) 
 
# Join the ACC data back to cx 
cx = cx.join(assession_extract['ACC_strip'], how = 'outer') 
cx = cx[['ID_combined', 'ORDER_NAME', 'SUMMARY_LINE', 'ORDER_ENTERED', 
'STOP_DTM', 'ORDER_PERFORMED_DTM', 'ACC_strip']].drop_duplicates() 
 
# Create the new CDATE 
cx['ORDER_PERFORMED_DTM'] = pd.to_datetime(cx['ORDER_PERFORMED_DTM']) 
cx.loc[:, 'ACC_MIN_DATE'] = cx.groupby(['ACC_strip', 
'ID_combined'])['ORDER_PERFORMED_DTM'].transform(np.min) 
 
# Keep this data in case I need it to characterize the non study isolates 
cx_out_path = '{}/accession_extracted_data.csv'.format(home_folder_path) 
cx.to_csv(cx_out_path, index = False) 
 
# Combine the ACC data with the index culture dataset 
merged = index\ 
            .merge(cx[['ID_combined', 'ACC_strip', 'ACC_MIN_DATE']], how = 'inner', left_on = 
['ID_combined', 'ACC'], right_on = ['ID_combined', 'ACC_strip'])\ 
            .drop_duplicates() 
merged.loc[:, 'ACC_MIN_DATE'] = pd.to_datetime(merged['ACC_MIN_DATE']).dt.floor('S') 
merged = merged.drop_duplicates().reset_index(drop = True) 
merged = merged.rename(columns = {'ACC_MIN_DATE':'CDATE_DT'}) 
merged = merged.drop('ACC_strip', axis = 1) 
 
# Now fix the date related columns with the cultures because of the new culture date 
merged.loc[:, 'EARLIEST_CULTURE_V2'] = 
merged.groupby('ID_combined')['CDATE_DT'].transform(np.min) 
 
# cr_group = merged\ 
#             .groupby('ID_combined')\ 
#             .apply(create_cr_group)\ 
#             .reset_index()\ 
#             .rename(columns = {0:'CR_GROUP_V2'}) 
# merged = merged.merge(cr_group) 
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resistance_group = group_selection(merged) 
merged = merged.merge(resistance_group, how = 'inner', on = 'ID_combined') 
 
# I truncate the time to culture for patients whose cultures come prior to the ADMT_DT bc that 
needs to be the anchored time 
for col in ['CDATE_DT', 'ADMT_DT', 'DISCHRG_DT']: 
    merged[col] = pd.to_datetime(merged[col]) 
     
merged.loc[:, 'TIME_TO_CULTURE'] = merged['CDATE_DT'] - merged['ADMT_DT'] 
merged.loc[:, 'TIME_TO_CULTURE_HOURS'] = (merged['TIME_TO_CULTURE'].dt.days * 24) + 
(merged['TIME_TO_CULTURE'].dt.seconds / (60**2)) 
merged.loc[:, 'TIME_TO_CULTURE_DAYS'] = merged['TIME_TO_CULTURE_HOURS'] / 24 
merged['TIME_TO_CULTURE_DAYS'] = merged['TIME_TO_CULTURE_DAYS'].apply(lambda x: 
0 if x < 0 else x) 
 
# No patient loses a culture that would've caused them to have a different CR_GROUP, so not 
going to worry 
# dates_match = merged.groupby('ID_combined').apply(lambda x: (x['EARLIEST_CULTURE'] == 
x['CDATE']).any()) 
# dates_mismatch_pts = dates_match.loc[dates_match == False].index.to_list() 
# merged = merged.loc[~merged['ID_combined'].isin(dates_mismatch_pts)] 
 
# Don't need to worry about these changes because in the few cases here, the difference is due 
to the fact that a CSE culture and CRE culture were taken on a single day, 
## but once the time was available, the CSE culture was performed slightly before the CRE 
culture. Modifying the DISCHRG_DT and treating these patients as crossovers should 
### be sufficient. 
# cr_group_change_ids = list(merged.loc[merged['CR_GROUP'] != merged['CR_GROUP_V2'], 
'ID_combined'].unique()) 
 
# The earliest culture in relation to the ADMT_DT is 34.5 hours, so a 48 hour prior to admt_dt 
search seems reasonable for orders (abx, steroid, pressor) 
merged_out_path = 
r'{}/micro_index_cultures_final_validate_accession.csv'.format(home_folder_path) 
merged.to_csv(merged_out_path, index = False) 
 
patients_removed_accession = list(index.loc[ 
    (~index['ID_combined'].isin(merged['ID_combined'])), 
    'ID_combined' 
].values) 
 
patients_removed = list(set(patients_removed_accession)) 
 
with open('{}/patients_removed_by_accession.txt'.format(home_folder_path), 'w') as text_writer: 
    for patient in patients_removed: 
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        text_writer.write('{}\n'.format(patient)) 
         
# Ensure that the demographics are updated with the index cultures 
demo_path = r'{}/index_cultures_demographics_validate.csv'.format(home_folder_path) 
demo = pd.read_csv(demo_path) 
 
for col in ['ADMT_DT', 'DISCHRG_DT']: 
    demo[col] = pd.to_datetime(demo[col]) 
     
demo = demo.merge( 
            merged[['ID_combined', 'ADMT_DT', 'DISCHRG_DT', 'EARLIEST_CULTURE_V2', 
'CRE_GROUP_V2', 'CNS_GROUP_V2']], 
            how = 'inner', 
            on = ['ID_combined', 'ADMT_DT', 'DISCHRG_DT'] 
        ).drop_duplicates() 
demo_path = 
r'{}/index_cultures_demographics_validate_accession.csv'.format(home_folder_path) 
demo.to_csv(demo_path, index = False) 
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Extract_index_info_from_large_files.ipynb 

# The data pulled by CCTS inculdes many patients which were not included in my study and data 
from subsequent hospitalizations 
# which were not analyzed 
# This script just pulls out the desired data from the massive csv files corresponding patients to 
make future processing 
# more efficient 
 
import pandas as pd 
import numpy as np 
import re 
import datetime 
import os 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 500) 
pd.set_option('max_colwidth', None) 
 
home_folder_path = os.getcwd() 
 
orders_path = r'ORDERS_with_id.csv'.format(home_folder_path) 
 
labs_path = r'LAB_with_id.csv'.format(home_folder_path) 
 
vitals_path = r'VITALS_with_id.csv'.format(home_folder_path) 
 
# index_path = r'{}/micro_index_cultures_final_modified_dx_fixed.csv'.format(home_folder_path) 
index_path = r'{}/micro_index_cultures_final_validate.csv'.format(home_folder_path) 
index = pd.read_csv(index_path) 
 
# The following is the code to extract data from the ORDERS.csv, but the LABS and VITALS 
datasets were processed identically 
# Select the orders for the patients included in the minimum culture date  
order_chunks = pd.read_csv(orders_path, chunksize = 100000, low_memory = False) 
orders_to_keep = [] 
for chunk in order_chunks: 
    orders_to_keep.append(chunk.loc[chunk['ID_combined'].isin(index_pts)]) 
orders_from_index_cultures = pd.concat(orders_to_keep, sort=False) 
orders_from_index_out = r'{}/ORDERS_index_culture.csv'.format(home_folder_path) 
orders_from_index_cultures.to_csv(orders_from_index_out, index=False)  
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Fix_calc_earliest_cre_cdate_and_calc_modified_dx_date.ipynb 

# The calculations for modified discharge data and earliest culture data didn't  
# operate well in the initial create_micro_index_cultures_V2 script 
# This script repairs this and isolates patients which would've crossed over 
# from the CSE to CRE group if that was implemented in the cohort study 
 
import pandas as pd 
import numpy as np 
import re 
import datetime 
import os 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 500) 
pd.set_option('max_colwidth', None) 
 
home_folder_path = os.getcwd() 
# index_cultures_path = r'{}/micro_index_cultures_final.csv'.format(home_folder_path) 
index_cultures_path = 
r'{}/micro_index_cultures_final_validate_accession.csv'.format(home_folder_path) 
index = pd.read_csv(index_cultures_path) 
 
# Convert the date containing columns to the appropriate date object type 
cols_to_dt_date = ['CDATE', 'CDATE_DT', 'ADMT_DT', 'DISCHRG_DT', 
'EARLIEST_CULTURE_V2'] 
 
for col in cols_to_dt_date: 
    index.loc[:, col] = pd.to_datetime(index[col]) 
         
# There was an issue with these two columns, will drop and refrom here. May need to rearrange 
when consolidating code for publication 
# index = index.drop(['EARLIEST_CRE_CX_DATE', 'MODIFIED_DISCHRG_DATE'], axis = 1) 
 
def calc_earliest_cre_cdate(data): 
    if (data['CRE_GROUP_V2'] == 'CRE').all(): # To join the CRE group, must have had a CRE on 
the first culture 
        return data['EARLIEST_CULTURE_V2'].min() # May have multiple rows if multiple cultures 
are available, just grab the "min" because this will just select one 
 
    else: # must be in the CSE group and will either cross over to CRE (will censor time after) or 
will never have CRE cx and return NaN 
        if (data['Carbapenem_resistent'] == False).all(): 
            return np.nan 
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        else: 
#             print('Patinet {} is cross over'.format(data['FULL_ENCNTR_ID'].min())) 
#             print(data.loc[data['Carbapenem_resistent'] == True, 'CDATE'].min()) 
            return data.loc[data['Carbapenem_resistent'] == True, 'CDATE_DT'].min() 
 
def calc_earliest_cns_cdate(data): 
    if (data['CNS_GROUP_V2'] == 'CNS').all(): # To join the CRE group, must have had a CRE on 
the first culture 
        return data['EARLIEST_CULTURE_V2'].min() # May have multiple rows if multiple cultures 
are available, just grab the "min" because this will just select one 
 
    else: # must be in the CSE group and will either cross over to CRE (will censor time after) or 
will never have CRE cx and return NaN 
        if (data['Carbapenem_non_susceptible'] == False).all(): 
            return np.nan 
        else: 
#             print('Patinet {} is cross over'.format(data['FULL_ENCNTR_ID'].min())) 
#             print(data.loc[data['Carbapenem_resistent'] == True, 'CDATE'].min()) 
            return data.loc[data['Carbapenem_non_susceptible'] == True, 'CDATE_DT'].min() 
         
         
def calc_modified_dx_date(data): 
    #  
    is_cre = (data['CNS_GROUP_V2'] == 'CNS').any() 
    cse_never_cross_over = (data['EARLIEST_CNS_CDATE'].isna()).all() 
     
    if is_cre or cse_never_cross_over: 
        return data['DISCHRG_DT'].min() 
    else: # CSE that cross over to CRE/CNS, this will censor the time data to exclude the time in 
which they would be considered to be CRE/CNS 
        return data['EARLIEST_CNS_CDATE'].min() 
     
# Find the earliest cre cdate for each patient then join back into index 
earliest_cre_cdate = index.groupby('ID_combined').apply(calc_earliest_cre_cdate) 
earliest_cre_cdate.name = 'EARLIEST_CRE_CDATE' 
 
# Find the earliest cns cdate for each patient then join back into index 
earliest_cns_cdate = index.groupby('ID_combined').apply(calc_earliest_cns_cdate) 
earliest_cns_cdate.name = 'EARLIEST_CNS_CDATE' 
 
# Need to have access to EARLIEST_CNS_CDATE for calc_modified_dx_date 
index = index.set_index('ID_combined')\ 
            .join(earliest_cre_cdate, how = 'inner')\ 
            .join(earliest_cns_cdate, how = 'inner')\ 
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# # Create modified discharge date for each patient then join back into index 
modified_dx_date = index.groupby('ID_combined').apply(calc_modified_dx_date) 
modified_dx_date.name = 'MODIFIED_DISCHRG_DT' 
 
index = index.join(modified_dx_date).reset_index() 
 
# Now work with the "crossover" patients 
# The CSE group in both the CRE/CNS_GROUP_V2 columns are the same. The only difference 
comes between what is classifed as CNS or CRE 
cross_over_pts = index.loc[ 
    (index['CRE_GROUP_V2'] == 'CSE')& 
    (index['Carbapenem_non_susceptible'] == True), 
    'ID_combined' 
].unique() 
 
cross_over = index.loc[index['ID_combined'].isin(cross_over_pts)] 
print('There are {} cross over patients.'.format(cross_over['ID_combined'].nunique())) 
# display(cross_over[['ID_combined', 'ADMT_DT', 'DISCHRG_DT', 'MODIFIED_DISCHRG_DT', 
'CDATE_DT', 'SPECIES', 'BATT_AGGR', 'Carbapenem_resistent']]) 
cross_over_out_path = 
r'{}/crossover_CSE_to_CRE_or_CNS_patients.csv'.format(home_folder_path) 
cross_over.to_csv(cross_over_out_path, index = False) 
 
# Don't remove these patients because their patient time should be included until the point they 
get cultured 
# index = index.loc[~index['ID_combined'].isin(cross_over_pts)] 
 
# make a convenient flag to identify cross over patients 
index.loc[:, 'CROSS_OVER'] = index['ID_combined'].isin(cross_over_pts) 
 
# Now remove all of the culture data that occurs after the modified dischrg dt 
index = index.loc[index['CDATE_DT'] < index['MODIFIED_DISCHRG_DT']] 
 
index_out = r'{}/micro_index_cultures_final_modified_dx_fixed.csv'.format(home_folder_path) 
index.to_csv(index_out, index = False) 
 
# Now update the demographics data 
demo_path = 
r'{}/index_cultures_demographics_validate_accession.csv'.format(home_folder_path) 
demo = pd.read_csv(demo_path) 
 
for col in ['ADMT_DT', 'DISCHRG_DT']: 
    demo[col] = pd.to_datetime(demo[col]) 
     
demo = demo.merge( 
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            index[['ID_combined', 'ADMT_DT', 'DISCHRG_DT', 'EARLIEST_CRE_CDATE', 
'EARLIEST_CNS_CDATE', 'MODIFIED_DISCHRG_DT']], 
            how = 'inner', 
            on = ['ID_combined', 'ADMT_DT', 'DISCHRG_DT'] 
        ).drop_duplicates() 
demo_path = 
r'{}/index_cultures_demographics_modified_dx_fixed.csv'.format(home_folder_path) 
demo.to_csv(demo_path, index = False) 
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CLEAN_ENCNTR_BMI.ipynb 

# some patients have missing ht, wt, bmi, bsa data as well as strong outliers. 
# This script will remove patients with missing or unreliable data for these fields 
import pandas as pd 
import numpy as np 
import os 
import re 
import datetime as dt 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
 
home_folder_path = os.getcwd() 
 
encntr_bmi_path = r'{}/ENCNTR_BMI_with_id.csv'.format(home_folder_path) 
encntr_bmi = pd.read_csv(encntr_bmi_path) 
 
demo_path = 
r'{}/index_cultures_demographics_modified_dx_fixed.csv'.format(home_folder_path) 
demo = pd.read_csv(demo_path) 
 
print('encntr_bmi - Shape and nunique pts: {}, {}'.format(encntr_bmi.shape, 
encntr_bmi['ID_combined'].nunique())) 
print('demo - Shape and nunique pts: {}, {}'.format(demo.shape, demo['ID_combined'].nunique())) 
pt_details = encntr_bmi.merge(demo, how = 'inner', on = ['MRN', 'ENCNTR_ID', 
'FULL_ENCNTR_ID', 'ID_combined']) 
print('pt_details - Shape and nunique pts: {}, {}'.format(pt_details.shape, 
pt_details['ID_combined'].nunique())) 
 
def convert_units(data, from_unit, to_unit): 
    """ 
    This is a limited function designed to only have a handful of possible desired paths. Can modify 
if needed in the future. 
    Intended to be called on .apply(calls) 
    """ 
    # if cm then make inches 
    # if kg then make pounds 
    # vice versa 
    # else cause an error and say this function can't do that 
     
    from_unit = from_unit.lower() 
    to_unit = to_unit.lower() 
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    if np.isnan(data): 
        return np.nan 
     
    conversion_dict = { 
        'cm':{ 
            'in':(1/2.54), 
            'ft':(1/(2.54 * 12)), 
            'm':(1/100) 
        }, 
         
        'kg':{ 
            'lb':2.2 
        } 
    } 
     
    available_units_from = conversion_dict.keys() 
    assert from_unit in available_units_from, "This function doesn't currently make conversions 
from {}".format(from_unit) 
     
    available_units_to = conversion_dict[from_unit] 
    assert to_unit in available_units_to, "This function doesn't currently make conversions from {} 
to {}".format(from_unit, to_unit) 
     
    conversion = available_units_to[to_unit] 
    converted = round((data * conversion), 2) 
     
    return converted 
 
# Ensure every patient has a non-zero/missing value for both height and weight 
pt_details = pt_details.loc[ 
    (~pt_details[['WT_KG', 'HT_CM']].isna().any(axis = 1))& 
    ((pt_details[['WT_KG', 'HT_CM']] != 0).all(axis = 1)) 
] 
 
pt_details.loc[:, 'WT_LB'] = pt_details['WT_KG'].apply(convert_units, args = ('kg', 'lb')) 
pt_details.loc[:, 'HT_IN'] = pt_details['HT_CM'].apply(convert_units, args = ('cm', 'in')) 
 
os.chdir(os.path.expanduser('~/Desktop')) 
%run Draft_Outlier_Analysis.ipynb # Has the functions used to do outlier analysis 
os.chdir(home_folder_path) 
 
# outliet results in a df and outlier_idxs is a dict containing all the outlier indexes for each method 
outlier_results, outlier_idxs = univariate_outlier_table(pt_details[['HT_IN', 'WT_KG']]) 
display(outlier_results) 
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# Remove patients with identified outliers and save out the data 
outlier_idxs = list(set(outlier_idxs['HT_IN']['Mod_Z_score'] + 
outlier_idxs['WT_KG']['Mod_Z_score'])) 
patients_to_exclude = list(pt_details.loc[pt_details.index.isin(outlier_idxs), 
'ID_combined'].unique()) 
pt_details = pt_details.loc[~pt_details.index.isin(outlier_idxs)] 
 
pt_details_out_cols = [ 
    'MRN', 
    'ENCNTR_ID', 
    'FULL_ENCNTR_ID', 
    'ID_combined', 
    'HT_CM', 
    'HT_IN', 
    'WT_KG', 
    'WT_LB', 
    'BMI', 
    'BSA', 
    'AGE', 
    'GENDR_CD_DES' 
] 
 
pt_details_out_path = r'{}/ENCNTR_BMI_index_outlier_adj.csv'.format(home_folder_path) 
pt_details[pt_details_out_cols].to_csv(pt_details_out_path, index = False) 
 
# Now write out patients who will be excluded because they don't have the appropriate data 
with open('{}/patients_missing_encntr_bmi_data_or_outliers.txt'.format(home_folder_path), 'w') as 
text_writer: 
    for pt_id in patients_to_exclude: 
        text_writer.write('{}\n'.format(pt_id)) 
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Non_study_isolates.ipynb 

# Retrieves all needed data for cultures that aren't one of the 5 species being specifically 
# studied 
import pandas as pd 
import numpy as np 
import re 
import datetime as dt 
import os 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 500) 
pd.set_option('max_colwidth', None) 
 
home_folder_path = os.getcwd() 
 
index_path = r'{}/micro_index_cultures_final_modified_dx_fixed.csv'.format(home_folder_path) 
index = pd.read_csv(index_path) 
 
demo_path = 
r'{}/index_cultures_demographics_modified_dx_fixed.csv'.format(home_folder_path) 
demo = pd.read_csv(demo_path) 
 
other_cxs_path = 
r'{}/Helpful_resources/wide_combined_data_no_surv_max_mic_final.csv'.format(home_folder_pa
th) 
other_cxs = pd.read_csv(other_cxs_path) 
 
accession_path = r'{}/accession_extracted_data.csv'.format(home_folder_path) 
accession = pd.read_csv(accession_path, usecols = ['ID_combined', 'ACC_strip', 
'ACC_MIN_DATE']) 
 
# Convert the date containing columns to the appropriate date object type 
cols_to_dt_date = ['CDATE', 'CDATE_DT', 'ADMT_DT', 'DISCHRG_DT', 'MIN_ADMT_DT', 
'EARLIEST_CULTURE_V2', 'MODIFIED_DISCHRG_DT'] 
 
for col in cols_to_dt_date: 
    index.loc[:, col] = pd.to_datetime(index[col]) 
         
other_cxs.loc[:, 'CDATE'] = pd.to_datetime(other_cxs['CDATE']).dt.date 
 
# Fix earlier spelling error 
other_cxs['SPECIES'] = other_cxs['SPECIES'].replace('Stenotrophomonas maltophila', 
'Stenotrophomonas maltophilia') 
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# Rename EARLIEST_STUDY_CULTURE because this script will add a new definition to earliest 
culture 
# EARLIEST_STUDY_CULTURE will become the earliest study culture 
index = index.rename(columns = {'EARLIEST_CULTURE_V2':'EARLIEST_STUDY_CULTURE'}) 
demo = demo.rename(columns = {'EARLIEST_CULTURE_V2':'EARLIEST_STUDY_CULTURE'}) 
 
# The METH column had MIC and ETEST results and were causing duplication of cultures, 
condensed them to the highest reported MIC for each tested antimicrobial 
# There didn't appear to be any instances of ETEST and MIC disagreeing or MIC disagreeing 
with other MICs when multiple biotypes were present, which allowed this 
# simple aggregation  
 
other_cxs = other_cxs\ 
    .groupby(['FILE', 'HOSP', 'BATT', 'BATT_AGGR', 'SPECIES', 'ACC', 'SOURCE', 'LOC', 
'CDATE'])[[col for col in other_cxs if re.search('FINAL', col)]]\ 
    .agg(np.max)\ 
    .reset_index() 
 
  index_to_merge_cols = [ 
    'MRN', 
    'ENCNTR_ID', 
    'FULL_ENCNTR_ID', 
    'ID_combined', 
    'HOSP', 
    'ADMT_DT', 
    'DISCHRG_DT', 
    'MODIFIED_DISCHRG_DT', 
    'EARLIEST_STUDY_CULTURE', 
    'CRE_GROUP_V2', 
    'CNS_GROUP_V2', 
    'CROSS_OVER' 
] 
 
print(other_cxs.shape, other_cxs['HOSP'].nunique()) 
merge_select = index[index_to_merge_cols].drop_duplicates().merge(other_cxs, how = 'inner', on 
= 'HOSP').drop_duplicates() 
print(merge_select.shape, merge_select['HOSP'].nunique()) # shape reduced from 75351 to 
14913, unique HOSPs from 33029 to 4045 
 
merge_acc = merge_select.merge(accession.drop_duplicates(), how = 'inner', left_on = 
['ID_combined', 'ACC'], right_on = ['ID_combined', 'ACC_strip']).drop_duplicates() 
 
print(merge_acc.shape, merge_acc['ID_combined'].nunique()) # shape reduced from 14913 to 
6533, unique HOSPs from 4045 to 2818 
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merge_acc['ACC_MIN_DATE'] = pd.to_datetime(merge_acc['ACC_MIN_DATE']) 
merge_acc = merge_acc.rename(columns = {'ACC_MIN_DATE':'CDATE_DT'}) 
merge_acc.loc[:, 'CDATE_DT_ADMT_DT_DIFF'] = merge_acc['CDATE_DT'] - 
merge_acc['ADMT_DT'] 
merge_acc.loc[:, 'CDATE_DT_ADMT_DT_DIFF_HOURS'] = 
(merge_acc['CDATE_DT_ADMT_DT_DIFF'].dt.seconds / (60**2)) + 
(merge_acc['CDATE_DT_ADMT_DT_DIFF'].dt.days * 24) 
 
# Cultures can't be taken anymore than 48 hours prior to index. 
merge_acc = merge_acc.loc[merge_acc['CDATE_DT_ADMT_DT_DIFF_HOURS'] >= -48] 
merge_acc = merge_acc.loc[merge_acc['CDATE_DT'] < 
merge_acc['MODIFIED_DISCHRG_DT']] 
 
print(merge_acc.shape, merge_acc['ID_combined'].nunique()) # shape reduced from 6701 to 
6557, unique HOSPs from 2839 to 2805 
 
# Any carbapenem resistant/non-susc Gram-negative? 
bkpt_dictionary = { 
    'PSA':{ # psa and acinetobacter 
        'MEM':{'S':2, 'I':4, 'R':8} 
    }, 
 
    'BCEPA':{ 
        'MEM':{'S':4, 'I':8, 'R':16} 
    }, 
 

    'ENT':{ # proteus, morganella, serratia, citrobacter 
        'MEM':{'S':1, 'I':2, 'R':4}, 
        'ERT':{'S':0.5, 'I':1, 'R':2} 
    }, 
} 
# stenotrophomonas is intrinsically resistant to carbapenems 
 
species_flag_dict = { 
    'Acinetobacter baumannii':'PSA', 
    'Acinetobacter lwoffii':'PSA', 
    'Burkholderia cepacia complex':'BCEPA', 
    'Citrobacter freundii':'ENT', 
    'Enterococcus faecalis':'GP', 
    'Enterococcus faecium':'GP', 
    'Haemophilus influenzae':'ATYP', 
    'Morganella morganii':'ENT', 
    'Proteus mirabilis':'ENT', 
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    'Pseudomonas aeruginosa':'PSA', 
    'Serratia marcescens':'ENT', 
    'Staphylococcus aureus':'GP', 
    'Stenotrophomonas maltophila':'STENO', 
    'Streptococcus pneumoniae':'GP' 
} 
 
def assess_bkpt(species_flag, genus, bkpt, ert_mic, mem_mic, cdate_dt, modified_dx_dt): 
    ''' 
    Determine if the mic of the given drug is susc, intermediate, or resistant. Intermediate will be 
notated as non_susceptible but not resistant. 
    ''' 
    if species_flag == 'ENT': 
        drugs = ['ERT', 'MEM'] 
        mics = [ert_mic, mem_mic] 
        ns_col = 'Other_ENT_Carbapenem_non_susceptible' 
        r_col = 'Other_ENT_Carbapenem_resistant' 
         
    else: 
        drugs = ['MEM'] 
        mics = [mem_mic] 
        ns_col = '{}_Carbapenem_non_susceptible'.format(genus) 
        r_col = '{}_Carbapenem_resistant'.format(genus) 
     
    collect_ns = [] 
    collect_r = [] 
    collect_dates = [] 
    for drug, mic in zip(drugs, mics): 
        if np.isnan(mic) or mic < bkpt[drug]['S']: 
            ns = False 
            r = False 
            date = modified_dx_dt 
        elif mic >= bkpt[drug]['R']: 
            ns = True 
            r = True 
            date = cdate_dt 
        else: # This must mean that the organism is intermediate if it isn't missing, susc, or resistant 
            ns = True 
            r = False 
            date = cdate_dt 
             
        collect_ns.append(ns) 
        collect_r.append(r) 
        collect_dates.append(date) 
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    either_ns = True in collect_ns 
    either_r = True in collect_r 
    output_dt = min(collect_dates) 
    return either_ns, either_r, ns_col, r_col, output_dt 
 
def determine_carb_res_other(data, bkpt_dictionary, species_flag_dict): 
    """ 
    Carrying forward dates because if CNS organism, that cdate will become the new modified 
dischrg dt. Also determine which isolates are R or NS to Carbs. 
    """ 
    pt_id = data['ID_combined'] 
    species = data['SPECIES'] 
    genus = species.split(' ')[0] 
    ert_mic = data['ERT_MIC_FINAL'] 
    mem_mic = data['MEM_MIC_FINAL'] 
    earliest_date = data['EARLIEST_STUDY_CULTURE'] 
    modified_dx_dt = data['MODIFIED_DISCHRG_DT'] 
    cdate_dt = data['CDATE_DT'] 
     
    # Don't need to assess carbapenem resistance in Gram positives/Atypicals and smalt is 
intrinsically resistant 
    exclude_list = [ 
        'Enterococcus faecalis', 
        'Enterococcus faecium', 
        'Haemophilus influenzae', 
        'Staphylococcus aureus', 
        'Stenotrophomonas maltophilia', 
        'Streptococcus pneumoniae' 
    ] 
     
    output_interps = {} 
    output_interps['ID_combined'] = pt_id 
     
    if species in exclude_list: 
        output_interps['Not_assessed'] = True 
        output_interps['NEW_MODIFIED_DISCHRG_DT'] = modified_dx_dt 
        return pd.Series(output_interps) 
     
    else: 
        species_flag = species_flag_dict[species] 
        bkpt = bkpt_dictionary[species_flag]         
         
        ns, r, ns_col, r_col, output_dt = assess_bkpt(species_flag, genus, bkpt, ert_mic, mem_mic, 
cdate_dt, modified_dx_dt) 
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        output_interps[ns_col] = ns 
        output_interps[r_col] = r 
        # I only need to ask about the index culture date because if the new modified dischrg dt 
comes before the earliest date, 
        # this patient will be dropped. 
        
        index_ns_col = 'INDEX_{}'.format(ns_col) 
        index_r_col = 'INDEX_{}'.format(r_col) 
         
        if cdate_dt <= earliest_date: 
            output_interps[index_ns_col] = ns 
            output_interps[index_r_col] = r 
        else: 
            output_interps[index_ns_col] = ns 
            output_interps[index_r_col] = r 
         
        output_interps['NEW_MODIFIED_DISCHRG_DT'] = output_dt 
         
         
        return pd.Series(output_interps) 
     
     
carb_resistance_analysis = merge_acc.apply(determine_carb_res_other, args = (bkpt_dictionary, 
species_flag_dict), axis = 1).fillna(False) 
modified_dischrg_dt_df = carb_resistance_analysis[['ID_combined', 
'NEW_MODIFIED_DISCHRG_DT']]\ 
                            .groupby('ID_combined')['NEW_MODIFIED_DISCHRG_DT']\ 
                            .agg(np.min)\ 
                            .reset_index() 
 
col_order = [ 
    'ID_combined',  
    'Acinetobacter_Carbapenem_non_susceptible', 
    'Acinetobacter_Carbapenem_resistant', 
    'INDEX_Acinetobacter_Carbapenem_non_susceptible', 
    'INDEX_Acinetobacter_Carbapenem_resistant', 
    'Burkholderia_Carbapenem_non_susceptible', 
    'Burkholderia_Carbapenem_resistant',  
    'INDEX_Burkholderia_Carbapenem_non_susceptible', 
    'INDEX_Burkholderia_Carbapenem_resistant',  
    'Other_ENT_Carbapenem_non_susceptible', 
    'Other_ENT_Carbapenem_resistant', 
    'INDEX_Other_ENT_Carbapenem_non_susceptible', 
    'INDEX_Other_ENT_Carbapenem_resistant', 
    'Pseudomonas_Carbapenem_non_susceptible', 
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    'Pseudomonas_Carbapenem_resistant', 
    'INDEX_Pseudomonas_Carbapenem_non_susceptible', 
    'INDEX_Pseudomonas_Carbapenem_resistant', 
] 
carb_resistance_analysis = carb_resistance_analysis.reindex(col_order, axis = 1) 
other_carb_resist = carb_resistance_analysis\ 
    .groupby('ID_combined')[[col for col in carb_resistance_analysis.columns]]\ 
    .apply(lambda x: (x == True).any())\ 
    .drop('ID_combined', axis = 1) 
 
smalt_present = merge_acc.groupby('ID_combined')['SPECIES'].apply(lambda x: (x == 
'Stenotrophomonas maltophilia').any()) 
smalt_present.name = 'Stenotrophomonas_maltophilia_present' 
 
smalt_index = merge_acc\ 
                .loc[merge_acc['CDATE_DT'] <= merge_acc['EARLIEST_STUDY_CULTURE']]\ 
                .groupby('ID_combined')['SPECIES']\ 
                .apply(lambda x: (x == 'Stenotrophomonas maltophilia').any()) 
smalt_index.name = 'INDEX_Stenotrophomonas_maltophilia_present' 
 
# Work on new Modified discharge date due to having a cr non-study isolate 
# This will update the index cultures data, if the data is missing, it's because the patient didn't 
have a non-study culture 
index = index.merge(modified_dischrg_dt_df, how = 'outer', on = 'ID_combined') 
index.loc[index['NEW_MODIFIED_DISCHRG_DT'].isna(), 'NEW_MODIFIED_DISCHRG_DT'] = 
index.loc[index['NEW_MODIFIED_DISCHRG_DT'].isna(), 'MODIFIED_DISCHRG_DT'] 
print(index.shape) 
 
# Patients may now have an index culture of nonstudy CR/CNS or they may have one of these 
cultures prior to their admission 
# which would mean that they don't get admitted prior to the excluding factor being seen 
index_cr_nonstudy_pts_1 = list(index.loc[index['EARLIEST_STUDY_CULTURE'] >= 
index['NEW_MODIFIED_DISCHRG_DT'], 'ID_combined'].unique()) 
index_cr_nonstudy_pts_2 = list(index.loc[index['ADMT_DT'] >= 
index['NEW_MODIFIED_DISCHRG_DT'], 'ID_combined'].unique()) 
index_cr_nonstudy_pts = list(set(index_cr_nonstudy_pts_1 + index_cr_nonstudy_pts_2)) 
 
index = index.loc[~index['ID_combined'].isin(index_cr_nonstudy_pts)] 
print(index.shape) 
print(index['ID_combined'].nunique()) 
 
# Prepare merge_acc for output to use later 
def calculate_earliest_non_study_culture(data, non_study_species): 
    subset = data.loc[data['SPECIES'].isin(non_study_species)] 
    if subset.shape[0] > 0: 
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        return subset['CDATE_DT'].min() 
    else: 
        return np.datetime64('NaT') 
 
print(merge_acc.shape) 
# This will remove the patients in index_cr_nonstudy_pts 
merge_acc = merge_acc.merge(index[['ID_combined', 'NEW_MODIFIED_DISCHRG_DT']], how 
= 'inner', on = 'ID_combined').drop_duplicates() 
print(merge_acc.shape) 
# Make sure that all the cdates fall within the ADMT_DT - NEW_MODIFIED_DISCHRG_DT 
window 
merge_acc = merge_acc.loc[merge_acc['CDATE_DT'] < 
merge_acc['NEW_MODIFIED_DISCHRG_DT']] 
print(merge_acc.shape) 
 
# Now I have to work on the earliest culture analysis using the concatenated index and 
merge_acc 
merge_index = pd.concat([index, merge_acc], sort = False, ignore_index = True) 
print(merge_index.shape) 
 
non_study_species = merge_acc['SPECIES'].unique() 
earliest_non_study_culture = 
merge_index.groupby('ID_combined').apply(calculate_earliest_non_study_culture, 
non_study_species) 
earliest_non_study_culture.name = 'EARLIEST_NON_STUDY_CULTURE' 
merge_index = merge_index.merge(earliest_non_study_culture, how = 'inner', on = 
'ID_combined') 
 
merge_index.loc[:, 'EARLIEST_CULTURE_OVERALL'] = 
merge_index.groupby('ID_combined')['CDATE_DT'].transform(np.min) 
merge_index.loc[:, 'TIME_TO_CULTURE'] = merge_index['CDATE_DT'] - 
merge_index['ADMT_DT'] 
merge_index.loc[:, 'TIME_TO_CULTURE_HOURS'] = 
(merge_index['TIME_TO_CULTURE'].dt.days * 24) + 
(merge_index['TIME_TO_CULTURE'].dt.seconds / (60 ** 2)) 
merge_index.loc[:, 'TIME_TO_CULTURE_DAYS'] = 
merge_index['TIME_TO_CULTURE_HOURS'] / 24 
merge_index.loc[:, 'TIME_TO_CULTURE_DAYS'] = 
merge_index['TIME_TO_CULTURE_HOURS'].apply(lambda x: 0 if x < 0 else x) 
 
# Now distribute this new data to index, demo, and merge_acc bc merge_index will not be saved 
out 
index = index.merge(merge_index[['ID_combined', 'EARLIEST_NON_STUDY_CULTURE', 
'EARLIEST_CULTURE_OVERALL']].drop_duplicates(), how = 'inner', on = 'ID_combined') 
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merge_acc_cols = [col for col in merge_acc.columns if col in merge_index.columns] 
merge_index_cols = merge_acc_cols + ['EARLIEST_NON_STUDY_CULTURE', 
'EARLIEST_CULTURE_OVERALL', 'TIME_TO_CULTURE', 'TIME_TO_CULTURE_HOURS', 
'TIME_TO_CULTURE_DAYS'] 
merge_acc = merge_acc.merge(merge_index[merge_index_cols].drop_duplicates(), on = 
merge_acc_cols) 
 
print(demo.shape) 
demo = demo.merge(modified_dischrg_dt_df, how = 'outer', on = 'ID_combined') 
demo.loc[demo['NEW_MODIFIED_DISCHRG_DT'].isna(), 'NEW_MODIFIED_DISCHRG_DT'] = 
demo.loc[demo['NEW_MODIFIED_DISCHRG_DT'].isna(), 'MODIFIED_DISCHRG_DT'] 
demo = demo.loc[~demo['ID_combined'].isin(index_cr_nonstudy_pts)] 
demo = demo.merge(merge_index[['ID_combined', 'EARLIEST_NON_STUDY_CULTURE', 
'EARLIEST_CULTURE_OVERALL']].drop_duplicates(), how = 'inner', on = 'ID_combined') 
print(demo.shape) 
 
# Any lactose_non_fermenting cultures? 
lactose_non_fermenting = [ 
    'Pseudomonas aeruginosa', 
    'Proteus mirabilis', 
    'Acinetobacter baumannii', 
    'Stenotrophomonas maltophila', 
    'Morganella morganii', 
    'Burkholderia cepacia complex', 
    'Acinetobacter lwoffii' 
] 
 
has_lactose_non_fermenting = merge_acc.groupby('ID_combined')['SPECIES'].apply(lambda x: 
(x.isin(lactose_non_fermenting).any())) 
has_lactose_non_fermenting.name = 'Has_lactose-non-fermenting' 
 
has_lactose_non_fermenting_index = merge_acc\ 
                                    .loc[merge_acc['CDATE_DT'] <= 
merge_acc['EARLIEST_STUDY_CULTURE']]\ 
                                    .groupby('ID_combined')['SPECIES']\ 
                                    .apply(lambda x: (x.isin(lactose_non_fermenting).any())) 
has_lactose_non_fermenting_index.name = 'INDEX_Has_lactose-non-fermenting' 
 
# MRSA present? 
has_mrsa = merge_acc.groupby('ID_combined')['OX_MIC_FINAL'].apply(lambda x: (x > 2).any()) 
has_mrsa.name = 'Has_MRSA' 
 
has_mrsa_index = merge_acc\ 
                    .loc[merge_acc['CDATE_DT'] <= merge_acc['EARLIEST_STUDY_CULTURE']]\ 
                    .groupby('ID_combined')['OX_MIC_FINAL']\ 
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                    .apply(lambda x: (x > 2).any()) 
has_mrsa_index.name = 'INDEX_Has_MRSA' 
 
# Now combine everything and save out 
cx_logic = pd.DataFrame(other_carb_resist)\ 
    .join(smalt_present, how = 'left')\ 
    .join(smalt_index, how = 'left')\ 
    .join(has_lactose_non_fermenting, how = 'left')\ 
    .join(has_lactose_non_fermenting_index, how = 'left')\ 
    .join(has_mrsa, how = 'left')\ 
    .join(has_mrsa_index, how = 'left')\ 
    .fillna(False)\ 
    .reset_index() 
 
# This will be used to help the sensitivity analysis assumption calculation later 
cx_logic_out_path = r'{}/logic_df_non-study_isolates.csv'.format(home_folder_path) 
cx_logic = cx_logic.loc[~cx_logic['ID_combined'].isin(index_cr_nonstudy_pts)] 
cx_logic.to_csv(cx_logic_out_path, index = False) 
 
merge_acc_path = r'{}/non_study_isolate_cultures.csv'.format(home_folder_path) 
merge_acc.to_csv(merge_acc_path, index = False) 
 
index_path = 
r'{}/micro_index_cultures_final_modified_dx_fixed_V2.csv'.format(home_folder_path) 
index.to_csv(index_path, index = False) 
 
demo_path = 
r'{}/index_cultures_demographics_modified_dx_fixed_V2.csv'.format(home_folder_path) 
demo.to_csv(demo_path, index = False) 
 
with open('{}/CNS_nonstudy_index_cx_pts.txt'.format(home_folder_path), 'w') as text_writer: 
    for pt_id in index_cr_nonstudy_pts: 
        text_writer.write('{}\n'.format(pt_id)) 
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SOFA_score_analysis.ipynb 

# This will isolate the patients SOFA score at index or within 24 hours either direction if available 
# Patients missing this data were excluded as this is a confounder used in the PS model 
# This was not often missing 
 
import pandas as pd 
import numpy as np 
import re 
import datetime 
import os 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
 
home_folder_path = os.getcwd() 
 
sofa_path = r'{}/SOFA_SCORE_with_id.csv'.format(home_folder_path) 
sofa = pd.read_csv(sofa_path) 
 
index_path = 
r'{}/micro_index_cultures_final_modified_dx_fixed_V2.csv'.format(home_folder_path) 
index = pd.read_csv(index_path) 
 
def index_cdate_sofa_total(data, total_days_sep = 1): 
    cdate_daynum = data.loc[data['EARLIEST_CDATE_DAYNUM_DAYNUM_DIFF'] == 
data['MIN_EARLIEST_CDATE_DAYNUM_DAYNUM_DIFF']] 
    if (cdate_daynum['MIN_EARLIEST_CDATE_DAYNUM_DAYNUM_DIFF'] > 
total_days_sep).all(): 
        return np.nan 
    elif cdate_daynum.shape[0] > 1: 
        min_daynum = cdate_daynum['DAYNUM'].min() 
        cdate_daynum = cdate_daynum.loc[cdate_daynum['DAYNUM'] == min_daynum] 
        return cdate_daynum['SOFA_TOTAL'].values[0] 
    else: 
        return cdate_daynum['SOFA_TOTAL'].values[0] 
 
# Fix date cols dtypes 
sofa_merge_cols = ['ID_combined', 'CRE_GROUP_V2', 'CNS_GROUP_V2', 
'Carbapenem_resistent', 'ADMT_DT', 'DISCHRG_DT', 'NEW_MODIFIED_DISCHRG_DT', 
'CDATE_DT', 'EARLIEST_STUDY_CULTURE', 'BATT', 'BATT_AGGR', 'SPECIES', 'ACC', 
'SOURCE', 'LOC'] 
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sofa_index = sofa.merge(index[sofa_merge_cols], how = 'inner', on = [col for col in 
sofa_merge_cols if col in sofa.columns]) 
for col in ['ADMT_DT', 'DISCHRG_DT', 'NEW_MODIFIED_DISCHRG_DT', 'CDATE_DT', 
'EARLIEST_STUDY_CULTURE']: 
    if col in sofa_index.columns: 
        sofa_index.loc[:, col] = pd.to_datetime(sofa_index[col]) 
    if col in index.columns: 
        index.loc[:, col] = pd.to_datetime(index[col]) 
         
sofa_index.loc[:, 'DAYNUM_MAX'] = 
sofa_index.groupby('ID_combined')['DAYNUM'].transform(np.max) 
sofa_index.loc[:, 'DAYNUM_MIN'] = 
sofa_index.groupby('ID_combined')['DAYNUM'].transform(np.min) 
 
# Create DAYNUM columns based on the ADMT_DT and specific dates 
cdate_daynum = (sofa_index['CDATE_DT'] - sofa_index['ADMT_DT']).apply(lambda x: x.days) 
cdate_daynum.name = 'CDATE_DAYNUM' 
 
early_cdate_daynum = (sofa_index['EARLIEST_STUDY_CULTURE'] - 
sofa_index['ADMT_DT']).apply(lambda x: x.days) 
early_cdate_daynum.name = 'EARLIEST_CDATE_DAYNUM' 
 
# Trying to determine how the DAYNUM_MAX is calculated 
total_daynum = (sofa_index['DISCHRG_DT'] - sofa_index['ADMT_DT']).apply(lambda x: x.days) 
total_daynum.name = 'TOTAL_DAYNUM' 
 
modified_total_daynum = (sofa_index['NEW_MODIFIED_DISCHRG_DT'] - 
sofa_index['ADMT_DT']).apply(lambda x: x.days) 
modified_total_daynum.name = 'MODIFIED_TOTAL_DAYNUM' 
 
merged = pd.concat([sofa_index, cdate_daynum, early_cdate_daynum, total_daynum, 
modified_total_daynum], axis = 1).drop_duplicates() 
merged.loc[:, 'EARLIEST_CDATE_DAYNUM_DAYNUM_DIFF'] = 
np.abs(merged['EARLIEST_CDATE_DAYNUM'] - merged['DAYNUM']) 
merged.loc[:, 'MIN_EARLIEST_CDATE_DAYNUM_DAYNUM_DIFF'] = 
merged.groupby('ID_combined')['EARLIEST_CDATE_DAYNUM_DAYNUM_DIFF'].transform(np.
min) 
 
sofa_total_on_cdate = merged\ 
                        .groupby('ID_combined')\ 
                        .apply(index_cdate_sofa_total)\ 
                        .reset_index()\ 
                        .rename(columns = {0: 'SOFA_ON_EARLIEST_CDATE'}) 
 
# This is based off of the highest SOFA score, which isn't how I planned to use it... 
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bins = pd.IntervalIndex.from_tuples([(0, 6), (7, 9), (10, 12), (13, 14), (15, 15), (16, 24)], closed = 
'both') 
labels = ['< 10%', '15-20%', '40-50%', '50-60%', '80%', '> 90%'] 
 
cut_dict = {bin_val:cat_val for bin_val, cat_val in zip(bins, labels)} 
 
# Remove patients that don't have Sofa Score estimate within 24 hours (before/after/on) index 
culture date 
missing_sofa_pts = 
list(sofa_total_on_cdate.loc[sofa_total_on_cdate['SOFA_ON_EARLIEST_CDATE'].isna(), 
'ID_combined'].unique()) 
sofa_total_on_cdate = 
sofa_total_on_cdate.loc[~sofa_total_on_cdate['ID_combined'].isin(missing_sofa_pts)] 
 
sofa_total_on_cdate.loc[:, 'SOFA_EARLIEST_CDATE_INTERVAL'] = pd.cut( 
                                                                    
sofa_total_on_cdate['SOFA_ON_EARLIEST_CDATE'],  
                                                                    bins = bins) 
 
sofa_total_on_cdate.loc[:, 'SOFA_EARLIEST_CDATE_CAT'] = pd.cut( 
                                                                sofa_total_on_cdate['SOFA_ON_EARLIEST_CDATE'],  
                                                                bins = bins,  
                                                                labels = labels)\ 
                                                            .replace(cut_dict) 
 
sofa_total_on_cdate_path = r'{}/sofa_score_analysis.csv'.format(home_folder_path) 
sofa_total_on_cdate.to_csv(sofa_total_on_cdate_path, index = False) 
 
with open('{}/patients_with_missing_index_sofa_score.txt'.format(home_folder_path), 'w') as 
text_writer: 
    for pt_id in missing_sofa_pts: 
        text_writer.write('{}\n'.format(pt_id)) 
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Exclusions.ipynb 

# This script pulls in all of the previously identified exclusions in other files 
# It also identifies patients who would be excluded on the basis of ICD-9/10-CM codes 
import pandas as pd 
import numpy as np 
import os 
import re 
import datetime as dt 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
 
home_folder_path = os.getcwd() 
helpful_resources_path = r'{}/Helpful_resources'.format(home_folder_path) 
 
demo_path = 
r'{}/index_cultures_demographics_modified_dx_fixed_V2.csv'.format(home_folder_path) 
demo = pd.read_csv(demo_path) 
 
index_path = 
r'{}/micro_index_cultures_final_modified_dx_fixed_V2.csv'.format(home_folder_path) 
index = pd.read_csv(index_path) 
 
non_study_path = r'{}/non_study_isolate_cultures.csv'.format(home_folder_path) 
non_study = pd.read_csv(non_study_path) 
 
# Need the bmi missing data 
bmi_missing_path = 
'{}/patients_missing_encntr_bmi_data_or_outliers.txt'.format(home_folder_path) 
 
# Need the sofa_score missing data 
sofa_missing_path = '{}/patients_with_missing_index_sofa_score.txt'.format(home_folder_path) 
 
# Need to read in the icd stuff to get the exclusions 
icd_path = r'{}/Gram_negative_icd_dictionary.csv'.format(helpful_resources_path) 
icd = pd.read_csv(icd_path) 
 
# diag_folder_path = r'Y:\01COP-GNB_Infections-
Team\Data\Combined_CCTS_info\CCTS_DATA_WITH_IDS' 
diag = pd.read_csv( 
    '{}/DIAG_with_id.csv'.format(home_folder_path), 
    usecols = ['MRN', 'ENCNTR_ID', 'FULL_ENCNTR_ID', 'ID_combined', 'DIAGNOSIS'] 
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) 
diag.loc[:, 'DIAGNOSIS_2'] = diag['DIAGNOSIS'].str.replace(r'\.', '') 
 
# Exclusions from ICD 
cystic_fibrosis_icd_9 = r'^2770[0-39]$' 
cystic_fibrosis_icd_10 = r'^E84[089]$|^$E841[19]$' 
 
# DOI: https://doi.org/10.1186/s12916-019-1390-x 
endocarditis_icd_9 = r'^421[09]' 
endocarditis_icd_10 = r'I33[09]' 
 
necrotizing_faciitis_icd_9 = r'^72886$' 
necrotizing_faciitis_icd_10 = r'^M726$' 
 
osteomyelitis_icd_9 = r'^730[0123789][0-9]$' 
osteomyelitis_icd_10 = r'^M86[0-689].*$' 
 
preg_icd_9_pattern_list = [ 
    '^6[3-7][0-9]', 
    '^V2[23]' 
] 
preg_icd_10_pattern_list = [ 
    '^O0[0-47-9]', 
    '^O1[0-6]', 
    '^O2[0-689]', 
    '^O3[0-6]', 
    '^O4[0-8]', 
    '^O6', 
    '^O7[0-7]', 
    '^O8[02]', 
    '^O9[489A]', 
    '^Z3[346A]' 
] 
 
cystic_fibrosis_string = r'|'.join([cystic_fibrosis_icd_9, cystic_fibrosis_icd_10]) 
endocarditis_string = r'|'.join([endocarditis_icd_9, endocarditis_icd_10]) 
necrotizing_faciitis_string = r'|'.join([necrotizing_faciitis_icd_9, necrotizing_faciitis_icd_10]) 
osteomyelitis_string = r'|'.join([osteomyelitis_icd_9, osteomyelitis_icd_10]) 
preg_search_string = r'|'.join(preg_icd_9_pattern_list + preg_icd_10_pattern_list) 
 
exclusions = [ 
    cystic_fibrosis_string,  
    endocarditis_string,  
    necrotizing_faciitis_string,  
    osteomyelitis_string, 
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    preg_search_string 
] 
 
exclusion_names = [ 
    'cystic fibrosis', 
    'endocarditis', 
    'necrotizing faciitis', 
    'osteomyelitis', 
    'pregnancy' 
] 
 
all_excluded = [] 
for search, exclusion_name in zip(exclusions, exclusion_names): 
    pt_ids = diag.loc[diag['DIAGNOSIS_2'].str.contains(search, flags = re.I, na=False), 
'ID_combined'].to_list() 
    to_exclude = index['ID_combined'].isin(pt_ids) 
    to_exclude.name = exclusion_name 
    all_excluded 
    all_excluded.append(to_exclude) 
exclusion_df = pd.concat(all_excluded, axis = 1, sort = False) 
exclusion_df.loc[:, 'Exclude_any'] = (exclusion_df == True).any(axis = 1) 
 
def find_exclusions(data, exclusions, exclusion_names): 
    output_data = {} 
    for exclusion, search in zip(exclusion_names, exclusions): 
        has_exclusion = data['DIAGNOSIS_2'].str.contains(search, flags = re.I, na = False).any() 
        output_data[exclusion] = has_exclusion 
    return pd.Series(output_data) 
 
exclusion_df = diag.groupby('ID_combined').apply(find_exclusions, exclusions, 
exclusion_names).reset_index() 
# There are patients that have no ICD codes, so I need to left merge to keep them in the dataset 
# Will add no icd code column to catch them in the Exclude_any column 
exclusion_df = index[['ID_combined']].merge(exclusion_df, how = 'left').drop_duplicates() 
exclusion_df.loc[:, 'NO_ICD_CODES'] = exclusion_df.isna().any(axis = 1) 
exclusion_df = exclusion_df.fillna(False) 
exclusion_df.loc[:, 'EXCLUDE_ANY'] = (exclusion_df == True).any(axis = 1) 
 
display(exclusion_df.head()) 
display(exclusion_df.iloc[:, 1:].sum()) 
 
# To combine with the missing data 
exclusion_pts = list(exclusion_df.loc[exclusion_df['EXCLUDE_ANY'] == True, 
'ID_combined'].unique()) 
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# Culture based exclusions 
def remove_index_cultures_cre(data, batt_aggr_of_interest): 
    """ 
    This will flag patients from the CRE group if they don't have a CRE index culture of urine, resp, 
blood, urine, or ia or CSE patient without an index culture of the same infection type.  
    """ 
    cr_group = data['CRE_GROUP_V2'].min() # only one choice 
    if cr_group == 'CRE': 
        # Only choose from the actual CRE cultures 
        subset = data.loc[ 
            (data['CDATE_DT'] == data['EARLIEST_STUDY_CULTURE'])& 
            (data['Carbapenem_resistent'] == True) 
        ]  
        if subset['BATT_AGGR'].isin(batt_aggr_of_interest).any(): 
            return 'Keep' 
        else: 
            return 'Remove' 
    else: 
        subset = data.loc[ 
            (data['CDATE_DT'] == data['EARLIEST_STUDY_CULTURE'])& 
            (data['CRE_GROUP_V2'] == 'CSE') 
        ] 
        if subset['BATT_AGGR'].isin(batt_aggr_of_interest).any(): 
            return 'Keep' 
        else: 
            return 'Remove' 
         
def remove_index_cultures_cns(data, batt_aggr_of_interest): 
    """ 
    This will flag patients from the CNS group if they don't have a CNS index culture of urine, resp, 
blood, urine, or ia or CSE patient without an index culture of the same infection type.  
    """ 
    cr_group = data['CNS_GROUP_V2'].min() # only one choice 
    if cr_group == 'CNS': 
        # Only choose from the actual CRE cultures 
        subset = data.loc[ 
            (data['CDATE_DT'] == data['EARLIEST_STUDY_CULTURE'])& 
            (data['Carbapenem_non_susceptible'] == True) 
        ]  
        if subset['BATT_AGGR'].isin(batt_aggr_of_interest).any(): 
            return 'Keep' 
        else: 
            return 'Remove' 
    else: 
        subset = data.loc[ 
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            (data['CDATE_DT'] == data['EARLIEST_STUDY_CULTURE'])& 
            (data['CRE_GROUP_V2'] == 'CSE') 
        ] 
        if subset['BATT_AGGR'].isin(batt_aggr_of_interest).any(): 
            return 'Keep' 
        else: 
            return 'Remove'         
 
# First deal with the index culture analysis 
batt_aggr_of_interest = [ 
    'Blood', 
    'Intra-abdominal', 
    'Respiratory', 
    'Skin/Soft Tissue', 
    'Urine', 
] 
 
remove_cx_flags_cre = index\ 
                    .groupby('ID_combined')\ 
                    .apply(remove_index_cultures_cre, batt_aggr_of_interest = batt_aggr_of_interest)\ 
                    .reset_index()\ 
                    .rename(columns = {0:'KEEP_REMOVE_CRE_GROUP_V2'}) 
 
remove_cx_flags_cns = index\ 
                    .groupby('ID_combined')\ 
                    .apply(remove_index_cultures_cns, batt_aggr_of_interest = batt_aggr_of_interest)\ 
                    .reset_index()\ 
                    .rename(columns = {0:'KEEP_REMOVE_CNS_GROUP_V2'}) 
 
# Will only be using the remove_cx_flags_cns for exclusions in this script, so don't need the 
merge. 
# keep_remove = remove_cx_flags_cre.merge(remove_cx_flags_cns, how = 'inner', on = 
'ID_combined') 
index_cx_pts = 
remove_cx_flags_cns.loc[remove_cx_flags_cns['KEEP_REMOVE_CNS_GROUP_V2'] == 
'Remove', 'ID_combined'].unique() 
 
# Now deal with the patients who have cystic fibrosis cultures (ICD codes didn't get rid of all of 
these) 
cf_cx_pts = list(index.loc[index['BATT_AGGR'] == 'Cystic Fibrosis Respiratory', 
'ID_combined'].unique()) 
 
# Now apply the exclusions and save out the remaining patients 
# Can read in the txt files like below (They should all just be txt files of ID_combined) 
collect_ids = [] 
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for file in [bmi_missing_path, sofa_missing_path]: 
    with open(file, 'r') as text_reader: 
        r = text_reader.readlines() 
        r = [re.sub('\n', '', pt_id) for pt_id in r] 
        collect_ids.append(r) 
# Need to flatten list of lists into single list to call set 
print(f'Number of patients with missing data: {len(set([x for ids in collect_ids for x in ids]))}') 
 
for pt_list in [exclusion_pts, cf_cx_pts, index_cx_pts]: 
    collect_ids.append(pt_list) 
     
# Now unpack the list of lists of ids          
exclude_ids = list(set([pt_id for id_list in collect_ids for pt_id in id_list])) 
print('Total number of excluded patients: {}'.format(len(exclude_ids))) 
 
print('Breakdown of cultures/patients that are removed by this script') 
print('CRE vs. CSE') 
display(index.loc[index['ID_combined'].isin(exclude_ids)].groupby(['CRE_GROUP_V2', 
'Carbapenem_resistent', 'BATT_AGGR'])['ID_combined'].agg(['count', 'nunique'])) 
print('\n') 
print('CNS vs. CSE') 
display(index.loc[index['ID_combined'].isin(exclude_ids)].groupby(['CNS_GROUP_V2', 
'Carbapenem_non_susceptible', 'BATT_AGGR'])['ID_combined'].agg(['count', 'nunique'])) 
print('\n') 
 
print('Breakdown of cultures/patients remaining') 
print('CRE vs. CSE') 
display(index.loc[~index['ID_combined'].isin(exclude_ids)].groupby(['CRE_GROUP_V2', 
'Carbapenem_resistent', 'BATT_AGGR'])['ID_combined'].agg(['count', 'nunique'])) 
print('\n') 
print('CNS vs. CSE') 
display(index.loc[~index['ID_combined'].isin(exclude_ids)].groupby(['CNS_GROUP_V2', 
'Carbapenem_non_susceptible', 'BATT_AGGR'])['ID_combined'].agg(['count', 'nunique'])) 
print('\n') 
 
# Write out final 
index = index.loc[~index['ID_combined'].isin(exclude_ids)] 
index_path = r'{}/micro_index_cultures_post_exclusions.csv'.format(home_folder_path) 
index.to_csv(index_path, index = False) 
 
demo = demo.loc[~demo['ID_combined'].isin(exclude_ids)] 
demo_path = r'{}/index_cultures_demographics_post_exclusions.csv'.format(home_folder_path) 
demo.to_csv(demo_path, index = False) 
 
non_study = non_study.loc[~non_study['ID_combined'].isin(exclude_ids)] 
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non_study_path = 
r'{}/non_study_isolate_cultures_post_exclusions.csv'.format(home_folder_path) 
non_study.to_csv(non_study_path, index = False) 
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Investigate_comorbidity_ICD_searches.ipynb 

# This script looks for relevant ICD codes for infection and comorbidities and 
# creates boolean matrices for later evaluation 
import pandas as pd 
import numpy as np 
import re 
import os 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
 
home_folder_path = os.getcwd() 
helpful_resources_path = r'{}/Helpful_resources'.format(home_folder_path) 
icd_path = r'{}/Gram_negative_icd_dictionary.csv'.format(helpful_resources_path) 
icd = pd.read_csv(icd_path) 
 
# diag_folder_path = r'Y:\01COP-GNB_Infections-
Team\Data\Combined_CCTS_info\CCTS_DATA_WITH_IDS' 
diag = pd.read_csv( 
    '{}/DIAG_with_id.csv'.format(home_folder_path), 
    usecols = ['MRN', 'ENCNTR_ID', 'FULL_ENCNTR_ID', 'ID_combined', 'DIAGNOSIS'] 
) 
diag.loc[:, 'DIAGNOSIS_2'] = diag['DIAGNOSIS'].str.replace(r'\.', '') 
diag.head() 
 
index_path = r'{}/micro_index_cultures_post_exclusions.csv'.format(home_folder_path) 
index = pd.read_csv(index_path) 
 
# This will just be used to calculate the CCI_AGE 
demo_path = r'{}/index_cultures_demographics_post_exclusions.csv'.format(home_folder_path) 
demo = pd.read_csv(demo_path, usecols = ['ID_combined', 'AGE']) 
 
def calc_CCI_age(df): 
    max_age = df['AGE'].max() 
    intervals = [ 
        (0, 49),  
        (50, 59),  
        (60, 69),  
        (70, 79),  
        (80, max_age) 
    ] 
    bins = pd.IntervalIndex.from_tuples(intervals, closed = 'both') 
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    labels = [ 
        '<50', 
        '50-59', 
        '60-69', 
        '70-79', 
        '≥80' 
    ] 
    cut_dict = {bin_val:cat_val for bin_val, cat_val in zip(bins, labels)} 
    return pd.cut(df['AGE'], bins = bins, labels = labels).replace(cut_dict) 
 
def calc_CCI_score(data): 
    """ 
    Will calculate the numeric CCI score from 0/1 comorbidity matrix. This function is designed to 
be passed  
    to pd.DataFrame.apply(func, axis = 1) 
    """ 
     
    age_scores = { 
        '<50':0, 
        '50-59':1, 
        '60-69':2, 
        '70-79':3, 
        '≥80':4 
    } 
     
    score_multipliers = { 
        'CCI_MI':1, 
        'CCI_CHF':1, 
        'CCI_PVD':1, 
        'CCI_CVD':1, 
        r'CCI_HEMI_PARAPLEGIA':2, 
        'CCI_DEMENTIA':1, 
        'CCI_CHRONIC_PULM':1, 
        'CCI_RHEUM':1, 
        'CCI_PUD':1, 
        'CCI_T2DM_W_COMP':2, 
        'CCI_T2DM_WO_COMP':1, 
        'CCI_SEVERE_RENAL':3, 
        'CCI_MILD_MOD_RENAL':1, 
        'CCI_MOD_SEVERE_LIVER':3, 
        'CCI_MILD_LIVER':1, 
        'CCI_SOLID_MET':6, 
        'CCI_CANCER_NOT_SKIN':2, 
        'CCI_HIV':3 
    } 
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    # I need for CCI_HIV_NO_AIDS and OPP_INF to be in values 
    # Will store them and ask afterwards if they are both in store 
    hierarchy_pairs = { 
        'CCI_DEMENTIA':r'CCI_HEMI_PARAPLEGIA', 
        'CCI_MILD_MOD_RENAL':'CCI_SEVERE_RENAL', 
        'CCI_MILD_LIVER':'CCI_MOD_SEVERE_LIVER', 
        'CCI_T2DM_WO_COMP':'CCI_T2DM_W_COMP', 
        'CCI_CANCER_NOT_SKIN':'CCI_SOLID_MET', 
        'Place_holder1':'CCI_HIV',  
        'Place_holder2':'CCI_OPPORTUNISTIC_INF' 
    } 
     
    total_score = 0 
    total_score += age_scores[data['CCI_AGE']] 
     
    # This will multiply every CCI score by either a 1 or 0 
    # This will effectively add up the score without extra logic picking only the non zero vals 
    # If pt has more severe cond, shouldn't also count the less severe one 
    hierarchy_store = [] 
    for cci_col, score in score_multipliers.items(): 
        if hierarchy_pairs.get(cci_col) in hierarchy_store: 
            continue 
        total_score += data[cci_col] * score 
        if (cci_col in hierarchy_pairs.values()) and (data[cci_col]): 
            hierarchy_store.append(cci_col) 
             
    # Finally evaluate AIDS...if both values are stored, add 3 to total score 
    # Don't add 6 because 3 will already have been added from the less severe score 
    # Nobody had AIDS according to study def, so will not add as covariate 
    if ('CCI_OPPORTUNISTIC_INF' in hierarchy_store) and ('CCI_HIV' in hierarchy_store): 
        total_score += 3 
     
    return total_score 
 
# CCI Comorbidities 
# ICD codes converted to regex searches for more efficient column wise searching 
# Glasheen WP, Cordier T, Gumpina R, Haugh G, Davis J, Renda A. Charlson Comorbidity 
Index: ICD-9 Update and ICD-10 Translation. Am Health Drug Benefits. 2019;12(4):188-197. 
# CDMF CCI 
# ICD-9 
mi_icd_9 = r'^41[02].*' 
chf_icd_9 = r'^39891|^402[019]1.*|^404[019][13].*|^425[45789].*|^428.*' 
pvd_icd_9 = r'^0930|^4373|^44[01].*|^443[1289].*|^4471|^557[19].*|^V434' 
cvd_icd_9 = r'^36234|^43[0-8].*' 
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demen_icd_9 = r'^290.*|^294[0128].*|^331[0127].*|^797' 
chrn_pulm_icd_9 = r'^49[0-6].*|^50[0-5].*|^5064|^508[18].*' 
rheum_icd_9 = r'^4465|^710[0-4].*|^714[0-28].*|^725.*' 
pud_icd_9 = r'^53[1-4].*' 
mild_liver_icd_9 = r'^070[23][23].*|^070[45]4.*|^070[69].*|^57[01].*|^573[3489].*|^V427' 
t2dm_wo_comp_icd_9 = r'^249[0-389].*|^250[0-389].*' 
t2dm_w_comp_icd_9 = r'^249[4-7].*|^250[4-7].*' 
mild_mod_renal_icd_9 = r'^403[019]0.*|^404[019][01].*|^58[23].*|^585[1-49].*|^V420' 
severe_renal_icd_9 = r'^403[019]1.*|^404[019][23].*|^585[56].*|^586.*|^5880|^V451[12]|^V56[0-
2]|^V563[12]|V568' 
hemi_parapleg_icd_9 = r'^3341|^34[234].*' 
cancer_no_skin_icd_9 = r'^1[4568].*|^17[0124569].*|^19[0-5].*|^1991|^20[0-8].*|^2386' 
mod_severe_liver_icd_9 = r'^456[0-2].*|^572[2-48].*' 
solid_met_icd_9 = r'^19[6-9].*' 
hiv_icd_9 = r'^04[2-4].*' 
opp_inf_icd_9 = r'^0031|^007[24]|^01[0-
8].*|^031.*|^0463|^054.*|^0785|^130.*|^11[245].*|^1175|^1363|^176.*|^180.*|^20[0-
9].*|^3483.*|^7994|^V1261' 
 
#ICD-10 
mi_icd_10 = r'^I2[12].*|^I252' 
chf_icd_10 = r'^I110|^I13[02]|^I255|^I420|^I42[5-9].*|^I43.*|^I50.*|^P290' 
pvd_icd_10 = r'^I7[01].*|^I73[1-9].*|^I771|^I79[018]|^K55[189]|^Z95[89].*' 
cvd_icd_10 = r'^G4[56].*|^H340.*|^I6[0-8].*' 
demen_icd_10 = r'^F0[0-5].*|^F06[18]|^G13[28]|^G30.*|^G31[0-4]|^G914|^G94.*|^R4181|^R54.*' 
chrn_pulm_icd_10 = r'^J[46][0-7].*|^J684|^J70[13]' 
rheum_icd_10 = r'^M0[56].*|^M315|^M3[2-4].*|^M35[13]|^M360' 
pud_icd_10 = r'^K2[5-8].*' 
mild_liver_icd_10 = r'^B18.*|^K70[0-39].*|^K71[3-57].*|^K7[34].*|^K76[02-489].*|^Z944' 
t2dm_wo_comp_icd_10 = r'^E0[89][01689].*|^E1[013][01689].*' 
t2dm_w_comp_icd_10 = r'^E0[89][2-5].*|^E1[013][2-5].*' 
mild_mod_renal_icd_10 = r'^I129|^I130|^I1310|^N0[35].*|^N18[1-49].*|^Z940' 
severe_renal_icd_10 = r'^I120|^I1311|^I132.*|^N18[56]|^N19.*|^N250|^Z49.*|^Z992' 
hemi_parapleg_icd_10 = r'^G041|^G114|^G80[0-2].*|^G8[123].*' 
cancer_no_skin_icd_10 = r'^C[0129].*|^C3[0-4789].*|^C4[0135-9].*|^C5[0-8].*|^C6[0-
3].*|^C76.*|^C801|^C8[1-58].*' 
mod_severe_liver_icd_10 = r'^I85.*|^I864|^K704.*|^K7[12]1.*|^K729.*|^K76[5-7].*' 
solid_met_icd_10 = r'^C7[7-9].*|^C80[02]' 
hiv_icd_10 = r'^B2[024].*' 
opp_inf_icd_10 = r'^A021|^A07[23]|^A1[5-9].*|^A31.*|^A812.*|^B00.*|^B25.*|^B3[7-
9].*|^B45.*|^B5[89].*|^C46.*|^C53.*|^C8[1-9].*|^C9[0-6].*|^G934.*|^R64.*|^Z8701' 
 
cci_names = [ 
    'CCI_MI_ICD_9', 
    'CCI_CHF_ICD_9', 
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    'CCI_PVD_ICD_9', 
    'CCI_CVD_ICD_9', 
    'CCI_DEMENTIA_ICD_9', 
    'CCI_CHRONIC_PULM_ICD_9', 
    'CCI_RHEUM_ICD_9', 
    'CCI_PUD_ICD_9', 
    'CCI_MILD_LIVER_ICD_9', 
    'CCI_T2DM_WO_COMP_ICD_9', 
    'CCI_T2DM_W_COMP_ICD_9', 
    'CCI_HEMI_PARAPLEGIA_ICD_9', 
    'CCI_MILD_MOD_RENAL_ICD_9', 
    'CCI_SEVERE_RENAL_ICD_9', 
    'CCI_CANCER_NOT_SKIN_ICD_9', 
    'CCI_MOD_SEVERE_LIVER_ICD_9', 
    'CCI_SOLID_MET_ICD_9', 
    'CCI_HIV_ICD_9', 
    'CCI_OPPORTUNISTIC_INF_ICD_9', 
    'CCI_MI_ICD_10', 
    'CCI_CHF_ICD_10', 
    'CCI_PVD_ICD_10', 
    'CCI_CVD_ICD_10', 
    'CCI_DEMENTIA_ICD_10', 
    'CCI_CHRONIC_PULM_ICD_10', 
    'CCI_RHEUM_ICD_10', 
    'CCI_PUD_ICD_10', 
    'CCI_MILD_LIVER_ICD_10', 
    'CCI_T2DM_WO_COMP_ICD_10', 
    'CCI_T2DM_W_COMP_ICD_10', 
    'CCI_HEMI_PARAPLEGIA_ICD_10', 
    'CCI_MILD_MOD_RENAL_ICD_10', 
    'CCI_SEVERE_RENAL_ICD_10', 
    'CCI_CANCER_NOT_SKIN_ICD_10', 
    'CCI_MOD_SEVERE_LIVER_ICD_10', 
    'CCI_SOLID_MET_ICD_10', 
    'CCI_HIV_ICD_10', 
    'CCI_OPPORTUNISTIC_INF_ICD_10' 
] 
 
elix_names = [ 
    'ELIX_CARDIAC_ARRYTHM_ICD_9', 
    'ELIX_VALV_ICD_9', 
    'ELIX_PULM_CIRCULATION_ICD_9', 
    'ELIX_HTN_UNCOMP_ICD_9', 
    'ELIX_HTN_COMP_ICD_9', 
    'ELIX_OTHER_NEURO_ICD_9', 
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    'ELIX_HYPOTHYROID_ICD_9', 
#     'ELIX_PUD_NO_BLEED_ICD_9', 
#     'ELIX_LYMPHOMA_ICD_9', 
#     'ELIX_METASTATIC_MET_ICD_9', 
#     'ELIX_SOLID_NO_MET_ICD_9', 
#     'ELIX_RHEUM_COLLAGEN_ICD_9', 
    'ELIX_COAGULOPATHY_ICD_9', 
    'ELIX_OBESITY_ICD_9', 
    'ELIX_WEIGHT_LOSS_ICD_9', 
    'ELIX_FLUID_ELECTROLYTES_ICD_9', 
    'ELIX_BLOOD_LOSS_ANEMIA_ICD_9', 
    'ELIX_DEFICIENCY_ANEMIA_ICD_9', 
    'ELIX_ETOH_ABUSE_ICD_9', 
    'ELIX_DRUG_ABUSE_ICD_9', 
    'ELIX_PSYCHOSES_ICD_9', 
    'ELIX_DEPRESSION_ICD_9', 
    'ELIX_CARDIAC_ARRYTHM_ICD_10', 
    'ELIX_VALV_ICD_10', 
    'ELIX_PULM_CIRCULATION_ICD_10', 
    'ELIX_HTN_UNCOMP_ICD_10', 
    'ELIX_HTN_COMP_ICD_10', 
    'ELIX_OTHER_NEURO_ICD_10', 
    'ELIX_HYPOTHYROID_ICD_10', 
#     'ELIX_PUD_NO_BLEED_ICD_10', 
#     'ELIX_LYMPHOMA_ICD_10', 
#     'ELIX_METASTATIC_MET_ICD_10', 
#     'ELIX_SOLID_NO_MET_ICD_10', 
#     'ELIX_RHEUM_COLLAGEN_ICD_10', 
    'ELIX_COAGULOPATHY_ICD_10', 
    'ELIX_OBESITY_ICD_10', 
    'ELIX_WEIGHT_LOSS_ICD_10', 
    'ELIX_FLUID_ELECTROLYTES_ICD_10', 
    'ELIX_BLOOD_LOSS_ANEMIA_ICD_10', 
    'ELIX_DEFICIENCY_ANEMIA_ICD_10', 
    'ELIX_ETOH_ABUSE_ICD_10', 
    'ELIX_DRUG_ABUSE_ICD_10', 
    'ELIX_PSYCHOSES_ICD_10', 
    'ELIX_DEPRESSION_ICD_10', 
] 
 
cci_vars = [ 
    mi_icd_9, 
    chf_icd_9, 
    pvd_icd_9, 
    cvd_icd_9, 
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    demen_icd_9, 
    chrn_pulm_icd_9, 
    rheum_icd_9, 
    pud_icd_9, 
    mild_liver_icd_9, 
    t2dm_wo_comp_icd_9, 
    t2dm_w_comp_icd_9, 
    hemi_parapleg_icd_9, 
    mild_mod_renal_icd_9, 
    severe_renal_icd_9, 
    cancer_no_skin_icd_9, 
    mod_severe_liver_icd_9, 
    solid_met_icd_9, 
    hiv_icd_9, 
    opp_inf_icd_9, 
    mi_icd_10, 
    chf_icd_10, 
    pvd_icd_10, 
    cvd_icd_10, 
    demen_icd_10, 
    chrn_pulm_icd_10, 
    rheum_icd_10, 
    pud_icd_10, 
    mild_liver_icd_10, 
    t2dm_wo_comp_icd_10, 
    t2dm_w_comp_icd_10, 
    hemi_parapleg_icd_10, 
    mild_mod_renal_icd_10, 
    severe_renal_icd_10, 
    cancer_no_skin_icd_10, 
    mod_severe_liver_icd_10, 
    solid_met_icd_10, 
    hiv_icd_10, 
    opp_inf_icd_10 
] 
 
elix_vars = [ 
    cardiac_arryth_icd_9, 
    valvular_dis_icd_9, 
    pulm_circ_icd_9, 
    htn_uncomplicated_icd_9, 
    htn_complicated_icd_9, 
    other_neuro_icd_9, 
    hypothyroid_icd_9, 
#     pud_no_bleed_icd_9, 
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#     lymphoma_icd_9, 
#     metastatic_icd_9, 
#     solid_no_met_icd_9, 
#     rhem_collagen_icd_9, 
    coagulopathy_icd_9, 
    obesity_icd_9, 
    weight_loss_icd_9, 
    fluid_electrolyte_icd_9, 
    blood_loss_anemia_icd_9, 
    deficient_anemia_icd_9, 
    etoh_abuse_icd_9, 
    drug_abuse_icd_9, 
    psychoses_icd_9, 
    depression_icd_9, 
    cardiac_arryth_icd_10, 
    valvular_dis_icd_10, 
    pulm_circ_icd_10, 
    htn_uncomplicated_icd_10, 
    htn_complicated_icd_10, 
    other_neuro_icd_10, 
    hypothyroid_icd_10, 
#     pud_no_bleed_icd_10, 
#     lymphoma_icd_10, 
#     metastatic_icd_10, 
#     solid_no_met_icd_10, 
#     rhem_collagen_icd_10, 
    coagulopathy_icd_10, 
    obesity_icd_10, 
    weight_loss_icd_10, 
    fluid_electrolyte_icd_10, 
    blood_loss_anemia_icd_10, 
    deficient_anemia_icd_10, 
    etoh_abuse_icd_10, 
    drug_abuse_icd_10, 
    psychoses_icd_10, 
    depression_icd_10 
] 
 
all_comorbid_names = cci_names + elix_names 
all_comorbid_vars = cci_vars + elix_vars 
 
collect_groupby = [] 
index_diag = diag.loc[diag['ID_combined'].isin(index['ID_combined'].unique())] 
for col_name, search_string in zip(all_comorbid_names, all_comorbid_vars): 
#     print('col_name: {}'.format(col_name)) 
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#     print('search string: {}'.format(search_string)) 
 
    grouped = index_diag.groupby('ID_combined')['DIAGNOSIS_2'].apply(lambda x: 
x.str.contains(search_string, re.I).any()) 
    grouped.name = col_name 
    collect_groupby.append(grouped) 
     
comorbidity_matrix = pd.concat(collect_groupby, sort = False, axis = 1) 
comorbidity_matrix = index[['ID_combined']].merge(comorbidity_matrix.reset_index(), how = 
'left').fillna(False) 
 
one_column_set = [re.search(r'.+ICD_9', col).group() for col in comorbidity_matrix.columns[1:] if 
re.search(r'ICD_9', col)] 
column_stems = [r'{}'.format(re.split('_ICD_9', col)[0]) for col in one_column_set] 
collect_series = [] 
for stem in column_stems: 
    search_stem = r'^{}_'.format(stem) # Have to add the underscore to the end to prevent similar 
prefixes pulling in undesired columns 
    cols_of_interest = [col for col in comorbidity_matrix if re.search(search_stem, col)] 
    combined = (comorbidity_matrix[cols_of_interest] == True).any(axis = 1) 
    combined.name = stem 
    collect_series.append(combined) 
comorbidity_matrix = comorbidity_matrix[['ID_combined']].join(pd.concat(collect_series, sort = 
False, axis = 1), how = 'inner') 
 
# Add CCI_AGE/CCI_score to comorbidity_matrix 
comorbidity_matrix = comorbidity_matrix.merge(demo[['ID_combined', 'AGE']], how = 'inner', on = 
'ID_combined') 
 
# No patients with AIDS, so it doesn't need to be added as an independent column 
# (comorbidity_matrix[['CCI_HIV', 'CCI_OPPORTUNISTIC_INF']] == True).all().sum() --> 0 
 

comorbidity_matrix.loc[:, 'CCI_AGE'] = calc_CCI_age(comorbidity_matrix) 
comorbidity_matrix.loc[:, 'CCI_SCORE'] = comorbidity_matrix.apply(calc_CCI_score, axis = 1) 
 
comorbidity_matrix = comorbidity_matrix.drop('CCI_OPPORTUNISTIC_INF', axis = 1) 
 
# Create the composite cardiovascular disease and T2DM variables 
comorbidity_matrix.loc[:, 'CVD_COMPOSITE'] = comorbidity_matrix[['CCI_MI', 'CCI_CHF', 
'CCI_PVD', 'CCI_CVD']].any(axis = 1) 
comorbidity_matrix.loc[:, 'T2DM_COMPOSITE'] = comorbidity_matrix[['CCI_T2DM_WO_COMP', 
'CCI_T2DM_W_COMP']].any(axis = 1) 
 
comorbidity_matrix_out_path = r'{}/comorbidity_matrix.csv'.format(home_folder_path) 
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comorbidity_matrix.to_csv(comorbidity_matrix_out_path, index = False) 
 
# Infectious Disease Codes 
uti_icd_9_pattern_list = [ 
    '^58[0123]', 
    '^59[07]', 
    '^595[012349]',  
    '^5958[19]',  
    '^5980',  
    '^598[59]',  
    '^599[023]',  
    '^9966[45]' 
] 
 
uti_icd_10_pattern_list = [ 
    '^N10', 
    '^N11[089]', 
    '^N12', 
    '^N13[56]', 
    '^N151', 
    '^N288[456]', 
    '^N30[012389][01]', 
    '^N34[023]', 
    '^N390' 
] 
 
ssti_icd_9_pattern_list = [ 
    '^035', 
    '^6110',  
    '^7715', 
    '^68[0-6]', 
    '^7048', 
    '^707', 
    '^91[012345679][13579]', 
    '^99883', 
    '^99934' 
#     '^86[02]' 
] 
ssti_icd_10_pattern_list = [ 
    '^A46', 
    '^N611', 
    '^L0[123458]', 
    '^L72[89]', 
#     '^L76', 
    '^L8[89]', 
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    '^L928', 
    '^L97', 
    '^L98[04]', 
    '^T80212', 
    '^T814[12]', 
    '^0[JWXY][9B]' 
] 
 
pna_icd_9_pattern_list = [ 
    '^482[09]', 
    '^4828[239]', 
    '^48[34]8', 
    '^48[56]', 
    '^51[03]', 
    '^9973' 
] 
pna_icd_10_pattern_list = [ 
    '^J15[05689]', 
    '^J168', 
    '^J1[78]', 
    '^J8[56]', 
    '^J95851' 
] 
 
bsi_icd_9_pattern_list = [ 
    '^0384[029]', 
    '^038[89]', 
#     '^421', 
    '^42292', 
    '^7907', 
    '^9959[12]', 
    '^99662', 
    '^9993[12]' 
] 
bsi_icd_10_pattern_list = [ 
#     '^A41[1-49]', 
#     '^A41[0][12]', 
#     '^A41[5][0-39]', 
#     '^A41[8][19]', 
#     '^I33', 
    '^A415[019]', 
    '^A418[19]', 
    '^A419$', 
    '^R652', 
    '^R7881', 
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    '^T8021[189]', 
    '^T8144' 
] 
 
iai_icd_9_pattern_list = [ 
    '^5[34][12]', 
    '^53[34][1256]', 
    '^539[08]1', 
    '^540[01]', 
    '^562[01][13]', 
    '^567', 
    '^5695', 
    '^56961', 
    '^5698[123]', 
    '^57[27]0', 
    '^575[045]', 
    '^576[13]' 
] 
iai_icd_10_pattern_list = [ 
    '^A04[489]', 
    '^K2[56]', 
    '^K2[78][1256]', 
    '^K35[23]', 
    '^K57[0248]', 
    '^K63[012]', 
    '^K65[01289]', 
    '^K67', 
    '^K681[129]', 
    '^K689', 
    '^K810', 
    '^K82A2', 
    '^K830', 
    '^K832', 
    '^K85[012389]2', 
    '^K94[012]2', 
    '^K95[08]1' 
] 
 
inf_types = ['UTI', 'IAI', 'SSTI', 'BSI', 'PNA'] 
icd_code_list = [ 
    uti_icd_9_pattern_list + uti_icd_10_pattern_list,  
    iai_icd_9_pattern_list + iai_icd_10_pattern_list,  
    ssti_icd_9_pattern_list + ssti_icd_10_pattern_list,  
    bsi_icd_9_pattern_list + bsi_icd_10_pattern_list,  
    pna_icd_9_pattern_list + pna_icd_10_pattern_list,  
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] 
 
collect_groupby = [] 
for inf_type, search_string_list in zip(inf_types, icd_code_list): 
 
    search_string = r'|'.join(search_string_list) 
    grouped = index_diag.groupby('ID_combined')['DIAGNOSIS_2'].apply(lambda x: 
x.str.contains(search_string, re.I).any()) 
    grouped.name = inf_type 
    collect_groupby.append(grouped) 
     
inf_matrix = pd.concat(collect_groupby, sort = False, axis = 1) 
inf_matrix = index[['ID_combined']].merge(inf_matrix.reset_index(), how = 'left').fillna(False) 
 
inf_matrix_out_path = r'{}/inf_type_by_ICD_code.csv'.format(home_folder_path) 
inf_matrix.to_csv(inf_matrix_out_path, index = False) 
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Determining_specific_culture_types.ipynb 

# This file essentially takes all of the relevant culture data for grouping patients 
# both at index and across entire stay and creates a massive boolean matrix 
# This will be used in future script to determine how to apply certain assumptions 
import pandas as pd 
import numpy as np 
import re 
import os 
import datetime as dt 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
 
home_folder_path = os.getcwd() 
 
os.chdir(r'../Antibiogram/Reorganize_data_for_antibiogram') 
try: 
    from EPIC_MAPS import organism_abbr_map 
finally: 
    os.chdir(home_folder_path) 
 
index_path = r'{}/micro_index_cultures_post_exclusions.csv'.format(home_folder_path) 
index = pd.read_csv(index_path) 
 
# other_cxs_path = 
r'{}/Helpful_resources/wide_combined_data_no_surv_max_mic_final.csv'.format(home_folder_pa
th) 
other_cxs_path = r'{}/non_study_isolate_cultures_post_exclusions.csv'.format(home_folder_path) 
other_cxs = pd.read_csv(other_cxs_path) 
 
def create_batt_aggr_2(data): 
     
    batt_aggr_of_interest = [ 
        'Blood', 
        'Intra-abdominal', 
        'Respiratory', 
        'Skin/Soft Tissue', 
        'Urine' 
    ] 
     
    if data['BATT_AGGR'] in batt_aggr_of_interest: 
        return data['BATT_AGGR'] 
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    else: 
        return 'Other' 
 
# Convert the date containing columns to the appropriate date object type 
cols_to_dt_date = ['CDATE_DT', 'ADMT_DT', 'DISCHRG_DT', 'EARLIEST_STUDY_CULTURE', 
'EARLIEST_CULTURE_OVERALL', 'NEW_MODIFIED_DISCHRG_DT'] 
for col in cols_to_dt_date: 
    index.loc[:, col] = pd.to_datetime(index[col]) 
    other_cxs.loc[:, col] = pd.to_datetime(other_cxs[col]) 
 
index.loc[:, 'SPECIES_ABBR'] = index['SPECIES'].apply(lambda x: organism_abbr_map.get(x)) 
index.loc[:, 'BATT_AGGR_V2'] = index.apply(create_batt_aggr_2, axis = 1) 
 
other_cxs.loc[:, 'SPECIES_ABBR'] = other_cxs['SPECIES'].apply(lambda x: 
organism_abbr_map.get(x)) 
other_cxs.loc[:, 'BATT_AGGR_V2'] = other_cxs.apply(create_batt_aggr_2, axis = 1) 
 
merge_index = pd.concat([index, other_cxs], sort = False) 
 
# Only CRE isolates cultured 
only_cre = index.groupby('ID_combined')['Carbapenem_resistent'].apply(lambda x: (x == 
True).all()) 
only_cre.name = 'Only_CRE_Cultured_WO_OTHER' 
 
only_cre_w_other = merge_index.groupby('ID_combined')['Carbapenem_resistent'].apply(lambda 
x: (x == True).all()) 
only_cre_w_other.name = 'Only_CRE_Cultured_W_OTHER' 
 
only_cre_index = index\ 
                    .loc[index['CDATE_DT'] == index['EARLIEST_STUDY_CULTURE']]\ 
                    .groupby('ID_combined')['Carbapenem_resistent']\ 
                    .apply(lambda x: (x == True).all()) 
only_cre_index.name = 'INDEX_ONLY_CRE_CULTURED_WO_OTHER' 
 
only_cre_index_w_other = merge_index\ 
                    .loc[merge_index['CDATE_DT'] == merge_index['EARLIEST_STUDY_CULTURE']]\ 
                    .groupby('ID_combined')['Carbapenem_resistent']\ 
                    .apply(lambda x: (x == True).all()) 
only_cre_index_w_other.name = 'INDEX_ONLY_CRE_CULTURED_W_OTHER' 
 
cre_only_df = pd.DataFrame(only_cre)\ 
            .join(only_cre_w_other, how = 'left')\ 
            .join(only_cre_index, how = 'left')\ 
            .join(only_cre_index_w_other, how = 'left')\ 
            .fillna(False) 
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# Only CNS isolates cultured 
only_cns = index.groupby('ID_combined')['Carbapenem_non_susceptible'].apply(lambda x: (x == 
True).all()) 
only_cns.name = 'Only_CNS_Cultured_WO_OTHER' 
 
only_cns_w_other = 
merge_index.groupby('ID_combined')['Carbapenem_non_susceptible'].apply(lambda x: (x == 
True).all()) 
only_cns_w_other.name = 'Only_CNS_Cultured_W_OTHER' 
 
only_cns_index = index\ 
                    .loc[index['CDATE_DT'] == index['EARLIEST_STUDY_CULTURE']]\ 
                    .groupby('ID_combined')['Carbapenem_non_susceptible']\ 
                    .apply(lambda x: (x == True).all()) 
only_cns_index.name = 'INDEX_ONLY_CNS_CULTURED_WO_OTHER' 
 
only_cns_index_w_other = merge_index\ 
                    .loc[merge_index['CDATE_DT'] == merge_index['EARLIEST_STUDY_CULTURE']]\ 
                    .groupby('ID_combined')['Carbapenem_non_susceptible']\ 
                    .apply(lambda x: (x == True).all()) 
only_cns_index_w_other.name = 'INDEX_ONLY_CNS_CULTURED_W_OTHER' 
 
cns_only_df = pd.DataFrame(only_cns)\ 
            .join(only_cns_w_other, how = 'left')\ 
            .join(only_cns_index, how = 'left')\ 
            .join(only_cns_index_w_other, how = 'left')\ 
            .fillna(False) 
 
# Non-study isolates cultured 
one_month_prior = dt.timedelta(days = -30) 
one_week_prior = dt.timedelta(days = -7) 
two_d_prior = dt.timedelta(days = -2) 
 
has_non_study_isolates = merge_index.groupby('ID_combined')['SPECIES'].apply(lambda x: 
(x.isin(other_cxs['SPECIES'].unique())).any()) 
has_non_study_isolates.name = 'HAS_NON-STUDY_ISOLATE_CULTURE' 
 
has_non_study_isolates_prior_index = merge_index.groupby('ID_combined').apply(lambda x: 
(x['EARLIEST_CULTURE_OVERALL'] < x['EARLIEST_STUDY_CULTURE']).any()) 
has_non_study_isolates_prior_index.name = 'HAS_NON-STUDY_ISOLATE_PRIOR_INDEX' 
 
merge_index.loc[:, 'EARLIEST_CULTURE_INDEX_CULTURE_DIFF'] = 
merge_index['EARLIEST_CULTURE_OVERALL'] - 
merge_index['EARLIEST_STUDY_CULTURE'] 
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has_non_study_isolate_ge_one_month_prior = 
merge_index.groupby('ID_combined').apply(lambda x: 
(x['EARLIEST_CULTURE_INDEX_CULTURE_DIFF'] <= one_month_prior).any()) 
has_non_study_isolate_ge_one_month_prior.name = 'HAS_NON-
STUDY_ISOLATE_GE_ONE_MONTH_PRIOR_INDEX' 
 
has_non_study_isolate_ge_one_week_prior = 
merge_index.groupby('ID_combined').apply(lambda x: 
(x['EARLIEST_CULTURE_INDEX_CULTURE_DIFF'] <= one_month_prior).any()) 
has_non_study_isolate_ge_one_week_prior.name = 'HAS_NON-
STUDY_ISOLATE_GE_ONE_WEEK_PRIOR_INDEX' 
 
has_non_study_isolate_ge_two_d_prior = merge_index.groupby('ID_combined').apply(lambda x: 
(x['EARLIEST_CULTURE_INDEX_CULTURE_DIFF'] <= one_month_prior).any()) 
has_non_study_isolate_ge_two_d_prior.name = 'HAS_NON-
STUDY_ISOLATE_GE_TWO_DAYS_PRIOR_INDEX' 
 
non_study_isolate_df = pd.DataFrame(has_non_study_isolates)\ 
                        .join(has_non_study_isolates_prior_index, how = 'left')\ 
                        .join(has_non_study_isolate_ge_one_month_prior, how = 'left')\ 
                        .join(has_non_study_isolate_ge_one_week_prior, how = 'left')\ 
                        .join(has_non_study_isolate_ge_two_d_prior, how = 'left')\ 
                        .fillna(False) 
 
# Basic CRE culture information 
def cr_basic_df_values(df): 
    subset = df.loc[df['Carbapenem_resistent'] == True] 
    index_subset = subset.loc[subset['CDATE_DT'] == subset['EARLIEST_STUDY_CULTURE']] 
#     display(subset) 
    if subset.shape[0] < 1: 
        num_cr_cx, num_cr_species, num_cr_cx_type, num_cr_cx_index, num_cr_species_index, 
num_cr_cx_type_index = 0, 0, 0, 0, 0, 0 
    else: 
        num_cr_cx = subset.shape[0] 
        num_cr_species = subset['SPECIES'].nunique() 
        num_cr_cx_type = subset['BATT_AGGR_V2'].nunique() 
         
        if index_subset.shape[0] < 1: 
            num_cr_cx_index, num_cr_species_index, num_cr_cx_type_index = 0, 0, 0 
        else: 
            num_cr_cx_index = index_subset.shape[0] 
            num_cr_species_index = index_subset['SPECIES'].nunique() 
            num_cr_cx_type_index = index_subset['BATT_AGGR_V2'].nunique() 
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    return pd.Series( 
        { 
            'NUM_CRE_CX':num_cr_cx, 
            'NUM_CRE_SPECIES':num_cr_species, 
            'NUM_CRE_BATT_AGGR':num_cr_cx_type, 
            'NUM_CRE_CX_INDEX':num_cr_cx_index, 
            'NUM_CRE_SPECIES_INDEX':num_cr_species_index, 
            'NUM_CRE_BATT_AGGR_INDEX':num_cr_cx_type_index 
        } 
    ) 
 
cre_basic_grouped = index.groupby('ID_combined').apply(cr_basic_df_values) 
 
# Basic CNS culture information 
def cns_basic_df_values(df): 
    subset = df.loc[df['Carbapenem_non_susceptible'] == True] 
    index_subset = subset.loc[subset['CDATE_DT'] == subset['EARLIEST_STUDY_CULTURE']] 
#     display(subset) 
    if subset.shape[0] < 1: 
        num_cns_cx, num_cns_species, num_cns_cx_type, num_cns_cx_index, 
num_cns_species_index, num_cns_cx_type_index = 0, 0, 0, 0, 0, 0 
    else: 
        num_cns_cx = subset.shape[0] 
        num_cns_species = subset['SPECIES'].nunique() 
        num_cns_cx_type = subset['BATT_AGGR_V2'].nunique() 
         
        if index_subset.shape[0] < 1: 
            num_cns_cx_index, num_cns_species_index, num_cns_cx_type_index = 0, 0, 0 
        else: 
            num_cns_cx_index = index_subset.shape[0] 
            num_cns_species_index = index_subset['SPECIES'].nunique() 
            num_cns_cx_type_index = index_subset['BATT_AGGR_V2'].nunique() 
     
    return pd.Series( 
        { 
            'NUM_CNS_CX':num_cns_cx, 
            'NUM_CNS_SPECIES':num_cns_species, 
            'NUM_CNS_BATT_AGGR':num_cns_cx_type, 
            'NUM_CNS_CX_INDEX':num_cns_cx_index, 
            'NUM_CNS_SPECIES_INDEX':num_cns_species_index, 
            'NUM_CNS_BATT_AGGR_INDEX':num_cns_cx_type_index 
        } 
    ) 
 
cns_basic_grouped = index.groupby('ID_combined').apply(cns_basic_df_values) 
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# Basic CS culture information taken from CRE patients 
def cs_cre_basic_df_values(df): 
    subset = df.loc[ 
        (df['Carbapenem_non_susceptible'] == False)& 
        (df['CRE_GROUP_V2'] == 'CRE') 
    ] 
    index_subset = subset.loc[subset['CDATE_DT'] == subset['EARLIEST_STUDY_CULTURE']] 
#     display(subset) 
    if subset.shape[0] < 1: 
        num_cr_cx, num_cr_species, num_cr_cx_type, num_cr_cx_index, num_cr_species_index, 
num_cr_cx_type_index = 0, 0, 0, 0, 0, 0 
    else: 
        num_cr_cx = subset.shape[0] 
        num_cr_species = subset['SPECIES'].nunique() 
        num_cr_cx_type = subset['BATT_AGGR_V2'].nunique() 
         
        if index_subset.shape[0] < 1: 
            num_cr_cx_index, num_cr_species_index, num_cr_cx_type_index = 0, 0, 0 
        else: 
            num_cr_cx_index = index_subset.shape[0] 
            num_cr_species_index = index_subset['SPECIES'].nunique() 
            num_cr_cx_type_index = index_subset['BATT_AGGR_V2'].nunique() 
     
    return pd.Series( 
        { 
            'NUM_CS_CRE_CX':num_cr_cx, 
            'NUM_CS_CRE_SPECIES':num_cr_species, 
            'NUM_CS_CRE_BATT_AGGR':num_cr_cx_type, 
            'NUM_CS_CRE_CX_INDEX':num_cr_cx_index, 
            'NUM_CS_CRE_SPECIES_INDEX':num_cr_species_index, 
            'NUM_CS_CRE_BATT_AGGR_INDEX':num_cr_cx_type_index 
        } 
    ) 
 
cs_cre_basic_grouped = index.groupby('ID_combined').apply(cs_cre_basic_df_values) 
 
# Basic CS culture information taken from CNS patients 
def cs_cns_basic_df_values(df): 
    subset = df.loc[ 
        (df['Carbapenem_non_susceptible'] == False)& 
        (df['CNS_GROUP_V2'] == 'CNS') 
    ] 
    index_subset = subset.loc[subset['CDATE_DT'] == subset['EARLIEST_STUDY_CULTURE']] 
#     display(subset) 
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    if subset.shape[0] < 1: 
        num_cr_cx, num_cr_species, num_cr_cx_type, num_cr_cx_index, num_cr_species_index, 
num_cr_cx_type_index = 0, 0, 0, 0, 0, 0 
    else: 
        num_cr_cx = subset.shape[0] 
        num_cr_species = subset['SPECIES'].nunique() 
        num_cr_cx_type = subset['BATT_AGGR_V2'].nunique() 
         
        if index_subset.shape[0] < 1: 
            num_cr_cx_index, num_cr_species_index, num_cr_cx_type_index = 0, 0, 0 
        else: 
            num_cr_cx_index = index_subset.shape[0] 
            num_cr_species_index = index_subset['SPECIES'].nunique() 
            num_cr_cx_type_index = index_subset['BATT_AGGR_V2'].nunique() 
     
    return pd.Series( 
        { 
            'NUM_CS_CNS_CX':num_cr_cx, 
            'NUM_CS_CNS_SPECIES':num_cr_species, 
            'NUM_CS_CNS_BATT_AGGR':num_cr_cx_type, 
            'NUM_CS_CNS_CX_INDEX':num_cr_cx_index, 
            'NUM_CS_CNS_SPECIES_INDEX':num_cr_species_index, 
            'NUM_CS_CNS_BATT_AGGR_INDEX':num_cr_cx_type_index 
        } 
    ) 
 
cs_cns_basic_grouped = index.groupby('ID_combined').apply(cs_cns_basic_df_values) 
 
# Overall culture information 
basic_df_grouped = index.groupby('ID_combined').agg( 
    NUM_STUDY_CX = ('BATT_AGGR_V2','count'), 
    NUM_STUDY_SPECIES = ('SPECIES', 'nunique'), 
    NUM_STUDY_BATT_AGGR = ('BATT_AGGR_V2', 'nunique'), 
) 
basic_df_grouped_index = index.loc[index['CDATE_DT'] == 
index['EARLIEST_STUDY_CULTURE']].groupby('ID_combined').agg( 
    NUM_STUDY_CX_INDEX = ('BATT_AGGR_V2','count'), 
    NUM_STUDY_SPECIES_INDEX = ('SPECIES', 'nunique'), 
    NUM_STUDY_BATT_AGGR_INDEX = ('BATT_AGGR_V2', 'nunique'), 
) 
 
basic_df_grouped = basic_df_grouped.join(basic_df_grouped_index, how = 
'left').fillna(0).astype(int) 
 
# All species for each infection type present 
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def categorize_pheno_batt_aggr_species_study_isolates(df): 
    batt_aggr_options = ['Blood', 'Intra-abdominal', 'Other', 'Respiratory', 'Skin/Soft Tissue', 'Urine'] 
     
    # Calculate the combinations of possible cultures in the CRE group 
    cr_cr_sub = df.loc[ 
        (df['Carbapenem_resistent'] == True)& 
        (df['CRE_GROUP_V2'] == 'CRE') 
    ] 
     
    cns_cr_sub = df.loc[ 
        (df['Carbapenem_non_susceptible'] == True)& 
        (df['CRE_GROUP_V2'] == 'CRE') 
    ] 
     
    cs_cr_sub = df.loc[ 
        (df['Carbapenem_non_susceptible'] == False)& 
        (df['CRE_GROUP_V2'] == 'CRE') 
    ] 
     
    # Calculate the combinations of possible cultures in the CNS group 
    cr_cns_sub = df.loc[ 
        (df['Carbapenem_resistent'] == True)& 
        (df['CNS_GROUP_V2'] == 'CNS') 
    ] 
     
    cns_cns_sub = df.loc[ 
        (df['Carbapenem_non_susceptible'] == True)& 
        (df['CNS_GROUP_V2'] == 'CNS') 
    ] 
     
    cs_cns_sub = df.loc[ 
        (df['Carbapenem_non_susceptible'] == False)& 
        (df['CNS_GROUP_V2'] == 'CNS') 
    ] 
 
    # Calculate the combinations of possible cultures in the CSE group/ There should only be one 
at this point 
    cs_sub = df.loc[ 
        (df['Carbapenem_non_susceptible'] == False)& 
        (df['CRE_GROUP_V2'] == 'CSE') 
    ] 
     
    dict_list = [] 
    labels = ['CR_CRE', 'CNS_CRE', 'CS_CRE', 'CR_CNS', 'CNS_CNS', 'CS_CNS', 'CSE'] 
    data = [cr_cr_sub, cns_cr_sub, cs_cr_sub, cr_cns_sub, cns_cns_sub, cs_cns_sub, cs_sub] 
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    for pheno, subset in zip(labels, data): 
        species_culture_dict = {} 
        if subset.shape[0] < 1: 
            bsi, iai, other, pna, ssti, uti = 'No cultures', 'No cultures', 'No cultures', 'No cultures', 'No 
cultures', 'No cultures' 
            key_names = ['{}_{}'.format(pheno, batt_aggr) for batt_aggr in batt_aggr_options] 
            val_names = [bsi, iai, other, pna, ssti, uti] 
            species_culture_dict = {k:v for k, v in zip(key_names, val_names)} 
            dict_list.append(species_culture_dict) 
             
        else: 
            # Need to have a value for all possible options so the output pd.Series is aligned right 
            batt_aggr_present = subset['BATT_AGGR_V2'].unique() 
            missing_batt_aggr = [batt_aggr for batt_aggr in batt_aggr_options if not batt_aggr in 
batt_aggr_present] 
            for batt_aggr in missing_batt_aggr: 
                species_culture_dict['{}_{}'.format(pheno, batt_aggr)] = 'No cultures' 
 
            present_species = subset.groupby('BATT_AGGR_V2')['SPECIES_ABBR'].agg(lambda x:', 
'.join(x.unique())).to_dict() 
            for k, v in present_species.items(): 
                species_culture_dict['{}_{}'.format(pheno, k)] = v 
 
            dict_list.append(species_culture_dict) 
             
    output = { 
        **dict_list[0], # cr_cr_sub dictionary 
        **dict_list[1], # cns_cr_sub dictionary 
        **dict_list[2], # cs_cr_sub dictionary  
        **dict_list[3], # cr_cns_sub dictionary 
        **dict_list[4], # cns_cns_sub dictionary 
        **dict_list[5], # cs_cns_sub dictionary 
        **dict_list[6]  # cs_sub 
    } 
     
    return pd.Series(output) 
# First do this for the overall analysis 
species_cx_types_study = 
index.groupby('ID_combined').apply(categorize_pheno_batt_aggr_species_study_isolates).reset_
index() 
species_cx_types_study = species_cx_types_study.rename(columns = 
{'level_1':'PHENO_BATT_AGGR', 0:'SPECIES'}) 
species_cx_types_study = species_cx_types_study.pivot(index = 'ID_combined', columns = 
'PHENO_BATT_AGGR', values = 'SPECIES') 
species_cx_types_study.columns.name = '' 
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# Now only look at cultures that are taken on index date 
species_cx_types_study_index = index.loc[index['CDATE_DT'] == 
index['EARLIEST_STUDY_CULTURE']].groupby('ID_combined').apply(categorize_pheno_batt_a
ggr_species_study_isolates).reset_index() 
species_cx_types_study_index = species_cx_types_study_index.rename(columns = 
{'level_1':'PHENO_BATT_AGGR', 0:'SPECIES'}) 
species_cx_types_study_index = species_cx_types_study_index.pivot(index = 'ID_combined', 
columns = 'PHENO_BATT_AGGR', values = 'SPECIES') 
species_cx_types_study_index = species_cx_types_study_index.rename(columns = 
{col:'INDEX_{}'.format(col) for col in species_cx_types_study_index.columns}) 
species_cx_types_study_index.columns.name = '' 
 
# Same as previous section but for "non-study" cultures 
def categorize_pheno_batt_aggr_species_other_isolates(df):     
    pheno = 'Non-study' 
    batt_aggr_options = ['Blood', 'Intra-abdominal', 'Other', 'Respiratory', 'Skin/Soft Tissue', 'Urine'] 
    species_culture_dict = {} 
    if df.shape[0] < 1: 
        bsi, iai, other, pna, ssti, uti = 'No cultures', 'No cultures', 'No cultures', 'No cultures', 'No 
cultures', 'No cultures' 
        key_names = ['{}_{}'.format(pheno, batt_aggr) for batt_aggr in batt_aggr_options] 
        val_names = [bsi, iai, other, pna, ssti, uti] 
        species_culture_dict = {k:v for k, v in zip(key_names, val_names)} 
 
    else: 
        # Need to have a value for all possible options so the output pd.Series is aligned right 
        batt_aggr_present = df['BATT_AGGR_V2'].unique() 
        missing_batt_aggr = [batt_aggr for batt_aggr in batt_aggr_options if not batt_aggr in 
batt_aggr_present] 
        for batt_aggr in missing_batt_aggr: 
            species_culture_dict['{}_{}'.format(pheno, batt_aggr)] = 'No cultures' 
 
        present_species = df.groupby('BATT_AGGR_V2')['SPECIES_ABBR'].agg(lambda x:', 
'.join(x.unique())).to_dict() 
        for k, v in present_species.items(): 
            species_culture_dict['{}_{}'.format(pheno, k)] = v 
     
    return pd.Series(species_culture_dict) 
 
# Overall in the study 
species_cx_types_other = 
other_cxs.groupby('ID_combined').apply(categorize_pheno_batt_aggr_species_other_isolates).re
set_index() 
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species_cx_types_other = species_cx_types_other.rename(columns = 
{'level_1':'PHENO_BATT_AGGR', 0:'SPECIES'}) 
species_cx_types_other = species_cx_types_other.pivot(index = 'ID_combined', columns = 
'PHENO_BATT_AGGR', values = 'SPECIES') 
species_cx_types_other.columns.name = '' 
 
# Analysis performed at the time of culture 
species_cx_types_other_index = other_cxs\ 
                                .loc[other_cxs['CDATE_DT'] == other_cxs['EARLIEST_STUDY_CULTURE']]\ 
                                .groupby('ID_combined')\ 
                                .apply(categorize_pheno_batt_aggr_species_other_isolates)\ 
                                .reset_index() 
species_cx_types_other_index = species_cx_types_other_index.rename(columns = 
{'level_1':'PHENO_BATT_AGGR', 0:'SPECIES'}) 
species_cx_types_other_index = species_cx_types_other_index.pivot(index = 'ID_combined', 
columns = 'PHENO_BATT_AGGR', values = 'SPECIES') 
species_cx_types_other_index = species_cx_types_other_index.rename(columns = 
{col:'INDEX_{}'.format(col) for col in species_cx_types_other_index.columns}) 
species_cx_types_other_index.columns.name = '' 
 
# Basic info of other isolates 
basic_other_df_grouped = other_cxs.groupby('ID_combined').agg( 
    NUM_OTHER_CX = ('BATT_AGGR_V2','count'), 
    NUM_OTHER_SPECIES = ('SPECIES', 'nunique'), 
    NUM_OTHER_BATT_AGGR = ('BATT_AGGR_V2', 'nunique'), 
) 
 
basic_other_df_grouped_index = other_cxs.loc[other_cxs['CDATE_DT'] == 
other_cxs['EARLIEST_STUDY_CULTURE']].groupby('ID_combined').agg( 
    NUM_OTHER_CX_INDEX = ('BATT_AGGR_V2','count'), 
    NUM_OTHER_SPECIES_INDEX = ('SPECIES', 'nunique'), 
    NUM_OTHER_BATT_AGGR_INDEX = ('BATT_AGGR_V2', 'nunique'), 
) 
 
basic_other_df_grouped = basic_other_df_grouped.join(basic_other_df_grouped_index, how = 
'left').fillna(0).astype(int) 
 
# Put it all together and write out 
output_df = cre_only_df\ 
    .join(cns_only_df, how = 'left')\ 
    .join(non_study_isolate_df, how = 'left')\ 
    .join(basic_df_grouped, how = 'left')\ 
    .join(cre_basic_grouped, how = 'left')\ 
    .join(cns_basic_grouped, how = 'left')\ 
    .join(cs_cre_basic_grouped, how = 'left')\ 
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    .join(cs_cns_basic_grouped, how = 'left')\ 
    .join(species_cx_types_study, how = 'left')\ 
    .join(basic_other_df_grouped, how = 'left')\ 
    .join(species_cx_types_other, how = 'left')\ 
    .reset_index() 
 
# Need to fillna selectively between the culture based and count based cols 
cx_cols = [col for col in output_df.columns if not re.search('^NUM|ID', col)] 
num_cx_cols = [col for col in output_df.columns if re.search('NUM', col)] 
 
cx_cols_dict = {col:'No cultures' for col in cx_cols} 
num_cx_cols_dict = {col:0 for col in num_cx_cols} 
 
output_df = output_df.fillna(value = {**cx_cols_dict, **num_cx_cols_dict}) 
 
float_cols = output_df.select_dtypes(float).columns.to_list() 
output_df[float_cols] = output_df[float_cols].astype(int) 
 
first_cols = [ # These are identifying columns that will be pulled from index 
    'ID_combined',  
    'CRE_GROUP_V2',  
    'CNS_GROUP_V2', 
    'ADMT_DT',  
    'NEW_MODIFIED_DISCHRG_DT',  
    'EARLIEST_STUDY_CULTURE',  
    'EARLIEST_CULTURE_OVERALL', 
    'CROSS_OVER', 
] 
follow_cols = [col for col in output_df.columns if col not in first_cols] 
 
output_df = output_df.merge(index[first_cols].drop_duplicates(), how = 'inner') 
output_df = output_df.reindex(first_cols + follow_cols, axis = 1) 
 
output_path = r'{}/analysis_species_batt_aggr_per_phenotype.csv'.format(home_folder_path) 
output_df.to_csv(output_path, index = False) 
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ICD_INF_TYPE_boolean.ipynb 

# This script reads in all of the culture boolean data and assesses whether there 
# was agreement with ICD data 
import pandas as pd 
import numpy as np 
import re 
import datetime as dt 
import os 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 500) 
pd.set_option('max_colwidth', None) 
 
def grab_species(species): 
    if isinstance(species, pd.Series): 
        if (species == 'No cultures').all(): 
            return 'No cultures' 
        else: 
            species_present = species.loc[species != 'No cultures'].values 
            combined_species = ', '.join(species_present) 
            return combined_species 
         
    elif isinstance(species, str): 
        # I don't need the ifs above if species is a string beacuse there is just a single string to return 
if it's No cultures or an actual species 
        return species 
 

def create_icd_inf_type_bool(data): 
    ''' 
    This function creates a dataframe of True/False values for analysis of cultures of each inf type 
and icd codes. 
    This will allow for specific patient selection depending on if a culture was taken, or if both an 
ICD code and 
    culture were drawn. The outcomes might be very different in these patients. 
    ''' 
 
    inf_type_dict = { 
        'BSI':'Blood', 
        'IAI':'Intra-abdominal', 
        'PNA':'Respiratory', 
        'SSTI':'Skin/Soft Tissue', 
        'UTI':'Urine' 
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    } 
     
    output_dict = {} 
    for inf_abbr, inf_full in inf_type_dict.items(): 
         
        inf_full_cols = [col for col in merged.columns if inf_full in col and not re.search('INDEX', col)] 
        study_iso_col_roots = ['CR_CRE', 'CNS_CRE', 'CS_CRE', 'CR_CNS', 'CNS_CNS', 
'CS_CNS', 'CSE'] 
        study_iso_cols = ['{}_{}'.format(root, inf_full) for root in study_iso_col_roots] 
         
        index_inf_full_cols = [col for col in merged.columns if inf_full in col and re.search('INDEX', 
col)] 
        index_study_iso_cols = ['INDEX_{}_{}'.format(root, inf_full) for root in study_iso_col_roots] 
         
        has_culture_bool = data[inf_full_cols] != 'No cultures' 
        has_culture_index_bool = data[index_inf_full_cols] != 'No cultures' 
 
        has_culture = has_culture_bool.any() 
        no_cultures = (has_culture_bool == False).all() 
        has_culture_index = has_culture_index_bool.any() 
        no_cultures_index = (has_culture_index_bool == False).all() 
        has_inf_icd = data[inf_abbr] == True 
        no_inf_icd = data[inf_abbr] == False         
 
        has_cr_cre_culture = has_culture_bool['CR_CRE_{}'.format(inf_full)] 
        has_cns_cns_culture = has_culture_bool['CNS_CNS_{}'.format(inf_full)] 
        has_cse_culture = has_culture_bool['CSE_{}'.format(inf_full)] 
        has_study_culture = has_culture_bool[study_iso_cols].any() 
        has_other_culture = has_culture_bool['Non-study_{}'.format(inf_full)] 
        has_non_cre_culture = has_culture_bool[['CS_CRE_{}'.format(inf_full), 
'CNS_CRE_{}'.format(inf_full)]].any() 
        has_cs_cns_culture = has_culture_bool['CS_CNS_{}'.format(inf_full)] 
         
        has_cr_cre_culture_index = has_culture_index_bool['INDEX_CR_CRE_{}'.format(inf_full)] 
        has_cns_cns_culture_index = 
has_culture_index_bool['INDEX_CNS_CNS_{}'.format(inf_full)] 
        has_cse_culture_index = has_culture_index_bool['INDEX_CSE_{}'.format(inf_full)] 
        has_study_culture_index = has_culture_index_bool[index_study_iso_cols].any() 
        has_other_culture_index = has_culture_index_bool['INDEX_Non-study_{}'.format(inf_full)] 
        has_non_cre_culture_index = has_culture_index_bool[['INDEX_CS_CRE_{}'.format(inf_full), 
'INDEX_CNS_CRE_{}'.format(inf_full)]].any() 
        has_cs_cns_culture_index = has_culture_index_bool['INDEX_CS_CNS_{}'.format(inf_full)] 
         
        species = grab_species(data[inf_full_cols]) 
        study_species = grab_species(data[study_iso_cols]) 
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        other_species = grab_species(data['Non-study_{}'.format(inf_full)]) 
        index_species = grab_species(data[index_inf_full_cols]) 
        index_study_species = grab_species(data[index_study_iso_cols]) 
        index_other_species = grab_species(data['INDEX_Non-study_{}'.format(inf_full)]) 
         
        has_infection = has_culture & has_inf_icd 
         
        has_cr_cre_infection = has_cr_cre_culture & has_inf_icd 
        has_cns_cns_infection = has_cns_cns_culture & has_inf_icd 
        has_cse_infection = has_cse_culture & has_inf_icd 
        has_study_infection = has_study_culture & has_inf_icd 
        has_other_infection = has_other_culture & has_inf_icd 
        has_non_cre_infection = has_non_cre_culture & has_inf_icd 
        has_cs_cns_infection = has_cs_cns_culture & has_inf_icd 
         
        has_infection_index = has_culture_index & has_inf_icd 
         
        has_cr_cre_infection_index = has_cr_cre_culture_index & has_inf_icd 
        has_cns_cns_infection_index = has_cns_cns_culture_index & has_inf_icd 
        has_cse_infection_index = has_cse_culture_index & has_inf_icd 
        has_study_infection_index = has_study_culture_index & has_inf_icd 
        has_other_infection_index = has_other_culture_index & has_inf_icd 
        has_non_cre_infection_index = has_non_cre_culture_index & has_inf_icd 
        has_cs_cns_infection_index = has_cs_cns_culture_index & has_inf_icd 
         
        has_cx_no_inf_any = has_culture & no_inf_icd 
        has_cx_no_inf_study = has_culture_bool[study_iso_cols].any() & no_inf_icd 
        has_cx_no_inf_other = has_other_culture & no_inf_icd 
        has_inf_no_cx_any = has_inf_icd & no_cultures 
        has_inf_no_cx_study = has_inf_icd & (has_culture_bool[study_iso_cols] == False).all() 
        has_inf_no_cx_other = has_inf_icd & has_culture_bool['Non-study_{}'.format(inf_full)] == 
False 
        agree_negative = no_cultures & no_inf_icd 
         
        # Create output 
        output_dict['ID_combined'] = data['ID_combined'] 
         
        # Does the patient have a given culture and broken into various conditions? 
        output_dict['Has_{}_CULTURE'.format(inf_full)] = has_culture 
        output_dict['Has_{}_CR_CRE_CULTURE'.format(inf_full)] = has_cr_cre_culture 
        output_dict['Has_{}_CNS_CNS_CULTURE'.format(inf_full)] = has_cns_cns_culture 
        output_dict['Has_{}_CSE_CULTURE'.format(inf_full)] = has_cse_culture 
        output_dict['Has_{}_STUDY_CULTURE'.format(inf_full)] = has_study_culture 
        output_dict['Has_{}_NON-STUDY_CULTURE'.format(inf_full)] = has_other_culture 
        output_dict['Has_{}_NON-CR_CULTURE_IN_CRE'.format(inf_full)] = has_non_cre_culture 
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        output_dict['Has_{}_CS_CULTURE_IN_CNS'.format(inf_full)] = has_cs_cns_culture 
        # Should I include a flag for when a CRE patient has a CS culture 
         
        # Does the patient have a given culture on the index date and broken into various 
conditions? 
        output_dict['Has_{}_CULTURE_INDEX'.format(inf_full)] = has_culture_index 
        output_dict['Has_{}_CR_CRE_CULTURE_INDEX'.format(inf_full)] = 
has_cr_cre_culture_index 
        output_dict['Has_{}_CNS_CNS_CULTURE_INDEX'.format(inf_full)] = 
has_cns_cns_culture_index 
        output_dict['Has_{}_CSE_CULTURE_INDEX'.format(inf_full)] = has_cse_culture_index 
        output_dict['Has_{}_STUDY_CULTURE_INDEX'.format(inf_full)] = has_study_culture_index 
        output_dict['Has_{}_NON-STUDY_CULTURE_INDEX'.format(inf_full)] = 
has_other_culture_index 
        output_dict['Has_{}_NON-CR_CULTURE_IN_CRE_INDEX'.format(inf_full)] = 
has_non_cre_culture_index 
        output_dict['Has_{}_CS_CULTURE_IN_CNS_INDEX'.format(inf_full)] = 
has_cs_cns_culture_index 
         
        # What species are present in each culture 
        output_dict['{}_OVERALL_SPECIES'.format(inf_full)] = species 
        output_dict['{}_STUDY_SPECIES'.format(inf_full)] = study_species 
        output_dict['{}_NON-STUDY_SPECIES'.format(inf_full)] = other_species 
         
        # What species are present in each culture at index 
        output_dict['{}_INDEX_OVERALL_SPECIES'.format(inf_full)] = index_species 
        output_dict['{}_INDEX_STUDY_SPECIES'.format(inf_full)] = index_study_species 
        output_dict['{}_INDEX_NON-STUDY_SPECIES'.format(inf_full)] = index_other_species 
         
        output_dict['Has_{}_ICD'.format(inf_full)] = has_inf_icd 
         
        # Infection by ICD ever agrees with culture type 
        output_dict['AGREE_{}_POSITIVE'.format(inf_full)] = has_infection 
        output_dict['AGREE_{}_CR_CRE_POSITIVE'.format(inf_full)] = has_cr_cre_infection 
        output_dict['AGREE_{}_CNS_CNS_POSITIVE'.format(inf_full)] = has_cns_cns_infection 
        output_dict['AGREE_{}_CSE_POSITIVE'.format(inf_full)] = has_cse_infection 
        output_dict['AGREE_{}_STUDY_POSITIVE'.format(inf_full)] = has_study_infection 
        output_dict['AGREE_{}_NON-STUDY_POSITIVE'.format(inf_full)] = has_other_infection 
        output_dict['AGREE_{}_NON-CR_IN_CRE_POSITIVE'.format(inf_full)] = 
has_non_cre_infection 
        output_dict['AGREE_{}_CS_IN_CNS_POSITIVE'.format(inf_full)] = has_cs_cns_infection 
         
        # Infection by ICD agrees with culture type at index 
        output_dict['AGREE_INDEX_{}_POSITIVE'.format(inf_full)] = has_infection_index 
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        output_dict['AGREE_INDEX_{}_CR_CRE_POSITIVE'.format(inf_full)] = 
has_cr_cre_infection_index 
        output_dict['AGREE_INDEX_{}_CNS_CNS_POSITIVE'.format(inf_full)] = 
has_cns_cns_infection_index 
        output_dict['AGREE_INDEX_{}_CSE_POSITIVE'.format(inf_full)] = has_cse_infection_index 
        output_dict['AGREE_INDEX_{}_STUDY_POSITIVE'.format(inf_full)] = 
has_study_infection_index 
        output_dict['AGREE_INDEX_{}_NON-STUDY_POSITIVE'.format(inf_full)] = 
has_other_infection_index 
        output_dict['AGREE_INDEX_{}_NON-CR_IN_CRE_POSITIVE'.format(inf_full)] = 
has_non_cre_infection_index 
        output_dict['AGREE_INDEX_{}_CS_IN_CNS_POSITIVE'.format(inf_full)] = 
has_cs_cns_infection_index 
         
        # Disagree cols ever...not sure I need to assess disagreement only at index because the 
ICD codes are for the entire visit 
        output_dict['HAS_{}_CX_NO_ICD'.format(inf_full)] = has_cx_no_inf_any 
        output_dict['HAS_{}_STUDY_CX_NO_ICD'.format(inf_full)] = has_cx_no_inf_study 
        output_dict['HAS_{}_NON-STUDY_CX_NO_ICD'.format(inf_full)] = has_cx_no_inf_other 
        output_dict['HAS_{}_ICD_NO_CX'.format(inf_full)] = has_inf_no_cx_any 
        output_dict['HAS_{}_ICD_NO_STUDY_CX'.format(inf_full)] = has_inf_no_cx_study 
        output_dict['HAS_{}_ICD_NO_NON-STUDY_CX'.format(inf_full)] = has_inf_no_cx_other 
        output_dict['AGREE_{}_NEGATIVE'.format(inf_full)] = agree_negative 
         
    return pd.Series(output_dict) 
         
#*************************************************************************************************************
** 
home_folder_path = os.getcwd() 
 
inf_type_path = r'{}/analysis_species_batt_aggr_per_phenotype.csv'.format(home_folder_path) 
inf_type = pd.read_csv(inf_type_path) 
 
icd_path = r'{}/inf_type_by_ICD_code.csv'.format(home_folder_path) 
icd = pd.read_csv(icd_path).drop_duplicates() 
 
merged = inf_type.merge(icd, how = 'inner') 
 
icd_inf_type_bool = merged.apply(create_icd_inf_type_bool, axis = 1) 
 
id_cols = [ # These are identifying columns that will be pulled from index 
    'ID_combined',  
    'CRE_GROUP_V2',  
    'CNS_GROUP_V2', 
    'ADMT_DT',  
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    'NEW_MODIFIED_DISCHRG_DT',  
    'EARLIEST_STUDY_CULTURE',  
    'EARLIEST_CULTURE_OVERALL', 
    'CROSS_OVER', 
] 
 
icd_inf_type_bool = merged[id_cols].merge(icd_inf_type_bool, how = 'inner', on = 'ID_combined') 
 
icd_inf_type_path = r'{}/icd_inf_type_agreement_boolean.csv'.format(home_folder_path) 
icd_inf_type_bool.to_csv(icd_inf_type_path, index = False) 
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ICU_index_analysis.ipynb 

# Analyze a patient's ICU exposure prior to index culture 
import pandas as pd 
import numpy as np 
import re 
import datetime as dt 
import os 
from IPython.display import display 
 
pd.set_option('display.max_rows', 1000) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
 
home_folder_path = os.getcwd() 
 
scm_path = r'{}/SCM_BED_ORDER_with_id.csv'.format(home_folder_path) 
scm = pd.read_csv(scm_path) 
 
index_path = r'{}/micro_index_cultures_post_exclusions.csv'.format(home_folder_path) 
index = pd.read_csv(index_path) 
 
demo_path = r'{}/index_cultures_demographics_post_exclusions.csv'.format(home_folder_path) 
demo = pd.read_csv(demo_path) 
 
# Will replace ICU data with what is calculated here 
demo = demo.drop(['ICU_EVER', 'ICU_LOS'], axis = 1) 
 
def remove_duplication_from_admit_discharge_dtm(data): 
    """ 
    Function to pass to df.groupby() that aids in deduplication by grabbing overall order start/end 
and  
    adding the number of days that occur between them. 
    """ 
    min_order_dt = data['ORDER_START_DTM'].min() 
    max_order_dt = data['ORDER_END_DTM'].max() 
    order_days = data['ORDER_DAYS'].sum() 
    day_timedelta = max_order_dt - min_order_dt 
     
    if isinstance(day_timedelta, pd.Series): 
        diff_day = day_timedelta.apply(lambda x: x.days) 
        diff_seconds = day_timedelta.apply(lambda x: x.seconds) 
    else: 
        diff_day = day_timedelta.days 
        diff_seconds = day_timedelta.seconds 
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    diff_tot = round((diff_day + (diff_seconds / 60 / 60 / 24)), 3) 
     
    output_dict = { 
        'ORDER_START':min_order_dt, 
        'ORDER_END':max_order_dt, 
        'ORDER_DAYS':order_days, 
        'ORDER_DAYS_CALC':diff_tot 
    } 
 
    return pd.Series(output_dict) 
 
def combine_same_time_intervals(data): 
     
    data = data.sort_values(['ORDER_START', 'ORDER_END']) 
    # Taking min of values that are all the same for every row of a patient 
    pt = data['ID_combined'].min() 
    admt_dt = data['ADMT_DT'].min() 
    dischrg_dt = data['NEW_MODIFIED_DISCHRG_DT'].min() 
    index_date = data['EARLIEST_STUDY_CULTURE'].min() 
    order_start = data['ORDER_START'] 
    order_end = data['ORDER_END'] 
    order_days_calc = data['ORDER_DAYS_CALC'] 
     
         
    if data.shape[0] <= 1: 
        output = { 
            'ADMT_DT':admt_dt, 
            'NEW_MODIFIED_DISCHRG_DT':dischrg_dt, 
            'EARLIEST_STUDY_CULTURE':index_date, 
            'ADJ_ORDER_START':order_start.min(), 
            'ADJ_ORDER_END':order_end.min(), 
            'ADJ_ORDER_DAYS_CALC':order_days_calc.min() 
        } 
        return pd.DataFrame(index = [pt], data = output) 
     
    else: 
         
        intervals = [] 
        num_iters = len(order_start) - 1 
        for idx, (enter, stop) in enumerate(zip(order_start, order_end)): 
            if idx == 0: 
                interval = [enter, stop] 
            else: 
                if (enter >= interval[0]) and (enter <= interval[1]): 
                    interval[1] = max([interval[1], stop]) 
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                    if idx == num_iters: 
                        intervals.append(interval) 
 
                else: 
                    intervals.append(interval) 
                    interval = [] 
                    interval = [enter, stop] 
                    if idx == num_iters: 
                        intervals.append(interval) 
 
        adj_order_start = [] 
        adj_order_end = [] 
        adj_order_days_calc = [] 
        for interval in intervals: 
            enter, stop = interval 
            enter, stop = pd.to_datetime(enter), pd.to_datetime(stop) 
            diff = stop - enter 
            order_adj = (diff.days) + (diff.seconds / ((60**2) * 24)) 
            for collector, val in zip([adj_order_start, adj_order_end, adj_order_days_calc], [enter, stop, 
order_adj]): 
                collector.append(val) 
        output = { 
            'ADJ_ORDER_START':adj_order_start, 
            'ADJ_ORDER_END':adj_order_end, 
            'ADJ_ORDER_DAYS_CALC':adj_order_days_calc 
        } 
        index = [pt] * len(adj_order_start) 
        for name, var in zip(['ADMT_DT', 'NEW_MODIFIED_DISCHRG_DT', 
'EARLIEST_STUDY_CULTURE'], [admt_dt, dischrg_dt, index_date]): 
            output[name] = [var] * len(adj_order_start) 
        return pd.DataFrame(index = index, data = output) 
 
def subtract_dates(data, subtract_from_dt, to_subtract_dt, unit = 'days', censor_neg = False): 
    diff = data[subtract_from_dt] - data[to_subtract_dt] 
    diff_hrs = (diff.days * 24) + (diff.seconds / ((60 ** 2))) 
    if censor_neg == True: 
        if isinstance(diff_hrs, pd.Series): 
            diff_hrs = diff_hrs.apply(lambda x: 0 if x < 0 else x) 
        else: 
            diff_hrs = 0 if diff_hrs < 0 else diff_hrs 
    if unit in ['hr', 'hrs', 'hour', 'hours']: 
        return diff_hrs 
    elif unit in ['days', 'day', 'd']: 
        return diff_hrs / 24 
    else: 
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        raise ValueError('Unit must either be hours or days.') 
         
def ICU_LOS(data): 
    admt_dt = data['ADMT_DT'].min() 
    nm_dischrg_dt = data['NEW_MODIFIED_DISCHRG_DT'].min() 
     
    icu_prior_to_cx = False 
    icu_cdate = False 
    LOS = 0 
    LOS_post_idx = 0 
    num_ICU_stay = 0 
    if data.shape[0] < 1: # Never in ICU during encounter 
        pass 
    else: # They were in the ICU ever 
        # First ask if the order end date falls within the interval range 
        # Bc I'm not left censoring, the entire date range can be included 
         
        data.loc[:, 'EARLIEST_STUDY_CULTURE_TRIM'] = data.apply(subtract_dates, args = 
('EARLIEST_STUDY_CULTURE', 'ADJ_ORDER_START'), axis = 1, censor_neg = True) 
        data.loc[:, 'NEW_MODIFIED_DISCHRG_DT_TRIM'] = data.apply(subtract_dates, args = 
('ADJ_ORDER_END', 'NEW_MODIFIED_DISCHRG_DT'), axis = 1, censor_neg = True) 
         
        icu_prior_to_cx = (data['EARLIEST_STUDY_CULTURE'] > 
data['ADJ_ORDER_START']).any() 
        icu_cdate = ((data['EARLIEST_STUDY_CULTURE'] >= data['ADJ_ORDER_START']) & 
(data['EARLIEST_STUDY_CULTURE'] <= data['ADJ_ORDER_END'])).any() 
         
        if (data['ADJ_ORDER_END'] <= nm_dischrg_dt).any(): 
            subset = data.loc[data['ADJ_ORDER_END'] <= nm_dischrg_dt, ['ID_combined', 
'ADJ_ORDER_START', 'ADJ_ORDER_END', 'ADJ_ORDER_DAYS_CALC', 
'EARLIEST_STUDY_CULTURE_TRIM']].drop_duplicates() 
            LOS += subset['ADJ_ORDER_DAYS_CALC'].sum() 
            num_ICU_stay += subset.shape[0] 
             
            # Now left censor at the EARLIEST_STUDY_CULTURE 
            # Have to make adjustment just in case the ICU stay completely occurs before the index 
culture date (will be negative otherwise) 
            LOS_post_idx_to_add = subset['ADJ_ORDER_DAYS_CALC'] - 
subset['EARLIEST_STUDY_CULTURE_TRIM'] 
            if isinstance(LOS_post_idx_to_add, pd.Series): 
                LOS_post_idx_to_add = LOS_post_idx_to_add.apply(lambda x: 0 if x < 0 else x).sum() 
            else: 
                LOS_post_idx_to_add = 0 if LOS_post_idx_to_add < 0 else LOS_post_idx_to_add 
             
            LOS_post_idx += LOS_post_idx_to_add 
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        # These patients should by definition have order end times that are outside of the interval, so 
will need to correct them 
        else: 
            subset = data.loc[data['ADJ_ORDER_END'] > nm_dischrg_dt, ['ID_combined', 
'ADJ_ORDER_START', 'ADJ_ORDER_END', 'ADJ_ORDER_DAYS_CALC', 
'EARLIEST_STUDY_CULTURE_TRIM', 
'NEW_MODIFIED_DISCHRG_DT_TRIM']].drop_duplicates() 
             
            LOS += (subset['ADJ_ORDER_DAYS_CALC'] - 
subset['NEW_MODIFIED_DISCHRG_DT_TRIM']).sum() 
            num_ICU_stay += subset.shape[0] 
            LOS_post_idx_to_add = subset['ADJ_ORDER_DAYS_CALC'] - 
((subset['EARLIEST_STUDY_CULTURE_TRIM']) + 
subset['NEW_MODIFIED_DISCHRG_DT_TRIM']) 
            if isinstance(LOS_post_idx_to_add, pd.Series): 
                LOS_post_idx_to_add = LOS_post_idx_to_add.apply(lambda x: 0 if x < 0 else x).sum() 
            else: 
                LOS_post_idx_to_add = 0 if LOS_post_idx_to_add < 0 else LOS_post_idx_to_add 
             
             
            LOS_post_idx += LOS_post_idx_to_add 
             
    output = {'TOTAL_ICU_LOS':LOS, 'NUM_ICU_VISIT':num_ICU_stay, 
'ICU_LOS_POST_INDEX':LOS_post_idx, 'ICU_PRIOR_TO_CX':icu_prior_to_cx, 
'INDEX_CULTURE_ICU':icu_cdate} 
    return pd.Series(output) 
 
# Main script 
# Only index values and use the appropriate admt and dischrg data 
scm_index = scm.merge(index[['ID_combined', 'ADMT_DT', 'NEW_MODIFIED_DISCHRG_DT', 
'EARLIEST_STUDY_CULTURE']]).drop(['ADMIT_DTM', 'DISCHARGE_DTM'], axis = 
1).drop_duplicates() 
 
# Also drop value when the order end time isn't known because the data are not useable 
# Fill missing values (4225 in FACILITY, 1 in each of SERVICE_LINE, LEVEL_OF_CARE) 
scm_index = scm_index.loc[~scm_index['ORDER_END_DTM'].isna()] 
scm_index = scm_index.fillna('MISSING') 
 
# Fix Date cols type 
for col in ['ADMT_DT', 'NEW_MODIFIED_DISCHRG_DT', 'ORDER_START_DTM', 
'ORDER_END_DTM', 'CDATE_DT', 'EARLIEST_STUDY_CULTURE']: 
    if col in scm_index.columns: 
        scm_index.loc[:, col] = pd.to_datetime(scm_index[col]) 
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# Dedup the scm file from all the admit_dtm and discharge_dtm redundancies and different docs 
w/ same order 
scm_index = scm_index\ 
    .groupby(['ID_combined', 'ADMT_DT', 'NEW_MODIFIED_DISCHRG_DT', 
'EARLIEST_STUDY_CULTURE', 'ORDER_NAME', 'SERVICE_LINE', 'LEVEL_OF_CARE', 
'FACILITY', 'ICU', 'ACUTE', 'PROGRESSIVE', 'TELEMETRY', 'OBSERVATION', 
'BEHAVIORAL_HEALTH'])\ 
    .apply(remove_duplication_from_admit_discharge_dtm)\ 
    .reset_index()\ 
    .drop_duplicates() 
 
# Create the df to perform the ICU analysis 
icu_cx = scm_index.loc[scm_index['ICU'] == 1] 
icu_cx = 
icu_cx.groupby('ID_combined').apply(combine_same_time_intervals).reset_index().drop('level_1', 
axis = 1) 
# In the ICU data (icu_cx['ICU'] == 1), the earliest ORDER_START comes before the ADMT_DT 
is -29.8 hours. This is most likely a patient getting moved from ER? 
# Will not left censor the data prior to admission dt 
 
# Perform the analysis 
icu_analysis = icu_cx.groupby('ID_combined').apply(ICU_LOS).reset_index() 
 

icu_analysis_path = r'{}/icu_index_analysis.csv'.format(home_folder_path) 
icu_analysis.to_csv(icu_analysis_path, index = False) 
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Primary_Analysis_Functions.ipynb 

import pandas as pd 
import numpy as np 
import os 
import re 
import datetime as dt 
from IPython.display import display 
 
pd.set_option('mode.chained_assignment', None) 
 
from scipy.stats import ttest_ind, chi2_contingency, fisher_exact, mannwhitneyu 
 
import seaborn as sns 
import matplotlib.pyplot as plt 
import statsmodels.formula.api as smf 
import statsmodels.api as sm 
 
# Wasn't able to find R_HOME before and was causing an error 
# This points directly to where R.home() in r tells me to 
os.environ['R_HOME'] = r"/Library/Frameworks/R.framework/Resources" 
from rpy2.robjects.packages import importr 
import rpy2.robjects as ro 
from rpy2.robjects import pandas2ri 
from rpy2.robjects.conversion import localconverter 
 
r_stats = importr('stats') 
 
def pandas_to_r_df(pd_df): 
    with localconverter(ro.default_converter + pandas2ri.converter): 
        r_df = ro.conversion.py2rpy(pd_df) 
    return r_df 
 
def adjust_pt_data(assumptions, exp_dict, exp, all_bool, index, demo): 
    """ 
    Need to accept all the arguements of pt_sel_dict and return an adj_df  
    """ 
    # Each flag is a boolean 
    mono_flag, non_study_flag, agreement_flag = assumptions.values() 
     
    # boolean mask of type pd.Series 
    agreement_cols = exp_dict[exp] 
    agreement_pts = all_bool.loc[all_bool[agreement_cols].any(axis = 1), 'ID_combined'].unique() 
     
    pheno_1 = exp.split('_')[0] # This should always be CRE or CNS 



 

 604 

    pheno_2 = exp.split('_')[-1] # This should always be CSE 
     
    drop_cols = { 
        'CRE':['CNS_GROUP_V2'], 
        'CNS':['CRE_GROUP_V2'] 
    } 
     
#     mono_pts = all_bool.loc[all_bool['NUM_STUDY_SPECIES'] == 1, 'ID_combined'].unique() 
    index.loc[: , 'EARLIEST_BY_SPECIES_CULTURE'] = index.groupby(['ID_combined', 
'SPECIES'])['CDATE_DT'].transform(np.min) 
    final_dischrg = index\ 
                    .groupby('ID_combined')\ 
                    .apply(determine_new_censor_date, mono_flag = mono_flag, non_study_flag = 
non_study_flag)\ 
                    .rename('FINAL_DISCHRG_DT')\ 
                    .reset_index() 
    del index['EARLIEST_BY_SPECIES_CULTURE'] 
     
     
    # Across these flags, I can change the censoring date across each assumption independently 
and selecet 
    # the earliset date at the end to determine when the patient should be censored 
    formatted_dfs = [] 
    for df, df_name in zip([index, demo], ['index', 'demo']): 
        df = df.loc[df[f'{pheno_1}_GROUP_V2'].isin([pheno_1, pheno_2])] 
        df = df.drop(drop_cols[pheno_1], axis = 1) 
         
        df = df.merge(final_dischrg, on = 'ID_combined') 
        # Make sure that the patient will not be censored prior to the index (wouldn't be enrolled in 
this case) 
        df = df.loc[df['EARLIEST_STUDY_CULTURE'] < df['FINAL_DISCHRG_DT']] 
         
        # There are 4 patients who were admitted in December 2009, shouldn't be here 
        # Index is adjusted later 
        df = df.loc[df['ADMT_DT'] >= pd.to_datetime('1-1-2010')] 
             
        # Check whether the patient stay extends past end of study: 12-31-19, censor if does 
        df.loc[df['FINAL_DISCHRG_DT'] >= pd.to_datetime('1-1-20'), 'FINAL_DISCHRG_DT'] = 
pd.to_datetime('12-31-19 23:59:59') 
         
        if non_study_flag: 
            if df_name == 'demo': 
                df = df.merge(all_bool[['ID_combined', 'INDEX_Has_lactose-non-fermenting', 
'INDEX_Has_MRSA']], on = 'ID_combined') 
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        if agreement_flag: 
            df = df.loc[df['ID_combined'].isin(agreement_pts)] 
             
        formatted_dfs.append(df) 
         
    test_index, test_demo = formatted_dfs 
     
    # Fix the LOS and Mortality columns now that follow-up has been appropriately adjusted 
     
    # LOS 
    test_demo.loc[:, 'PRE_INDEX_LOS'] = test_demo.apply(calc_LOS_days, start_col = 
'ADMT_DT', end_col = 'EARLIEST_STUDY_CULTURE', axis = 1) 
    test_demo.loc[:, 'POST_INDEX_LOS'] = test_demo.apply(calc_LOS_days, start_col = 
'EARLIEST_STUDY_CULTURE', end_col = 'FINAL_DISCHRG_DT', axis = 1) 
     
    # Mortality and Duration columns 
    for day_surv in [14, 30, 60, 90]: 
        test_demo = test_demo.join(test_demo.apply(calc_num_day_mortality_follow_up, days = 
day_surv, axis = 1)) 
        col_name = f'{day_surv}D_DURATION' 
        test_demo.loc[:, col_name] = test_demo.apply(calc_LOS_days, start_col = 
'EARLIEST_STUDY_CULTURE', end_col = f'{day_surv}D_FOLLOW_UP', axis = 1) 
     
    test_demo = test_demo.rename(columns = {'MORTALITY':'OVERALL_MORTALITY'}) 
#     mortality_cols = [col for col in test_demo.columns if re.search('MORTALITY', col)] 
#     for col in mortality_cols: 
#         test_demo[col] = test_demo[col].map({0:False, 1:True}) 
     
    return test_index, test_demo 
 
def determine_new_censor_date(df, mono_flag, non_study_flag): 
    """ 
    Create the final censor date that will be used to determine the final cohort participation 
    """ 
    current_censor_date = df['NEW_MODIFIED_DISCHRG_DT'].min() # all same value, will just 
return single value 
    # First will deal with the mono flag 
    if mono_flag == True: 
        species_earliest_date = df[['SPECIES', 
'EARLIEST_BY_SPECIES_CULTURE']].drop_duplicates() 
        earliest_species_dates = 
sorted(species_earliest_date['EARLIEST_BY_SPECIES_CULTURE'].values) 
        if len(earliest_species_dates) > 1: # The second date should be the earliest second culture 
date 
            mono_censor = earliest_species_dates[1] 
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        else: 
            mono_censor = current_censor_date 
             
    else: 
        mono_censor = current_censor_date 
     
    # Now will deal with the non study flag 
    # True for non study flag means that patients with non study isolates will NOT be censored 
    if non_study_flag == True: 
        non_study_censor = current_censor_date 
     
    else: 
        if df['EARLIEST_NON_STUDY_CULTURE'].isna().all(): 
            non_study_censor = current_censor_date 
        else: 
            non_study_censor = 
df['EARLIEST_NON_STUDY_CULTURE'].iloc[df['EARLIEST_NON_STUDY_CULTURE'].argmin(
)]  
     
    # Return the earliest date by both flags, only groupby once 
    # The pd.to_datetime here is to prevent a deprecated manipulation when constructing series 
    return np.min([pd.to_datetime(mono_censor), pd.to_datetime(non_study_censor)]) 
 
def calc_LOS_days(data, start_col, end_col): 
    """ 
    This function will calculate the LOS in days for whichever start/end cols are provided. 
    Expected to pass to pd.DataFrame.apply(func, axis = 1). 
    """ 
    start_time = data[start_col] 
    end_time = data[end_col] 
    time_diff = end_time - start_time 
     
    # Round up number of days and convert from float to int 
    return int(round(time_diff.days + (time_diff.seconds / (60*60*24)), 0)) 
     
def calc_num_day_mortality_follow_up(data, days = 30): 
    """ 
    This function will calculate a boolean column mortality from index date after specified number 
of days (Default 30d).  
    Expected to pass to pd.DataFrame.apply(func, axis = 1). 
    """ 
    # If a patient's post index LOS is > 30, they must not have died within 30 days 
    # Otherwise, I can just take their value from the MORTALITY column and map it to this one 
    # They either expired or were right censored 
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    index_date = data['EARLIEST_STUDY_CULTURE'] 
    dischrg_dt = data['FINAL_DISCHRG_DT'] 
    overall_mortality = data['MORTALITY'] 
     
    num_days_mort = dt.timedelta(days = days) 
     
    if dischrg_dt - index_date > num_days_mort: 
        days_mortality = False 
        days_fu = index_date + num_days_mort 
     
    else: 
        days_mortality = overall_mortality 
        days_fu = dischrg_dt 
     
    output = {f'{days}D_MORTALITY':days_mortality, f'{days}D_FOLLOW_UP':days_fu} 
     
    return pd.Series(output) 
 
def prepare_baseline_data(demo, index, exp, path, title, to_save = False): 
    """ 
    This function needs to prepare the data for the baseline balance analysis as well as the 
propensity score 
    calculation. The two formats are slightly different, so the function will output multiple versions of 
the 
    same data to accomplish this. 
    """ 
    # Read in appropriate files 
    comorbidity = pd.read_csv('./comorbidity_matrix.csv').drop_duplicates() 
    icu = pd.read_csv('./icu_index_analysis.csv') 
    sofa = pd.read_csv('./sofa_score_analysis.csv') 
     
    # maybe to add later 
    # abx_index = pd.read_csv('./abx_index_exposure.csv') 
    # pressors_index = pd.read_csv('./pressors_index_analysis.csv') 
    # steroids_index = pd.read_csv('./steroids_index_analysis.csv') 
     
    pheno_1 = exp.split('_')[0] # This should always be CRE or CNS 
    pheno_2 = exp.split('_')[-1] # This should always be CSE  
     
    outcome_map = { 
        'CSE':0, 
        'CNS':1, 
        'CRE':1, 
    } 
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    gender_map = { 
        'FEMALE':0, 
        'MALE':1 
    } 
     
     
    # Create a year column to stratify the mid-point of the study 
    # New antibiotics/better rapid detection of CRE/Different ICD coding 
    bins = pd.IntervalIndex.from_tuples([(2010, 2014), (2015, 2019)], closed = 'both') 
    labels = ['2010 - 2014', '2015 - 2019'] 
    interval_label_map = {interval:label for interval, label in zip(bins, labels)} 
    demo.loc[:, 'YEAR_STRATA'] = pd.cut(demo['ADMT_DT'].dt.year, bins = bins)\ 
                    .replace(interval_label_map) 
    demo.loc[:, 'ADMT_DT_YEAR'] = demo['ADMT_DT'].dt.year 
     
    # Ensure none of the variables being used have missing data 
    demo = demo.loc[~demo[['RACE_CD_DES', 'GENDR_CD_DES']].isna().any(axis = 1)] 
     
    # --------------------------------------------Admitting Location-------------------------------------------- 
    # Transfer From SNF is always the least populated, I can combine it with OTHER HEALTH 
FACIL and drop 
    #     fewest_admits = demo['ADMT_SRC_CD_DES'].value_counts().idxmin() 
    demo.loc[demo['ADMT_SRC_CD_DES'] == 'TRANSFER FROM SNF', 
'ADMT_SRC_CD_DES'] = 'OTHER HEALTH FACIL' 
    admit = pd.get_dummies(demo['ADMT_SRC_CD_DES']).drop('OTHER HEALTH FACIL', axis 
= 1) 
    # Need to hook in the ID_combined so that if the dummy column dfs differ in # pts, can ref by 
the ID 
    admit = demo[['ID_combined']].join(admit, how = 'inner') 
     
    # --------------------------------------------Race-------------------------------------------- 
     
    # If Race is not dichotomous, get dummies and drop the one with fewest entries 
    if demo['RACE_CD_DES'].nunique() > 2: 
        has_fewest_pts = demo['RACE_CD_DES'].value_counts().idxmin() 
        race = pd.get_dummies(demo['RACE_CD_DES']).drop(has_fewest_pts, axis = 1) 
        race = demo[['ID_combined']].join(race, how = 'inner') 
        # Have to initialize an empty dict here so no error when dict unpacking later 
        race_map = {} 
        drop_demo_ps_race = True 
    else: 
        race_map = { 
            race:map_num for map_num, race in 
enumerate(sorted(demo['RACE_CD_DES'].unique())) 
        } 
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        race = demo[['ID_combined']] # If no dummy variables, this will be like passing nothing to 
merge 
        drop_demo_ps_race = False 
     
    day_surv_cols = [col for col in demo.columns if re.search('^\d+D', col)] 
     
    cols_to_keep_from_demo = [ # not all cols are need for baseline stats/ps, but will be later 
        'ID_combined',  
        f'{pheno_1}_GROUP_V2', 
        'ADMT_DT', 
        'FINAL_DISCHRG_DT', 
        'AGE', 
        'RACE_CD_DES', 
        'ADMT_SRC_CD_DES', 
        'GENDR_CD_DES', 
        'EARLIEST_STUDY_CULTURE', 
        'OVERALL_MORTALITY', 
        'PRE_INDEX_LOS', 
        'POST_INDEX_LOS', 
        'YEAR_STRATA', 
        'ADMT_DT_YEAR', 
        'INDEX_Has_lactose-non-fermenting', 
        'INDEX_Has_MRSA' 
    ] + day_surv_cols 
     
    # The non-study columns will not always be present, must remove otherwise will cause index 
error 
    cols_to_keep_from_demo = [col for col in cols_to_keep_from_demo if col in demo.columns] 
    # --------------------------------------------Comorbidities-------------------------------------------- 
    # combine comorbidities into the demographic data 
    demo = demo[cols_to_keep_from_demo].merge(comorbidity, how = 'left', on = ['ID_combined', 
'AGE']) 
    demo = demo.drop('CCI_AGE', axis = 1) 
     
    # --------------------------------------------ICU-------------------------------------------- 
    demo = demo.merge(icu[['ID_combined', 'INDEX_CULTURE_ICU']], how = 'left', on = 
'ID_combined') 
    demo['INDEX_CULTURE_ICU'] = demo['INDEX_CULTURE_ICU'].fillna(False) 
     
    # --------------------------------------------SOFA SCORE-------------------------------------------- 
    # This will now be a continuous variable not an ordinal one 
    demo = demo.merge(sofa[['ID_combined', 'SOFA_ON_EARLIEST_CDATE']], how = 'inner', on 
= 'ID_combined') 
     
    # --------------------------------------------ABX Exposure-------------------------------------------- 
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    # Decided against any of these covariates 
     
    # --------------------------------------------Pressor Exposure-------------------------------------------- 
    # Decided against any of these covariates 
     
    # --------------------------------------------Steroid Exposure-------------------------------------------- 
    # Decided against any of these covariates 
     
    #--------------------------------------------Rearrange columns to appropriate order---------------------------
----------------- 
    initial_cols = ['ID_combined', f'{pheno_1}_GROUP_V2', 'ADMT_DT', 'FINAL_DISCHRG_DT', 
'EARLIEST_STUDY_CULTURE', 'OVERALL_MORTALITY', 'POST_INDEX_LOS', 
'YEAR_STRATA', 'ADMT_DT_YEAR'] 
    demo_vars = ['AGE', 'GENDR_CD_DES', 'RACE_CD_DES', 'ADMT_SRC_CD_DES', 
'INDEX_CULTURE_ICU', 'SOFA_ON_EARLIEST_CDATE', 'PRE_INDEX_LOS'] 
    if ('INDEX_Has_lactose-non-fermenting' in demo.columns) and ('INDEX_Has_MRSA' in 
demo.columns): 
        demo_vars += ['INDEX_Has_lactose-non-fermenting', 'INDEX_Has_MRSA'] 
    cci_vars = ['CCI_SCORE'] + [col for col in demo.columns if re.search('CCI', col) and col != 
'CCI_SCORE'] 
    elix_vars = [col for col in demo.columns if re.search('ELIX', col)] 
    # CVD_COMPOSITE includes MI, CHF, PVD, and CVD and T2DM_COMPOSITE includes 
both T2DM vars 
    composite_vars = ['CVD_COMPOSITE', 'T2DM_COMPOSITE'] 
    reindex_order = initial_cols + day_surv_cols + demo_vars + cci_vars + elix_vars + 
composite_vars 
    demo = demo.reindex(reindex_order, axis = 1) 
     
    # --------------------------------------------Separate demo and demo_p-----------------------------------------
--- 
    demo_maps = {**outcome_map, **gender_map, **race_map} 
    demo_ps = demo\ 
                .merge(admit, how = 'inner', on = 'ID_combined')\ 
                .merge(race, how = 'inner', on = 'ID_combined') 
#                 .merge(sofa_scores, how = 'inner', on = 'ID_combined') 
    # Need to drop the columns that were pivoted into dummies 
    drop_cols = [ 
        'ADMT_SRC_CD_DES', 
#         'SOFA_EARLIEST_CDATE_CAT' 
    ] 
     
    if drop_demo_ps_race == True: 
        drop_cols += ['RACE_CD_DES'] 
         
    demo_ps = demo_ps.drop(drop_cols, axis = 1) 
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    demo_ps = demo_ps.replace(demo_maps) 
#     display(demo_ps.head()) 
    # This is necessary because the int types that result from pd.dummies is not int64 like other 
cols 
    dtype_exclude = [ 
        'ID_combined', 
        f'{pheno_1}_GROUP_V2', 
        'ADMT_DT', 
        'FINAL_DISCHRG_DT', 
        'OVERALL_MORTALITY', 
        'POST_INDEX_LOS', 
        'EARLIEST_STUDY_CULTURE', 
        'YEAR_STRATA', 
        'ADMT_DT_YEAR', 
        'INDEX_Has_lactose-non-fermenting', 
        'INDEX_Has_MRSA' 
    ] + day_surv_cols 
     
    dtype_exclude = [col for col in dtype_exclude if col in demo_ps.columns] 
    dtype_dict = {col:int for col in demo_ps.columns if col not in dtype_exclude} 
    demo_ps = demo_ps.astype(dtype_dict) 
     
    # Just filter index to remove any patients that are removed during data prep 
    index = index.loc[index['ID_combined'].isin(demo['ID_combined'].unique())] 
     
    if to_save == True: 
        # I changed this because I want the index inf types to be present in demo_ps and 
demo_stats_t when saved 
        index_path = f'{path}/INDEX_POST_PREPARE_BASELINE_DATA_{exp}_{title}.csv' 
        index.to_csv(index_path, index = False) 
#         demo_stats_t_path = 
f'{path}/DEMO_STATS_T_POST_PREPARE_BASELINE_DATA_{exp}_{title}.csv' 
#         demo_ps_path = 
f'{path}/DEMO_PS_POST_PREPARE_BASELINE_DATA_{exp}_{title}.csv' 
         
#         for df, path in zip([index, demo, demo_ps], [index_path, demo_stats_t_path, 
demo_ps_path]): 
#             df.to_csv(path, index = False) 
     
    return demo, demo_ps, index, demo_maps 
 
def baseline_micro_analysis(df, exp_dict_index, exp_dict_overall, all_bool, assumptions, bkpts, 
exp, path, title, to_write = False): 
 
    pheno_1 = exp.split('_')[0] 
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    pheno_2 = exp.split('_')[-1] 
 
    batt_aggr_study = [ 
        'Blood', 
        'Intra-abdominal', 
        'Respiratory', 
        'Skin/Soft Tissue', 
        'Urine' 
    ] 
 
    culture_pheno = { 
        'CRE':'Carbapenem_resistent', 
        'CNS':'Carbapenem_non_susceptible' 
    } 
    # ------------------------------------------------------ Build variables for selection -------------------------------
----------------------- 
    culture_pheno_col = culture_pheno[pheno_1] 
    # This will grab only the CR CREs or CNS CNS cultures 
    exp_matched_iso = ((df[f'{pheno_1}_GROUP_V2'] == pheno_1) & (df[culture_pheno_col] == 
True)).values 
    # This will grab only the CSE cultures 
    control_matched_iso = ((df[f'{pheno_1}_GROUP_V2'] == pheno_2) & (df[culture_pheno_col] 
== False)).values 
    # Was this culture taken at the index date? 
    at_index = (df['CDATE_DT'] == df['EARLIEST_STUDY_CULTURE']).values 
    # Assess if culture has agreement with an ICD code (the agreement is assessed at index) 
 
    if assumptions['Agreement'] == True: 
        agreement_data = [] 
        for exp_dict in [exp_dict_index, exp_dict_overall]: 
            batt_icd_agree_dict = build_batt_icd_agreement_dict( 
                                    all_bool = all_bool, 
                                    exp_dict = exp_dict, 
                                    batt_aggr_study = batt_aggr_study, 
                                    exp = exp 
                                ) 
            # Now Flag these cultures for keep/remove with boolean flag 
            icd_agree = df.apply(filter_cultures_index_icd_agree, batt_icd_agree_dict = 
batt_icd_agree_dict, axis = 1).values 
            agreement_data.append(icd_agree) 
    else: 
        agreement_data = [] 
        for _ in range(2): 
            icd_agree = [True] * df.shape[0] # Keep everything based on agreement if not testing that 
assumption 
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            agreement_data.append(icd_agree) 
    # Now I add the data to the index dataframe to select appropriate cultures 
    filter_cols = [ 
        'EXP_MATCHED_ISO', 
        'CONTROL_MATCHED_ISO', 
        'AT_INDEX', 
        'INDEX_ICD_AGREEMENT', 
        'OVERALL_ICD_AGREEMENT' 
    ] 
     
    filter_data = [ # list of numpy arrays 
        exp_matched_iso, 
        control_matched_iso, 
        at_index, 
        *agreement_data 
    ] 
     
    for col_name, data in zip(filter_cols, filter_data): 
        df.loc[:, col_name] = data 
     
    # ----------------------------------- Micro Analysis all group-matched cultures -------------------------------
---- 
    overall_index = df.loc[ 
                        df[['EXP_MATCHED_ISO', 'CONTROL_MATCHED_ISO']].any(axis = 1) 
                    ] 
     
    overall_species_v_batt_num_cx = species_v_batt_table( 
                                df = overall_index, 
                                batt_aggr_study = batt_aggr_study, 
                                pheno_1 = pheno_1, 
                                agg_func = 'count' 
                            ) 
     
    overall_species_v_batt_num_pts = species_v_batt_table( 
                                df = overall_index, 
                                batt_aggr_study = batt_aggr_study, 
                                pheno_1 = pheno_1, 
                                agg_func = 'nunique' 
                            ) 
     
    overall_susc_summary = susc_analysis( 
                                df = overall_index, 
                                pheno_1 = pheno_1, 
                                bkpts = bkpts, 
                                groupby_cols = f'{pheno_1}_GROUP_V2' 
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                            ) 
     
    overall_by_species_susc_summary = susc_analysis( 
                                        df = overall_index, 
                                        pheno_1 = pheno_1, 
                                        bkpts = bkpts, 
                                        groupby_cols = [f'{pheno_1}_GROUP_V2', 'SPECIES'] 
                                    ) 
     
     
    # ----------------------------------- Micro Analysis all group-matched cultures at Index --------------------
--------------- 
    index_at_index_no_icd = overall_index.loc[ 
                            overall_index[['AT_INDEX']].all(axis = 1) 
                        ] 
     
    index_species_v_batt_num_cx_no_icd = species_v_batt_table( 
                                df = index_at_index_no_icd, 
                                batt_aggr_study = batt_aggr_study, 
                                pheno_1 = pheno_1, 
                                agg_func = 'count' 
                            ) 
     
    index_species_v_batt_num_pts_no_icd = species_v_batt_table( 
                                df = index_at_index_no_icd, 
                                batt_aggr_study = batt_aggr_study, 
                                pheno_1 = pheno_1, 
                                agg_func = 'nunique' 
                            ) 
     
    index_susc_summary_no_icd = susc_analysis( 
                                df = index_at_index_no_icd, 
                                pheno_1 = pheno_1, 
                                bkpts = bkpts, 
                                groupby_cols = f'{pheno_1}_GROUP_V2' 
                            ) 
     
    index_by_species_susc_summary_no_icd = susc_analysis( 
                                        df = index_at_index_no_icd, 
                                        pheno_1 = pheno_1, 
                                        bkpts = bkpts, 
                                        groupby_cols = [f'{pheno_1}_GROUP_V2', 'SPECIES'] 
                                    ) 
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    # ----------------------------------- Micro Analysis all group-matched cultures with ICD agreement ----
------------------------------- 
    # can use the series as a boolean mask to index the df 
    overall_agreement_index = overall_index.loc[ 
                        overall_index['OVERALL_ICD_AGREEMENT'] 
                    ] 
     
    overall_species_v_batt_num_cx_w_agree = species_v_batt_table( 
                                df = overall_agreement_index, 
                                batt_aggr_study = batt_aggr_study, 
                                pheno_1 = pheno_1, 
                                agg_func = 'count' 
                            ) 
     
    overall_species_v_batt_num_pts_w_agree = species_v_batt_table( 
                                df = overall_agreement_index, 
                                batt_aggr_study = batt_aggr_study, 
                                pheno_1 = pheno_1, 
                                agg_func = 'nunique' 
                            ) 
     
    overall_susc_summary_w_agree = susc_analysis( 
                                df = overall_agreement_index, 
                                pheno_1 = pheno_1, 
                                bkpts = bkpts, 
                                groupby_cols = f'{pheno_1}_GROUP_V2' 
                            ) 
     
    overall_by_species_susc_summary_w_agree = susc_analysis( 
                                        df = overall_agreement_index, 
                                        pheno_1 = pheno_1, 
                                        bkpts = bkpts, 
                                        groupby_cols = [f'{pheno_1}_GROUP_V2', 'SPECIES'] 
                                    ) 
     
    # ---------------------------- Micro Analysis all group-matched cultures with ICD agreement at index 
date ---------------------------- 
    index_at_index = overall_index.loc[ 
                        overall_index[['AT_INDEX', 'INDEX_ICD_AGREEMENT']].all(axis = 1) 
                    ] 
     
    index_species_v_batt_num_cx = species_v_batt_table( 
                                df = index_at_index, 
                                batt_aggr_study = batt_aggr_study, 
                                pheno_1 = pheno_1, 
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                                agg_func = 'count' 
                            ) 
    index_species_v_batt_num_pts = species_v_batt_table( 
                                df = index_at_index, 
                                batt_aggr_study = batt_aggr_study, 
                                pheno_1 = pheno_1, 
                                agg_func = 'nunique' 
                            ) 
     
    index_susc_summary = susc_analysis( 
                            df = index_at_index, 
                            pheno_1 = pheno_1, 
                            bkpts = bkpts, 
                            groupby_cols = f'{pheno_1}_GROUP_V2' 
                        ) 
     
    index_by_species_susc_summary = susc_analysis( 
                                        df = index_at_index, 
                                        pheno_1 = pheno_1, 
                                        bkpts = bkpts, 
                                        groupby_cols = [f'{pheno_1}_GROUP_V2', 'SPECIES'] 
                                    ) 
    if to_write == True: 
        all_gm_path = f'{path}/ALL_GM_CULTURES' # gm = group matched 
        all_gm_index_path = f'{path}/ALL_GM_INDEX_CULTURES' 
        all_gm_w_agree = f'{path}/ALL_GM_CULTURES_W_AGREEMENT' 
        at_index_w_agree = f'{path}/INDEX_GM_CULTURES_W_AGREEMENT' 
         
        if not os.path.exists(all_gm_path): 
            os.mkdir(all_gm_path) 
        overall_svb_num_cx_path = 
f'{all_gm_path}/OVERALL_SPECIES_V_BATT_NUM_CX_{exp}_{title}.csv' 
        overall_svb_num_pts_path = 
f'{all_gm_path}/OVERALL_SPECIES_V_BATT_NUM_PTS_{exp}_{title}.csv' 
        overall_susc_path = f'{all_gm_path}/OVERALL_SUSC_SUMMARY_{exp}_{title}.csv' 
        overall_by_species_susc_path = 
f'{all_gm_path}/OVERALL_BY_SPECIES_SUSC_SUMMARY_{exp}_{title}.csv' 
         
        if not os.path.exists(all_gm_index_path): 
            os.mkdir(all_gm_index_path) 
        index_svb_num_cx_no_icd_path = 
f'{all_gm_index_path}/INDEX_SPECIES_V_BATT_NUM_CX_NO_ICD_{exp}_{title}.csv' 
        index_svb_num_pts_no_icd_path = 
f'{all_gm_index_path}/INDEX_SPECIES_V_BATT_NUM_PTS_NO_ICD_{exp}_{title}.csv' 
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        index_susc_no_icd_path = 
f'{all_gm_index_path}/INDEX_SUSC_SUMMARY_NO_ICD_{exp}_{title}.csv' 
        index_by_species_susc_no_icd_path = 
f'{all_gm_index_path}/INDEX_BY_SPECIES_SUSC_SUMMARY_NO_ICD_{exp}_{title}.csv' 
         
        if not os.path.exists(all_gm_w_agree): 
            os.mkdir(all_gm_w_agree) 
        overall_svb_num_cx_w_agree_path = 
f'{all_gm_w_agree}/OVERALL_SPECIES_V_BATT_NUM_CX_W_AGREEMENT_{exp}_{title}.csv
' 
        overall_svb_num_pts_w_agree_path = 
f'{all_gm_w_agree}/OVERALL_SPECIES_V_BATT_NUM_PTS_W_AGREEMENT_{exp}_{title}.c
sv' 
        overall_susc_w_agree_path = 
f'{all_gm_w_agree}/OVERALL_SUSC_SUMMARY_W_AGREEMENT_{exp}_{title}.csv' 
        overall_by_species_susc_w_agree_path = 
f'{all_gm_w_agree}/OVERALL_BY_SPECIES_SUSC_SUMMARY_W_AGREEMENT_{exp}_{title}
.csv' 
        overall_agreement_index_path = 
f'{all_gm_w_agree}/GROUP_MATCHED_CULTURES_WITH_AGREEMENT_{exp}_{title}.csv' 
         
        if not os.path.exists(at_index_w_agree): 
            os.mkdir(at_index_w_agree) 
        index_svb_num_cx_path = 
f'{at_index_w_agree}/AT_INDEX_SPECIES_V_BATT_NUM_CX_{exp}_{title}.csv' 
        index_svb_num_pts_path = 
f'{at_index_w_agree}/AT_INDEX_SPECIES_V_BATT_NUM_PTS_{exp}_{title}.csv' 
        index_susc_path = f'{at_index_w_agree}/AT_INDEX_SUSC_SUMMARY_{exp}_{title}.csv' 
        index_by_species_susc_path = 
f'{at_index_w_agree}/AT_INDEX_BY_SPECIES_SUSC_SUMMARY_{exp}_{title}.csv' 
        index_at_index_path = 
f'{at_index_w_agree}/AT_INDEX_GROUP_MATCHED_CULTURES_WITH_AGREEMENT_{exp}
_{title}.csv' 
         
        overall_species_v_batt_num_cx.to_csv(overall_svb_num_cx_path) 
        overall_species_v_batt_num_pts.to_csv(overall_svb_num_pts_path) 
        overall_susc_summary.to_csv(overall_susc_path, index = False) 
        overall_by_species_susc_summary.to_csv(overall_by_species_susc_path, index = False) 
         
        index_species_v_batt_num_cx_no_icd.to_csv(index_svb_num_cx_no_icd_path) 
        index_species_v_batt_num_pts_no_icd.to_csv(index_svb_num_pts_no_icd_path) 
        index_susc_summary_no_icd.to_csv(index_susc_no_icd_path, index = False) 
        index_by_species_susc_summary_no_icd.to_csv(index_by_species_susc_no_icd_path, 
index = False) 
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        overall_species_v_batt_num_cx_w_agree.to_csv(overall_svb_num_cx_w_agree_path) 
        overall_species_v_batt_num_pts_w_agree.to_csv(overall_svb_num_pts_w_agree_path) 
        overall_susc_summary_w_agree.to_csv(overall_susc_w_agree_path, index = False) 
        
overall_by_species_susc_summary_w_agree.to_csv(overall_by_species_susc_w_agree_path, 
index = False) 
        overall_agreement_index.to_csv(overall_agreement_index_path, index = False) 
         
        index_species_v_batt_num_cx.to_csv(index_svb_num_cx_path) 
        index_species_v_batt_num_pts.to_csv(index_svb_num_pts_path) 
        index_susc_summary.to_csv(index_susc_path, index = False) 
        index_by_species_susc_summary.to_csv(index_by_species_susc_path, index = False) 
        index_at_index.to_csv(index_at_index_path, index = False) 
         
    # This will create the inf_types to use for stats table and propensity score 
    pt_index_inf_type = pt_inf_type_table( 
        df = index_at_index, 
        batt_aggr_study = batt_aggr_study 
    ) 
     
    return pt_index_inf_type 
 
def build_batt_icd_agreement_dict(all_bool, exp_dict, batt_aggr_study, exp): 
    # First create a dictionary matching each pt_id to list of BATT_AGGR codes that agree with 
ICD 
    icd_agree_cols = exp_dict[exp] 
    all_bool_icd_agree = all_bool.set_index('ID_combined')[icd_agree_cols] 
    batt_icd_agree_dict = {} 
    # Each pt_id only included once so can iterate like this 
    for pt_id in all_bool_icd_agree.index: 
        pt_agreement = all_bool_icd_agree.loc[pt_id] 
        batt_agreement_col_list = pt_agreement[pt_agreement == True].index.to_list() 
        if len(batt_agreement_col_list) < 1: 
            batt_icd_agree_dict[pt_id] = [''] 
        else: 
            batt_agreement_col_str = ''.join(batt_agreement_col_list) 
            batt_agree = [batt for batt in batt_aggr_study if re.search(batt, batt_agreement_col_str)] 
            batt_icd_agree_dict[pt_id] = batt_agree 
     
    return batt_icd_agree_dict 
 
def filter_cultures_index_icd_agree(data, batt_icd_agree_dict): 
    pt_id = data['ID_combined'] 
    batt_aggr = data['BATT_AGGR'] 
    batts = batt_icd_agree_dict[pt_id] 
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    if batt_aggr in batts: 
        return True 
    else: 
        return False 
 
def species_v_batt_table(df, batt_aggr_study, pheno_1, agg_func = 'count'): 
    output = df\ 
            .groupby([f'{pheno_1}_GROUP_V2', 'BATT_AGGR', 'SPECIES'])['ID_combined']\ 
            .agg(agg_func)\ 
            .unstack('BATT_AGGR')\ 
            .fillna(0) 
    output = output[batt_aggr_study] 
    return output 
 
def pt_inf_type_table(df, batt_aggr_study, group_cols = ['ID_combined', 'BATT_AGGR']): 
    output = df\ 
            .groupby(group_cols)['ENCNTR_ID']\ 
            .agg('count')\ 
            .unstack('BATT_AGGR')\ 
            .fillna(0) 
    output = output[batt_aggr_study] 
    output = output > 0 
    for col in output.columns: 
        output[col] = output[col].astype(int) 
    return output.reset_index() 
 
def susc_summary(data, bkpts, abx_col): 
    data = data[~data.isna()].values # np.ndarray 
    n = len(data) 
    abx = abx_col.split('_MIC_')[0] 
     
    if n < 1: 
        min_mic, max_mic, mic_50, mic_90, perc_susc = np.nan, np.nan, np.nan, np.nan, np.nan 
    else: 
        min_mic = np.min(data) 
        max_mic = np.max(data) 
        mic_50 = np.percentile(data, 50, method = 'inverted_cdf') 
        mic_90 = np.percentile(data, 90, method = 'inverted_cdf') 
        perc_susc = calc_perc_susc(data = data, bkpts = bkpts, abx = abx) 
     
    output = { 
        'N':n, 
        'Min_MIC':min_mic, 
        'MAX_MIC':max_mic, 
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        'MIC_50':mic_50, 
        'MIC_90':mic_90, 
        '%S':perc_susc 
    } 
     
    return pd.Series(output) 
 
def calc_perc_susc(data, bkpts, abx): 
    s = bkpts.loc[abx, 's'] 
    perc_susc = round((((data <= s).sum() / len(data)) * 100), 0) 
    return perc_susc 
 
def susc_analysis(df, pheno_1, bkpts, groupby_cols): 
    df.loc[:, 'CFPM_SDD_MIC_FINAL'] = df['CFPM_MIC_FINAL'].values 
    mic_cols = [col for col in df.columns if re.search('MIC_FINAL', col)] 
    collect_summaries = [] 
    for col in mic_cols: 
        summary = df.groupby(groupby_cols)[col].apply(susc_summary, bkpts = bkpts, abx_col = 
col) 
        collect_summaries.append(summary) 
 
    for idx, series in enumerate(collect_summaries): 
        if idx == 0: 
            final_summary = pd.DataFrame(series) 
        else: 
            next_summary = pd.DataFrame(series) 
            final_summary = final_summary.join(next_summary) 
 
    # Now Clean the column names 
    abx_abbr_dict = { 
        'AMK':'Amikacin', 
        'AM':'Ampicillin', 
        'AS':'Ampicillin_Sulbactam', 
        'AZT':'Aztreonam', 
        'CAZ':'Ceftazidime', 
        'CEX':'Ceftriaxone', 
        'CFPM':'Cefepime', 
        'CFPM_SDD':'Cefepime_SDD', 
        'CFX':'Cefoxitin', 
        'CFZ':'Cefazolin', 
        'CP':'Ciprofloxacin', 
        'ERT':'Ertapenem', 
        'FN':'Nitrofurantoin', 
        'GM':'Gentamicin', 
        'LEV':'Levofloxacin', 
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        'MEM':'Meropenem', 
        'PIPTAZ':'Piperacillin_Tazobactam', 
        'SXT':'Sulfamethoxazole_Trimethoprim', 
        'TET':'Tetracycline', 
        'TOB':'Tobramycin', 
    } 
 
    for col in mic_cols: 
        abx = col.split('_MIC_')[0] 
        if abx in abx_abbr_dict.keys(): 
            final_summary = final_summary.rename(columns = {col:abx_abbr_dict[abx]}) 
        else: 
            final_summary = final_summary.drop(col, axis = 1) 
 
    # Now add in the total number of patients as parentheses next to N in SUMMARY 
    final_summary = final_summary\ 
                    .reset_index()\ 
                    .rename(columns = {'level_1':'SUMMARY', 'level_2':'SUMMARY'}) 
    # Total num cultures each phenotype 
     
    if not 'SPECIES' in final_summary.columns: 
        total_n = df.groupby(f'{pheno_1}_GROUP_V2')['ID_combined'].agg('count').to_dict() 
 
        for pheno, n in total_n.items(): 
            final_summary.loc[ 
                (final_summary[f'{pheno_1}_GROUP_V2'] == pheno)& 
                (final_summary['SUMMARY'] == 'N'), 
                'SUMMARY' 
            ] = f'n (N = {n})' 
             
    else: 
        total_n = df.groupby([f'{pheno_1}_GROUP_V2', 
'SPECIES'])['ID_combined'].agg('count').to_dict() 
 
        for (pheno, species), n in total_n.items(): 
            final_summary.loc[ 
                (final_summary[f'{pheno_1}_GROUP_V2'] == pheno)& 
                (final_summary['SPECIES'] == species)& 
                (final_summary['SUMMARY'] == 'N'), 
                'SUMMARY' 
            ] = f'n (N = {n})' 
     
    return final_summary 
 
def add_inf_type_demo(demo_1, demo_2, inf_types): 
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    # inf_types can be merged on demo_ps as is 
    demo_1 = demo_1.merge(inf_types, how = 'inner', on = 'ID_combined') 
     
    # Need some adjustment to make melt data to add to demo_stats_t and keep  
    # 1 pt/row 
    # First melt the data and only capture instances where patient had inf type 
    inf_types_melt = pd.melt(inf_types, id_vars = ['ID_combined']).sort_values('ID_combined') 
     
    inf_types_melt = inf_types_melt\ 
                        .loc[inf_types_melt['value'] == 1]\ 
                        .reset_index(drop = True)\ 
                        .drop('value', axis = 1) 
     
    # Now combine all inf type into a single string separated by ", " 
    inf_types_melt_merge = inf_types_melt\ 
                            .groupby('ID_combined')['BATT_AGGR']\ 
                            .agg(lambda x: ', '.join(sorted(x)))\ 
                            .reset_index()\ 
                            .rename(columns = {'BATT_AGGR':'INF_TYPE'}) 
     
    demo_2 = demo_2.merge(inf_types_melt_merge, how = 'inner', on = 'ID_combined') 
     
    # Insert INF_TYPE in desired position 
    insert_idx = demo_2.columns.get_loc('INDEX_CULTURE_ICU') 
    reindex_cols = list(demo_stats_t.columns[:insert_idx]) + ['INF_TYPE'] + 
list(demo_stats_t.columns[insert_idx:]) 
    demo_2 = demo_2.reindex(reindex_cols, axis = 1) 
     
    return demo_1, demo_2 
 
def baseline_stats_table(df, exp, path, title, continuous_var, to_save = True, to_show = False): 
  # Note that the P-values and SMD values that were included in the baseline stats table 
  # In the final study were dropped from this 
  # The p-values didn't serve a purpose because baseline differences were adjusted 
  # under this consideration and the SMD was only needed for the variables included 
  # in the PS model and was calculated later using R's smd function which had 
  # the capability of using Mahalanobis Distance for SMD of categorical variables 
    # Columns: Overall|CSE|CRE/CNS|p-value # index covariate 
    pheno_1 = exp.split('_')[0] # This should always be CRE or CNS 
    pheno_2 = exp.split('_')[-1] # This should always be CSE 
     
    day_surv_cols = [col for col in df.columns if re.search('^\d+D', col)] 
    exclude_cols = [ 
        'ID_combined', 
        f'{pheno_1}_GROUP_V2', 
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        'ADMT_DT', 
        'FINAL_DISCHRG_DT', 
        'EARLIEST_STUDY_CULTURE', 
        'OVERALL_MORTALITY', 
        'POST_INDEX_LOS', 
        'YEAR_STRATA', 
        'ADMT_DT_YEAR' 
    ] + day_surv_cols 
 
    # Build column titles     
    columns = ['Overall', pheno_1, pheno_2, 'P-value'] 
    overall_pt_n = df.shape[0] 
    pheno_1_pt_n = df.loc[df[f"{pheno_1}_GROUP_V2"] == pheno_1].shape[0] 
    pheno_2_pt_n = df.loc[df[f"{pheno_1}_GROUP_V2"] == pheno_2].shape[0] 
     
    pt_n_parentheses = [ 
        f" (N = {overall_pt_n})",  
        f" (N = {pheno_1_pt_n})", 
        f" (N = {pheno_2_pt_n})", 
        '' 
    ] 
     
    final_cols = [name + pt_n for name, pt_n in zip(columns, pt_n_parentheses)] 
     
 
    # Construct table one var at a time then concat the results together 
    table_sections = [] 
    for col in df.columns: 
        if col not in exclude_cols: 
            if col in continuous_var.keys(): 
                table_section = continuous_var_table( 
                                    df = df, 
                                    col = col, 
                                    continuous_var = continuous_var, 
                                    pheno_1 = pheno_1, 
                                    pheno_2 = pheno_2, 
                                    final_cols = final_cols 
                                ) 
                # smd here is a float 
                smd = calc_SMD( 
                        df = df, 
                        col = col, 
                        pheno_1 = pheno_1, 
                        pheno_2 = pheno_2, 
                        var_type = 'Continuous' 
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                    ) 
                 
                table_section.loc[col, 'SMD'] = smd 
                 
            elif isinstance(df[col].dtype, pd.CategoricalDtype): 
                table_section = ordinal_var_table( 
                                    df = df, 
                                    col = col, 
                                    pheno_1 = pheno_1, 
                                    pheno_2 = pheno_2, 
                                    final_cols = final_cols 
                                ) 
                # smd here is a pd.DataFrame 
                smd = calc_SMD( 
                        df = df, 
                        col = col, 
                        pheno_1 = pheno_1, 
                        pheno_2 = pheno_2, 
                        var_type = 'Ordinal' 
                    ) 
                table_section = table_section.join(smd[['SMD']]) 
                 
            else: 
                table_section = nominal_var_table( 
                                    df = df, 
                                    col = col, 
                                    pheno_1 = pheno_1, 
                                    pheno_2 = pheno_2, 
                                    final_cols = final_cols 
                                ) 
                # smd here is either a pd.DataFrame or float depending on how many levels the 
                # categorical variable contains 
                smd = calc_SMD( 
                        df = df, 
                        col = col, 
                        pheno_1 = pheno_1, 
                        pheno_2 = pheno_2, 
                        var_type = 'Categorical' 
                    ) 
                if isinstance(smd, float): 
                    table_section.loc[col, 'SMD'] = smd 
                elif isinstance(smd, pd.DataFrame): 
                    table_section = table_section.join(smd[['SMD']]) 
                 
        else: # I'm not adding the exclude cols to the final_table, so need to skip 
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            continue 
         
        table_section['SMD'] = table_section['SMD'].apply(lambda x: round(x, 3)) 
        table_sections.append(table_section) 
    final_table = pd.concat(table_sections, sort = False) 
     
    # rearrange order of SMD and P-value (P-value should be last column) 
    reindex_cols = final_cols.copy() # I don't want to override final_cols in case it is used 
elsewhere 
    reindex_cols.insert(3, 'SMD') 
    final_table = final_table.reindex(reindex_cols, axis = 1) 
     
    final_table = final_table.rename(columns = {'P-value':'P-value{b}'}) 
     
    # Now I need to arrange the titles to the appropriate place     
    # Get position of first CCI variable 
    first_cci = final_table.index.get_loc('CCI_SCORE') 
    reindex_cci = final_table.index.insert(first_cci, 'Charlson Comorbidity Index') 
     
    # Get position of first ELIX variable 
#     first_elix_name = [name for name in reindex_cci if re.search('ELIX', name)][0] 
    first_elix = reindex_cci.get_loc('ELIX_CARDIAC_ARRYTHM') 
    reindex_elix = reindex_cci.insert(first_elix, 'Elixhauser Comorbidity Index{e}') 
     
    # Add in two rows to separate CCI and ELIX data 
    cci_elix_nan_data = { 
        col:val for col, val in zip(final_table.columns, [np.nan] * len(final_table)) 
    } 
    cci_title = pd.DataFrame(index = ['Charlson Comorbidity Index'], data = cci_elix_nan_data) 
    elix_title = pd.DataFrame(index = ['Elixhauser Comorbidity Index{e}'], data = 
cci_elix_nan_data) 
    final_table = pd.concat([final_table, cci_title, elix_title], sort = False) 
     
    # This should move the newly added titles to the calculated positions from directly above 
    final_table = final_table.reindex(reindex_elix) 
     
    # Create better names for each covariate 
    table_label_dict = { 
        'AGE':'Age: Mean (SD)', 
        'RACE_CD_DES':'Race', 
        'GENDR_CD_DES':'Gender', 
        'ADMT_SRC_CD_DES':'Admission Source', 
        'INF_TYPE':'Infection Type at Index{c}', 
        'INDEX_CULTURE_ICU':'Index Culture taken in ICU', 
        'SOFA_ON_EARLIEST_CDATE':'Sofa Score at Index: Median (IQR)', 
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        'PRE_INDEX_LOS':'Time to Index (in days): Median (IQR)', 
        'INDEX_Has_lactose-non-fermenting':'Lactose-non-fermenting Culture at Index', 
        'INDEX_Has_MRSA':'MRSA Culture at Index', 
        'CCI_SCORE':'CCI Score at Index: Median (IQR)', 
        'CCI_MI':'Myocardial Infarction', 
        'CCI_CHF':'Congestive Heart Failure', 
        'CCI_PVD':'Peripheral Vascular Disease', 
        'CCI_CVD':'Cerebral Vascular Disease', 
        'CCI_DEMENTIA':'Dementia', 
        'CCI_CHRONIC_PULM':'Chronic Pulmonary Disease', 
        'CCI_RHEUM':'Rheumatologic Disease', 
        'CCI_PUD':'Peptic Ulcer Disease', 
        'CCI_MILD_LIVER':'Mild Liver Disease', 
        'CCI_T2DM_WO_COMP':'T2DM without Chronic Complications', 
        'CCI_T2DM_W_COMP':'T2DM with Chronic Complications', 
        'CCI_HEMI_PARAPLEGIA':'Hemiplegia/Paraplegia', 
        'CCI_MILD_MOD_RENAL':'Mild - Moderate Renal Disease', 
        'CCI_SEVERE_RENAL':'Severe Renal Disease', 
        'CCI_CANCER_NOT_SKIN':'Any malignancy{d}', 
        'CCI_MOD_SEVERE_LIVER':'Moderate-Severe Liver Disease', 
        'CCI_SOLID_MET':'Metastatic Solid Tumor', 
        'ELIX_CARDIAC_ARRYTHM':'Cardiac Arrhythmias', 
        'ELIX_VALV':'Valvular Disease', 
        'ELIX_PULM_CIRCULATION':'Pulmonary Circulation Disorders', 
        'ELIX_HTN_UNCOMP':'Hypertension without Complications', 
        'ELIX_HTN_COMP':'Hypertension with Complications', 
        'ELIX_OTHER_NEURO':'Neurodegenerative Disorders', 
        'ELIX_HYPOTHYROID':'Hypothyroidism', 
        'ELIX_COAGULOPATHY':'Coagulopathy', 
        'ELIX_OBESITY':'Obesity', 
        'ELIX_WEIGHT_LOSS':'Weight Loss', 
        'ELIX_FLUID_ELECTROLYTES':'Fluid/Electrolyte Disorders', 
        'ELIX_BLOOD_LOSS_ANEMIA':'Blood Loss Anemia', 
        'ELIX_DEFICIENCY_ANEMIA':'Deficiency Anemia', 
        'ELIX_ETOH_ABUSE':'Alcohol Abuse', 
        'ELIX_DRUG_ABUSE':'Drug Abuse', 
        'ELIX_PSYCHOSES':'Psychoses', 
        'ELIX_DEPRESSION':'Depression', 
        'CVD_COMPOSITE':'Cardiovascular Disease (Composite)', 
        'T2DM_COMPOSITE':'T2DM (Composite)', 
        'BLACK/AFRICAN AMERICAN':'Black/African-American', 
        'SPANISH AMERICAN':'Spanish-American', 
        'CLINIC/PHYSICIAN OFF':'Clinic/Physician office', 
        'OTHER HEALTH FACIL':'Other healthcare facility', 
        'TRANSFER FROM SNF':'Transfer from SNF', 
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        # These aren't being changed, but this is the easiest way to keep them the same after .get() 
        'Charlson Comorbidity Index':'Charlson Comorbidity Index',  
        'Elixhauser Comorbidity Index{e}':'Elixhauser Comorbidity Index{e}' 
    } 
     
    # ...And then map the values to the index 
    final_table.index = [table_label_dict.get(cov, cov.capitalize()) for cov in final_table.index] 
     
    # Will add these footers when writing out the file 
    footer_dict = { 
        'CRE':'Carbapenem-resistant Enterobacteriaceae', 
        'CNS':'Carbapenem-non-susceptible Enterobacteriaceae', 
        'CSE':'Carbapenem-susceptible Enterobacteriaceae' 
    } 
    footers = [ 
        f'Abbreviations: CCI: Charlson Comorbidity Index, {pheno_1}: {footer_dict[pheno_1]}, 
{pheno_2}: {footer_dict[pheno_2]}, '\ 
        'ICU: Intensive care unit, IQR: Interquartile range, MRSA: Methacillin-resistant 
Staphylococcus aureus, SD: Standard deviation, '\ 
        'SNF: Skilled nursing facility, T2DM: Type 2 diabetes melitus', 
        'a. Continuous variables are presented as Mean (SD) if parametric or Median (IQR) if 
otherwise, and ordinal/nominal variables are presented as N (%)', 
        'b. P-values obtained in the following manner: T-test for continuous, Chi-square test for 
nominal,'\ 
        'and Mann-Whitney U test for ordinal variables', 
        'c. Percentages may sum to > 100% because some patients have multiple infection types at 
index', 
        'd. Includes lymphoma and leukemia, but excludes malignant non-melanoma neoplasm of 
skin', 
        'e. Elixhauser covariates utilized were those that were not already accounted for in the CCI.' 
    ] 
     
    final_table = final_table.reset_index().rename(columns={'index':'Covariates{a}'}).fillna('') 
    # xlsxwriter can't write nan, so change to "" (default opt for to_excel) 
     
    table_path = f'{path}/Baseline_stats_table_{exp}_{title}.xlsx' 
     
 
    indent_excl = [ 
        'Age: Mean (SD)', 
        'Race', 
        'Gender', 
        'Admission Source', 
        'Infection Type at Index{c}', 
        'Index Culture taken in ICU', 
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        'Sofa Score at Index: Median (IQR)', 
        'Time to Index (in days): Median (IQR)', 
        'Lactose-non-fermenting Culture at Index', 
        'MRSA Culture at Index', 
        'Charlson Comorbidity Index', 
        'Elixhauser Comorbidity Index{e}', 
        'Cardiovascular Disease (Composite)', 
        'T2DM (Composite)' 
    ] 
     
    if to_show == True: 
        display(final_table) 
         
    if to_save == True: 
        write_table( 
            df = final_table, 
            path = table_path, 
            title = title, 
            footers = footers, 
            indent_excl = indent_excl 
        ) 
 
def continuous_var_table(df, col, continuous_var, pheno_1, pheno_2, final_cols): 
     
    if continuous_var[col] == 'Parametric': 
        # first deal with the overall entry: mean (sd) 
        avg_overall, std_overall = df[col].mean(), df[col].std() 
        var_overall = f'{avg_overall:.1f} ({std_overall:.1f})' 
 
        # Now deal with the grouped variables by phenotype 
        pheno_var = [] 
        for pheno in [pheno_1, pheno_2]: 
            subset = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno] 
            pheno_avg, pheno_std = subset[col].mean(), subset[col].std() 
            var_pheno = f'{pheno_avg:.1f} ({pheno_std:.1f})' 
            pheno_var.append(var_pheno) 
 
        # Need to run stats to get p-value 
        obs1 = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno_1, col] 
        obs2 = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno_2, col] 
        _, p = ttest_ind(obs1, obs2) 
        p = '<0.001' if p < 0.001 else str(round(p, 3)) 
         
    elif continuous_var[col] == 'Non-parametric': 
        # first deal with the overall entry: median (IQR) 
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        q = df[col].quantile([0.25, 0.5, 0.75]) 
        med_overall = q.loc[0.5] 
        iqr_overall = [q.loc[0.25], q.loc[0.75]] 
        var_overall = f'{med_overall:.1f} ({iqr_overall[0]:.1f}, {iqr_overall[1]:.1f})' 
         
        # Now deal with the grouped variables by phenotype 
        pheno_var = [] 
        for pheno in [pheno_1, pheno_2]: 
            subset = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno] 
            pheno_q = subset[col].quantile([0.25, 0.5, 0.75]) 
            pheno_med = pheno_q.loc[0.5] 
            pheno_iqr = [pheno_q.loc[0.25], pheno_q.loc[0.75]] 
            var_pheno = f'{pheno_med:.1f} ({pheno_iqr[0]:.1f}, {pheno_iqr[1]:.1f})' 
            pheno_var.append(var_pheno) 
             
        # Need to run stats to get p-value 
        obs1 = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno_1, col] 
        obs2 = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno_2, col] 
        _, p = mannwhitneyu(obs1, obs2) 
        p = '<0.001' if p < 0.001 else str(round(p, 3)) 
     
    # Need to combine all into a df to return 
    output_data = { 
        col:val for col, val in zip(final_cols, [var_overall, *pheno_var, p]) 
    } 
     
    return pd.DataFrame(index = [col], data = output_data) 
 
def nominal_var_table(df, col, pheno_1, pheno_2, final_cols): 
    if df[col].dtype == 'bool': 
        # These should all be True/False, so the sum will give the number of pts having the var 
        # first deal with the overall entry: n (%) 
        overall_pt_num = df['ID_combined'].nunique() 
        num_overall = df[col].sum() 
        perc_overall = round(((num_overall/overall_pt_num) * 100), 1) 
        var_overall = f'{num_overall} ({perc_overall}%)' 
 
        # Now deal with the grouped variables by phenotype 
        pheno_var = [] 
        for pheno in [pheno_1, pheno_2]: 
            subset = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno] 
            subset_pt_num = subset['ID_combined'].nunique() 
            pheno_num = subset[col].sum() 
            pheno_perc = round(((pheno_num/subset_pt_num) * 100), 1) 
            var_pheno = f'{pheno_num} ({pheno_perc}%)' 
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            pheno_var.append(var_pheno) 
 
        # Need to run stats to get p-value 
        c_table = df\ 
                .loc[df[f'{pheno_1}_GROUP_V2'].isin([pheno_1, pheno_2])]\ 
                .groupby([f'{pheno_1}_GROUP_V2', col])[col]\ 
                .agg('count')\ 
                .unstack(col)\ 
                .T\ 
                .fillna(0) 
         
        chi2, p, dof, exp = chi2_contingency(c_table) 
        if (c_table < 5).any(axis = None) or (exp < 5).any(): 
            if np.prod(c_table.shape) == 4: # 2x2 
                # Can use python's Fisher exact 
                _, p = fisher_exact(c_table) 
            else: 
                # Have to use R's Fisher exact 
#                 display(c_table) 
                r_c_table = pandas_to_r_df(c_table) 
                res = r_stats.fisher_test(r_c_table) 
                p, *_ = [val[0] for val in list(res.rx())] 
             
        p = '<0.001' if p < 0.001 else str(round(p, 3)) 
 
        # Need to combine all into a df to return 
        output_data = { 
            col:val for col, val in zip(final_cols, [var_overall, *pheno_var, p]) 
        } 
 
        return pd.DataFrame(index = [col], data = output_data) 
     
    else: 
        nan_data = { 
            col:val for col, val in zip(final_cols, [np.nan] * 4) 
        } 
        top_row = pd.DataFrame(index = [col], data = nan_data) 
 
        # INF_TYPE is not mutually_exclusive, will need to expand concat strings to count ALL inf 
type present 
        # (ex. some patients have multiple infection types) 
        if col == 'INF_TYPE': 
            df = standardize_inf_type(df, pheno_1) # ID_combined, pheno_group_v2, INF_TYPE 
         
        # first deal with the overall entry: n (%) 
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        overall_pt_num = df['ID_combined'].nunique() 
        num_overall = df[col].value_counts().sort_index().reset_index() 
        num_overall.loc[:, 'Perc'] = round(((num_overall[col]/overall_pt_num) * 100), 1) 
        num_overall.loc[:, final_cols[0]] = num_overall[col].astype(str) + ' (' + \ 
                                        num_overall['Perc'].astype(str) + '%)' 
        num_overall = num_overall[['index', final_cols[0]]].set_index('index') 
         
        # Now deal with the grouped variables by phenotype 
        for pheno, final_colname in zip([pheno_1, pheno_2], final_cols[1:3]): 
            subset = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno] 
            subset_pt_num = subset['ID_combined'].nunique() 
            pheno_num = subset[col].value_counts().sort_index().reset_index() 
            pheno_num.loc[:, 'Perc'] = round(((pheno_num[col]/subset_pt_num) * 100), 1) 
            pheno_num.loc[:, final_colname] = pheno_num[col].astype(str) + ' (' + \ 
                                        pheno_num['Perc'].astype(str) + '%)' 
            pheno_num = pheno_num[['index', final_colname]].set_index('index') 
            num_overall = num_overall.join(pheno_num) 
 
        # Add place holder for p-value column 
        num_overall.loc[:, final_cols[-1]] = '-' 
        # Fill any missing data with 0 before adding the top row, which has intentionally blank values 
        num_overall = num_overall.fillna('0 (0%)') 
        output_df = pd.concat([top_row, num_overall], sort = False) 
         
        # Now stats 
        c_table = df\ 
            .loc[df[f'{pheno_1}_GROUP_V2'].isin([pheno_1, pheno_2])]\ 
            .groupby([f'{pheno_1}_GROUP_V2', col])[col]\ 
            .agg('count')\ 
            .unstack(col)\ 
            .T\ 
            .fillna(0) 
#         display(c_table) 
        chi2, p, dof, exp = chi2_contingency(c_table) 
        if (c_table < 5).any(axis = None) or (exp < 5).any(): 
            if c_table.shape[0] < 2: 
                p = 9999 
         
            elif np.prod(c_table.shape) == 4: # 2x2 
                # Can use python's Fisher exact 
                _, p = fisher_exact(c_table) 
            else: 
                # Have to use R's Fisher exact 
                r_c_table = pandas_to_r_df(c_table) 
                res = r_stats.fisher_test(r_c_table) 
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                p, *_ = [val[0] for val in list(res.rx())] # Only need the first value of this R result 
                 
        p = '<0.001' if p < 0.001 else str(round(p, 3)) 
        p = '-' if p == '9999' else p 
         
        output_df.loc[col, final_cols[-1]] = p 
#         display(output_df) 
         
        return output_df 
 
def standardize_inf_type(df, pheno_1): 
    """ 
    Unpack the concatenated strings to have a row for each inf_type present. This is needed 
because some pts have 
    more than one inf type at baseline. Needs to return df with cols ID_combined, 
{pheno_1}_GROUP_V2, INF_TYPE 
    """ 
    # each groupby will return a series so will need to drop level_2 as the index of the series will 
    # be carried forward as an index col of the resulting dataframe 
    df = df\ 
        .groupby([f'{pheno_1}_GROUP_V2', 'ID_combined'])['INF_TYPE']\ 
        .apply(lambda x: x.str.split(', ').explode())\ 
        .reset_index()\ 
        .drop('level_2', axis = 1) 
     
    return df 
 
def ordinal_var_table(df, col, pheno_1, pheno_2, final_cols): 
   # These should all be True/False, so the sum will give the number of pts having the var 
     
    # These variables have multiple levels, will give a blank row with title 
        # actual table will have tabs 
    nan_data = { 
        col:val for col, val in zip(final_cols, [np.nan] * 4) 
    } 
    top_row = pd.DataFrame(index = [col], data = nan_data) 
     
    # first deal with the overall entry: n (%) 
    num_overall = df[col].value_counts().sort_index().reset_index() 
    num_overall.loc[:, 'Perc'] = round(((num_overall[col]/df.shape[0]) * 100), 1) 
    num_overall.loc[:, final_cols[0]] = num_overall[col].astype(str) + ' (' + \ 
                                    num_overall['Perc'].astype(str) + '%)' 
    num_overall = num_overall[['index', 'OVERALL']].set_index('index') 
     
    # Now deal with the grouped variables by phenotype 
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    for pheno, final_colname in zip([pheno_1, pheno_2], final_cols[1:3]): 
        subset = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno] 
        pheno_num = subset[col].value_counts().sort_index().reset_index() 
        pheno_num.loc[:, 'Perc'] = round(((pheno_num[col]/subset.shape[0]) * 100), 1) 
        pheno_num.loc[:, final_colname] = pheno_num[col].astype(str) + ' (' + \ 
                                    pheno_num['Perc'].astype(str) + '%)' 
        pheno_num = pheno_num[['index', final_colname]].set_index('index') 
        num_overall = num_overall.join(pheno_num) 
         
    # Add place holder for p-value column 
    num_overall.loc[:, final_cols[-1]] = '-' 
    # Fill any missing data with 0 before adding the top row, which has intentionally blank values 
    num_overall = num_overall.fillna('0 (0%)') 
    output_df = pd.concat([top_row, num_overall], sort = False) 
     
    # Need to run stats to get p-value to add to top_row 
    obs1 = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno_1, col].cat.codes 
    obs2 = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno_2, col].cat.codes 
    _, p = mannwhitneyu(obs1, obs2) 
    p = '<0.001' if p < 0.001 else str(round(p, 3)) 
 
    output_df.loc[col, final_cols[-1]] = p 
     
    return output_df 
 
def calc_SMD(df, col, pheno_1, pheno_2, var_type): 
    """ 
    This function will appropriately calculate the SMD for different data types. For equations, refer 
to 
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472075/ Section 3.2, equations 1 and 2. 
     
    Note that the smd variable that is returned depends upon what variable is passed. smd may be 
either a 
    float or pd.DataFrame. 
    """ 
     
    data_t = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno_1, col] 
    data_c = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno_2, col] 
     
    if var_type == 'Continuous': 
        mean_t, var_t = data_t.mean(), data_t.std() ** 2 
        mean_c, var_c = data_c.mean(), data_c.std() ** 2 
         
        numerator = np.abs(mean_t - mean_c) 
        denom = np.sqrt((var_t + var_c) / 2) 
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        smd = numerator/denom 
         
    elif var_type == 'Categorical': 
        if df[col].dtype == 'bool': 
            prev_t = data_t.sum() / data_t.shape[0] 
            prev_c = data_c.sum() / data_c.shape[0] 
 
            numerator = np.abs(prev_t - prev_c) 
            denom = np.sqrt(((prev_t * (1 - prev_t)) + (prev_c * (1 - prev_c))) / 2) 
 
            smd = numerator/denom 
 
        else: # ADMT_SRC_CD_DES example, not 1 or 0, have to use value counts 
             
            # INF_TYPE is not mutually_exclusive, will need to expand concat strings to count ALL inf 
type present 
            # (ex. some patients have multiple infection types) 
            if col == 'INF_TYPE': 
                df = standardize_inf_type(df, pheno_1) # ID_combined, pheno_group_v2, INF_TYPE 
                 
            collect_data = [] 
            for pheno, label in zip([pheno_1, pheno_2], ['T', 'C']): 
                subset = df.loc[df[f'{pheno_1}_GROUP_V2'] == pheno] 
                subset_pt_num = subset['ID_combined'].nunique() 
                data = subset[col]\ 
                        .value_counts()\ 
                        .reset_index()\ 
                        .rename(columns = {col:label, 'index':col}) 
                data.loc[:, f'PREV_{label}'] = data[label] / subset_pt_num 
                collect_data.append(data) 
            smd = collect_data[0].merge(collect_data[1], on = col).set_index(col) 
            smd.loc[:, 'NUM'] = np.abs(smd['PREV_T'] - smd['PREV_C']) 
            smd.loc[:, 'DENOM'] = np.sqrt(((smd['PREV_T'] * (1 - smd['PREV_T'])) + ((smd['PREV_C'] 
* (1 - smd['PREV_C'])))) / 2) 
            smd.loc[:, 'SMD'] = smd['NUM'] / smd['DENOM'] 
         
    elif var_type == 'Ordinal': 
        collect_data = [] 
        for pheno, label in zip([pheno_1, pheno_2], ['T', 'C']): 
            data = df\ 
                    .loc[df[f'{pheno_1}_GROUP_V2'] == pheno, col]\ 
                    .value_counts()\ 
                    .reset_index()\ 
                    .rename(columns = {col:label, 'index':col}) 
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            data.loc[:, f'PREV_{label}'] = data[label] / data[label].sum() 
            collect_data.append(data) 
        smd = collect_data[0].merge(collect_data[1], on = col).set_index(col) 
        smd.loc[:, 'NUM'] = np.abs(smd['PREV_T'] - smd['PREV_C']) 
        smd.loc[:, 'DENOM'] = np.sqrt(((smd['PREV_T'] * (1 - smd['PREV_T'])) + ((smd['PREV_C'] * 
(1 - smd['PREV_C'])))) / 2) 
        smd.loc[:, 'SMD'] = smd['NUM'] / smd['DENOM'] 
     
    else: 
        allowable_var_types = ['Continuous', 'Ordinal', 'Categorical'] 
        raise ValueError(f""" 
        var_type ({var_type}) is not a valid option. Please try one of the following: 
{allowable_var_types}. 
        """) 
         
    return smd 
 
def write_table(df, path, title, footers, indent_excl): 
    st_writer = pd.ExcelWriter(path, engine = 'xlsxwriter') 
     
    sheet_name = 'Baseline Stats Table' 
    df_header_row = 1 
    df_width = df.shape[1] 
    df.to_excel(st_writer, sheet_name = sheet_name, startrow = df_header_row, index = False) 
     
    workbook = st_writer.book 
    worksheet = st_writer.sheets[sheet_name] 
    worksheet.set_column(0, 0, 35) 
    worksheet.set_column(1, df_width, 15) 
     
    # Formats 
    # Have to explicitly set all of the formats bc the format used on the cell is the final 
version...can't dynamically set 
    # ----------------------------General Formatters---------------------------- 
    bold = workbook.add_format({ 
        'bold':True 
    }) 
    ss = workbook.add_format({ 
        'font_script':1 
    }) 
    bold_ss = workbook.add_format({ 
        'bold':True, 
        'font_script':1 
    }) 
    # ----------------------------Title, Headers, Footers---------------------------- 
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    title_format = workbook.add_format({ 
        'bold':True, 
        'align':'center', 
        'bottom':2 
    }) 
    header_format = workbook.add_format({ 
        'align':'center', 
        'valign':'vcenter', 
        'bold':True, 
        'top':2 
    }) 
    header_ss = workbook.add_format({ 
        'align':'center', 
        'valign':'vcenter', 
        'bold':True, 
        'font_script':1, 
        'top':2 
    }) 
    header_cov_col_format = workbook.add_format({ 
        'align':'left', 
        'valign':'vcenter', 
        'bold':True, 
    }) 
    header_cov_col_ss = workbook.add_format({ 
        'align':'left', 
        'valign':'vcenter', 
        'bold':True, 
        'font_script':True 
    }) 
    footer_format = workbook.add_format({ 
        'bold':True 
    }) 
    # ----------------------------General Rows---------------------------- 
    white_row_format = workbook.add_format({ 
        'align':'center', 
        'valign':'vcenter' 
    }) 
    grey_row_format = workbook.add_format({ 
        'align':'center', 
        'valign':'vcenter', 
        'bg_color':'#dfe0e0' 
    }) 
    top_row_format = workbook.add_format({ 
        'align':'center', 
        'valign':'vcenter', 
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        'bg_color':'#dfe0e0', 
        'top':2 
    }) 
    bot_row_format = workbook.add_format({ 
        'align':'center', 
        'valign':'vcenter', 
        'bottom':2 
    }) 
     
    white_row_ss = workbook.add_format({ 
        'align':'center', 
        'valign':'vcenter', 
        'font_script':1 
    }) 
    grey_row_ss = workbook.add_format({ 
        'align':'center', 
        'valign':'vcenter', 
        'bg_color':'#dfe0e0', 
        'font_script':1 
    }) 
    top_row_ss = workbook.add_format({ 
        'align':'center', 
        'valign':'vcenter', 
        'bg_color':'#dfe0e0', 
        'font_script':1, 
        'top':2 
    }) 
    bot_row_ss = workbook.add_format({ 
        'align':'center', 
        'valign':'vcenter', 
        'font_script':1, 
        'bottom':2 
    }) 
    # ----------------------------Covariate Column---------------------------- 
    white_cov_col_format = workbook.add_format({ 
        'align':'left', 
        'valign':'vcenter', 
        'bold':True 
    }) 
    grey_cov_col_format = workbook.add_format({ 
        'align':'left', 
        'valign':'vcenter', 
        'bold':True, 
        'bg_color':'#dfe0e0' 
    }) 
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    top_cov_col_format = workbook.add_format({ 
        'align':'left', 
        'valign':'vcenter', 
        'bold':True, 
        'bg_color':'#dfe0e0', 
        'top':2 
    }) 
    bot_cov_col_format = workbook.add_format({ 
        'align':'left', 
        'valign':'vcenter', 
        'bold':True, 
        'bottom':2 
    }) 
     
    white_cov_col_ss = workbook.add_format({ 
        'align':'left', 
        'valign':'vcenter', 
        'bold':True, 
        'font_script':1 
    }) 
    grey_cov_col_ss = workbook.add_format({ 
        'align':'left', 
        'valign':'vcenter', 
        'bold':True, 
        'font_script':1, 
        'bg_color':'#dfe0e0' 
    }) 
    top_cov_col_ss = workbook.add_format({ 
        'align':'left', 
        'valign':'vcenter', 
        'bold':True, 
        'font_script':1, 
        'bg_color':'#dfe0e0', 
        'top':2 
    }) 
    bot_cov_col_ss = workbook.add_format({ 
        'align':'left', 
        'valign':'vcenter', 
        'bold':True, 
        'font_script':1, 
        'bottom':2 
    }) 
     
 
    format_switch_dict = { 
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        'grey':[grey_row_format, grey_cov_col_format, grey_row_ss, grey_cov_col_ss], 
        'white':[white_row_format, white_cov_col_format, white_row_ss, white_cov_col_ss], 
        'top':[top_row_format, top_cov_col_format, top_row_ss, top_cov_col_ss], 
        'bot':[bot_row_format, bot_cov_col_format, bot_row_ss, bot_cov_col_ss], 
    } 
    # Write the title of the table 
    worksheet.merge_range(0, 0, 0, df_width -1, title, title_format) 
     
    # Write the columns 
    for idx, col_text in enumerate(df.columns): 
        if idx == 0: 
            if re.search('{[a-z]}', col_text): 
                col_text = re.sub('{|}', '', col_text) 
                col_text_list = [bold, col_text[:-1], bold_ss, col_text[-1], header_cov_col_format] 
                worksheet.write_rich_string(df_header_row, idx, *col_text_list) 
            else: 
                worksheet.write(df_header_row, idx, col_text, header_cov_col_format) 
        else: 
            if re.search('{[a-z]}', col_text): 
                col_text = re.sub('{|}', '', col_text) 
                col_text_list = [bold, col_text[:-1], bold_ss, col_text[-1], header_format] 
                worksheet.write_rich_string(df_header_row, idx, *col_text_list) 
            else: 
                worksheet.write(df_header_row, idx, col_text, header_format) 
     
    # Format the df     
    df_current_row = df_header_row + 1 
    color_switch = 1 
    top = True 
    for idx, row in enumerate(df.itertuples(index = False)): 
         
        # Decide which format to use 
        if idx + 1 == df.shape[0]: # Bottom row of table 
            # This dynamic formatting only works bc the bottom of the table will only be set once 
            if color_switch == 1: 
                for formatter in format_switch_dict['bot']: 
                    formatter.set_bg_color('#dfe0e0') 
                row_format, cov_col_format, row_ss, cov_col_ss = format_switch_dict['bot'] 
            else: 
                row_format, cov_col_format, row_ss, cov_col_ss = format_switch_dict['bot'] 
        else: 
            if color_switch == 1: 
                row_format, cov_col_format, row_ss, cov_col_ss = format_switch_dict['grey'] 
            else: 
                row_format, cov_col_format, row_ss, cov_col_ss = format_switch_dict['white'] 
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        if top == True: 
            row_format, cov_col_format, row_ss, cov_col_ss = format_switch_dict['top'] 
         
        # Iterate each row in the df 
        for idx, value in enumerate(row): 
            if idx == 0: # This is the covariate column 
                if value not in indent_excl: # This only needs to be done for covariate column 
                    value = '    ' + value # 4 spaces added to front 
                     
                if re.search('{[a-z]}', str(value)): 
                    value = re.sub('{|}', '', str(value)) 
                    value_list = [bold, value[:-1], bold_ss, value[-1], cov_col_format] 
                    worksheet.write_rich_string(df_current_row, idx, *value_list) 
                else: 
                    worksheet.write(df_current_row, idx, value, cov_col_format) 
            else: 
                if re.search('{[a-z]}', str(value)): 
                    value = re.sub('{|}', '', str(value)) 
                    value_list = [value[:-1], ss, value[-1], row_format] 
                    worksheet.write_rich_string(df_current_row, idx, *value_list) # use superscript on last 
letter 
                else: 
                    worksheet.write(df_current_row, idx, value, row_format) 
         
        df_current_row += 1 
        color_switch /= -1 
        top = False 
     
    # Write the footers 
    for footer in footers: 
        worksheet.write(df_current_row, 0, footer, footer_format) 
        df_current_row += 1 
         
    st_writer.save() 
    st_writer.close() 
 
# Calculate the stabilized IPTW weights applied to each row of df 
def calc_stabilized_IPTW(data, outcome, tx_prob, stabilize = True): 
    exp = data[outcome] 
    ps = data['PS_SCORE'] 
     
    num = 1 
    if stabilize == True: 
        num = tx_prob.get(exp) 
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    if exp == 0: 
        iptw = num/(1 - ps) 
    else: 
        iptw = num/ps 
         
    return iptw 
 
def create_ps_weights(df, demo_map, assumptions, exp, path, title, write_st = False): 
    df = df.copy() # Was overriding the demo_ps columns in the global space with PS_Score 
    # Build Formula 
    pheno_1 = exp.split('_')[0] # This should always be CRE or CNS 
    pheno_2 = exp.split('_')[-1] # This should always be CSE  
    outcome = f'{pheno_1}_GROUP_V2' 
    pt_id = 'ID_combined' 
     
    # Treatment probabilities for CRE and CSE -- Prevalence 
    tx_prob = { 
        0:(df[outcome] == 0).sum() / df.shape[0], 
        1:(df[outcome] == 1).sum() / df.shape[0] 
    } 
     
    day_surv_cols = [col for col in df.columns if re.search('^\d+D', col)] 
    exclude_cols = [ 
        outcome, 
        pt_id, 
        'ADMT_DT', 
        'FINAL_DISCHRG_DT', 
        'OVERALL_MORTALITY', 
        'POST_INDEX_LOS', 
        'EARLIEST_STUDY_CULTURE', 
        'YEAR_STRATA', 
        'ADMT_DT_YEAR' 
    ] + day_surv_cols 
     
    admit_source = [ 
        'CLINIC_PHYSICIAN_OFF', 
        'HOSPITAL_TRANSFER', 
        'NONHEALTHCARE_ORIGIN' 
#         'OTHER_HEALTH_FACIL' not here because it was dropped for being the lowest pop field 
        #TRANSFER FROM SNF is not here because it was combined with 
OTHER_HEALTH_FACIL when preparing baseline 
    ] 
     
    df.columns = [re.sub(r'/|-| ', '_', col) for col in df.columns] 
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#     covariates = ' + '.join([col for col in df.columns if not col in exclude_cols]) 
    # Due to limited number of CRE cases, chose the following variables 
     
    df.loc[:, 'BSI_OR_PNA_INDEX'] = (df[['Blood', 'Respiratory']] == 1).any(axis = 1).astype(int) 
     
    covariates_list = [ 
        'AGE', 
        'GENDR_CD_DES', 
        'INDEX_CULTURE_ICU', 
        'PRE_INDEX_LOS', 
        'SOFA_ON_EARLIEST_CDATE', 
        'CCI_SCORE', 
        'CVD_COMPOSITE', 
        'T2DM_COMPOSITE', 
        'BSI_OR_PNA_INDEX' 
    ] + admit_source 
     
    covariates = ' + '.join(covariates_list) 
    formula = '{} ~ {}'.format(outcome, covariates) 
 
#     # Fit the model 
    ps_model = smf.logit(formula, df).fit() 
    df.loc[:, 'PS_SCORE'] = ps_model.predict() 
    df.loc[:, 'IPTW_UNSTABLE'] = df.apply(calc_stabilized_IPTW, outcome = outcome, tx_prob = 
tx_prob, stabilize = False, axis = 1) 
    df.loc[:, 'IPTW_STABLE'] = df.apply(calc_stabilized_IPTW, outcome = outcome, tx_prob = 
tx_prob, stabilize = True, axis = 1) 
 
    if write_st == True: 
         
        write_sm_summary_table( 
            ps_model = ps_model, 
            path = path, 
            exp = exp, 
            title = title, 
            sheet_name = 'PS Model' 
        ) 
     
    return df 
 
def write_sm_summary_table(ps_model, path, exp, title, **kwargs): 
    """ 
    This will be a generic function to write out statmodels summary tables to excel. tables expects 
a list of dfs of len == 2. The first will be the overall summary, 
    and the other will be the coeffecients table with stats. 
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    """ 
    # First create the tables as pd.DataFrames 
    collect_res_dfs = [] 
    for table_name, res_table in zip(['summary', 'coeffs'], ps_model.summary().tables): 
        res_html = res_table.as_html() 
        if table_name == 'summary': 
            res_df = pd.read_html(res_html)[0] 
        elif table_name == 'coeffs': 
            res_df = pd.read_html(res_html, header = 0)[0].rename(columns = {'Unnamed: 
0':'Covariates'}) 
 
        collect_res_dfs.append(res_df) 
 
    table_path = f'{path}/PS_Model_{exp}_{title}.xlsx' 
    summary, coeffs = collect_res_dfs 
     
    # Write the data to excel 
    st_writer = pd.ExcelWriter(table_path, engine = 'xlsxwriter') 
     
    sheet_name = kwargs.get('sheet_name', 'stats_table') 
    summary.to_excel(st_writer, sheet_name = sheet_name, startrow = 0, index = False) 
     
    coeff_start_row = summary.shape[0] + 2 # one for header displacing index, other for space btn 
tables 
    coeffs.to_excel(st_writer, sheet_name = sheet_name, startrow = coeff_start_row, index = 
False) 
     
    st_writer.save() 
    st_writer.close() 
 
def plot_propensity_scores(df, exp, path, title, to_save = False, to_show = True): 
     
    plt.style.use('ggplot') 
     
    mosaic = [['ax_perc', 'ax_perc'], ['ax_p1', 'ax_p2']] 
    fig, ax_dict = plt.subplot_mosaic(mosaic, constrained_layout = True, figsize = (15, 9)) 
     
    pheno_1 = exp.split('_')[0] # This should always be CRE or CNS 
    pheno_2 = exp.split('_')[-1] # This should always be CSE  
 
    bins = np.linspace(df['PS_SCORE'].min(), df['PS_SCORE'].max(), 50) 
    common_kwargs = { 
        'kind':'hist', 
        'bins':bins, 
        'density':True, 
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        'alpha':0.5, 
    } 
 
    # Create the top panel which plots both PS distributions on same ax with y-axis percentage 
    for pheno, indicator, color in zip([pheno_1, pheno_2], [1, 0], ['blue', 'orange']): 
        df.loc[df[f'{pheno_1}_GROUP_V2'] == indicator, 'PS_SCORE'].plot(color = color, label = 
pheno, ax = ax_dict['ax_perc'], **common_kwargs) 
        ax_dict['ax_perc'].set_title('PS Distribution Probability Density Function') 
        ax_dict['ax_perc'].set_xlabel('Propensity') 
        ax_dict['ax_perc'].set_ylabel('Frequency (%)') 
        ax_dict['ax_perc'].legend() 
     
    # Don't need these settings anymore 
    for setting in ['density', 'alpha']: 
        del common_kwargs[setting] 
         
    # Create the bottom panels which each plot the counts of the PS distribution 
    for pheno, indicator, color, phen_ax in zip([pheno_1, pheno_2], [1, 0], ['blue', 'orange'], ['ax_p1', 
'ax_p2']): 
        data = df.loc[df[f'{pheno_1}_GROUP_V2'] == indicator, 'PS_SCORE'] 
        # Determine if a Log scale would be more appropriate 
        use_log = False 
        if np.log10(data.max() / data.min()) >= 2.7: # ~ quotient of 500 
            use_log = True 
         
        data.plot(color = color, ax = ax_dict[f'{phen_ax}'], **common_kwargs) 
        ax_dict[f'{phen_ax}'].set_title(f'PS Distribution of {pheno}') 
        ax_dict[f'{phen_ax}'].set_xlabel('Propensity') 
         
        if use_log == True: 
            ax_dict[f'{phen_ax}'].set_yscale('log') 
            ax_dict[f'{phen_ax}'].set_ylabel('Log Counts') 
        else: 
            ax_dict[f'{phen_ax}'].set_ylabel('Counts') 
     
    if to_save == True: 
        plt.savefig(f'{path}/PS_DIST_HISTOGRAMS_{exp}_{title}.jpeg') 
         
    if to_show == True:     
        plt.show() 
     
    plt.clf() 
    plt.close(fig) 
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def cox_model(demo, model_name, test_params, exp, path, title, formula = None, weighted = 
False, to_show = False, to_save = False): 
    """ 
    This function will fit an unadjusted Cox Proportional Hazards Model where the only covariate is 
the 
    exposure group i.e. CRE vs. CSE. Prior to this function, a proportional_hazards_test will be 
performed 
    in a model that includes the YEAR_STRATA variable (levels: 2010 - 2014 and 2015 - 2019) to 
determine if 
    these time periods have proportional hazards. If they don't, will stratify on the YEAR_STRATA 
var. 
    """ 
    demo = demo.copy() 
    pheno_1 = exp.split('_')[0] # This should always be CRE or CNS 
    pheno_2 = exp.split('_')[-1] # This should always be CSE  
     
    duration_col = test_params['duration_col'] 
    event_col = test_params['event_col'] 
    strata = test_params['strata'] 
    weights_col = 'IPTW_STABLE' 
    # will define here because pheno_1 not specified in global exp space 
    if formula is None: 
        formula = f'{pheno_1}_GROUP_V2' 
     
#     demo[event_col] = demo[event_col].map({1:True, 0:False}) 
     
    # test proportional hazards with year 
#     ph_test_year_strata, to_stratify = test_PH_year_strata( 
#                                             demo = demo, 
#                                             duration_col = duration_col, 
#                                             event_col = event_col, 
#                                             year_var = strata, 
#                                             formula = formula 
#                                         ) 
     
#     ph_test_cal_year, _ = test_PH_year_strata( 
#                             demo = demo, 
#                             duration_col = duration_col, 
#                             event_col = event_col, 
#                             year_var = 'ADMT_DT_YEAR', 
#                             formula = formula 
#                         ) 
     
    cph = CoxPHFitter() 
#     if to_stratify == True: # rerun the cph model with stratification 
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#         print('YEAR_STRATA did not pass proportional hazard test, will stratify.') 
#         cph.fit( 
#             df = demo, 
#             duration_col = duration_col, 
#             event_col = event_col, 
#             strata = strata, 
#             formula = formula 
#         ) 
         
#     else: 
#         cph.fit( 
#             df = demo, 
#             duration_col = duration_col, 
#             event_col = event_col, 
#             formula = formula 
#         ) 
    if weighted == True: 
        cph.fit( 
            df = demo, 
            duration_col = duration_col, 
            event_col = event_col, 
            weights_col = weights_col, 
            formula = formula, 
            robust = True 
        ) 
    else: 
        cph.fit( 
            df = demo, 
            duration_col = duration_col, 
            event_col = event_col, 
            formula = formula 
        ) 
                 
    if to_show == True: 
        cph.print_summary(style = 'ascii') 
         
    if to_save == True: 
        write_cph_table( 
            cph = cph, 
            model_name = model_name, 
            path = path, 
            exp = exp, 
            title = title 
        ) 
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#         ph_test_year_strata_path = 
f'{path}/PH_TESTS/PH_test_YEAR_STRATA_{model_name}_{exp}_{title}.csv' 
#         ph_test_year_strata.to_csv(ph_test_year_strata_path) 
         
#         ph_test_cal_year_path = 
f'{path}/PH_TESTS/PH_test_CAL_YR_{model_name}_{exp}_{title}.csv' 
#         ph_test_cal_year.to_csv(ph_test_cal_year_path) 
         
    hr_table = cph.summary 
    hr_table.index = [model_name] 
     
    return hr_table 
 
def test_PH_year_strata(demo, duration_col, event_col, year_var, formula): 
     
    formula += f' + {year_var}' # Need to add the potential strata var to test 
    cph_year = CoxPHFitter() 
    cph_year.fit( 
        df = demo, 
        duration_col = duration_col, 
        event_col = event_col, 
        formula = formula 
    ) 
     
    ph_test = proportional_hazard_test(cph_year, demo).summary 
    ph_test = ph_test.rename(columns = {'-log2(p)':"'-log2(p)"}) 
    year_ph_p_value = ph_test.iloc[-1, 1] 
    to_stratify = False 
#     if year_ph_p_value <= 0.05: 
#         to_stratify = True 
         
    return ph_test, to_stratify 
 
def write_cph_table(cph, model_name, path, exp, title): 
    """ 
    This function will first build 2 dataframes from the parameters of the cpm fitted model. 
    Next it will save the dfs out to a single sheet using xlsxwriter 
    """ 
    # First build the summary table 
    model = re.search('<(.+):', cph.__repr__()).groups()[0] 
    duration_col = cph.duration_col 
    event_col = cph.event_col 
    weight_col = cph.weights_col 
    strata = cph.strata 
    baseline_estimation = cph.baseline_estimation_method 
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    num_obs = int(cph.weights.sum()) 
    num_event = int(cph.weights[cph.event_observed > 0].sum()) 
    partial_ll = round(cph.log_likelihood_, 2) 
    concordance = cph.concordance_index_ 
    partial_aic = cph.AIC_partial_ 
    time_fit = cph._time_fit_was_called 
     
    var_names = [ 
        'Model', 'Duration col', 'Event col', 'Weight col', 'Strata', 'Baseline Estimation', 'Num 
Observations', 'Num Events',\ 
        'Partial Log-likelihood', 'Concordance', 'Partial AIC', 'Time Fit Performed' 
    ] 
     
    var_values = [ 
        model, duration_col, event_col, weight_col, strata, baseline_estimation, num_obs, 
num_event, partial_ll, concordance,\ 
        partial_aic, time_fit 
    ] 
     
    cph_summary_dict = {'var_names':var_names, 'vars':var_values} 
     
    cph_summary = pd.DataFrame(cph_summary_dict).dropna(how = 'any') 
    cph_stats = cph.summary 
     
    # Use model vars to name the cox model path 
    table_path = f'{path}/CPH_{model_name}' 
     
    if weight_col: 
        table_path += f'_{weight_col}' 
         
    if strata: 
        table_path += f'_{strata}' 
         
    table_path += f'{exp}_{title}.xlsx' 
     
    # Write out the data 
    st_writer = pd.ExcelWriter(table_path, engine = 'xlsxwriter') 
     
    sheet_name = 'cph_stats_table' 
    cph_summary.to_excel(st_writer, sheet_name = sheet_name, startrow = 0, index = False, 
header = False) 
     
    stats_start_row = cph_summary.shape[0] + 2 # one for header displacing index, other for 
space btn tables 
    cph_stats.to_excel(st_writer, sheet_name = sheet_name, startrow = stats_start_row) 



 

 649 

     
    st_writer.save() 
    st_writer.close() 
 
def annual_cox_model(demo, model_name, test_params, exp, formula = None): 
    """ 
    This is a stripped down version of cox_model that will allow me to get HR for each year 
    as opposed to overall study. 
    """ 
    demo = demo.copy() 
    pheno_1 = exp.split('_')[0] # This should always be CRE or CNS 
    pheno_2 = exp.split('_')[-1] # This should always be CSE  
     
    duration_col = test_params['duration_col'] 
    event_col = test_params['event_col'] 
    hr_cols = ['exp(coef)', 'exp(coef) lower 95%', 'exp(coef) upper 95%'] 
     
#     demo[event_col] = demo[event_col].map({1:True, 0:False}) 
     
    if formula is None: 
            formula = f'{pheno_1}_GROUP_V2' 
             
    collect_hr_tables = [] 
    for year in sorted(demo['ADMT_DT_YEAR'].unique()): 
        subset = demo.loc[demo['ADMT_DT_YEAR'] == year] 
        try: 
            cph = CoxPHFitter() 
            cph.fit( 
                    df = subset, 
                    duration_col = duration_col, 
                    event_col = event_col, 
                    formula = formula 
                ) 
             
            hr_table = cph.summary[hr_cols] 
            hr_table.index = [year] 
        except TypeError: 
            print(f'    There are likely missing outcomes in {pheno_1} for {year} in model: 
{model_name}') 
            hr_table = pd.DataFrame(index = [year], data = {col:np.nan for col in hr_cols}) 
        finally: 
            collect_hr_tables.append(hr_table) 
    annual_hr_tables = pd.concat(collect_hr_tables, sort = False) 
    return annual_hr_tables 
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def calculate_effect_measures_model(df, hr_table, exp, path, title, to_save = False, weighted = 
False): 
    """ 
    Calculate the RR and 95% CI using Poisson Regression instead of with contingency tables. 
Also report out the HR calculated from 
    CPH models. This also gives the option of doing weighted analysis, which in this context will 
always be IPTW on PS. Therefore, the 
    weight used will alwayb be IPTW_STABLE 
    """ 
     
    if to_save == True: 
        outcomes = ['14D_MORTALITY', '30D_MORTALITY', '60D_MORTALITY', 
'90D_MORTALITY', 'OVERALL_MORTALITY'] 
        durations = ['14D_DURATION', '30D_DURATION', '60D_DURATION', '90D_DURATION', 
'POST_INDEX_LOS'] 
        model_names = ['14_DAY_MORTALITY', '30_DAY_MORTALITY', '60_DAY_MORTALITY', 
'90_DAY_MORTALITY', 'OVERALL_MORTALITY'] 
        pheno_1 = exp.split('_')[0] # This should always be CRE or CNS 
        pheno_2 = exp.split('_')[-1] # This should always be CSE 
        exposure = f'{pheno_1}_GROUP_V2' 
         
        collect_mortality_stats = [] 
        for outcome, duration, model_name in zip(outcomes, durations, model_names): 
            subset = df[['ID_combined', exposure, outcome, 'IPTW_STABLE']] 
            subset[outcome] = subset[outcome].astype(int) 
            formula = f'Q("{outcome}") ~ {exposure}' 
            # Model the RR using Poisson Regression 
            if weighted == False: 
                # For more details of this method, see Hernans What IF Chap 12 Python code 
                p_model = smf.glm( 
                    formula = formula,  
                    data = subset,  
                    family = sm.families.NegativeBinomial() 
                ).fit() 
            else: 
                p_model = smf.gee( 
                    formula = formula, 
                    data = subset, 
                    groups = 'ID_combined', 
                    weights = subset['IPTW_STABLE'], 
                    family = sm.families.NegativeBinomial() 
                ).fit() 
                 
            rr = p_model.params.loc[exposure] 
            ci_ll, ci_ul = p_model.conf_int().loc[exposure] 
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            RR = f'{round(np.exp(rr), 2)} [{round(np.exp(ci_ll), 2)}, {round(np.exp(ci_ul), 2)}]' 
             
            # Extract HR info from the HR table output 
            hr = round(hr_table.loc[model_name, 'exp(coef)'], 2) 
            lower = round(hr_table.loc[model_name, 'exp(coef) lower 95%'], 2) 
            upper = round(hr_table.loc[model_name, 'exp(coef) upper 95%'], 2) 
            HR = f'{hr} [{lower}, {upper}]' 
             
            # Prepare dictionary of vars to be compiled into pd.DataFrame 
            stats = { 
                'RR [95% CI]':RR, 
                'HR [95% CI]':HR, 
            } 
             
            mortality_stats = pd.DataFrame(index = [model_name], data = stats) 
            collect_mortality_stats.append(mortality_stats) 
        effect_measures_table = pd.concat(collect_mortality_stats) 
         
        if weighted == True: 
            save_path = 
f'{path}/IPTW_STABLE_ADJ_EFFECT_MEASURES_POISSON_{exp}_{title}.csv' 
        else: 
            save_path = f'{path}/UNADJ_EFFECT_MEASURES_POISSON_{exp}_{title}.csv' 
             
        effect_measures_table.to_csv(save_path) 
 
def cox_model_plot(hr_table, exp, path, title, to_show = False, to_save = False): 
    xy_label_settings = { 
        'fontfamily':'Arial', 
        'fontsize':14, 
        'fontweight':'bold', 
        'color':'black' 
    } 
 
    errorbar_settings = { 
        'fmt':'s', 
        'markersize':20, 
        'c':'k', 
        'capsize':10, 
        'elinewidth':2, 
        'capthick':2 
    } 
 
    title_settings = xy_label_settings.copy() 
    title_settings['fontsize'] = 20 
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    pheno_1 = exp.split('_')[0] # This should always be CRE or CNS 
    pheno_2 = exp.split('_')[-1] # This should always be CSE  
 
    fig, ax = plt.subplots(figsize = (12, 5)) 
 
    x = hr_table['exp(coef)'].to_numpy() 
 
    # First clean labels, then create a number of ticks equal to the num of labels 
    y_labels = hr_table.index.to_list() 
    y_labels = [re.sub('_M', '\nM', outcome) for outcome in y_labels] 
    y_labels = [re.sub('_', ' ', outcome) for outcome in y_labels] 
    y = np.array(list(range(len(y_labels)))) + 1 
 
    ci_lower = hr_table['exp(coef) lower 95%'].to_numpy() 
    ci_upper = hr_table['exp(coef) upper 95%'].to_numpy() 
    # the values given to xerr are the lengths of the error bars, not coordinates 
    # get abs diff from x value to get appropriate len 
    xerr = np.vstack([ci_lower, ci_upper]) 
    xerr = np.abs(xerr - x) 
 
    ax.errorbar(x, y, xerr = xerr, **errorbar_settings) 
    ax.set_title(f'Hazard Ratios of Mortality in {pheno_1} vs. {pheno_2}', **title_settings) 
 
    # Y axis 
    ax.set_yticks(y) 
    ax.set_yticklabels([label for label in y_labels], **xy_label_settings) 
    ax.axvline(1, c = 'k', linestyle = '--') 
    ax.set_ylim(y[0] * 0.75, y[-1] + y[0] * 0.25) 
 
    # X axis 
    ticks = ax.get_xticks() 
    ax.set_xticks(ticks) # must set the ticks before setting xticklabels or get annoying warning 
    ax.set_xticklabels([round(val, 1) for val in ticks], **xy_label_settings) 
    ax.set_xlabel('HR [95% CI]', **xy_label_settings) 
 

    plt.tight_layout() 
     
    if to_save == True: 
        figure_path = f'{path}/MORTALITY_HR_PLOT_{exp}_{title}.jpeg' 
        plt.savefig(figure_path) 
         
    if to_show == True: 
        plt.show() 
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    plt.clf() 
 
def km_model( 
    demo, 
    model_name, 
    test_params, 
    exp, 
    path, 
    title, 
    to_show = False, 
    to_save_events = False, 
    to_save_KM = False 
): 
    pheno_1 = exp.split('_')[0] # This should always be CRE or CNS 
    pheno_2 = exp.split('_')[-1] # This should always be CSE  
     
    duration_col = test_params['duration_col'] 
    event_col = test_params['event_col'] 
     
    xy_label_settings = { 
        'fontfamily':'Arial', 
        'fontsize':18, 
        'fontweight':'bold', 
        'color':'black' 
    } 
 
    xy_tick_settings = { 
            'fontfamily':'Arial', 
            'fontsize':14, 
            'fontweight':'bold', 
            'color':'black' 
    } 
 
    title_settings = { 
            'family':'Arial', 
            'fontsize':24, 
            'fontweight':'bold', 
            'color':'black' 
    } 
 
    legend_settings = { 
            'family':'Arial', 
            'size':14, 
            'weight':'bold', 
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    } 
     
    fig, ax = plt.subplots(figsize = (15, 9)) 
    med_surv = {} 
    for color, pheno, pheno_label in zip(['orangered', 'dodgerblue'], [0, 1], [pheno_2, pheno_1]): 
        subset = demo_w_ps.loc[demo_w_ps[f'{pheno_1}_GROUP_V2'] == pheno].copy() 
        # I want the event table to have a row at official T0 where noone has died 
        # changing the time to 0.01 ensures that for all intents and purposes, the patients were  
        # censored/had event at T0 
        subset.loc[:, duration_col] = subset[duration_col].replace(0, 0.01) 
        kmf = KaplanMeierFitter() 
        kmf.fit( 
            subset[duration_col], 
            event_observed = subset[event_col] 
        ) 
         
        if to_show == True or to_save_KM == True: 
            kmf.plot(show_censors = True, ax = ax, label = pheno_label) 
 
            # Vertical line at median surv time (if exists) 
            median_survival = kmf.median_survival_time_ 
            lower_ci, upper_ci = median_survival_times(kmf.confidence_interval_).loc[0.5].values 
            axvline_label = f'{pheno_label} Median Survival [95% CI]: {median_survival} [{lower_ci}, 
{upper_ci}]' 
            ax.axvline(median_survival, c = color, label = axvline_label) 
             
            med_surv[pheno_label] = f'{median_survival} [{lower_ci}, {upper_ci}]' 
         
        if to_save_events == True: 
            events = kmf\ 
                        .event_table\ 
                        .reset_index() 
            events = events.rename(columns = {col:col.upper() for col in events.columns}) 
             
            event_path = 
f'{path}/KM_EVENT_TABLES/{pheno_label}_{model_name}_KM_events_{exp}_{title}.csv' 
            events.to_csv(event_path) 
         
    if to_show == True or to_save_KM == True: 
        # y axis 
        ax.set_ylabel('$\hat{S}$(t)', **xy_label_settings) 
 
        ticks = ax.get_yticks() 
        ax.set_yticks(ticks[1:-1]) # must set the ticks before setting xticklabels or get annoying 
warning 
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        ax.set_yticklabels([round(val, 2) for val in ticks[1:-1]], **xy_tick_settings) 
 
        # x axis 
        ax.set_xlabel('Timeline (Days)', **xy_label_settings) 
 
        ticks = ax.get_xticks() 
        ax.set_xticks(ticks[1:-1]) # must set the ticks before setting xticklabels or get annoying 
warning 
        ax.set_xticklabels([round(val, 1) for val in ticks[1:-1]], **xy_tick_settings) 
 
        # title 
        model_name = re.sub('_', ' ', model_name) 
        ax.set_title(f'{model_name} Survival in {pheno_1} vs. {pheno_2}', **title_settings) 
 
        # legend 
#         plt.legend() 
        ax.legend( 
            title = 'Phenotype', 
            prop = legend_settings, 
            title_fontproperties = legend_settings, 
            facecolor = 'white' 
        ) 
 
        plt.tight_layout() 
         
        if to_save_KM == True: 
            event_path = 
f'{path}/{pheno_1}_v_{pheno_2}_{model_name}_KM_CURVE_{exp}_{title}.jpeg' 
            plt.savefig(event_path) 
             
        if to_show == True: 
            plt.show() 
     
    plt.clf() 
    plt.close(fig) 
     
    # Calculate the Log rank test of the KM curve 
    log_rank_df = perform_log_rank( 
                    demo = demo, 
                    duration = duration_col, 
                    outcome = event_col, 
                    pheno_1 = pheno_1 
                ) 
    return log_rank_df, med_surv 
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def perform_log_rank(demo, duration, outcome, pheno_1): 
    exp_0 = demo.loc[demo[f'{pheno_1}_GROUP_V2'] == 0] 
    exp_1 = demo.loc[demo[f'{pheno_1}_GROUP_V2'] == 1] 
     
    log_rank_df = logrank_test(exp_1[duration], exp_0[duration], exp_1[outcome], 
exp_0[outcome]).summary 
    log_rank_df.loc[:, 'DURATION'] = duration 
    log_rank_df.loc[:, 'OUTCOME'] = outcome 
    log_rank_df = log_rank_df.set_index('DURATION') 
     
    return log_rank_df 
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Primary_Analysis.ipynb 

import pandas as pd 
import numpy as np 
import os 
import re 
import datetime as dt 
from IPython.display import display 
 
from scipy.stats import ttest_ind, chi2_contingency, fisher_exact, mannwhitneyu 
 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
# PS Score calculation 
import statsmodels.formula.api as smf 
import statsmodels.api as sm 
 
# Survival analysis 
from lifelines import CoxPHFitter 
from lifelines import KaplanMeierFitter 
from lifelines.statistics import proportional_hazard_test 
from lifelines.utils import median_survival_times 
from lifelines.statistics import logrank_test 
 
# Wasn't able to find R_HOME before and was causing an error 
# This points directly to where R.home() call in r tells me to 
os.environ['R_HOME'] = r"/Library/Frameworks/R.framework/Resources" 
from rpy2.robjects.packages import importr 
import rpy2.robjects as ro 
from rpy2.robjects import pandas2ri 
from rpy2.robjects.conversion import localconverter 
 
r_stats = importr('stats') 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
pd.set_option('mode.chained_assignment', None) 
 
home_folder_path = os.getcwd() 
 
batt_aggr_path = r'{}/analysis_species_batt_aggr_per_phenotype.csv'.format(home_folder_path) 
batt_aggr = pd.read_csv(batt_aggr_path) 
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icd_inf_type_path = r'{}/icd_inf_type_agreement_boolean.csv'.format(home_folder_path) 
icd_inf_type = pd.read_csv(icd_inf_type_path) 
 
non_study_isolate_path = r'{}/logic_df_non-study_isolates.csv'.format(home_folder_path) 
non_study_logic = pd.read_csv(non_study_isolate_path) 
 
index_path = r'{}/micro_index_cultures_post_exclusions.csv'.format(home_folder_path) 
index = pd.read_csv(index_path) 
 
non_study_path = 
r'{}/non_study_isolate_cultures_post_exclusions.csv'.format(home_folder_path) 
non_study = pd.read_csv(non_study_path) 
 
demo_path = r'{}/index_cultures_demographics_post_exclusions.csv'.format(home_folder_path) 
demo = pd.read_csv(demo_path) 
 
# Combine all discriminatory columns into a single df for ease of access 
all_bool = batt_aggr\ 
            .merge(icd_inf_type, how = 'left', on = [col for col in icd_inf_type.columns if col in 
batt_aggr.columns])\ 
            .merge(non_study_logic, how = 'left', on = [col for col in non_study_logic.columns if col in 
batt_aggr.columns])\ 
            .fillna(False) 
 
# Create index, non_study concat for testing 
cols = [ 
    'ID_combined', 
    'CRE_GROUP_V2', 
    'CNS_GROUP_V2', 
    'ADMT_DT', 
    'NEW_MODIFIED_DISCHRG_DT', 
    'EARLIEST_STUDY_CULTURE', 
    'CDATE_DT', 
    'BATT_AGGR', 
    'SPECIES', 
    'ACC', 
    'SOURCE', 
    'Carbapenem_resistent', 
    'Carbapenem_non_susceptible', 
    'LOC', 
    'LOC_type' 
] 
 
merge_index = pd.concat([index[cols], non_study[[col for col in cols if col in non_study.columns]]], 
sort = False).fillna('MISSING') 
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for col in ['ADMT_DT', 'NEW_MODIFIED_DISCHRG_DT', 'EARLIEST_STUDY_CULTURE', 
'EARLIEST_NON_STUDY_CULTURE']: 
    index[col] = pd.to_datetime(index[col]) 
    demo[col] = pd.to_datetime(demo[col]) 
    non_study[col] = pd.to_datetime(non_study[col]) 
     
index['CDATE'] = pd.to_datetime(index['CDATE']) 
 
pt_sel_dict = { 
     
# ------------------------------------------------------Monomicrobial Assumptions-----------------------------------
-------------------     
    'Monomicrobial_study_isolates_ICD_agreement_forced':{ 
        'Monomicrobial':True, 
        'Non-study_isolates':False, 
        'Agreement':True, 
    }, 
     
    'Monomicrobial_study_isolates_ICD_agreement_unforced':{ 
        'Monomicrobial':True, 
        'Non-study_isolates':False, 
        'Agreement':False, 
    }, 
# ------------------------------------------------------Monomicrobial/Polymicrobial W Non-study 
Assumptions------------------------------------------------------     
    'Mono_Polymicrobial_study_isolates_ICD_agreement_forced':{ 
        'Monomicrobial':False, 
        'Non-study_isolates':False, 
        'Agreement':True, 
    }, 
     
    'Mono_Polymicrobial_study_isolates_ICD_agreement_unforced':{ 
        'Monomicrobial':False, 
        'Non-study_isolates':False, 
        'Agreement':False, 
    }, 
# ------------------------------------------------------Monomicrobial/Polymicrobial No Non-study 
Assumptions------------------------------------------------------      
    'Mono_Polymicrobial_all_isolates_ICD_agreement_forced':{ 
        'Monomicrobial':False, 
        'Non-study_isolates':True, 
        'Agreement':True, 
    }, 
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    'Mono_Polymicrobial_all_isolates_ICD_agreement_unforced':{ 
        'Monomicrobial':False, 
        'Non-study_isolates':True, 
        'Agreement':False, 
    } 
} 
 
# ------------------------------------------------------Combine Agreement cols---------------------------------------
--------------- 
 
# ------------------------------------------------------ At Index ------------------------------------------------------ 
cre_cse_agreement_cols_index = [col for col in all_bool.columns if\ 
                         
re.search('AGREE_INDEX_.+_CR_CRE_POSITIVE|AGREE_INDEX_.+_CSE_POSITIVE', col)] 
 
cns_cse_agreement_cols_index = [col for col in all_bool.columns if\ 
                          
re.search('AGREE_INDEX_.+_CNS_CNS_POSITIVE|AGREE_INDEX_.+_CSE_POSITIVE', col)] 
 
exp_agreement_cols_dict_index = { 
    'CRE_V_CSE':cre_cse_agreement_cols_index, 
    'CNS_V_CSE':cns_cse_agreement_cols_index 
} 
 
# ------------------------------------------------------ Overall ------------------------------------------------------ 
 
cre_cse_agreement_cols_overall = [col for col in all_bool.columns if\ 
                         re.search('AGREE_.+_CR_CRE_POSITIVE|AGREE_.+_CSE_POSITIVE', col) 
and\ 
                               not re.search('INDEX', col)] 
 
cns_cse_agreement_cols_overall = [col for col in all_bool.columns if\ 
                          re.search('AGREE_.+_CNS_CNS_POSITIVE|AGREE_.+_CSE_POSITIVE', col) 
and\ 
                               not re.search('INDEX', col)] 
 
exp_agreement_cols_dict_overall = { 
    'CRE_V_CSE':cre_cse_agreement_cols_overall, 
    'CNS_V_CSE':cns_cse_agreement_cols_overall 
} 
 
# ------------------------------------------------------Define Model Parameters---------------------------------------
--------------- 
# Establish test parameters for unadj Cox PH model 
unadj_cph_test_params = { 
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    '14_DAY_MORTALITY':{ 
        'duration_col':'14D_DURATION', 
        'event_col':'14D_MORTALITY', 
        'strata':'YEAR_STRATA', 
    }, 
     
    '30_DAY_MORTALITY':{ 
        'duration_col':'30D_DURATION', 
        'event_col':'30D_MORTALITY', 
        'strata':'YEAR_STRATA', 
    }, 
     
    '60_DAY_MORTALITY':{ 
        'duration_col':'60D_DURATION', 
        'event_col':'60D_MORTALITY', 
        'strata':'YEAR_STRATA', 
    }, 
     
    '90_DAY_MORTALITY':{ 
        'duration_col':'90D_DURATION', 
        'event_col':'90D_MORTALITY', 
        'strata':'YEAR_STRATA', 
    }, 
     
    'OVERALL_MORTALITY':{ 
        'duration_col':'POST_INDEX_LOS', 
        'event_col':'OVERALL_MORTALITY', 
        'strata':'YEAR_STRATA', 
    } 
} 
 
bkpts_path = f'{home_folder_path}/CLSI ENTERO.csv' 
bkpts = pd.read_csv(bkpts_path, index_col = 'abx') 
 
# Main Experiment 
# initialize all the functions up till now 
%run Primary_Analysis_Functions.ipynb 
 
experiments = ['CRE_V_CSE', 'CNS_V_CSE'] 
collect_med_surv = [] 
for exp in experiments: 
    exp_path = f'Primary_Analysis_Output/{exp}' 
    if not os.path.exists(exp_path): 
        os.mkdir(exp_path) 
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    for title, assumptions in pt_sel_dict.items(): 
        path = f'{exp_path}/{title}' 
        if not os.path.exists(path): 
            os.mkdir(path) 
#         if title != 'Monomicrobial_study_isolates_ICD_agreement_forced': 
#             continue 
        print(f"Exp: {exp}, Title: {title}, Flags: {assumptions}") 
        # This will assess all of the (7) assumptions currently in the pt_set_dict for both exps listed 
        # First need to adjust the data 
        print('> Starting adjust_pt_data') 
        adjusted_index, adjusted_demo = adjust_pt_data( 
                                            assumptions = assumptions, 
                                            exp_dict = exp_agreement_cols_dict_index, 
                                            exp = exp, 
                                            all_bool = all_bool, 
                                            index = index, 
                                            demo = demo 
                                        ) 
        print('> Starting prepare_baseline_data') 
        demo_stats_t, demo_ps, adjusted_index, demo_map = prepare_baseline_data( 
                                                            demo = adjusted_demo, 
                                                            index = adjusted_index, 
                                                            exp = exp, 
                                                            path = path, 
                                                            title = title, 
                                                            to_save = True 
                                                        ) 
         
        micro_path = f'{path}/MICRO_ANALYSIS' 
        if not os.path.exists(micro_path): 
            os.mkdir(micro_path) 
         
        print('> Starting baseline_micro_analysis') 
        pt_index_inf_type = baseline_micro_analysis( 
                                df = adjusted_index, 
                                exp_dict_index = exp_agreement_cols_dict_index, 
                                exp_dict_overall = exp_agreement_cols_dict_overall, 
                                all_bool = all_bool, 
                                assumptions = assumptions, 
                                bkpts = bkpts, 
                                exp = exp, 
                                path = micro_path, 
                                title = title, 
                                to_write = True 
                            ) 
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        print('> Starting add_inf_type_demo') 
        demo_ps, demo_stats_t = add_inf_type_demo( 
                                    demo_1 = demo_ps, 
                                    demo_2 = demo_stats_t, 
                                    inf_types = pt_index_inf_type 
                                ) 
         
        # Will be helpful to save out demo_ps and demo_stats_t following the addition of index inf 
type 
        demo_ps_path = f'{path}/DEMO_PS_POST_BASELINE_DATA_{exp}_{title}.csv' 
        demo_stats_t_path = f'{path}/DEMO_STATS_T_POST_BASELINE_DATA_{exp}_{title}.csv' 
        for dataframe, dataframe_path in zip([demo_ps, demo_stats_t],[demo_ps_path, 
demo_stats_t_path]): 
            dataframe.to_csv(dataframe_path, index = False) 
         
        continuous_var = { 
            'AGE':'Parametric', 
            'CCI_SCORE':'Non-parametric', 
            'SOFA_ON_EARLIEST_CDATE':'Non-parametric', 
            'PRE_INDEX_LOS':'Non-parametric' 
        } 
         
        print('> Starting baseline_stats_table') 
        baseline_stats_table( 
            df = demo_stats_t, 
            exp = exp, 
            path = path, 
            title = title, 
            continuous_var = continuous_var, 
            to_save = True, 
            to_show = False 
        ) 
         
        print('> Starting create_ps_weights') 
        demo_w_ps = create_ps_weights( 
                        df = demo_ps, 
                        demo_map = demo_map, 
                        assumptions = assumptions, 
                        exp = exp, 
                        path = path, 
                        title = title, 
                        write_st = True 
                    ) 
        demo_w_ps_path = f'{path}/DEMO_W_PS_IPTW_{exp}_{title}.csv' 
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        demo_w_ps.to_csv(demo_w_ps_path, index = False) 
         
        print('> Starting plot_propensity_scores') 
        plot_propensity_scores( 
            df = demo_w_ps, 
            exp = exp, 
            path = path, 
            title = title, 
            to_save = True, 
            to_show = False 
        ) 
 
        # Start the Cox Proportional Hazards Tests and Kaplan Meier 
        cox_path = f'{path}/CPH_MODELS' 
        if not os.path.exists(cox_path): 
            os.mkdir(cox_path) 
             
        ph_test_path = f'{cox_path}/PH_TESTS' 
        if not os.path.exists(ph_test_path): 
            os.mkdir(ph_test_path) 
 
        km_path = f'{path}/KM_MODELS' 
        if not os.path.exists(km_path): 
            os.mkdir(km_path) 
             
        km_events_path = f'{km_path}/KM_EVENT_TABLES' 
        if not os.path.exists(km_events_path): 
            os.mkdir(km_events_path) 
 
        # Collect summaries from all mortality measures 
        collect_hr_tables = [] 
        collect_weighted_hr_tables = [] 
#         annual_hr_tables_dict = {} 
        collect_log_rank = [] 
        med_surv_dict = {} 
        print('> Starting Cox/KM model building') 
        for model, params in unadj_cph_test_params.items(): 
            hr_table = cox_model( 
                            demo = demo_w_ps, 
                            model_name = model, 
                            test_params = params, 
                            exp = exp, 
                            path = cox_path, 
                            title = title, 
                            to_show = False, 
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                            to_save = True 
                        ) 
            collect_hr_tables.append(hr_table) 
             
            weighted_hr_table = cox_model( 
                            demo = demo_w_ps, 
                            model_name = model, 
                            test_params = params, 
                            exp = exp, 
                            path = cox_path, 
                            title = title, 
                            weighted = True, 
                            to_show = False, 
                            to_save = True 
                        ) 
            collect_weighted_hr_tables.append(weighted_hr_table) 
             
#             annual_hr_table = annual_cox_model( 
#                                 demo = demo_w_ps, 
#                                 model_name = model, 
#                                 test_params = params, 
#                                 exp = exp, 
#                                 formula = None 
#                             ) 
#             annual_hr_tables_dict[model] = annual_hr_table 
             
            log_rank_df, med_surv = km_model( 
                                        demo = demo_w_ps, 
                                        model_name = model, 
                                        test_params = params, 
                                        exp = exp, 
                                        path = km_path, 
                                        title = title, 
                                        to_show = False, 
                                        to_save_events = True, 
                                        to_save_KM = True 
                                    ) 
            collect_log_rank.append(log_rank_df) 
            med_surv_dict[model] = med_surv 
 
        overall_hr_table = pd.concat(collect_hr_tables, sort = False) 
        overall_weighted_hr_table = pd.concat(collect_weighted_hr_tables, sort = False) 
        overall_log_rank = pd.concat(collect_log_rank, sort = False) 
 
        em_path = f'{path}/EFFECT_MEASURES' 
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        if not os.path.exists(em_path): 
            os.mkdir(em_path) 
             
        # Effect measure calculations 
        # This is old because I am no longer calculating RR by hand 
        # calculate_effect_measures( 
        #     df = demo_w_ps, 
        #     hr_table = overall_hr_table, 
        #     log_rank_table = overall_log_rank, 
        #     exp = exp, 
        #     path = em_path, 
        #     title = title, 
        #     to_save = True 
        # ) 
         
        em_model_path = f'{path}/EFFECT_MEASURES_MODEL' 
        if not os.path.exists(em_model_path): 
            os.mkdir(em_model_path) 
         
        # UNADJUSTED ANALYSIS 
        calculate_effect_measures_model( 
            df = demo_w_ps, 
            hr_table = overall_hr_table, 
            exp = exp, 
            path = em_model_path, 
            title = title, 
            to_save = True 
        ) 
         
        # IPTW_STABLE ADJUSTED ANALYSIS 
        calculate_effect_measures_model( 
            df = demo_w_ps, 
            hr_table = overall_weighted_hr_table, 
            exp = exp, 
            path = em_model_path, 
            title = title, 
            to_save = True, 
            weighted = True 
        ) 
         
        # Grouped Effect measure calculations 
#         calculate_effect_measures_by_group( 
#             df = demo_w_ps, 
#             group_var = 'ADMT_DT_YEAR', 
#             hr_tables = annual_hr_tables_dict, 
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#             exp = exp, 
#             path = em_path, 
#             title = title, 
#             to_save = True 
#         ) 
 
        # Create plot of all HR 
        # Will instead write these out later with publication formatting when 
        # the IPTW curves are also written 
#         cox_model_plot( 
#             hr_table = overall_hr_table, 
#             exp = exp, 
#             path = cox_path, 
#             title = title, 
#             to_show = False, 
#             to_save = True 
#         ) 
         
        # Handle med_surv 
        final_med_surv_dict = med_surv_dict['OVERALL_MORTALITY'] 
        idx = pd.MultiIndex.from_tuples([(title, exp)], names = ['ASSUMPTIONS', 'EXP']) 
        final_med_surv = pd.DataFrame(index = idx, data = final_med_surv_dict) 
        final_med_surv = final_med_surv.rename(columns = {'CRE':'CRE_CNS', 
'CNS':'CRE_CNS'}) 
        collect_med_surv.append(final_med_surv) 
         
        print('\n') 
         
# Need to save collect_med_surv 
med_surv_out = pd.concat(collect_med_surv, sort = False) 
med_surv_out.to_csv(f'Primary_Analysis_Output/MED_SURV_TABLE.csv') 
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Combined_Sensitivity_Analysis_Reports_Functions.ipynb 

def get_exp_and_titles(home_path, target_path): 
    try: 
        os.chdir(target_path) 
        exps = [exp for exp in os.listdir() if re.search('CSE', exp)] 
 
        cns_v_cse_path = f'{target_path}/{exps[0]}' 
 
        os.chdir(cns_v_cse_path) 
        assumptions = [assumption for assumption in os.listdir() if not re.search('DS_Store', 
assumption)] 
 
        # Return to the top 
        os.chdir(home_path) 
         
        return exps, assumptions 
     
    finally: 
        # Return to the top 
        os.chdir(home_path) 
 
def parse_assumptions(assumption): 
    index_map = { 
        'Mono_Polymicrobial_all_isolates_ICD_agreement_forced':{ 
            'Mono': False, 
            'Study': False, 
            'ICD': True 
        }, 
        'Mono_Polymicrobial_all_isolates_ICD_agreement_unforced':{ 
            'Mono': False, 
            'Study': False, 
            'ICD': False 
        }, 
        'Mono_Polymicrobial_study_isolates_ICD_agreement_forced':{ 
            'Mono': False, 
            'Study': True, 
            'ICD': True 
        }, 
        'Mono_Polymicrobial_study_isolates_ICD_agreement_unforced':{ 
            'Mono': False, 
            'Study': True, 
            'ICD': False 
        }, 
        'Monomicrobial_study_isolates_ICD_agreement_forced':{ 
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            'Mono': True, 
            'Study': True, 
            'ICD': True 
        }, 
        'Monomicrobial_study_isolates_ICD_agreement_unforced':{ 
            'Mono': True, 
            'Study': True, 
            'ICD': False 
        } 
    } 
     
    return index_map.get(assumption) 
 
def extract_susc_data_path(path, assumption, exp, shape, index, to_unstack): 
    assumption_dict = parse_assumptions(assumption) 
    icd_assumption = assumption_dict.get('ICD') 
    #path_dict[shape][to_unstack][index][icd_assumption] 
    path_dict = { # Asks the value of ICD assumption 
        '2d':{ 
            'SPECIES':{ 
                True:{ 
                   
True:f'{path}/INDEX_GM_CULTURES_W_AGREEMENT/AT_INDEX_SPECIES_V_BATT_NUM_
PTS_{exp}_{assumption}.csv', 
                   
False:f'{path}/ALL_GM_INDEX_CULTURES/INDEX_SPECIES_V_BATT_NUM_PTS_NO_ICD_{
exp}_{assumption}.csv' 
                }, 
                False:{ 
                    
True:f'{path}/ALL_GM_CULTURES_W_AGREEMENT/OVERALL_SPECIES_V_BATT_NUM_PT
S_W_AGREEMENT_{exp}_{assumption}.csv', 
                    
False:f'{path}/ALL_GM_CULTURES/OVERALL_SPECIES_V_BATT_NUM_PTS_{exp}_{assumpti
on}.csv' 
                } 
            }, 
            'SUMMARY':{ 
                True:{ 
                   
True:f'{path}/INDEX_GM_CULTURES_W_AGREEMENT/AT_INDEX_SUSC_SUMMARY_{exp}_{
assumption}.csv', 
                   
False:f'{path}/ALL_GM_INDEX_CULTURES/INDEX_SUSC_SUMMARY_NO_ICD_{exp}_{assum
ption}.csv' 
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                }, 
                False:{ 
                    
True:f'{path}/ALL_GM_CULTURES_W_AGREEMENT/OVERALL_SUSC_SUMMARY_W_AGRE
EMENT_{exp}_{assumption}.csv', 
                    
False:f'{path}/ALL_GM_CULTURES/OVERALL_SUSC_SUMMARY_{exp}_{assumption}.csv' 
                } 
            } 
        }, 
        '3d':{ 
            'SPECIES':{ # will use SPECIES here bc it is default value 
                True:{ 
                    
True:f'{path}/INDEX_GM_CULTURES_W_AGREEMENT/AT_INDEX_BY_SPECIES_SUSC_SU
MMARY_{exp}_{assumption}.csv', 
                    
False:f'{path}/ALL_GM_INDEX_CULTURES/INDEX_BY_SPECIES_SUSC_SUMMARY_NO_ICD
_{exp}_{assumption}.csv' 
                }, 
                False:{ 
                    
True:f'{path}/ALL_GM_CULTURES_W_AGREEMENT/OVERALL_BY_SPECIES_SUSC_SUMM
ARY_W_AGREEMENT_{exp}_{assumption}.csv', 
                    
False:f'{path}/ALL_GM_CULTURES/OVERALL_BY_SPECIES_SUSC_SUMMARY_{exp}_{assu
mption}.csv' 
                } 
            } 
        } 
    } 
     
    return path_dict[shape][to_unstack][index][icd_assumption] 
 
def create_folder(path): 
    if not os.path.exists(path): 
        os.mkdir(path) 
 
def update_dictionary_collector(dict_to_add, collector, exp, shape = '2d'): 
    if shape == '2d': 
        for var, df in dict_to_add.items(): 
            if not var in collector[exp].keys(): 
                collector[exp][var] = [df] 
            else: 
                collector[exp][var].append(df) 
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    elif shape == '3d': 
        for species in ['Enterobacter cloacae', 'Klebsiella pneumoniae']: 
            for var, df in dict_to_add[species].items(): 
                if not var in collector[exp][species].keys(): 
                    collector[exp][species][var] = [df] 
                else: 
                    collector[exp][species][var].append(df) 
             
    return collector 
 
def ensure_safe_sheet(sheetname): 
    sheetname = re.sub(r' \[95% CI\]', '', sheetname) 
    sheetname = re.sub(r'[:*?/\ ]|/[/]', r'_', sheetname) 
    if len(sheetname) >= 31: 
        sheetname = sheetname[:31] 
         
    return sheetname 
 
# Total sample size 
def extract_sample_sizes(df, assumption, sample_size_cols): 
    ss_info = df.columns.to_list() 
    n = [int(re.search('(\d+)', val).group(1)) for val in ss_info if re.search('(\d+)', val)] 
    n_df = pd.DataFrame(index = [assumption], data = {col:val for col, val in zip(sample_size_cols, 
n)}) 
    return n_df 
 
def format_sample_sizes(sample_size_dict, path, to_save = False): 
    collect_dfs = [] 
    for exp, df in sample_size_dict.items(): 
        df = df.dropna(how = 'all') 
        for col in df.columns: 
            df.loc[:, col] = df[col].astype(int) 
         
        new_cols = pd.MultiIndex.from_product([[exp], df.columns]) 
        df.columns = new_cols 
        collect_dfs.append(df) 
    final_df = collect_dfs[0].join(collect_dfs[1]) 
     
    if to_save == True: 
        out_path = f'{path}/Sample_size_table.xlsx' 
        st_writer = pd.ExcelWriter(out_path, engine = 'xlsxwriter') 
        final_df.to_excel(st_writer) 
        st_writer.save() 
        st_writer.close() 
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# Baseline stats extraction 
def extract_baseline_stats(df, assumption): 
    # Prepare df 
    # Because different assumptions can lead to different number of variables included in PS 
model, will 
    # read all of data including footers, then just drop them by removing all nan rows 
    df = df.rename(columns = {'Covariatesa':'Covariates', 'P-valueb':'P-
value'}).set_index('Covariates') 
    missing = df.loc[df.isna().all(axis = 1)].index.to_list() 
    df = df.drop(missing) 
    # Some symbols will not be accepted as Excel sheetnames later on 
    df.index = [re.sub(r'[-:*?/\ ]+|/[/]', r'_', val.strip()) for val in df.index] 
    # Remove the "c" that is added for the footer legend in the original table 
    df.index = [re.sub('Infection_Type_at_Indexc', 'Infection_Type_at_Index', val) for val in df.index] 
     
    # Prepare variables 
     
    ## Grab overall p values 
    categorical_vars = ['Gender', 'Race', 'Admission_Source', 'Infection_Type_at_Indexc'] 
    categorical_pvalues = {} 
    for var in categorical_vars: 
        if var in df.index: 
            categorical_pvalues[var] = df.loc[var, 'P-value'] 
             
    ## Now I need to apply 
    cat_var_map = { 
        'Female':'Gender', 
        'Male':'Gender', 
        'Black_African_American':'Race', 
        'Caucasian':'Race', 
        'Spanish_American':'Race', 
        'Clinic_Physician_office':'Admission_Source', 
        'Hospital_transfer':'Admission_Source', 
        'Nonhealthcare_origin':'Admission_Source', 
        'Other_healthcare_facility':'Admission_Source', 
        'Transfer_from_SNF':'Admission_Source', 
        'Blood':'Infection_Type_at_Index', 
        'Intra_abdominal':'Infection_Type_at_Index', 
        'Respiratory':'Infection_Type_at_Index', 
        'Skin_soft_tissue':'Infection_Type_at_Index', 
        'Urine':'Infection_Type_at_Index' 
    } 
     
    # Iterate through every variable 
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    # Will create a dictionary where every key is the variable name 
    # make the index the name of the assumption 
    extracted_baseline_stats = {} 
    for var in df.index: 
        # Don't need these variables in a table, just the pvalues extracted from the dict 
        if var in categorical_pvalues.keys(): 
            continue 
 
        subset = df\ 
                .loc[[var]]\ 
                .rename(columns = {col:re.sub(r' (.+)', r'', col) for col in df.columns}) 
 
        # Fill in P-value if categorical (from chi square comparing all vars in category) 
        p_value = categorical_pvalues.get(cat_var_map.get(var, var), 'Accounted') 
        if not p_value == 'Accounted': 
            subset.loc[var, 'P-value'] = p_value 
 
        subset.index = [assumption] 
        extracted_baseline_stats[var] = subset 
     
    return extracted_baseline_stats 
 
def format_baseline_stats(baseline_stats_dict, path, to_save = False): 
    file_path = f'{path}/Baseline_stats_tables.xlsx' 
    st_writer = pd.ExcelWriter(file_path, engine = 'xlsxwriter') 
     
    # CRE_V_CSE doesn't include Spanish American as variable under any assumption 
    # CNS_V_CSE does, but can't join if not in both models 
    possible_baseline_vars = baseline_stats_dict['CRE_V_CSE'].keys() 
     
    for var in possible_baseline_vars: 
        collect_dfs = [] 
        for exp in baseline_stats_dict.keys(): 
            # I have a list of 1x5 dfs in each nested dict, so just combine into single df 
            df = pd.concat(baseline_stats_dict[exp][var], sort = False) 
            new_cols = pd.MultiIndex.from_product([[exp], df.columns]) 
            df.columns = new_cols 
            collect_dfs.append(df) 
        final_df = collect_dfs[0].join(collect_dfs[1], how = 'outer') 
         
        if to_save == True: 
            sheetname = ensure_safe_sheet(var) 
            final_df.to_excel(st_writer, sheet_name = sheetname) 
             
    st_writer.save() 
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    st_writer.close() 
 
# Micro comparisons 
# Will not combine the susc analysis bc the values aren't different enough to warrant side by side 
def extract_susc_data(path, assumption, exp, shape = '2d', index = False, to_unstack = 
'SPECIES'): 
    # Need to grab the right file according to the assumptions 
    # Mostly just need to switch on ICD assumption 
        # If true, grab w agreement file 
        # If false, grab file wo ICD agreement enforced 
     
#     if shape == '2d': 
#         if to_unstack == 'SPECIES': 
#             if index == False: 
#                 file_path = 
f'{path}/ALL_GM_CULTURES_W_AGREEMENT/OVERALL_SPECIES_V_BATT_NUM_PTS_W_
AGREEMENT_{exp}_{assumption}.csv' 
#             else: 
#                 file_path = 
f'{path}/INDEX_GM_CULTURES_W_AGREEMENT/AT_INDEX_SPECIES_V_BATT_NUM_PTS
_{exp}_{assumption}.csv' 
 
#         elif to_unstack == 'SUMMARY': 
#             if index == False: 
#                 file_path = 
f'{path}/ALL_GM_CULTURES_W_AGREEMENT/OVERALL_SUSC_SUMMARY_W_AGREEME
NT_{exp}_{assumption}.csv' 
#             else: 
#                 file_path = 
f'{path}/INDEX_GM_CULTURES_W_AGREEMENT/AT_INDEX_SUSC_SUMMARY_{exp}_{assu
mption}.csv' 
                 
#     elif shape == '3d': 
#         if index == False: 
#             file_path = 
f'{path}/ALL_GM_CULTURES_W_AGREEMENT/OVERALL_BY_SPECIES_SUSC_SUMMARY_
W_AGREEMENT_{exp}_{assumption}.csv' 
#         else: 
#             file_path = 
f'{path}/INDEX_GM_CULTURES_W_AGREEMENT/AT_INDEX_BY_SPECIES_SUSC_SUMMA
RY_{exp}_{assumption}.csv' 
 
    file_path = extract_susc_data_path(path, assumption, exp, shape, index, to_unstack) 
             
    # Read data and initial formatting     
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    df = pd.read_csv(file_path) 
    df.loc[:, 'ASSUMPTION'] = assumption 
    df = df.rename(columns = {'CNS_GROUP_V2':'PHENOTYPE', 
'CRE_GROUP_V2':'PHENOTYPE'}) 
    df['PHENOTYPE'] = df['PHENOTYPE'].str.replace('CNS|CRE', 'CNS/CRE', regex = True) 
     
    if shape == '2d': 
        set_index_cols = ['PHENOTYPE', to_unstack, 'ASSUMPTION'] 
        cols_of_interest = [col for col in df.columns if not col in set_index_cols] 
             
        # Collect data 
        collect_dfs_dict = {} 
        for col in cols_of_interest: 
            if to_unstack == 'SUMMARY': 
                n = df['SUMMARY'].str.extract(r'n \(N = (\d+)\)').rename(columns = {0:'N'}) 
                mask = df['SUMMARY'].str.contains('N =') 
                df.loc[mask, col] = df.loc[mask, col].astype(str) + ' (' + n.loc[mask, 'N'].astype(str) + ')' 
                df.loc[mask, 'SUMMARY'] = 'N' 
            subset_cols = set_index_cols + [col] 
            subset = df[subset_cols]\ 
                        .set_index(set_index_cols)\ 
                        .unstack(to_unstack) 
            subset.columns = [col[1] for col in subset.columns] 
            collect_dfs_dict[col] = subset 
             
    elif shape == '3d': 
        set_index_cols = ['PHENOTYPE', 'SUMMARY', 'ASSUMPTION'] 
        species_of_interest = ['Enterobacter cloacae', 'Klebsiella pneumoniae'] 
         
        collect_dfs_dict = {} 
        for species in species_of_interest: 
            collect_dfs_dict[species] = {} 
             
            species_subset = df.loc[df['SPECIES'] == species].copy() 
            species_subset = species_subset.drop('SPECIES', axis = 1) 
            cols_of_interest = [col for col in species_subset.columns if not col in set_index_cols] 
             
            # First add the total sample size to each value 
            n = species_subset['SUMMARY'].str.extract(r'n \(N = (\d+)\)').rename(columns = {0:'N'}) 
            mask = species_subset['SUMMARY'].str.contains('N =') 
            # Then change the row val in Summary with N data to just N for clean stack 
            species_subset.loc[mask, 'SUMMARY'] = 'N' 
            for col in cols_of_interest: 
                # Add the N value to each N col 
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                species_subset.loc[mask, col] = species_subset.loc[mask, col].astype(str) + ' (' + 
n.loc[mask, 'N'].astype(str) + ')' 
                 
                final_subset_cols = set_index_cols + [col] 
                final_subset = species_subset[final_subset_cols]\ 
                    .set_index(set_index_cols)\ 
                    .unstack('SUMMARY') 
                final_subset.columns = [col[1] for col in final_subset.columns] 
                collect_dfs_dict[species][col] = final_subset 
         
    return collect_dfs_dict 
     
def format_susc_data(susc_dict, path, species = None, shape = '2d', index = False, final_col = 
'SPECIES', to_save = False): 
    if shape == '2d': 
        if final_col == 'SPECIES': 
            if index == False: 
                file_path = f'{path}/Overall_species_v_batt_num_pts_table.xlsx' 
            else: 
                file_path = f'{path}/Index_species_v_batt_num_pts_table.xlsx' 
 
        elif final_col == 'SUMMARY': 
            if index == False: 
                file_path = f'{path}/Overall_summary_v_abx_table.xlsx' 
            else: 
                file_path = f'{path}/Index_summary_v_abx_table.xlsx' 
                 
    elif shape == '3d': 
        if index == False: 
            file_path = f'{path}/{species}_Overall_summary_v_abx_v_species_table.xlsx' 
        else: 
            file_path = f'{path}/{species}_Index_summary_v_abx_v_species_table.xlsx' 
         
    st_writer = pd.ExcelWriter(file_path, engine = 'xlsxwriter') 
     
    if shape == '2d': 
        # Both experimental setups use the same abx/batt, so this will be identical either way 
        possible_vars = susc_dict['CRE_V_CSE'] 
        for var in possible_vars: 
            collect_dfs = [] 
            for exp in susc_dict.keys(): 
                df = susc_dict[exp][var] 
                if isinstance(df, list): 
                    df = pd.concat(df, sort = False) 
                else: 
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                    df = df.dropna(how = 'all') 
                    df.loc[:, 'Total'] = df.sum(axis = 1) 
 
                new_cols = pd.MultiIndex.from_product([[exp], df.columns]) 
                df.columns = new_cols 
                collect_dfs.append(df) 
            final_df = collect_dfs[0].join(collect_dfs[1]) 
 
            if to_save == True: 
                sheetname = ensure_safe_sheet(var) 
                final_df.to_excel(st_writer, sheet_name = sheetname) 
                 
    elif shape == '3d': 
        possible_vars = susc_dict['CRE_V_CSE'][species] 
        for var in possible_vars: 
            collect_dfs = [] 
            for exp in susc_dict.keys(): 
                df = susc_dict[exp][species][var] 
                df = pd.concat(df, sort = False) 
 
                new_cols = pd.MultiIndex.from_product([[exp], df.columns]) 
                df.columns = new_cols 
                collect_dfs.append(df) 
            final_df = collect_dfs[0].join(collect_dfs[1]) 
 
            if to_save == True: 
                sheetname = ensure_safe_sheet(var) 
                final_df.to_excel(st_writer, sheet_name = sheetname) 
             
    st_writer.save() 
    st_writer.close() 
 
# Effect measures 
def extract_effect_measures(path, assumption, exp, adj = False): 
    file_path = f'{path}/UNADJ_EFFECT_MEASURES_POISSON_{exp}_{assumption}.csv' 
    if adj == True: 
        file_path = 
f'{path}/IPTW_STABLE_ADJ_EFFECT_MEASURES_POISSON_{exp}_{assumption}.csv' 
    df = pd.read_csv(file_path, index_col = 0) 
     
    collect_ef_measure_by_outcome_dfs = {} 
    for outcome, data in df.iterrows(): 
        data.name = assumption 
        collect_ef_measure_by_outcome_dfs[outcome] = pd.DataFrame(data).T 
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    collect_ef_measure_by_ef_dfs = {} 
    for ef in df.columns: 
        data = df[ef] 
        data.name = assumption 
        collect_ef_measure_by_ef_dfs[ef] = pd.DataFrame(data).T 
         
    return collect_ef_measure_by_outcome_dfs, collect_ef_measure_by_ef_dfs 
 
def format_effect_measures(ef_measures, keys, path, to_save = False, by_sheet = 'outcome', adj 
= False): 
    file_path = f'{path}/UNADJ_Effect_measures_table_by_{by_sheet}.xlsx' 
    if adj == True: 
        file_path = f'{path}/IPTW_STABLE_ADJ_Effect_measures_table_by_{by_sheet}.xlsx' 
    st_writer = pd.ExcelWriter(file_path, engine = 'xlsxwriter') 
     
    for key in keys: 
        collect_dfs = [] 
        for exp in ef_measures.keys(): 
            df = ef_measures[exp][key] 
            df = df.dropna(how = 'all') 
             
            new_cols = pd.MultiIndex.from_product([[exp], df.columns]) 
            df.columns = new_cols 
            collect_dfs.append(df)   
        final_df = collect_dfs[0].join(collect_dfs[1]) 
         
        if to_save == True: 
            sheetname = ensure_safe_sheet(key) 
            final_df.to_excel(st_writer, sheet_name = sheetname) 
         
    st_writer.save() 
    st_writer.close() 
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Combined_Sensitivity_Analysis_Reports.ipynb 

import pandas as pd 
import numpy as np 
import os 
import re 
from IPython.display import display 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
pd.set_option('mode.chained_assignment', None) 
 
home_folder_path = os.getcwd() 
primary_analysis_path = f'{home_folder_path}/Primary_Analysis_Output' 
 
%run Combined_Sensitivity_Analysis_Reports_Functions.ipynb 
 
exps, assumptions = get_exp_and_titles( 
                        home_path = home_folder_path, 
                        target_path = primary_analysis_path 
                    ) 
 
sa_path = f'{home_folder_path}/Combined_Sensitivity_Analysis_Reports_Output' 
micro_path = f'{sa_path}/MICRO_ANALYSIS' 
ef_measure_path = f'{sa_path}/EFFECT_MEASURES_ANALYSIS' 
 
sample_size_cols_dict = { 
    'CNS_V_CSE':['OVERALL', 'CNS', 'CSE'], 
    'CRE_V_CSE':['OVERALL', 'CRE', 'CSE'] 
} 
 
for path in [sa_path, micro_path, ef_measure_path]: 
    create_folder(path) 
 
sample_size_dict = {} 
baseline_stats_dict = {} 
 
overall_species_v_batt_num_pt_dict = {} 
index_species_v_batt_num_pt_dict = {} 
 
overall_summary_v_abx_dict = {} 
index_summary_v_abx_dict = {} 
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overall_summary_v_abx_v_species_dict = {} 
index_summary_v_abx_v_species_dict = {} 
 
adj_ef_measure_by_outcome_dict = {} 
adj_ef_measure_by_ef_dict = {} 
 
unadj_ef_measure_by_outcome_dict = {} 
unadj_ef_measure_by_ef_dict = {} 
for exp in exps: 
    # Sample Size Collectors 
    sample_size_cols = sample_size_cols_dict[exp] 
    sample_size_dict[exp] = pd.DataFrame(index = [0], data = {col:np.nan for col in 
sample_size_cols}) 
     
    # Baseline Stats Collectors 
    baseline_stats_dict[exp] = {} 
     
    # Micro Collectors 
    species = ['Enterobacter aerogenes', 'Enterobacter cloacae', 'Escherichia coli', 'Klebsiella 
oxytoca', 'Klebsiella pneumoniae'] 
    batts = ['Blood', 'Intra-abdominal', 'Respiratory', 'Skin/Soft Tissue', 'Urine'] 
    overall_species_v_batt_num_pt_dict[exp] = {batt:pd.DataFrame(index = [0], data = {col:np.nan 
for col in species}) for batt in batts} 
    index_species_v_batt_num_pt_dict[exp] = {batt:pd.DataFrame(index = [0], data = {col:np.nan 
for col in species}) for batt in batts} 
    overall_summary_v_abx_dict[exp] = {} 
    index_summary_v_abx_dict[exp] = {} 
    overall_summary_v_abx_v_species_dict[exp] = {'Enterobacter cloacae':{}, 'Klebsiella 
pneumoniae':{}} 
    index_summary_v_abx_v_species_dict[exp] = {'Enterobacter cloacae':{}, 'Klebsiella 
pneumoniae':{}} 
     
    # Effect Measures Collectors 
#     ef_cols = ['RR [95% CI]', 'OR [95% CI]', 'IRR [95% CI]', 'HR [95% CI]', 'Log rank P-value'] 
    ef_cols = ['RR [95% CI]', 'HR [95% CI]'] 
    outcomes = ['14_DAY_MORTALITY', '30_DAY_MORTALITY', '60_DAY_MORTALITY', 
'90_DAY_MORTALITY', 'OVERALL_MORTALITY'] 
     
    adj_ef_measure_by_outcome_dict[exp] = {outcome:pd.DataFrame(index = [0], data = 
{col:np.nan for col in ef_cols}) for outcome in outcomes} 
    adj_ef_measure_by_ef_dict[exp] = {ef:pd.DataFrame(index = [0], data = {col:np.nan for col in 
outcomes}) for ef in ef_cols} 
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    unadj_ef_measure_by_outcome_dict[exp] = {outcome:pd.DataFrame(index = [0], data = 
{col:np.nan for col in ef_cols}) for outcome in outcomes} 
    unadj_ef_measure_by_ef_dict[exp] = {ef:pd.DataFrame(index = [0], data = {col:np.nan for col 
in outcomes}) for ef in ef_cols} 
     
    for assumption in sorted(assumptions): 
        analysis_path = f'{primary_analysis_path}/{exp}/{assumption}' 
        baseline_stats_path = f'{analysis_path}/Baseline_stats_table_{exp}_{assumption}.xlsx' 
        primary_analysis_micro_path = f'{analysis_path}/MICRO_ANALYSIS' 
        em_path = f'{analysis_path}/EFFECT_MEASURES_MODEL' 
         
        baseline_stats = pd.read_excel(baseline_stats_path, skiprows = 1) 
         
#         Sample Size Collection 
        sample_size_df = extract_sample_sizes( 
                            df = baseline_stats, 
                            assumption = assumption, 
                            sample_size_cols = sample_size_cols 
                        ) 
        sample_size_dict[exp] = pd.concat([sample_size_dict[exp], sample_size_df], sort = False) 
         
#         Baseline Stats collection 
        extracted_baseline_stats = extract_baseline_stats( 
                                    df = baseline_stats, 
                                    assumption = assumption 
                                ) 
     
        baseline_stats_dict = update_dictionary_collector( 
                                dict_to_add = extracted_baseline_stats, 
                                collector = baseline_stats_dict, 
                                exp = exp 
                            ) 
                 
#         Micro Comparisons Collection 
        # Not creating comparisons between susc bc too similar 
        overall_species_v_batt_dfs = extract_susc_data( 
                                        path = primary_analysis_micro_path, 
                                        assumption = assumption, 
                                        exp = exp, 
                                        shape = '2d', 
                                        index = False, 
                                        to_unstack = 'SPECIES' 
                                    ) 
         
        for batt, df in overall_species_v_batt_dfs.items(): 
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            overall_species_v_batt_num_pt_dict[exp][batt] = pd.concat( 
                                                                [overall_species_v_batt_num_pt_dict[exp][batt], df], 
                                                                sort = False 
                                                            ) 
         
        index_species_v_batt_dfs = extract_susc_data( 
                                        path = primary_analysis_micro_path, 
                                        assumption = assumption, 
                                        exp = exp, 
                                        shape = '2d', 
                                        index = True, 
                                        to_unstack = 'SPECIES' 
                                    ) 
         
        for batt, df in index_species_v_batt_dfs.items(): 
            index_species_v_batt_num_pt_dict[exp][batt] = pd.concat( 
                                                            [index_species_v_batt_num_pt_dict[exp][batt], df], 
                                                            sort = False 
                                                        ) 
         
        # Need to fill in the Susc Summary V ABX for overall and index 
        overall_summary_v_abx_dfs = extract_susc_data( 
                                        path = primary_analysis_micro_path, 
                                        assumption = assumption, 
                                        exp = exp, 
                                        shape = '2d', 
                                        index = False, 
                                        to_unstack = 'SUMMARY' 
                                    ) 
        overall_summary_v_abx_dict = update_dictionary_collector( 
                                        dict_to_add = overall_summary_v_abx_dfs, 
                                        collector = overall_summary_v_abx_dict, 
                                        exp = exp, 
                                        shape = '2d' 
                                    ) 
         
         
        index_summary_v_abx_dfs = extract_susc_data( 
                                        path = primary_analysis_micro_path, 
                                        assumption = assumption, 
                                        exp = exp, 
                                        shape = '2d', 
                                        index = True, 
                                        to_unstack = 'SUMMARY' 
                                    ) 
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        index_summary_v_abx_dict = update_dictionary_collector( 
                                        dict_to_add = index_summary_v_abx_dfs, 
                                        collector = index_summary_v_abx_dict, 
                                        exp = exp, 
                                        shape = '2d' 
                                    ) 
         
        # Now Need to fill in the Susc Summary V ABX V SPECIES for overall and index 
        overall_summary_v_abx_v_species_dfs = extract_susc_data( 
                                        path = primary_analysis_micro_path, 
                                        assumption = assumption, 
                                        exp = exp, 
                                        shape = '3d', 
                                        index = False, 
                                    ) 
        overall_summary_v_abx_v_species_dict = update_dictionary_collector( 
                                        dict_to_add = overall_summary_v_abx_v_species_dfs, 
                                        collector = overall_summary_v_abx_v_species_dict, 
                                        exp = exp, 
                                        shape = '3d' 
                                    ) 
         
         
        index_summary_v_abx_v_species_dfs = extract_susc_data( 
                                        path = primary_analysis_micro_path, 
                                        assumption = assumption, 
                                        exp = exp, 
                                        shape = '3d', 
                                        index = True, 
                                    ) 
        index_summary_v_abx_v_species_dict = update_dictionary_collector( 
                                        dict_to_add = index_summary_v_abx_v_species_dfs, 
                                        collector = index_summary_v_abx_v_species_dict, 
                                        exp = exp, 
                                        shape = '3d' 
                                    ) 
         
#         Effect Measures Collection 
        unadj_ef_measure_by_outcome_dfs, unadj_ef_measure_by_ef_dfs = 
extract_effect_measures( 
                                                            path = em_path, 
                                                            assumption = assumption, 
                                                            exp = exp, 
                                                        ) 
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        adj_ef_measure_by_outcome_dfs, adj_ef_measure_by_ef_dfs = extract_effect_measures( 
                                                            path = em_path, 
                                                            assumption = assumption, 
                                                            exp = exp, 
                                                            adj = True 
                                                        ) 
         
        for outcome, df in unadj_ef_measure_by_outcome_dfs.items(): 
            unadj_ef_measure_by_outcome_dict[exp][outcome] = 
pd.concat([unadj_ef_measure_by_outcome_dict[exp][outcome], df], sort = False) 
         
        for outcome, df in adj_ef_measure_by_outcome_dfs.items(): 
            adj_ef_measure_by_outcome_dict[exp][outcome] = 
pd.concat([adj_ef_measure_by_outcome_dict[exp][outcome], df], sort = False) 
             
        for ef, df in unadj_ef_measure_by_ef_dfs.items(): 
            unadj_ef_measure_by_ef_dict[exp][ef] = 
pd.concat([unadj_ef_measure_by_ef_dict[exp][ef], df], sort = False) 
             
        for ef, df in adj_ef_measure_by_ef_dfs.items(): 
            adj_ef_measure_by_ef_dict[exp][ef] = pd.concat([adj_ef_measure_by_ef_dict[exp][ef], df], 
sort = False) 
         
# Sample Size Format 
format_sample_sizes( 
    sample_size_dict = sample_size_dict, 
    path = sa_path, 
    to_save = True 
) 
 
# Baseline Stats Format 
format_baseline_stats( 
    baseline_stats_dict = baseline_stats_dict, 
    path = sa_path, 
    to_save = True 
) 
 
# Micro Comparisons Format 
## Start with species_v_batt 
format_susc_data( 
    susc_dict = overall_species_v_batt_num_pt_dict, 
    path = micro_path, 
    index = False, 
    shape = '2d', 
    final_col = 'SPECIES', 
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    to_save = True 
) 
             
format_susc_data( 
    susc_dict = index_species_v_batt_num_pt_dict, 
    path = micro_path, 
    shape = '2d', 
    index = True, 
    final_col = 'SPECIES', 
    to_save = True 
) 
 
## Now look at overall/index summary_v_abx 
format_susc_data( 
    susc_dict = overall_summary_v_abx_dict, 
    path = micro_path, 
    shape = '2d', 
    index = False, 
    final_col = 'SUMMARY', 
    to_save = True 
) 
 
format_susc_data( 
    susc_dict = index_summary_v_abx_dict, 
    path = micro_path, 
    shape = '2d', 
    index = True, 
    final_col = 'SUMMARY', 
    to_save = True 
) 
 
## Now look at overall/index summary_v_abx_v_species 
for species in ['Enterobacter cloacae', 'Klebsiella pneumoniae']: 
    format_susc_data( 
        susc_dict = overall_summary_v_abx_v_species_dict, 
        path = micro_path, 
        species = species, 
        shape = '3d', 
        index = False, 
        to_save = True 
    ) 
 
    format_susc_data( 
        susc_dict = index_summary_v_abx_v_species_dict, 
        path = micro_path, 
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        species = species, 
        shape = '3d', 
        index = True, 
        to_save = True 
    ) 
 
# Effect Measures Comparisons Format 
format_effect_measures( 
    ef_measures = unadj_ef_measure_by_outcome_dict, 
    keys = outcomes, 
    path = ef_measure_path, 
    to_save = True, 
    by_sheet = 'outcome' 
) 
 
format_effect_measures( 
    ef_measures = unadj_ef_measure_by_ef_dict, 
    keys = ef_cols, 
    path = ef_measure_path, 
    to_save = True, 
    by_sheet = 'effect_measure' 
) 
 
format_effect_measures( 
    ef_measures = adj_ef_measure_by_outcome_dict, 
    keys = outcomes, 
    path = ef_measure_path, 
    to_save = True, 
    by_sheet = 'outcome', 
    adj = True 
) 
 
format_effect_measures( 
    ef_measures = adj_ef_measure_by_ef_dict, 
    keys = ef_cols, 
    path = ef_measure_path, 
    to_save = True, 
    by_sheet = 'effect_measure', 
    adj = True 
) 
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SUSC_ANALYSIS.ipynb 

import pandas as pd 
import numpy as np 
import os 
import re 
from IPython.display import display 
 
import matplotlib.pyplot as plt 
import matplotlib as mpl 
import seaborn as sns 
from matplotlib.ticker import FixedFormatter 
import matplotlib.gridspec as gridspec 
from matplotlib.font_manager import FontProperties 
 
pd.set_option('display.max_rows', 500) 
pd.set_option('display.max_columns',200) 
pd.set_option('max_colwidth', None) 
 
home_folder_path = os.getcwd() 
figure_folder_path = 'PUBLICATION_FIGURES' 
main_analysis_path = 
r'Primary_Analysis_Output/CRE_V_CSE/Mono_Polymicrobial_all_isolates_ICD_agreement_forc
ed' 
susc_path = 
f'{main_analysis_path}/MICRO_ANALYSIS/INDEX_GM_CULTURES_W_AGREEMENT/AT_IND
EX_GROUP_MATCHED_CULTURES_WITH_AGREEMENT_CRE_V_CSE_Mono_Polymicrobial
_all_isolates_ICD_agreement_forced.csv' 
demo_path = 
f'{main_analysis_path}/DEMO_PS_POST_BASELINE_DATA_CRE_V_CSE_Mono_Polymicrobial
_all_isolates_ICD_agreement_forced.csv' 
susc = pd.read_csv(susc_path) 
demo = pd.read_csv(demo_path) 
 
for col in ['CDATE', 'CDATE_DT', 'EARLIEST_STUDY_CULTURE', 
'EARLIEST_CULTURE_OVERALL', 'ADMT_DT', 'FINAL_DISCHRG_DT']: 
    susc[col] = pd.to_datetime(susc[col]) 
 
for col in ['ADMT_DT', 'FINAL_DISCHRG_DT', 'EARLIEST_STUDY_CULTURE', 
'14D_FOLLOW_UP', '30D_FOLLOW_UP', '60D_FOLLOW_UP', '90D_FOLLOW_UP']: 
    demo[col] = pd.to_datetime(demo[col]) 
     
bkpts_path = f'{home_folder_path}/CLSI ENTERO.csv' 
bkpts = pd.read_csv(bkpts_path, index_col = 'abx') 
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# Add in the mortality outcomes to analyze the MICs of patients who had event/didn't have event 
susc = susc.merge(demo[['ID_combined', '14D_MORTALITY', '30D_MORTALITY']], how = 'inner', 
on = 'ID_combined') 
 
def calc_perc_susc(data, bkpts, abx): 
    s = bkpts.loc[abx, 's'] 
    perc_susc = round((((data <= s).sum() / len(data)) * 100), 0) 
    return perc_susc 
 
# Functions for CRE sub group analysis 
def cre_ert_only(x, cols = ['MEM_INTERP_2', 'DORI_INTERP_2', 'IMI_INTERP_2']): 
    if (x['ERT_INTERP_2'] == 'R') and (x[cols].dropna() != 'R').all(): 
        return True 
    else: 
        return False 
     
def anti_pa_cre(x, cols = ['MEM_INTERP_2', 'DORI_INTERP_2', 'IMI_INTERP_2']): 
    if (x[cols].dropna() == 'R').any(): 
        return True 
    else: 
        return False 
     
def ert_r_carba_i(x, cols = ['MEM_INTERP_2', 'DORI_INTERP_2', 'IMI_INTERP_2']): 
    if (x['ERT_INTERP_2'] == 'R') and (x[cols].fillna('Missing') == 'I').any() and 
(x[cols].fillna('Missing') != 'R').all(): 
        return True 
    else: 
        return False 
     
def carba_r_ert_s_or_i(x): 
    if (x['ANTI_PA_CRE'] == True) and (x['ERT_INTERP_2'] in ['S', 'I']): 
        return True 
    else: 
        return False 
     
def cre_ert_only_or_carba_i(x): 
    if (x['CRE_ERT_ONLY'] == True) or (x['ERT_R_CARBA_I'] == True): 
        return True 
    else: 
        return False 
 
def get_annual_counts_data(df, compare = 'cre vs cse', carba_i_is_r = False, search_col = 
'SPECIES'): 
    possible_compare = ['cre vs cse', 'ert_only vs anti_pa'] 
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    df = df.copy() 
     
    if compare == 'cre vs cse': 
        total_iso_counts = df.groupby(['Carbapenem_resistent', 
'YEAR_DT'])[search_col].agg('count') 
        by_search_col_counts = df.groupby(['Carbapenem_resistent', 'YEAR_DT', 
search_col])['HOSP'].agg('count') 
     
    elif compare == 'ert_only vs anti_pa': 
        if carba_i_is_r == True: 
            resistance_group = 'CRE_ERT_ONLY_OR_CARBA_I' 
        else: 
            resistance_group = 'CRE_ERT_ONLY' 
            df = df.loc[ 
                (df['ERT_R_CARBA_I'] == False)& 
                (df['CARBA_R_ERT_S_OR_I'] == False) 
            ] 
             
         
        total_iso_counts = df.groupby([resistance_group, 'YEAR_DT'])[search_col].agg('count') 
        by_search_col_counts = df.groupby([resistance_group, 'YEAR_DT', 
search_col])['HOSP'].agg('count') 
     
    else: 
        raise ValueError('Enter an appropriate compare argument. May choose from following: 
{}'.format(', '.join(possible_compare)))   
         
    df_out = [by_search_col_counts.loc[(pheno, )].unstack().join(total_iso_counts.loc[(pheno, )]) for 
pheno in [False, True]] 
    df_out = [data.rename(columns = {search_col:'Total'}) for data in df_out] 
     
     
    return df_out 
 
def write_susc_summary(df, path, phenotype = None): 
    if phenotype is None: 
        raise ValueError('Phenotype must be specified. Current options are CRE_GROUP_V2 and 
CRE_ERT_ONLY.') 
    save_path = path 
    df = df.copy() 
    for col in df.columns[2:]: 
        df[col] = df[col].apply(lambda x: f'{x:,.3f}') 
        df[col] = df[col].str.replace('0+$', '', regex = True).replace('[.]$', '', regex = True) 
    df.set_index([phenotype, 'SUMMARY']).T.to_csv(save_path) 
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cse_iso_stats = inf_species_cross.loc[('CSE', )] 
cre_iso_stats = inf_species_cross.loc[('CRE', )] 
 
cse_species_tot, cre_species_tot = cse_iso_stats.drop('All').loc[:, 'All'], 
cre_iso_stats.drop('All').loc[:, 'All'] 
cse_batt_tot, cre_batt_tot = cse_iso_stats.drop('All', axis = 1).loc['All', :], cre_iso_stats.drop('All', 
axis = 1).loc['All', :] 
 
plt.rcParams['font.family'] = 'Arial' 
 
plt.style.use('seaborn-bright') 
fig, (ax0, ax1) = plt.subplots(nrows = 1, ncols = 2, figsize = (9, 7), facecolor = 'white') 
# fig.suptitle('Breakdown of Infection Type by Species in CSE and CRE', fontsize=16, 
weight='bold') 
 
hatch_opts = ['--', 'x', '\\', '*', 'o', 'O', '.', '+'] 
num_hatches = len(cse_iso_stats.columns) - 1 # Am dropping the All column 
 
cse_iso_stats\ 
    .drop('All')\ 
    .drop('All', axis=1)\ 
    .div(cse_batt_tot)\ 
    .multiply(100)\ 
    .plot(kind='bar', cmap = mpl.colormaps['Greys'], edgecolor = 'black', width = 0.75, linewidth = 2, 
ax=ax0) 
 
cre_iso_stats\ 
    .drop('All')\ 
    .drop('All', axis=1)\ 
    .div(cre_batt_tot)\ 
    .multiply(100)\ 
    .plot(kind='bar', cmap = mpl.colormaps['Greys'], edgecolor = 'black', width = 0.75, linewidth = 2, 
ax=ax1) 
 
# Add counts to the legend 
for ax_obj, data, phenotype in zip((ax0, ax1), [cse_batt_tot.to_numpy(), cre_batt_tot.to_numpy()], 
['CSE', 'CRE']): 
    handles, labels = ax_obj.get_legend_handles_labels() 
    new_labels = [] 
    for org, count in zip(labels, data): 
        new_labels.append(f'{org}: {count:,.0f}') 
    ax_obj.legend( 
        handles,  
        new_labels,  
        title = f'Infection Type Count ({phenotype}, n = {data.sum():,.0f})',  
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        title_fontproperties = {'weight':'bold', 'size':12}, 
        fancybox = True,  
        frameon=True, 
        edgecolor = 'black', 
        facecolor = 'white', 
        fontsize = 12 
    ) 
#     ax_obj.set_xticklabels(['E. aerogenes', 'E. cloacae', 'E. coli', 'K. oxytoca', 'K. pneumoniae']) 
    ax_obj.set_xlabel('{}'.format(phenotype), fontsize=12, fontweight='bold') 
    ax_obj.set_ylim([0, 100]) 
#     for tick in ax_obj.get_xticklabels(): 
#         tick.set_rotation(45) 
    ax_obj.set_xticklabels(['E. aerogenes', 'E. cloacae', 'E. coli', 'K. oxytoca', 'K. pneumoniae'], 
rotation = 45, ha = 'center', fontsize = 10, style = 'italic') 
    ax_obj.grid(visible=True, which='major', axis='both', alpha = 0.25, color = 'black') 
#     ax_obj.set_facecolor('lavender') 
    ax_obj.set_facecolor('whitesmoke') 
 
# Final formatting 
 
plt.rc('ytick', labelsize=10) 
plt.rc('xtick', labelsize=10) 
 
ax0.set_ylabel('Percent of isolates', fontsize=12, fontweight = 'bold') 
 
plt.tight_layout() 
# plt.savefig(r'Y:\01COP-GNB_Infections-
Team\Susc\Species_infection_type_figures\Breakdown_of_Infection_Type_by_Species_in_CSE_
and_CRE.tiff') 
plt.savefig(f'{figure_folder_path}/breakdown_of_infection_type_by_species_in_cse_vs_cre_index
_group_matched.tiff') 
plt.show() 
# plt.clf() 
 
cse, cre = get_annual_counts_data(susc) 
cse, cre = cse.fillna(0), cre.fillna(0) 
 
plt.style.use('seaborn-bright') 
fig, axes = plt.subplots(nrows = 2, ncols = 1, figsize = (9, 6), facecolor = 'white') 
# fig.suptitle('Annual Distributions of CSE and CRE Isolates', fontsize=16, weight='bold') 
 
for ax_obj, data in zip(axes, [cse, cre]): 
    data.reset_index().plot(y = 'Total', kind = 'line', linestyle = ':', marker = 'o', color = 'k', ax = 
ax_obj) 
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    data.iloc[:, :-1].plot(kind='bar', cmap = mpl.colormaps['Greys'], edgecolor = 'black', width = 0.75, 
linewidth = 2, ax=ax_obj) 
 
# Add counts to the legend 
# for ax_obj, data, phenotype in zip(axes, [total_cse, total_cre], ['CSE', 'CRE']): 
 
#     ax_obj.legend( 
 
#         title = 'Species Count ({})'.format(phenotype),  
#         fancybox = True,  
#         frameon=True,  
#         edgecolor = 'black', 
#         facecolor = 'lavender', 
#         fontsize = 'medium' 
#     ) 
# Final formatting 
 
plt.setp(axes[0].get_xticklabels(), visible=False) 
axes[0].set_xlabel('') 
plt.rc('ytick', labelsize=10) 
plt.rc('xtick', labelsize=10) 
# axes[1].set_xticklabels(axes[1].get_xticklabels(), rotation = 45, ha = 'center') 
for tick in axes[1].get_xticklabels(): 
    tick.set_rotation(45) 
axes[1].set_xlabel('Year', fontsize=12, fontweight='bold') 
for ax_obj, data, phenotype in zip(axes, [cse, cre], ['CSE', 'CRE']): 
     
    ax_obj.set_ylabel('Number of isolates', fontsize=12, fontweight = 'bold') 
    ax_obj.set_ylim([0, data['Total'].max() + data['Total'].max() * 0.1]) 
    ax_obj.grid(visible=True, which = 'major', axis = 'both', color = 'black', alpha = 0.25) 
    ax_obj.set_facecolor('whitesmoke') 
     
    group_totals = [data[col].sum() for col in data.columns if col != 'Total'] 
    group_totals = [''] + group_totals 
    handles, labels = ax_obj.get_legend_handles_labels() 
    new_labels = [] 
    for idx, (org, count) in enumerate(zip(labels, group_totals)): 
        if idx == 0: 
            new_labels.append(f'{org}: {count}') 
        else: 
            genus, species = org.split(' ') 
            new_labels.append(f'${genus[0]}. {species}$: {count:,.0f}') 
     
    ax_obj.legend(  
        handles,  
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        new_labels,  
        title = f"Species ({phenotype}, n = {data['Total'].sum():,.0f})",  
        title_fontproperties = {'weight':'bold', 'size':12}, 
        fancybox = True,  
        frameon=True,  
        edgecolor = 'black', 
        facecolor = 'whitesmoke', 
        fontsize = 12, 
        bbox_to_anchor = (1, 1), 
        loc = 'upper left' 
    ) 
    total_x_locs = ax_obj.get_xticks() 
    total_y_locs = data['Total'].values 
    ax_top = data['Total'].max() * 1.1 
     
    for x, y in zip(total_x_locs, total_y_locs): 
        y_shift = (0.05 * ax_top) 
        y_loc = y + y_shift 
 
        ax_obj.annotate( 
            str(y),  
            xy=(x, y),  
            xycoords = 'data', 
            xytext=(x, y_loc), 
            size = 12, 
            weight = 'bold', 
            ha = 'left', 
            va = 'center' 
        ) 
         
plt.tight_layout() 
# plt.savefig(r'Y:\01COP-GNB_Infections-
Team\Susc\Isolate_counts\Annual_distributions_of_CSE_and_CRE_isolates(species).tiff') 
plt.savefig(f'{figure_folder_path}/annual_distributions_of_cse_and_cre_isolates_index_group_mat
ched.tiff') 
 
plt.show() 
# plt.clf() 
 
carbapenems = [ 
    'DORI', 
    'ERT', 
    'IMI', 
    'MEM' 
] 
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carba_interp_cols = [f'{carba}_INTERP_2' for carba in carbapenems] 
 
susc.loc[:, 'CRE_ERT_ONLY'] = susc[carba_interp_cols].apply(cre_ert_only, axis=1) # 5 cultures 
where only ERT is tested 
susc.loc[:, 'ANTI_PA_CRE'] = susc[carba_interp_cols].apply(anti_pa_cre, axis=1) 
# susc.loc[:, 'ERT_R_CARBA_I'] = susc[carba_interp_cols].apply(ert_r_carba_i, axis=1) # The 
rows not captured by the above cols are all mem I and ert R 
# susc.loc[:, 'CARBA_R_ERT_S_OR_I'] = susc[['ANTI_PA_CRE', 
'ERT_INTERP_2']].apply(carba_r_ert_s_or_i, axis=1) # Every isolate needs to be R to ERT 
# susc.loc[:, 'CRE_ERT_ONLY_OR_CARBA_I'] = susc[['CRE_ERT_ONLY', 
'ERT_R_CARBA_I']].apply(cre_ert_only_or_carba_i, axis=1) # strict definition of anti pa CRE in 
compare group 
 
num_cre_pts_species_v_source = cre_subgroup_susc.groupby(['CRE_ERT_ONLY', 'SPECIES', 
'BATT_AGGR'])['ID_combined'].agg('nunique').unstack('BATT_AGGR').fillna(0) 
num_cre_pts_species_v_source.loc[:, 'ROW_TOTAL'] = 
num_cre_pts_species_v_source.apply(sum, axis = 1) 
 
mort_14 = cre_subgroup_susc.loc[cre_subgroup_susc['14D_MORTALITY']] 
mort_14_num_cre_pts_species_v_source = mort_14.groupby(['CRE_ERT_ONLY', 'SPECIES', 
'BATT_AGGR'])['ID_combined'].agg('nunique').unstack('BATT_AGGR').fillna(0) 
mort_14_num_cre_pts_species_v_source.loc[:, 'ROW_TOTAL'] = 
mort_14_num_cre_pts_species_v_source.apply(sum, axis = 1) 
 
mort_30 = cre_subgroup_susc.loc[cre_subgroup_susc['30D_MORTALITY']] 
mort_30_num_cre_pts_species_v_source = mort_30.groupby(['CRE_ERT_ONLY', 'SPECIES', 
'BATT_AGGR'])['ID_combined'].agg('nunique').unstack('BATT_AGGR').fillna(0) 
mort_30_num_cre_pts_species_v_source.loc[:, 'ROW_TOTAL'] = 
mort_30_num_cre_pts_species_v_source.apply(sum, axis = 1) 
 
# OVERALL analysis 
overall_susc_summary = susc_analysis(susc, pheno_1 = 'CRE', bkpts = bkpts, groupby_cols = 
'CRE_GROUP_V2') 
 
cre_subgroup_susc = susc.loc[susc['CRE_GROUP_V2'] == 'CRE'] 
cre_susc_summary = susc_analysis(cre_subgroup_susc, pheno_1 = 'CRE', bkpts = bkpts, 
groupby_cols = 'CRE_ERT_ONLY') 
 
cre_susc_summary_w_event_14 = 
susc_analysis(cre_subgroup_susc.loc[cre_subgroup_susc['14D_MORTALITY'] == True], 
pheno_1 = 'CRE', bkpts = bkpts, groupby_cols = 'CRE_ERT_ONLY') 
cre_susc_summary_wo_event_14 = 
susc_analysis(cre_subgroup_susc.loc[cre_subgroup_susc['14D_MORTALITY'] == False], 
pheno_1 = 'CRE', bkpts = bkpts, groupby_cols = 'CRE_ERT_ONLY') 
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cre_susc_summary_w_event_30 = 
susc_analysis(cre_subgroup_susc.loc[cre_subgroup_susc['30D_MORTALITY'] == True], 
pheno_1 = 'CRE', bkpts = bkpts, groupby_cols = 'CRE_ERT_ONLY') 
cre_susc_summary_wo_event_30 = 
susc_analysis(cre_subgroup_susc.loc[cre_subgroup_susc['30D_MORTALITY'] == False], 
pheno_1 = 'CRE', bkpts = bkpts, groupby_cols = 'CRE_ERT_ONLY') 
 
write_susc_summary(overall_susc_summary, 'PUBLICATION_FIGURES/MIC 
ANALYSIS/Overall_susc_summary_table.csv', 'CRE_GROUP_V2') 
write_susc_summary(cre_susc_summary, 'PUBLICATION_FIGURES/MIC 
ANALYSIS/CRE_subgroup_susc_summary_table.csv', 'CRE_ERT_ONLY') 
write_susc_summary(cre_susc_summary_w_event_14, 'PUBLICATION_FIGURES/MIC 
ANALYSIS/CRE_subgroup_susc_summary_w_event_14_table.csv', 'CRE_ERT_ONLY') 
write_susc_summary(cre_susc_summary_wo_event_14, 'PUBLICATION_FIGURES/MIC 
ANALYSIS/CRE_subgroup_susc_summary_wo_event_14_table.csv', 'CRE_ERT_ONLY') 
write_susc_summary(cre_susc_summary_w_event_30, 'PUBLICATION_FIGURES/MIC 
ANALYSIS/CRE_subgroup_susc_summary_w_event_30_table.csv', 'CRE_ERT_ONLY') 
write_susc_summary(cre_susc_summary_wo_event_30, 'PUBLICATION_FIGURES/MIC 
ANALYSIS/CRE_subgroup_susc_summary_wo_event_30_table.csv', 'CRE_ERT_ONLY') 
 
save_path = f'PUBLICATION_FIGURES/Overall_susc_summary_table.csv' 
formatted_overall_susc_summary = overall_susc_summary.copy() 
for col in formatted_overall_susc_summary.columns[2:]: 
    formatted_overall_susc_summary[col] = formatted_overall_susc_summary[col].apply(lambda 
x: f'{x:,.3f}') 
    formatted_overall_susc_summary[col] = 
formatted_overall_susc_summary[col].str.replace('0+$', '', regex = True).replace('[.]$', '', regex = 
True) 
formatted_overall_susc_summary.set_index(['CRE_GROUP_V2', 
'SUMMARY']).T.to_csv(save_path) 
 
save_path = f'PUBLICATION_FIGURES/CRE_subgroup_susc_summary_table.csv' 
formatted_cre_susc_summary = cre_susc_summary.copy() 
for col in formatted_cre_susc_summary.columns[2:]: 
    formatted_cre_susc_summary[col] = formatted_cre_susc_summary[col].apply(lambda x: 
f'{x:.3f}') 
    formatted_cre_susc_summary[col] = formatted_cre_susc_summary[col].str.replace('0+$', '', 
regex = True).replace('[.]$', '', regex = True) 
formatted_cre_susc_summary.set_index(['CRE_ERT_ONLY', 'SUMMARY']).T.to_csv(save_path) 
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Sensitivity_Analysis_2_and_3.ipynb 

import pandas as pd 
import numpy as np 
import os 
import re 
from IPython.display import display 
 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
from lifelines import CoxPHFitter 
 
from statsmodels.stats.contingency_tables import StratifiedTable 
import statsmodels.formula.api as smf 
import statsmodels.api as sm 
 
import warnings 
warnings.filterwarnings("ignore") 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
pd.set_option('mode.chained_assignment', None) 
 
main_analysis_path = 
r'Primary_Analysis_Output/CRE_V_CSE/Mono_Polymicrobial_all_isolates_ICD_agreement_forc
ed' 
demo_file = 
f'DEMO_PS_POST_BASELINE_DATA_CRE_V_CSE_Mono_Polymicrobial_all_isolates_ICD_agr
eement_forced.csv' 
 
demo = pd.read_csv(f'{main_analysis_path}/{demo_file}') 
 
# adjust variable types 
for col in ['ADMT_DT', 'FINAL_DISCHRG_DT', 'EARLIEST_STUDY_CULTURE', 
'14D_FOLLOW_UP', '30D_FOLLOW_UP', '60D_FOLLOW_UP', '90D_FOLLOW_UP']: 
    demo[col] = pd.to_datetime(demo[col]) 
     
# Create a flag column to separate transfer status (0 transferred and 1 is not)'# mortality 
difference between SA groups (basically all transfers vs non transfers) 
demo.loc[:, 'TRANSFERRED'] = 1 
demo.loc[(demo[['CLINIC/PHYSICIAN OFF', 'NONHEALTHCARE ORIGIN']] == 1).any(axis = 1), 
'TRANSFERRED'] = 0 
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# mortality_cols = [col for col in demo.columns if re.search('D_MORTALITY', col)] + 
['OVERALL_MORTALITY'] 
# duration_cols = [col for col in demo.columns if re.search('D_DURATION', col)] + 
['POST_INDEX_LOS'] 
 
mortality_cols = ['14D_MORTALITY', '30D_MORTALITY'] 
duration_cols = ['14D_DURATION', '30D_DURATION'] 
 
def rr_neg_binomial(df, outcome, exposure, formula = None): 
     
    df = df.copy() 
    df[outcome] = df[outcome].astype(int) 
     
    if isinstance(exposure, list): 
        exposure = ' + '.join(exposure) 
         
    if formula is None: 
        formula = f"Q('{outcome}') ~ {exposure}" 
         
    p_model = smf.glm( 
        formula = formula, 
        data = df, 
        family = sm.families.NegativeBinomial() 
    ).fit() 
     
    rr = p_model.params.loc[exposure] 
    ci_ll, ci_ul = p_model.conf_int().loc[exposure] 
    RR = f'{round(np.exp(rr), 2)} [{round(np.exp(ci_ll), 2)}, {round(np.exp(ci_ul), 2)}]' 
    return RR 
 
def multiindex_pivot(df, columns=None, values=None): 
    #https://github.com/pandas-dev/pandas/issues/23955 
    names = list(df.index.names) 
    df = df.reset_index() 
    list_index = df[names].values 
    tuples_index = [tuple(i) for i in list_index] # hashable 
    df = df.assign(tuples_index=tuples_index) 
    df = df.pivot(index="tuples_index", columns=columns, values=values) 
    tuples_index = df.index  # reduced 
    index = pd.MultiIndex.from_tuples(tuples_index, names=names) 
    df.index = index 
    return df 
 
def cox_model(df, duration, event): 
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    pheno_1, pheno_2 = 'CRE', 'CSE' 
    duration_col = duration 
    event_col = event 
     
    formula = 'CRE_GROUP_V2' 
     
    cph = CoxPHFitter() 
     
    cph.fit( 
        df = df, 
        duration_col = duration_col, 
        event_col = event_col, 
        formula = formula 
    ) 
     
    return cph.summary 
 
def assume_censor_alive(data, mortality_col, duration_col, total_fu): 
    mortality = data[mortality_col] 
    duration = data[duration_col] 
     
    if mortality == False & duration < total_fu: 
        return total_fu 
    else: 
        return duration 
 
# How many patients are censored within each follow-up? 
# - 14 Days 
#     - 51/115 CRE patients = 44% 
#     - 4025/6209 CSE patients = 65% 
# - 30 Days 
#     - 76/115 CRE patients = 66% 
#     - 4866/6209 CSE patietns = 78% 
 
mortality = ['14D_MORTALITY', '30D_MORTALITY'] 
total_fu = ['14D_DURATION', '30D_DURATION'] 
total_days = [14, 30] 
 
for mort, fu, max_days in zip(mortality, total_fu, total_days): 
    print(f'The following shows the number of patients who are censored after {fu}.') 
    display(demo.loc[demo[mort] == False].groupby(['CRE_GROUP_V2'])[fu].apply(lambda x: 
sum(x < max_days))) 
    print('\n') 
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# What if we assume that the censored population survived and were still at risk at 14 and 30 
days? 
test_demo = demo[['ID_combined', 'CRE_GROUP_V2', '14D_MORTALITY', '14D_DURATION', 
'30D_MORTALITY', '30D_DURATION']].copy() 
test_demo.loc[:, '14D_DURATION_ALIVE_ASSUMP'] = test_demo.apply(assume_censor_alive, 
mortality_col = '14D_MORTALITY', duration_col = '14D_DURATION', total_fu = 14, axis = 1) 
test_demo.loc[:, '30D_DURATION_ALIVE_ASSUMP'] = test_demo.apply(assume_censor_alive, 
mortality_col = '30D_MORTALITY', duration_col = '30D_DURATION', total_fu = 30, axis = 1) 
 
cox_14, cox_30, cph_14_assump, cph_30_assump = cph(), cph(), cph(), cph() 
 
cox_14.fit( 
    df = test_demo, 
    duration_col = '14D_DURATION', 
    event_col = '14D_MORTALITY', 
    formula = 'CRE_GROUP_V2' 
) 
 
cox_30.fit( 
    df = test_demo, 
    duration_col = '30D_DURATION', 
    event_col = '30D_MORTALITY', 
    formula = 'CRE_GROUP_V2' 
) 
 
cph_14_assump.fit( 
    df = test_demo, 
    duration_col = '14D_DURATION_ALIVE_ASSUMP', 
    event_col = '14D_MORTALITY', 
    formula = 'CRE_GROUP_V2' 
) 
 
cph_30_assump.fit( 
    df = test_demo, 
    duration_col = '30D_DURATION_ALIVE_ASSUMP', 
    event_col = '30D_MORTALITY', 
    formula = 'CRE_GROUP_V2' 
) 
 
for model in [cox_14, cox_30, cph_14_assump, cph_30_assump]: 
    model.print_summary() 
    print('\n') 
 
# Extract the number of mortality events from RR and SS 
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ss = pd.read_excel('Combined_Sensitivity_Analysis_Reports_Output/Sample_size_table.xlsx', 
skiprows = 0, header = [1]).dropna(how = 'all') 
ss = ss_table[['CSE', 'CNS', 'CRE']].reset_index(drop = True) 
 
mort_14d_cns = [ 
    1.42, 
    1.49, 
    1.54, 
    1.57, 
    1.38, 
    1.47 
] 
mort_14d_cre = [ 
    1.33, 
    1.42, 
    1.28, 
    1.43, 
    1.16, 
    1.36 
] 
mort_30d_cns = [ 
    1.66, 
    1.66, 
    1.66, 
    1.63, 
    1.51, 
    1.54 
] 
mort_30d_cre = [ 
    1.54, 
    1.6, 
    1.51, 
    1.58, 
    1.35, 
    1.48 
] 
 
mort_14d_cns = pd.Series(mort_14d_cns, name = '14D_M_CNS') 
mort_14d_cre = pd.Series(mort_14d_cre, name = '14D_M_CRE') 
mort_30d_cns = pd.Series(mort_30d_cns, name = '30D_M_CNS') 
mort_30d_cre = pd.Series(mort_30d_cre, name = '30D_M_CRE') 
 
rr = pd.concat([mort_14d_cns, mort_14d_cre, mort_30d_cns, mort_30d_cre], axis = 1) 
ss_rr = ss.join(rr) 
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# Number of mortality events 14 and 30 days under all assumptions 
phenos = ['CNS_V_CSE', 'CRE_V_CSE'] 
assumptions = [ 
    'Mono_Polymicrobial_all_isolates_ICD_agreement_forced', 
    'Mono_Polymicrobial_all_isolates_ICD_agreement_unforced', 
    'Mono_Polymicrobial_study_isolates_ICD_agreement_forced', 
    'Mono_Polymicrobial_study_isolates_ICD_agreement_unforced', 
    'Monomicrobial_study_isolates_ICD_agreement_forced', 
    'Monomicrobial_study_isolates_ICD_agreement_unforced'    
] 
 
folder = 'EFFECT_MEASURES' 
mort_14_cns = [] 
mort_14_cre = [] 
mort_14_cse = [] 
mort_30_cns = [] 
mort_30_cre = [] 
mort_30_cse = [] 
for pheno in phenos: 
    for assumption in assumptions: 
        pheno_1, pheno_2 = pheno.split('_V_') 
        file = 
f'Primary_Analysis_Output/{pheno}/{assumption}/{folder}/UNADJ_EFFECT_MEASURES_{pheno
}_{assumption}.xlsx' 
        mort_14 = pd.read_excel(file, sheet_name = 'Contingency Tables', header = 0, nrows = 2, 
index_col = 0) 
        mort_30 = pd.read_excel(file, sheet_name = 'Contingency Tables', skiprows = 4, header = 0, 
nrows = 2, index_col = 0) 
         
         
        try: 
            if pheno_1 == 'CNS': 
                mort_14_cns.append(mort_14.loc[pheno_1, True]) 
                mort_14_cse.append(mort_14.loc[pheno_2, True]) 
 
                mort_30_cns.append(mort_30.loc[pheno_1, True]) 
                mort_30_cse.append(mort_30.loc[pheno_2, True]) 
            else: 
                mort_14_cre.append(mort_14.loc[pheno_1, True]) 
                mort_30_cre.append(mort_30.loc[pheno_1, True]) 
        except: 
            display(mort_14) 
            display(mort_30) 
             
events_list = [ 
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    mort_14_cns, 
    mort_14_cre, 
    mort_14_cse, 
    mort_30_cns, 
    mort_30_cre, 
    mort_30_cse 
] 
 
events_names = [ 
    'mort_14_cns', 
    'mort_14_cre', 
    'mort_14_cse', 
    'mort_30_cns', 
    'mort_30_cre', 
    'mort_30_cse' 
] 
 
mortality_events_14_30 = [pd.Series(data = events, name = name) for events, name in 
zip(events_list, events_names)] 
mortality_events_14_30_df = pd.concat(mortality_events_14_30, axis = 1) 
 

 
 
# Overall mortality events between CRE and CSE 
mort_ss = demo.groupby('CRE_GROUP_V2')['ID_combined'].agg('count') 
mort_ss.name = 'Sample Size' 
mort_count = demo.groupby('CRE_GROUP_V2')[mortality_cols].agg(lambda x: f'{x.sum()} 
({round(x.mean() * 100, 1)})') 
pd.concat([mort_ss, mort_count], axis = 1) 
 
# Number of mortality events between transfer patients and other admission sources 
compare_transfer_mortality_ss = demo.groupby(['TRANSFERRED', 
'CRE_GROUP_V2'])['ID_combined'].agg('count') 
compare_transfer_mortality_ss.name = 'Sample Size' 
compare_transfer_mortality = demo.groupby(['TRANSFERRED', 
'CRE_GROUP_V2'])[mortality_cols].agg(lambda x: f'{x.sum()} ({round(x.mean() * 100, 1)})') 
pd.concat([compare_transfer_mortality_ss, compare_transfer_mortality], axis = 1) 
 
# RR of CRE vs CSE mortality at 14 and 30 days between transferred patients and other 
admission sources 
collect_outcomes = [] 
for outcome in ['14D_MORTALITY', '30D_MORTALITY']: 
    exposure = 'CRE_GROUP_V2' 
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    rr = demo.groupby('TRANSFERRED').apply(rr_neg_binomial, outcome = outcome, exposure = 
exposure) 
    rr.name = outcome 
    collect_outcomes.append(rr) 
pd.concat(collect_outcomes, axis = 1) 
 
# HR of CRE vs CSE mortality at 14 and 30 days between transferred patients and other 
admission sources 
collect_hr_tables = [] 
for mort_fu, duration in zip(mortality_cols, duration_cols): 
    hr_table = demo.groupby(['TRANSFERRED']).apply(cox_model, duration = duration, event = 
mort_fu) 
    hr_table = hr_table[['exp(coef)', 'exp(coef) lower 95%', 'exp(coef) upper 95%']]\ 
        .apply(round, ndigits = 2)\ 
        .apply(lambda x: f'{x["exp(coef)"]} [{x["exp(coef) lower 95%"]}, {x["exp(coef) upper 95%"]}]', 
axis = 1) 
    hr_table.name = mort_fu 
    collect_hr_tables.append(hr_table) 
pd.concat(collect_hr_tables, axis = 1).droplevel('covariate') 
 
# There appears to be a slight bimodal distribution of Time to Index with cultures coming within 
the first 72 hours or after 1 week in both the CSE and CRE groups regardless of transfer status 
# - made the time split binary on 72 hours to separate likely "CA" vs. "HA" 
#     - CRE are likely not CA, but had previous exposure not accounted for in the data 
 
# First cut the Time to Index into 3 discrete sections for grouping, will then pivot for the final table 
# intervals = [(-2, 3), (4, 7), (8, np.inf)] 
intervals = [(-2, 3), (4, np.inf)] 
time_to_index_intervals = pd.IntervalIndex.from_tuples(intervals, closed = 'both') 
# interval_names = ['Within 72 hrs', '72 hrs < x <= 1 wk', '1 wk < x'] 
interval_names = ['Within 72 hrs', '72 hrs < x'] 
demo.loc[:, 'CUT_TIME_TO_INDEX'] = pd.cut(demo['PRE_INDEX_LOS'], bins = 
time_to_index_intervals) 
 
# Generate the number of patients in each Time to Index category 
transfer_tti_ss = demo.groupby(['CRE_GROUP_V2', 'TRANSFERRED', 
'CUT_TIME_TO_INDEX'])['ID_combined'].agg('count').unstack('CUT_TIME_TO_INDEX') 
transfer_tti_ss.columns = interval_names 
transfer_tti_ss.loc[:, 'SAMPLE_SIZE'] = transfer_tti_ss.sum(axis = 1) 
for col in interval_names: 
    transfer_tti_ss[col] = transfer_tti_ss.apply(lambda x: f"{x[col]} 
({round((x[col]/x['SAMPLE_SIZE']) * 100, 1)})", axis = 1) 
transfer_tti_ss 
 
# RR Mortality CRE vs CSE stratified by time to index split at 72 hours 
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collect_outcomes = [] 
for outcome in ['14D_MORTALITY', '30D_MORTALITY']: 
    exposure = 'CRE_GROUP_V2' 
    rr = demo.groupby('CUT_TIME_TO_INDEX').apply(rr_neg_binomial, outcome = outcome, 
exposure = exposure) 
    rr.name = outcome 
    collect_outcomes.append(rr) 
pd.concat(collect_outcomes, axis = 1) 
 
# HR Mortality CRE vs CSE stratified by time to index split at 72 hours 
collect_hr_tables = [] 
for mort_fu, duration in zip(mortality_cols, duration_cols): 
    hr_table = demo.groupby(['CUT_TIME_TO_INDEX']).apply(cox_model, duration = duration, 
event = mort_fu) 
    hr_table = hr_table[['exp(coef)', 'exp(coef) lower 95%', 'exp(coef) upper 95%']]\ 
        .apply(round, ndigits = 2)\ 
        .apply(lambda x: f'{x["exp(coef)"]} [{x["exp(coef) lower 95%"]}, {x["exp(coef) upper 95%"]}]', 
axis = 1) 
    hr_table.name = mort_fu 
    collect_hr_tables.append(hr_table) 
pd.concat(collect_hr_tables, axis = 1).droplevel('covariate')[mortality_cols] 
 
# RR Mortality compared between patients with the presence of specific cultures on index 
collect_outcomes = [] 
for outcome in ['14D_MORTALITY', '30D_MORTALITY']: 
    for inf_type in inf_types: 
        exposure = 'CRE_GROUP_V2' 
        rr = demo.groupby(inf_type).apply(rr_neg_binomial, outcome = outcome, exposure = 
exposure) 
        rr.name = (outcome, inf_type) 
        collect_outcomes.append(rr) 
pd.concat(collect_outcomes, axis = 1) 
 
# RR Mortality compared between patients with the presence of specifically blood cultures on 
index 
collect_hr_tables = [] 
for mort_fu, duration in zip(mortality_cols, duration_cols): 
    hr_table = demo.groupby(['Blood']).apply(cox_model, duration = duration, event = mort_fu) 
    hr_table = hr_table[['exp(coef)', 'exp(coef) lower 95%', 'exp(coef) upper 95%']]\ 
        .apply(round, ndigits = 2)\ 
        .apply(lambda x: f'{x["exp(coef)"]} [{x["exp(coef) lower 95%"]}, {x["exp(coef) upper 95%"]}]', 
axis = 1) 
    hr_table.name = mort_fu 
    collect_hr_tables.append(hr_table) 
pd.concat(collect_hr_tables, axis = 1).droplevel('covariate') 
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IPTW_ADJ_CPH_and_KM.ipynb 

import pandas as pd 
import numpy as np 
import os 
import re 
import datetime as dt 
from IPython.display import display 
 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
# PS Score calculation 
import statsmodels.formula.api as smf 
import statsmodels.api as sm 
from statsmodels.stats.weightstats import DescrStatsW 
 
# Survival analysis 
from lifelines import CoxPHFitter as cph 
from lifelines import KaplanMeierFitter as km 
 
from tqdm import tqdm 
 
# Using IPTW weights in KaplanMeierFitter always creates a warning, so will ignore warnings 
import warnings 
warnings.filterwarnings("ignore") 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
pd.set_option('mode.chained_assignment', None) 
 
home_folder_path = os.getcwd() 
main_analysis_path = 
r'Primary_Analysis_Output/CRE_V_CSE/Mono_Polymicrobial_all_isolates_ICD_agreement_forc
ed' 
demo_file = 
f'DEMO_PS_POST_BASELINE_DATA_CRE_V_CSE_Mono_Polymicrobial_all_isolates_ICD_agr
eement_forced.csv' 
 
demo = pd.read_csv(f'{main_analysis_path}/{demo_file}') 
 
# adjust variable types 
for col in ['ADMT_DT', 'FINAL_DISCHRG_DT', 'EARLIEST_STUDY_CULTURE', 
'14D_FOLLOW_UP', '30D_FOLLOW_UP', '60D_FOLLOW_UP', '90D_FOLLOW_UP']: 
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    demo[col] = pd.to_datetime(demo[col]) 
demo.columns = [re.sub(r'/|-| ', '_', col) for col in demo.columns] 
 
# set up matplotlib style 
plt.style.use('ggplot') 
plt.rcParams['font.family'] = 'Arial' 
 
def create_orig_dur_key(df, pheno, duration): 
    return pd.DataFrame(df.loc[df['CRE_GROUP_V2'] == pheno, 
duration].sort_values().unique()).rename(columns = {0:f'ORIG_{duration}'}) 
 
# Randomly select a number of patients with replacement from both the CSE and CRE groups 
def generate_random_pts(pt_ids): 
    return np.random.choice(pt_ids, size = len(pt_ids), replace = True) 
 
def generate_random_pt_df(pt_ids, df): 
    pt_id_df = pd.DataFrame(pt_ids).reset_index().rename(columns = {0:'ID_combined', 
'index':'NEW_PT_IDS'}) 
    random_pt_df = pt_id_df.merge(df, how = 'left', on = 'ID_combined') 
    return random_pt_df 
 
# Calculate the stabilized IPTW weights 
def calc_stabilized_IPTW(data, tx_prob, stabilize = True): 
    exp = data['CRE_GROUP_V2'] 
    ps = data['PS_SCORE'] 
     
    num = 1 
    if stabilize == True: 
        num = tx_prob.get(exp) 
     
    if exp == 0: 
        iptw = num/(1 - ps) 
    else: 
        iptw = num/ps 
         
    return iptw 
 
# Calculate the PS score 
def calc_ps_score(df, tx_prob, cov_list, sq = False): 
     
    outcome = 'CRE_GROUP_V2' 
     
    covariates = ' + '.join(cov_list) 
    formula = '{} ~ {}'.format(outcome, covariates) 
    if sq == True: 
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        formula += ' + I(AGE**2)' 
 
#     # Fit the model 
    ps_model = smf.logit(formula, df).fit(disp = 0) 
    df.loc[:, 'PS_SCORE'] = ps_model.predict() 
    df.loc[:, 'IPTW_UNSTABLE'] = df.apply(calc_stabilized_IPTW, tx_prob = tx_prob, stabilize = 
False, axis = 1) 
    df.loc[:, 'IPTW_STABLE'] = df.apply(calc_stabilized_IPTW, tx_prob = tx_prob, stabilize = True, 
axis = 1) 
     
    return ps_model, df 
 

# Perform KM on IPTW weighted pseudopopulation 
def generate_KM_estimates(df, duration_col, event_col, weight_col, sample_name): 
     
    if weight_col is None: 
        weights = None 
    else: 
        weights = df[weight_col] 
         
    durations = df[duration_col] 
    events = df[event_col] 
         
         
    kmf = KaplanMeierFitter() 
    kmf.fit( 
        durations = durations, 
        event_observed = events, 
        weights = weights 
    ) 
     
    new_col = f'{sample_name}_KM_EST' 
     
    surv_est = kmf.survival_function_.rename(columns = {'KM_estimate':new_col}) 
    return surv_est 
 
def clean_collector(collector, dur_key, duration): 
    combined_df = pd.concat(collector, axis = 1).reset_index() 
    return dur_key\ 
            .merge(combined_df, how = 'outer', left_on = duration, right_on = 'timeline')\ 
            .fillna(method = 'ffill')\ 
            .drop(duration, axis = 1)\ 
            .set_index('timeline') 
 



 

 709 

def calculate_KM_ci(df): 
    return df\ 
            .quantile(q = [0.025, 0.975], axis = 1)\ 
            .T\ 
            .rename(columns = {0.025:'LOWER_95%_CI', 0.975:'UPPER_95%_CI'}) 
 
def km_model(df, ci_dfs, duration, event, weight = None, save = False, show = False, folder = '', 
pic_format = '.tiff', grayscale = True): 
     
    colors = ['orangered', 'dodgerblue'] 
    linestyles = ['-', '-'] 
    if grayscale == True: 
        colors = ['black', 'black'] 
        linestyles = ['--', '-'] 
     
    xy_label_settings = { 
        'fontfamily':'Arial', 
        'fontsize':12, 
        'fontweight':'bold', 
        'color':'black' 
    } 
 
    xy_tick_settings = { 
            'fontfamily':'Arial', 
            'fontsize':12, 
            'fontweight':'bold', 
            'color':'black' 
    } 
 
    title_settings = { 
            'family':'Arial', 
            'fontsize':18, 
            'fontweight':'bold', 
            'color':'black' 
    } 
 
    legend_settings = { 
            'family':'Arial', 
            'size':12, 
#             'weight':'bold', 
    } 
     
    fig, ax = plt.subplots(figsize = (10, 5)) 
     
    if weight is None: 
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        for color, pheno, pheno_label, linestyle in zip(colors, [0, 1], ['CSE', 'CRE'], linestyles): 
            subset = df.loc[df['CRE_GROUP_V2'] == pheno] 
            kmf = KaplanMeierFitter() 
            kmf.fit( 
                durations = subset[duration], 
                event_observed = subset[event], 
    #             weights = subset[weight] 
            ) 
 
            kmf.plot(ci_show = False, ax = ax, label = pheno_label, color = color, linestyle = linestyle) 
             
            ci_df = kmf.confidence_interval_ # Need to extract the calculated Greenwood 95% CIs 
            ax.fill_between( 
                x = ci_df.index, 
                y1 = ci_df['KM_estimate_lower_0.95'], 
                y2 = ci_df['KM_estimate_upper_0.95'], 
                step = 'post', 
                alpha = 0.3, 
                color = color 
            ) 
         
    else: 
        for color, pheno, pheno_label, ci_df, linestyle in zip(colors, [0, 1], ['CSE', 'CRE'], ci_dfs, 
linestyles): 
            subset = df.loc[df['CRE_GROUP_V2'] == pheno] 
            kmf = KaplanMeierFitter() 
            kmf.fit( 
                durations = subset[duration], 
                event_observed = subset[event], 
                weights = subset[weight] 
            ) 
 
            kmf.plot(ci_show = False, ax = ax, label = pheno_label, color = color, linestyle = linestyle) 
 
            ax.fill_between( 
                x = ci_df.index, 
                y1 = ci_df['LOWER_95%_CI'], 
                y2 = ci_df['UPPER_95%_CI'], 
                step = 'post', 
                alpha = 0.3, 
                color = color 
            ) 
         
    ax.set_ylabel('$\hat{S}$(t)', **xy_label_settings) 
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    ticks = ax.get_yticks() 
    ax.set_yticks(ticks[1:-1]) # must set the ticks before setting xticklabels or get annoying warning 
    ax.set_yticklabels([round(val, 2) for val in ticks[1:-1]], **xy_tick_settings) 
 
    # x axis 
    ax.set_xlabel('Timeline (Days)', **xy_label_settings) 
 
    ticks = ax.get_xticks() 
    ax.set_xticks(ticks[1:-1]) # must set the ticks before setting xticklabels or get annoying warning 
    ax.set_xticklabels([round(val, 1) for val in ticks[1:-1]], **xy_tick_settings) 
    ax.set_facecolor('whitesmoke') 
 
    # title 
#     ax.set_title(f'{event} Survival in CRE vs. CSE', **title_settings) 
 
    # legend 
#         plt.legend() 
    ax.legend( 
        title = 'Phenotype', 
        prop = legend_settings, 
        title_fontproperties = {**legend_settings, 'weight':'bold'}, 
        facecolor = 'white' 
    ) 
 
    plt.tight_layout() 
     
    if save == True: 
        savepath = f'{folder}/{event}_survival_cse_vs_cre' 
        if weight is not None: 
            savepath += '_iptw_adj' 
        plt.savefig(savepath + pic_format) 
     
    if show == True: 
        plt.show() 
     
    plt.clf() 
     
def plot_propensity_scores(df): 
     
    mosaic = [['ax_perc', 'ax_perc'], ['ax_p1', 'ax_p2']] 
    fig, ax_dict = plt.subplot_mosaic(mosaic, constrained_layout = True, figsize = (10, 5)) 
     
    pheno_1, pheno_2 = 'CRE', 'CSE' 
 
    bins = np.linspace(df['PS_SCORE'].min(), df['PS_SCORE'].max(), 50) 
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    common_kwargs = { 
        'kind':'hist', 
        'bins':bins, 
        'density':True, 
        'alpha':0.5, 
    } 
 
    # Create the top panel which plots both PS distributions on same ax with y-axis percentage 
    for pheno, indicator, color in zip([pheno_1, pheno_2], [1, 0], ['blue', 'orange']): 
        df.loc[df[f'{pheno_1}_GROUP_V2'] == indicator, 'PS_SCORE'].plot(color = color, label = 
pheno, ax = ax_dict['ax_perc'], **common_kwargs) 
        ax_dict['ax_perc'].set_title('PS Distribution Probability Density Function') 
        ax_dict['ax_perc'].set_xlabel('Propensity') 
        ax_dict['ax_perc'].set_ylabel('Frequency (%)') 
        ax_dict['ax_perc'].legend() 
     
    # Don't need these settings anymore 
    for setting in ['density', 'alpha']: 
        del common_kwargs[setting] 
         
    # Create the bottom panels which each plot the counts of the PS distribution 
    for pheno, indicator, color, phen_ax in zip([pheno_1, pheno_2], [1, 0], ['blue', 'orange'], ['ax_p1', 
'ax_p2']): 
        data = df.loc[df[f'{pheno_1}_GROUP_V2'] == indicator, 'PS_SCORE'] 
        # Determine if a Log scale would be more appropriate 
        use_log = False 
        if np.log10(data.max() / data.min()) >= 2.7: # ~ quotient of 500 
            use_log = True 
         
        data.plot(color = color, ax = ax_dict[f'{phen_ax}'], **common_kwargs) 
        ax_dict[f'{phen_ax}'].set_title(f'PS Distribution of {pheno}') 
        ax_dict[f'{phen_ax}'].set_xlabel('Propensity') 
         
        if use_log == True: 
            ax_dict[f'{phen_ax}'].set_yscale('log') 
            ax_dict[f'{phen_ax}'].set_ylabel('Log Counts') 
        else: 
            ax_dict[f'{phen_ax}'].set_ylabel('Counts') 
 
    plt.show() 
    plt.clf() 
 
# Setup 
# Seed the number generator 
np.random.seed(2022) 
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# Create the arrays of patient ids to sample 
CRE_pts, CSE_pts = demo.loc[demo['CRE_GROUP_V2'] == 1, 'ID_combined'].values, 
demo.loc[demo['CRE_GROUP_V2'] == 0, 'ID_combined'].values 
 
# Treatment probabilities for CRE and CSE -- Prevalence 
tx_prob = { 
    0:(demo['CRE_GROUP_V2'] == 0).sum() / demo.shape[0], 
    1:(demo['CRE_GROUP_V2'] == 1).sum() / demo.shape[0] 
} 
 
demo.loc[:, 'BSI_OR_PNA_INDEX'] = (demo[['Blood', 'Respiratory']] == 1).any(axis = 
1).astype(int) 
 
id_cols = [ 
    'ID_combined', 
    'CRE_GROUP_V2', 
] 
mortality_cols = [col for col in demo.columns if re.search('D_MORTALITY', col)] + 
['OVERALL_MORTALITY'] 
duration_cols = [col for col in demo.columns if re.search('D_DURATION', col)] + 
['POST_INDEX_LOS'] 
covariate_cols = [ 
    'AGE', 
    'GENDR_CD_DES', 
    'INDEX_CULTURE_ICU', 
    'PRE_INDEX_LOS', 
    'SOFA_ON_EARLIEST_CDATE', 
    'CCI_SCORE', 
    'CVD_COMPOSITE', 
    'T2DM_COMPOSITE', 
    'BSI_OR_PNA_INDEX', 
    'CLINIC_PHYSICIAN_OFF', 
    'HOSPITAL_TRANSFER', 
    'NONHEALTHCARE_ORIGIN', 
#     'OTHER_HEALTH_FACIL' # dropped bc is the least populated var 
#     'TRANSFER FROM SNF' This var is combined with OTHER_HEALTH_FACIL during 
baseline adjustment 
] 
 
# Because there is only 1 CRE pt with SNF transfer, it is very likely that they will not be sampled 
in bootstrap which will lead to convergence issues for 
# the remaining categories of admission source variables 
# I will drop the OTHER_HEALTH_FACIL to effectively combine these categories into 1, which 
will be included in the intercept as all vars == 0  
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cols_of_interest = id_cols + mortality_cols + duration_cols + covariate_cols 
 
demo = demo[cols_of_interest] 
 
# Create a master list of event times 
cre_14d_event_times = create_orig_dur_key(df = demo, pheno = 1, duration = 
'14D_DURATION') 
cse_14d_event_times = create_orig_dur_key(df = demo, pheno = 0, duration = 
'14D_DURATION') 
cre_30d_event_times = create_orig_dur_key(df = demo, pheno = 1, duration = 
'30D_DURATION') 
cse_30d_event_times = create_orig_dur_key(df = demo, pheno = 0, duration = 
'30D_DURATION') 
cre_60d_event_times = create_orig_dur_key(df = demo, pheno = 1, duration = 
'60D_DURATION') 
cse_60d_event_times = create_orig_dur_key(df = demo, pheno = 0, duration = 
'60D_DURATION') 
cre_overall_event_times = create_orig_dur_key(df = demo, pheno = 1, duration = 
'POST_INDEX_LOS') 
cse_overall_event_times = create_orig_dur_key(df = demo, pheno = 0, duration = 
'POST_INDEX_LOS') 
 
# Calculate the original data adjusted with IPTW 
orig_ps_model, demo_w_ps = calc_ps_score(df = demo, tx_prob = tx_prob, cov_list = 
covariate_cols) 
 
# Run 1000 bootstrap samples 
# Need to collect all of the bootstrap samples 
cre_bs_km_14_collect, cse_bs_km_14_collect = [], [] 
cre_bs_km_30_collect, cse_bs_km_30_collect = [], [] 
cre_bs_km_60_collect, cse_bs_km_60_collect = [], [] 
cre_bs_km_overall_collect, cse_bs_km_overall_collect = [], [] 
 
fu_dict = { 
    '14D':['14D_DURATION', '14D_MORTALITY', cre_bs_km_14_collect, cse_bs_km_14_collect], 
    '30D':['30D_DURATION', '30D_MORTALITY', cre_bs_km_30_collect, cse_bs_km_30_collect], 
    '60D':['60D_DURATION', '60D_MORTALITY', cre_bs_km_60_collect, cse_bs_km_60_collect], 
    'OVERALL':['POST_INDEX_LOS', 'OVERALL_MORTALITY', cre_bs_km_overall_collect, 
cse_bs_km_overall_collect] 
} 
 
ps_model_collect = [] 
df_collect = [] 
# Begin the bootstrap 
for n_iter in tqdm(range(0, 1000)): 
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    bs_name = f'BS_ITER_{n_iter}' 
    random_cre_pts, random_cse_pts = generate_random_pts(CRE_pts), 
generate_random_pts(CSE_pts) 
    all_random_pts = np.concatenate([random_cre_pts, random_cse_pts]) 
    random_df = generate_random_pt_df(all_random_pts, demo) 
    ps_model, random_df_w_ps = calc_ps_score(df = random_df, tx_prob = tx_prob, cov_list = 
covariate_cols) 
     
#     if the model doesnt converge, it will be saved for inspection 
    if not ps_model.mle_retvals['converged']: 
        ps_model_collect.append(ps_model), df_collect.append(random_df_w_ps) 
     
    for fu in fu_dict.keys(): 
        duration_col, event_col, cre_collector, cse_collector = fu_dict[fu] 
        for phenotype, collector in zip([0, 1], [cse_collector, cre_collector]): # 0 = CSE and 1 = CRE 
            data = random_df_w_ps.loc[random_df_w_ps['CRE_GROUP_V2'] == phenotype] 
            km_est = generate_KM_estimates( 
                df = data, 
                duration_col = duration_col, 
                event_col = event_col, 
                weight_col = 'IPTW_STABLE', 
                sample_name = bs_name 
            ) 
            collector.append(km_est) 
 
# Now plot the KM curves adjusted and unadjusted 
cre_14d_bs_dur = clean_collector(collector = cre_bs_km_14_collect, dur_key = 
cre_14d_event_times, duration = 'ORIG_14D_DURATION') 
cre_14d_ci = calculate_KM_ci(df = cre_14d_bs_dur) 
 
cse_14d_bs_dur = clean_collector(collector = cse_bs_km_14_collect, dur_key = 
cse_14d_event_times, duration = 'ORIG_14D_DURATION') 
cse_14d_ci = calculate_KM_ci(df = cse_14d_bs_dur) 
 
cre_30d_bs_dur = clean_collector(collector = cre_bs_km_30_collect, dur_key = 
cre_30d_event_times, duration = 'ORIG_30D_DURATION') 
cre_30d_ci = calculate_KM_ci(df = cre_30d_bs_dur) 
 
cse_30d_bs_dur = clean_collector(collector = cse_bs_km_30_collect, dur_key = 
cse_30d_event_times, duration = 'ORIG_30D_DURATION') 
cse_30d_ci = calculate_KM_ci(df = cse_30d_bs_dur) 
 
cse_ci_list = [cse_14d_ci, cse_30d_ci] 
cre_ci_list = [cre_14d_ci, cre_30d_ci] 
duration_list = ['14D_DURATION', '30D_DURATION'] 
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event_list = ['14D_MORTALITY', '30D_MORTALITY'] 
for cse_ci, cre_ci, duration, event in zip(cse_ci_list, cre_ci_list, duration_list, event_list): 
    km_model( 
        df = demo_w_ps, 
        ci_dfs = [cse_ci, cre_ci], 
        duration = duration, 
        event = event, 
        weight = 'IPTW_STABLE',  
        save = True,  
        show = True,  
        folder = 'PUBLICATION_FIGURES',  
        pic_format = '.tiff', 
        grayscale = True 
    ) 
     
    km_model( 
        df = demo_w_ps, 
        ci_dfs = [cse_ci, cre_ci], 
        duration = duration, 
        event = event, 
#         weight = 'IPTW_STABLE',  
        save = True,  
        show = True,  
        folder = 'PUBLICATION_FIGURES',  
        pic_format = '.tiff', 
        grayscale = True 
    ) 
 
# Just need to use demo_w_ps in CoxPHFitter 
hr_tables = [] 
formula = 'CRE_GROUP_V2' 
for duration, event in zip(duration_cols, mortality_cols): 
    cph = CoxPHFitter() 
    cph.fit( 
        df = demo_w_ps, 
        duration_col = duration, 
        event_col = event, 
        weights_col = 'IPTW_STABLE', 
        formula = formula 
    ) 
    hr_table = cph.summary[['exp(coef)', 'exp(coef) lower 95%', 'exp(coef) upper 
95%']].reset_index(drop = True) 
    hr_table.loc[:, 'OUTCOME'] = event 
    hr_tables.append(hr_table.set_index('OUTCOME')) 
hr_table_combined = pd.concat(hr_tables).round(2) 
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hr_table_combined.loc[: ,'HR [95% CI]'] = hr_table_combined\ 
                                            .apply(lambda x: f'{x["exp(coef)"]} [{x["exp(coef) lower 95%"]}, 
{x["exp(coef) upper 95%"]}]', axis = 1) 
hr_table_combined = hr_table_combined[['HR [95% CI]']].T 
hr_table_combined.columns.name = None 
hr_table_combined.to_csv('PUBLICATION_FIGURES/iptw_adjusted_CPH_model_cse_vs_cre.cs
v') 
 
# Just need to use demo_w_ps in CoxPHFitter 
hr_tables = [] 
formula = 'CRE_GROUP_V2' 
for duration, event in zip(duration_cols, mortality_cols): 
    cph = CoxPHFitter() 
    cph.fit( 
        df = demo_w_ps, 
        duration_col = duration, 
        event_col = event, 
        formula = formula 
    ) 
    hr_table = cph.summary[['exp(coef)', 'exp(coef) lower 95%', 'exp(coef) upper 
95%']].reset_index(drop = True) 
    hr_table.loc[:, 'OUTCOME'] = event 
    hr_tables.append(hr_table.set_index('OUTCOME')) 
hr_table_combined = pd.concat(hr_tables).round(2) 
hr_table_combined.loc[: ,'HR [95% CI]'] = hr_table_combined\ 
                                            .apply(lambda x: f'{x["exp(coef)"]} [{x["exp(coef) lower 95%"]}, 
{x["exp(coef) upper 95%"]}]', axis = 1) 
hr_table_combined = hr_table_combined[['HR [95% CI]']].T 
hr_table_combined.columns.name = None 
hr_table_combined.to_csv('PUBLICATION_FIGURES/unadjusted_CPH_model_cse_vs_cre.csv') 
 
# Prep data for SMD calculation in R 
demo_stats_t_path = 
r'DEMO_STATS_T_POST_BASELINE_DATA_CRE_V_CSE_Mono_Polymicrobial_all_isolates_I
CD_agreement_forced.csv' 
demo_stats_t = pd.read_csv(f'{main_analysis_path}/{demo_stats_t_path}') 
# Need to combine the variables in ADMT_SRC_CD_DES 
demo_stats_t['ADMT_SRC_CD_DES'] = 
demo_stats_t['ADMT_SRC_CD_DES'].replace({'TRANSFER FROM SNF':'OTHER HEALTH 
FACIL'}) 
# Need to pass the PS score, IPTW, and BSI/PNA cols 
merge_cols = [ 
    'ID_combined', 
    'PS_SCORE', 
    'IPTW_STABLE', 
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    'BSI_OR_PNA_INDEX' 
] 
demo_stats_t = demo_stats_t.merge(demo_w_ps[merge_cols], how = 'inner', on = 
'ID_combined') 
demo_stats_t_out = 
r'DEMO_STATS_T_W_IPTW_FOR_SMD_CRE_V_CSE_Mono_Polymicrobial_all_isolates_ICD_
agreement_forced.csv' 
demo_stats_t.to_csv(f'{main_analysis_path}/{demo_stats_t_out}', index = False) 
 
# R file is run here 
library(smd) 
 
path = as.character("~/Desktop/CRE Cohort 
Study/Primary_Analysis_Output/CRE_V_CSE/Mono_Polymicrobial_all_isolates_ICD_agreement
_forced") 
setwd(path) 
df <- 
read.csv("DEMO_STATS_T_W_IPTW_FOR_SMD_CRE_V_CSE_Mono_Polymicrobial_all_isolat
es_ICD_agreement_forced.csv") 
 
# Calculate the unadjusted and IPTW adj SMD of variables included in the PS score model 
variables_for_ps <- c( 
  'AGE', 
  'GENDR_CD_DES', 
  'INDEX_CULTURE_ICU', 
  'PRE_INDEX_LOS', 
  'SOFA_ON_EARLIEST_CDATE', 
  'CCI_SCORE', 
  'CVD_COMPOSITE', 
  'T2DM_COMPOSITE', 
  'BSI_OR_PNA_INDEX', 
  'ADMT_SRC_CD_DES' 
) 
 
head(df) 
df[, variables_for_ps] 
 
weight = 'IPTW_STABLE' 
 
unadj_smd <- smd( 
  x = df[variables_for_ps], 
  g = df[, 'CRE_GROUP_V2'], 
  gref = 1 
) 
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adj_smd <- smd( 
  x = df[variables_for_ps], 
  g = df[, 'CRE_GROUP_V2'], 
  w = df[, weight], 
  gref = 1 
) 
 
print(unadj_smd) 
print(adj_smd) 
help(write.csv) 
write.csv(unadj_smd, 'UNADJ_SMD.csv', row.names = FALSE) 
write.csv(adj_smd, 'ADJ_SMD.csv', row.names = FALSE) 
 
# Now read data back into python 
unadj_smd_path = f'{main_analysis_path}/UNADJ_SMD.csv' 
adj_smd_path = f'{main_analysis_path}/ADJ_SMD.csv' 
 
unadj_smd = pd.read_csv(unadj_smd_path, usecols = ['variable', 'estimate']) 
adj_smd =  pd.read_csv(adj_smd_path, usecols = ['variable', 'estimate']) 
 
clean_var_name = { 
    'AGE':'Age (years)', 
    'GENDR_CD_DES':'Gender', 
    'INDEX_CULTURE_ICU':'Index Culture in ICU', 
    'PRE_INDEX_LOS':'Time to Index Culture', 
    'SOFA_ON_EARLIEST_CDATE':'SOFA on Index', 
    'CCI_SCORE':'CCI Score', 
    'CVD_COMPOSITE':'CVD (Composite)', 
    'T2DM_COMPOSITE':'T2DM (Composite)', 
    'BSI_OR_PNA_INDEX':'Blood/Respiratory Culture on Index', 
    'ADMT_SRC_CD_DES':'Admission Source' 
} 
 
unadj_smd['variable'] = unadj_smd['variable'].replace(clean_var_name) 
adj_smd['variable'] = adj_smd['variable'].replace(clean_var_name) 
 
plt.rcParams['font.family'] = 'Arial' 
 
save_path = f'PUBLICATION_FIGURES/baseline_balance_before_after_ps_smd.tiff' 
fig, ax = plt.subplots(figsize = (7, 7)) 
# Plot the data 
ax.scatter(x = unadj_smd['estimate'], y = unadj_smd['variable'], color = 'black', ec = 'black', s = 30, 
label = 'Unadjusted') 
ax.scatter(x = adj_smd['estimate'], y = adj_smd['variable'], color = 'darkgrey', ec = 'black', s = 30, 
label = 'IPTW Adjusted') 
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# Draw the verticle lines at 0 and +/- 0.1 
ax.axvline(-0.1, linestyle = ':', alpha = 0.5, color = 'black') 
ax.axvline(0, linestyle = '-', color = 'black') 
ax.axvline(0.1, linestyle = ':', alpha = 0.5, color = 'black') 
 
# Set x limits 
ax.set_xlim(-0.5, 0.5) 
 

common_text_args = { 
    'color':'black', 
    'family':'Arial', 
    'weight':'bold' 
} 
 
xticks = ax.get_xticks() 
ax.set_xticks(xticks[1:-1]) # must set the ticks before setting xticklabels or get annoying warning 
ax.set_xticklabels([round(val, 1) for val in xticks[1:-1]], **common_text_args, fontsize = 10) 
 
# yticks = ax.get_yticks() 
# ax.set_yticks(yticks[1:-1]) # must set the ticks before setting xticklabels or get annoying warning 
ax.set_yticklabels(unadj_smd['variable'].values, **common_text_args, fontsize = 12) 
 
 

# Label axes and title 
# ax.set_title('SMD Before and After IPTW Adjustment', fontsize = 18, **common_text_args) 
fig.supxlabel('SMD', x = 0.7, fontsize = 12, **common_text_args) 
# ax.set_ylabel('Variables', fontsize = 12, **title_text_args) 
 
# Create annotation to demonstrate which side "favors" CSE vs CRE 
ax.annotate( 
    'Favors CSE', 
    xy = (0.05, -0.1), 
    xycoords = 'axes fraction', 
    fontsize = 12, 
    **common_text_args 
) 
 
ax.annotate( 
    'Favors CRE', 
    xy = (0.75, -0.1), 
    xycoords = 'axes fraction', 
    fontsize = 12, 
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    **common_text_args 
) 
 
ax.annotate( 
    '', 
    xy = (0.99, -0.05), 
    xytext = (0.01, -0.05), 
    xycoords = 'axes fraction', 
    textcoords = 'axes fraction', 
    arrowprops = dict( 
        arrowstyle = '<->', 
#         connectionstyle = 'bar', 
        color = 'black', 
        lw = 2 
    ) 
) 
 
ax.legend(fontsize = 12, prop = {'weight':'bold'}, frameon = True, facecolor = 'white') 
plt.tight_layout() 
plt.savefig(save_path) 
plt.show() 
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Figure_of_RR_and_HR_with_CI.ipynb 

import pandas as pd 
import numpy as np 
import os 
import re 
import datetime as dt 
from IPython.display import display 
 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
import warnings 
warnings.filterwarnings("ignore") 
 
pd.set_option('display.max_rows', 800) 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_colwidth', None) 
pd.set_option('mode.chained_assignment', None) 
 
home_folder_path = os.getcwd() 
 
combined_sa_em_folder = 
'Combined_Sensitivity_Analysis_Reports_Output/EFFECT_MEASURES_ANALYSIS' 
 
adj_em_file = 'IPTW_STABLE_ADJ_Effect_measures_table_by_effect_measure.xlsx' 
unadj_em_file = 'UNADJ_Effect_measures_table_by_effect_measure.xlsx' 
 
unadj_rr = pd.read_excel(f'{combined_sa_em_folder}/{unadj_em_file}', sheet_name = 'RR', 
header = [0,1], index_col = 0).dropna(how = 'all') 
adj_rr = pd.read_excel(f'{combined_sa_em_folder}/{adj_em_file}', sheet_name = 'RR', header = 
[0,1], index_col = 0).dropna(how = 'all') 
unadj_hr = pd.read_excel(f'{combined_sa_em_folder}/{unadj_em_file}', sheet_name = 'HR', 
header = [0,1], index_col = 0).dropna(how = 'all') 
adj_hr = pd.read_excel(f'{combined_sa_em_folder}/{adj_em_file}', sheet_name = 'HR', header = 
[0,1], index_col = 0).dropna(how = 'all') 
 
assumption_map = {assumption:number for assumption, number in zip(unadj_rr.index, range(1, 
7))} 
 
unadj_rr.index = unadj_rr.index.map(assumption_map) 
adj_rr.index = adj_rr.index.map(assumption_map) 
unadj_hr.index = unadj_hr.index.map(assumption_map) 
adj_hr.index = adj_hr.index.map(assumption_map) 
 



 

 723 

df_dict = { 
    'RR':{ 
        'Crude':unadj_rr, 
        'IPTW-Adjusted':adj_rr 
    }, 
    'HR':{ 
        'Crude':unadj_hr, 
        'IPTW-Adjusted':adj_hr 
    } 
} 
 
plt.style.use('ggplot') 
 
output_folder = 'PUBLICATION_FIGURES/Sensitivity Analysis' 
 
def prepare_effect_measure_df(df): 
    expanded = df.str.extractall('([0-9.]+)')\ 
                .unstack('match')\ 
                .droplevel(0, axis = 1)\ 
                .rename(columns = {0:'RR', 1:'CI_LL', 2:'CI_UL'})\ 
                .astype(float) 
    expanded.columns.name = None 
    expanded.index.name = 'ASSUMPTION_ID' 
    expanded = expanded.reset_index() 
    return expanded 
 
effect_measures = ['RR', 'HR'] 
follow_ups = ['14-DAY_MORTALITY', '30-DAY_MORTALITY'] 
adjustments = ['Crude', 'IPTW-Adjusted'] 
phenotypes = ['CNS_V_CSE', 'CRE_V_CSE'] 
 
errorbar_settings = { 
        'fmt':'d', 
        'markersize':10, 
        'c':'k', 
        'capsize':6, 
        'elinewidth':2, 
        'capthick':2 
} 
 
xy_label_settings = { 
        'fontfamily':'Arial', 
        'fontsize':12, 
        'fontweight':'bold', 
        'color':'black' 
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} 
 
tick_label_settings = { 
    'fontfamily':'Arial', 
    'fontsize':10, 
    'color':'black' 
} 
 
title_settings = xy_label_settings.copy() 
title_settings['fontsize'] = 20 
 
for effect_measure in effect_measures: 
    # Will have 2 figures for each effect measure, one for each phenotype 
    for phenotype in phenotypes: 
        # Need two rows and cols for adj/unadj and 14/30 fu 
        fig, axes = plt.subplots(nrows = 2, ncols = 2, figsize = (6, 7), sharey = True) 
        for row, fu in enumerate(follow_ups): 
            for col, adjust in enumerate(adjustments): 
                ax_obj = axes[row, col] 
                 
                df = df_dict[effect_measure][adjust].loc[:, (phenotype, fu)] 
                df = prepare_effect_measure_df(df) 
                x = df['RR'].values 
                ll = df['CI_LL'].values 
                ul = df['CI_UL'].values 
                y_labels = df['ASSUMPTION_ID'].values 
                y = np.array(list(range(len(y_labels)))) + 1 
                y = y[::-1] 
 
                # set x upper bound 
                x_max = 2.5 
                if any(ul > 2.5): 
                    x_max = 3 
 
                xerr = np.vstack([ll, ul]) 
                xerr = np.abs(xerr - x) 
 
                ax_obj.errorbar(x, y, xerr = xerr, **errorbar_settings) 
 
                ax_obj.set_yticks(y) 
                ax_obj.set_yticklabels(y_labels, **tick_label_settings) 
                ax_obj.axvline(1, c = 'k', linestyle = '--') 
                ax_obj.set_xlim(0.25, x_max) 
                ticks = ax_obj.get_xticks() 
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                ax_obj.set_xticks(ticks) # must set the ticks before setting xticklabels or get annoying 
warning 
                ax_obj.set_xticklabels([round(val, 1) for val in ticks], **tick_label_settings) 
                 
 
#                 ax.set_xlabel(f'{effect_measure} [95% CI]', **xy_label_settings) 
                if col == 0: 
                    ax_obj.set_ylabel(fu, **xy_label_settings) 
                     
                if row == 0: 
                    ax_obj.set_title(f'{adjust}', **xy_label_settings) 
                     
        title_phenotype = ' vs. '.join(phenotype.split('_')[0::2]) 
#         fig.suptitle(f"Crude and IPTW-adjusted {effect_measure} for 14- and 30-Day Mortality in 
{title_phenotype}") 
        fig.supxlabel(f"{effect_measure} [95% CI]") 
        plt.tight_layout() 
        plt.savefig(f"{output_folder}/{phenotype}_{effect_measure}_{'_'.join(follow_ups)}_boxplot.tiff") 
        plt.show() 
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