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ABSTRACT OF DISSERTATION 

MULTISCALE MODELING OF CARDIAC GROWTH AND BAROREFLEX 

CONTROL 

The heart functions within a complex system that adapts its function to any 

alteration in loading via several mechanisms. For example, the baroreflex is a short-term 

feedback loop that modulates the heart's function on a beat-to-beat basis to control arterial 

pressure. On the other hand, cardiac growth is a long-term adaptive response that occurs 

over weeks or months in response to changes in left ventricular loading. Understanding the 

mechanisms that drive ventricular growth and biological remodeling is critical to 

improving patient care. Multiscale models of the cardiovascular system have emerged as 

effective tools for investigating G&R, offering the ability to evaluate the effects of 

molecular-level mechanisms on organ-level function. 

This dissertation presents MyoFE, a multiscale computer model that simulates the 

left ventricle (LV) pumping blood around a systemic circulation by bridging from 

molecular to organ-level mechanisms. The model integrates a baroreflex control of arterial 

pressure using feedback to regulate heart rate, intracellular Ca2+ dynamics, the molecular-

level function of both the thick and thin myofilaments, and vascular tone. MyoFE is 

extended via a growth algorithm to simulate both concentric growth (wall thickening / 

thinning) and eccentric growth (chamber dilation / constriction). Specifically, concentric 

growth is controlled by the time-averaged total stress over the cardiac cycle, while 

eccentric growth responds to time-averaged intracellular myofiber passive stress. 

Our integrated model replicated clinical measures of left ventricular growth in two 

types of valvular diseases - aortic stenosis and mitral regurgitation - at two different levels 

of severity for each case. Furthermore, our results showed that incorporating the effects of 

baroreflex control of arterial pressure in simulations of left ventricular growth not only led 

to more realistic hemodynamics, but also impacted the magnitude of growth. Specifically, 

our results highlighted the role of regulating venous compliance (vasoconstriction) by the 

baroreflex immediately after the onset of valvular diseases, which has a significant role on 

the extent of LV growth in the long term. 

KEYWORDS: Multiscale modeling, Heart mechanics, Cardiac growth, Baroreflex, Left 

ventricle, Valvular disease 
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CHAPTER 1. MULTISCALE SIMULATIONS OF LEFT VENTRICULAR GROWTH AND 

REMODELING 

 

This chapter is adopted from Sharifi et al. [1] with permission. 

1.1 Introduction 

The heart, whose primary function is to pump blood through the circulatory system 

in a regulated manner, is a complex organ that is governed by multiple physics operating 

across multiple scales. It is able to adapt its geometry [2] and function [3, 4] accordingly 

with acute or chronic alterations in pumping demand. Similar to skeletal muscle [5], the 

myocardial cells that make up the heart muscle [6], can evolve in size and dimension in 

response to neurohormonal, chemical, and mechanical stimulus signals. This process, 

referred to as cardiac growth and remodeling (G&R), includes sub-processes at the cellular 

level such as sarcomerogenesis [7] and myocardial fibrosis [8]. At the organ level, this 

hypertrophic response, depending on the disease, is manifested through wall thickening 

and/or chamber dilation. Usually in the field of cardiac biomechanics, the term “cardiac 

growth” refers to changes in the geometry of the heart, whereas “cardiac remodeling” refers 

to changes in material properties of the cardiac tissue, induced by myofiber disarray, 

myocardial fibrosis, and altered contractility. 

Cardiac G&R can occur due to physiological-related demands (physiological 

hypertrophy) like pregnancy and athletic activities, or it can happen in response to 

pathological demands (pathological hypertrophy) such as valvular dysfunction and genetic 

mutation. Both types of cardiac G&R initiate as an adaptive response to the underlying 
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stimuli, but are significantly different in terms of the molecular mechanisms, signaling 

pathways, and the ultimate clinical outcome [2] as briefly described below. 

Physiological hypertrophy is considered as an adaptive mechanism where the 

cardiac mass increases due to the growth of cardiomyocytes in both length and width. A 

heart with physiological hypertrophy has preserved or even increased systolic function. 

However, this increase does not lead to changes in extracellular matrix or fibrosis [9]. In 

addition, physiological hypertrophy is a fully reversible phenomenon, except for the 

postnatal hypertrophy.  For example, the left ventricular dimension in trained athletes is 

significantly larger than non-athletic individuals [10, 11], but can return to a normal size 

after training is stopped [12]. During pregnancy, elevated hormones [13], increased blood 

volume, and cardiac output [14] cause the left ventricle (LV) to undergo an adaptive 

hypertrophy that returns to the normal condition within two weeks postpartum [15]. 

Pathological hypertrophy is classified as an early adaptive and compensatory 

response to abnormal ventricular loading or mutant sarcomeric proteins [16]. Prolonged 

pathological hypertrophy, however, can be maladaptive, causing myocardial fibrosis and 

altering myocyte function (e.g., Ca2+ handling) that can impair systolic or diastolic 

function, which in turn, can lead to irreversible growth and heart failure [6, 17]. There are 

2 classical types of pathological hypertrophy that are defined based on ventricular 

geometry resulting from the disease. 1) Concentric hypertrophy is when the LV wall 

thickens and cardiac mass increases with little or no change in the chamber volume because 

of the parallel deposition of sarcomeres in cardiomyocytes [6]. 2) Eccentric hypertrophy 

or dilated hypertrophy is when the chamber volume dilates and cardiac mass increases with 

a small change in the wall thickness due to the serial addition of sarcomeres and 
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lengthening of cardiomyocytes [6]. Although many heart diseases can produce these 2 

types of pathological cardiac hypertrophy, three prevalent causes are illustrated in the 

following.  

Pressure overloading is an external abnormal mechanical loading in which the 

ventricular afterload increases. To overcome the elevated afterload, the contractile stress 

in the sarcomeres increases to generate enough force to pump blood out of the LV and into 

the rest of the body [18]. In accordance with Laplace’s Law, the heart increases the 

ventricular wall thickness by deposition of sarcomeres in parallel to alleviate the elevated 

wall stress. This wall thickening can result in diastolic dysfunction and impaired filling of 

the LV, which in turn, can lead to heart failure [19]. This is the characteristic feature of 

concentric hypertrophy that is generally seen during pressure overloading. Among the 

different types of disorder in the vasculature that can cause pressure overloading, 

hypertension is arguably the most common one. It can be either the primary cause or the 

secondary outcome of other diseases like kidney or thyroid disorders [20, 21]. Another 

prevalent cause of pressure overloading is aortic stenosis, a valvular disease where the 

aortic valve does not open properly or becomes narrow [22]. A stenotic valve can happen 

due to congenital heart defects, like a bicuspid aortic valve [23], or the deposition of 

calcium on the aortic valve [24].  

Volume overloading is another type of abnormal ventricular loading in which the 

LV is filled with excess blood during diastole, which results in an elevated ventricular 

preload [18]. Valvular disorders that lead to imperfect closure of the valves are the most 

prevalent cause of volume overloading. For instance, mitral valve regurgitation occurs 

when the mitral valve does not close properly during systole, causing back flow of the 



 

 

4 

blood into the left atrium, which in turn, increases diastolic filling of the ventricle [25]. 

Similarly, aortic valve regurgitation is another type of valvular disorder where the aortic 

valve does not tightly close during diastole, which leads to overloading of the LV by 

retrograde flow of blood from the aorta back into the LV [26]. Excessive filling of the LV 

results in overstretching of sarcomeres, which initiates the process of sarcomerogenesis 

whereby the number of sarcomeres is increased in series [7]. This elongation process 

essentially re-establishes the sarcomeres back to an optimal force-generating length [5]. 

Eccentric hypertrophy is a distinctive outcome of volume overloading whereby the dilated 

chamber would preserve the stroke volume in response to excessive diastolic filling [27]. 

According to Laplace’s Law, dilation of the chamber volume elevates the wall stress 

because of the reduction in h/r ratio [18] where h and r are the ventricular wall thickness 

and chamber radius, respectively, but will be normalized by wall thickening of the LV to 

preserve the mass-to-volume ratio [28].  

Hypertrophic cardiomyopathy (HCM) is the most common form of genetic heart 

disease, which is caused by mutations in the sarcomeric proteins in the myocardium [29]. 

It has been reported that patients with HCM are at high risk for atrial fibrillation, as well 

as heart failure and sudden death [30].  Although HCM has been known to cause sudden 

death in youths, including athletes, it has also been reported as the cause of death in all age 

groups [31]. There are various mutations to the genes that encode the proteins of cardiac 

sarcomeres, which can lead to the onset of HCM at different time points over a life span 

[32, 33]. These mutations lead to hypercontractile sarcomeres by destabilizing the super-

relaxed state of myosin heads, increasing myofilament activation, lowering efficient energy 

usage, and impairing Ca2+ cycling and sensitivity [34-36]. These underlying perturbations 
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at the cellular level trigger the signaling pathways that induce cardiac hypertrophy to 

accommodate for the elevated contractile function of the heart. The hallmark feature of 

HCM is asymmetrical hypertrophy, especially in the septal wall, along with myocardial 

fibrosis and myofiber disarray [37]. 

Computer and mathematical modeling of cardiac G&R has seen significant 

developments since its emergence nearly 30 years ago [38]. Computational cardiac G&R 

models have the potential to enhance our understanding of the complex 

interaction/behavior of how living systems adapt, especially when they are validated with 

experimental data collected at multiple scales. This is accomplished by developing 

mathematical relations between the underlying stimuli (e.g., mechanical signals) and the 

potential outcomes in the geometry and function of the heart (e.g., LV wall thickening, LV 

chamber dilation, myofiber disarray, hypercontractility).  These computational models 

have helped to quantitatively investigate the effects of different hypotheses, such as the 

choice of mechanical stimuli [39, 40] and the reversal of cardiac hypertrophy [41], on the 

hypertrophic behavior of the heart. With recent developments in cardiac G&R models, 

along the other computational models of the heart, it has been predicted that we will have 

comprehensive patient-specific models of the heart within the next decade [42]. 

The objective of this review is to provide an overview of the current state of the art 

in computational modeling of cardiac G&R and discuss how the current models can be 

improved before implementation into personalized models for clinical use. To serve this 

purpose, in section 2, we summarize the most common computational models of cardiac 

G&R, including volumetric growth of the LV and myofiber remodeling. In section 3, we 

consider the limitations of the current models that need to be addressed. Finally, in section 
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4, we discuss the future perspective of the field and explain how computational models can 

improve patient care in the future. 

1.2 Current computational models of G&R 

Computational models have been extensively developed and applied to simulate 

cardiac G&R (Figure 1.1). In the following subsections, we recapitulate the key findings 

of current computational modeling of cardiac G&R. 

 

Figure 1.1 Highlights on computational modeling of cardiac growth, based on volumetric growth 

theory and fiber remodeling, throughout the last three decades. 
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1.2.1 Volumetric growth theory 

One of the most prevalent frameworks in modeling growth is “volumetric growth 

theory”. Utilizing the idea of a multiplicative decomposition of the deformation gradient F 

from continuum plasticity, Rodriguez et. al [38] proposed splitting the deformation 

gradient as: 

F = F
e
F
g
  (1.1) 

In this way, local changes in mass can be specified directionally via the inelastic 

growth tensor Fg as shown in Figure 1.2 Applying Fg maps the reference configuration 𝛽0  

to an intermediate configuration 𝛽∗ due to the stress-free removal or addition of material. 

Conventionally, addition in the fiber direction represents the serial addition of sarcomeres, 

while addition in the sheet and sheet normal directions represent the parallel addition of 

sarcomeres. In general, however, 𝛽∗ is not guaranteed to be “kinematically” compatible, 

meaning that gaps and overlaps can form. Compatibility is restored by applying an elastic 

deformation Fe
* that restores continuity in the absence of any external loads, which can 

produce residual stresses (i.e., non-zero stresses without the presence of external load). In 

fact, this framework has been used to model the existence of residual stresses observed in 

vivo [43-45]. The total current configuration 𝛽 is achieved by applying Fe to the 

intermediate configuration 𝛽∗. As growth occurs, Fe is altered, changing the stress response 

of the tissue for a given load. 
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Figure 1.2 Schematic showing how Fe, Fg, Fe
* and F map between configurations in volumetric 

growth theory.  

Ultimately F maps from the reference configuration 𝛽0 to the loaded, grown and deformed 

configuration 𝛽. Fg maps from 𝛽0 to 𝛽∗ representing the stress-free removal or addition of material. 

This configuration is not necessarily compatible, as shown via discontinuities and overlaps here. 

Compatibility is restored via Fe
* to a new unloaded geometry. Finally, Fe maps from the incompatible 

grown configuration 𝛽∗ to the final loaded configuration 𝛽. 
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This framework was originally used extensively in modeling arterial growth [46-

50] and growth in the developing heart [51-55]. Lin and Taber [51] introduced the 

evolution of Fg as a differential equation involving the deviation of a growth stimulus from 

its homeostatic value. The first application of this framework to the geometry of a ventricle 

was by Kroon et al. [56]. This work simulated inhomogeneous growth in 3D and extended 

the framework by updating the reference configuration incrementally as growth occurs. 

This led to steady state growth in which the growth stimulus (deviation of end-diastolic 

myofiber strain from a homeostatic value) decreases as a steady state configuration is 

reached.  

Much of the focus since has been on the development of constitutive growth laws 

that govern the formulation of Fg. The question of what stimulus/stimuli is the driver of 

growth is still debated [57], but conventionally, cardiac growth models use either stress, 

strain, or some combination of the two as their stimulus for driving the evolution of Fg. 

Grossman et al. [28] found that peak systolic wall stress was consistent between normal 

hearts and those that experienced concentric or eccentric growth, leading to a hypothesis 

that fiber stress is a stimuli for growth. Stress regulated growth has been used to 

successfully model cardiac growth in response to hypertension [58], myocardial infarction 

[59], and recently to analyze the effects hypertrophy has on the electromechanics of the 

LV [60]. 

Though Grossman’s hypothesis supports stress as a valid mechanical stimulus, 

Emery and Omens [61] found that diastolic stresses remain elevated during growth, but 

end diastolic fiber strains return to normal, suggesting that strain may be the dominant 

growth stimulus in response to volume overload. Guterl et al. [62] further supports strain 
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as the regulator for cardiac growth after experiments on long-term cultured right ventricular 

papillary muscles showed that systolic stress played no role in the observed growth. Kroon 

et al. [56] used end-diastolic strain in their work to model growth during diastolic loading, 

comparing approaches that utilized either fixed or updated reference configurations. 

Kerckhoffs et al. [63] proposed a strain driven growth law that was able to qualitatively 

capture growth in response to both pressure and volume overload with a single set of 

growth parameters. This work was extended in 2018 by Witzenburg & Holmes [64], 

connecting Kerckhoffs’ growth law to a compartmental model of the heart, which in turn 

was coupled with a circulatory model. They were able to quantitatively match multiple 

independent sets of growth data for pressure and volume overload as well as growth in 

response to myocardial infarction. In 2015 and 2016, Lee et al.  [41, 65] extended the 

framework proposed by Goktepe et al. [66], using a strain based growth law to predict the 

reversal of growth, as well as growth, integrating it into an electromechanical model of the 

heart. Genet et al. [67] incorporated a strain-based growth law in a four-chamber model of 

the heart, predicting growth and also secondary effects such as valvular position and 

papillary muscle position. Recent studies on strain-driven growth include modeling 

forward and reverse growth due to cardiac dyssynchrony [68], incorporating multiscale and 

machine learning to analyze the predictive power of a strain based growth model [69], and 

incorporating an evolving set point to better predict growth reversal [70]. Some works used 

a combination of stimuli for deriving their growth model. Goktepe et al. [66] pre-selected 

the stimulus, using strain for eccentric growth and stress as the stimulus for concentric 

growth. Similarly, Berberoglu et al. [71] switched between stimuli when modeling cardiac 

dysfunction in grown hearts. 
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Recent works have focused more heavily on trying to deduce the best 

stimulus/combination of stimuli to accurately produce stable growth as well as 

incorporating more multiscale, mechanistic features. Witzenburg & Holmes [72] compared 

eight existing growth laws in response to cyclical stretches meant to represent either 

volume or pressure overload. They found that only two models [51, 63] could reach a 

steady state growth in both simulations and also highlighted the need to accurately capture 

evolving hemodynamics. In a recent work, Mojumder et al. [39] showed myofiber stress 

has a better correlation with the predicted concentric growth in response to pressure 

overloading using finite element modeling. Though not utilizing the volumetric 

framework, the studies performed by Rondanina and Bovendeerd [40, 73] concluded that 

(1) using at least one stress based stimulus and (2) accurately modeling hemodynamics, 

specifically hemodynamic feedback to maintain mean arterial pressure, yields a model that 

is able to capture growth while maintaining realistic pump function. Estrada et al. [74] and 

Yoshida [75] have recently incorporated cell level hormone networks into their models of 

growth. As with most modeling, the shift from phenomenological towards mechanistic 

models will drive the field forward regarding predictive capability and may shed light on 

the most relevant growth stimuli, mechanical or otherwise. 

1.2.2 Constrained mixture theory  

Another approach for modeling of G&R is based on the constrained mixture theory 

[76]. According to this theory, the different constituents of tissue (cell, collagen, elastin, 

etc.) have distinct production/turnover rates, and are constrained to deform within a single 

continuum mixture. The key hypothesis in this theory is that deposition of new material for 

each constituent occurs at the current configuration. According to the constrained mixture 
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theory, constituent 𝛼 deposits in a preferred direction at time  𝜆 ∈ [0, 𝑠] with a homeostatic 

stretch or pre-stretch of Ga (l) . If we assume F(s) and F(l) are the deformation gradient 

of the whole continuum from a reference configuration at t = 0  to the configurations at 

time s and 𝜆, respectively, then F(s)F(l)-1 accounts for deformation gradient of the whole 

continuum from time  𝜆 to the current configuration at time s. Consequently, the 

deformation gradient of constituent 𝛼 from time  𝜆 to the current configuration at time s 

can be formulated as F
n

a (l )(s) = F(s)F(l)-1Ga (l)  (Figure 1.3).  

 

Figure 1.3 Schematic showing finite deformation of a soft tissue according to constrained mixture 

model. 

Each constituent 𝛼 = 1,2, … , 𝑛 deposits within the current mixture with a preferred deposition stretch 

𝐺𝛼(𝜆) at G&R time of 𝜆 ∈ [0, 𝑠] from its stress-free configuration of 𝑘𝑛
𝛼(𝜆). However, the constituent 

𝛼 may have a different deformation because all constituents are constrained to deform within a single 

continuum from the configuration at time of 𝜆, 𝑘(𝜆) , to current configuration at time s, 𝑘(𝑠). 

Constituent-specific deformation gradient associated with constituent-specific stored energy function 

then can be formulated as 𝐹𝑛
𝛼(𝜆)(𝑠) = 𝐹(𝑠)𝐹(𝜆)−1𝐺𝛼(𝜆). 

 

Constrained mixture theory has been widely used in G&R models of arteries and 

vessels [77, 78]. There are several reviews on constrained mixture-based G&R model, 

where the bulk of its mathematical background are summarized. For example, Ateshian 
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and Humphrey [79] reviewed the application of this theory to various illustrations of 

biological G&R and identified open problems in the field. Valentin and Holzapfel [80] 

summarized the core hypotheses integrated in constrained mixture theory of arterial G&R 

and recapitulated the remarkable findings. In the most recent study, Humphrey [81] 

reviewed the constrained mixture theory introduced twenty years ago and explored its 

application in various types of vascular conditions.  

Compared to volumetric growth theory, constrained mixture modeling is 

computationally more complex because it needs to track the evolution of each constituent’s 

stress-free configuration at each growth time step. Therefore, constrained mixture models 

have been mainly used on arterial G&R by assuming simple 2D geometry e.g. thin-wall 

membrane [80, 82]. To the best of our knowledge, no study has implemented the 

constrained mixture theory into cardiac G&R, and only a few studies have implemented 

3D finite element models of arterial G&R based on constrained mixture theory [78, 83, 

84]. 

Although constrained mixture theory is not routinely employed in the field of 

cardiac G&R, Yoshida and Holmes [85] suggested this approach might address some 

limitations of volumetric growth theory for cardiac G&R. First, they observed that as the 

new constituent replaces the old one with a unique turnover rate, the homeostatic 

configuration evolves in such a way that the new stage is fundamentally different from the 

original ungrown stage. The authors suggested that the evolution of the homeostatic 

configuration in constrained mixture theory might be a better suited solution for evolving 

the growth setpoint, which was already suggested to be a potential solution for capturing 

the reversal of cardiac growth when the pressure overloading is removed [70]. Second, they 
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suggested this approach might have some advantages in the modeling of myocardial 

fibrosis since it allows the modeling of different constituents of cardiac tissue. Hence, this 

approach will potentially address some limitations of kinematic (volumetric) growth theory 

and enhance the computational modeling of cardiac G&R. 

1.3 Limitations of current models  

The current state of the art for cardiac G&R has certain limitations, which have 

hindered its use in clinical applications. In order to implement computational modeling into 

clinical care and improve patient outcomes, these limitations need to be addressed. Several 

of these key limitations are outlined as follows.  

1.3.1 Contractile model of the heart 

Several models of cardiac G&R [41, 51, 56, 59, 66] have only operated under 

passive loading of the LV (diastole) and neglected the active contractile behavior of 

myocardium during systolic ejection. In these models, the ventricular pressure was 

incrementally increased up to the end-diastolic pressure and then was kept constant to allow 

the ventricle to grow. Another group of works evaluated cardiac G&R during the full 

cardiac cycle by simulating both passive and active phases of cardiac function. Most of 

these models [63, 65, 68, 86] utilized phenomenological Hill-type models of contraction to 

simulate the LV during systole. This model of contractile mechanics defines the magnitude 

of active force using a length-dependent force generation model [87, 88]. Other studies 

[64, 74] have used a time-varying elastance model of the ventricle [89, 90] to simulate the 

full cardiac cycle. This model essentially assumes an exponential end-diastolic pressure-

volume relationship and a linear end-systolic pressure-volume relationship. The pressure-
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volume relationship for any points between these two is described by a smooth time-

varying function.  Rondanina and Bovendeerd recently investigated the effects of different 

mechanical stimuli on cardiac growth [40, 73]. In this case, the contractile behavior of the 

ventricle was modeled by a one-fiber model of cardiac function [91] and was used to relate 

mechanics at the organ level, via ventricular pressure and volume, to mechanics at the 

tissue level, via myofiber stress and sarcomere length.  

Generally, the myocardium has two types of mechanical behavior, namely passive 

and active. The passive mechanical properties of myocardium are primarily related to 

collagen and titin that control the passive tension of the myocytes during ventricular 

diastole. Titin is a large protein that spans from the Z disk to the M line of sarcomeres [92], 

while collagen, as part of the ECM, surrounds and interconnects cardiac myocytes, muscle 

fibers, and the coronary microcirculation [93]. The active contractile mechanical properties 

of myocardium are related to the crossbridge cycling of myosin heads on the thick filament 

with actin binding sites on the thin filament, which drives the systolic behavior of the LV. 

This interaction is part of a cascade of multi-physics events that enable contraction. Briefly, 

an action potential leads to depolarization of the cell membrane, which activates Ca2+ 

channels and allows entry of Ca2+ into the cell. Ca2+ entry triggers the release of Ca2+ from 

the sarcoplasmic reticulum (SR) and increases the Ca2+ concentration within the cell [94]. 

Elevated Ca2+ concentration leads to the binding of Ca2+ to the myofilament troponin-C, 

which moves the tropomyosin on the surface of the thin myofilament. This exposes more 

available binding sites for attachment of myosin heads on the thick filament, which then 

generate the power stroke. For more insights on the regulatory system of myofilaments, we 

refer to the review by Solis and Solaro [95]. 
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Although it is well accepted to simplify the sophisticated biological mechanisms of 

the beating heart in computational modeling, the contractile function is an integral process 

of the heart and should be modeled more accurately to allow the cardiac G&R to occur 

throughout the cardiac cycle, not just at certain timepoints such as end-diastole or end-

systole. To our knowledge, none of the contractile models used in the current state of the 

art in cardiac G&R truly simulates the sliding of myofilaments based on the Huxley 

crossbridge formation [96] in the myosin level. To overcome this limitation, there are 

several models of sarcomere mechanics that could be employed, which describe the 

crossbridge cycling of myosin and actin binding sites using mathematical definitions [97-

99]. These models typically assume a certain number of conformation states that myosin 

heads or binding sites can switch between throughout the contraction cycle based on the 

Ca2+ activation of actin binding sites. An example of a kinetic scheme is shown in Figure 

1.4. The transition between these states is usually described by a system of ordinary 

differential equations (ODEs) that depend on the present population of myosin heads or 

binding sites at each state, and transition rate factors. The sarcomere contraction model 

proposed by Campbell et al. [97, 98], which captures length dependent activation, 

cooperativity between thick and thin filaments, and the strain-dependent behavior of cross-

bridges, has successfully been implemented into several finite element models of LV 

mechanics. Zhang et al. [100] implemented this model of contraction into a finite element 

model of a rat LV, where the myosin heads were only able to move between the disordered 

relaxed (DRX) and force generating (FG) states. They showed that by considering key 

features of ventricular relaxation they could predict both the global function and regional 

deformation of the LV compared to measured data. Mann et al. [101] recently enhanced 



 

 

17 

that model by adding the super-relaxed (SRX) state for myosin heads and concluded that 

the force-dependent recruitment from the myosin SRX state increased the end-systolic 

pressure-volume relationship. This level of sarcomere mechanics has yet to be 

implemented in models of cardiac G&R. Although these types of contraction schemes can 

increase the complexity of computational models, cardiac G&R would occur under more 

realistic conditions that can quantitatively explain the relation between the pathological 

cardiac diseases observed at the organ level and cellular events at the myosin level.  
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Figure 1.4 Kinetic scheme.  

Sites on the thin filament switch between states that are available (Non) and unavailable (Noff) for 

cross-bridges to bind to. Myosin heads transition between a super-relaxed detached state (MSRX), a 

disordered-relaxed detached state (MDRX), and a single attached force-generating state (MFG). J terms 

indicate fluxes between different states. 

 

1.3.2 Hemodynamic feedback control 

Valvular disorders, such as aortic stenosis and mitral regurgitation, change the 

ventricular loading and cardiac function, but the arterial pressure and cardiac output 

normally remain unchanged  [102-104]. Current approaches to cardiac G&R have mainly 

focused on the geometry of the LV and paid less attention to hemodynamic feedback. The 

baroreflex loop is an important short-term hemodynamic feedback mechanism that 

maintains the arterial pressure by adapting the cardiac contractility, heart rate, and vascular 
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tone to acute changes in the ventricular loading. Current models are generally performed 

under constant heart rate and contractility assumptions, with no mechanisms for preserving 

the arterial pressure. The absence of hemodynamic feedback has been viewed as the 

potential cause of inaccuracy in certain model predictions of cardiac geometry and 

function, when compared to measured data. For example, Kerckhoffs et al. [63] reported a 

mismatch between the calculated peak LV cavity pressure and that measured in 

experiments, and posited that it could be due to the absence of fast baroreflex responses in 

their model. Recently, Rondanina and Bovendeerd [40] investigated the effect of 

mechanical stimulus signals on cardiac growth using a growth law lumped with a 

compartmental model of cardiovascular function. Their model erroneously predicted a 

20% to 40% reduction in mean arterial pressure and cardiac output in response to aortic 

stenosis, aortic regurgitation, and mitral regurgitation. In their next study, Rondanina and 

Bovendeerd [73] incorporated a model of baroreflex feedback, along with their growth 

model, and suggested using a mixed stress-strain growth model in conjunction with a 

model of hemodynamic feedback could capture more realistic cardiac growth and 

preserved cardiac pump function.  

1.3.3 Reverse growth 

The reversal of pathological hypertrophy is a primary goal of clinical interventions 

such as mitral valve replacement [105], aortic valve surgery [106], implementation of LV 

assist devices [107], cardiac resynchronization [108], and bioinjection hydrogel treatment 

[109-111]. These interventions essentially normalize the ventricular loading by reducing 

overloading conditions, which can improve function and positively alter ventricular 

geometry, ultimately leading to more favorable clinical outcomes. In terms of simulating 
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the onset of pathological hypertrophy, computational models of cardiac G&R enlarge the 

ventricular geometry when the underlying stimuli is higher than the homeostatic level. On 

the other hand, it is expected that during the reversal of an adverse event, when the stimulus 

signals are below the homeostatic level, the ventricle would shrink in order for the 

mechanical stimuli to return to their setpoint level.  

However, current computational models have focused more on the prediction of 

“forward” cardiac growth and only a few works have tried to study the “reverse” of cardiac 

growth. Lee et al. [41] modified the eccentric growth law proposed by Goktepe et al. [66] 

and could successfully capture the “reverse” growth for a thick-walled cylindrical tube and 

realistic LV geometry under certain types of loading.  Arumugam et al. [68] implemented 

a similar growth law into a biventricular FE model of the heart and used maximum elastic 

myofiber stretch over a cardiac cycle as the sole driving signal of their growth law. They 

lumped their growth model with an electromechanics model of the heart and showed that 

the model predicts growth in the LV chamber size and septal wall, but reversal of growth 

for RV chamber size and LV free wall in response to mechanical dyssynchrony. Recently, 

Yoshida et al. [70] adopted the growth law proposed by Kerckhoff et al. [63] into a 

biventricular FE model of the heart and investigated the regression of concentric growth 

due to the removal of pressure overloading. Although this growth law was shown in a study 

to perform the best in predicting cardiac hypertrophy in comparison to seven other growth 

laws [72], it was not able to predict the reversal of growth when the pressure overloading 

was lifted. The authors suggested that using an evolving growth setpoint might potentially 

address the inability of current models to predict the reversal of growth.  
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1.3.4 Clinical application 

In addition to the model limitations described above, there are other types of 

limitations that have hindered the field from being applied to clinical care. These 

limitations are more general and are applicable to most multiscale models of the heart, 

including growth and remodeling.  

Firstly, mathematical models of cardiac G&R are computationally expensive. The 

finite element method is widely used to simulate the mechanics of the heart by numerically 

solving partial-differential equations for each element in both time and space.  The solution 

then needs to be integrated over the entire domain (whole geometry of the heart) at each 

time step. This process for 3-dimensional models that are non-liner and time dependent is 

computationally intensive and time-consuming, since it requires multiple hours to simulate 

a single cardiac cycle [112]. Secondly, these models, in general, require parameter 

identification and model calibration that add more sophistication in their application. 

Thirdly, computational models usually include uncertainties and variabilities that have 

limited their clinical application [113]. These uncertainties need to be quantified and 

propagated through different scales using statistical approaches, such as Bayesian 

inference and Gaussian process regression. Fourthly, performing computational models of 

cardiac G&R on the population scale is labor intensive. The number of trained technicians 

who can perform the computational simulations in comparison to the large pool of patients 

across the nation is lower, meaning that the ratio of demand over capacity is much larger 

than unity. Consequently, performing full patient-specific models of cardiac G&R for 

patients that need real-time results is not yet practical in the health care system.  
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1.3.5 Model calibration and validation  

The accuracy of computational models of cardiac G&R can be assessed when they 

are calibrated and validated via experimental data. Animal models and clinical data from 

human patients are the main sources of measured experimental data. Animal models are 

more often used than patient data, since they are more available, and it is possible to 

conduct invasive measurements on them. On the other hand, acquiring data from human 

patients is more restricted and only procedures that are part of standard care, including non-

invasive imaging techniques or measuring clinical data, are typically used. 

Animal models provide the opportunity to validate computational models in 

different scales. Organ-level data are usually acquired using non-invasive imaging devices 

such as echocardiography or cardiac magnetic resonance images (MRI). Imaging data are 

mainly utilized to construct the patient-specific geometry of the LV, but can also provide 

information about myocardial deformation, such as displacement and strain. The predicted 

LV volume at end-diastole and end-systole, stroke volume, ejection fraction, and wall 

thickness can then be validated with the imaging data. This is also the case with regional 

strain patterns that are predicted by the model and then compared to in vivo measurements 

[100, 101]. Calculated myofiber remodeling can also be evaluated against the measured 

values from magnetic resonance diffusion tensor imaging (MR-DTI) [114]. At the cellular 

level, predicted hypertrophy is validated ex vivo by measured data for myocyte width and 

length, sarcomere number and length, and fibrosis from collected ventricular tissue samples 

Model calibration is the adjustment of model parameters such that the model 

prediction best fit the data. However, the number of parameters in G&R models can be 

large, which in turn complicates the process of model calibration. A solution to this 
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complexity is to define simplified relations between them to reduce the number of free 

parameters [115]. One of the main free parameters in growth laws is growth rate or gain 

factor. This parameter controls the speed of the growth algorithm, and is usually adjusted 

in a way to fit the growth rate from the experimental data. Once the G&R model is 

calibrated, it needs to be validated against an independent set of measured data that has not 

been used in the calibration process. The process of model validation can be governed in 

two ways. First, the predicted results from computational models of cardiac G&R can be 

qualitatively compared with the experimental data by overlaying them in a single figure. A 

second approach is to quantitatively calculate the error between the computed results and 

measured ones over a range of inputs to quantify the level of agreement. This approach is 

comprised of statistical methods referred to as validation metrics. For more insights on 

different approaches for validation metrics, we refer to the review by Oberkampf and 

Baroneb [116].  

1.4 Future perspectives  

1.4.1 Multiscale modeling of cardiac G&R 

Despite the limitations listed above, current models have done a reasonable job in 

simulating cardiac G&R due to extrinsic mechanical conditions such as valvular disorders 

[40, 63, 64], systemic and pulmonary hypertension [58], and myocardial infarction [59, 

64]. However, cardiac G&R can occur due to intrinsic events, such as altered hormone 

level or mutant sarcomeric proteins, which have not been thoroughly investigated in the 

field of computational biomechanics. Multiscale modeling has the potential to solve many 
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of the issues with current cardiac G&R models and will most likely be the focus of cardiac 

biomechanics in the near future.  

Inspired by the field of systems biology, there are several models that simulate the 

complex network of signaling pathways within the cell, which can predict cell growth in 

response to altered hormones. Ryall et al. [117] proposed a model of hypertrophic signaling 

pathways to predict the change in cell area of a cardiomyocyte in response to hormonal 

alteration and biomechanical stretching. Frank et al. [118] recently modified this model 

and validated it with in vivo data from multiple mouse models. Yoshida et al. [75] 

investigated pregnancy-induced cardiac growth by coupling a signaling pathway network 

that could predict the cell-level hypertrophy with a compartmental model of the rat heart 

in a circulatory system. Ultimately, they simulated the pregnancy condition by developing 

volume overload in conjunction with a surge in hormone levels. Their model successfully 

predicted cardiac growth in response to pregnancy that is consistent with experimental data, 

and concluded that most of the growth, especially during the first half of pregnancy, was 

due to an early rise in progesterone. Estarada et al. [74] went further and proposed a 

multiscale model of cardiac hypertrophy by adopting this approach into a finite element 

model of a LV, to investigate the prediction of concentric hypertrophy in response to 

transverse aortic constriction (TAC), which includes both elevated afterload along with the 

change in hormone levels. Interestingly, they concluded that the hormonal inputs had a 

larger effect than the mechanical signals in the prediction of hypertrophy due to TAC. Both 

studies emphasized the importance of multiscale modeling of cardiac growth wherein they 

could monitor the interaction of both mechanical and hormonal stimuli in the development 

of cardiac growth. 
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Multiscale modeling of cardiac G&R could also be beneficial in quantitatively 

studying familial hypertrophic cardiomyopathy (HCM). This type of genetic heart disease-

- known as an intrinsic cause of cardiac hypertrophy--is mainly induced by mutant 

sarcomeric proteins. Different types of mutations associated with either the thick or thin 

myofilaments can cause HCM. Although the underlying mechanism of mutant genes and 

development of HCM is not completely clear, numerous mutations in the genes of 

sarcomeres have been identified that lead to HCM. Genetic mutations associated with the 

myosin heavy chain (MYH7) and myosin binding protein C (MYBPC3) are the most 

common cause of HCM [29, 119]. In general, these mutations affect the motor function of 

myosin heads, potentially destabilizing the SRX state and increasing the number of myosin 

heads that can interact with actin. Another outcome of thick filament mutations is the 

increase of energy required for myosin ATPase, which in turn can reduce the activity of 

other ATP-consuming processes such as sarcoendoplasmic reticulum Ca2+ ATPase 

[SERCA] [35]. HCM mutations can also occur in thin filament genes including cardiac 

troponin T (TNNT2), cardiac troponin I (TNNI3), 𝛼-tropomyosin (TPM1), and cardiac actin 

(ACTC). The thin filament associated mutations ultimately lead to alterations in the Ca2+ 

balance within the cell by increasing the sensitivity of troponin C for calcium [35, 120]. 

Eventually,  all of these molecular-level perturbations alter the signaling pathways [2] and 

develop hypercontractile sarcomeres [34] that lead to asymmetrical hypertrophy in the 

septal wall, along with myofiber disarray. 

To date, no computational models have studied cardiac G&R in response to HCM. 

Here, we briefly hypothesize two potential solutions for modeling of HCM across multiple 

scales, from molecular-level to organ-level. The first solution to fill this gap is to lump a 



 

 

26 

model of the signaling pathway network, wherein it represents the interaction of 

pathological biochemical stimuli involved in HCM, with a mechanical model of cardiac 

G&R. In this approach, the effects of mutant genes, which disturb the signaling pathway 

within the myocardial cell, can be observed on larger scale events such as LV hypertrophy 

and myofiber remodeling. However, since HCM is a disease of the sarcomeres, it is 

important to simulate the mechanics of sarcomeres in a biologically relevant way and 

mimic the effects of mutant genes at the molecular level. Therefore, the second solution 

could be utilizing a mechanistic model of sarcomeres, rather than phenomenological 

models, for simulating the contractile behavior of the heart. As described in section 3, 

coupling a model of sarcomere mechanics, which simulates the interaction of myosin heads 

and actin biding sites to generate the active contractile force, with a model of cardiac G&R 

could be very beneficial. Due to the ability of these models, perturbations in molecular-

level events such as an increased number of accessible heads to interact with actin binding 

sites, elevated ATPase, or even perturbed Ca2+ handling, can be quantitatively predicted 

[121]. Thus, implementing a growth law that utilizes these perturbations in molecular 

events as the stimuli to predict cardiac growth, in terms of ventricular size, would be a 

remarkable success in the field of cardiac biomechanics. In addition to growth of the LV, 

hypercontractile sarcomeres will lead to the development of myofiber disarray in the 

myocardium of HCM patients [122]. In the study by Avazmohammadi et al. [123], the 

authors emphasized that multiscale modeling of the heart was needed to better understand 

the myofiber remodeling that was observed in the presence of pulmonary arterial 

hypertension. With this in mind, the “prospective” multiscale model of HCM (Figure 1.5) 

can be completed by incorporating a model of myofiber reorientation as well as volumetric 
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growth. Consequently, the effect of key perturbations in molecular and cellular events on 

the growth of the LV and myofiber reorientation/disarray can be predicted simultaneously. 

This level of multiscale modeling will also have the ability to simulate the effects of 

pharmaceutical interventions for treating HCM, such as small molecule therapeutics, which 

would be a milestone step in the field of cardiac biomechanics.  

1.4.2 Machine learning and multiscale modeling of cardiac G&R 

Although advances in multiscale modeling of living matter, such as cardiac G&R, 

can provide more insight on the underlying mechanisms, it can introduce more complexity 

into the computational models in terms of both physics and parameters [124, 125]. That is 

why the fully patient-specific model of the heart seems theoretically possible, but 

practically computationally expensive and labor intensive, which has hindered the field 

from being applied to clinical care [42]. Machine learning is recognized as a powerful tool 

in the biological, biomedical, and behavior sciences that integrates multi-modality and 

multi-fidelity data to identify the correlation among different phenomena. However, this 

technique weakens when dealing with spare data [124]. Physics-based models, such as 

multiscale models, have been found helpful to address this issue. Essentially, machine 

learning can be integrated with multiscale models to learn both the underlying mechanisms 

(physics) in terms of governing equations and boundary equations [126], and the model 

parameters for a particular physics-based problem. On the other hand, multiscale models 

can utilize machine learning to identify the correlation, characterize the system parameters, 

and quantify the uncertainties between scales. Therefore, machine learning and multiscale 

models can mutually complement and benefit one another. In recent years, machine 

learning has been successfully integrated with patient-specific multiscale models of the 
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heart and showed promising results in predicting LV mechanics [112, 127], cardiac 

activation mapping [128], and risk predictions of sudden cardiac death [129]. 

In general, the concept of growth and remodeling of living matter is most applicable 

to the field of biomechanics, in conjunction with machine learning [130]. Multiscale 

modeling of cardiac G&R, in particular, can benefit from being integrated with machine 

learning. At the basic research phase, machine learning and multiscale modeling can 

complement one another. Specifically, techniques from machine learning can identify the 

correlations for different growth stimuli from the measured (i.e. experimental and/or 

clinical) data, while multiscale modeling of cardiac G&R can assess the causality of the 

phenomena with the highest correlation [124]. Secondly, the predictive power of growth 

laws can be quantified before being applied to clinical care cases. For instance, Peirlinck 

et al. [69] quantified that their stretch-driven growth law can explain 52.7% of the changes 

in myocyte length in response to mitral regurgitation.  Thirdly, the uncertainties from the 

experimental and clinical data can be quantified and then propagated throughout the 

physics-based computational models using techniques from machine learning, such as 

Bayesian inference and Gaussian process regression [69, 131]. Fourthly, machine learning 

can learn the underlying dynamic system of cardiac G&R from the multiscale modeling 

and identify the system parameters such as growth factors, homeostatic level of stimuli 

signals, etc., based on the trained dataset. 

Ultimately, the full patient-specific multiscale models of cardiac G&R can be 

replaced by surrogate models through the integration of machine learning and multiscale 

models, which are computationally more efficient. These surrogate models use 

experimental, clinical, computational, and multi-modality imaging data from different 
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scales and sources to predict the prognosis of cardiac G&R in response to various 

cardiovascular diseases. By moving the field closer to real-time predictive models, this 

event will be a big achievement towards the application of multiscale modeling in clinical 

cardiac care.   
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Figure 1.5 Multiscale patient-specific modeling scheme for Hypertrophic Cardiomyopathy (HCM). 

A patient’s genetic data drives the model properties of the sarcomere mechanics and determines the 

HCM mutations. Cardiac magnetic resonance images (MRI) form the patient-specific geometry of the 

heart for computational modeling. A multiscale model of HCM then predicts the progression of 

cardiac growth and remodeling (G&R) in response to specific mutations associated with HCM. The 

bi-ventricular scheme of the heart for “Model of Cardiac Mechanics and Growth” subfigure is 

adopted from Sack et al. with permission [132]. The schematic subfigure for “Model of Myofiber 

Remodeling” is adopted from Washio et al. with permission [133]. 
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CHAPTER 2. A MULTISCALE FINITE ELEMENT MODEL OF LEFT VENTRICULAR MECHANICS 

INCORPORATING BAROREFLEX REGULATION   

 

2.1 Introduction 

The heart functions as part of a complex feedback loop known as the hemodynamic 

reflex or baroreflex loop, which helps regulate blood pressure and blood flow to the various 

organs of the body. The loop involves interactions between the heart, blood vessels, and 

blood pressure receptors in the cardiovascular system. The loop starts with changes in 

blood pressure and blood flow, which trigger signals to the heart and blood vessels. These 

signals are interpreted by the baroreceptors, specialized sensory nerve endings located in 

the blood vessels that monitor blood pressure changes. 

If blood pressure is too low, the baroreceptors signal the heart to increase heart rate 

and contractile force, while simultaneously constricting the blood vessels, leading to an 

increase in cardiac output and blood pressure. This helps maintain the blood pressure 

within a normal range. On the other hand, if blood pressure is too high, the baroreceptors 

signal the heart to slow down heart rate, decrease contractile force, and relax blood vessels, 

leading to a decrease in cardiac output and blood pressure [134]. This in turn helps maintain 

the blood pressure within a normal range as well. Overall, the hemodynamic reflex loop 

helps ensure that the heart and blood vessels are functioning in a coordinated manner to 

maintain an optimal balance between blood pressure and blood flow. 

Several previous studies have sought to mathematically simulate the beating heart. 

Such models could produce insights into cardiovascular physiology and might be 
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employed to improve the diagnosis and treatment of disease [42]. These studies have 

focused on different aspects of cardiovascular modeling, using techniques that range from 

a relatively simple model of left ventricle (LV) geometry [64, 86] to sophisticated 3D finite 

element-based approaches that incorporate growth and remodeling algorithms [65, 68]. 

However, the majority of existing models perform under a set of predefined conditions 

(e.g. constant heart rate, peak contractile stress, etc.) that ignore the adaptive response of 

the heart to disease driven perturbations. Some groups, on the other hand, have focused on 

modeling the effects of the baroreflex in controlling arterial blood pressure, but have 

simplified other aspects of their model. For example, Ursino [135] integrated a detailed 

model of carotid baroregulation that could capture the dynamics of different neuron 

pathways in the regulation of arterial blood pressure. However, this approach used a time-

varying elastance model of the LV that ignored the complex torsional motion of the heart. 

Using a similar method, other groups [136, 137] implemented different aspects of the 

baroreflex into their model, but did not capture the regulation of the contractile function of 

the myocardium at the myosin level. 

In our previous work, we introduced a multiscale model of cardiovascular function 

that was able to control arterial pressure at user-defined homeostatic setpoints by regulating 

heart rate, function of myofilaments at the molecular-level, Ca2+ dynamics, and vascular 

tone [138]. Although it was not intended to represent a complete and fully detailed model 

of the baroreflex, it demonstrated how the implemented hemodynamic reflex loop could 

maintain arterial pressure when challenged by different perturbations. However, since our 

previous approach was limited to using a one-dimensional hemispherical model of the LV, 

based on Laplace’s law, it is unable to capture the effect of heterogenous changes in 
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myocardial properties. Thus, the model cannot account for alterations caused by diseases 

such as hypertrophic cardiomyopathy [139] or myocardial infarction (MI) [140], which 

induce spatially heterogeneous changes in the LV.  

To better represent the spatial variations associated with myocardial infarction, a 

3D finite element (FE) model of the LV is required to distinguish between infarcted and 

healthy tissue [110, 141]. To serve this purpose, we have incorporated a baroreflex 

feedback loop with a 3D multiscale FE model of the beating LV, which is built in the 

FEniCS open-source framework. The baroreflex algorithm in this study is inspired by our 

prior work [138]. However, instead of regulating the contractile function of a single half-

sarcomere, the contractility of all myofibers across the entire LV can be regulated to control 

arterial pressure. Similar to our previous work, the baroreflex approach is based on a 

dynamic model that approximates the interaction of neural processing in the medulla and 

signaling pathways in effector cells. The model is driven by an afferent signal, resulting 

from alterations in arterial pressure, and outputs a control signal that is bounded between 

the maximum sympathetic and maximum parasympathetic drive. In response, the control 

signal modulates heart rate and vascular tone, as well as intracellular Ca2+ dynamics and 

the molecular-level function of both the thick and the thin filaments at each integration 

point in the mesh. The results of the current study will demonstrate that the algorithm can 

regulate arterial pressure at user-defined setpoints, as well as maintain arterial pressure in 

the presence of perturbations such as acute cases of aortic stenosis, mitral regurgitation, 

and myocardial infarction. 
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2.2 Methods 

2.2.1 Overview 

The model described in Figure 2.1is called MyoFE. This framework is essentially 

a higher dimension version of the PyMyoVent model of cardiovascular function [138] in 

which the 1D model of LV mechanics was replaced with a more sophisticated 3D FE model 

of the LV. In the current framework, a pacing stimulus activates a 2-compartment model 

of electrophysiology that drives the Ca2+ transient at each integration point across the mesh. 

The Ca2+ transient then triggers the contractile behavior of the myofilaments, which is 

driven by a molecular-level model named MyoSim [97, 98]. Finally, the LV chamber 

pumps blood through a lumped parameter model of systemic circulation.  

 

Figure 2.1 Overview of the MyoFE framework.  

The baroreflex algorithm controls arterial pressure by regulating heart rate, intracellular Ca2+ 

handling, myofilament contractility, and vascular tone. 
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2.2.2 Circulation 

As shown in Figure 2.1, the circulatory model only simulates the systemic 

circulation. In addition to the LV, there are six other compartments, namely the Aorta, 

Arteries, Arterioles, Capillaries, Venules, and Veins that each have a compliance Ci and 

resistance Ri, where i indicates the compartment. The rate of change of blood volume 

within each compartment is defined as the difference between the blood that flows into and 

out of the compartment:  

dV
aorta

dt
=Q

LV to aorta
-Q

aorta to arteries

dV
arteries

dt
=Q

aorta to arteries
-Q

arteries to arterioles

dV
arterioles

dt
=Q

arteries to arterioles
-Q

arterioles to  capillaries

dV
capillaries

dt
=Q

arterioles to  capillaries
-Q

capillaries to  venules

dV
venules

dt
=Q

capillaries to  venules
-Q

venules to veins

dV
veins

dt
=Q

venules to veins
-Q

 veins to LV

dV
LV

dt
=Q

 veins to LV
-Q

LV to aorta

  (2.1) 

The blood flow between neighboring compartments is governed according to 

Ohm’s law and is associated with the pressure gradient between the two compartments and 

the resistance of the compartment that the blood flows into. The blood flows are 

summarized as: 
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  (2.2) 

where GAV and GMV are model parameters controlling the leakage through the aortic 

and mitral valves, respectively.  The blood pressure within each compartment, except the 

LV, was associated with the compartment’s compliance and its stressed blood volume, 

which is given by the difference between the instantaneous blood volume and the slack 

blood volume: 

P
i
=
V
i
(t) -V

i,slack

C
i

  (2.3) 

where Vi(t), Vi,slack and Ci are the instantaneous blood volume, the slack volume, 

and the compliance of compartment i, respectively. The LV pressure, on the other hand, 

was calculated from the FE model according to VLV as the input. More details about this 

are provided in the finite element formulation section below. 
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2.2.3 LV model geometry  

The geometry of a human LV was modeled using an ideal ellipsoidal shape with 

~1280 quadratic tetrahedral elements. The slack chamber volume of LV was 66 ml with 

myocardium volume of 136 ml. The length of LV from base to apex was roughly 7 cm 

while the outer diameter of LV at base was 7.1 cm, As shown in Figure 2.2, myofiber 

directions f0 were defined by linearly changing the helix angle from 60o at the endocardium 

to -60o at the epicardium transmurally across the wall using a Laplace-Dirichlet rule-based 

algorithm [142]. The sheet angles were assumed to align with the radial direction. 

 

Figure 2.2 Myofiber orientation with a linear transmural variation from 60º at the endocardium to 

-60 º at the epicardium. 
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2.2.4 Cardiac electrophysiology 

A simplified two compartment model of electrophysiology was used to increase the 

speed of the calculations. Specifically, the rates of change of the Ca2+ concentrations in the 

sarcoplasmic reticulum (CaSR) and the myofilament space (Camyo) were given by: 

dCa
SR

(t)

dt
= k

SERCA
Ca

myo
(t) - (k

leak
+ A(t)k

act
)Ca

SR
(t)  (2.4) 

dCa
myo

(t)

dt
= -

dCa
SR

(t)

dt
 (2.5) 

where the total Ca2+ concentration inside the cell Catotal = CaSR + Camyo was kept 

constant, kSERCA set the rate at which Ca2+ is pumped into the sarcoplasmic reticulum, kleak 

defines a continual leak of Ca2+ into the myofilament space, and kact controls the release of 

Ca2+ when the ryanodine receptors are open. A(t) is a pulse wave that is zero except for 

brief periods of duration topen when A(t) is equal to one. These openings are initiated by the 

pacing stimuli that occur at time-intervals of tRR and thus determine heart rate. This set of 

ODEs were solved at each integration point to drive the required Ca2+ transient for 

contraction of half-sarcomeres across the LV geometry.  

2.2.5 Finite element formulation 

The solution for LV mechanics was approximated using an implicit backward Euler 

scheme for numerical time-integration with a fixed time step of 1 ms. This was done using 

an open-source FE library called FEniCS [143]. The FE formulation of the LV mechanics 

problem was described by minimizing the following Lagrangian functional: 
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  (2.6) 

where z is the longitudinal axis from apex-to-base, x and y are orthogonal axes to 

the z-axis, u is the displacement field, W is the total strain energy of the myocardium, p is 

a Lagrange multiplier to govern incompressibility of the tissue by enforcing the Jacobian 

of the deformation gradient tensor J=1, PLV is a Lagrange multiplier to constrain the LV 

cavity volume VLV(u) to the prescribed value of VLV (which is computed from the 

circulatory model), cx and cy are Lagrange multipliers to constrain the rigid body translation 

in the x and y directions, and cz is a Lagrange multiplier to constrain the rigid body rotation. 

Finally, the relation between the LV cavity volume and the displacement field was given 

by equation (2.7) where 𝛺k,endo is the volume enclosed by the endocardial surface 𝛤k,endo 

and the basal surface at z = 0, and n is the outward unit normal vector. 

V
LV

(u) = dv
W
k ,endo

ò = -
1

3
x ×nda

G
k,endo

ò    (2.7) 

where x is the position vector relative to the original of the global coordinate 

system. The weak formulation of the mechanics problem then was obtained by taking the 

first variation of the Lagrangian functional: 
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  (2.8) 

where F is the deformation gradient tensor, S is the 2nd Piola Kirchhoff stress 

tensor, δu ∈ H1(Ω0), δp ∈ L2(Ω0), δPLV ∈ R, δcx ∈ R, δcy ∈ R, and δcz ∈ R are test functions 

corresponding to u, p, PLV, cx, cy, and cz, respectively. In this formulation, the displacement 

field u was approximated using quadratic interpolation functions, whereas linear functions 

were used for the Lagrange multiplier p. 

2.2.6 Cardiac mechanics 

The mechanical behavior of the LV was prescribed such that the 2nd Piola Kirchhoff 

stress tensor was additively decomposed into an active Sa and a passive Sp component, i.e. 

S =S
a

+S
p
  (2.9) 

The myocardial tissue was modeled to be incompressible, hyperelastic, and 

transversely isotropic. The passive component of the stress tensor was further decomposed 

into three responses. This is due to incompressibility and the force-reliant nature of the 

active stress, which necessitates that the passive stress be decomposed into parts that 

account for the myofibers and remaining bulk tissue. Each response was obtained by 

differentiating a strain energy function with respect to Green-Lagrangian strain tensor, E: 

𝑺𝒑 = 𝑺𝒗𝒐𝒍 + 𝑺𝒃𝒖𝒍𝒌 + 𝑺𝒎𝒚𝒐𝒇𝒊𝒃𝒆𝒓 =
𝜕𝜓𝑣𝑜𝑙

𝜕𝑬
+

𝜕𝜓𝑏𝑢𝑙𝑘

𝜕𝑬
+

𝜕𝜓𝑚𝑦𝑜𝑓𝑖𝑏𝑒𝑟

𝜕𝑬
 (2.10) 
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In the above formulation, the function y
vol

= -p(J -1) enforces the 

incompressibility of the tissue by a Lagrange multiplier p. The function y
bulk

 defines the 

response of the bulk tissue, which is described by a transversely isotropic Fung-type strain 

energy function [144]: 

y
bulk

=
C

2
eQ -1( )

with Q = b
ff
E
ff

2 + b
xx
E
ss

2 +E
nn

2 +E
sn

2 +E
ns

2( ) + b
fs
E
fs

2 +E
sf

2 +E
fn

2 +E
nf

2( )
  (2.11) 

where C, bff, bxx, and bfs are passive material parameters of the bulk tissue. Components of 

the Green-Lagrangian strain tensor E are denoted by E
ij
with (𝑖, 𝑗) ∈ (𝑓, 𝑠, 𝑛), where f, s, 

and n describe the fiber, sheet, and sheer-normal directions, respectively. Finally, y
myofiber

 

prescribes the exponential strain energy function of the myofiber [145] which is given by: 

y
myofiber

=
C

1
e
C

2
(a -1)2

-1( ) a > 1

0 a £1

ì

í
ï

î
ï

  (2.12) 

where C1, C2 are material parameters, α is the myofiber stretch calculated as 𝛼 =

√𝒇𝟎 ∙ 𝑪 ∙ 𝒇𝟎, and 𝑪 = 𝑭𝑇𝑭 is the right Cauchy-Green deformation tensor.  

The active stress component Sa was driven by the MyoSim framework [97], which 

represents the mechanical properties of dynamically-coupled myofilaments of a half-

sarcomere at each integration point across the LV mesh. As shown in Figure 2.3, binding 

sites on the thin filament transition between an inactive state named Noff (which is not 

available for myosin heads to attach) and an active state named Non (which is available for 

myosin head binding). The activated binding sites are divided into two configurations 

named Nunbound (which is not bound to myosin heads) and Nbound (which is attached to 
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myosin heads and cannot be switch back to the Noff  state). The flux for transition of binding 

sites from Noff to Non is governed by: 

J
on

= k
on

[Ca2+ ] N
overlap

-N
on( ) 1+ k

coop

N
on

N
overlap

æ

è
ç

ö

ø
÷

æ

è
ç
ç

ö

ø
÷
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  (2.13) 

where Non is the fraction of binding sites in the active state, kon is a rate constant, Noverlap is 

the fraction of binding sites that are in the range of myosin heads, kcoop is a constant factor 

that governs the cooperativity of the thin filament. 

The activated unbound sites then turn into the off state via the Joff flux with a rate constant 

of koff: 

J
off

= k
off
N
on

-N
bound( ) 1+ k

coop

N
overlap

-N
on

N
overlap

æ

è
ç

ö

ø
÷

æ

è
ç
ç

ö

ø
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  (2.14) 

On the thick filament, myosin heads can switch between three states, namely MSRX 

(detached super-relaxed), MDRX (detached disorder-relaxed), and MFG (attached force 

generating). The transition fluxes between MSRX and MDRX are obtained via J1 and J2: 

J
1

= k
1

1+ k
force
F
total( )MSRX

J
2

= k
2
M
DRX

  (2.15) 

where k1 and k2 are rate constants, kforce is a parameter with units of N-1m2, 

F
total

= F
active

+F
passive

 is the total stress in the myofiber, and MSRX and MDRX are the fraction 

of myosin heads in the SRX and DRX states, respectively. 

Myosin heads then attach to binding sites through J3 and detach via J4: 
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J
3
(x) = k

3
e

-k
cb
x2

2k
B
T
N
on

-N
bound( )MSRX

J
4
(x) = k

4,0
+ k

4,1
x4( )MFG

(x)

  (2.16) 

where k3 and k4,0 are rate constants, kcb is the stiffness of the cross-bridge link, kB is 

Boltzmann’s constant (1.38 × 10−23𝐽𝐾−1), T is the temperature in Kelvin, k4,1 is a 

parameter that sets the strain dependence of the cross-bridge detachment rate, MFG is the 

fraction of myosin heads in the attached state, and x is the length to which the myosin heads 

are stretched.  
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Figure 2.3 Kinetic scheme.  

Sites on the thin filament switch between states that are available (Non) and unavailable (Noff) for 

cross-bridges to bind to. Myosin heads transition between a super-relaxed detached state (MSRX), a 

disordered-relaxed detached state (MDRX), and a single attached force-generating state (MFG). J terms 

indicate fluxes between different states. Adapted from Sharifi et al. [1]. 

 

The fraction of myosin heads and binding sites at each configuration shown in 

Figure 2.3 are driven by a system of ODEs, given as: 
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  (2.17) 
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The above ODEs were evaluated with 1nm resolution over the range of 

-10 £ x £10  nm, resulting in n=21. This leads to a total number of 25 ODEs to be solved 

at each integration point across the geometry of LV. Calculations were initiated with all 

binding sites in the Noff configuration and all myosin heads in the MSRX state.  

The active stress experienced by a myofiber is given by:  

𝑭𝒂𝒄𝒕𝒊𝒗𝒆 = 𝑵𝟎𝒌𝒄𝒃 ∑ 𝑴𝑭𝑮,𝒊(𝒙𝒊 + 𝒙𝒑𝒔)𝒏
𝒊=𝟏  (2.18) 

where N0 is the density of myosin heads (set to 6.9×1016 m-2) [98] and xps is the power-

stroke of an attached cross-bridge. 

Finally, the active stress tensor is defined as: 

𝑺𝒂 = 𝑭𝒂𝒄𝒕𝒊𝒗𝒆𝒇𝟎⨂𝒇𝟎 (2.19) 

2.2.7 Baroreflex 

The normalized afferent signal Ba that mimics the output of the baroreceptors was 

driven via a sigmoidal relationship with arterial pressure (Parteries). 

B
a
(t) =

1

1+ e
-S(P

arteries ( t )
-P

set
)
  (2.20) 

where Pset is the setpoint for arterial pressure and S defines the slope of the function around 

its midpoint.  

In the present model, intricate processes related to sympathetic and 

parasympathetic drive have been simplified through the implementation of a single balance 

signal Bb, along with 5k+3 unique control signals (Bc,1, Bc,2 … Bc,5k+3), and 5k+3 distinct 

mapping functions (M1, M2 … M5k+3), where k represents the number of integration points 

present across the LV mesh. These control signals and mapping functions operate to 
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modulate crucial physiological processes, including heart rate, Ca2+ transients, 

myofilament function, and vascular tone. Further detailed explanation of this process is 

provided below. 

The balance signal Bb is a normalized representation of the difference between 

sympathetic and parasympathetic efferent activity. Its rate of change was defined as 

dB
b
(t)

dt
=

-k
drive

B
a
(t) - 0.5( )Bb(t) B

a
³ 0.5

-k
drive

B
a
(t) - 0.5( ) 1-B

b
(t)( ) B

a
< 0.5

ì

í
ï

î
ï

  (2.21) 

where kdrive is a rate constant. The equations described above lead to a Bb balance signal 

that converges to unity if the sympathetic drive dominates the control loop. Alternatively, 

when the parasympathetic drive has greater influence, the balance signal Bb approaches to 

zero. The speed at which the control signal responds to changes in arterial pressure and Pset 

is governed by the value assigned to the kdrive parameter. 

The normalized control signals Bc,i describe how each of the reflex-sensitive 

parameters in the cardiovascular model respond to the balance signal. Similar to equation 

(2.22), their rates of change were defined as  
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  (2.22) 

where i ranges from 1 to 5k+3 and kcontrol,i is the rate constant for system i. Each signal 

tends to converge to a value of unity when sympathetic drive exceeds parasympathetic 

drive, (Bb > 0.5). Conversely, if parasympathetic drive predominates (Bb < 0.5) the control 

signals gradually diminish towards zero. 
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The final step in the algorithm used mapping functions Mi to link the normalized 

control signals Bc,i to actual parameter values. Each mapping function took the form 

 M
i
B
c,i
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M
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+
1

2
B
c,i
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  (2.23) 

where Mbase,i is the default value for parameter i, and Msymp,i and Mpara,i are its limits during 

maximum sympathetic and maximum parasympathetic drive, respectively. Table 2.1 

shows the mapping relationships.  

Table 2.1 Baroreflex implementation functions. 

 Function 
Controlled 

parameters 
Increased arterial pressure … 

Chronotropism M1 tRR 
Lengthens inter-beat interval and 

slows heart rate 

Vascular tone M2, M3 Rarterioles and Cveins 
Reduces systemic afterload and 

increases venous compliance 

Calcium 

handling 

M4  Mk+3 kSERCA Reduces the amplitude and prolongs 

the duration of Ca2+ transients at each 

integration point Mk+4  M2k+3 kact 

Sarcomere 

contractility 

M2k+4  M3k+3 k1 
Reduces myosin cycling and 

sensitizes the thin filaments at each 

integration point 

M3k+4  M4k+3 k3 

M4k+4  M5k+3 kon 

 

2.2.7.1 Chronotropism 

The implementation of baroreflex control of heart rate in this study involved a 

mapping of the M1 signal to the inter-beat interval, tRR. In order to maintain heart rate within 

a physiologically appropriate range, upper and lower limits (Msymp,1 and Mpara,1, 
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respectively) were set at 0.33 seconds and 1.5 seconds. This corresponded to a heart rate 

range of 40 to 180 beats per minute.  

2.2.7.2 Vascular tone 

In this study, the M2 and M3 signals were set to modulate the arteriolar resistance 

(Rarterioles) and venous compliance (Cveins), respectively. In vivo, an increase in arterial 

pressure is associated with a decrease in arteriolar resistance and an increase in venous 

compliance. These physiological effects are consistent with a reduction in afterload and 

preload, and reflect the operation of a negative feedback loop. By modulating the resistance 

and compliance of the arterioles and veins, the baroreflex control system helps to regulate 

blood pressure and maintain cardiovascular homeostasis. 

2.2.7.3 Cell-level contractility 

To modulate cell-level contractility, five parameters were adjusted at each 

integration point in this study. Specifically, M4  Mk+3, and Mk+4  M2k+3, were mapped 

to kact and kSERCA in equation (2.4) for all integration points, respectively. To achieve the 

desired effect of decreased contractility with increased arterial pressure, limits were placed 

on these parameters.  

M2k+4  M5k+3 were designed to modulate the k1, k3 and kon parameters in the 

MyoSim framework [98, 121] over all integration points. The k1 parameter controls the 

rate of transition of myosin heads from the SRX to the DRX state [146], while k3 controls 

the transition of myosin heads from the DRX state to the FG state. The kon parameter, on 

the other hand, is the second-order rate constant for Ca2+ activation of binding sites on 

actin. Limits were placed on these parameters (as outlined in APPENDICES 
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APPENDIX 1. FILE S1) to reflect the effect of increased arterial pressure on 

contractile force. Specifically, increased arterial pressure was found to bias myosin heads 

towards the DRX and FG states, while desensitizing the thin filament to Ca2+. These 

changes mimic some of the effects produced by increased phosphorylation of myosin 

regulatory light chain and troponin I [147, 148].  

For the sake of simplicity in the current simulations, the base value (Mbase,i), 

maximum sympathetic (Msymp,i), and maximum parasympathetic (Mpara,i) values for each 

of the five parameters kact, kSERCA, k1, k3 and kon were assumed identical across all 

integration points. However, since they can be controlled independently at each integration 

point, it is possible to have spatial variation in these parameters. For example, if the Ca2+ 

dynamics are altered in a local region, those parameters could be assigned distinct values 

relative to the rest of the mesh. 
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2.3 Results 

2.3.1 Response to changes in user‑defined arterial pressure setpoints  

Figure 2.4 illustrates how the implemented reflex algorithm controls arterial 

pressure at user-defined setpoints. The simulation was initialized, with the reflex algorithm 

deactivated, using default parameters until it reached steady state (~5 cardiac cycles) with 

an arterial pressure range of ~126/84 mmHg. The baroreflex was activated at 5 s (shown 

by the first vertical dashed line in each plot). Since the mean value of Ba was greater than 

0.5, the balance signal Bb started to decrease and subsequently decreased Bc,i and Mi. This 

led to a decrease in heart rate, intracellular Ca2+ handling, myofilament contractility and 

vascular tone. These changes in reflex-sensitive parameters reduced arterial pressure to its 

Pset value of 90 mmHg, which corresponded to a range of ~112/68 mmHg.  

Between the second and third vertical dashed lines Pset was linearly increased from 

90 mmHg to 120 mmHg. This change induced a system-level response that increased Bc,i 

and Mi and consequently increased the arterial pressure range to ~141/98 mmHg via 

increasing heart rate, intracellular Ca2+ transient, myofilament contractility, and vascular 

tone. Figure S 1 depicts how the reflex-sensitive parameters related to myofilament 

contractility were spatially adjusted across the geometry to account for the increase in Pset. 
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Figure 2.4 Simulation demonstrating baroreflex control of arterial pressure for increasing Pset by 

30 mmHg.  

The left-hand column shows baroreflex signals along with four other system-level properties. The 

middle column shows the 8 reflex sensitive parameters. The right-hand column shows properties 

relevant to myocardial function that are averaged over the entire mesh. The simulation started using 

default parameters. The baroreflex was initiated after 5 s (first vertical line on each plot). The 

baroreflex setpoint was increased from 90 to 120 mmHg over a 10 s period (between second and third 

vertical line). The OFF and ON labels describe the status of binding sites on the thin filament. The 

SRX, DRX, and FG labels refer to myosin heads in the super-relaxed, disordered-relaxed, and force-

generating states, respectively. 

 

Figure 2.5 shows how the model responds to a decrease of Pset. Similar to Figure 

2.4, the simulation was initialized with default parameters and then the baroreflex was 

activated to regulate arterial pressure at Pset of 90 mmHg.  Between second and third 

vertical dashed lines Pset decreased from 90 mmHg to 60 mmHg. In response to this change, 
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the baroreflex decreased Bc,i and Mi to down regulate the arterial pressure by decreasing 

heart rate, Ca2+ transient, myofilament contractility, and vascular tone. Furthermore, Figure 

S 2 shows how the spatial parameters related to myofilament contractility were adjusted to 

regulate arterial pressure for a Pset value of 60 mmHg.  

In summary, Figure 2.4 and Figure 2.5 illustrate how the implemented reflex 

algorithm can adjust system-level properties to regulate arterial pressure at different 

setpoints. 
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Figure 2.5  Simulation demonstrating baroreflex control of arterial pressure for decreasing Pset by 

30 mmHg.  

Figure panels are arranged as in Figure 2.4. The simulation started using default parameters. The 

baroreflex was initiated after 5 s (first vertical line on each plot). The baroreflex setpoint was 

decreased from 90 to 60 mmHg over a 10 s period (between second and third vertical line). 

 

2.3.2 Response to acute increase in aortic resistance  

Figure 2.6 demonstrates the response of the baroreflex to an acute increase in aortic 

resistance (between second and third vertical dashed lines). Increasing the aortic resistance 

elevated the pressure gradient between the LV and aorta, which led to an increase in 

afterload. This perturbation slowed down the shortening of myofilaments and thus reduced 

the stroke volume and arterial pressure. The activated baroreflex restored arterial pressure 
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by increasing the Bc,i control signals, which resulted in a higher heart rate, Ca2+ transient, 

myofilament contractility (Figure S 1 in APPENDIX 4. SUPPLEMENTARY FIGURES) 

and vascular tone.  

 

Figure 2.6 The baroreflex stabilizes arterial pressure when aortic resistance is acutely increased.  

Figure panels are arranged as in Figure 2.4 except that aortic resistance parameter is shown in place 

of total blood volume. The simulation started using default parameters. The baroreflex activated after 

5 s (first vertical line on each plot). Aortic resistance was increased from 20 to 220 mmHg L-1 s over a 

10 s period (between second and third vertical lines on each plot). 
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Figure 2.7 shows how arterial pressure drops in the absence the baroreflex. 

Although the peak active stress increased due to the change in afterload, the passive stress 

and end-diastolic volume (preload) remained unchanged.  

 

Figure 2.7 The model cannot maintain arterial pressure without baroreflex when aortic resistance 

is acutely increased.  

Figure panels are arranged as in Figure 2.6. Note that the baroreflex was deactivated before applying 

the perturbation. 
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2.3.3 Response to acute mitral regurgitation  

Figure 2.8 shows the model response when acute mitral regurgitation is induced. In 

the case below, a mild level of regurgitant volume was prescribed according to American 

Heart Association guideline [149]. By allowing the blood to flow back through the mitral 

valve, the forward stroke volume decreased and thus afterload, in particular, and arterial 

pressure started to fall. The change in arterial pressure was detected by the baroreflex 

algorithm, since Ba deviated from its normal level of 0.5. The control system responded to 

this change in received afferent signal and started to increase heart rate, intracellular Ca2+, 

contractility of myofilaments (Figure S 4), and constricting of vessels to recover arterial 

pressure.   
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Figure 2.8 The baroreflex stabilizes arterial pressure when acute mitral regurgitation is induced.  

Figure panels are arranged as in Figure 2.4 except that mitral regurgitant volume is shown in place 

of total blood volume. The simulation started using default parameters. The baroreflex activated after 

5 s (first vertical line on each plot). Model parameter GMV in equation (2.1) was increased from 0 to 

0.002 over a 10 s period (between second and third vertical lines on each plot) that resulted in ~40 ml 

of regurgitant volume. 

 

In a similar simulation the baroreflex was deactivated before perturbing the mitral 

valve. The regurgitant volume led the arterial pressure to drop significantly from ~111/67 

mmHg, when the system was at steady state before applying the perturbation, to ~79/47 

mmHg at the final steady state (Figure 2.9). In addition to the drop in active stress, the 

passive stress and end-diastolic volume (preload) remained unchanged.  
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Figure 2.9 The model cannot maintain arterial pressure without baroreflex when mitral 

regurgitation is induced.  

Figure panels are arranged as in Figure 2.4 except that mitral regurgitant volume is shown in place 

of total blood volume. The simulation started using default parameters. The baroreflex activated after 

5 s (first vertical line on each plot) and deactivated after 15 s. Model parameter GMV in equation (2.1) 

was increased from 0 to 0.003 during 10 s (between second and third vertical lines on each plot) to 

result in the same regurgitant volume as the case shown in Figure 2.8. 

 

2.3.4 Response to acute myocardial infarction  

In another model, the response of the baroreflex was tested by simulating acute 

myocardial infarction. Similar to the preceding sections, the simulation was initialized 

using default parameters and then the baroreflex was activated to regulate arterial pressure 

for a Pset of 90 mmHg. An additional simulation was run with the baroreflex deactivated 
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before the perturbation. Cardiomyocyte deterioration in the infarcted region was mimicked 

by reducing the density of cross-bridge myosin heads to zero (Figure 2.10.C), thus 

eliminating contractility. It should be noted that the border zone was not modeled in this 

simulation, since it usually forms as a result of the long-term effects of MI. (Figure 2.10.A) 

shows that without the baroreflex, arterial pressure drops significantly from ~112/68 

mmHg to ~77/47 mmHg due to the loss of contractile function. However, the model with 

the baroreflex was able to maintain arterial pressure by increasing heart rate, intracellular 

Ca2+ transient, vascular tone (Figure 2.10.B) and adaptation of contractile function in the 

remote region (Figure 2.11). 
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Figure 2.10 Simulation of acute myocardial infarction. 

A) without baroreflex control of arterial pressure and (b) with baroreflex control of arterial pressure 

by (c) reducing the density of cross-bridge myodin heads to zero in the infarcted region. The multi 

panel figures in (a) and (b) are arranged as in Figure Figure 2.6 except showing only the left-hand 

and middle columns. The simulation started using default parameters and the baroreflex activated at 5 

s. For (a), the baroreflex was deactivated once the system reached to steady state before mimicking 

MI. Density of cross-bridge myosin heads reduced to zero in the infarcted region over a 10 s period 

(between second and third vertical lines on each plot). Note: The yellow region in (c) is due to 

interpolation of cross-bridge density values over the mesh in Paraview and not a border zone region. 

 

 

 



 

 

61 

Figure 2.11 demonstrates the peak active stress that was generated by myofibers 

across the LV chamber for three different cases. The infarcted tissue generated no 

contractile active stress for both MI cases. Regarding the remote regions, it can be seen 

that the reflex-activated case generated higher active stress to maintain arterial pressure at 

the Pset value of 90 mmHg. However, in an equivalent simulation with no baroreflex, the 

remote region generated the same magnitude of contractile stress as the baseline case. 

 

Figure 2.11 Myofiber active contractile stress increased in the remote region in the model with 

baroreflex control of arterial pressure.  

Infarcted region could not generate any active stress, since as all myosin heads were deactivated. 

 

Figure 2.12 compares the predicted pressure-volume (PV) loops for the MI cases 

against the baseline case. For both MI cases the end-diastolic volume increased and 

ejection fraction reduced. The end-systolic pressure-volume relationship (ESPVR) for both 

MI cases fell below the baseline case as the PV loops shifted rightward, but for the MI case 

without the baroreflex it reduced more. Accordingly, the peak pressure for the case without 

the baroreflex dropped significantly below the baseline value. However, the peak pressure 

remained within the range of the baseline value for the baroreflex case.  



 

 

62 

 

Figure 2.12 Pressure-volume loop shifted rightward for MI simulations compared to baseline. 

 

Figure 2.13 and Figure 2.14 demonstrate the distribution of the reflex-sensitive 

parameters over the LV chamber for the intracellular Ca2+ transient and myofilament 

contractility, respectively. It can be seen that these parameters were not adjusted in the 

infarcted tissue for either of the MI cases, and thus match the baseline value. However, the 

baroreflex-activated case adjusted these parameters for the remote region to maintain 

arterial pressure at a setpoint of 90 mmHg.   

 

  



 

 

63 

 

Figure 2.13 Baroreflex regulation of thin filament parameters related to intracellular Ca2+ 

transient before and after mimicking acute myocardial infarction. 

Baroreflex could not regulate the parameters in the infarcted region. 
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Figure 2.14 Baroreflex regulation of thick filament parameters related to myofilament contractility 

before and after mimicking acute myocardial infarction.  

Baroreflex could not regulate the parameters in the infarcted region. 
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2.4 Discussion 

The approach described in the current study incorporated a 3D FE model of the left 

ventricle with a model of the cardiovascular system, which also integrated a compensatory 

baroreflex to control arterial pressure by regulating heart rate, intracellular Ca2+ handling, 

myofilament function, and vascular tone. Although this work was not intended to develop 

a sophisticated model of the baroreflex loop, it was shown that the implementation can 

capture key aspects of the underlying physiology to preserve arterial pressure. The main 

goal of this study was to show that the algorithm could not only regulate arterial pressure 

at different user-defined setpoints, but it could also preserve pressure when the system was 

exposed to different perturbations, including acute cases of aortic stenosis, mitral 

regurgitation, and myocardial infarction. Of additional note is the response of the model 

with and without the baroreflex, as described below.  

In the case of acute aortic stenosis without the baroreflex, the mean arterial pressure 

dropped below the set-point (Figure 2.7). However, it has been shown in animal 

experiments of acute aortic banding that the mean arterial pressure is maintained at the 

homeostatic level [150]. In the model that included the baroreflex, the end-diastolic volume 

(EDV) and end-systolic volume (ESV) increased, leading to increases in both passive and 

active stress (Figure 2.6). This also led to a rightward shift of the PV loop, as well as an 

increase in peak pressure in the LV, which matches the results seen in a previous study of 

acute aortic banding [151]. However, the model without the baroreflex showed no change 

in EDV and only a slight change in ESV (Figure 2.7). Therefore, the model without the 

baroreflex is unable to capture key elements of the physiological response to acute 

increases in aortic resistance.  
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For the model of acute mitral regurgitation without the baroreflex, the mean arterial 

pressure also dropped below the set-point (Figure 2.9). But, in animal experiments of mild 

mitral insufficiency, which was acutely induced with a percutaneous valve spreader, the 

mean arterial pressure was nearly maintained for a cohort of 7 dogs [152]. In the model 

that included the baroreflex loop the EDV increased, as well as the stroke volume (Figure 

2.8). This increase in preload is consistent with observations related to acute regurgitation 

caused by papillary or chordae rupture in the LV [153].However, the EDV did not change 

in the model that ignored the baroreflex (Figure 2.9). Thus, the model without the 

baroreflex cannot capture key elements of the response to acute mitral regurgitation. 

In the model of acute myocardial infarction without the baroreflex, the mean arterial 

pressure also decreased, but with a larger magnitude compared to the other cases above 

(Figure 2.10.A). This decrease in arterial pressure is in conflict with a previous animal 

study of acute myocardial infarction, which used a rapidly expanding cuff to ligate the 

circumflex coronary artery [154]. As reported in that study, the mean arterial pressure was 

maintained, while heart rate increased, which is in agreement with the current model that 

includes the baroreflex (Figure 2.10.B). Additionally, end-diastolic pressure and volume 

increased, while the peak systolic pressure was minimally impacted, which is also in 

agreement with the model that includes the baroreflex (Figure 2.10.B). Finally, the PV loop 

shifted rightward (Figure 2.12), which is consistent with acute myocardial infarction [155]. 

Although the model that does not account for the baroreflex shifted slightly to the right, 

the drop in peak systolic pressure and the fixed heartrate do not match the previously 

reported experimental findings. Therefore, the model without the baroreflex is unable to 

capture key aspects of the physiological response to acute myocardial infarction. 
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Furthermore, the remote myocardium away from the MI adapts its contractile 

properties to compensate for the loss of contractile function in the affected area [156-158]. 

In vivo, compensatory reflexes preserve arterial pressure by increasing heart rate, 

contractility of surviving myocardium, and vascular tone [159]. The current model with 

the baroreflex exhibited this behavior, as seen by the increase in contractile force in the 

remote myocardium (Figure 2.11) and the increase in heart rate and vascular tone (Figure 

2.10.A). Studying this type of adaptation process is challenging, as most compensatory 

responses, such as changes in myofilament contractility, are difficult to measure non-

invasively. Therefore, a multiscale model of cardiovascular function that incorporates the 

effects of compensatory reflexes to preserve arterial pressure can provide insights for better 

understanding the adaptation process post-MI. 

The baroreflex is an important regulatory mechanism that plays a key role in 

controlling the loading of the LV. As a result, it can influence secondary mechanisms such 

as cardiac growth and remodeling, which are closely associated with changes in LV 

loading. This has been observed in computational models of cardiac growth, which use 

simplified representations of the LV [1]. In our recent review paper, we noted that the 

absence of a baroreflex model resulted in mismatches between predicted and 

experimentally measured values of hemodynamics in simulations of LV growth [63, 73]. 

Several early studies have highlighted the significance of the baroreflex in predicting the 

prognosis of heart failure and cardiac death post-MI. For instance, La Rovere et al. [160] 

demonstrated that individuals with depressed baroreflex sensitivity were at a higher risk of 

subsequent mortality following myocardial infarction. In particular, it has been suggested 

that a reduced baroreflex sensitivity indicates an impaired vagal efferent component of the 
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baroreflex, which is associated with heart rate variability and an increased incidence of 

arrhythmic deaths [161]. In a later study, La Rovere et al. [162] found that the analysis of 

baroreflex sensitivity in post-MI patients can serve as a prognostic metric independent of 

left ventricular ejection fraction in predicting cardiac mortality. 

Recent studies have further examined the role of the reflex response post-MI by 

observing the variability in global LV growth and remodeling for individual patients with 

moderately sized infarcts. Witzenburg and Holmes [159] hypothesized that such variability 

in reflex response could explain this phenomenon. In their study, they used a previously 

published computational model of LV growth and demonstrated that variability in reflex 

components could result in variability in the degree of predicted LV dilation. Therefore, 

they proposed that post-infarction reflex compensation could be a target for LV remodeling 

therapies [163]. However, in their subsequent work [164], they suggested that customizing 

pharmacological therapy based on the initial acute response of the baroreflex could be 

challenging.  

The development of accurate cardiovascular models is essential for understanding 

and predicting the pathophysiology of cardiovascular diseases, as well as evaluating the 

efficacy of potential treatments. Among the key components of such models is the FE 

model of the LV, which allows for 3D representation of spatially varying quantities, such 

as mechanical behavior or reflex response. The current study advances the field by 

developing of a novel approach to FE modeling, which directly controls molecular-level 

contractility via the baroreflex control algorithm. This algorithm modulates four key 

parameters that define the magnitude and time-course of intracellular calcium transients, 

as well as the function of the thick and thin myofilaments. Compared to existing 
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cardiovascular models that rely on phenomenological relationships, the direct control of 

molecular-level contractility represents a significant advancement [110, 165, 166]. 

Additionally, the 3D representation of the LV geometry allows for spatially heterogeneous 

control of the reflex-sensitive parameters, which is not possible with 1D models of the LV 

[64, 73, 138]. This approach could provide a more detailed understanding of the underlying 

mechanisms governing cardiac function and enable future studies aimed at a more accurate 

assessment of how various pharmaceuticals and genetic modifications to calcium-handling 

proteins and/or sarcomeric proteins affect the baroreflex.  

2.5 Limitations 

Several of the limitations in the current work related to the baroreflex model are 

shared with our prior work [138], which provides additional detail. One example is that the 

baroreflex algorithm employed in this work is simplified, in that it does not receive dual 

input from both the parasympathetic and sympathetic nerves. Rather, this is represented by 

a single Bb balance signal. This approach restricts the ability to adjust single reflex 

effectors independently of the others, but this limitation will be addressed in future work.  

An additional limitation of the current model is its inability to capture long-term 

ventricular growth and remodeling following an acute MI or valvular disease perturbations. 

Although the current model successfully captures the short-term adaptation in 

hemodynamics and ventricular function, it does not account for the changes in ventricular 

geometry, fiber orientation, and mechanical properties that occur at later time points after 

disease onset. Ultimately, the remodeling process culminates in organ-level changes such 

as left ventricular dilation and wall thinning, or eccentric hypertrophy. To model long-term 
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ventricular growth and remodeling, new feedback loops must be added that alter the 

myocardial mass and orientation of myofibers in response to changes in stimulus signals 

such as myofiber stress or strain. However, given the goal of this study, modeling such 

long-term changes falls beyond its scope, but will be a major focus of future investigations 

specifically aimed at growth and remodeling. 

2.6 Summary and Conclusion 

This study presents a novel open-source model of cardiovascular function, named 

MyoFE, which uses finite element modeling to simulate left ventricular mechanics to pump 

blood into the systemic circulation. The model incorporates a baroreflex algorithm that can 

control arterial pressure by modulating several parameters, including heart rate, 

intracellular Ca2+ handling, myofilament contractility, and vascular tone. The results of this 

study demonstrate that the implemented algorithm can not only regulate arterial pressure 

at various user-defined setpoints, but can also maintain it when the system is exposed to 

perturbations such as acute aortic stenosis, mitral regurgitation, and myocardial infarction. 

This suggests that the MyoFE model may prove useful in studying the mechanisms 

underlying short-term regulation of arterial pressure and the effects of various 

cardiovascular disorders on the system. Future work will focus on integrating cardiac 

growth and remodeling with the baroreflex response. 
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CHAPTER 3. MULTISCALE FINITE ELEMENT MODELING OF LEFT VENTRICULAR GROWTH 

IN SIMULATIONS OF VALVE DISEASE  

 

3.1 Introduction 

The heart is able to adapt its shape and size in response to pathological conditions, 

such as altered ventricular loading from valvular disease. This process is referred to as 

cardiac growth and remodeling [16, 18]. Based on the ventricular geometry, there are two 

conventional types of growth. Concentric growth is defined by wall thickening and an 

increase in ventricular mass, due to the deposition of sarcomeres in parallel, with little or 

no change in the internal size of the ventricular chamber [6]. Eccentric growth reflects the 

addition of sarcomeres in series, which dilates the chamber and increases wall mass with 

minimal change in wall thickness [6]. In general, cardiac growth initiates as an early 

adaptive response to valvular diseases, but it can progress to heart failure if the underlying 

cause is left unresolved [2, 6, 17].  

Computer based models are providing new insights on the progression of cardiac 

growth and remodeling. Despite numerous studies that have developed mathematical 

formulations to represent these phenomena, the choice of driving stimulus for these growth 

laws is still up for debate. Conventionally, computational models of cardiac growth have 

utilized either myofiber stress [58, 59], strain [62-64], or some combination of the two [66, 

167] as their driving signal. However, several of these models either neglect the contractile 

behavior of the LV [41, 51, 56, 59, 66], or use non-mechanistic models of contraction that 

might be missing key elements that are needed in simulations of LV growth [1]. For 
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instance, several groups have employed a phenomenological Hill-type model of 

contraction to simulate the LV during systole [63, 65, 68, 86], which defines the magnitude 

of active force using a length-dependent force generation model [87, 88]. Other studies 

[64, 74] have used a time-varying elastance model of the ventricle [89, 90] to simulate the 

full cardiac cycle, which assumes an exponential end-diastolic pressure-volume 

relationship and a linear end-systolic pressure-volume relationship. In recent studies by 

Rondanina and Bovendeerd [40, 73], they investigated the effects of different mechanical 

stimuli on cardiac growth while the contractile behavior of the ventricle was modeled by a 

one-fiber model of cardiac function [91]. This model was essentially used to relate 

mechanics at the organ level, via ventricular pressure and volume, to mechanics at the 

tissue level, via myofiber stress and sarcomere length. In general, these contractile models 

do not simulate the sliding of myofilaments based on the Huxley crossbridge formation 

[96] at the myosin level.  

Though previous models have shown promising results, the underlying 

mechanisms that drive growth are complex and are accompanied by perturbations at the 

molecular level.  Emerging evidence has linked titin to fundamental signaling pathways, 

such as those regulating protein quality control, hypertrophic gene expression, and stress 

sensing. Titin can thus be viewed as a crucial integrating element at the intersection of 

myocyte signaling. The mechanical and mechano-signaling functions of the titin springs 

are variably tuned in health and disease, particularly in the heart by altering passive 

stiffness through titin-isoform switching, protein phosphorylation, and hypertrophic 

signaling. In heart muscle, titin is expressed in two main isoforms: the N2B-isoform, which 

contains a short, stiff spring segment, and (variable) N2BA-isoforms, which contain longer 
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springs and thus are more compliant [168]. Titin is a long protein that spans from the Z 

disk to M line with an elastic structure within the I band. This elastic behavior of titin 

within the I-band plays an essential role in generating passive stiffness of the sarcomere, 

which store strain-energy during diastolic filling and recoil during systole. Thus, increased 

passive stress could be linked to the eccentric growth induced by titin mediated stress 

sensing. 

In pioneering work, Davis et al. [169] developed an innovative model that 

integrated mechanics and molecular signaling. They postulated that the aspect ratio of 

myocytes was related to MEK1-ERK signaling, with myocytes becoming wider with 

increasing values of the contractile force-time integral. This induced MEK1-ERK, which 

regulates cell cycle progression, to mediate concentric growth in their model. They also 

suggested that ventricular mass was regulated by calcineurin signaling, which increased if 

the force-time integral deviated (in either direction) from a homeostatic setpoint. These 

elegant assumptions allowed Davis et al.’s model to reproduce the different magnitudes of 

concentric and eccentric growth measured in several strains of genetically-modified mice. 

Therefore, the time course of stress throughout the cardiac cycle could be used as the 

stimulus for growth and remodeling. 

The present study was developed based on this general hypothesis. Accordingly, 

the first step was to use a multiscale model of cardiovascular function named MyoFE so 

that the left ventricular contractile behavior is driven by a mechanistic model of half-

sarcomere function, which simulates the sliding of myofilaments based on the Huxley 

crossbridge formation [96] in the myosin level. The second step was to extend this 

multiscale model of cardiovascular function so that the left ventricular geometry grows in 
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response to changes in biomechanical stimulus. In this study, concentric growth was driven 

by the time-averaged total stress (i.e., passive and active) along the myofiber direction over 

the cardiac cycle. Eccentric growth was driven by time-averaged passive intracellular 

myofiber stress over the cardiac cycle. Multiple simulations were then performed to 

investigate how the ventricle responded to changes in hemodynamic load associated with 

different types of valvular disease, which induce pressure or volume overload. The results 

of this study showed that the new framework could predict the correct form of LV growth 

in response to two forms of valvular disease, namely, aortic stenosis and mitral 

regurgitation. Additionally, the LV growth was reversed when the disease-mimicking 

perturbations were removed. 

3.2 Methods 

3.2.1 Overview 

This chapter extends the central framework of MyoFE described in CHAPTER 2 

by adding a growth algorithm (Figure 3.1). In the central framework, a pacing stimulus 

drives a simplified model of electrophysiology to compute the Ca2+ transient for calculation 

of contractile stress at the myosin-level. A 3D finite element model of the left ventricle 

then pumps blood into the systemic side of the circulatory system. More details on the 

central framework can be found in CHAPTER 2.  In the following, we first describe the 

key aspects of the central framework. Then, the details related to the growth constitutive 

model and separation of timescales between the growth and elastic deformation are 

provided thereafter. 
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Figure 3.1 Integration of the central framework of MyoFE with a growth algorithm. 

 

3.2.2 Finite element formulation 

The solution for LV mechanics was approximated using an implicit backward Euler 

scheme for numerical time-integration with a fixed time step of 1 ms. An open-source FE 

library called FEniCS [143] was used for this purpose. The FE formulation of the LV 

mechanics problem was prescribed by minimizing the following Lagrangian functional 

given below: 

  (3.1) 

where z is the longitudinal axis from apex-to-base, x and y are orthogonal axes to 

the z-axis, u is the displacement field, W is the total strain energy of the myocardium, p is 

a Lagrange multiplier to govern incompressibility of the tissue by enforcing the Jacobian 

of the deformation gradient tensor J = 1, PLV is a Lagrange multiplier to constrain the LV 
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cavity volume VLV(u) to the prescribed value of VLV (which is computed from the 

circulatory model), cx and cy are Lagrange multipliers to constrain the rigid body translation 

in the x and y directions, and cz is a Lagrange multiplier to constrain the rigid body rotation. 

Finally, the relation between the LV cavity volume and the displacement field was given 

by equation (3.2) where 𝛺k,endo is the volume enclosed by the endocardial surface 𝛤k,endo 

and the basal surface at z = 0, and n is the outward unit normal vector. 

V
LV

(u) = dv
W
k ,endo

ò = -
1

3
x ×nda

G
k ,endo

ò   (3.2) 

where x is the position vector relative to the original of the global coordinate 

system. The weak formulation of the mechanics problem then was obtained by taking the 

first variation of the Lagrangian functional described in equation (3.1): 

  (3.3) 

where F is the deformation gradient tensor, S is 2nd Piola Kirchhoff stress tensor, 

δu ∈ H1(Ω0), δp ∈ L2(Ω0), δPLV ∈ R, δcx ∈ R, δcy ∈ R, and δcz ∈ R are test functions 

corresponding to u, p, PLV, cx, cy, and cz, respectively. In this formulation, the displacement 

field u was approximated using quadratic interpolation functions, whereas linear functions 

were used for the Lagrange multiplier p. 
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3.2.3 Cardiac mechanics 

To define the LV mechanics, the 2nd Piola Kirchhoff stress tensor was additively 

decomposed into an active S
a
 and a passive component S

p
i.e. 

S =S
a

+S
p   (3.4) 

The myocardium was modeled to be incompressible, hyperelastic, and transversely 

isotropic. The passive component of the stress tensor was further decomposed into three 

responses. This is due to incompressibility and the force-reliant nature of the active stress, 

which necessitates that the passive stress be decomposed into parts that account for the 

bulk tissue and the myofibers. Each response was obtained by differentiating a strain 

energy function with respect to Green-Lagrangian strain tensor, E: 

𝑺𝒑 = 𝑺𝒗𝒐𝒍 + 𝑺𝒃𝒖𝒍𝒌 + 𝑺𝒎𝒚𝒐𝒇𝒊𝒃𝒆𝒓 =
𝝏𝝍𝒗𝒐𝒍

𝝏𝑬
+

𝝏𝝍𝒃𝒖𝒍𝒌

𝝏𝑬
+

𝝏𝝍𝒎𝒚𝒐𝒇𝒊𝒃𝒆𝒓

𝝏𝑬
 (3.5) 

In the above formulation, the function y
vol

= -p(J -1)that enforces the 

incompressibility of tissue by a Lagrange multiplier p. The function y
bulk

 which defines the 

response of the bulk tissue is described by a transversely isotropic Fung-type strain energy 

function [144]: 

y
bulk

=
C

2
eQ -1( )

with Q = b
ff
E
ff

2 + b
xx
E
ss

2 +E
nn

2 +E
sn

2 +E
ns

2( ) + b
fs
E
fs

2 +E
sf

2 +E
fn

2 +E
nf

2( )
  (3.6) 

where C, bff, bxx, and bfs are passive material parameters of the bulk tissue. Components of 

Green-Lagrangian strain tensor E are denoted by E
ij
with (𝑖, 𝑗) ∈ (𝑓, 𝑠, 𝑛),, where f, s, and 

n describe the fiber, sheet, and sheer-normal directions, respectively. Finally, y
myofiber

 

prescribes the exponential strain energy function of the myofiber [145] which is given by: 
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  (3.7) 

where C1, C2 are material constants and α is the myofiber stretch calculated as 𝛼 =

√𝒇𝟎 ∙ 𝑪 ∙ 𝒇𝟎 and 𝑪 = 𝑭𝑇𝑭 is the right Cauchy-Green deformation tensor, and F is 

deformation gradient tensor. Finally, using the active stress experienced by a myofiber 

calculated by MyoSim framework Factive, the active stress tensor can be described as: 

𝑆𝑎 = 𝑭𝒂𝒄𝒕𝒊𝒗𝒆𝑓0⨂𝑓0 (3.8) 

More details on MyoSim framework are provided in CHAPTER 2. 

3.2.4 Growth constitutive model 

The growth algorithm in the current work is based on the volumetric growth theory 

by Roudriguez et al. [38]. According to this theory F can be multiplicatively decomposed 

into an elastic component F
e
 and incompatible growth F

g
 component, i.e. 

F = F
e
F
g
  (3.9) 

The growth deformation gradient tensor is further described as: 

𝑭𝒈 = 𝜃𝑙𝑜𝑐𝑎𝑙,𝑓0
𝒇𝟎⨂𝒇𝟎 + 𝜃𝑙𝑜𝑐𝑎𝑙,𝑠0

𝒔𝟎⨂𝒔𝟎 + 𝜃𝑙𝑜𝑐𝑎𝑙,𝑛0
𝒏𝟎⨂𝒏𝟎  (3.10) 

where q
local,f

0

, q
local,s

0

, and q
local,n

0

 are local scalar growth multipliers along the myofiber f
0
, 

sheet s
0
, and sheet-normal n

0
directions in the reference configuration, which control the 

magnitude of growth between consecutive growth steps. The rate of change in each local 

growth multiplier is prescribed as: 
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  (3.11) 

where i denotes growth in the myofiber f
0
, sheet s

0
, and sheet-normal n

0
directions. t

fg,i
 

and t
rg,i

are rate time constants associated with forward growth and reverse growth in the i 

direction. S
i
 is the stimulus signal and S

setpo int,i
is the homeostatic setpoint level of the 

stimulus signal, associated with growth along the i direction. It should be noted that the 

homeostatic level of the growth signal was established at each integration point in the mesh. 

This was accomplished by running a baseline simulation without any valvular perturbation. 

In this study, the stimulus signal for eccentric growth along the myofiber direction 

f
0
was assumed to be the time-averaged myofiber passive stress over a cardiac cycle. This 

is defined as:  

𝑺𝒇𝟎
=

𝟏

𝑻
∫ 𝒇𝟎 ∙ 𝑺𝒎𝒚𝒐𝒇𝒊𝒃𝒆𝒓𝒇𝟎𝒅𝒕

𝑻

𝟎
  (3.12) 

 

where T is the period of one cardiac cycle. The stimulus signal for concentric growth in 

the cross-fiber directions (s
0
and n

0
) was driven by the time-averaged total stress (passive 

and active) along the myofiber direction over a cardiac cycle. These signals are defined as: 

𝑺𝒔𝟎
= 𝑺𝒏𝟎

=
𝟏

𝑻
∫ 𝒇𝟎 ∙ 𝑺𝒇𝟎𝒅𝒕

𝑻

𝟎
   (3.13) 

EachS
setpo int,i

 value was established using the equations above during the baseline 

simulation of normal function. According to equation (3.11), local tissue growth is induced 
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when the stimulus signal is higher than its homeostatic setpoint level, while the 

myocardium shrinks when it falls below the setpoint level. Clearly, growth does not occur 

when the stimulus signal is equal to its homeostatic level. 

q
global,i

 is the global growth multiplier at each integration point that accounts for the 

total accumulation of growth in the direction i, relative to the initial reference 

configuration. These values are bounded between q
max,i

and q
min,i

, which reflect the 

maximum and minimum physiological tissue growth. In equation (3.11), as q
global,i

tends 

towards q
max,i

or q
min,i

 the rate of change in the local growth multiplier 
𝜕𝜃𝑙𝑜𝑐𝑎𝑙,𝑖

𝜕𝑡
 tends to 0 and 

stops the myocarium from the excessive growth or shrinkage. To be clear, in the preceeding 

descriptions the term local is meant to represent growth between two consecutive growth 

steps, whereas the term global represents the total accumulation of growth relative to the 

initial reference configuration. Additionally, growth occurs at each integration point in the 

mesh based on the established stimulus setpoint at that location. Model parameteres 

utilizied for one of the simulations in this study can be found in APPENDIX 2. FILE S2. 

3.2.5 Separation of timescales between growth and elastic deformation 

LV growth is a mechanism that takes place over a longer period of time, such as 

weeks and months. Therefore, in this study we separated the timescale of growth mechanics 

and normal elastic deformation as described previously [65, 68]. Based on this approach, 

the growth step occurs after a certain number of cardiac cycles, which can be set by the 

user. In the current study, the growth step occurred every 3 cardiac cycles. More 

specifically, normal elastic deformation was used during these cycles and then the growth 

step takes place at the very end of the 3rd cycle (as outlined in Figure 3.2). This allowed 2 
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cardiac cycles for the circulatory model to reach steady state, since the previous growth 

step alters the LV geometry. Then a 3rd cardiac cycle (step 0 in Figure 3.2), which is 

referred to as the “growth cycle”, is conducted for the assessment of the stimulus signal.  

It can be seen that the growth step starts by calculating the associated time-averaged 

stimulus signal over the growth cycle (step 1 in Figure 3.2). Once the growth cycle reaches 

the end-diastolic volume, the LV geometry is unloaded back to its reference configuration 

(step 2 in Figure 3.2). In the next step, the local thetas (q
local,i

) are updated based on the 

growth stimulus (step 3 in Figure 3.2). With this approach, the growth tensor F
g
 is referred 

to the most recent updated reference configuration, and correspondingly, its input 

parameters q
local,i

 were computed based on this updated configuration. Next, the LV 

geometry in the reference configuration grows, since F
g
is a non-identity tensor (step 4 in 

Figure 3.2). This is accomplished by solving for the elastic part of the deformation gradient 

F
e
, which is required to attain a compatible configuration in the absence of any loading on 

the LV (i.e., the endocardial surface is traction free). This results in a residually stressed 

unloaded configuration. However, in the current study we chose to alleviate this residual 

stress, similar to the “updated reference configuration approach” described in our previous 

work [65]. This was accomplished by updating the nodal positions of the reference 

configuration to match those of the nodes displaced during the growth step (step 5-1 in 

Figure 3.2).  Once the updated reference configuration is established the global theta value 

is calculated (step 5-2 in Figure 3.2). Finally, the new reference configuration for the LV 

geometry is reload back to the prescribed end-diastolic volume (step 6 in Figure 3.2), which 
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conserves total blood volume in the system, and continues the normal elastic deformation 

until the next growth cycle (i.e. n+1) starts. 

 

Figure 3.2 Scheme for imposing LV growth using the updated reference configuration approach. 

 

The weak formulation of the growth mechanics problem was obtained using the FE 

method to solve the following equation for u ÎH1 W
0( )and pÎH1 W

0( ) such that 

(3.14) 

In the above equation, F is deformation gradient tensor described in (3.9), S is the 

2nd Piola Kirchhoff stress tensor which does not include the active stress (S = S
p
), 
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δu∈H1(Ω0), δp ∈ H1(Ω0), δcx∈ R, δcy ∈ R, and δcz ∈ R are test function corresponding to u, 

p, cx, cy, and cz respectively. Similar to the elastic deformation, the displacement field u 

was approximated using a quadratic tetrahedral element formulation, whereas a linear 

element formulation was used for Lagrange multiplier p.  

3.2.6 Simulation cases 

3.2.6.1 Baseline 

All simulations in this study started with default parameters to represent the 

cardiovascular function of a healthy adult with normal characteristics as reported in the 

literature [170, 171]. For example, total blood volume of the circulatory system was set to 

4.5 liters such that when the system reaches to steady state the LV ejects 74 ml of blood 

with a heart rate of 60 beats per minute and an ejection fraction of 65%.   

3.2.6.2 Aortic Stenosis 

According to Poiseuille’s law, the resistance of flow across the aortic valve is 

proportional to one over the valve cross-sectional area squared. Therefore, the stenotic 

aortic valve was modeled by increasing the aortic valve resistance, Raorta in equation (2.2)

, which describes the blood flow from the left ventricle to the aorta. According to American 

Heart Association (AHA) guidelines [149], a patient with asymptomatic severe aortic 

stenosis has a ~65 % reduction in the aortic valve area, from a mean value of 2.5 cm2 for 

healthy adults [172-174] to a mean value of 0.86 cm2 [175, 176]. This was mimicked in 

the current work by increasing the valve resistance from a baseline value of 20 to 170 

(mmHg L-1).  
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3.2.6.3 Mitral Regurgitation 

To model mitral regurgitation, G
MV

in equation (2.2)  was set to a positive value, 

which allows blood to leak backward through the mitral valve during systole. In the current 

work, we modeled a patient with progressive mitral regurgitation, as classified by AHA 

guidelines. Setting G
MV

= 3E - 3  (L mmHg-1 s-1) resulted in a regurgitant volume of ~55 

ml beat-1. 
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3.3 Results 

3.3.1 Concentric growth was captured in response to pressure overloading 

Figure 3.3 illustrates the response of the model to a simulation of pressure 

overloading due to aortic stenosis. The simulation began by mimicking the baseline 

condition of a healthy adult. Upon reaching steady state, the system was challenged by 

increasing the aortic resistance from the baseline value of 20 (mmHg L-1) to 170 (mmHg 

L-1), simulating a 65% reduction in the aortic valve area. 

The resulting perturbation elevated the pressure gradient between the ventricle and 

aorta, increasing the afterload against which the LV chamber ejected blood. This increased 

afterload led to slower myocyte shortening and an increase in total stress within the 

myocardium, which is caused by more myosin heads in the FG state. The diminished 

cardiac output lowered the arterial pressure from ~114/67 mmHg to ~107/63 mmHg. In 

response to the elevated stress, the growth algorithm increased the growth multiplier along 

local sheet and sheet-normal directions, resulting in a 24% increase in myocardial volume. 

The resulting change in myocardial volume caused thickening of the unloaded chamber 

wall (Figure 3.3.c), while the cavity volume remained unchanged, which is consistent with 

concentric growth in response to the pressure overloading.  
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Figure 3.3 The growth algorithm predicted thickening of the LV in response to pressure 

overloading.  

a) Schematic progress of concentric growth due to aortic stenosis. b) Multi-panel illustration of 

results for a simulation of aortic stenosis. c) Unloaded LV geometry for baseline (solid color) and 

hypertrophic LV (wireframe).  

The left-hand column shows system-level properties. The middle column shows aortic resistance along 

with the model parameters related to growth algorithm. The right-hand column shows properties 

relevant to myocardial function. The simulation started using default parameters. The growth 

algorithm was initiated after 30 s. The aortic resistance was increased over a 10 s period (between the 

first and second vertical lines). The OFF and ON labels describe the status of binding sites on the thin 

filament. The SRX, DRX, and FG labels refer to myosin heads in the super-relaxed, disordered-

relaxed, and force-generating states, respectively. It should be noted that the last three panels in the 

middle column and all panels in the right-hand column are average values over the entire LV mesh. 
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3.3.2 Eccentric growth was captured in response to volume overloading 

Figure 3.4 depicts the model response to volume overloading caused by mitral 

regurgitation. Similar to the previously examined case of pressure overloading, the 

simulation began with default parameters until achieving steady state. At this stage, the left 

ventricle was pumping approximately 65% of its chamber volume at a rate of 60 beats per 

minute, producing an arterial pressure of approximately 114/67 mmHg. Upon inducing a 

regurgitant volume of approximately 55 ml, the q
global,f

0

across the mesh increased from 1 

to an average of approximately 1.22. This led to the growth of myofibers along the local 

myofiber direction (i.e. f
0
), resulting in an approximately 16.5% increase in myocardium 

volume. Consequently, the left ventricle underwent a 5% and 37% dilation for end-systolic 

and end-diastolic volumes, respectively. The regurgitant volume also caused a significant 

drop in arterial pressure to ~92/53 mmHg, as shown in Figure 3.4.b. Regarding the 

unloaded geometry, the LV chamber dilated in a fairly uniform way from base to apex.  
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Figure 3.4 The growth algorithm dilated LV in response to volume overloading.  

a) Schematic progress of eccentric growth due to mitral regurgitation. b) Multi-panel illustration of 

results for a simulation of mitral regurgitation. c) Unloaded LV geometry for baseline (solid color) 

and eccentric growth (wireframe). The left-hand column shows system-level properties. The middle 

column shows regurgitant volume along with the model parameters related to the growth algorithm. 

The right-hand column shows properties relevant to myocardial function. The simulation started using 

default parameters. The growth algorithm was initiated after 30 s. The regurgitant volume was 

induced over a 10 s period (between the first and second vertical lines). The OFF and ON labels 

describe the status of binding sites on the thin filament. The SRX, DRX, and FG labels refer to myosin 

heads in the super-relaxed, disordered-relaxed, and force-generating states, respectively. RVOL 

refers to regurgitant volume. It should be noted that the last three panels in the middle column and all 

panels in the right-hand column are average values over the entire LV mesh. 
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3.3.3 Effects on the pressure-volume relationship 

The results of the current study showed that the regurgitant volume induced by the 

leaking mitral valve had a significant impact on the forward stroke volume and peak LV 

pressure in comparison to the baseline case. Specifically, the forward stroke volume was 

reduced by approximately 23%, from 74 ml to 57 ml, resulting in a 17% drop in peak LV 

pressure from 118.7 to 97.7 mmHg (Figure 3.5). Mitral regurgitation also had a long-term 

effect on LV geometry as the end-diastolic volume dilated by 35%. Moreover, the 

isovolumic contraction and relaxation was perturbed due to retrograde blood flow through 

the mitral valve.  

In contrast, aortic stenosis resulted in a 43% increase in peak systolic pressure due 

to the elevated pressure gradient between the ventricle and aorta. The long-term change in 

left ventricular geometry was a roughly 10% increase in end-systolic volume while the 

end-diastolic volume did not change and remained at the baseline level. 
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Figure 3.5 Predicted pressure-volume relationships. 

 

3.3.4 Reversal of growth when the perturbation was removed  

We aimed to investigate whether our computational model is capable of accurately 

capturing the phenomenon of reversed growth. Specifically, we examined the effects of 

treating mitral regurgitation (MR) and aortic stenosis (AS) by simulating the removal of 

underlying perturbations, such as regurgitant volume and elevated pressure gradient. To 

simulate these effects, we repeated the simulations illustrated in Figure 3.4 and Figure 3.5,  

but once the final forward growth step was captured we removed the underlying 

perturbation and continued the simulation for another 100 cardiac cycles. 

Figure 3.6 demonstrates that the relief of myocytes from overstretching, due to the 

removal of excessive diastolic filling (i.e. treated MR), led to a reduction in myocardial 

volume, which was 2.5% higher than the myocardial volume at baseline. Regarding the 
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nodal position of the unloaded geometry, the growth algorithm displaced all the epicardial 

nodes back to their original coordinates at baseline. However, the endocardial nodes shifted 

slightly inward compared to the original nodes at baseline.  

For the AS case, the removal of elevated aortic resistance reduced the pressure 

gradient (afterload) and sped up the myocyte shortening, which in turn reduced the total 

stress in the LV wall. This reduction led to the reversal of hypertrophy and decrease of 

myocardial mass, which was 7% lower than its baseline level. In terms of the nodal 

positions of the stress-free geometry, the thickness of left ventricular wall reduced, 

however, both epicardial and endocardial nodes shifted inwards in comparison to their 

original location at baseline.  
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Figure 3.6 Reversal of LV growth in response to removal of valvular diseases. AS: Aortic stenosis, 

MR: Mitral regurgitation 

 

3.4 Discussion 

The approach described in this study utilized a computational model of the 

cardiovascular system that integrates a volumetric growth algorithm to simulate both 

concentric growth (wall thickening / thinning) and eccentric growth (chamber dilation / 

constriction). The growth algorithm uses time-average stresses, specifically, total stress 

and myofiber passive stress for driving concentric and eccentric growth, respectively. The 

results of this study showed that the new framework could predict the correct form of LV 
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growth in response to two forms of valvular disease, namely, aortic stenosis and mitral 

regurgitation. Moreover, simulations for each valvular disorder regained LV size and 

function (reversal of growth) when the disease-mimicking perturbation was removed. 

3.4.1 Role of myofiber passive stress in driving eccentric growth 

Valvular diseases such as mitral regurgitation can cause eccentric growth in 

patients, driven by a cellular-level mechanism known as mechanotransduction [177]. This 

condition results in excessive diastolic filling of the left ventricle, leading to sarcomere 

overstretching. Consequently, higher stresses at the end of the sarcomeres are sensed by 

proteins located in these regions [178]. Titin, which spans from the Z disk to the M line, 

contains an elastic structure within the I band that interacts with other proteins on the Z 

disk and provides the passive stiffness of the sarcomeres by storing strain energy during 

diastole [177]. Mechanical stimuli in the form of passive stresses are sensed by sarcomeric 

titin domains, triggering a cascade of downstream signals that ultimately upregulate protein 

synthesis, sarcomere addition, and myocardium growth. 

In the current model, we define that the intracellular myofiber passive stress has a 

nonlinear relationship with half-sarcomere stretch, as described in equation (3.7). 

Accordingly, volume overloading causes an initial increase in diastolic filling of the left 

ventricle, leading to half-sarcomere overstretching and a rise in time-averaged intracellular 

passive stress. In response to this elevated mechanical stimulus, the growth algorithm 

increases the growth multiplier along the fiber direction, reducing the extent of half-

sarcomere stretch and thus alleviating the passive stress felt by myofibers. This mechanism 

drives the serial deposition of sarcomeres and the subsequent eccentric growth of the left 

ventricle. 
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In response to a progressive mitral regurgitation, our model predicted increased 

myocardial volume along the fiber direction. This led to the dilation of LV at both end 

diastole and end systole, which has been observed in the literature [179-181]. Our model 

predicted a 16.5 % increase in myocardial mass, while Schiros et al. [180] reported a 28% 

increase for MR patients with roughly the same regurgitant volume (i.e. ~55 ml) as our 

model. Regarding left ventricular chamber volume, our model prediction for the change in 

end-diastolic volume was aligned with the reported change by Schiros et al. (37% versus 

52%). Moreover, in our model arterial pressure dropped from 114/67 to ~92/53 mmHg, 

however, patients with MR showed no difference in their blood pressure comparing to the 

control volunteers [180]. 

3.4.2 Role of myofiber total stress in driving concentric growth  

In patients with aortic stenosis, concentric growth is induced by the pressure 

overload experienced by the heart. This mechanical condition is characterized by an 

increase in the resistance of blood flow through the aortic valve during left ventricular 

systole. Consequently, the shortening velocity of sarcomeres is reduced. In the current 

study, this reduced shortening velocity increases the number of bound myosin heads in the 

MFG state, which mainly occurs because fewer myosin heads are pulled off due to strain-

dependent detachment. Ultimately, this elevates the time-averaged total stress generated 

by myofibers, which drives the growth algorithm to grow the myocytes in the cross-fiber 

directions (i.e. s
0
and n

0
). Our approach is further in line with recent findings that have 

investigated the stimulus signal for concentric growth. For instance, Davis et al. [169] 

demonstrated that concentric hypertrophy is associated with an increased force-time 

integral, which reflects the mechanical work performed by the heart. Therefore, using time-
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averaged total stress could be used to model myocyte thickening in response to pressure 

overloading.  

 Comparing to reported measures in the literature, our growth algorithm 

predicted a 24% increase in LV mass in response to the simulated AS case, which was 

close to the reported change (32% increase) by Chin et al. [172] for patients with mild to 

severe AS. Additionally, our model predicted almost no change for left ventricular chamber 

volume, which aligned with reported data for patients with AS [172, 182]. Similar to MR 

case, our simulation for AS resulted in roughly 6% decrease in arterial pressure, although 

such a change has not been observed in the literature [182]. 

3.4.3 Integration of LV growth with a mechanistic model of half-sarcomeres at 

myosin-level 

Since the emergence of computational modeling of left ventricular (LV) growth 

[38], many models have shed light on the underlying mechanics of the LV growth that 

occurs. However, existing models have certain limitations related to the assumptions used 

for representing systolic function during the cardiac cycle. For example, some models [41, 

59, 66] have only simulated LV growth during diastolic loading and neglected the systolic 

behavior of myocardium during ejection. Other models [63, 65, 68] investigated the 

mechanics of LV growth under a full cardiac cycle, but the contractile function was 

simulated using phenomenological Hill-type models. Yet another group of works [64, 74] 

used a time-varying elastance model of the ventricle to simulate a full cardiac cycle. 

In contrast, our current framework simulates LV growth under a full cardiac cycle, 

in which the contractile behavior of the LV is driven by a mechanistic model of half-

sarcomeres. This model simulates the sliding of myofilaments based on the Huxley 
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crossbridge formation [183] at the myosin level. Modeling the mechanics of sarcomeres at 

this level allows us to capture length-dependent activation, cooperativity between thick and 

thin filaments, and the strain-dependent behavior of cross-bridges, which is more realistic. 

Furthermore, using such models, we can study the effects of pathological processes at the 

molecular level and how they affect disease development at the organ level. Additionally, 

this framework could potentially be used to study the effects of various pharmaceutical 

interventions for treating cardiac diseases.  

3.4.4 Reversal of growth  

The reversal of cardiac growth is a favorable outcome of clinical interventions for 

dysfunctional valves, i.e., when the ventricle returns to a normal size and shape. Although 

existing computational models have shown success in predicting the development of 

growth, many of them are challenged when trying to predict the reversal of growth [1, 85]. 

Of the few works that have studied the reversal of growth, Lee et al. [41] modified 

a previously developed eccentric growth law [66] and were able to capture the reversal of 

growth for a realistic LV geometry under certain types of loading. In particular, their model 

was based on diastolic stretch as the driving growth signal and was only tested for volume 

overloading.  Arumugam et al. [68] extended their previous work [41] and investigated the 

development of anisotropic growth in a biventricular model of the heart in response to 

mechanical dyssynchrony. Using maximum elastic myofiber stretch over a cardiac cycle 

as the sole stimulus signal of their growth law, their model demonstrated growth in the left 

ventricular chamber size and septal wall, but reversal of growth for the right ventricular 

chamber size and LV free wall. In a more recent work, Yoshida et al. [70] investigated the 

regression of growth due to the removal of pressure overloading, while using the growth 
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law developed by [63]. Although this strain-driven growth law performed the best in 

capturing the development of LV growth, in comparison to seven other growth laws [72], 

it could not predict the reversal of growth. Yoshida et al. [70] further suggested that using 

an evolving setpoint could potentially address the inability of existing models to predict 

the reversal of growth. Built upon this hypothesis, Oomen et al. [184] used this idea of 

“evolving setpoint” and was able to capture the reversal of growth when assessing Cardiac 

Resynchronization Therapy. 

Our model was able to regain the LV size and function once the underlying 

perturbation for each valvular disorder was lifted. There are several potential explanations 

for this result. Firstly, our framework uses a mechanistic model of a half-sarcomere to 

simulate the contractile behavior of myocardium [97, 98]. Such a model can account for 

the effects of altered ventricular loading on the force generation of half-sarcomere that 

other models may be unable to capture. For instance, Yoshida et al. [70] had to manually 

adjust the muscle contractility in their model to mimic the lower force production of 

myocardium due to the removal of pressure overloading. In contrast, removal of the aortic 

stenosis condition in our model led to lower hemodynamic resistance during LV systole, 

which in turn increased the shortening velocity of half-sarcomeres due to higher strain in 

the myosin heads. This event reduces the number of bound myosin heads in the force-

generating state (MFG) and thus lowers the associated force that is generated in the half-

sarcomere, such that it matches with the altered hemodynamic loading.  

Secondly, the choice of growth stimulus may be the reason for the inability of 

previous models to predict the reversal of growth, particularly in the presence of pressure 

overloading. Yoshida et al. [70] and Oomen et al. [184]  both utilized the minimum of the 
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first principle strain to drive myocyte thickening. However, prior research has 

demonstrated that, without incorporating the concept of an "evolving setpoint," the growth 

stimulus does not decrease below the constant setpoint after the removal of pressure 

overloading, resulting in the growth model's inability to capture the reversal of growth. In 

contrast, our model employs time-averaged total stress along the myofiber direction as the 

growth stimulus, which is more consistent with the findings of other researchers who have 

suggested that myofiber stress may be a superior growth stimulus for pressure overloading. 

For instance, Rondanina and Bovendeerd [40] tested four combinations of myofiber stress 

and strain driven laws, for both concentric and eccentric growth, and concluded that using 

at least one stress-driven law would predict more reliable growth. In another study, 

Mojumder et al. [39] showed that concentric growth of the LV, due to pressure overloading, 

correlates better with myofiber stress than stretch/strain.  

3.5 Limitations 

Although the current model resolves some of the issues found in previous studies 

of cardiac G&R [1], the simulations presented here still have some limitations. First, the 

current model, like many other existing models of cardiac G&R, does not incorporate the 

effect of hemodynamic reflex. This limitation led to some mismatch between the predicted 

arterial pressure and reported measures in the literature for patients with valve diseases. 

For instance, in our model arterial blood pressure dropped from ~114/67 to ~107/63 mmHg 

and ~92/53 mmHg for aortic stenosis and mitral regurgitation, respectively, which are in 

contrast to reported data in such patients in the literature [179, 181]. Moreover, the absence 

of hemodynamic reflex can indirectly impact the performance of the algorithm in capturing 

long-term growth. Essentially, in the presence of a reflex control, the arterial pressure 
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would have been preserved when the system was challenged the valvular diseases. 

Therefore, the LV would have been functioning against a different level of loading that 

could result in some variation in predicted growth.  The incorporation of a baroreflex 

control will be the focus of future work.  

A second limitation of the current model is that we did not tune the rate constants 

in the local theta equations. This would require fitting to experimental data to find the 

correct rate constants to mimic the true time course of growth, i.e., find a set of rate 

constants such that one growth step represents a certain number of days, weeks, etc. The 

focus of the current work is on the utilization of the time-average of stress as the growth 

driver, and its interplay with the mechanistic law of active contraction. However, this will 

also be to focus of future studies.  Another limitation is that the reversal of growth did not 

lead to a perfect recreation of the baseline geometry. However, this is somewhat expected 

given the path dependent nature of growth, due to the multiplicative split of the deformation 

gradient, which is based on finite plasticity theory, and the discrete motion of the FE mesh.   

Lastly, the current framework can only quantify the cardiac growth (i.e., change in the 

ventricular size and dimension), but not the myofiber remodeling. Alterations in 

mechanical loading can be accompanied by myofiber disarray and remodeling [18, 185]. 

However, this will be accounted for in future work.  

3.6 Summary and conclusion 

This work extends a multiscale model of cardiovascular function by integrating a 

volumetric growth algorithm, which was based on the time-averaged stress over a cardiac 

cycle. The central framework uses a mechanistic model of half-sarcomeres to drive the 
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contractile function of myocytes at the myosin-level. Results of this study showed that the 

model could predict both concentric (wall thickening / thinning) and eccentric (chamber 

dilation / constriction) growth in simulations of valve diseases. Additionally, the newly 

extended framework could regain the LV size and function (reversal of growth) when the 

disease-mimicking perturbation was removed. In conclusion, the results of this study 

suggest that time-averaged total stress and time-averaged myofiber passive stress can be 

used to drive concentric and eccentric growth in simulations of valve disease. 
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CHAPTER 4. ROLE OF BAROREFLEX FEEDBACK LOOP IN LV GROWTH PREDICTION: A 

MULTISCALE FINITE ELEMENT MODELING STUDY IN VALVULAR DISEASES 

 

4.1 Introduction 

The heart pumps blood through the circulatory system in a regulated manner, which 

is governed by several mechanisms operating across multiple scales. It can adapt its size 

and shape in response to acute or chronic alterations in pumping demand due to either 

physiological or pathological changes. This process, referred to as cardiac growth and 

remodeling (G&R), is driven by a number of processes at the cellular level including 

alterations in signaling pathways and neurohormonal activation. These changes are 

manifested through wall thickening and/or chamber dilation at the organ level.  

Computational cardiac G&R models have been seen as a useful tool to enhance our 

understanding of the complex interaction/behavior of how living systems adapt when their 

loading conditions change. Although current models have done a good job in predicting of 

the long-term change in the geometry of the heart, they have paid less attention to the 

predicted hemodynamics and the role of baroreflex mechanisms in altering the predicted 

G&R [1].  For instance, Kerckhoffs et al.  [63] introduced a single strain-based model of 

cardiac growth, which was able to predict the correct form of growth due to either pressure 

or volume overloading. However, they reported a mismatch between the calculated peak 

left ventricular (LV) cavity pressure and that measured in experiments and posited that it 

could be due to the lack of a short-term baroreflex responses in their model. In another 

study by Witzenburg and Holmes [159], they investigated the role of compensatory 

reflexes that act to preserve mean arterial pressure (MAP) and its effect on the predicted 
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growth post myocardial infarction. They showed that the variability in the compensatory 

reflex mechanism can lead to different extent of predicted LV dilation consistent with 

reported variability in the literature. Another model developed by Rondanina and 

Bovendeerd [40] studied the effect of different mechanical stimulus signals in the 

prediction of cardiac growth in simulations of valvular diseases. However, their model 

predicted a 20% to 40% reduction in mean arterial pressure and cardiac output.  In their 

subsequent work [73], they showed coupling a simplified reflex model with their growth 

model could capture more realistic cardiac growth and preserved cardiac pump function. 

Building on these observations, in our previous work described in CHAPTER 3, 

we implemented a volumetric growth algorithm into the MyoFE framework, which is a 

high-fidelity multiscale model of cardiovascular function based on finite element modeling 

(FEM). The growth algorithm used total stress along the myofiber direction, which was 

time-averaged over a cardiac cycle, to drive the myofiber growth in the cross-fiber 

directions (i.e. sheet and sheet-normal), while growth along the fiber direction was 

governed by time-averaged myofiber passive stress over a cardiac cycle. The growth 

module was able to predict the correct form of growth in simulations of valvular disease. 

However, it was shown in those simulations that the model predicted lower systolic 

pressure within the LV cavity and lower mean arterial pressure in the arteries, which in 

turn, might not be as realistic as reported data in vivo. 

Although valvular disorders might result in decreased cardiac function [186], in 

general, arterial pressure and cardiac output may be maintained at normal levels for such 

patients [104, 187-189]. In people, mean arterial pressure is maintained via several know 

mechanisms, such as the renin-angiotensin system [190] and the secretion of natriuretic 
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peptides [191], which adjust renal excretion of salt and water to regulate blood pressure 

over longer timescales. On the other hand, another mechanism, called the baroreflex loop, 

controls arterial pressure over short-term timescales. This feedback loop changes the 

activity of the sympathetic and parasympathetic nervous system in response to changes in 

blood pressure. When blood pressure rises, the baroreceptors in the carotid sinus and aortic 

arch detect the increased strain in the vessel walls and send signal to the brainstem or 

medulla. The brainstem then fires a signal that causes the sympathetic nervous system to 

decrease its activity and the parasympathetic nervous system to increase its activity. The 

net result of this change in the activity of the efferent neuron pathway is a decrease in heart 

rate, blood vessel constriction (vasodilation), contractility of the heart, and consequently 

an overall decrease in blood pressure. Similarly, when blood pressure falls the 

baroreceptors capture the decrease, which causes the opposite changes in the sympathetic 

and parasympathetic nervous system, leading to an increase in heart rate, vascular tone, 

contractility, and thus an overall increase in arterial blood pressure [134].  

In this chapter we incorporated the baroreflex algorithm that was described in 

CHAPTER 2 into the framework outlined in CHAPTER 3 to study the role of 

compensatory reflex on the degree of predicted LV growth. The results of this study 

showed that the coupled baroreflex-growth algorithm predicted a more realistic form of 

growth and hemodynamic function consistent with the clinical data reported in the 

literature.   
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4.2 Method 

This chapter combines three frameworks/algorithms, namely the central framework 

of MyoFE, a baroreflex algorithm, and a growth algorithm that are described in CHAPTER 

2 and CHAPTER 3. Briefly, the central framework simulates the elastic deformation of the 

LV using a finite-element model. In this framework a pacing stimulus drives a simplified 

model of electrophysiology to compute the Ca2+ transient for calculation of contractile 

stress at the myosin-level. A 3-D ellipsoidal geometry of the LV then pumps blood into the 

systemic side of the circulatory system. The baroreflex algorithm, as was described in 

CHAPTER 2, controls arterial pressure at a setpoint level by regulating heart rate, 

intracellular Ca2+ transient, myofilaments function, and vascular tone. Lastly, the growth 

algorithm CHAPTER 3) captures long-term changes in the size and shape of the LV 

geometry by mimicking the serial and parallel deposition of sarcomeres, along the fiber 

and cross-fiber directions, in response to changes in the growth stimuli. 

In addition to viewing our previous works, more details on the description of the 

central framework shown in Figure 4.1, such as the electrophysiology model, the finite 

element formulation of elastic deformation, and the contractile mechanics of LV model, 

are described in CHAPTER 2. In the following, we first briefly describe the lumped-

parameter model of circulation. Then we outline the details of the LV geometry and cardiac 

mechanics. Finally, we describe the methodology of the baroreflex algorithm and 

constitutive law of the growth algorithm. 
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Figure 4.1 Overview of MyoFE framework.  

The central framework simulates the elastic deformation of a finite-element model of the LV. The 

baroreflex algorithm controls arterial pressure by regulating heart-rate, intracellular Ca2+ transient, 

function of borth myofilaments, and vascular tone. The growth algorithm captures the long-term 

change in geometry of the LV due to overloaing. 

 

 

4.2.1 Circulation 

The circulation model in the central framework mimics only the systemic 

circulation. In addition to the LV, there are six additional compartments, namely Aorta, 

Arteries, Arterioles, Capillaries, Venules, and Veins, each of which possessed a 

compliance denoted by Cj and a resistance denoted by Rj. The blood volume within each 

compartment undergoes a rate of change that is determined by the difference between the 

inflow and outflow of blood into and out of that particular compartment (equation (4.1)). 
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dV
aorta

dt
=Q

LV to aorta
-Q

aorta to arteries

dV
arteries

dt
=Q

aorta to arteries
-Q

arteries to arterioles

dV
arterioles

dt
=Q

arteries to arterioles
-Q

arterioles to  capillaries

dV
capillaries

dt
=Q

arterioles to  capillaries
-Q

capillaries to  venules

dV
venules

dt
=Q

capillaries to  venules
-Q

venules to veins

dV
veins

dt
=Q

venules to veins
-Q

 veins to LV

dV
LV

dt
=Q

 veins to LV
-Q

LV to aorta

  (4.1) 

The flow of blood between two compartments is regulated by Ohm's law and is 

associated with the pressure gradient between the compartments and the resistance of the 

receiving compartment. The resulting blood flows can be succinctly described as follows: 
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where GAV and GMV are model parameters controlling the leakage through the aortic and 

mitral valves, respectively. The blood pressure within each compartment, except the LV is 

described as: 

P
i
=
V
i
(t) -V

i,slack

C
i

  (4.3) 

where Vi(t), Vi,slack and Ci are the instantaneous blood volume, the slack volume, and the 

compliance of the compartment i, respectively. The LV pressure, on the other hand, was 

calculated from FE model according to VLV as the input.  

4.2.2 LV model geometry  

An ellipsoidal geometry of a human LV with ~1280 tetrahedral elements was used 

in this study. The slack chamber volume of the LV was 66 ml with a myocardial volume 

of 136 ml. The length of the LV from base to apex was roughly 7 cm, while the outer 

diameter of the LV at base was 7.1 cm. Myofiber directions f0 were defined by linearly 

changing the helix angle from 60o at endocardium to -60o at the epicardium transmurally 

across the wall (Figure 2.2) using a Laplace-Dirichlet rule-based algorithm [142].  

4.2.3 Finite element formulation of elastic deformation 

The solution for LV mechanics was approximated using an implicit backward Euler 

scheme for numerical time-integration with a fixed time step of 1 ms. An open-source FE 

library called FEniCS [143] was used for this purpose. The FE formulation of the LV 

mechanics problem was prescribed by minimizing the Lagrangian functional described in 

the supplementary materials. 
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4.2.4 Cardiac mechanics 

To define the LV mechanics, the 2nd Piola Kirchhoff stress tensor was additively 

decomposed into an active component S
a
 and a passive component S

p
i.e. 

S =S
a

+S
p
  (4.4) 

The myocardial tissue was modeled to be incompressible, hyperelastic, and 

transversely isotropic. The passive component of the stress tensor further decomposed into 

three responses. This is due to incompressibility and the force-reliant nature of the active 

stress, which necessitates that the passive stress be decomposed into parts that account for 

the myofibers and remaining bulk tissue. Each response was obtained by differentiating a 

strain energy function with respect to Green-Lagrangian strain tensor, E: 

𝑺𝒑 = 𝑺𝒗𝒐𝒍 + 𝑺𝒃𝒖𝒍𝒌 + 𝑺𝒎𝒚𝒐𝒇𝒊𝒃𝒆𝒓 =
𝜕𝜓𝑣𝑜𝑙

𝜕𝑬
+

𝜕𝜓𝑏𝑢𝑙𝑘

𝜕𝑬
+

𝜕𝜓𝑚𝑦𝑜𝑓𝑖𝑏𝑒𝑟

𝜕𝑬
 (4.5) 

More details on calculation of each component are outlined in CHAPTER 2. The 

active component, Sa, of the total stress tensor was determined using the MyoSim 

framework [97], which is characterized in CHAPTER 2.  Finally, using the active stress 

experienced by a myofiber Factive, the active stress tensor can be described as: 

𝑆𝑎 = 𝑭𝒂𝒄𝒕𝒊𝒗𝒆𝑓
0
⨂𝑓

0
 (4.6) 

4.2.5 Baroreflex 

The baroreflex algorithm is adapted from CHAPTER 2. Essentially, in this 

algorithm the afferent pathway is simplified via a normalized afferent signal Ba that has a 

sigmoidal relationship with arterial pressure (Parteries): 
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B
a
(t) =

1

1+ e
-S(P
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-P

set
)
  (4.7) 

where Pset is the setpoint for arterial pressure, and S defines the slope of the function around 

its midpoint.  

The efferent pathway, on the other hand, is described via a single balance signal Bb, 

5k+3 unique control signals (Bc,1, Bc,2 … Bc,5k+3), and 5k+3 distinct mapping functions (M1, 

M2 … M5k+3), where k represents the number of integration points present across the LV 

mesh. The balance signal Bb is a normalized representation of the difference between 

sympathetic and parasympathetic efferent activity. Its rate of change was defined as: 
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  (4.8) 

where kdrive is a rate constant. The balance signal converges to the value of 1 when the 

sympathetic drive dominates the control loop. Alternatively, when the parasympathetic has 

a greater influence, the balance signal Bb approaches to zero.  

The control signals Bc,i describe how each of reflex-sensitive parameters in the 

cardiovascular model respond to the balance signal. Similar to equation (4.8), their rates of 

change were defined as  

dB
c,i

(t)

dt
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k
control,i

B
b
(t) - 0.5( ) 1-B

c,i
(t)( ) B

b
³ 0.5

k
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B
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(t) B
b

< 0.5

ì

í
ï

î
ï

  (4.9) 

where i ranges from 1 to 5k+3 and kcontrol,i is the rate constant for system i.  
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Moreover, these signals are normalized, and reflect the cellular processes governed 

by autonomic control. Each signal tends to converge to a saturated value of unity when 

sympathetic drive exceeds parasympathetic drive, (Bb > 0.5). Conversely, if 

parasympathetic drive prevails (i.e. Bb < 0.5), it causes the control signals to gradually 

diminish towards zero. 

The final step in the algorithm used mapping functions Mi to link the normalized 

control signals Bc,i to actual parameter values. Each mapping function took the form 

M
i
B
c,i

(t)( ) =

M
base,i

+
1

2
B
c,i

(t) - 0.5( ) Msymp,i
-M

base,i( ) B
c,i
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M
base,i
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1

2
B
c,i

(t) - 0.5( ) Mparam,i
-M

base,i( ) B
c,i

< 0.5

ì

í

ï
ï

î

ï
ï

  (4.10) 

where Mbase,i is the default value for parameter i, and Msymp,i and Mpara,i are its limits during 

maximum sympathetic and maximum parasympathetic drive respectively. These control 

signals and mapping functions operate to modulate crucial physiological processes, 

including heart rate, Ca2+ transients, myofilament function, and vascular tone. 

4.2.6 Growth constitutive model 

The growth algorithm in the current work is based on the volumetric growth theory 

by Roudriguez et al. [38]. According to this theory, the total deformation gradient tensor 

(F) can be multiplicatively decomposed into an elastic component F
e
 and incompatible 

growth F
g
 component, i.e. 

F = F
e
F
g
 (4.11) 

The growth deformation gradient tensor is further described as: 



 

 

111 

𝑭𝒈 = 𝜃𝑙𝑜𝑐𝑎𝑙,𝑓0
𝒇𝟎⨂𝒇𝟎 + 𝜃𝑙𝑜𝑐𝑎𝑙,𝑠0

𝒔𝟎⨂𝒔𝟎 + 𝜃𝑙𝑜𝑐𝑎𝑙,𝑛0
𝒏𝟎⨂𝒏𝟎 (4.12) 

where q
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0
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local,n

0

 are local scalar growth multipliers along the myofiber f
0
, 
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0
, and sheet-normal n

0
directions in the reference configuration that represent 
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  (4.13) 

In above equation, j denotes local myofiber f
0
, sheet s

0
, and sheet-normal n

0

directions. t
fg, j

 and t
rg, j

are rate time constants associated with forward growth and reverse 

growth in the j direction. S
j
 is the stimulus signal and S

setpo int,j
is the homeostatic setpoint 

level of the stimulus signal, associated with growth along the j direction. The stimulus 

signal (S
j
) and its homeostatic level (S

setpo int,j
) were established at each integration point 

across the mesh, which was accomplished by running a baseline simulation without any 

valvular perturbation. Similar to the work described in CHAPTER 3, the stimulus signal 

for eccentric growth along the myofiber direction f
0
was assumed to be the time-averaged 

myofiber passive stress over a cardiac cycle described as: 

𝑺𝒇𝟎
=

𝟏

𝑻
∫ 𝒇𝟎 ∙ 𝑺𝒎𝒚𝒐𝒇𝒊𝒃𝒆𝒓𝒇𝟎𝒅𝒕

𝑻

𝟎
 (4.14) 

where T is the period of one cardiac cycle. The stimulus signal for concentric growth in the 

cross-fiber directions (s
0
and n

0
) was driven by the time-averaged total stress (passive and 

active) along the myofiber direction over a cardiac cycle. These signals are defined as: 
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𝑺𝒔𝟎
= 𝑺𝒏𝟎

=
𝟏

𝑻
∫ 𝑓0 ∙ 𝑺𝑓0𝒅𝒕

𝑻

0
 (4.15) 

According to equation (4.13), growth does not occur when the stimulus signal is 

equal to its homeostatic level.q
global, j

 is the global growth multiplier at each integration 

point that represents the total accumulation of growth in the direction j relative to the initial 

reference configuration. These values are bounded between q
max, j

and q
min, j

, which reflect 

the maximum and minimum physiological tissue growth. In equation (4.13), as q
global, j

tends 

towards q
max, j

or q
min, j

 the rate of change in the local growth multiplier 
𝜕𝜃𝑙𝑜𝑐𝑎𝑙,𝑖

𝜕𝑡
  tends to 0 

and stops the myocardium from excessive growth or shrinkage. Model parameters utilized 

for one of the simulations in this study can be found in APPENDIX 3. FILE S3. 

4.2.7 Separation of timescales between growth and elastic deformation 

In vivo, LV growth takes place over a longer period of time, such as weeks and 

months. Therefore, in this study we separated the timescale of growth mechanics and 

normal elastic deformation to be consistent with the employed approach in CHAPTER 3 

and other works [65, 68]. Based on this approach, the growth step occurs after a certain 

number of cardiac cycles, which can be set by the user. For instance, in this study, the 

growth step occurred every 3 cardiac cycles. More specifically, normal elastic deformation 

was used during these cycles and then the growth step takes place at the very end of the 3rd 

cycle (as outlined in Figure 3.2). This allowed 2 cardiac cycles for the circulatory model to 

reach steady state, since the previous growth step alters the LV geometry. Then a 3rd cardiac 

cycle (step 0 in Figure 3.2), which is referred to as the “growth cycle”, is conducted for the 

assessment of the stimulus signal.  



 

 

113 

The growth step starts by calculating the associated time-averaged stimulus signal 

over the growth cycle (step 1 in Figure 3.2). Once the growth cycle reaches the end-

diastolic volume, the LV geometry is unloaded back to its reference configuration (step 2 

in Figure 3.2). In the next step, the local thetas (q
local, j

) are updated based on the growth 

stimulus (step 3 in Figure 3.2). With this approach, the growth tensor F
g
 is referred to the 

most recent updated reference configuration, and correspondingly, its input parameters 

q
local, j

 were computed based on this updated configuration. Next, the LV geometry in the 

reference configuration grows, sinceF
g
is a non-identity tensor (step 4 in Figure 3.2). This 

is accomplished by solving for the elastic part of the deformation gradient F
e
, which is 

required to attain a compatible configuration in the absence of any loading on the LV (i.e., 

the endocardial surface is traction free). This results in a residually stressed unloaded 

configuration. However, in the current study we chose to alleviate this residual stress, 

similar to the “updated reference configuration approach” described in our previous work 

[65]. This was accomplished by updating the nodal positions of the reference configuration 

to match those of the nodes displaced during the growth step (step 5-1 in Figure 3.2).  Once 

the updated reference configuration is established the global theta value is calculated (step 

5-2 in Figure 3.2). Finally, the new reference configuration for the LV geometry is reload 

back to the prescribed end-diastolic volume (step 6 in Figure 3.2), which conserves total 

blood volume in the system, and continues the normal elastic deformation until the next 

growth cycle (i.e. n+1) starts. 

The weak formulation of the growth mechanics problem was obtained using FE 

method by solving the following equation for u ÎH1 W
0( )and pÎH1 W

0( ) such that 
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  (4.16) 

In the equation above, F is the deformation gradient tensor described in equation 

(4.11), S is the 2nd Piola Kirchhoff stress tensor which does not include the active stress 

(i.e.S = S
p
), δu ∈ H1(Ω0), δp ∈ H1(Ω0), δcx∈ R, δcy ∈ R, and δcz ∈ R are test function 

corresponding to u, p, cx, cy, and cz respectively. Similar to the elastic deformation, the 

displacement field u was approximated using a quadratic tetrahedral element formulation, 

whereas a linear element formulation was used for Lagrange multiplier p.  
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4.2.8 Clinical data  

To validate our model, clinical data for patients with different severity levels of 

valvular diseases and volunteer control groups were collected from the literature, which 

was acquired by cardiac magnetic resonance imaging (Table 4.1). Clinical data were 

categorized into three groups labeled “Control volunteers”, “Patients with aortic stenosis”, 

and “Patients with mitral regurgitation”. For each category, measured data for left 

ventricular end-diastolic volume index (LVEDVi), left ventricular end-systolic volume 

index (LVESVi), and left ventricular mass index (LVMi) normalized by the body surface 

area were collected from eight different studies.  
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Table 4.1 Utilized studies for collecting clinical data 

Control volunteers Patients with aortic stenosis 
Patients with mitral 

regurgitation 

Study Year n Study Year n Study Year n 

Lee et al. [192] 2020 30 
Lee et al. 

[192] 
2020 191 

Liu et al. 

[193] 
2020 104 

Spath et al. 

[176] 
2019 41 

Everett et al. 

[175] 
2020 440 

Seldrum et 

al. [181] 
2019 59 

Seldrum et al. 

[181] 
2019 30 

Spath et al. 

[176] 
2019 159 

Bakkestrom 

et al. [187] 
2018 46 

Lee et al. [194] 2015 15 
Singh et al. 

[189] 
2019 174 

Polte et al. 

[195] 
2017 40 

Edwards et al. 

[179] 
2014 35 

Everett et al. 

[196] 
2018 61 

Myerson et 

al. [188] 
2016 152 

Chin et al. 

[172] 
2014 33 

Chin et al. 

[172] 
2014 133 

Edwards et 

al. [179] 
2014 35 

Barone-

Rochette et al. 

[182] 

2013 20 

Barone-

Rochette et al. 

[182] 

2013 128 
Schiros et 

al. [180] 
2012 94 

Schiros et al. 

[180] 
2012 51 

Steadman et 

al. [197] 
2012 41 

Uretsky et 

al. [198] 
2010 23 

Data were reported as mean ± standard deviation (SD) or median 

(interquartile range). n is number of studied patients.  

 

4.2.9 Simulation cases  

4.2.9.1 Baseline 

All simulations started with default parameters to represent the cardiovascular 

function of healthy adults with normal characteristics as reported in the literature [170, 

171]. For example, the total blood volume of the systemic circulation system was set to 4.5 
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liters such that when the system reaches to steady state the LV ejects 74 ml of blood with 

heart rate of 60 beats per minute and ejection fraction of 65%.   

4.2.9.2 Aortic Stenosis (AS) 

According to the Poiseuille’s law, the resistance of flow across the aortic valve is 

proportional to one over the valve cross-sectional area squared. Therefore, the stenotic 

aortic valve was modeled by increasing the aortic valve resistance (Raorta) in (4.2). In this 

study, two levels of severity for aortic stenosis were modeled to represents patients with 

progressive AS and asymptomatic severe AS according to the American Heart Association 

(AHA) guidelines [149]. For instance, to mimic a patient with asymptomatic severe AS 

there is a ~65 % reduction in the aortic valve area, from a mean value of 2.5 cm2 for healthy 

adults [172-174] to a mean value of 0.86 cm2 [175, 176], we increased the aortic resistance 

in our model by 750 %. This was mimicked in the current work by increasing the valve 

resistance from a baseline value of 20 (mmHg L-1) to 170 (mmHg L-1). All simulated cases 

for aortic stenosis are summarized in Table 4.2.   

Table 4.2 Simulated levels of severity for aortic stenosis (AS). 

Raorta (mmHg L-1) 
Equivalent % reduction in aortic 

valve area 

Represented stage of disease 

according to AHA guidelines 

[149] 

70 46.55 (From 2.50 cm2 to 1.33 cm2) At risk of AS / Progressive AS 

170 65 (From 2.50 cm2 to 0.86 cm2) Asymptomatic severe AS 

 

4.2.9.3 Mitral Regurgitation (MR) 

Mitral regurgitation was simulated by assigning a positive value to G
MV

in equation 

(4.2), which allows blood to leak backward through the mitral valve during systole. In the 



 

 

118 

current study, two levels of severity were selected to simulate patients with progressive 

and symptomatic severe MR. Selected values for G
MV

and their corresponding regurgitant 

volume are summarized in Table 4.3. 

Table 4.3 Simulated different levels of severity for mitral regurgitation (MR). 

GMV (L mmHg-1 s-1) 
Equivalent regurgitant 

volume (ml beat-1) 

Represented stage of disease according 

to AHA guidelines [149] 

1e-3 30 At risk of / Progressive MR 

3e-3 70 Symptomatic severe MR 
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4.3 Results 

4.3.1 Concentric growth in response to pressure overloading 

Figure 4.2 illustrates the thickening of the LV in response to simulated levels of 

aortic stenosis according to Table 4.2. Both simulations started with identical default 

parameters and were allowed to reach to initial steady state while arterial pressure was 

maintained at Pset = 90 mmHg by the baroreflex algorithm. In response to the mimicked 

“progressive AS” case, the growth algorithm increased q
global,s

0

 and q
global,n

0

by an average 

of ~6% across the geometry, while they were increased by ~16% for the severe case. As a 

result, the myocardial volume for the severe case increased by roughly 19% more (178.9 

ml vs 152 ml) than the progressive case, which resulted in more wall thickening for the 

unloaded geometry as is shown in Figure 4.2.a.   

Regarding the chamber volume, for the severe case the end-diastolic volume 

increased by 6% while for the other case it increased by 1% relative to baseline. The end-

systolic volume had a larger change, as it was increased by approximately 7% and 29% for 

the progressive and severe cases, respectively. This change in the chamber volume was 

also observed in stroke volume, as it was decreased by 6% for the severe case versus 2% 

for the other case. Consequently, the ejection fraction for the severe case was depressed by 

12% whereas for the progressive case it was only reduced by 3%.  Throughout both 

simulations, arterial pressure was maintained at the setpoint level by increasing heart rate, 

vascular tone, intracellular Ca2+ handling, and contractility of the myofilaments. Although 

the severe case reduced the stroke volume, the increase in heart rate by the baroreflex 

preserved the cardiac output for both cases, at roughly 4.3 L min-1. 
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Figure 4.2 Growth algorithm predicted more hypertrophy (wall thickening) in response to higher 

pressure overloading.  

a) Geometrical change in the unloaded left ventricle due to pressure overloading. b) Multipanel 

illustration of results for two levels of aortic stenosis. Two simulations of aortic stenosis (pressure 

overloading) with different severities were started with identical default parameters. For both 

simulations, Raorta increased between 30 s and 40 s shown by vertical dashed lines. q
local,s

0
,n

0

 is the 

local growth multiplier along sheet and sheet-normal directions, q
global,s

0
,n

0

is the global growth 

multiplier along sheet and sheet-normal directions. 
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4.3.2 Eccentric growth in response to volume overloading 

Figure 4.3 depicts the model response to two levels of severity for volume 

overloading described in Table 4.3 by mimicking mitral regurgitation. Both simulations 

started with identical conditions as before. As shown in Figure 4.3, the growth algorithm 

increased q
global,f

0

 by approximately 23% and 38% for the progressive and severe cases, 

respectively. This subsequently led to growth of myocardial wall volume along myofiber 

direction by 32% for the severe case versus 18% for the progressive mitral regurgitation.  

Growth of myocytes along the local myofiber direction resulted in the dilation of the LV 

chamber. For the severe MR case, chamber volume increased by 94% and 130% at end-

diastole and end-systole, respectively. In contrast, for progressive MR the chamber volume 

dilated only by 36% at end-diastole and 40% at end-systole. The higher regurgitant volume 

also resulted in more reduction in forward stroke volume (18% for the severe case vs. 2% 

for the progressive case) and more drop in ejection fraction (58% for the severe case versus 

29% for the progressive case). 

For the progressive MR simulation, the dilation of the chamber volume nearly 

restored the forward stroke volume and subsequently arterial pressure, which led to a subtle 

change by the parameters controlled by the baroreflex (e.g. heart rate increased by 3%). 

However, for the severe case, excessive dilation of the chamber volume could not recover 

the stroke volume, and thus arterial pressure was maintained at the setpoint level by further 

increasing the controlled parameters, i.e., heart rate increased by 13%. This combination 

of changes in forward stroke volume and heart rate resulted in only a 0.5% decrease of 

cardiac output for progressive MR, whereas for the severe case it reduced by 8%. 
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Figure 4.3 Growth algorithm predicted more dilation in response to higher volume overloading. 

a) Geometrical change in the unloaded left ventricle due to volume overloading. b) Multipanel 

illustration of results for two simulations of mitral regurgitation. Two levels of severity for volume 

overloading were started with identical default parameters. For both simulations, GMV increased 

between 30 s and 40 s shown by vertical dashed lines. q
local,f

0

 is the local growth multiplier along 

myofiber direction, q
global,f

0

 is the global growth multiplier along myofiber direction. 
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4.3.3 Pressure-volume relationships  

Figure 4.4 displays the predicted long-term changes in the pressure-volume 

relationship resulting from the two types of overloading with varying severities. The 

simulated cases for aortic stenosis exhibited higher peak systolic pressure as the severity 

increased. While the end-diastolic volume slightly increased, the end-systolic volume 

increased more, leading to a decrease in ejection fraction. Furthermore, increased aortic 

resistance resulted in a larger stroke work performed by the left ventricle, as represented 

by the enclosed area of the PV loop. 

Regarding the volume overloading cases, increasing the severity led to more 

dilation of the left ventricular chamber volume, which shifted the PV loop rightward. 

Despite the peak systolic pressure remaining stable, the total stroke volume increased due 

to the higher retrograde blood flow through the mitral valve, resulting in more work 

performed by the LV. Additionally, the isovolumic contraction and relaxation phases 

became disrupted with increasing severity. 
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Figure 4.4 Pressure-volume relationships in response to volume and pressure overloading. 
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4.3.4 Baroreflex impacted both hemodynamics and magnitude of growth  

Figure 4.5 and Figure 4.6 demonstrate the impact of the baroreflex on the long-term 

growth of the LV in cases of severe aortic stenosis and mitral regurgitation, respectively. 

In the case of aortic stenosis, a higher pressure gradient across the aortic valve, resulting 

from elevated aortic resistance, caused a drop in mean arterial pressure by roughly 7% 

when the baroreflex was not taken into account. However, in the presence of the baroreflex, 

the mean arterial pressure remained at its setpoint level, which was done by adjusting the 

controlled parameters including an increase in heart rate by 7% and a decrease in venous 

compliance (Cveins) by 15% (i.e. vasoconstriction). The adjustment in venous compliance 

led to a different preloading of the LV, as the mean venous pressure was 12% higher in the 

case with the baroreflex. 

Furthermore, in the presence of the baroreflex, left ventricular volume dilated by 

7% and 26% more at end diastole and end systole, respectively, compared to the non-

baroreflex case. This led to a decrease in the stroke volume when the baroreflex was 

activated. However, the combined effects of higher heart rate, but lower stroke volume, for 

the baroreflex case resulted in a slightly higher cardiac output (i.e. 3%) than the non-

baroreflex case. 

Regarding the magnitude of growth, higher systolic arterial pressure in the case 

with the baroreflex led to higher afterload, and thus resulted in 5% more growth in the 

myocardium along the cross-sectional directions. This is depicted by slightly higher wall 

thickness in the unloaded geometry (Figure 4.5.a) 
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Figure 4.5 Impact of baroreflex on capturing concentric growth.  

a) Geometrical change in the unloaded left ventricle due to pressure overloading. b) Multipanel 

illustration of results for two simulations of aortic stenosis. Both simulations were started with 

identical parameters. When both simulations reached their initial steady state, the baroreflex 

algorithm was deactivated for one of them, and then a similar perturbation (a 750% increase in Raorta) 

was applied to both cases. Cveins is venous compliance. 
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In the case of mitral regurgitation without the baroreflex, the retrograde blood flow 

reduced the forward stroke volume, resulting in a significant drop in mean arterial pressure 

by 25% (Figure 4.6) compared to the case with the baroreflex. The 27% decrease in the 

forward stroke volume at a constant heart rate led to a reduction in cardiac output by 27%. 

However, in the presence of the baroreflex, the 19% decrease in forward stroke volume 

was compensated by a 13% increase in heart rate, leading to only an 8% drop in cardiac 

output. In addition, the baroreflex algorithm adjusted the hemodynamic control parameters, 

such as a 24% decrease in venous compliance (Cveins). 

When comparing the magnitude of growth, severe MR resulted in 12% more 

growth of the myocardium along the myofibers in the presence of the baroreflex, which 

induced more dilation in the unloaded geometry (Figure 4.6.a). With the baroreflex, the 

left ventricular chamber volume at end-diastole dilated 44% more than the non-baroreflex 

case, whereas the end-systolic volume significantly increased 105% more than the case 

with the deactivated baroreflex. Ultimately, these changes in the chamber volume resulted 

in 8% more drop in ejection fraction for the case with the baroreflex in comparison to the 

non-baroreflex case.   
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Figure 4.6 Impact of baroreflex on eccentric growth.  

a) Geometrical change in the unloaded left ventricle due to volume overloading. b) Multipanel 

illustration of results for two simulations of mitral regurgitation. Both simulations started with 

identical parameters. After reaching the initial steady state, the baroreflex algorithm was deactivated 

for one of the simulations, and a similar regurgitant volume (i.e., Rvol = 70 ml) was induced in both 

cases. Cveins is venous compliance. 
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4.3.5 The coupled baroreflex-growth model reproduced left ventricular 

characteristics measured in clinical data 

To validate the model, predicted left ventricular dimensions were first normalized 

by an average body surface area of 1.9 m2 [199, 200]. These values were then compared to 

the data collected from the literature listed in Table 4.1. Figure 4.7 summarizes the model 

predictions for left ventricular dimension characteristics compared to the measured values 

from the literature. In the case of aortic stenosis (left-hand column in Figure 4.7), clinical 

data did not report any change in left ventricular volume from “Control” to “Patient” group, 

and this was captured by the model as the predicted values were in the reported range. 

Similarly, the current model predicted larger mass for the left ventricle as the disease 

severity increased, which matched with the reported range. For mitral regurgitation, the 

model predicted a larger left ventricular volume and mass, and for both severity levels, 

which were within the reported range of the clinical data. 

 



 

 

130 

 

Figure 4.7 Model validation with measured clinical data.  

Each column summarizes the model validation for a particular valvular disease (left, Aortic stenosis; 

right, Mitral regurgitation). In all panels, interquartile ranges for clinical data are shown with box 

plots in two groups of “Control” and “Patient”, whereas simulation results are shown with circle 

markers in two groups of “Baseline (Sim)” and “Patient (Sim)”. LV end-diastolic volume index: LV 

end-diastolic volume normalized by the body surface area, LV end- systolic volume index: LV end-

systolic volume normalized by the body surface area, LV mass index: LV myocardium mass 

normalized by the body surface area. DR
aorta

: change in aortic resistance from baseline, Rvol: 

Regurgitant volume through mitral valve. 
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4.4 Discussion 

4.4.1 Overview 

The current approach extends the capabilities of a high-fidelity computational 

model of the cardiovascular system by incorporating a baroreflex feedback loop and a 

growth algorithm. The goal of this extension was to capture both the short-term and long-

term response of the heart in simulations of valve disease. The results of this work 

demonstrate that the combined framework can model the long-term growth in response to 

two types of valve disease, aortic stenosis and mitral regurgitation, at two levels of severity. 

In addition, the baroreflex algorithm was able to maintain arterial pressure during the 

process of left ventricular growth. Lastly, the model could reproduce clinical characteristics 

of measured left ventricular dimension. 

4.4.2 Capturing various timescales 

The extended model presented in this study benefits from the use of both feedback 

loops in simulations of valve diseases, and it highlights the importance of incorporating a 

baroreflex loop in simulations of left ventricular growth. Our previous studies illustrated 

in CHAPTER 2 and [138] have demonstrated the effectiveness of the implemented 

baroreflex loop in maintaining arterial pressure under different types of disease-mimicking 

perturbations such as acute valvular perturbations and myocardial infarction. Additionally, 

in CHAPTER 3, we showed that the growth algorithm alone can accurately capture the 

correct form of growth when the left ventricle is either pressure or volume overloaded. 

In vivo, the hemodynamic reflex and growth feedback loops are the two 

mechanisms that work together to respond to alterations in left ventricular loading, but over 
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different timescales. The hemodynamic reflex, known as the baroreflex, is primarily 

responsible for the first-order short-term response of the heart to maintain its functionality 

in ejecting enough oxygenated blood to the rest of the body [201]. The growth mechanism, 

on the other hand, serves as a second-order long-term [65, 68] response that attempts to 

improve the pumping function of the heart by altering its geometry to compensate for the 

altered stress state that myocytes sense at the molecular level. 

Therefore, combining the effect of these two mechanisms in simulations of valvular 

diseases is crucial. In our model, we selected the rate factors, kdrive in equation (4.8) and 

kcontrol,i in equation (4.9), of the baroreflex algorithm based on two considerations. First, we 

ensured that they were sufficiently large to enable smooth adjustments of the controlled 

parameters without inducing any instability in the execution of the finite element code. 

Second, we ensured that they were small enough to facilitate the quick restoration of 

arterial pressure over several cardiac cycles when the system is challenged. 

In contrast, we selected the growth rate factors t
fg, j

 and t
rg, j

 in equation (4.13) such 

that left ventricular growth could occur with sufficient speed. However, we also introduced 

a separation of timescales between growth and elastic deformation, as described in the 

"Methods" section, to capture the full progression of growth. As a result, in our current 

work, the baroreflex algorithm responds to the disease-mimicking perturbation to maintain 

arterial pressure prior to the response of the growth algorithm, which takes place over a 

larger number of cardiac cycles. This feature replicates the physiological order of these 

mechanisms observed in vivo, as well as in other computational models [73], and highlights 

the fidelity of our approach. 
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4.4.3 Importance of baroreflex in simulations of LV growth 

The incorporation of the baroreflex feedback loop in our current study has yielded 

several advantages in simulations of left ventricular growth. Firstly, the inclusion of the 

baroreflex feedback resulted in more physiologically realistic hemodynamics for 

simulating pressure and volume overloading (Figure 4.5 and Figure 4.6), as reported in the 

literature. For example, previous studies have demonstrated that patients with acute mitral 

regurgitation [187, 188] or aortic stenosis [104, 189] typically exhibit mean arterial 

pressures of approximately 90 mmHg with a cardiac output of 4 - 5 L min-1. Our model 

predictions were consistent with these reported clinical data, as the arterial pressure 

setpoint was assigned to be maintained at 90 mmHg and the ellipsoidal left ventricle 

produced a cardiac output of roughly 4.4 and 4.3 L min-1 for simulated mitral regurgitation 

and aortic stenosis cases, respectively. Conversely, simulations without the baroreflex 

feedback loop resulted in non-physiological hemodynamics, as observed in CHAPTER 3 

as well as other studies [40, 63], when acute valvular diseases were induced to challenge 

the model. In particular, our model led to 7% and 3.5% drop in mean arterial pressure and 

cardiac outputs, respectively, when aortic resistance was acutely increased from 20 to 170 

mmHg L-1. These results were aligned with Rondanina and Bovendeerd’s work [40], where 

their model predicted roughly 10% reduction in mean arterial pressure and cardiac output 

when using a unified stress-driven growth law for their simulation of acute aortic stenosis. 

For the non-baroreflex mitral regurgitation case, our model resulted in a 25% reduction in 

mean arterial pressure and a 27% reduction in cardiac output which were in the same 

reported range by Rondanina and Bovendeerd when using unified stress-driven growth 

law.  
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Secondly, the presence of the baroreflex feedback loop in our model also had an 

impact on the magnitude of predicted left ventricular growth. In the severe pressure 

overloading case (as shown in Figure 4.5), the absence of the baroreflex feedback loop led 

to 5% less growth in the myocardium along cross-fiber directions, compared to the case 

with baroreflex. This was mainly due to the fact that in the non-baroreflex case, the mean 

arterial pressure dropped to a lower level of 77 mmHg, while in the other case it remained 

at the baseline level. Consequently, the LV had to eject blood against a relatively lower 

afterload in the non-baroreflex case, which resulted in a lower time-averaged total stress in 

the LV wall over the cardiac cycle and subsequently less growth. Moreover, the current 

model captured an increase in LV end-systolic volume (Figure 4.5) and a rightward shift 

in the PV loop (Figure 4.4) in the presence of the baroreflex. Similar findings were also 

observed in Nicks et al.’s work [202] where they reported following acute aortic banding 

in mice, LV end-systolic volume and LV end-diastolic pressure increased compared to 

sham group. Based on our results, this could be associated with the regulation of venous 

compliance by baroreflex feedback loop to restore arterial pressure. In particular, the 

baroreflex algorithm in our model decreased venous compliance immediately after 

inducing aortic stenosis to mimic vasoconstriction, which led to higher venous pressure as 

shown in Figure 4.4. Subsequently, this resulted in more filling of LV during diastole and 

rightward shift of PV loop.  

Moreover, the baroreflex had a notable impact on the magnitude of eccentric 

growth for the severe mitral regurgitant case, where the growth algorithm predicted 12% 

more growth in the presence of the baroreflex loop compared to the non-baroreflex case 

(Figure 4.6). Furthermore, incorporating the effects of the baroreflex led to 44% and 105% 
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more dilation of the LV volume at end-diastole and end-systole, respectively, which were 

fully aligned with the reported range for clinical data shown in Figure 4.7. Similarly, this 

could be explained by the role of baroreflex regulation of venous compliance. Essentially, 

when the retrograde blood flow through the mitral valve was induced, arterial pressure 

started to decrease as forward stroke volume was depressed. The immediate response of 

the baroreflex feedback loop to such a condition was to maintain arterial pressure by 

adjusting various controlled parameters, including heart rate and venous compliance. The 

baroreflex algorithm in the current model essentially controls the venous compliance such 

that when arterial pressure falls below its homeostatic level, the venous compliance 

decreases (CHAPTER 2, [138]) to mimic vasoconstriction [159, 201] (as shown in Figure 

4.6). This event directly increases venous pressure and results in more filling of the LV 

with blood during diastole, which in turn can improve the ejection of blood based on the 

Frank-Starling effect. The increased filling of the LV results in excessive stretch of the 

myofibers, which is significantly greater than the overstretching of the myofibers due 

solely to the volume overloading in the non-baroreflex case. Since the higher stretch in the 

myofibers is associated with higher time-averaged passive stress, which is the stimulus 

signal for eccentric growth of myofibers in our model, this leads to more growth.  

Taken together, these observations suggest the importance of the baroreflex in 

simulations of left ventricular growth, as other groups have also emphasized. For example, 

Rondanina and Bovendeerd [73] in their recent work investigated cardiac growth and 

circulatory adaption in three simulations of valve disease. They showed that incorporating 

a simplified hemodynamic adaption model, which could only regulate peripheral resistance 

and stressed blood volume, resulted into more realistic hemodynamics in simulations of 
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valve diseases. Regarding the impact of the reflex on their cardiac growth prediction, they 

reported that although the reflex improved the prediction of relative wall thickness in aortic 

stenosis simulations, it worsened the prediction of mass index for mitral regurgitation using 

a mixed stress-strain growth law that had already showed promising results for cardiac 

growth. In another study, Witzenburg and Holmes [159] investigated how the 

hemodynamic reflex affects cardiac growth predictions after myocardial infarction. 

Although they did not explicitly implement a reflex mechanism in their cardiac growth 

model, they showed variability in regulation of certain parameters by a hemodynamic 

reflex can impact the prediction of LV dilation post-MI, particularly those with a 

moderately sized infarct. They also noted that for simulations with very large infarcts, 

vasoconstriction had a dominant impact on the degree of LV dilation, which aligns with 

our own findings. 

Another approach to mitigating the negative impact of not incorporating a 

hemodynamic reflex loop in models of cardiac growth has been to adjust certain parameters 

to assume preserved loading of the left ventricle throughout the simulation. For instance, 

Yoshida et al. [70] manually adjusted aortic resistance, stressed blood volume, and 

maximum myocardial stress to match reported hemodynamics in their simulations of acute 

pressure overloading. Similarly, Arumugam et al. [68] assumed constant preload and 

afterload throughout their simulations of anisotropic reverse cardiac growth in mechanical 

dyssynchrony. Although these adjustments may allow for more accurate hemodynamic 

modeling, they do not capture the dynamic regulation of loading that occurs through the 

hemodynamic reflex, and thus may not fully capture the complexity of cardiac growth and 

adaptation. 



 

 

137 

4.5 Limitations 

While this model addressed one of the limitations of previous work described in 

CHAPTER 3 by adding the baroreflex feedback loop to maintain arterial pressure and have 

a more realistic hemodynamics, other limitations are still applicable to this model.  

The first limitation is that the current model employs a generic ellipsoidal model of 

the left ventricle instead of a patient-specific model of the LV. Although this model is 

intended to serve as a proof of concept, using a patient-specific LV geometry along with 

measured characteristics such as blood pressure and LV dimensions could lead to a higher 

level of model validation in simulations of left-ventricular growth for patients with valvular 

disease. 

Secondly, the control system of the baroreflex loop implemented in this study was 

not calibrated using patient data, as the study lacks the benefits of utilizing a patient-

specific model. Here, we assumed that all parameters controlled by the baroreflex are 

adjusted with similar rate factors. However, in vivo this could vary among different 

patients. Capturing these details of the baroreflex loop was beyond the scope of this study, 

as it was only intended to preserve the loading of the LV during cardiac growth.  

Lastly, this study did not model the material remodeling that might occur due to 

fibrosis, particularly under pressure overloading conditions. To tackle this limitation, other 

approaches can be used to implement tissue growth, such as the constrained mixture theory. 

This theory assumes that different tissue constituents (cells, collagen, elastin, etc.) have 

distinct production/turnover rates and are constrained to deform within a single continuum 

mixture. However, these methods are highly computationally expensive and have mainly 
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been used for arterial growth and remodeling, assuming simple 2D geometry, such as a 

thin-wall membrane [80, 82].  

4.6 Summary and conclusion 

This study incorporates two types of feedback loops that respond to alterations in 

left ventricular loading, but operate over different time scales. The first loop is called the 

baroreflex, which is primarily responsible for the short-term response of the heart to 

maintain its functionality in ejecting enough oxygenated blood to the rest of the body. The 

growth mechanism, on the other hand, serves as a long-term response that attempts to 

improve the pumping function of the heart by changing its geometry to compensate for the 

altered stress state that sarcomeres sense at the molecular level. Our integrated model 

reproduced clinical measures of LV growth in two types of valvular disease, namely aortic 

stenosis and mitral regurgitation, with two different levels of severity for each case. 

Furthermore, the results of this study showed that incorporating the effects of baroreflex 

control of arterial pressure in simulations of left ventricular growth not only led to more 

realistic hemodynamics, but also impacted the magnitude of growth. In particular, our 

results emphasized that the regulation of venous compliance (vasoconstriction) by 

baroreflex immediately after the onset of valvular diseases has a significant role on the 

extent of LV growth in the long term. 
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CHAPTER 5. SUMMARY AND FUTURE WORK 

5.1 Summary of CHAPTER 1 

Cardiomyocytes can adapt their size and shape in response to altered biomechanical 

stimuli under a mechanism which is broadly known as cardiac growth and remodeling 

(G&R). Although it is likely that cardiac G&R initially occurs as an adaptive response of 

the heart to the underlying stimuli, prolonged pathological changes can lead to increased 

risk of atrial fibrillation, heart failure, and sudden death. Computational models of the left 

ventricular growth have been emerging as effective tools for investigating the mechanisms 

that drive ventricular growth and remodeling. Such models can be used to evaluate the 

effects of molecular-level mechanisms on organ-level function, which could provide new 

insights for improving patient care. These models have provided an opportunity to 

quantitatively study the relationships between the underlying stimuli (primarily 

mechanical) and the adverse outcomes of cardiac G&R, i.e., alterations in ventricular size 

and function. State of the art computational models have shown promise in predicting the 

progression of cardiac G&R. However, there are still limitations that need to be addressed 

in future works to advance the field.  

The first step towards improving the current state of existing models of LV growth 

was to do a thorough literature review. In CHAPTER 1 we summarized the current state 

of computational models of cardiac growth. In general, the majority of current models are 

based on volumetric growth theory which was initially demonstrated by Rodriguez et. al 

[38]. Then, the potential limitations of current models of cardiac G&R that need to be 

addressed before they can be utilized in clinical care were illustrated. These limitations 

were 1) lack of mechanistic contractile model of the heart, 2) lack of hemodynamic 
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feedback control, 3) inability of capturing the reversal of growth, 4) inability of applying 

computer models of cardiac G&R to the clinical care, and 5) complexity of model 

calibration and validation. Finally, the next feasible steps and future directions that could 

advance the field of cardiac G&R were described. 

5.2 Summary of CHAPTER 2 

CHAPTER 2 tried to address two limitations of current computational models of 

cardiac G&R including 1) lack of mechanistic contractile model of the heart and 2) lack of 

hemodynamic feedback control, which were noted in CHAPTER 1. In this chapter, a new 

multiscale model of the cardiovascular system named MyoFE was presented, which 

incorporated a mechanistic model of contraction at the myosin level into a finite-element-

based model of the left ventricle pumping blood through the systemic circulation. The 

model was coupled with a closed-loop feedback control of arterial pressure inspired by an 

algorithm previously published by our team. The reflex loop mimicked the afferent neuron 

pathway via a normalized afferent signal derived from arterial pressure. The efferent 

pathway was represented by a kinetic model that simulates the net result of neural 

processing in the medulla and cell-level responses to autonomic drive. The control 

algorithm modulated not only parameters such as heart rate and vascular tone of vessels in 

the lumped-parameter model of systemic circulation, but also spatially modulated 

intracellular Ca2+ dynamics and molecular-level function of both the thick and the thin 

myofilaments across the 3D geometry of the left ventricle. Results in CHAPTER 2 

demonstrated that the baroreflex algorithm can regulate arterial pressure at different user-

defined setpoints. In addition, arterial pressure was maintained in the presence of 

perturbations such as acute cases of aortic stenosis, mitral regurgitation, and myocardial 
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infarction. The illustrated capabilities of this new multiscale model were crucial for 

research related to computational investigations of growth and remodeling that were 

described in the following chapters of this dissertation. 

5.3 Summary of CHAPTER 3 

In CHAPTER 3, the central framework of MyoFE illustrated in CHAPTER 2 was 

extended via a growth algorithm, based on volumetric growth theory, to simulate 

concentric growth (wall thickening / thinning) and eccentric growth (chamber dilation / 

constriction) in response to valvular diseases. Specifically in this extended model, 

concentric growth was controlled by time-averaged total stress along the fiber direction 

over a cardiac cycle while eccentric growth responded to time-averaged intracellular 

myofiber passive stress over a cardiac cycle. The new framework appropriately predicted 

two different forms of growth in response to two types of valvular disease, namely aortic 

stenosis and mitral regurgitation. Furthermore, simulations for each valvular disorder 

regained LV size and function (reversal of growth) when the disease-mimicking 

perturbation was removed. In conclusion, the illustrated results in CHAPTER 3 suggested 

that time-averaged total stress along the fiber direction over a cardiac cycle and time-

averaged intracellular myofiber passive stress can be used to drive concentric and eccentric 

growth, respectively, in simulations of valve disease. 

5.4 Summary of CHAPTER 4 

The heart functions within a complex system that adapts its function to alterations 

in loading via several mechanisms. For example, the baroreflex is a short-term feedback 

loop that modulates the heart's function on a beat-to-beat basis to control arterial pressure. 
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On the other hand, cardiac growth is a long-term adaptive response that occurs over weeks 

or months in response to changes in left ventricular loading. In CHAPTER 4, the impact 

of a baroreflex feedback loop on left ventricular growth in simulations of valve diseases 

was investigated. To achieve this purpose, the effects of a short-term baroreflex feedback 

loop that was described in CHAPTER 2 were coupled with a long-term growth algorithm 

(demonstrated in CHAPTER 3) using the MyoFE multiscale finite element model of the 

left ventricle. The baroreflex loop modulated the system from the molecular-level function 

of myofilaments up to system-level parameters such as heart rate to control arterial 

pressure. Meanwhile, the growth algorithm responded to the altered stress level of the 

myofibers to drive long-term changes in the geometry of the left ventricle.  

The integrated model replicated clinical measures of left ventricular growth in two 

types of valvular diseases - aortic stenosis and mitral regurgitation - at two different levels 

of severity for each case. Furthermore, the results showed that incorporating the effects of 

baroreflex control in simulations of left ventricular growth not only led to more realistic 

hemodynamics, but also impacted the magnitude of growth. Specifically, the results 

demonstrated in CHAPTER 4 highlighted the significant role of regulating venous 

compliance (vasoconstriction) by the baroreflex immediately after the onset of valvular 

diseases, has on the extent of LV growth in the long term. 

5.5 Future work 

Although the illustrated MyoFE framework in this dissertation has addressed 

several key limitations of existing models of cardiac G&R, the framework still requires 

several improvements before it can be applied to clinical care.  
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Firstly, as described in sections 3.5 and 4.5, the current approach uses a generic 

ellipsoidal 3D shape geometry of the human LV as a proof of concept. However, the 

framework would be more insightful if it were used to simulate a patient-specific model of 

LV growth. To do this, several steps need to be considered. First, a patient-specific 

geometry can be generated using clinical imaging data such as cardiac magnetic resonance 

imaging (CMRI). Then the model parameters must be calibrated to mimic the clinical 

characteristic of the patient. Some clinical measures can be acquired non-invasively such 

as chamber volumes, heart rate, arterial blood pressure, etc., but other types of 

characteristics, such as passive or active properties of the myocardial tissue require 

invasive experiments. Eventually, the calibrated model will be ready to simulate the 

patient-specific geometry of the heart that can be used to predict the progress of cardiac 

growth or evaluate different types of therapeutic interventions and assess the precise 

treatment. 

Secondly, as briefly illustrated in 1.4.2, although a high-fidelity multiscale model 

of cardiac G&R can be significantly insightful, they are computationally expensive and 

labor intensive, which has hindered their application in clinical care [42].  Utilizing data 

driven models, such as machine learning techniques, to create a surrogate model of cardiac 

mechanics including G&R has been seen as a promising approach to overcome this 

drawback. Essentially, in this approach a surrogate model like Gaussian Process Emulator 

can be integrated with a physics-based model [203] like MyoFE to rapidly approximate a 

computationally expensive function of the heart, such as cardiac G&R, and evaluate the 

uncertainty inherent to the emulator. This surrogate model of MyoFE would be useful for 



 

 

144 

rapid calibration with available clinical data and then evaluating potential treatments of 

patients who suffer from dilated or hypertrophic myopathies. 

Lastly, using machine learning techniques such as Gaussian Process Emulator 

[204] or physics-informed Neural Networks (PINN) [127], MyoFE can expand its 

capabilities to create a population-based virtual patient cohort of cardiac G&R. “Random 

variation with acceptance criteria” [205] could be an option for creating a virtual cohort of 

patients with cardiac G&R, especially when sufficient measurements for model parameter 

distributions are not available. According to this method, a virtual cohort can be created by 

randomly varying model parameters to generate a large number of parameter sets and then 

only accepting those combinations that result in physiological outcomes that fall within the 

inclusion/exclusion criteria. Using this large number of physics-based data, a surrogate 

model can be created to approximate the model function over the physiological region of 

parameters space and generate a cohort of patients that is statistically representative of the 

real population of patients. These virtual patient cohorts are particularly useful for 

generating in silico clinical trials that can impact the real current physical trials that are 

highly expensive in terms of required time and resources.   
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APPENDICES 

APPENDIX 1. FILE S1 

{ 

    "output_handler": { 

        "mesh_object_to_save": [ 

            "displacement",  

            "active_stress",  

            "hs_length",  

            "k_1",  

            "k_3",  

            "k_on",  

            "k_act",  

            "k_serca" 

        ],  

        "dumping_spatial_in_average": [ 

            true 

        ],  

        "output_data_path": [ 

            "../../simulations/baro_baro_b_setpoint_-30//sim_output/data.csv" 

        ],  

        "mesh_output_path": [ 

            "../../simulations/baro_baro_b_setpoint_-30//sim_output/" 

        ],  

        "frequency_n": [ 

            10 

        ] 

    },  
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    "model": { 

        "half_sarcomere": { 

            "myofilaments": { 

                "int_passive_l_slack": [ 

                    850 

                ],  

                "k_4_1": [ 

                    1.5 

                ],  

                "k_off": [ 

                    200 

                ],  

                "prop_fibrosis": [ 

                    0.0 

                ],  

                "ext_passive_exp_sigma": [ 

                    100 

                ],  

                "k_1": [ 

                    3 

                ],  

                "k_3": [ 

                    120 

                ],  

                "k_2": [ 

                    200 

                ],  

                "int_passive_exp_sigma": [ 
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                    100 

                ],  

                "k_cb": [ 

                    0.001 

                ],  

                "int_passive_exp_L": [ 

                    75 

                ],  

                "x_ps": [ 

                    5 

                ],  

                "ext_passive_exp_L": [ 

                    70 

                ],  

                "k_4_0": [ 

                    80 

                ],  

                "implementation": { 

                    "int_passive_mode": [ 

                        "exponential" 

                    ],  

                    "ext_passive_mode": [ 

                        "exponential" 

                    ],  

                    "bare_zone_length": [ 

                        80 

                    ],  

                    "bin_min": [ 
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                        -10 

                    ],  

                    "delta_G_ATP": [ 

                        70000 

                    ],  

                    "thick_filament_length": [ 

                        815 

                    ],  

                    "kinetic_scheme": [ 

                        "3_state_with_SRX" 

                    ],  

                    "thin_filament_length": [ 

                        1120 

                    ],  

                    "thick_wall_approximation": [ 

                        true 

                    ],  

                    "reference_hsl_0": [ 

                        1100 

                    ],  

                    "bin_width": [ 

                        1 

                    ],  

                    "max_rate": [ 

                        2000 

                    ],  

                    "bin_max": [ 

                        10 
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                    ],  

                    "filament_compliance_factor": [ 

                        0.5 

                    ],  

                    "temperature": [ 

                        310 

                    ] 

                },  

                "cb_number_density": [ 

                    6.9e+16 

                ],  

                "ext_passive_l_slack": [ 

                    950 

                ],  

                "k_coop": [ 

                    5 

                ],  

                "k_force": [ 

                    0.001 

                ],  

                "prop_myofilaments": [ 

                    0.6 

                ],  

                "k_on": [ 

                    200000000.0 

                ] 

            },  

            "reference_hs_length": [ 
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                1100 

            ],  

            "initial_hs_length": [ 

                900 

            ],  

            "membranes": { 

                "t_open": [ 

                    0.01 

                ],  

                "k_act": [ 

                    0.082 

                ],  

                "implementation": { 

                    "kinetic_scheme": [ 

                        "simple_2_compartment" 

                    ] 

                },  

                "k_leak": [ 

                    0.0006 

                ],  

                "k_serca": [ 

                    8 

                ],  

                "Ca_content": [ 

                    0.001 

                ] 

            } 

        },  
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        "baroreflex": { 

            "k_recov": [ 

                0.1 

            ],  

            "b_slope": [ 

                0.02 

            ],  

            "b_setpoint": [ 

                90 

            ],  

            "controls": { 

                "control": [ 

                    { 

                        "level": [ 

                            "heart_rate" 

                        ],  

                        "k_recov": [ 

                            0.1 

                        ],  

                        "k_drive": [ 

                            0.03 

                        ],  

                        "symp_factor": [ 

                            0.386 

                        ],  

                        "para_factor": [ 

                            1.753497 

                        ],  
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                        "variable": [ 

                            "t_quiescent_period" 

                        ] 

                    },  

                    { 

                        "level": [ 

                            "membranes" 

                        ],  

                        "k_recov": [ 

                            0.1 

                        ],  

                        "k_drive": [ 

                            0.03 

                        ],  

                        "symp_factor": [ 

                            3.0 

                        ],  

                        "para_factor": [ 

                            0.333 

                        ],  

                        "variable": [ 

                            "k_act" 

                        ] 

                    },  

                    { 

                        "level": [ 

                            "membranes" 

                        ],  
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                        "k_recov": [ 

                            0.1 

                        ],  

                        "k_drive": [ 

                            0.03 

                        ],  

                        "symp_factor": [ 

                            3 

                        ],  

                        "para_factor": [ 

                            0.333 

                        ],  

                        "variable": [ 

                            "k_serca" 

                        ] 

                    },  

                    { 

                        "level": [ 

                            "myofilaments" 

                        ],  

                        "k_recov": [ 

                            0.1 

                        ],  

                        "k_drive": [ 

                            0.03 

                        ],  

                        "symp_factor": [ 

                            3 
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                        ],  

                        "para_factor": [ 

                            0.333 

                        ],  

                        "variable": [ 

                            "k_1" 

                        ] 

                    },  

                    { 

                        "level": [ 

                            "myofilaments" 

                        ],  

                        "k_recov": [ 

                            0.1 

                        ],  

                        "k_drive": [ 

                            0.03 

                        ],  

                        "symp_factor": [ 

                            3 

                        ],  

                        "para_factor": [ 

                            0.333 

                        ],  

                        "variable": [ 

                            "k_3" 

                        ] 

                    },  
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                    { 

                        "level": [ 

                            "myofilaments" 

                        ],  

                        "k_recov": [ 

                            0.1 

                        ],  

                        "k_drive": [ 

                            0.03 

                        ],  

                        "symp_factor": [ 

                            0.333 

                        ],  

                        "para_factor": [ 

                            3 

                        ],  

                        "variable": [ 

                            "k_on" 

                        ] 

                    },  

                    { 

                        "level": [ 

                            "circulation" 

                        ],  

                        "k_recov": [ 

                            0.1 

                        ],  

                        "k_drive": [ 
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                            0.03 

                        ],  

                        "symp_factor": [ 

                            3 

                        ],  

                        "para_factor": [ 

                            0.333 

                        ],  

                        "variable": [ 

                            "arterioles_resistance" 

                        ] 

                    },  

                    { 

                        "level": [ 

                            "circulation" 

                        ],  

                        "k_recov": [ 

                            0.1 

                        ],  

                        "k_drive": [ 

                            0.03 

                        ],  

                        "symp_factor": [ 

                            0.333 

                        ],  

                        "para_factor": [ 

                            3 

                        ],  
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                        "variable": [ 

                            "veins_compliance" 

                        ] 

                    } 

                ] 

            },  

            "k_drive": [ 

                20 

            ] 

        },  

        "circulation": { 

            "blood_volume": [ 

                4.5 

            ],  

            "model_scheme": [ 

                "LV_with_6_compartments" 

            ],  

            "compartments": [ 

                { 

                    "slack_volume": [ 

                        0.3 

                    ],  

                    "compliance": [ 

                        0.0004 

                    ],  

                    "name": [ 

                        "aorta" 

                    ],  
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                    "resistance": [ 

                        20 

                    ] 

                },  

                { 

                    "slack_volume": [ 

                        0.3 

                    ],  

                    "compliance": [ 

                        0.0008 

                    ],  

                    "name": [ 

                        "arteries" 

                    ],  

                    "resistance": [ 

                        20 

                    ] 

                },  

                { 

                    "slack_volume": [ 

                        0.1 

                    ],  

                    "compliance": [ 

                        0.001 

                    ],  

                    "name": [ 

                        "arterioles" 

                    ],  
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                    "resistance": [ 

                        1000 

                    ] 

                },  

                { 

                    "slack_volume": [ 

                        0.25 

                    ],  

                    "compliance": [ 

                        0.01 

                    ],  

                    "name": [ 

                        "capillaries" 

                    ],  

                    "resistance": [ 

                        350 

                    ] 

                },  

                { 

                    "slack_volume": [ 

                        0.5 

                    ],  

                    "compliance": [ 

                        0.03 

                    ],  

                    "name": [ 

                        "venules" 

                    ],  
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                    "resistance": [ 

                        50 

                    ] 

                },  

                { 

                    "inertance": [ 

                        0 

                    ],  

                    "slack_volume": [ 

                        2.0 

                    ],  

                    "compliance": [ 

                        0.1 

                    ],  

                    "name": [ 

                        "veins" 

                    ],  

                    "resistance": [ 

                        50 

                    ] 

                },  

                { 

                    "slack_volume": [ 

                        0.06 

                    ],  

                    "wall_density": [ 

                        1055 

                    ],  
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                    "initial_ed_volume": [ 

                        0.15 

                    ],  

                    "name": [ 

                        "ventricle" 

                    ],  

                    "resistance": [ 

                        10 

                    ] 

                } 

            ] 

        } 

    },  

    "heart_rate": { 

        "t_active_period": [ 

            0.003 

        ],  

        "t_first_activation": [ 

            0.2 

        ],  

        "t_quiescent_period": [ 

            0.92 

        ] 

    },  

    "protocol": { 

        "time_step": [ 

            0.001 

        ],  
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        "perturbation": { 

            "perturbations": [ 

                { 

                    "variable": [ 

                        "baro_b_setpoint" 

                    ],  

                    "t_stop_s": [ 

                        40 

                    ],  

                    "total_change": [ 

                        -30 

                    ],  

                    "t_start_s": [ 

                        30 

                    ],  

                    "level": [ 

                        "baroreflex" 

                    ] 

                } 

            ] 

        },  

        "no_of_time_steps": [ 

            80000 

        ],  

        "baroreflex": { 

            "activations": [ 

                { 

                    "t_stop_s": [ 
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                        400 

                    ],  

                    "t_start_s": [ 

                        5 

                    ] 

                } 

            ] 

        } 

    },  

    "mesh": { 

        "solver": { 

            "params": { 

                "debugging_mode": [ 

                    false 

                ],  

                "rel_tol": [ 

                    1e-10 

                ],  

                "max_iter": [ 

                    100 

                ],  

                "abs_tol": [ 

                    1e-10 

                ] 

            } 

        },  

        "function_spaces": [ 

            { 
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                "element_type": [ 

                    "DG" 

                ],  

                "type": [ 

                    "scalar" 

                ],  

                "name": [ 

                    "stimulusFS" 

                ],  

                "degree": [ 

                    1 

                ] 

            },  

            { 

                "element_type": [ 

                    "DG" 

                ],  

                "type": [ 

                    "scalar" 

                ],  

                "name": [ 

                    "scalar" 

                ],  

                "degree": [ 

                    1 

                ] 

            },  

            { 
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                "element_type": [ 

                    "DG" 

                ],  

                "type": [ 

                    "tensor" 

                ],  

                "name": [ 

                    "tensor_space" 

                ],  

                "degree": [ 

                    1 

                ] 

            },  

            { 

                "element_type": [ 

                    "Quadrature" 

                ],  

                "type": [ 

                    "vector" 

                ],  

                "name": [ 

                    "material_coord_system_space" 

                ],  

                "degree": [ 

                    2 

                ] 

            },  

            { 
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                "element_type": [ 

                    "Quadrature" 

                ],  

                "type": [ 

                    "scalar" 

                ],  

                "name": [ 

                    "quadrature_space" 

                ],  

                "degree": [ 

                    2 

                ] 

            } 

        ],  

        "apex_contractility": { 

            "components": [ 

                { 

                    "variable": [ 

                        "k_1" 

                    ],  

                    "factor": [ 

                        1 

                    ],  

                    "radius_ratio": [ 

                        0.4 

                    ],  

                    "level": [ 

                        "myofilaments" 



 

 

167 

                    ] 

                },  

                { 

                    "variable": [ 

                        "k_on" 

                    ],  

                    "factor": [ 

                        1 

                    ],  

                    "radius_ratio": [ 

                        0.4 

                    ],  

                    "level": [ 

                        "myofilaments" 

                    ] 

                } 

            ] 

        },  

        "mesh_path": [ 

            "../../simulations/baro_baro_b_setpoint_-

30//sim_inputs/ellipsoidal_correct_fiber.hdf5" 

        ],  

        "relative_path": [ 

            true 

        ],  

        "pericardial": { 

            "type": [ 

                "spring" 

            ],  
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            "k_spring": [ 

                200 

            ] 

        },  

        "forms_parameters": { 

            "passive_law_parameters": { 

                "bfs": [ 

                    1.627 

                ],  

                "c": [ 

                    200 

                ],  

                "passive_law": [ 

                    "semi_structural" 

                ],  

                "bf": [ 

                    8.0 

                ],  

                "bt": [ 

                    3.58 

                ],  

                "phi_g": [ 

                    1.0 

                ],  

                "c3": [ 

                    15.0 

                ],  

                "c2": [ 
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                    250 

                ],  

                "phi_m": [ 

                    1.0 

                ] 

            } 

        } 

    } 

} 
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APPENDIX 2. FILE S2 

{ 

    "protocol": 

    { 

        "no_of_time_steps": [250000], 

        "time_step": [0.001], 

        "baroreflex":  

        { 

            "activations": [ 

                { 

                    "t_start_s": [5], 

                    "t_stop_s": [20] 

                } 

            ] 

        }, 

        "growth": 

        { 

            "activations":  

            [ 

                { 

                    "t_start_s": [20], 

                    "t_stop_s": [400] 

                } 

            ] 

        }, 

        "perturbation": 

        { 

            "perturbations": 
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            [ 

                { 

                    "level": ["circulation"], 

                    "variable": ["aorta_resistance"], 

                    "t_start_s": [30], 

                    "t_stop_s": [40], 

                    "total_change": [150] 

                }, 

  { 

                    "level": ["circulation"], 

                    "variable": ["aorta_resistance"], 

                    "t_start_s": [130], 

                    "t_stop_s": [140], 

                    "total_change": [-150] 

                }, 

                { 

                    "level": ["circulation"], 

                    "variable": ["mitral_insufficiency_conductance"], 

                    "t_start_s": [30], 

      "t_stop_s":[40], 

                    "total_change": [0.0] 

                } 

            ] 

 

        } 

 

    }, 

    "heart_rate": { 
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        "t_active_period": [0.003], 

        "t_quiescent_period": [0.92], 

        "t_first_activation": [0.1] 

    }, 

    "mesh": 

    { 

        "relative_path": [true], 

        

"mesh_path":["../demos/base/sim_inputs/new_mesh/ellipsoidal_correct_fiber.hdf5"], 

        "function_spaces": 

        [ 

            { 

                "name":["stimulusFS"], 

                "type":["scalar"], 

                "element_type":["DG"], 

                "degree": [1] 

            }, 

            { 

                "name":["scalar"], 

                "type":["scalar"], 

                "element_type":["DG"], 

                "degree": [1] 

            }, 

            { 

                "name":["tensor_space"], 

                "type":["tensor"], 

                "element_type":["DG"], 

                "degree": [1] 

            }, 
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            { 

                "name":["growth_scalar_FS"], 

                "type":["scalar"], 

                "element_type":["DG"], 

                "degree": [1] 

            }, 

            { 

                "name":["growth_tensor_FS"], 

                "type":["tensor"], 

                "element_type":["DG"], 

                "degree": [1] 

            }, 

            { 

                "name":["material_coord_system_space"], 

                "type":["vector"], 

                "element_type":["Quadrature"], 

                "degree": [2] 

            }, 

            { 

                "name":["quadrature_space"], 

                "type":["scalar"], 

                "element_type":["Quadrature"], 

                "degree": [2] 

            } 

        ], 

        "forms_parameters":  

        { 

            "passive_law_parameters": { 
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              "passive_law": ["semi_structural"], 

              "c": [200], 

              "c2": [250], 

              "c3": [15.0], 

              "bf": [8.0], 

              "bt": [3.58], 

              "bfs": [1.627], 

              "phi_m": [1.0], 

              "phi_g": [1.0] 

            } 

          }, 

        "apex_contractility": 

        { 

            "components": 

            [ 

                { 

                    "radius_ratio": [0.4], 

                    "level": ["myofilaments"], 

                    "variable": ["k_1"], 

                    "factor": [1] 

                }, 

                { 

                    "radius_ratio": [0.4], 

                    "level": ["myofilaments"], 

                    "variable": ["k_on"], 

                    "factor": [1] 

                } 

            ] 
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        }, 

        "solver": 

        { 

            "params": 

            { 

                "rel_tol": [1e-11], 

                "abs_tol": [1e-11], 

                "max_iter": [100], 

                "debugging_mode": [false] 

            } 

        }  

    }, 

    "model": 

    { 

        "circulation": 

        { 

            "model_scheme": ["LV_with_6_compartments"], 

            "blood_volume": [4.5], 

            "compartments": 

            [ 

                { 

                    "name": ["aorta"], 

                    "resistance": [20], 

                    "compliance": [4e-4], 

                    "slack_volume": [0.3] 

                }, 

                { 

                    "name": ["arteries"], 
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                    "resistance": [20], 

                    "compliance": [8e-4], 

                    "slack_volume": [0.3] 

                }, 

                { 

                    "name": ["arterioles"], 

                    "resistance": [800], 

                    "compliance": [1e-3], 

                    "slack_volume": [0.1] 

                }, 

                { 

                    "name": ["capillaries"], 

                    "resistance": [350], 

                    "compliance": [1e-2], 

                    "slack_volume": [0.25] 

                }, 

                { 

                    "name": ["venules"], 

                    "resistance": [50], 

                    "compliance": [0.03], 

                    "slack_volume": [0.5] 

                }, 

                { 

                    "name": ["veins"], 

                    "resistance": [50], 

                    "compliance": [0.8e-1], 

                    "slack_volume": [2.0], 

                    "inertance": [0] 
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                }, 

                { 

                    "name": ["ventricle"], 

                    "resistance": [5], 

                    "slack_volume": [0.06], 

                    "wall_density": [1055], 

              "initial_ed_volume":[0.15] 

                } 

            ] 

        }, 

        "half_sarcomere": 

        { 

            "initial_hs_length": [900], 

            "reference_hs_length": [1100], 

            "membranes":  

            { 

                "Ca_content": [1e-3], 

                "k_leak": [6e-4], 

                "k_act": [8.2e-2], 

                "k_serca": [8], 

                "t_open": [0.01], 

                "implementation": 

                { 

                    "kinetic_scheme": ["simple_2_compartment"] 

                } 

            }, 

            "myofilaments": 

            { 
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                "cb_number_density": [6.9e16], 

                "prop_fibrosis": [0.0], 

                "prop_myofilaments": [0.6], 

                "k_1": [3], 

                "k_force": [1e-3], 

                "k_2": [200], 

                "k_3": [120], 

                "k_4_0": [80], 

                "k_4_1": [1.5], 

                "k_cb": [0.001], 

                "x_ps": [5], 

                "k_on": [2e8], 

                "k_off": [200], 

                "k_coop": [5], 

                "int_passive_exp_sigma": [100], 

                "int_passive_exp_L": [75], 

                "int_passive_l_slack": [850], 

                "ext_passive_exp_sigma": [100], 

                "ext_passive_exp_L": [70], 

                "ext_passive_l_slack": [950], 

                "implementation": 

                { 

                    "kinetic_scheme": ["3_state_with_SRX"], 

                    "int_passive_mode": ["exponential"], 

                    "ext_passive_mode": ["exponential"], 

                    "max_rate": [2000], 

                    "temperature": [310], 

                    "bin_min": [-10], 
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                    "bin_max": [10], 

                    "bin_width": [1], 

                    "filament_compliance_factor": [0.5], 

                    "thick_filament_length": [815], 

                    "thin_filament_length": [1120], 

                    "bare_zone_length": [80], 

                    "reference_hsl_0": [1100], 

                    "delta_G_ATP": [70000], 

                    "thick_wall_approximation": [true] 

                } 

            } 

        }, 

        "baroreflex": 

        { 

            "b_setpoint": [90], 

            "b_slope": [0.02], 

            "k_drive": [20], 

            "k_recov": [0.1], 

            "controls": 

            { 

                "control": 

                [ 

                    { 

                        "level": ["heart_rate"], 

                        "variable": ["t_quiescent_period"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.0], 

                        "para_factor": [1.753497], 
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                        "symp_factor": [0.386] 

                    }, 

                    { 

                        "level": ["membranes"], 

                        "variable": ["k_act"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.0], 

                        "para_factor": [0.333], 

                        "symp_factor": [3.0] 

                    }, 

                    { 

                        "level": ["membranes"], 

                        "variable": ["k_serca"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.0], 

                        "para_factor": [0.333], 

                        "symp_factor": [3] 

                    }, 

                    { 

                        "level": ["myofilaments"], 

                        "variable": ["k_1"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.0], 

                        "para_factor": [0.333], 

                        "symp_factor": [3] 

                    }, 

                    { 

                        "level": ["myofilaments"], 
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                        "variable": ["k_3"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.0], 

                        "para_factor": [0.333], 

                        "symp_factor": [3] 

                    }, 

                    { 

                        "level": ["myofilaments"], 

                        "variable": ["k_on"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.0], 

                        "para_factor": [3], 

                        "symp_factor": [0.333] 

                    }, 

                    { 

                        "level": ["circulation"], 

                        "variable": ["arterioles_resistance"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.0], 

                        "para_factor": [0.333], 

                        "symp_factor": [3] 

                    }, 

                    { 

                        "level": ["circulation"], 

                        "variable": ["veins_compliance"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.0], 

                        "para_factor": [3], 
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                        "symp_factor": [0.333] 

                    } 

                ] 

            } 

        }, 

        "growth": 

        { 

     "growth_frequency_n":[3], 

            "components": 

            [ 

  { 

                    "type": ["sheet"], 

                    "signal": ["total_stress"], 

                    "tau": [8], 

                    "theta_max": [1.5], 

                    "theta_min": [0.5], 

                    "local_theta_max":[1.1], 

      "local_theta_min":[0.9] 

                }, 

  { 

                    "type": ["sheet_normal"], 

                    "signal": ["total_stress"], 

                    "tau": [8], 

                    "theta_max": [1.5], 

                    "theta_min": [0.5], 

                    "local_theta_max":[1.1], 

                    "local_theta_min":[0.9] 

                }  
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            ] 

        } 

    }, 

    "output_handler": 

    { 

        "output_data_path": 

["/mnt/gpfs2_4m/scratch/hsh245/growth_AS_150_rev/data.csv"], 

        "mesh_output_path": 

["/mnt/gpfs2_4m/scratch/hsh245/growth_AS_150_rev/mesh_output"], 

        "mesh_object_to_save": 

        [ 

            "displacement", 

            "active_stress", 

            "hs_length", 

            "facetboundaries", 

            "k_1", 

            "k_3", 

            "k_on", 

            "k_act", 

            "k_serca", 

            "local_theta_vis_sheet", 

            "global_theta_vis_sheet", 

            "local_theta_vis_sheet_normal", 

            "global_theta_vis_sheet_normal", 

            "stimulus_sheet", 

            "deviation_sheet", 

            "stimulus_sheet_normal", 

            "deviation_sheet_normal", 

     "setpoint_sheet", 
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     "setpoint_sheet_normal" 

        ], 

        "growth_mesh_path": 

["/mnt/gpfs2_4m/scratch/hsh245/growth_AS_150_rev/mesh_output"],      

        "dumping_spatial_in_average":[true], 

        "frequency_n": [10] 

         

         

    } 

} 
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APPENDIX 3. FILE S3 

{ 

    "protocol": 

    { 

        "no_of_time_steps": [250000], 

        "time_step": [0.001], 

        "baroreflex":  

        { 

            "activations": [ 

                { 

                    "t_start_s": [5], 

                    "t_stop_s": [4000] 

                } 

            ] 

        }, 

        "growth": 

        { 

            "activations":  

            [ 

                { 

                    "t_start_s": [20], 

                    "t_stop_s": [400] 

                } 

            ] 

        }, 

        "perturbation": 

        { 

            "perturbations": 
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            [ 

                { 

                    "level": ["circulation"], 

                    "variable": ["aorta_resistance"], 

                    "t_start_s": [0.005], 

                    "t_stop_s": [0.006], 

                    "total_change": [0] 

                }, 

                { 

                    "level": ["circulation"], 

                    "variable": ["mitral_insufficiency_conductance"], 

                    "t_start_s": [30], 

      "t_stop_s":[40], 

                    "total_change": [0.003] 

                }, 

  { 

                    "level": ["circulation"], 

                    "variable": ["mitral_insufficiency_conductance"], 

                    "t_start_s": [130], 

                    "t_stop_s":[140], 

                    "total_change": [-0.003] 

                } 

            ] 

 

        } 

 

    }, 

    "heart_rate": { 
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        "t_active_period": [0.003], 

        "t_quiescent_period": [0.92], 

        "t_first_activation": [0.1] 

    }, 

    "mesh": 

    { 

        "relative_path": [true], 

        

"mesh_path":["../demos/base/sim_inputs/new_mesh/ellipsoidal_correct_fiber.hdf5"], 

        "function_spaces": 

        [ 

            { 

                "name":["stimulusFS"], 

                "type":["scalar"], 

                "element_type":["DG"], 

                "degree": [1] 

            }, 

            { 

                "name":["scalar"], 

                "type":["scalar"], 

                "element_type":["DG"], 

                "degree": [1] 

            }, 

            { 

                "name":["tensor_space"], 

                "type":["tensor"], 

                "element_type":["DG"], 

                "degree": [1] 

            }, 
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            { 

                "name":["growth_scalar_FS"], 

                "type":["scalar"], 

                "element_type":["DG"], 

                "degree": [1] 

            }, 

            { 

                "name":["growth_tensor_FS"], 

                "type":["tensor"], 

                "element_type":["DG"], 

                "degree": [1] 

            }, 

            { 

                "name":["material_coord_system_space"], 

                "type":["vector"], 

                "element_type":["Quadrature"], 

                "degree": [2] 

            }, 

            { 

                "name":["quadrature_space"], 

                "type":["scalar"], 

                "element_type":["Quadrature"], 

                "degree": [2] 

            } 

        ], 

        "forms_parameters":  

        { 

            "passive_law_parameters": { 
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              "passive_law": ["semi_structural"], 

              "c": [200], 

              "c2": [250], 

              "c3": [15.0], 

              "bf": [8.0], 

              "bt": [3.58], 

              "bfs": [1.627], 

              "phi_m": [1.0], 

              "phi_g": [1.0] 

            } 

          }, 

        "apex_contractility": 

        { 

            "components": 

            [ 

                { 

                    "radius_ratio": [0.4], 

                    "level": ["myofilaments"], 

                    "variable": ["k_1"], 

                    "factor": [1] 

                }, 

                { 

                    "radius_ratio": [0.4], 

                    "level": ["myofilaments"], 

                    "variable": ["k_on"], 

                    "factor": [1] 

                } 

            ] 
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        }, 

        "solver": 

        { 

            "params": 

            { 

                "rel_tol": [1e-11], 

                "abs_tol": [1e-11], 

                "max_iter": [100], 

                "debugging_mode": [false] 

            } 

        }  

    }, 

    "model": 

    { 

        "circulation": 

        { 

            "model_scheme": ["LV_with_6_compartments"], 

            "blood_volume": [4.5], 

            "compartments": 

            [ 

                { 

                    "name": ["aorta"], 

                    "resistance": [20], 

                    "compliance": [4e-4], 

                    "slack_volume": [0.3] 

                }, 

                { 

                    "name": ["arteries"], 
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                    "resistance": [20], 

                    "compliance": [8e-4], 

                    "slack_volume": [0.3] 

                }, 

                { 

                    "name": ["arterioles"], 

                    "resistance": [800], 

                    "compliance": [1e-3], 

                    "slack_volume": [0.1] 

                }, 

                { 

                    "name": ["capillaries"], 

                    "resistance": [350], 

                    "compliance": [1e-2], 

                    "slack_volume": [0.25] 

                }, 

                { 

                    "name": ["venules"], 

                    "resistance": [50], 

                    "compliance": [0.03], 

                    "slack_volume": [0.5] 

                }, 

                { 

                    "name": ["veins"], 

                    "resistance": [50], 

                    "compliance": [0.8e-1], 

                    "slack_volume": [2.0], 

                    "inertance": [0] 
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                }, 

                { 

                    "name": ["ventricle"], 

                    "resistance": [5], 

                    "slack_volume": [0.06], 

                    "wall_density": [1055], 

              "initial_ed_volume":[0.15] 

                } 

            ] 

        }, 

        "half_sarcomere": 

        { 

            "initial_hs_length": [900], 

            "reference_hs_length": [1100], 

            "membranes":  

            { 

                "Ca_content": [1e-3], 

                "k_leak": [6e-4], 

                "k_act": [8.2e-2], 

                "k_serca": [8], 

                "t_open": [0.01], 

                "implementation": 

                { 

                    "kinetic_scheme": ["simple_2_compartment"] 

                } 

            }, 

            "myofilaments": 

            { 
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                "cb_number_density": [6.9e16], 

                "prop_fibrosis": [0.0], 

                "prop_myofilaments": [0.6], 

                "k_1": [3], 

                "k_force": [1e-3], 

                "k_2": [200], 

                "k_3": [120], 

                "k_4_0": [80], 

                "k_4_1": [1.5], 

                "k_cb": [0.001], 

                "x_ps": [5], 

                "k_on": [2e8], 

                "k_off": [200], 

                "k_coop": [5], 

                "int_passive_exp_sigma": [100], 

                "int_passive_exp_L": [75], 

                "int_passive_l_slack": [850], 

                "ext_passive_exp_sigma": [100], 

                "ext_passive_exp_L": [70], 

                "ext_passive_l_slack": [950], 

                "implementation": 

                { 

                    "kinetic_scheme": ["3_state_with_SRX"], 

                    "int_passive_mode": ["exponential"], 

                    "ext_passive_mode": ["exponential"], 

                    "max_rate": [2000], 

                    "temperature": [310], 

                    "bin_min": [-10], 
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                    "bin_max": [10], 

                    "bin_width": [1], 

                    "filament_compliance_factor": [0.5], 

                    "thick_filament_length": [815], 

                    "thin_filament_length": [1120], 

                    "bare_zone_length": [80], 

                    "reference_hsl_0": [1100], 

                    "delta_G_ATP": [70000], 

                    "thick_wall_approximation": [true] 

                } 

            } 

        }, 

        "baroreflex": 

        { 

            "b_setpoint": [90], 

            "b_slope": [0.02], 

            "k_drive": [20], 

            "k_recov": [0.1], 

            "controls": 

            { 

                "control": 

                [ 

                    { 

                        "level": ["heart_rate"], 

                        "variable": ["t_quiescent_period"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.1], 

                        "para_factor": [1.753497], 
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                        "symp_factor": [0.386] 

                    }, 

                    { 

                        "level": ["membranes"], 

                        "variable": ["k_act"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.1], 

                        "para_factor": [0.333], 

                        "symp_factor": [3.0] 

                    }, 

                    { 

                        "level": ["membranes"], 

                        "variable": ["k_serca"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.1], 

                        "para_factor": [0.333], 

                        "symp_factor": [3] 

                    }, 

                    { 

                        "level": ["myofilaments"], 

                        "variable": ["k_1"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.1], 

                        "para_factor": [0.333], 

                        "symp_factor": [3] 

                    }, 

                    { 

                        "level": ["myofilaments"], 
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                        "variable": ["k_3"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.1], 

                        "para_factor": [0.333], 

                        "symp_factor": [3] 

                    }, 

                    { 

                        "level": ["myofilaments"], 

                        "variable": ["k_on"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.1], 

                        "para_factor": [3], 

                        "symp_factor": [0.333] 

                    }, 

                    { 

                        "level": ["circulation"], 

                        "variable": ["arterioles_resistance"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.1], 

                        "para_factor": [0.333], 

                        "symp_factor": [3] 

                    }, 

                    { 

                        "level": ["circulation"], 

                        "variable": ["veins_compliance"], 

                        "k_drive": [0.03], 

                        "k_recov": [0.1], 

                        "para_factor": [3], 
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                        "symp_factor": [0.333] 

                    } 

                ] 

            } 

        }, 

        "growth": 

        { 

     "growth_frequency_n":[3], 

            "components": 

            [ 

  { 

                    "type": ["fiber"], 

                    "signal": ["myofiber_passive_stress"], 

                    "tau": [10], 

                    "theta_max": [1.5], 

             "theta_min": [0.5], 

                    "local_theta_max":[1.1], 

                    "local_theta_min":[0.9] 

         }  

            ] 

        } 

    }, 

    "output_handler": 

    { 

        "output_data_path": 

["/mnt/gpfs2_4m/scratch/hsh245/growth_MR_0.003_baro_rev/data.csv"], 

        "mesh_output_path": 

["/mnt/gpfs2_4m/scratch/hsh245/growth_MR_0.003_baro_rev/mesh_output"], 

        "mesh_object_to_save": 



 

 

198 

        [ 

            "displacement", 

            "active_stress", 

            "hs_length", 

            "facetboundaries", 

            "k_1", 

            "k_3", 

            "k_on", 

            "k_act", 

            "k_serca", 

     "local_theta_vis_fiber", 

     "global_theta_vis_fiber", 

     "deviation_fiber", 

     "stimulus_fiber", 

     "setpoint_fiber" 

        ], 

        "growth_mesh_path": 

["/mnt/gpfs2_4m/scratch/hsh245/growth_MR_0.003_baro_rev/mesh_output"],      

        "dumping_spatial_in_average":[true], 

        "frequency_n": [10] 

         

         

    } 

} 
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APPENDIX 4. SUPPLEMENTARY FIGURES 

 

 

 

 

Figure S 1 Baroreflex regulation of parameters related to thick filament function before and after 

increasing the setpoint from 90 to 120 mmHg. 
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Figure S 2 Baroreflex regulation of parameters related to thick filament function before and after 

decreasing the setpoint from 90 to 60 mmHg. 
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Figure S 3 Baroreflex regulation of parameters related to thick filament function before and after 

increasing aortic resistance. 
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Figure S 4 Baroreflex regulation of parameters related to thick filament function before and after 

inducing mitral regurgitation. 
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