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ABSTRACT OF DISSERTATION

MACHINE LEARNING FRAMEWORK FOR REAL-WORLD ELECTRONIC
HEALTH RECORDS REGARDING MISSINGNESS, INTERPRETABILITY,

AND FAIRNESS

Machine learning (ML) and deep learning (DL) techniques have shown promising re-
sults in healthcare applications using Electronic Health Records (EHRs) data. How-
ever, their adoption in real-world healthcare settings is hindered by three major chal-
lenges. Firstly, real-world EHR data typically contains numerous missing values.
Secondly, traditional ML/DL models are typically considered black-boxes, whereas
interpretability is required for real-world healthcare applications. Finally, differences
in data distributions may lead to unfairness and performance disparities, particularly
in subpopulations.

This dissertation proposes methods to address missing data, interpretability, and
fairness issues. The first work proposes an ensemble prediction framework for EHR
data with large missing rates using multiple subsets with lower missing rates. The
second method introduces the integration of medical knowledge graphs and double
attention mechanism with the long short-term memory (LSTM) model to enhance in-
terpretability by providing knowledge-based model interpretation. The third method
develops an LSTM variant that integrates medical knowledge graphs and additional
time-aware gates to handle multi-variable temporal missing issues and interpretability
concerns. Finally, a transformer-based model is proposed to learn unbiased and fair
representations of diverse subpopulations using domain classifiers and three attention
mechanisms.

KEYWORDS: Machine Learning, Deep Learning, Artificial intelligence, Electronic
Health Records
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CHAPTER 1. Introduction

1.1 Motivation

Electronic Health Record (EHR) data stores patients’ information such as demograph-

ics and medical histories, including diagnoses, procedures, medication, and laboratory

test results [1, 2]. Hospitals collect EHR data daily, which has played an essential

role in improving patient care, and clinician experience [2, 3, 4].

Accurate and timely prediction of patient risk using EHR data in hospitals can

assist clinicians in doing early interventions for high-risk patients and better-using

hospital resources. For example, it is important for clinicians to make decisions for

patients when intensifying therapies is needed or transitioning patients with a high

risk of mortality to comfort care [5, 6].

Given the large volume and rich information stored in EHR systems, machine

learning (ML) and deep learning (DL) methods have been explored greatly in many

healthcare applications such as predicting patient outcomes or patient risk trajecto-

ries as well as identifying risk factors [1, 7, 8]. ML methods such as random forest [9],

SVM [10] and gradient boost machine (GBM) [11, 12] are widely used for mortality

prediction and length-of-stay (LOS) in hospital [7]. For example, Kong et al. suc-

cessfully used the GBM model to predict mortality in ICU for sepsis patients [13];

Daghistani et al. used RF, which achieved good performance for the prediction of

LOS in hospital [14]. DL methods, including Transformer [15], Long-Short Term

Memory (LSTM) [16] and gated recurrent neural networks [17], have shown promis-

ing performance on patient outcome prediction using large-scale EHR data in recent

years [1]. For example, Doctor AI [18] applies RNN on visit-based medical codes

to predict the diagnosis and medication categories for the subsequent visit. Mara-

gatham and Devi used LSTM Model to predict the diagnosis of heart failure using
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time-stamped time series data [19].

However, some limitations hinder the usage of ML/DL methods in realistic health-

care settings. We will focus on three significant limitations in this dissertation.

Firstly, EHR data in real healthcare settings are usually sparse and contain many

missing values [7]. Moreover, the causes of missingness could be intentional. For

example, patients might not need a specific type of laboratory test due to relatively

healthier conditions [20]; or unintentional, for example, a urine test sample randomly

broken, resulting in missing value [21]. Finally, the different measurements frequency

of time-stamped data such as vital signs or laboratory variables can also result in miss-

ingness in terms of the irregularity of scales and asynchronous multi-variable inputs

to the ML/DL model [1, 2].

Directly applying machine learning algorithms on EHR data with many missing

values would downgrade the performance [7]. Many imputation methods have been

developed to deal with the missing value issue. However, bias prediction and results

will be introduced if unsuitable imputation methods are used for different causes of

missingness or the pattern of missingness [8, 20]. Since no unique method would

be good for data with different missingness patterns, if the missingness pattern be-

tween the training and the testing dataset is not considered in the machine learning

algorithm, the prediction performance would also be impacted.

The accountability of the models in terms of the interpretation in healthcare

practice is critical for clinicians to make the decision based on the model results and

rationale [22]. Though ML/DL models have been proven to have outstanding per-

formance, they are usually used as a black box because their algebraic complexity is

complex for human comprehension [7]. A helpful model should give good predictions

and provide the reason why it makes such predictions. Some traditional machine

learning is interpretable such as regression models or decision trees. However, there

is a trade-off between performance and interpretability. The interpretable methods
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usually have lower prediction performance than the less interpretable methods (e.g.,

support vector machines, random forest, and neural networks) [22]. Thus, there is a

call to develop interpretable ML/DL models with good prediction performance to be

better adopted in routine uses in practical healthcare settings [23].

The model’s fairness is the third concern about using ML/DL methods in real

healthcare settings. A fair model should not only favor certain groups while failing

predictions for other groups. The assumption for getting good performance using

ML/DL methods is that training and testing data distribution are the same or simi-

lar. Nevertheless, this is not always the case in realistic healthcare settings [7]. The

performance would likely drop when the trained model is directly used on another

data set [24]. This distribution discrepancy between training and testing data is

called domain shifting. The reason causing domain shifting can vary. For example,

different geographic locations in which the data set are collected result in different

data distribution [25]. Different healthcare settings might use different laboratory

feature measurement devices resulting in distribution discrepancies of the correspond-

ing variable [26]. Moreover, how frequently the data are collected and the missingness

patterns might also differ across healthcare settings, contributing to the domain shift

issue in terms of missingness discrepancies as mentioned above.

1.2 Contributions

This dissertation develops robust ML and DL frameworks to address the concerns

of sparsity, interpretability, and fairness. Specifically, the dissertation discusses four

methods: 1) an ensemble-learning framework for EHR data with significant missing

value; 2)a knowledge-graph guided double attention LSTM framework for the rolling

mortality predictions of temporal EHR data. 3)a Knowledge guIded Time-aware

LSTM model for irregular and asynchronous temporal EHR data; 4) an adaptive

multi-task learning algorithm called for learning unbiased and fair data representa-
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Figure 1.1: An overview of the methods introduced in the dissertation

tions of EHR data. An overview of methods is shown in Figure 1.1. In the following,

the contribution of each method is discussed.

The first method (ELMV) addresses the missingness and domain shit issues re-

garding missingness and feature discrepancy between training and testing data. The

general idea of ELMV is that it uses part of the training data to form a support

set similar to the testing data and uses the support data to select the ensemble of

models for the prediction on testing data. ELMV has the following advantages: 1)

It considers the discrepancy between training and testing regarding missingness and

critical feature recognition. 2) It is capable of handling substantial missing values.

3) It is adaptable to different datasets and predictive models.

The second method (KGDAL) introduces knowledge-graph guided attention mech-

anisms for better interpretations. In particular, KGDAL uses the knowledge graph in

three ways: First, it uses knowledge graph to guide the group of features; Second, it

uses knowledge graph to build the feature attention mechanism automatically on top
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of the temporal attention mechanism; Third, it uses knowledge graph to regulate the

loss function. KGDAL has the following advantages: 1) It obtains two-dimensional

attention in both the time and feature spaces for improved prediction power and

enhanced model interpretability.2) The attention mechanism in the feature space is

automatically derived based on the KG rather than manual curation. 3) It can model

both continuous and discrete temporal EHR data types. 4) It can make precise rolling

mortality predictions for AKI-D patients on two independent clinical datasets.

The third method (KITLSTM) introduces a Knowledge guIded Time-aware LSTM

model, which handles irregular and asynchronous time series EHR data. It uses med-

ical ontology to guide the attention between multiple numerical clinical variables and

provides knowledge-based model interpretation. In particular, KIT-LSTM extends

LSTM with two time-aware gates and a knowledge-aware gate. The time-aware gates

adjust the memory content according to two types of elapsed time, i.e., the elapsed

time since the last visit for all variable streams and the elapsed time since the last

measured values for each variable stream. The knowledge-aware gate uses medical

ontology to guide attention between multiple numerical variables at each time step.

As a result, the proposed model provides better attention and interpretation guidance

and handles irregular and asynchronous problems simultaneously.

The fourth method (MTATE) introduces an adaptive multi-task learning algo-

rithm (i.e., Masked Triple Attention Transformer Encoder) to learn and select the

optimal and fair data representations automatically. The purpose of MTATE is to

generate multiple masked representations of the same data that are attended by

both time-wise attention and multiple feature-wise attentions in parallel, where each

masked representation corresponds to a specific domain classification task. The

learned EHR representations could be domain-specific, domain-invariant, or a mix

of the two reflected by the classification loss values. A low loss value indicates the

representation is domain-specific, and a high value indicates domain-invariant. The
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model will compute the representation-wise attention for each individual testing case,

leading to personalized data representation for downstream predictive tasks.

This dissertation uses materials from four papers (three published and one sub-

mitted) first authored by the author [27, 28, 29]. Chapter 3 uses materials from

Reference [27]. Chapter 4 uses materials from Reference [28]. Chapter 5 uses

materials from Reference [29]. Chapter 6 uses materials from an unpublished paper.

1.3 Dissertation Outline

The remainder of the dissertation is organized as follows: Chapter 2 introduces

the fundamentals of Electronic Health Records (EHR), traditional machine learning,

deep learning methods for longitudinal EHR data, domain adaption, and knowledge

graphs. Chapter 3 introduces our first novel machine learning framework (ELMV)

for addressing the missing value issues. Finally, chapter 4 introduces the second

novel deep learning method (KGDAL) for patient outcome prediction, addressing

interpretability concerns. Chapter 5 introduces the third novel deep learning model

(KIT-LSTM) for handling irregular and asynchronous issues in temporal EHR data

and interpretation concerns. Chapter 6 introduces the fourth novel deep learning

method (MTATE) for handling bias and fairness issues in clinical/healthcare AI ap-

plications. Finally, Chapter 7 concludes this dissertation by discussing the limitation

of the methods and future directions.

Copyright© Jing (Lucas) Liu, 2023.
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CHAPTER 2. Background

This chapter first introduces fundamental medical terminologies used in this disser-

tation: Electronic Health Records. In addition, two representative machine learning

and deep learning methods for EHR data are introduced. Furthermore, this chap-

ter discusses related works which have been done for addressing the three challenges

(Missingness, interpretability, and fairness) of ML/DL methods in healthcare settings.

2.1 Electronic Health Record Systems (EHR)

Many hospitals have adopted electronic health records (EHR) to store patients’ data

such as demographic information, diagnoses, laboratory test [1]. Because of the rich

information stored in EHR, they are used for building different clinical/medical appli-

cations such as mortality prediction, disease inference/diagnosis, patients’ trajectory

modeling, clinical decision support system, etc. [7, 2]. Different applications are

built using different types of EHR data and various ML/DL algorithms. In general,

EHRs can be classified into two categories based on their format. The first category

is structured data or semi-structured data such as demographic information, labo-

ratory tests results, diagnosis codes, medications, etc., where the data are stored in

tables with fixed or semi-fixed schema; The second category is unstructured data

such as clinical notes are stored as free text [2]. In this dissertation, we will focus on

structured/semi-structured data types.

Above all, the initial and primary goal of designing EHR was to document patients’

medical information and support care in clinical settings [8, 2], which is not designed

for answering any specific research questions [25]. Thus, implementation of ML/DL

methods using EHR data in real healthcare settings should take into account the

nature of the EHR itself [2].
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2.2 Representative Machine Learning and Deep Learning Methods

2.2.1 XGBoost

Many machine learning has been deployed in various healthcare applications such as

Logistic Regression, Random Forest, Support Vector Machine [8]. A recent ensemble

method called eXtreme Gradient Boosting (XGBoost) [12] has shown competitive

results in many applications. XGBoost is built based on boosting algorithms, and it

combines weak learners into a strong learner for the prediction task [30]. XGBoost

is trained by iteratively adding weak learners to reduce the error between the target

value and the prediction of the current ensembles of learners. XGBoost has superior

performance than other traditional machine learning methods in many applications.

However, one limitation is that it is not well-designed for temporal EHR data because

it lacks consideration of temporal dependencies.

2.2.2 Long short-term memory

Long short-term memory (LSTM) [16] is a deep learning structure that is designed

for sequence data. LSTM uses three gates (forget gate, input gate, and output gate)

to control the flow of information along the time. Specifically, LSTM uses forget

gate to determine how much of the previous information to discard, an input gate

to determine how much of the current information to keep, and an output gate to

determine how much of the current information to pass to the future.

The detailed mathematics information is described below: denote the forget gate

as ft, the input gate as it, and the output gate as ot, where ft, it,ot ∈ Rm, and m is

the dimension of the hidden vectors. Using ct and ht to represent the cell state and

the hidden state, (ct,ht ∈ Rm). The LSTM cell is updated as follows:

ft = σ(Wfht−1 +Ufxt + bf ) (2.1)
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it = σ(Wiht−1 +Uixt + bi) (2.2)

ot = σ(Woht−1 +Uoxt + bo) (2.3)

c̃t = tanh(Wcht−1 +Ucxt + bc) (2.4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.5)

ht = ot ⊙ tanh(ct) (2.6)

LSTM structure has provided an effective way of handling temporal information

of data. Many variations of the LSTM deep learning model have been developed for

different applications. We will introduce them through the rest of the sections.

2.3 Approaches for Missingness

In recent years, techniques have been developed for handling missing values in big

data. The simplest and most common strategy is to conduct complete-case analysis

(CCA), which refers to removing records with any missing values and focusing only on

patients who have the complete records of all parameters [31]. However, in practice,

eliminating patients with any missing values will inevitably introduce biases, given

that there is often a huge difference between the true distribution of all patients and

that of the patients with complete records [32]. In addition, the CCA strategy will

significantly reduce the training size regarding inference model training, resulting in

models being under-trained.

Another common strategy for handling missing values is data imputation. Impu-

tation techniques can be categorized into two groups: single imputation and multiple

imputation [33]. The single imputation refers to replacing a missing value with an

estimated value [34]. An example of the simple imputation strategy is the mean

imputation [21], where a missing value is replaced with the arithmetic mean. The

problem of the simple imputation strategy is that it may significantly underestimate

the variance of the data and ignores the complex relationships among explanatory
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variables [31]. This problem can be addressed using more sophisticated single im-

putation methods such as regression imputation and the expectation-maximization

(EM) algorithm, in which a missing value is assigned by studying the statistical rela-

tionships between the target variable and the rest variables in the same dataset [21].

In contrast, multiple imputation techniques estimate a missing value with multiple

imputed data. One such technique is Multivariate Imputation by Chained Equations

(MICE), where the statistical uncertainty of different imputed data is taken into

account [35].

There is inevitably increasing variability of effect estimates with increased miss-

ingness; and results may not be reliable enough for hypothesis validation if more than

40% data are missing in important variables [36, 37, 38, 39, 40], indicating that data

imputation is not a go-to solution when a significant portion of the values is missing.

Missing data in clinical studies do not occur at random. Certain data points are miss-

ing because of patient dropout, treatment toxicity, or biomarkers that are difficult to

measure [41]. Applying data imputation algorithms designed for missing-at-random

to EHR data may lead to biases in model prediction [42]. Inference models that

account for the missing data in real-world EHR data must consider the reasons for

missingness [43]. Furthermore, none of the existing imputation method outperforms

the others on every dataset, indicating that there are no universal model [21] for

missing value imputation.

While most machine learning models can only be applied to complete data or

will automatically conduct a complete-cases analysis [21], XGBoost [12], the recent

implementation of the gradient boosting model can automatically handle missing

values with its built-in mechanisms. Specifically, XGBoost handles the missing data

problem by adding a default direction for missing values in each tree splitting. The

optimal direction for a missing value in each particular explanatory variable at each

tree node is learned during the model training process to minimize the regulated
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loss [12]. XGBoost model chooses the default direction if there is no missing value in

any particular explanatory variable in training data, but there are missing values in

the external validation set. A potential problem in handling missing values in XG-

Boost is that XGBoost will always choose the default direction for model prediction

on the validation set. Thus, the prediction could be a random guess if the missingness

patterns in training and validation are entirely different. This could be the case when

a large amount of missing value existing especially in the validation data.

Overall, the common problem of existing machine learning approaches is that they

do not adapt to handling large missing values. In addition, the discrepancy between

training and validation has not been well addressed regarding model inference.

2.4 Approaches for Interpretability

ML/DL methods have shown success in a variety range of prediction tasks. The appli-

cations of ML/DL models in clinical settings require a certain level of interpretability.

However, the trade-off between performance and interpretability is still a concern in

the machine learning community.

2.4.1 Self-Interpretable Machine Learning Methods

Traditional interpretable methods such as logistic/linear regression is still the most

widely used method in practice though their performance might not be good as non-

interpretable methods such as neural networks [1]. It is quite straightforward to

use the coefficient of the regression model to explain the relationship between the

outcome and the predictor features in terms of the effect on the outcome of one

unit change in the features [22, 44]. However, linear/logistic regression methods are

good at modeling linear relationships but insufficient on modeling more complex non-

linear relationships. Decision trees are an example of interpretable methods which

can better capture the non-linear relationship between outcome and the features.
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Decision trees use a set of “if-then” rules along the tree to split the nodes, and it

determines the best splits based on the impurity scores of features [45]. The “if-then”

rule-based classification algorithm is easy to understand and interpret, one example

illustrated in [46] shows that one study only uses seven “if-then” rules to classify

12, 586 stroke risk patients with good accuracy.

Self-interpretable methods are easy to understand, but their prediction power is

low compared to other complex models such as random forest, or support vector

machines, neural networks [44]. Thus, model agnostic interpretable methods are

developed for any machine learning models in a post-hoc manner.

2.4.2 Post-hoc Interpretable Machine Learning Methods

One of the popular used model agnostic methods is Local interpretable model-agnostic

explanations (LIME) [47], the key idea of this method is that it tries to explain

the prediction of each instance by building a simpler model (e.g., linear regression)

locally using the samples that are near the instance of interest. LIME uses the simpler

surrogate local model to explain why the global model makes such a prediction for the

instance of interest. Another widely used model agnostic method is SHapley Additive

exPlanations (SHAP) [48] which is based on LIME [47] and game theory model of

Shapley values [49, 50, 51]. Shapley values determine the conditional contributions of

individual feature to the outcomes by considering all possible combinations of features

for one instance, which maximize the difference between the actual prediction and

the average prediction of all instances [22]. On the other hand, SHAP explains the

prediction of each instance by assigning each feature a Shapley value as an importance

score in local space as its done in LIME for the prediction of the outcome.

Post-hoc interpretable methods are supportive for any type of ML/DL method.

However, the importance scores provided are just an estimate of feature importance

by mimicking how and why the actual ML/DL model makes a particular prediction.
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Plus, it needs an extra and separate step from training the actual model. Thus, the

recent deep learning models use attention mechanisms to help in terms of interpreta-

tion.

2.4.3 Attention-based Interpretable Deep Learning Methods

In this section, we will mainly focus on discussing one type of DL method: recurrent

neural networks (RNNs) because of the temporal or sequence nature of EHR data,

and RNNs have been particularly extensively used for applications of EHR data [44].

The attention mechanism was initialized introduced to address the long-term de-

pendency problem of recurrent neural network (RNN) models [52] on sequence-to-

sequence modeling tasks (e.g., language translation task), where additive attention

scores are computed for each hidden vector of input word to each target word using

a fully connected layer. With the help of attention scores, the model learned which

words to pay more attention to in the input sequence for the output sequence. In the

following years, multiple other forms of attention mechanisms have been developed

using different score formulas [53, 15, 54].

RETAIN [55] was the first study introducing attention mechanism in prediction

tasks in healthcare. It uses two RNNs (one in original order, another in reverse order)

to generate two-level attention scores: one for the visit level attention and the other for

variable level attention. The visit-level attention finds the contributions of each visit

(time steps) to the outcome, and the variable level attention finds the contributions

of each variable to the outcome. [56] and Dipole [57] are the other two state-of-the-art

methods inspired from RETAIN that employs attention mechanism on top of RNN

models for prediction task in healthcare using EHR data. As in RETAIN, [56] also

generates two attention scores, one for medical code level attention and hospital visit

level attention. Instead of using two RNNs in RETAIN, they used one bidirectional

Gated Recurrent Units (GRUs). Dipole introduces three attention scores: location-
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based scores for only considering one individual hidden state information, general

attention scores, and concatenation-based attention scores for considering all previous

hidden states on top of the bidirectional GRU which further improve the prediction

performance. Zhou et al. proposed an attention mechanism along the time-step

dimension for relation classification [58].

2.4.4 Knowledge-Graph Guided Interpretable Deep Learning Methods

The adoption of ML/DL methods in healthcare would be more preferable if the meth-

ods take into account both the computational ability and clinical domain knowledge

[25]. Even with the self-interpretable or post-hoc methods, the process of feature en-

gineering to select interpretable and critical features with the help of clinical expertise

is required. Otherwise, those interpretable methods would still be inexplicable.

Domain-specific knowledge is often encoded in medical or biomedical ontologies

databases, which can be used as prior knowledge similar to knowledge from domain

experts [59]. Ontology provides a standardized vocabulary of medical/biomedical

concepts and their relations. The relations between concepts are usually denoted as

”A relation B” meaning A has a particular relation with B (e.g., A is a subclass of

B) [60]. Ontology databases usually are organized in hierarchies, where the node

represents a concept in a particular domain, and the edge represents the relation

between them.

There have been many algorithms developed to extract knowledge from a graph

in general by learning the concept and relation embeddings [61, 62]. These algo-

rithms have been used in applications such as medicine recommendation [63, 64],

psychiatric disorders patients classification [65]. Recent studies have been introduced

to obtain attention scores from concept and relation embeddings from medical knowl-

edge graph (KG) and then use the attentions scores to adjust vector representations

of medical codes in EHR for downstream prediction task, GRAM [66] , DG-RNN [67]
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and MMORE [68].

2.5 Approaches for Fairness

2.5.1 Fairness in Healthcare AI

Fairness is one of the newly emerging focuses for building trustworthy artificial intel-

ligence (AI) models. One of the reasons resulting in an unfair model is the algorithm

bias towards different groups of samples. A biased model may benefit certain groups

but disfavor other ones. The learned representation by an unfair model could be

solely based on protected attributes (e.g., race, gender, etc.). However, they may

be biases rather than the essential factor to the outcome. As a result, leaving the

bias unresolved might have a significant negative impact, especially in the context of

healthcare applications.

Fairness in AI/DL refers to a model’s ability to make a prediction or decision

without any bias against any individual or group [69]. The behaviors of a biased model

often result in two facets: it performs significantly better in certain populations than

others [70], and it makes inequities decisions towards different groups [71]. Clinical

decision-making based upon biased predictions may cause delayed treatment plans

for patients in minority groups or misspend healthcare resources where treatment is

unnecessary [72].

The data distribution shift problem across different domains is one of the major

reasons a model could be biased or unfair [73]. Domain shifting is a common issue

in real healthcare settings due to different situations when data are collected (e.g.,

geographic location, healthcare setting or measurement devices, etc.) [25, 26].

2.5.2 Domain Adaptation

To address the fairness issue, the ML community is exploring ways to tackle the

domain-shifting challenge. Domain adaptation is a general approach that refers to
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learning a model from the source domain that also performs well on a target domain

when the distribution of source (e.g., training) and target (e.g., testing) domain is

different [24, 74].

Based on the availability of the labels in source and target domain, domain adap-

tation (DA) approaches can be generally categorized into three types [24]: 1)Unsu-

pervised DA refers to all source data are labeled, and all target data are unlabeled;

2) Semi-supervised DA refers to all source data are labeled, and some of the target

data are labeled; 3)Supervised DA refers to all source data are labeled, and all target

data are labeled. Moreover, the DA approach can be further categorized into another

two types based on the type of differences between source and target domain [24]:

1)Homogeneous DA refers to the domain features distribution are different, but the

feature spaces remain the same cross domains; 2) Heterogeneous DA refers to the

domain feature spaces differs across domains. In this dissertation, we will focus on

Homogeneous and unsupervised domain adaption approaches.

Many recent studies have been exploring ways to address the domain-shifting is-

sue. The general idea of most recent domain adaptation approaches learns invariant

hidden features cross domains [24], then the predictions made using the invariant

hidden features will be more accurate for the target domain [74]. One of the earlier

works [75] proposed a model which learns invariant hidden features by using a regular-

ization loss to minimize the maximum mean discrepancy(MMD) between source and

target distribution. Later a pioneer work [74] proposed a domain-adversarial train-

ing of neural Networks (DANN), which learns invariant hidden features by adding a

second domain classifier for classifying source and target domain together with the

original label classifier in the network. The general idea of this work is to minimize

the classification loss of the label classifier and, at the same time, maximize the clas-

sification loss of the domain classifier. Thus, the network will be discriminative for

label classification but indiscriminate for distribution shifts between domains. An-
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other work [76] proposed a network named WDGRL, which is inspired by DANN

and was published later on in which the author replaced the domain classifier with a

network that estimates the Wasserstein distance between source and target domains

distributions [76]. Also, they use the network to estimate the distribution distance

instead of using the computed distance, which is different from the work mentioned

above [75].

However, most of the recent domain adaptation work has been approved that

has excellent performance improvement on the image applications. Few works have

focused on temporal data [24]. These approaches might not work well on temporal

EHR data since they do not consider temporal dependencies. The first deep learning

network that addresses the domain shift issue for temporal data is called Variational

Recurrent Adversarial Domain Adaptation (VARADA) [77]. VARADA uses a sim-

ilar idea in DANN where they also have two classifiers in the network, one for the

label and another for the domain. In contrast to DANN, they use the variational

recurrent neural network (VRNN) [78] as the feature extractor to learn the hidden

feature representations which capture the temporal information. Some similar net-

works have been proposed ever since on domain adaptation applications for temporal

EHR data. For example, [79] proposed a network for disease progression modeling

which uses a domain classifier at every time step. The proposed network considers

domain shifting issues at every time step. As a result, the learned hidden features

will be invariant for all time steps. Another recent example of temporal EHR data

adaptions is the framework named VR-ADS [80]. VR-ADS introduced a framework

that uses invariant globally shared features across domains and different variant local

features to address the domain-shifting issues for early septic shock prediction.

Copyright© Jing (Lucas) Liu, 2023.

17



CHAPTER 3. ELMV: an Ensemble-Learning Approach for Analyzing

Electronic Health Records with Significant Missing Values

This chapter introduces our novel ensemble-learning approach for analysis electronic

health records with significant missing values (ELMV).

3.1 Introduction

Many EHR data contain a significant proportion of missing values, which could be

as high as 50%, leading to a substantially reduced sample size even in initially large

cohorts if we restrict the analysis to individuals with complete data [81, 41]. On

the other hand, leaving a big portion of missing information unaddressed usually

cause bias, loss of efficiency, and finally leads to the inappropriate conclusion to be

drawn [82].

Data imputation algorithms (e.g., the scikit-learn estimators [83]) attempt to

replace missing data with meaningful values, including random values, the mean

or median, the spatial-temporal regressed values, most frequent values in the same

columns, or representative values identified using k-nearest neighbor [84]. Advanced

data imputation algorithms, such as Multivariate Imputation by Chained Equation

(MICE) [85], have been developed to fill missing values multiple times.

However, applying data imputation algorithms without considering the reasons

for missingness and the distribution discrepancies between training and testing data

may lead to significant biases in model prediction.

We observe that in the EHR data, important variables are likely to be retained by

auxiliary variables. For example, hemoglobin A1c (HbA1c) is an important index for

diabetes patients. By measuring HbA1c, clinicians can get an overall picture of the

average blood sugar levels over a few months. Multiple clinical measurements, such

as fasting blood glucose, are highly correlated with HbA1c [86] and are often found
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in the EHR of diabetes studies. Hence, if HbA1c is missing, a well trained predictive

model can still rely on the auxiliary features of HbA1c, thus maintaining relatively

high performance.

In this chapter, we present a novel method called Ensemble-Learning for Miss-

ing Value (ELMV) to analyze EHR data with significant missing values, aiming to

identify unbiased, precise predictive patterns from EHR data. Specifically, given an

EHR dataset with a significant missing rate, ELMV first generates multiple quali-

fied maximal subsets of the original EHR data using dynamic programming. These

qualified maximal subsets have much lower missing rates than the original data. And

then, ELMV trains predictive models using every qualified maximal subset and save

the trained model for further use. Finally, for each record in the external validation

data, ELMV selects multiple pre-trained models and employs ensemble learning for

the final prediction. ELMV has the following advantages: 1) It is capable of handling

substantial missing values without using data imputation, 2) By constructing multi-

ple maximal subsets of the original EHR data, opportunities are that even if critical

features are removed due to high missingness, the generated predictive models using

auxiliary features may still maintain a relatively high performance, and 3) It intro-

duces dedicated support data for ensemble learning where the discrepancy between

training and validation are considered for the purpose of reducing the bias.

3.2 Methods

Specifically, given an EHR dataset I with significant missing values, ELMV first

generates a set of subsets of I with low missing rates, denoted as S, using dynamic

programming, and upon these, builds predictive models M so as to mitigate the

overall bias in each dataset in S for a single predictive model. Second, for every

record in the external validation data, ELMV selects the most suitable models from

M for the final prediction using ensemble learning.
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Figure 3.1: Overall framework of ELMV. It includes three stages: predictive model
generation, ensemble prediction, and critical feature identification.

Since ELMV is a general machine learning framework for learning from EHR

data with significant missing rates, any conventional machine learning model, such

as XGBoost [12] and SVM [87], can be used in our framework. For the demonstra-

tion purpose, we used XGBoost in the paper. The framework of ELMV involves

three stages, namely model generation, critical feature identification, and outcome

prediction. The architecture of ELMV is illustrated in Figure 3.1.

3.2.1 ELMV Stage 1. Predictive Model Generation

In the predictive model generation stage, we first compute the data missingness of

a given EHR dataset, assessing whether it is appropriate to use ELMV. And then,

we generate multiple subsets of the original data with lower missing rates. Finally, a

predictive model is trained on each subset.
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3.2.1.1 Assessing Data Missingness

Given an EHR dataset I where rows are patients P , columns are features F in

the EHR, Np is the total number of patients, Nf is the total number of features,

a missingness indicator for each patient p, denoted as MissingIp, is defined as a

binary vector with the length of Nf where a one in a specific entry represents that

the corresponding feature is missing for patient p.

Specifically, for EHR data with temporal features TFNf ,T,Np , where T is the num-

ber of time points of a temporal feature, we define the missingness indicator as a

two-dimensional matrix: for each temporal feature of patient p, denoted as tfp
j ∈ TF ,

if a temporal trend-based feature is missing because of the missing data at time point

ti, let MissingIp(ti, tfj) = 1..

A 2-dimensional binary matrix denoted as MissingI ∈ RNp×Nf can then be

generated to store the missingness information of all patients. In the 2D case,

MissingIM [i, j] = 1 representing the patient i has a missing value in the jth feature.

In the case of a 3D temporary dataset where the third dimension represents time of

records, MissingIM [i, j] = 1 representing the patient i at least have one data point

missing in the time trajectory of the jth feature.

Based on the definition of data missingness, we compute the missing rate of the

entire dataset I, assessing whether ELMV or data imputation techniques should be

used. Typically, if the data missingness is low, it is appropriate to impute missing

data. However, if the missing rate is above 40%, data imputation may inevitably

increase the variability of effect estimates. Instead of imputing missing values di-

rectly, ELMV relies on ensemble learning which aggregates predictive models built

on multiple subsets with significantly lower missing rates.

Note that although ELMV is still applicable when the missing rate is low (e.g.,

under 10%), its performance is similar to other state-of-art models.
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3.2.1.2 Generating Subsets with Low Data Missingness

Given an EHR dataset I and a user-defined data missing rate upper bound Tmax−missing

(e.g., 20%), which is much lower than the missing rate of I, we generate a set of max-

imal subsets of I with its missing rate lower than or equal to Tmax−missing, saved in

S.

A subset s of I (s ∈ S) is a 2-dimensional matrix where rows are patients and

columns are features in EHR. We say s is maximal if and only if its missing rate can

only increase if its rows or columns are replaced by any new rows or columns in I.

Since the total number of possible subsets is
(
Np

x

)
×

(
Nf

y

)
, where x and y are the

numbers of rows and columns of s, it is impractical to enumerate all the possibilities

and then select the maximal ones. Thus, to identify all the qualified maximal subsets

of I with missing rates lower than or equal to Tmax−missing, we develop a two-step

approach.

The approach for generating qualified maximal subsets consists of two steps: 1)

to generate all the maximal subsets using dynamic programming, and 2) to filter the

maximal subsets with nearly duplicated information. The pseudocode for maximal

subsets generation is illustrated in Algorithm 1 and 2. In the following section, we

explain the steps for generating the qualified maximal subsets.

In the first step, we track the missingness of all the subsets-to-generate using a 2-

dimensional matrix MissingC ∈ RNp×Nf . The value in each entry of MissingC(x, y)

represents the minimum number of missing values of any subset of I with x patients

and y features. For instance, MissingC(100, 200) = 1300 means that the minimum

number of missing values is 1300 for any sub-matrix of I with 100 patients and 200

features. MissingC can be used to select maximal subsets (see details in Algorithm 1

and 2).

We start to fill MissingC and to generate the corresponding maximal subsets

from the bottom right corner, MissingC(Np, Nf ). Naturally, it represents the num-
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Algorithm 1: Algorithm For Generating Maximal Subsets - Part 1

Input : 2D DataMatrix[Np ×Nf ] or
3D Temporal DataMatrix [Np ×Nf ×Nt]

Intermediate: MissingI, MissingI List, MissingC,
Output : Max S # Maximal Subsets
Function ConstructMissingI(DataMatrix):

for i = Np to 1 do
for j = Nf to 1 do

if
∑Nt

t=1 MissingIp[t, j] ≥ 1 then
MissingIi,j = 1

else
MissingIi,j = 0

end

end

end
return MissingI

Function Order(MissingI):
Order input by the missing percentage of patients and features
ascendingly from left to right and from top to bottom
return ordered MissingI

Function CountMissings(MissingI):
Count the total number of ones in input
return Total Number Of Missing Values

ber of missing values when all features and all patients are selected. Hence, the

corresponding maximal subset is I itself. And then, we repeatedly remove one fea-

ture or one patient that has the maximum number of missing values at a time until

the subset reaches the smallest required number of features and the smallest number

of patients. By removing a feature or a patient with the maximum missing values at

each time step, the generated subset is ensured to have the missing rate correspond-

ing to the required number of features and patients. The whole process is achieved

using dynamic programming [88].

The second step of subset generation is to identify and remove subsets conveying

nearly identical information. For all the subset with a similar missing rate, we keep the
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Algorithm 2: Algorithm For Generating Maximal Subsets - Part 2

1 Initialization;
2 MissingI ListNp,Nf

= ConstructMissingI(DataMatrix) ;

3 MissingCNp,Nf
= CountMissings(MissingI ListNp,Nf

); ;

4 MissingI ListNp,Nf
= Order(MissingI ListNp,Nf

) ;

5 for i = Np to 1 do
6 for j = Nf to 1 do
7 if i ! = Np and j ! = Nf then
8 if MissingCi,j+1 < MissingCi+1,j or MissingCi+1,j is empty

then
9 MissingI Listi,j+1 = Order(MissingI Listi,j+1) ;

10 last step = MissingI Listi,j+1;
/* then remove the last feature */

MissingI Listi,j = last step[,−last column] ;

11 else if MissingCi,j+1 ≥ MissingCi+1,j or MissingCi,j+1 is empty
then

12 MissingI Listi+1,j = Order(MissingI Listi+1,j) ;
13 last step = MissingI Listi+1,j;

/* then remove the last patient */

MissingI Listi,j = last step[,−last row];

14 MissingCi,j = CountMissings(MissingI Listi,j);
15 Max Si,j = Patient and Features in MissingCi,j;

16 end

17 end

subsets with the maximum number of features if the number of patients is identical,

or keep the subsets with the maximum number of patients if the number of features

is identical.

The final outcome of this step is a set of maximal subsets of the original EHR

dataset with missing ratio smaller than or equal to a user-defined data missing rate

upper bound Tmax−missing.

3.2.1.3 Training Predictive Models

Using every qualified maximal subset of the original data I, we train a traditional

classification model and save all the trained models in model set M . Since ELMV

is a general framework for learning predictive patterns from data with significant
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missingness, any classification model, such as support vector machine and gradient

boosting, can be used in this step. We expect that the classification model deployed

here is capable of handling a few missing values. Otherwise, we recommend to employ

a data imputation method before calling a classification model.

For the demonstration purpose, the XGBoost implementation [12] ”xgboost” in R

library is used in this step. Specifically, we choose a tree-based model called “gbtree”

booster with a softmax objective ”multi:softprob” for relatively easier classification

tasks. Also, we choose a linear model called ”gblinear” with a logistic objective

”binary:logistic” for relative harder classification tasks, such that a multi-class task

can be converted into binary classification using the one vs. rest approach [89].

Finally, each trained predictive model is evaluated using leave-one-out cross validation

(LOOCV) [90] approach. Model validation performance is saved for later use.

3.2.2 ELMV Stage 2. Ensemble Prediction

In the ensemble prediction stage, ELMV aggregates multiple selected predictive mod-

els trained in stage one to make predictions for records in an external validation set.

Here, each predictive model is trained with a qualified maximal subset with its

missing rate smaller than or equal to Tmax−missing. If Tmax−missing is significantly

smaller than the missing rate of the original data I, the qualified maximal subsets

could be much smaller subsets of the original data. Therefore, a predictive model

can successfully capture the local but not the global properties of the original data.

Directly using these predictive models individually may not result in optimal results.

Meanwhile, for the records in the external validation set, they may differ regarding

which distributions the records are drawn from, indicating that we may not obtain the

best performance by aggregating all the pre-trained models. Hence, in the ensemble

prediction stage, we develop a novel strategy to select pre-trained predictive models

according to data representation and ensemble them for external validation.
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3.2.2.1 Constructing Support Set

To estimate the distribution of the external validation records, a support set is gener-

ated. Mathematically, the support set SSNss,Nf is generated by randomly select Nss

rows from the original dataset I. Similar to I, SS may have a significant missingness.

For SS, a binary missingness matrix MissingSS is obtained using the same method

described in Section 3.2.1.1.

3.2.2.2 Measuring Patients Similarity

For each external validation record, we measure the similarities between it and all the

records in the support set SS pair-wisely. Top k1 similar records in SS are selected.

ELMV assigns a set of dedicated pre-trained models to each external validation record

by selecting all the pre-trained models that can successfully predict at least k2 top

records (k2 <= k1). Both k1 and k2 is a user-defined parameter.

Formally, the similarity between a external validation record and all records in

the support set SS is defined in Equation 3.1:

Sim = WF ∗ Softmax(−Dist F ) +WM ∗ Softmax(−Dist M) (3.1)

where Sim ∈ R(1×Nss) represents the similarity between each individual validation

record and all the records in the support set, Dist F ∈ R(1×Nss) represents the Eu-

clidean distance of the corresponding feature vectors, Dist M ∈ R(1×Nss) represents

the Hamming distance of the missingness indicator vectors MissingIp, Nss repre-

sents the number of records in support set SS, and the overall similarity score is a

weighted sum of the two distances normalized using softmax. Here, weights WF and

WM are user-adjustable parameters. Larger WF indicates ELMV pays more attention

to feature vectors similarity, and likewise larger WM indicates the missingness vectors

similarity is more important.

26



3.2.2.3 Ensemble Prediction

Finally, we select multiple pre-trained predictive models and aggregate them by

adopting the ensemble prediction approach. The model selection procedure can be

described as a multi-objective optimization problem that considers the following ob-

jectives: the model prediction performance on support records similar to the target

external validation records, the model performance on all records in the support set,

the model cross-validation performance such as accuracy, precision, recall, and F1, as

well as the characteristics of the subset that is used to train the model including the

number of features, the number of patients, and the missing rate.

Given a list of model selection criterion {C1, C2, ...Cn} and a list of candidate

models {M1,M2, ...Mm} ∈ M , let TBestCM be a binary vector indicating whether

model M performs the best under criteria C. Mathematically,

TBestCM =


1, if Ci

Mj
= MAX(Ci)

0, otherwise

(3.2)

A pre-trained model is selected if and only if it performs the best on at least

one criterion formulated in Equation 3.3 or the overall performance in all criterion

is the highest (see Equation 3.4). The number/type of the objectives Kobj are user

adjustable.

∃C :∈ TBestCM = 1 (3.3)

argmax
M

n∑
i=1

TBestCi
M (3.4)

In the last step, the final prediction for each record in the external validation

set can be obtained by integrating all the selected models. For the demonstration

purpose, a majority voting of all the selected models is used here, which can be

replaced with other ensemble learning approaches with a simple modification.

27



Figure 3.2: The framework of critical feature identification using ELMV.

3.2.3 ELMV Stage 3. Critical Feature Identification

Each predictive model trained with a qualified maximal subset produces its own

critical features in its local context. In order to identify the critical features of the

entire data, we repeatedly apply the leave-one-out cross validation (LOOCV) [90]

on each qualified maximal subset. Finally, we aggregate the most critical features

of each predictive model using a weighted voting mechanism. The critical feature

identification process is shown in Figure 3.2. Through this process, domain experts

can examine the validity and reliability of ELMV by checking whether the critical

features found is reasonable under both the local and global context.

In the weighted voting process, the weight of a critical feature is determined by

three factors, i.e. the local LOOCV performance of the pre-trained predictive model,

missing rate of the qualified maximal subset used to train the predictive model, and

local feature importance.

Generally speaking, the higher the local LOOCV performance, the more weight is

put on the features found by that predictive model. Specifically, for each predictive

model, the top-k3 local critical features are determined by model feature importance.
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Table 3.1: Definition of hyperparameters used in ELMV.

Parameter Definition Suggested Value
Tmax−missing Subset missing rate upper bound ≤ missing rate of original dataset

I
k1 Number of similar records in Sup-

port Set (SS)
k1 and k2 can be chosen according
to the distribution of similarity
scores
(e.g., top 20% similarity scores)k2

Number of similar records that
were predicted correctly by each
generated model

k3

Number of local critical features
identified by each qualified
maximal subset

k3 and k4 can be chosen according
to the total number of features
(e.g., 10% of the total number of
features)k4

Number of top ranked critical
features identified by group of
qualified maximal subsets

kobj Number/type of model selection
criterion

kobj ≥ 1

WF Similarity weights for feature vec-
tor

0 ≤ WF ≤ 1
Larger WF paying more attention
to feature similarity

WM Similarity weights for missingness
vector

0 ≤ WM ≤ 1
Larger WM paying more attention
to missingness similarity

And then, all the top-k3 critical features of every predictive model with a similar miss-

ing rate are sorted and ranked. The feature ranking is based on the ratio between the

number of times a given feature being selected as a critical feature by individual pre-

dictive models and the number of times it is available. Given the ranked feature list,

we select top-k4 critical features using weighted voting where weights are determined

by the averaged local LOOCV model performance.

The description of all the user-defined hyperparameters is provided in Table 3.1.

The source code of ELMV is available at:

https://github.com/lucasliu0928/ELMV.
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3.3 Experiments Settings

Multiple experiments were carried out on both simulation datasets and a real-world

EHR dataset to validate the usefulness of ELMV. For performance comparison, XG-

Boost was used as the base predictive model. We compared ELMV with three models:

1) to impute missing values with the mean imputation and to train XGBoost with

the imputed data, 2) to impute missing values with MICE [85] and to train XGBoost

with the imputed data, and 3) to train XGBoost directly without using any data

imputation method.

3.3.0.1 Simulation Data

To simulate EHR data with a significantly high missing rate, we selected a complete

data and constructed multiple simulation datasets with a wide range of missing rates.

On the simulation data, we test whether adopting ELMV can achieve performance

comparable to that of a predictive model trained on the complete dataset. Specifically,

the complete dataset obtained was the IRIS dataset widely used in machine learning

education from the UCI repository [91]. The IRIS data consists of four features, 150

records, and three outcome labels. The LOOCV accuracy of XGBoost on the IRIS

data is as high as 0.97.

In total, 18 simulation datasets were generated using the IRIS data, each having

40 features and 150 records, while the missing rate varying from 5% to 70%. All the

simulation datasets were constructed similarly, except for the missing rates. First,

using each of the original features in the IRIS data, we generated nine additional

features with their correlation coefficient to the original feature ranging from 0.1 to

0.9. The purpose was to test whether the model performance can be retained using

auxiliary (highly correlated) features when original features are missing. In addition,

the additional features were used to test whether the model can identify and retain

high-quality features while discarding low-quality features. Finally, we randomly
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removed 5% to 70% entries from every simulation dataset.

3.3.0.2 Real World Healthcare Data

The real-world EHR data we used was collected in a follow-up study of 240 type 2

diabetes (T2DM) patients who went through the Laparoscopic Roux-en-Y Gastric

Bypass (LRYGB) surgery [92] in the Shanghai Jiaotong University Affiliated 6th

People’s Hospital. The data have been de-identified before use.

The LRYGB dataset consists of 79 variables including HbA1c and the other 78

biomedical variables collected at six different time points, i.e. before the LRYGB

surgery, 3-month, 6-month, 12-month, 24-month, and 36-month after the surgery.

In total, 240 T2DM patients participated the study. 24 out of the 78 biomedical

variables, such as CysC, weight index, and direct bilirubin, were pre-selected based

on domain knowledge for further studies.

The purpose of the study is to predict the HbA1c trajectories that are defined

as follows. The types of HbA1c trajectories were determined using clustering, fol-

lowed by manual curation. Specifically, we adopted the reversed K-nearest neighbor

(rKNN) [93] to remove outliers and adopted the agglomerative hierarchical clustering

with Ward’s method [94] to separate all the patients into nine clusters. The Elbow

method was then used to determine the optimal number of clusters, on which the

decreasing rate of With-in-Sum-of-Squares (WSS) was the slowest. Two clinicians

examined the obtained clusters independently and defined six types of HbA1c tra-

jectory. In summary, after semi-automatic labeling, the LRYGB data consists of

214 patients, 24 features, and six labels. The missingness of all the features of the

LRYGB data is shown in Figure 3.3. The missing ratio at every time point is 3%,

33%, 18%, 18%, 37%, and 56% respectively. Clearly, patient dropout is a main issue

that resulted in high missing rates at later time points. Using this real-world data,

we aim to test ELMV at the non-random missing data situation. Specifically, we
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Figure 3.3: In the LRYGB follow-up study, the distribution of the missing values of
all the 24 variables at six time points. In general, more values are missing towards
the end of the follow-up study. Red indicates higher missing ratio towards 100%,
green is for lower missing ratio towards 0%, and black indicates 50% missing ratio.

evaluated ELMV by testing whether it can identify critical features for predicting the

trajectory of HbA1c.

As part of the data preprocessing, we imputed a small portion of the missing

values using domain knowledge and simple statistics such as linear interpolation.

Also, we copied the 6th month values to the 3rd month, if the 3rd month values were

missing. We removed patients whose HbA1c values at both 3rd month and 6th month

are missing. After this step, the LRYGB follow-up data consists of 202 patients, 24

features, and the overall missing rate of the LRYGB data was reduced. For example,

the missing rates at 24-month and 36-month have been effectively reduced from 37%

to 25% and from 56% to 48%, respectively. But still, the high missing rate towards

the end of the T2DM follow-up study prevents us from using any predictive models
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Table 3.2: Averaged accuracy of ELMV, XGBoost, and two imputation methods on
the simulation data with low (above the horizontal line) or high missing rates (below
the horizontal line).

Missing XGBoost Mean MICE ELMV
Rate Imputation Imputation
5% 0.97 0.97 0.97 0.97
10% 1.00 0.97 0.93 1.00
20% 0.97 0.97 0.97 0.97
60% 0.67 0.63 0.73 0.80
65% 0.70 0.73 0.70 0.77
70% 0.70 0.67 0.63 0.77

directly.

3.4 Results

We applied ELMV, as well as three baseline algorithms, i.e., mean imputation, MICE,

and XGBoost without data imputation, on both the simulation data and the LRYGB

data. For performance comparison, conventional classification metrics were used,

including accuracy, precision, recall, and F-1. Additionally, domain experts manually

reviewed the critical features selected by ELMV, assessing whether they are clinically

reasonable for predicting the HbA1c trajectory.

3.4.0.1 Prediction Performance on Simulation Data

On all the simulation datasets with their missing rates ranging from 5% to 70%, the

performance of ELMV, mean imputation, MICE, and XGBoost without data impu-

tation were systematically compared. Table 3.2 compares model prediction accuracy

of the four methods on the simulation datasets. When the missing rate was low (5%

to 20%), all the models can achieve nearly perfect performance (accuracy ≥ 0.93).

However, if the missing rate was in the range of 60% and 70%, the accuracy of all

other methods was reduced significantly below 75% no matter how the missing values

were handled while ELMV still can maintain its accuracy above 75%.
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A moving average of accuracy and F-1 on the finer granularity of missing rates

shown in Figure 3.4 and Figure 3.5 reveal that ELMV is not affected by the high

missing rates as bad as the other models. The performance trends suggest that ELMV

achieved the best performance towards larger missing rates steadily, and XGBoost

had the best performance if the missing rate was relatively low. MICE had the overall

lowest accuracy and its accuracy trend dropped steadily when the missing rate was

increased. Surprisingly, the mean imputation had a relatively stable performance,

probably because the missingness was generated completely randomly. Both mean

imputation and MICE have lower accuracy than XGBoost, indicating that the two

imputation methods tested failed to reinforce XGBoost to handle missing values. The

averaged precision, recall, and F-1 are reported in Table 3.3, Table 3.4, and Table 3.5,

respectively. Similarly, ELMV achieved the best performance in all but one case when

the missing rate was high.

Figure 3.4: The moving average of accuracy of ELMV, XGBoost, and two imputation
methods on the simulation data with missing rate increasing from 60% to 70%.
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Figure 3.5: The moving average of F-1 Scores of ELMV, XGBoost, and two imputa-
tion methods on the simulation data with missing rate increasing from 60% to 70%.

3.4.0.2 Feature Selection on Real World EHR Data

We applied ELMV on the LRYGB data (78 features and 202 T2DM patients), aiming

at identifying critical features for the HbA1c trajectory prediction. All the qualified

maximal subsets of the LRYGB data generated by ELMV are shown in Figure 3.6.

Every point in the figure represents a qualified maximal subset of the LRYGB dataset.

Table 3.3: Averaged precision of ELMV, XGBoost, and two imputation methods on
the simulation data with low (above the horizontal line) or high missing rates (below
the horizontal line).

Missing XGBoost Mean MICE ELMV
Rate Imputation Imputation
5% 0.97 0.97 0.97 0.97
10% 1.00 0.97 0.95 1.00
20% 0.97 0.97 0.97 0.97
60% 0.65 0.64 0.75 0.83
65% 0.71 0.80 0.72 0.78
70% 0.71 0.69 0.62 0.76
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Table 3.4: Averaged recall of ELMV, XGBoost, and two imputation methods on the
simulation data with low (above the horizontal line) or high missing rates (below the
horizontal line).

Missing XGBoost Mean MICE ELMV
Rate Imputation Imputation
5% 0.95 0.95 0.95 0.95
10% 1.00 0.95 0.90 1.00
20% 0.95 0.95 0.95 0.95
60% 0.64 0.59 0.73 0.83
65% 0.70 0.71 0.69 0.76
70% 0.70 0.63 0.61 0.74

Table 3.5: Averaged F-1 of ELMV, XGBoost, and two imputation methods on the
simulation data with low (above the horizontal line) or high missing rates (below the
horizontal line).

Missing XGBoost Mean MICE ELMV
Rate Imputation Imputation
5% 0.96 0.96 0.96 0.96
10% 1.00 0.96 0.92 1.00
20% 0.96 0.96 0.96 0.96
60% 0.64 0.59 0.74 0.80
65% 0.69 0.73 0.69 0.76
70% 0.69 0.63 0.61 0.75

The X-axis indicates the number of patients, and the y-axis indicates the number of

features of the qualified maximal subset.

In Figure 3.6, the points with the same color have a similar missing rate. We

generated all the qualified maximal subsets of the LRYGB data so that any combi-

nations of features of interest can be evaluated in the critical feature identification

stage of ELMV. Note that since the goal of this experiment is to identify the critical

features among 24 pre-selected features, we only used the qualified maximal subsets

of the pre-selected features in the following analysis. Several early-stage biomarkers,

such as serum Ca2+ and cholesterol level measured at 3-month found by ELMV were

supported well by the literature [95, 96] to be critical for predicting HbA1c trajectory

in the first three years after the LRYGB surgery.

In addition, the overall accuracy of ELMV on the LRYGB data is 0.93, signif-
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Figure 3.6: The distribution of all the maximal subset of the original LRYGB data
with 78 features and 202 T2DM patients. Every point represents a maximal subset
with x number of patients and y number of features. Color indicates different missing
rates.

Table 3.6: Performance of qualified maximal subsets of the LRYGB data with differ-
ent missing rates.

Missing Rate Accuracy

0% 0.90
5% 0.95
10% 0.94
20% 0.94
30% 0.93

Average 0.93

icantly higher than that of XGBoost (0.63), Mean imputation (0.30), and MICE

(0.28). The performance of ELMV on all the qualified maximal subsets with the

missing rate ranging from 0% to 30% is shown in Table 3.6. It indicates that ELMV

can maintain its accuracy above 90% and is not significantly affected by the high

missing rates.
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Table 3.7: Average computational time comparison among ELMV, Mean imputation,
MICE imputation (two iterations, and two multiple imputations), and XGboost.

Data Methods Training and Validation
Simulation Data

(150x40)
ELMV 101.40 secs

Mean 1.66 secs
MICE 31.20 secs

XGBoost 1.92 secs
Healthcare Data

(202x78x6)
ELMV 18.34 mins

Mean 1.04 mins
MICE 354.00 mins

XGBoost 1.36 mins

Since extra steps have been taken in ELMV, an interesting question is whether

ELMV is significantly slower than the other models. We compared the computational

time between ELMV with the baseline methods on both the simulation data and the

healthcare data. As shown in Table 3.7, the mean imputation was the fastest on

both datasets, while ELMV was the slowest (101 secs) on the simulation data when

the number of features was relatively small. On the real healthcare data where the

number of features was relatively large, MICE took more than 300 minutes while

ELMV spent only around 18 minutes, and most of its time (70%) was spent on

generating the maximal subsets using dynamic programming. This issue could be

further addressed by clustering patients with similar missingness.

In ELMV, a novel approach is introduced to estimate the distribution of external

validation data and to guide the ensemble learning using a support set. An interesting

question is to what extent the support set can contribute to the ensemble learning

since it is useful only when the external validation data are known. To this end, we

compared ELMV with the k-nearest neighbor (kNN) model, which simply assigns

each external validation record to the label of most similar records in the support

set. The results shown in Table 3.8 indicate that the kNN-based voting approach is

unlikely to provide the correct prediction most of the time. This experiment further
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Table 3.8: Accuracy of ELMV and kNN on the LRYGB data.

Missing Rate ELMV kNN

60% 0.80 0.53
65% 0.77 0.43
70% 0.77 0.40

Average 0.78 0.45

confirms that it is critical to integrate the support set with ensemble learning rather

than simple voting.

3.5 Conclusion

This chapter presented a novel ensemble learning model called ELMV to predict

patient outcomes using EHR data with substantial missing values. In our experimen-

tal results, ELMV outperformed two widely used data imputation methods and an

ensemble learning method on patient outcome prediction and critical feature iden-

tification. We also demonstrated that ELMV is novel on model selection, which

considers data and missingness distributions in training and validation.

Copyright© Jing (Lucas) Liu, 2023.
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CHAPTER 4. KGDAL: Knowledge Graph Guided Double Attention

LSTM for Rolling Mortality Prediction for AKI-D Patients

This chapter introduces our novel knowledge-graph guided double attention LSTM

model named KGDAL for rolling mortality prediction to address interpretability con-

cerns.

4.1 Introduction

Acute kidney injury (AKI) is a common complication of hospitalized patients and the

incidence increase in patients admitted to the intensive care unit (ICU) [97, 98]. AKI

that results in the need for dialysis (AKI-D) is associated with a high risk of hospital

mortality [99], and for survivors a risk of incident or progressive chronic kidney disease

(CKD) [100, 101, 102, 103], cardiovascular disease [104, 105, 106] or end-stage renal

disease (ESRD) [107, 108, 109]. By identifying mortality risk factors from patient

individual and population data, providers can implement early intervention strategies

leading to better health care and substantially reducing the cost of care.

Numerous factors may influence in-hospital mortality including acute anemia,

respiratory failure, electrolytes disarrangements, hemodynamic instability, and de-

mographic information. There is a critical need to identify and correlate these pa-

tients and dialysis-specific parameters with inpatient mortality in this specific popu-

lation. Moreover, accurate prediction of mortality over time (i.e., rolling prediction)

in real-world healthcare settings for critically ill patients with AKI-D is needed for

better utilization of hospital resources, such as intensifying therapies when is needed,

or transitioning patients with a high risk of mortality to comfort care [5, 6]. Two

general approaches have been used for mortality predictions in the ICU. The first

approach uses clinical scores, including Acute Physiology and Chronic Health Eval-

uation (APACHE) and Sequential Organ Failure Assessment (SOFA), to identify
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at-risk patients at any time point [110]. The second approach employs machine

learning (ML) methods, such as random forest [9] and SVM [10], to predict mor-

tality risks using electronic health record (EHR) data. With the rapid development

of ML techniques, ML-based mortality prediction attracts much attention recently.

Nevertheless, ML-based methods mainly focus on mortality prediction at the end of

the treatment [111], and the clinical needs for rolling mortality prediction is often

overlooked [112, 113]. Traditional ML models rely heavily on feature engineering, re-

quiring not only a deep understanding of the domain knowledge but also tremendous

efforts on manual feature extraction and model tuning [114].

In recent years, deep learning (DL) models, including Transformer [15], Long-

Short Term Memory (LSTM) [16] and gated recurrent neural networks [17], have

shown promising performance on end-to-end patient risk prediction using large-scale

EHR data [1].

In this study, we propose a Knowledge-Graph Guided Double Attention LSTM

(KGDAL) model, aiming to make precise rolling mortality predictions in a real-world

healthcare setting for critically ill patients with AKI-D. To our knowledge, KGDAL is

the first KG-guided model that extracts both time and feature attention on continuous

temporal data. KGDAL has the following advantages:

• KGDAL obtains two-dimensional attention in both the time and feature spaces

for improved prediction power and enhanced model interpretability.

• The attention mechanism in the feature space is automatically derived based

on the KG rather than manual curation.

• KGDAL can model both continuous and discrete temporal EHR data types.

• KGDAL can make precise rolling mortality predictions for AKI-D patients on

two independent clinical datasets.
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4.2 Method

The goal of this study is to conduct rolling mortality prediction to assist clinicians

in making timely decisions and actions [111]. Mathematically, for each particular

subsequence of a patient’s EHR data, KGDAL predicts the patient’s outcome in the

next K hours, where K is the time granularity (e.g., 72 hours). The outcome could be

mortality or survival. KGDAL’s overall architecture, as shown in Figure 4.1, contains

three phases:

Phase 1. EHR Data Extraction. Patient clinical features are extracted

from patient’s EHR. Each feature is matched to a set of concepts in a Knowledge-

Graph (KG), followed by manual validation by clinicians. Patient subsequences with

random starting time points and varying lengths are generated. The label of each

subsequence is “mortality” or “survival” in the next K hours. Static features of each

patient are consistent for all the subsequences of the same patient.

Phase 2. Knowledge-Graph Extraction. The entire KG is used to learn

the concept embeddings for every concept identified in Phase 1. The concept em-

beddings are grouped based on the KG’s hierarchical structure, resulting in multiple

concept embedding groups. Subsequently, the KG-embedding distances (including

both pairwise distances between concept embedding groups and the distances from a

concept-of-interest to every concept embedding group) are computed.

Phase 3. Knowledge-Graph Guided Double Attention. All the tem-

poral features are grouped based on their corresponding concept embedding groups.

An LSTM is assigned to each temporal feature group. All the LSTM models are

trained simultaneously to minimize the overall loss. Both feature and time attentions

are learned using fully connected layers followed by softmax. Double attention is

formed using both feature and time attention. The double attention is adopted to

adjust feature embeddings for the final prediction and to regularize the prediction

loss that minimizes the discrepancy between the attention-based distance and the
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Figure 4.1: The three phases of the Knowledge-Graph Guided Double Attention
(KGDAL) model for rolling mortality prediction for critically ill patients with AKI-D
in real-world healthcare settings.

KG-embedding distance.

4.2.1 Phase 1. Data Extraction

Given a patient’s EHR data {S1, S2, . . . , St, . . . , SNt}, where St ∈ RNf is a set of

features (e.g. clinical measurements) at time point t ∈ {1, 2, . . . , Nt}, Nf is the total

number of features, and Nt is the total number of time points. For each patient, we

generate Ns subsequences with randomly starting time and random length between

24 and 72 hours (see Figure 4.1 Phase 1). The outcome label of each subsequence is

whether the patient dies or is alive in the next K hours.

Patient clinical features are matched to a set of corresponding concepts in a KG.

For features that can be directly matched to a concept in a KG (e.g., a diagnosis
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code), the corresponding concept will be used. Otherwise, all the associated concepts

in the same KG are extracted and then filtered by clinicians. For example, the cor-

responding concepts of “systolic blood pressure” in HPO [115] are “elevated systolic

blood pressure (HP:0004421)” and “decreased systolic blood pressure (HP:0500105)”,

both of which are valid and kept for later use.

4.2.2 Phase 2. Knowledge-Graph Extraction

In phase 2, KGDAL generates concept embeddings and computes the group-wise

KG-embedding distances in a KG.

4.2.2.1 Concept Embedding

Let Ec be the set of concepts and Er be all possible relationship types in a KG, a

concept relation O can be represented using a triplet denoted as (Ch, ri, Ct), where

Ch, Ct ∈ Ec are the head and tail concepts respectively, and ri ∈ Er represents the

relationship from Ch to Ct. For example, triplet (“Diabetes mellitus type 1”, “is-a”,

“diabetes mellitus”) in SNOMED-CT represents that the Diabetes mellitus type 1 is

a subtype of diabetes mellitus.

All the triplets in a KG are used to learn the concept embeddings. The basic

idea is to make the learned embeddings of tail concept Ct be close to the sum of

the embeddings of head concept Ch and the embeddings of relation ri. Here, we use

TransE [61], one of the most representative translational distance model, to learn the

concept embeddings by formulating the problem as follows: given a concept triplet

O = (Ch, ri, Ct) in a KG, we learn the embedding triplets denoted as G = (h, l, t),

where h, t ∈ Rde represents the head and tail concepts embeddings respectively,

l ∈ Rdl is the relation vector between h and t. TransE is trained with negative
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sampling to learn the embeddings that minimize a margin-based ranking loss function:

LKG =
∑

(h,l,t)∈O

∑
(h′,l,t′)∈O′

max(0, γ + d(h+ l, t)− d(h′ + l, t′)) (4.1)

where O represents the positive samples and O′ represents the negative samples that

were randomly generated by replacing the head or tail concepts of positive samples.

d represents any distance metrics, γ > 0 is a margin hyper-parameter. Equation 4.1

shows that the distances in positive samples are minimized where the distances in

negative samples are maximized. In this step, the concept embedding denoted as

Econcept are obtained for each concept associated with the patient clinical features.

4.2.2.2 Embedding Grouping

The hierarchical level in a KG represents classes of concepts holding similar character-

istics. To capture the commonality within a class and the difference between classes,

embedding group E is formed by taking the sum of concept embeddings Econcept in

each group based on the hierarchical structure of a KG. The number of groups Ng is

determined by the number of classes in the user-specified KG level. In general, using

a higher level will form more general concept groups, and using a lower level will form

more specific concept groups.

4.2.2.3 Embedding Group-wise Distance

In order to measure the difference between concept embedding groups as well as how

much each group are related to the outcome (i.e., mortality) and to let a DL model pay

more attention to the closely related concept embedding groups, two KG-embedding

distances are computed. The pairwise distance between concept embedding groups

is computed using Eq 4.2.

KGdist(i, j) = dist(Ei, Ej) (4.2)
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where E represents a set of concept embedding groups, the subscript represents the

group indexes, and dist denotes a distance metric, such as the Euclidean distance.

The distance between each concept embedding group and the concept-of-interest

are computed using Eq 4.3.

KG Targetdist(Ei) = dist(Ei, Etarget) (4.3)

where KG Targetdist(i) represents the distance from the target embedding Etarget to

the ith concept embedding group.

4.2.3 Phase 3. Knowledge-Graph Guided Double Attention

4.2.3.1 LSTM Embedding

By assigning each temporal feature to its corresponding concept embedding group in

a KG, a patient’s subsequence can be denoted as {xi
1,x

i
2, . . . ,x

i
t}, where xi

t ∈ Rni is

a list of feature values in the corresponding concept embedding group i at time step

t, where i is the group index (0 ≤ i < Ng), t ∈ {1, 2, . . . , T} is the time step, and ni

is the number of features at each time step for the ith group.

KGDAL consists ofNg LSTM [16] models, each for a feature group. For simplicity,

we assume all the feature groups have the equal number of features, the subscript i

of n is omitted in the following text. LSTM has three gates, namely the forget gate

ft, the input gate it, and the output gate ot, where ft, it,ot ∈ Rm, and m is the

dimension of the hidden vectors. Using ct and ht to represent the cell state vector

and the hidden state vector, (ct,ht ∈ Rm), the updated LSTM cell in KGDAL can

be represented as follows:

ft = σ(Wfht−1 +Ufxt + bf ) (4.4)

it = σ(Wiht−1 +Uixt + bi) (4.5)

ot = σ(Woht−1 +Uoxt + bo) (4.6)
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c̃t = tanh(Wcht−1 +Ucxt + bc) (4.7)

ct = ft ⊙ ct−1 + it ⊙ c̃t (4.8)

ht = ot ⊙ tanh(ct) (4.9)

where Wf ,Wi,Wo,Wc ∈ Rm×m, Uf ,Ui,Uo,Uc ∈ Rm×n, bf , bi, bo, bc ∈ Rm are

learnable parameters, σ is a sigmoid function, and ⊙ is the Hadamard product.

As a result, each LSTM layer outputs a hidden state matrix for each feature

group denoted as H(i) = [h
(i)
1 ,h

(i)
2 , . . . ,h

(i)
T ], where i is the group index. The hidden

state metrics for each feature group is called the feature embedding matrix. Then

the feature embedding matrix learned using multiple LSTM layers can be denoted

as {H(0),H(2), . . . ,H(Ng−1)}, where H(i) ∈ Rmi×T represents the feature embedding

matrix of group i, and mi is the dimension of hidden state vector from the ith LSTM

for group i.

4.2.3.2 KG-Guided Double Attention

To model the latent dependencies between different feature groups and at different

time steps, KGDAL learns the attentions in both time and feature spaces guided by

a KG. The detailed architecture of KGDAL is in Figure 4.2.

Time Attention. All the Ng feature embedding matrices are concatenated into

one matrix denoted as HC with the dimension of R(m1+m2+···+mNg )×T . For simplicity,

we assume all LSTM layers have equal dimensions of hidden vectors. Hence, the

superscript or subscript i of m is omitted in the following text. and the dimension of

HC is now R(Ngm)×T . The time attention is computed as follows:

Mα = tanh(HC) (4.10)

α = softmax(MT
αwα) (4.11)

where α ∈ RT is the time attention, wα ∈ RNgm is the learnable parameter, and MT
α

is the transpose of Mα ∈ R(Ngm)×T .
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Feature Attention Time Attention

Figure 4.2: The detailed architecture of the Knowledge-Graph Guided Double Atten-
tion LSTM (KGDAL) model.
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The time attention mechanism is inspired from and is similar to the work by Zhou

et al. [58], but there are two key differences: 1) the input to LSTM is the grouped

feature sequences and 2) the time attention mechanism is applied on the output of

multiple LSTMs.

Feature Attention. A similar attention mechanism is used to compute the feature

attentions. However, there are two changes. Firstly, we transpose HC and use it as

the input so that the attention mechanism will be applied on the feature space instead

of the time space. Secondly, the KG-embedding distances (KG Targetdist) between

the concept embedding groups and the concept-of-interest are used to weight the raw

feature attentions. Mathematically, the raw feature attentions is computed using:

Mβ = tanh((HC)T ) (4.12)

β = softmax(MT
βwβ) (4.13)

where β ∈ RNgm is the raw feature attention, wβ ∈ RT is the learnable parameter,

and MT
β is the transpose of Mβ ∈ R(T )×Ngm.

Then the KG-adjusted feature attention ϵ is equals to β weighted by the KG-

embedding distances at corresponding position, which is computed using:

ϵ(pos,i) = β(pos,i) ⊗KG Targetdist(i) (4.14)

where ϵ ∈ RNgm, ⊗ represents the outer product. pos represents the corresponding

positions of feature attentions for each group, where pos = [im : (i + 1)m − 1], i is

the group index, m is the dimension of the hidden vectors. For example, if the first

m raw feature attentions β are obtained for the first feature group, then these m

values are weighted by the distance from the first KG-embedding group to the target

embedding.
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4.2.3.3 Double Attended Representations.

We combine the attention on both the time and feature spaces by taking the outer

product of the time attentions α and a scaled version of KG-adjusted feature atten-

tion ϵ to obtain the double attention. In addition, the feature embeddings are then

adjusted by the obtained double attention. The double attention Θ and the adjusted

feature embeddings R are computed as follows:

Θ = ϵs ⊗α (4.15)

R = HC ⊙Θ (4.16)

where Θ and R ∈ RNgm×T . ϵs ∈ RNgm is the scaled feature attention which is

computed by taking the ratio between each KG-adjusted feature attention to the first

KG-adjusted feature attention ϵ0 so that the proportion of attentions are maintained,

as shown in Equation 4.17.

ϵs = ϵ/ϵ0 (4.17)

Finally, the double-attention adjusted feature embeddings R are passed into the

pooling layer for taking the sum/max over each time step, followed with a dense layer

with sigmoid function for final predictions.

4.2.3.4 Loss Function

To consolidate the concept relations from KG in attentions, a regularization term is

added to the original prediction loss function. The new regularization term minimizes

the discrepancy between the pairwise attention-based distances and the pairwise KG-

embedding distances.

Let the ground truth label be y and the predicted label be ŷ, we use the cross-

entropy for the original prediction loss denoted as Lpred, and the regularization term
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is denoted as Lreg, the final loss L is defined as:

L = Lpred + Lreg (4.18)

Lpred =
Ns∑
k=1

−(yk log(ŷk) + (1− yk) log(1− ŷk)) (4.19)

Lreg =

Ng−1∑
i=1

Ng∑
j=i+1

(dist(Θi,Θj)−KGdist(i, j)) (4.20)

where Θ represents the double attentions, KGdist is the KG-embedding distance

discussed in 4.2.2.3, and i, j are the group indexes, Ns is the number of samples, k is

the sample index.

4.3 Experiment Settings

The performance of KGDAL was evaluated using two (proprietary and public) AKI-D

datasets.

4.3.1 Data Preprocessing

4.3.1.1 Proprietary EHR Data

The proprietary EHR data include 608 AKI-D patients who were admitted to the

University of Kentucky (UK) HealthCare from January 2009 to October 2019. Among

them, 247 (41%) died in the hospital and 361 (59%) survived. This cohort excluded

patients who were less than 18 years old, or were diagnosed with end-stage kidney

disease (ESKD) at the time of index hospital admission, or were recipients of kidney

transplant. The EHR records during renal replacement therapy (RRT), including

both haemodialysis (HD) and continuous renal replacement therapy (CRRT), were

extracted. The duration of RRT was limited from 72 hours to 2,000 hours. Any

records beyond this range were excluded.

Twelve types of temporal features were collected from EHR, which were systolic

blood pressure, diastolic blood pressure, creatinine, bicarbonate, hematocrit, potas-
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sium, bilirubin, sodium, temperature, white blood cells (WBC) count, heart rate,

and respiratory rate. Six types of static features were also collected, which were de-

mographics (age, race, and gender), admission weight, body mass index (BMI), and

Charlson comorbidity score. Three status flags were constructed, which indicated the

on or off of CRRT or HD, and the status of being in the ICU or not. In total, 21

features were included in the UK data and the average missing rate of the temporal

features was 58.7%.

For each feature, outlier values greater than 97.5 percentile or below 2.5 percentile

were both excluded. The temporal granularity of the temporal features was set to one

value (median) per hour. Linear interpolation was employed to fill the gaps between

two actual measurements if needed. The only exception is creatinine, for which we

only kept one value every six hours to maintain the in-practice frequency.

4.3.1.2 Public EHR Data

The public data were extracted from the MIMIC-III [116]. We first identified all the

AKI patients by the presence of ICD-9 codes of 584.5 to 584.9, then we identified AKI-

D patients with the additional presence of ICD-9 procedure codes of 3995 as well as

diagnosis codes of V45.11 and V561 [117]. Applying the same cohort exclusion criteria

resulted in the MIMIC-III data with 170 AKI-D patients. Among them, 66 (39%)

died in the hospital and 104 (61%) survived. The temporal features of MIMIC-III

were the same as the UK data except for WBC and temperature, since neither of

them was available in the RRT duration. The average missing rate of the temporal

features was 49.4%. The same static features and status flags as those in the UK

data were included in the MIMIC-III data. In total, 19 features were included in the

MIMIC-III data. The same data extraction and outlier detection procedures were

conducted.
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4.3.1.3 Knowledge Map

The Human phenotype ontology (HPO) was used as the clinical knowledge map

to learn the concept embeddings. HPO, a widely used biomedical ontology, pro-

vides a standardized vocabulary of phenotypic abnormalities encountered in hu-

man disease [118]. Concepts in HPO are organized in hierarchies. Among the six

sub-hierarchies on the top level, we focused on the “Phenotypic abnormality” sub-

hierarchy since it includes most of the concepts of abnormalities related to the selected

features in this experiment. To represent the strength of the relations between any

two concepts, we counted the number of the common ancestors of the two concepts.

Due to the large number of unique descendants in the “Phenotypic abnormality” sub-

hierarchy (15,560), we computed the relations between every concept and “Acute Kid-

ney Injury” (HP:0001919) and 100 random selected concepts. Finally, we obtained

1,566,363 identical concept triplets (see definition in Section 4.2.2) from HPO, where

the number of common ancestors was considered as the relation strength between two

concepts.

4.3.1.4 Experimental Data Generation

From each patient’s EHR sequence during RRT, we randomly generated at most 30

subsequences with their lengths varying from 48 to 96 hours. For each subsequence

in the UK data, the possible class labels are whether the patient died (positive) or

survived (negative) 24, 48, or 72 hours after the end of that subsequence. For the

MIMIC-III data, the possible class labels of each subsequence are whether the patient

died (positive) or survived (negative) 48 or 72 hours after the end of that subsequence.

Note that due to the small study cohort size, the “24 hours” label was absent from

the MIMIC-III data. In summary, the UK data include 14,757, 15,468, and 16,660

subsequences labeled as negative (alive) and 3,455, 2,744, and 1,552 subsequences

labeled as positive (mortality) in the next 72, 48 and 24 hours respectively. For the
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Table 4.1: Training, validation and testing data at the subsequence level.

Proprietary EHR dataset
(UK data)

Public EHR data
(MIMIC-III)

In Next 72h In Next 48h In Next 24h In Next 72h In Next 48h
Alive Death Alive Death Alive Death Alive Death Alive Death

Train 12275 2643 12817 2101 13717 1201 2725 391 2831 285
Validation 1077 419 1147 349 1305 191 1281 211 1337 155
Test 1405 393 1504 294 1638 160 385 125 406 104

MIMIC-III data, 4,391 and 4,574 subsequences were labeled as negative (alive); 727

and 544 subsequences were labeled as positive (mortality) in the next 72 and 48,

respectively. The ratio between positive and negative ranged between 10% and 25%.

Table 4.1 showed the data used for training, validation, and testing. All the

subsequences of 50 randomly selected patients (25 died vs. 25 alive) were used for

validation. All the rest patient data were randomly split into training (90%) and

testing (10%).

The data split was patient-wise so that the subsequences from the same patient

only appeared in one of the three datasets.

4.4 Results

4.4.0.1 Concepts Embedding and Concepts Grouping

Figure 4.3 shows the HPO concepts matched to the temporal features in both patient

cohorts. These concepts were clustered into four groups based on the structure of the

“phenotypic abnormality” sub-hierarchy in HPO, which were “Abnormality of the

cardiovascular system (Cardiovascular)”, “Abnormality of metabolism/homeostasis

(Metabolism)”, “Abnormality of blood and blood-forming tissues (Blood)”, and “Ab-

normality of the respiratory system (Respiratory)”. Figure 4.3A shows the partial

hierarchical structure of HPO where colors indicate concept groups.

The concept embeddings for all the selected concepts were obtained by training the
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TransE model using all the HPO concept triplets. The resulting concept embeddings

were used to compute two types of pairwise distances, i.e., distances between any

two concept embedding groups and distances from the concept-of-interest “AKI” to

each concept embedding group. The concept-wise distances were visualized using

the t-SNE plot in Figure 4.3B. “Respiratory” is mostly related to “AKI” (averaged

distance 0.02), while “Cardiovascular” is the most distant from “AKI” (averaged

distance 0.98).

4.4.0.2 Performance Comparison

We compared KGDAL with various mortality rolling prediction models on both the

UK data and the MIMIC-III data. In addition, an ablation study was conducted

to test whether KGDAL’s KG-adjusted feature attentions were critical in mortality

rolling prediction by 1) only using the time attention mechanism, or 2) removing

from the loss the KG adjustment that minimizes the discrepancy between the pairwise

attention based distance and the pairwise KG-embedding distances. We compared all

A B

Figure 4.3: A: The partial hierarchical structure of the Human Phenotype Ontology
(HPO) that includes the following concepts. Colors indicate different concept groups
(Red: Acute Kidney injury (AKI); Orange: ”Cardiovascular”; Green: ”Metabolism”;
Blue: ”Blood”; Pink: ”Respiratory”. B: The similarities of the same selected features
in a projected space generated using t-SNE.
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the models’ performance on both the balanced and imbalanced test sets, the ratio of

positive samples (died) to negative samples (survived) are 1:1 and 1: 2, respectively.

By randomly sampling five times for each case, we reported the averaged performance

on all the evaluation metrics. All the compared models and their inputs are described

as following:

• Random Forest: The input to this model is the un-grouped temporal features

where each temporal feature at each time step is appended as a column, and

each static feature is a column. Column-wise mean imputation is used to fill

the missing values.

• Boosted Tree: We use Extreme Gradient Boosting (XGBoost) [12] as the

second baseline model. The input to this model is the same as Random Forest.

• LSTM: The input to a LSTM is the un-grouped temporal features and static

features concatenated at each time point.

• Transformer: The input to a Transformer is the same as LSTM. We use the

encoder part of the original transformer with a dense layer for the prediction

task.

• KGDALα: This KGDAL model only uses the time attention mechanism. By

removing feature attention, it explores the usefulness of the feature attention

mechanism. The inputs are the grouped (KG-guided) features.

• KGDALαβ: This KGDAL model uses both time attention and feature atten-

tion, but it removes the KG-adjusted attention and the KG-adjusted loss from

KGDAL. It explores the usefulness of the KG-adjusted attention mechanism.

The inputs are the grouped (KG-guided) features.

The performance of mortality rolling prediction in the next 72, 48, and 24 hours

on the UK data are listed in Table 4.2, Table 4.3, and Table 4.4 respectively. The
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performance of mortality rolling prediction in the next 72 and 48 hours on MIMIC-III

data are listed in Table 4.5 and Table 4.6 respectively. In all the tables, precision

(PREC), recall (REC), and F1 scores are for the positive (died) class.

As a baseline, a random model achieved ROCAUC 0.52, accuracy 0.52, precision

0.52, recall 0.51, and F1 0.52. The random forest model predicted that almost every

patient survived in all experiments. Its average performance on all experiments are

ROCAUC 0.50, accuracy 0.58, precision 0.25, recall 0.01 and F1 0.02. The XGBoost

model performed better than random forest. However, it is only slightly better than

the random model. The performance of deep learning models, including LSTM and

Transformer, performed significantly better than the compared traditional machine

learning models, indicating that for temporal data based rolling prediction, deep

learning models can better capture the critical temporal patterns, resulting in better

performance than that of traditional machine learning methods.

Table 4.2 and Table 4.3 show that KGDAL has the best performance on 72 and

48-hour rolling prediction on the UK data on almost all evaluation metrics on both

balanced and imbalanced test data. The second-best model is KGDALα followed by

KGDALαβ and Transformer. However, Table 4.4 shows that KGDALα outperformed

KGDAL on both the balanced and imbalanced test data for the 24-hour mortality

rolling prediction, even though KGDAL has the best recall. It suggests that for

Table 4.2: Performance of morality prediction in the next 72 hours during RRT (UK
data)

Npos : Nneg = 1 : 1 Npos : Nneg = 1 : 2

AUC ACC PREC REC F1 AUC ACC PREC REC F1
XGBoost 0.50 0.50 0.51 0.35 0.42 0.50 0.55 0.33 0.35 0.34
LSTM 0.62 0.61 0.60 0.67 0.63 0.63 0.60 0.44 0.67 0.53
Transformer 0.70 0.64 0.64 0.64 0.64 0.69 0.63 0.46 0.64 0.53
KGDALα 0.75 0.66 0.64 0.77 0.69 0.75 0.64 0.47 0.77 0.59
KGDALαβ 0.70 0.63 0.63 0.63 0.63 0.70 0.63 0.46 0.63 0.53
KGDAL 0.76 0.71 0.66 0.87 0.75 0.74 0.64 0.48 0.87 0.62
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Table 4.3: Performance of morality prediction in the next 48 hours during RRT (UK
Data)

Npos : Nneg = 1 : 1 Npos : Nneg = 1 : 2

AUC ACC PREC REC F1 AUC ACC PREC REC F1
XGBoost 0.50 0.49 0.49 0.35 0.41 0.50 0.55 0.33 0.35 0.34
LSTM 0.61 0.60 0.59 0.67 0.63 0.62 0.59 0.43 0.67 0.52
Transformer 0.69 0.63 0.62 0.66 0.64 0.70 0.63 0.46 0.66 0.54
KGDALα 0.74 0.67 0.63 0.80 0.70 0.75 0.63 0.47 0.80 0.59
KGDALαβ 0.70 0.64 0.63 0.66 0.64 0.72 0.64 0.47 0.66 0.55
KGDAL 0.73 0.68 0.63 0.88 0.74 0.74 0.63 0.47 0.88 0.61

Table 4.4: Performance of morality prediction in the next 24 hours during RRT (UK
Data)

Npos : Nneg = 1 : 1 Npos : Nneg = 1 : 2

AUC ACC PREC REC F1 AUC ACC PREC REC F1
XGBoost 0.50 0.51 0.51 0.37 0.43 0.50 0.55 0.34 0.37 0.35
LSTM 0.62 0.62 0.61 0.69 0.65 0.61 0.58 0.42 0.69 0.53
Transformer 0.72 0.65 0.64 0.71 0.67 0.71 0.63 0.46 0.71 0.56
KGDALα 0.78 0.71 0.66 0.89 0.76 0.78 0.65 0.49 0.89 0.63
KGDALαβ 0.75 0.68 0.66 0.76 0.71 0.75 0.65 0.48 0.76 0.59
KGDAL 0.75 0.70 0.64 0.94 0.76 0.75 0.62 0.47 0.94 0.62

Table 4.5: Performance of morality prediction in the next 72 hours during RRT
(MIMIC-III)

Npos : Nneg = 1 : 1 Npos : Nneg = 1 : 2

AUC ACC PREC REC F1 AUC ACC PREC REC F1
XGBoost 0.51 0.49 0.47 0.15 0.23 0.50 0.59 0.28 0.15 0.20
LSTM 0.70 0.64 0.80 0.38 0.52 0.69 0.72 0.65 0.38 0.48
Transformer 0.64 0.60 0.69 0.38 0.49 0.62 0.67 0.50 0.38 0.44
KGDALα 0.57 0.38 0.08 0.02 0.04 0.56 0.49 0.04 0.02 0.03
KGDALαβ 0.69 0.72 0.97 0.46 0.62 0.68 0.81 0.97 0.46 0.62
KGDAL 0.65 0.59 0.58 0.62 0.60 0.63 0.56 0.40 0.62 0.48
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Table 4.6: Performance of morality prediction in the next 48 hours during RRT
(MIMIC-III)

Npos : Nneg = 1 : 1 Npos : Nneg = 1 : 2

AUC ACC PREC REC F1 AUC ACC PREC REC F1
XGBoost 0.50 0.50 0.49 0.17 0.25 0.50 0.60 0.32 0.17 0.22
LSTM 0.71 0.64 0.79 0.38 0.52 0.70 0.71 0.61 0.38 0.47
Transformer 0.66 0.59 0.67 0.37 0.47 0.65 0.65 0.48 0.37 0.41
KGDALα 0.59 0.39 0.08 0.02 0.03 0.57 0.49 0.03 0.02 0.02
KGDALαβ 0.67 0.70 0.92 0.44 0.60 0.66 0.79 0.84 0.44 0.58
KGDAL 0.62 0.56 0.56 0.59 0.57 0.61 0.53 0.37 0.59 0.46

shorter prediction windows, the time attention mechanism has more contribution than

the feature attention mechanism with/without KG adjustment, and KG-adjusted

feature attention can improve the overall model performance slightly. In summary,

all the experiments on UK data show that the attention-based models including

Transformer, KGDALα , KGDALαβ, have better overall performance than LSTM,

indicating the attention per se is critical for rolling prediction tasks.

On the MIMIC-III data, KGDALαβ has the best overall performance for both 72

and 48-hour rolling mortality prediction. While LSTM has the highest ROCAUC and

KGDAL achieves better recall, KGDALαβ has higher scores on accuracy, precision,

and F1. Surprisingly, KGDALα, which is the second-best model on the UK data,

has the lowest performance among the three in all the experiments on the MIMIC-III

data. The performance of KGDALα on this experiment suggests that it is feature

attentions rather than time attentions that play the critical role in MIMIC-III rolling

mortality prediction.

In summary, we found that KGDAL’s time and feature attentions are essential

in rolling mortality prediction. While on one data, time attention is more impor-

tant; feature attention could dominate the model performance on another data. The

KG-guided grouping is crucial for all experiments and datasets. Nevertheless, other

factors, such as sample size or patient distribution, may also affect performance.
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Figure 4.4: Two risk trajectory clusters with different endings.

4.4.0.3 Mortality Risk Trajectory Analysis

A patient’s mortality risk trajectory is a series of predicted risks of all the subse-

quences of that patient ordered by time. An example trajectory is shown in Fig-

ure 4.5. Given all the mortality risk trajectories, we computed the pairwise trajec-

tory distances using dynamic time wrapping [119], and used hierarchical clustering

to identify similar risk trends among all the correctly predicted patients. Two tra-

jectory clusters shown in Figure 4.4 revealed multiple episodes of increasing risks for

non-survivors and quick decreasing risks for survivors. The trend-based analysis may

assist healthcare providers in making early decisions before the risk increases.

As a case study, we visualized the mortality risk trajectory of an AKI-D patient

in Figure 4.5. In the figure, the x-axis is the days before outcome event (survival

(end of follow-up) / mortality), the y-axis is the predicted risk of death, and the

risk scores range from 0 (survived) and 1 (died). Every blue point is the predicted

mortality risk from a subsequence of the same patient. All the points were fitted
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Figure 4.5: The risk trajectory of a survival patient.

Figure 4.6: An example of the KG-adjusted 2-D attentions.
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to a smooth curve using polynomial regression showing the trajectory of predicted

mortality risks. In the case study, the patient finally survived. However, the risk

score was not monotonically decreasing. Starting with a high risk, KGDAL predicted

that the risk was gradually decreased for 5 days. The risk trajectory then stayed

roughly at 50% for 10 days with mild fluctuations. Finally, the trajectory decreased

quickly in the last 5 days of RRT.

The corresponding KG-adjusted attentions are shown in Figure 4.6, where each

row represents the attentions of a feature group, each column is a time point (the

darker the color, the high the score). The risk trajectory aligned well with the KG-

adjusted attention. The attention hit three times the maximum in the early RRT

duration, indicating a high mortality risk at that time. The figure also reveals that

“Respiratory” and “Blood” had overall higher attentions than the other concept

groups. This is well-aligned with the observations in the knowledge graph that “Res-

piratory”, “Blood”, and “AKI” are closely related concepts. The high agreement

between the risk trajectory and the time and feature attentions suggests that the

attentions obtained from KGDAL may be useful to explain to clinicians the potential

risks and why the risk is high or low so that interventions can be taken in place timely.

4.5 Conclusion

In this chapter, we presented a novel model called KGDAL for rolling mortality pre-

diction for AKI-D patients. KGDAL uses a knowledge graph to guide the generation

of 2D attention in both time and feature spaces. KGDAL and its variations achieved

the best performance on both the UK data and the MIMIC-III data. Using a case

study, we demonstrated the interpretability of KGDAL and the capability of using

KGDAL for assisting timely decisions for clinicians.

Copyright© Jing (Lucas) Liu, 2023.
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CHAPTER 5. KIT-LSTM: Knowledge-guided Time-aware LSTM for

Continuous Risk Prediction for Acute Kidney Injury Patients Requiring

Dialysis

This chapter introduces our novel deep learning architecture to address the irregu-

larity, asynchronous, and interpretability concerns for temporal EHR data.

5.1 Introduction

Clinical risk prediction using Electronic Health Record (EHR) data provides accurate

and timely individualized patient outcomes, allowing early interventions for high-risk

patients and better-allocating hospital resources [120, 6]. It is particularly critical

to predicting risks for patients with Acute Kidney Injury requiring Dialysis (AKI-

D), a severe complication associated with a very high mortality rate for critically ill

patients [5, 121].

Artificial intelligence (AI), esp. deep learning (DL) models, have drawn increas-

ing attention to patients’ outcome predictions using temporal EHR data [25, 122].

However, due to complicated data collection procedures and strict data management,

EHR data are not generally AI-ready, which hinders the adaption of AI tools directly

in the clinical settings [123, 124, 125].

Firstly, EHR data are collected daily in hospitals for efficient patient care delivery

but are usually not in ideal shape for ML/DL models [25], with temporal irregu-

larity and asynchrony being the most common problems encountered when building

ML/DL applications in clinical settings [2, 126]. Irregularity refers to the uneven time

gaps between measurements of a single feature. Asynchrony refers to the unaligned

measurements across multiple features. Figure 5.1 shows an example of EHR data

with three clinical variables (SBP, HCT, and sCr) collected in the ICU. The green

and blue lines in HCT show irregular time gaps between the measurements of a single
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Figure 5.1: An example of real-world EHR data in the ICU. “SBP” stands for systolic
blood pressure, “HCT” for Hematocrit, and “sCr” for serum creatinine. Arrows
highlight irregular and asynchronous gaps between measurements.

clinical parameter, while the three green lines in SBP, HCT, and sCr show unaligned

observations across the three clinical variables with different measurements frequency.

Early DL methods ignore the irregularity and asynchrony problem. For example,

the standard LSTM [16] assumes equal temporal gaps between time steps, and the

original Transformer [15] uses absolute positions encoding. Recent LSTM variants

have been focused on addressing the irregularity problem. T-LSTM [127] considered

time elapse between patients’ visits. Phased-LSTM [128] introduced a time gate in

the LSTM cell to update cell states and hidden states only if the time gate is open.

Nevertheless, most of the existing LSTM models still ignore the asynchrony problem,

as illustrated in Figure 5.1. With recurrent neural networks (RNN), the irregularity

and asynchrony problems have been addressed using missingness patterns and time

elapsed between measurements. The GRU-D model updates GRU cells using missing

patterns and decayed input/hidden state according to the elapsed time [129]. The

BRITS model estimates missing values by introducing a complement input variable in

the RNN unit when the variable is missing and also uses the hidden time decayed state
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of the RNN unit [130]. However, the missingness patterns are not always informative

and are challenging to interpret.

Secondly, the accountability of DL models in terms of model interpretation in

healthcare practice is critical for clinicians to make decisions based on the model

results and rationale [22]. Model-agnostic methods, such as LIME [47] and SHAP [48],

support the interpretation of any ML/DL method in a post-hoc fashion. Nevertheless,

using these methods needs an extra and separate step to training the actual ML/DL

models. Self-interpretable DL models such as RETAIN [55] use two-level attention

scores for model interpretation, but cannot address the irregularity and asynchrony

problem in EHR. ATTAIN [131] builds time-wise attention based on all/some previous

cell states of LSTM plus a time-aware decay function for resolving the irregular time

gaps issues. The trade-off between interpretability and prediction power invokes the

development of self-interpretable ML/DL models without sacrificing prediction power,

promoting a better adoption in routine uses in practical healthcare settings [23].

Another model interpretation approach uses domain-specific knowledge encoded

in medical or biological ontologies databases as prior knowledge [59]. A knowledge-

driven ML model that utilizes ontologies databases may gain better interpretation

and potentially higher prediction power [66, 25]. Recent studies [64, 65, 63] have

incorporated medical knowledge graphs into medical applications using translation-

based graph embeddings methods [61, 132]. Moreover, medical knowledge-graph-

based attention models such as GRAM [66], DG-RNN [67], and KGDAL [133] have

demonstrated comparable performance as well as the power of result interpretation.

Nevertheless, these methods do not embed knowledge for numerical features and lack

a mechanism for handling irregular and asynchronous EHR data.

In this article, we present a Knowledge guIded Time-aware LSTM model (KIT-

LSTM), which handles irregular and asynchronous time series EHR data, and uses

medical ontology to guide the attention between multiple numerical clinical variables,
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and provides knowledge-based model interpretation.

KIT-LSTM extends LSTM with two time-aware gates and a knowledge-aware

gate. The time-aware gates adjust the memory content according to two types of

elapsed time, i.e., the elapsed time since the last visit for all variable streams and the

elapsed time since the last measured values for each variable stream. The knowledge-

aware gate uses medical ontology to guide attention between multiple numerical vari-

ables at each time step. To the best of our knowledge, KIT-LSTM is the first LSTM

variant that incorporates medical ontology with the addition of two time-aware gates

to guide the attention mechanism inside the LSTM cell. As a result, the proposed

model provides better guidance for attention and interpretation and handles both

irregular and asynchronous problems simultaneously. Our contributions are summa-

rized as follows:

1) KIT-LSTM adds to the original LSTM cell two unique time-aware gates. The

time-ware gates adjust different proportions of the LSTM cell memory contents, which

address irregularity and asynchrony.

2) KIT-LSTM adds to the original LSTM cell a knowledge-aware gate. It uses the

relationship between concepts learned from medical ontology to guide attention be-

tween multiple variables at each time step, and the loss function enforces the learned

attention aligned with the medical ontology, enabling knowledge-based model inter-

pretation.

3) Using EHR data, KIT-LSTM continuously and accurately predicts mortality

risks in the next 24 hours for critically ill AKI-D patients in the ICU.

4) KIT-LSTM shows high robustness in subpopulation distribution shift.
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5.2 Method

5.2.1 Notations

EHR features: A patient’s EHR data at time step t can be represented as a vector

of clinical parameters (e.g., heart rate) denoted as xt ∈ RNf , where Nf is the number

of features.

Time-related features: ∆t ∈ R denotes the time elapsed since the last time step,

and ∆′
t ∈ RNf denotes the time elapsed since the last measured value of the same

feature. The value of ∆′
t for each feature can be different since features are possibly

measured at different frequencies.

Knowledge-related features: We use Human Phenotype Ontology (HPO) [115]

as the prior knowledge to guide the model learning process. We extract ontology

concepts related to the selected clinical features and call them feature concepts (e.g.,

“elevated systolic blood pressure” (HP:0004421) is a concept related to systolic blood

pressure in HPO). In addition, we extract a concept related to the study population,

i.e., “acute kidney injury” (HP:0001919), which is called the target concept. The total

number of ontology concepts is No + 1, where No is the number of feature concepts.

Note that No is not the same as the number of features Nf because some features

can be mapped to more than one related ontology concept, and some can only be

mapped to one. All concepts are encoded as one-hot vectors as the initial embeddings

denoted as O ∈ R(No+1)×(No+1).

Based on the feature values and the ontology concepts at time step t, we extract

the physiological status denoted as pt ∈ RNo . The value of pt for each concept is

either 0 or 1. For example, pt = 1 for the concept “high systolic blood pressure”

means patient systolic blood pressure is greater than 130. Thresholds of all features

are defined based on clinical practice and are validated by clinicians.
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Figure 5.2: The architecture of KIT-LSTM cell (left), orange represents the unique
gates in KIT-LSTM, and green represents the original gates in LSTM. The prediction
layers (right) combine all the hidden states learned from KIT-LSTM and the static
features, such as patient demographics, for the final prediction.

5.2.2 KIT-LSTM Cell

The architecture of KIT-cell is illustrated in Figure 5.2. The input to a KIT-LSTM

cell consists of five components: clinical feature xt, elapsed time ∆t since last time

step, elapsed time ∆′
t since the last measured values, physiological status pt, and

initial concept embedding O.

KIT-LSTM kept the original three gates (forget, input, output) from LSTM and

added three additional gates (two time-aware gates and one knowledge-aware gate).

The first time gate, the long-term time-aware gate, is a time decay function that

adjusts long-term memory by using the elapsed time since the last measured value of

the same clinical parameter. For example, the green and blue arrows in Figure 5.1 for

the “HCT” indicate that the previous memory will be more likely to be discounted

when the green arrow ends (t1) than the time when the blue arrow ends (t2).

The second time gate, the short-term time-aware gate, is a time decay function

to adjust short-term memory. It is measures the elapsed time since the last time step

(e.g, t1 − t0 in Figure 5.1), similar to the time decay function in T-LSTM [127].

The long and short time-aware gates control how the previous short or long-term

memories can be passed into the current memory. Intuitively, the longer the elapsed
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times, the less likely the long or short-term memory gate will open.

The knowledge-aware gate uses concepts embeddings and physiological features

to control which feature should be paid more attention to at each time step. In-

tuitively, if the physiological status is abnormal and there is a strong relationship

between a feature concept and the target concept, more attention will be paid to the

corresponding feature.

Gate update: We denoted the forget gate as ft, the input gate as it, the output

gate as ot, the time-aware gates as gt and g′
t, and the knowledge-aware gate as kt,

where ft, it,ot,gt,g
′
t,kt ∈ Rm, m is the dimension of the hidden vectors, and t is

the time step. The short-term time-aware gate gt is updated by the elapsed time

since the last time step, and the long-term time-aware gate g′
t is updated by the

elapsed time since last measured value for each feature. The knowledge-aware gate

kt is updated by the attention scores αt ∈ RNo learned from the concept embeddings

as well as physiological status pt. Gates at time step t are: 1

gt = σ(1/∆t) (5.1)

g′
t = σ(Wg(1/σ(∆

′
t)) + bg) (5.2)

kt = σ(Wkαt + bk) (5.3)

ft = σ(Wfxt +Ufht−1 + bf ) (5.4)

it = σ(Wixt +Uiht−1 + bi) (5.5)

ot = σ(Woxt +Uoht−1 + bo) (5.6)

where Wg ∈ Rm×Nf , Wk ∈ Rm×No , Wf ,Wi,Wo ∈ Rm×Nf , Uf ,Ui,Uo ∈ Rm×m, and

bg,bk,bf ,bi,bo ∈ Rm are the learnable parameters. σ is a sigmoid function.

1∆t is repeated for every hidden dimension, thus ∆t ∈ Rm
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The attention score αt for each physiological feature at time t is computed using:

αt = softmax(βt) (5.7)

βt = et ⊙ pt (5.8)

e′t = OWe + be (5.9)

where We ∈ R(No+1) and be ∈ R(No+1) are the learnable parameters; and e′t ∈

R(No+1) is the learned concepts embedding from initial embeddings O using a linear

function including the feature concepts embeddings et ∈ RNo and the target concept

embedding denoted as etarget ∈ R. Note that etarget is not shown in above equation,

but will be used in loss regularization described in Section 5.2.3.

Memory cell update: Following the definition in T-LSTM [127], we extracted

the short and long-term memory from the previous memory cell Ct−1 ∈ Rm, denoted

as CS
t−1 ∈ Rm and CL

t−1 ∈ Rm respectively. Then, the short- and long-term mem-

ory are adjusted separately by their corresponding time-aware gates gt and g′
t. In

particular, the short-term memory is discounted by the elapsed time since last time

step, and the long-term memory is discounted by the elapsed time since last mea-

sured values. We denote the discounted short-term and long-term memory cell as

CDS
t−1 ∈ Rm and CDL

t−1 ∈ Rm respectively. Finally, the total adjusted previous memory

cell denoted as C⋆
t−1 ∈ Rm is the sum of all the discounted short- and long-term

memories. Memory cells are computed as:

CS
t−1 = tanh(WdCt−1 + bd) (5.10)

CL
t−1 = Ct−1 −CS

t−1 (5.11)

CDS
t−1 = CS

t−1 ⊙ gt (5.12)

CDL
t−1 = CL

t−1 ⊙ g′
t (5.13)

C⋆
t−1 = CDL

t−1 +CDS
t−1 (5.14)

where Wd ∈ Rm×m, bd ∈ Rm are the learnable parameters, and ⊙ is the Hadamard

product.
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Candidates memory cells: While the original feature candidate cell, denoted

as C̃t, computed from the feature value xt and the previous hidden state ht, a new

candidate cell is added, denoted as C̃p
t , which also considers the physiological status

pt. Candidate memory cells can be computed using:

C̃t = tanh(Wcxt +Ucht−1 + bc) (5.15)

C̃p
t = tanh(Vppt +Wpxt +Upht−1 + bp) (5.16)

where Wc,Wp ∈ Rm×Nf , Vp ∈ Rm×No , Uc,Up ∈ Rm×m, and bc,bp,∈ Rm are the

learnable parameters.

Current memory cell and hidden state: Ct ∈ Rm and ht ∈ Rm represent

the current memory cell and its corresponding hidden state. Ct is a combination of

adjusted previous memory C⋆
t−1 multiplied by the forget gate, the feature candidate

memory multiplied by the input gate, and the physiological candidates memory mul-

tiplied by the knowledge-aware gate. The current cell and hidden state are computed

using:

Ct = ft ⊙C⋆
t−1 + it ⊙ C̃t + kt ⊙ C̃p

t (5.17)

ht = ot ⊙ tanh(ct) (5.18)

5.2.3 Patient Outcome Prediction

Prediction layer: All the hidden states ht are concatenated and passed into a

pooling layer for taking the sum/max along time steps. The resulting hidden rep-

resentation is denoted as r ∈ Rm. Then the static features (e.g, demographics) are

concatenated with r followed by a fully connected layer with a sigmoid function for

the binary prediction. The process of final prediction is shown in Figure 5.2.

Loss function: Let the ground truth label be y and the predicted label be ŷ, we

use the binary cross entropy as the part of the final prediction loss denoted as Lpred.

Inspired by a knowledge graph guided model KGDAL [133], where a regularization
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term is employed to consolidate the concept relations from medical ontology into

attentions, we add a similar regularization term to ensure the relationship between

the learned feature concept embeddings e and the target concept embedding etarget

aligns to the observed relations in a medical ontology. Thus, the regularization term

counts the discrepancy at the knowledge level, i.e. the difference between the learned

concept embedding distance and the corresponding concept distance in a medical

ontology. The regularization term Lreg, cross entropy loss Lpred, and final prediction

loss L are:

L = Lpred + Lreg (5.19)

Lpred =
Ns∑
i=1

−(yi log(ŷi) + (1− yi) log(1− ŷi)) (5.20)

Lreg =
No∑
i=1

(distOi − distLi )
2 (5.21)

distLi =
√

(ei − etarget)2 (5.22)

where Ns is the total number of samples. distLi represents the distance between

feature concept embedding i and the target embedding; similarly, distOi represents the

distance between feature concepts i and the target concept in the medical ontology.

The observed distance can be obtained directly from the ontology graph by computing

node-based distances, or it can be obtained from the pre-trained initial embedding

using graph embedding methods [61].

The source code of KIT-LSTM is available at:

https://github.com/lucasliu0928/KITLSTM.

5.3 Experiment Settings

The experiment aims to continuously predict AKI-D patients’ mortality risk in their

dialysis/renal replacement therapy (RRT) duration. More specifically, given any pe-
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Table 5.1: Training,Validation and Testing Data.

Total
N Samples
(Patient)

Alive
N Samples
(Patient)

Death
in the next 24h

N Samples
(Patient)

Negative to
Positive

Ratio (Patient)

Train (75% of patients) 9979 (432) 8843 (424) 1136 (125) 8:1 (3:1)
Validation (5% of patients) 642 (24) 586 (24) 56 (6) 10:1 (6:1)
Test (20 % of patients) 2712 (114) 2448 (113) 264 (25) 9 :1 (5:1)

riod of EHR in dialysis duration before time T , we will continuously predict the

mortality risk at T + 24, i.e., 24 hours after T .

5.3.1 Experiment Data

Patient cohort: The study population consists of 570 AKI-D adult patients admit-

ted to ICU at the University of Kentucky Albert B. Chandler Hospital from January

2009 to October 2019. Among them, 237 (41.6%) died in hospital, and 333 (58.4%)

survived. Patients were excluded if they were diagnosed with end-stage kidney dis-

ease (ESKD) before or at the time of hospital admission, were recipients of a kidney

transplant, or had RRT less than 72 or greater than 2,000 hours.

EHR data: Data features include twelve temporal features (systolic blood pres-

sure, diastolic blood pressure, serum creatinine, bicarbonate, hematocrit, potassium,

bilirubin, sodium, temperature, white blood cells (WBC) count, heart rate, and res-

piratory rate) and six static features (age, race, gender, admission weight, body mass

index (BMI), and Charlson comorbidity score). All outliers greater than 97.5 or

lower than 2.5 percentile were excluded. Measurement frequencies vary dramatically,

ranging from 0.2 to 21.7 observations per day.

Sample generation: To continuously predict patient’s mortality risks, we gen-

erate 30 samples from each patient’s EHR data with a random start and end time as

long as the length of the sample is greater than 10 time steps where a time step refers

to the time when any feature has a value. The class label of a sample is whether the
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patient died (positive) or survived (negative) in the next 24 hours from the end of

the sample.

Obvious negative sample exclusion: The negative to the positive ratio in the

data is 10:1 at the sample level. In such cases, ML models may be biased to the

negative, resulting in so-called “good” performance. Hence, we excluded “obvious

negative samples” from EHR, allowing models to focus on the more difficult cases

and better balance positives and negatives in model training. This process is applied

to all the compared methods to ensure fair performance comparison. The process

is described as follows: 1) apply PCA [134] on the average, minimum or maximum

values of all temporal and static features; 2) For each sample, compute the weighted

sum of the top seven features using the squared correlation (contribution score) to

the first principal component as weights; 3) determine obvious negative samples using

the distribution of the weighted sum values. In total, 4,563 (or 25%) obvious negative

samples were identified and excluded.

Training, validation and testing data: From 570 AKI-D patients, 13,333 EHR

samples were extracted, including 1,456 positives and 11,877 negatives. As shown in

Table 5.1, the data were split into training (75%), validation (5%), and testing data

(20%) patient-wise to ensure that the samples from the same patients only appeared

in one of the three datasets.

5.3.2 Baseline Algorithms

We compared KIT-LSTM with eight existing algorithms, including two traditional

ML algorithms (XGBoost and SVM) and six DL models (LSTM, T-LSTM, Phased-

LSTM, RETAIN, ATTAIN, and Transformer). For all DL models, static features

are concatenated with the hidden states before the prediction layer, as described in

Section 5.2.3. Moreover, all missing temporal features are imputed with the last

observation carried forward (LOCF) method.
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Figure 5.3: Identified subpopulation using hierarchical clustering. In the clustering
dendrogram (left), the horizontal lines show two different levels of subpopulations.
The resulting subpopulations at level two (right) are shown on a three-dimensional
t-SNE space.

Table 5.2: Overall Performance of KIT-LSTM and seven compared algorithms on
balanced test sets

Balanced Test (Pos:Neg = 1:1)
ROCAUC ACC F-1 F-3 Recall Precision

XGBoost 0.55 0.55 0.18 0.11 0.10 0.96
SVM 0.63 0.59 0.58 0.57 0.56 0.59
LSTM 0.66 0.64 0.56 0.48 0.46 0.72
Transformer 0.70 0.59 0.39 0.28 0.26 0.79
T-LSTM 0.70 0.63 0.55 0.47 0.46 0.70
Phased-LSTM 0.65 0.65 0.56 0.47 0.45 0.74
RETAIN 0.68 0.64 0.54 0.44 0.42 0.74
ATTAIN 0.60 0.55 0.39 0.30 0.28 0.61
KIT-LSTM (Ours) 0.72 0.64 0.62 0.58 0.58 0.67

5.3.3 Model Robustness Evaluation Metric

Robustness is one of the most important performance metrics for clinical applications,

which can be assessed using the subpopulation distribution shift approach [135, 136].

First, patient subpopulations were identified using demographics and comorbidity

in EHR. Second, subpopulations at different levels of granularity were obtained us-

ing hierarchical clustering and applying thresholds at the dendrogram. Third, the

clustering dendrogram and the corresponding t-SNE plot of subpopulations were vi-

sualized to identify distinct subpopulations. Figure 5.3 shows four subpopulations at
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Table 5.3: Overall Performance of KIT-LSTM and seven compared algorithms on
imbalance test sets

Imbalanced Test (Pos:Neg = 1:9)
ROCAUC ACC F-1 F-3 Recall Precision

XGBoost 0.55 0.91 0.17 0.11 0.10 0.65
SVM 0.66 0.67 0.25 0.45 0.56 0.16
LSTM 0.67 0.80 0.31 0.42 0.46 0.24
Transformer 0.70 0.87 0.28 0.26 0.26 0.30
T-LSTM 0.70 0.77 0.28 0.41 0.46 0.20
Phased-LSTM 0.66 0.82 0.33 0.42 0.45 0.26
RETAIN 0.67 0.80 0.29 0.39 0.42 0.23
ATTAIN 0.58 0.76 0.19 0.26 0.28 0.14
KIT-LSTM (Ours) 0.71 0.71 0.28 0.47 0.58 0.18

Table 5.4: Balanced performance of KIT-LSTM and seven compared algorithms on
multiple subpopulation levels (pos:neg = 1:1).

Subpopulation level 1 Subpopulation level 2 Subpopulation level 5
ROCAUC ACC F-3 ROCAUC ACC F-3 ROCAUC ACC F-3

XGBoost 0.54(0.04) 0.55(0.07) 0.09(0.09) 0.54(0.06) 0.56(0.07) 0.09(0.13) 0.52(0.08) 0.47(0.17) 0.06(0.16)
SVM 0.61(0.04) 0.59(0.03) 0.54(0.15) 0.61(0.16) 0.59(0.12) 0.53(0.20) 0.57(0.30) 0.56(0.22) 0.56(0.36)
LSTM 0.63(0.15) 0.64(0.06) 0.43(0.24) 0.63(0.14) 0.64(0.06) 0.42(0.26) 0.65(0.19) 0.62(0.18) 0.43(0.37)
Transformer 0.67(0.11) 0.59(0.01) 0.24(0.18) 0.68(0.08) 0.59(0.07) 0.23(0.18) 0.65(0.18) 0.55(0.18) 0.23(0.29)
T-LSTM 0.67(0.14) 0.63(0.07) 0.41(0.28) 0.66(0.13) 0.62(0.07) 0.41(0.28) 0.64(0.22) 0.62(0.19) 0.47(0.34)
Phased-LSTM 0.61(0.20) 0.64(0.08) 0.41(0.30) 0.60(0.23) 0.64(0.08) 0.40(0.30) 0.63(0.25) 0.61(0.18) 0.42(0.36)
RETAIN 0.64(0.18) 0.63(0.05) 0.39(0.23) 0.64(0.19) 0.63(0.08) 0.39(0.26) 0.64(0.24) 0.60(0.14) 0.38(0.30)
ATTAIN 0.58(0.11) 0.55(0.01) 0.27(0.15) 0.58(0.15) 0.55(0.03) 0.27(0.15) 0.60(0.20) 0.53(0.21) 0.29(0.32)
KIT-LSTM
(Ours) 0.70(0.10)0.64(0.08)0.54(0.23)0.69(0.13)0.64(0.09)0.53(0.23)0.66(0.15)0.62(0.16) 0.55(0.28)

the second level (green) of dendrogram have distinctly different distributions.

Table 5.5: Imbalanced performance of KIT-LSTM and compared algorithms on mul-
tiple subpopulation levels (pos:neg = 1:9).

Subpopulation level 1 Subpopulation level 2 Subpopulation level 5
ROCAUC F-3 ROCAUC F-3 ROCAUC F-3

XGBoost 0.54(0.04) 0.09(0.08) 0.54(0.06) 0.09(0.13) 0.52(0.07) 0.06(0.16)
SVM 0.64(0.04) 0.43(0.14) 0.63(0.15) 0.42(0.18) 0.63(0.26) 0.46(0.32)
LSTM 0.64(0.14) 0.38(0.22) 0.63(0.13) 0.37(0.24) 0.65(0.22) 0.38(0.33)
Transformer 0.68(0.09) 0.22(0.17) 0.69(0.08) 0.22(0.17) 0.63(0.22) 0.22(0.29)
T-LSTM 0.67(0.12) 0.36(0.25) 0.67(0.12) 0.35(0.24) 0.64(0.23) 0.42(0.31)
Phased-LSTM 0.62(0.20) 0.37(0.27) 0.61(0.22) 0.35(0.28) 0.63(0.28) 0.38(0.34)
RETAIN 0.63(0.18) 0.35(0.21) 0.63(0.19) 0.34(0.23) 0.63(0.26) 0.35(0.28)
ATTAIN 0.56(0.11) 0.24(0.14) 0.55(0.13) 0.23(0.14) 0.60(0.20) 0.26(0.31)
KIT-LSTM (Ours) 0.69(0.08) 0.44(0.20) 0.69(0.12) 0.43(0.20) 0.64(0.17) 0.47(0.26)
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5.4 Results

Table 5.2, 5.3 show the overall performance on both balanced and imbalanced test

data (pos: neg ratio being 1:1 and 1:9) of our proposed model KIT-LSTM compared

with other baseline models. KIT-LSTM has the best overall performance with the

highest ROCAUC, F-3, and recall on both test data and the highest F1 on balanced

data. The traditional ML method XGBoost has the highest precision on both test

data and the highest accuracy on the imbalanced test data, but the scores on all other

metrics are the lowest.

To assess model robustness using subpopulation shift, we measured performance

variability across subpopulations at different levels of granularity. The performance

on both balanced and imbalanced test data are shown in Table 5.4 and Table 5.5

respectively, the scores are shown in average and standard deviation (in parentheses).

Table 5.4 and Table 5.5 show that overall KIT-LSTM outperforms all the com-

pared methods on almost all tested subpopulations on all evaluation metrics. SVM

has the same highest F-3 as KIT-LSTM on the balanced test data at level 1 and 2,

but the ROCAUC of SVM is at the lower end at all levels. LSTM has the highest

ROCAUC on the unbalanced data at level 5, but its F-3 on the same data is moderate.

Table 5.4 and Table 5.5 show that the tested DL methods (except for ATTAIN)

outperformed the traditional ML methods XGBoost and SVM on almost all met-

rics. ATTAIN has the second worst performance on balanced and unbalanced data.

Phased-LSTM and RETAIN have moderate performance. Phased-LSTM has compa-

rable accuracy on the balanced data, but its ROCAUC is on the lower end. Trans-

former and T-LSTM are the most competitive methods as they performed the second

or third to the best on ROCAUC for all different subpopulations on both balanced

and imbalanced test data. Table 5.5 shows that Transformer has the same highest

ROCAUC score as KIT-LSTM at level 2 subpopulation on the imbalanced data, but

its F-3 score is at the lower end. T-LSTM maintained comparable performance on
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Figure 5.4: Attention scores for two samples of one patient. RR: respiratory rate;
DBP: diastolic blood pressure; ATT: represents attention scores.

all datasets, which we considered the second-best model after KIT-LSTM.

Regarding the model robustness, we compared the variation of ROCAUC scores

on subpopulations within a single level. XGBoost has the lowest standard deviation

at all three subpopulation levels. Nevertheless, the average ROCAUC scores are lower

than KIT-LSTM. On the other hand, KIT-LSTM has the best performance where its

average ROCAUC scores are the highest, and the standard deviation of ROCAUC is

the second- or the third-smallest at all three subpopulations levels.

Table 5.6: Ablation study: Performance of KIT-LSTM variants on balanced data at
level 1, 2 and 5 subpopulations.

Level 1 Level 2 Level 5
ROCAUC ACC F-3 ROCAUC ACC F-3 ROCAUC ACC F-3

KIT−kp 0.65(0.15) 0.63(0.06) 0.44(0.26) 0.65(0.16) 0.63(0.06) 0.43(0.28) 0.62(0.24) 0.60(0.17) 0.40(0.37)
KIT−kt 0.60(0.16) 0.59(0.05) 0.48(0.22) 0.59(0.21) 0.58(0.07) 0.47(0.22) 0.56(0.25) 0.56(0.19) 0.45(0.34)
KIT−k 0.65(0.17) 0.62(0.06) 0.37(0.27) 0.65(0.17) 0.61(0.08) 0.36(0.27) 0.64(0.19) 0.59(0.16) 0.40(0.33)
KIT-LSTM0.70(0.10)0.64(0.08)0.54(0.23)0.69(0.13)0.64(0.09)0.53(0.23)0.66(0.15)0.62(0.16)0.55(0.28)
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5.4.1 Ablation Study

We conducted an ablation study to test how each component of KIT-LSTM performed

by removing several components of KIT-LSTM. The variants are:

KIT−k: remove knowledge-aware gate kt while keeping two time-aware gates and

physiological status pt.

KIT−kp: remove knowledge-aware gate kt and physiological status pt while keeping

the two time-aware gates.

KIT−kt: remove knowledge-aware gate kt and two time aware gates while keeping

physiological status features.

Table 5.6 shows that KIT−kt without any time-aware gates or knowledge-aware

gates has the lowest performance, whereas models maintained time-aware gates (KIT−kp

and KIT−k) had better performance. The lower performance of KIT−kt and KIT−k

indicates that the physiological status itself is not adequate for enhancing model pre-

diction power, no matter whether it is added alone (KIT−kt) or added with time-aware

gates (KIT−k).

KIT-LSTM has the best performance for all subpopulations. Especially, the F-3

scores are 6-17% higher than the models in the ablation study, indicating that the two

time-aware gates and the knowledge-aware gate substantially improve the prediction

power. In particular, when comparing KIT-LSTM with the latest baseline methods

T-LSTM and ATTAIN that also used a time-aware gate, KIT-LSTM has better

performance, indicating that both the long-term time-aware gate and the knowledge-

aware gate play an essential role.

5.4.2 Model Validation and Interpretation

Four survived and three dead cases were randomly selected for clinical validation. Two

experienced clinicians reviewed the patient records independently while the predicted

risk and true label were blinded in the validation process. For the dead cases, KIT-
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LSTM predicts them all with high risk, whereas the clinicians underestimate the risk

for one case. For the survived cases, KIT-LSTM overestimate three case, while the

clinicians overestimate one case. The results suggest that KIT-LSTM has a higher

recall than precision. In clinical settings, higher recall is more important than higher

precision. In this case, the high-risk patient correctly predicted by KIT-LSTM but

underestimated by clinicians could cause severe clinical problems.

Attention scores αt obtained at each time step are used to interpret the behavior

of KIT-LSTM. Figure 5.4 illustrates the attention scores obtained from two adja-

cent samples of one patient. Case “SP12” with a low risk is predicted correctly by

KIT-LSTM and clinician. Another case “SP2” has a relatively higher risk predicted

by both KIT-LSTM and clinician. The figure shows that the attention scores for

respiratory rate (RR) are high for almost all time for both SP12 and SP2, but the

interpretation of attention should be different considering the opposite predicted out-

come.For example, for the low-risk patient SP12, most of the RR values are steady

within a mid-high normal range of 15-22 breaths per minute. Thus, the corresponding

attention scores suggests that these values highly contributed to the low-risk predic-

tion. For high-risk patient SP2, the RR values are relatively less steady than SP12.

There are more lower-end values (before 10 hours) and more higher-end values (be-

tween 20 and 40 hours). Thus, the attention scores suggest these values contributed

more towards high risk. For diastolic blood pressure (DBP), both attention scores

and feature values show a bump along the time. However, the bump that happened

earlier (far way from the prediction window) for SP12 contributes to lower risk pre-

diction, and the bump that happened later (Closer to the prediction window) for SP2

contributions to a higher risk prediction. With both the trajectories and the attention

scores, KIT-LSTM can assist clinicians in making better and timely decisions.
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5.5 Conclusion

In this chapter, we presented KIT-LSTM, a new LSTM variant that uses two time-

aware gates to address irregular and asynchronous problems in multi-variable tem-

poral EHR data and uses a knowledge-aware gate to infuse medical knowledge for

better prediction and interpretations. Experiments on real-world healthcare data

demonstrated that KIT-LSTM outperforms the state-of-art ML methods on contin-

uous mortality risk prediction for critically ill AKI-D patients.

Copyright© Jing (Lucas) Liu, 2023.
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CHAPTER 6. MTATE: Unbiased Representation of Electronic Health

Records for Patient Outcome Prediction

This chapter introduces our novel unbiased deep learning model named MTATE for

fairness concerns for mortality prediction using EHR data.

6.1 Introduction

The focus on building trustworthy artificial intelligence (AI) models has increased

emphasis on fairness, as it has become a crucial problem in various applications,

especially healthcare [137]. The lack of attention to fairness can result in severely

negative consequences, where certain patient groups are given unfair advantages while

others are inequitably overlooked. The failure to address the fairness problem not

only undermines the trust and integrity of AI models but also perpetuates societal

biases and inequalities [138, 139].

Fairness in healthcare AI refers to a model’s ability to make a prediction or de-

cision without bias against any individual or patient group [69]. Bias in a model

manifests in two forms: performance disparities (performing significantly better in

certain populations than others) [70], and inequitable decisions (making inequities

decisions towards different groups) [71]. Clinical decision-making based upon biased

predictions may cause delayed treatment plans for patients in minority groups or mis-

spend healthcare resources where treatment is unnecessary [72]. Several recent studies

have suggested that the implementation of a fair clinical risk prediction tool based

on temporal Electronic Health Records (EHR) could significantly improve clinical

decision-making and optimize hospital resource allocation, particularly for patients

who are classified as high-risk [140, 141]. By leveraging the power of machine learning

(ML) and deep learning (DL) to analyze temporal EHR data, clinicians can identify

high-risk patients and provide timely interventions to improve their outcomes.
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Healthcare AI models could exhibit bias due to the data distribution shift prob-

lem, in which the model performance varies across different domains [73]. Domain

adaptation methods seek to address this issue by learning hidden features that are

invariant across domains. Pioneering models [74, 142, 78] use a domain classifier and

a gradient reversal layer to induce domain-invariant feature representations. More

recent work [143] aims to consolidate invariant globally-shared representations across

domains. However, aligning large and complex domain shifts remains challenging.

Another approach to addressing the data distribution shift problem is domain-specific

bias correction. Recent research suggests that certain features may be subpopulation-

specific and, therefore, unique to each domain [144]. Multi-task learning, double-

prioritized bias correction, and clustering algorithms have also been leveraged to

generate patient representations with similar backgrounds [145, 146, 147, 148]. Both

approaches, domain adaptation and domain-specific bias correction, rely on different

assumptions about the relationship between latent representation and prediction out-

come. The effectiveness of domain-invariant versus domain-specific representations

for a given prediction task is currently unclear. See details in Background Section.

To address the fairness issue in healthcare AI, we propose an adaptive multi-task

learning algorithm named MTATE (Masked Triple Attention Transformer Encoder)

that can automatically learn and select the optimal and fair data representations.

Unlike other approaches that require the explicit selection of either domain adapta-

tion or domain-specific bias correction, MTATE generates common representations

where invariant and domain-specific representations are special cases where one of

the approaches dominates the data representation. The purpose of MTATE is to

generate multiple masked representations of the same data that are attended by both

time-wise attention and multiple feature-wise attention. Each masked representation

corresponds to a specific domain classification task, for instance, breaking the patient

cohort into subpopulations based on race or gender. The learned EHR representa-
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tions could be domain-specific, domain-invariant, or a mix of the two, as reflected

by the domain classification loss values. Specifically, a low loss value indicates the

representation is domain-specific, and a high loss value indicates that it is domain-

invariant. The model computes the representation-wise attention for each individual

testing case, leading to personalized data representation for downstream predictive

tasks. The overall framework of MTATE is shown in Figure 6.1. Our primary objec-

tive is to learn an unbiased representation that can facilitate fair and accurate patient

outcome predictions in real-world healthcare settings.

To demonstrate the effectiveness of MTATE, we will focus on two challenging risk

prediction tasks, i.e., rolling mortality prediction and in-hospital mortality prediction.

The first task is rolling mortality prediction for patients with Acute Kidney Injury

requiring Dialysis (AKI-D), a severe complication for critically ill patients with a high

in-hospital mortality rate [149]. This task is particularly challenging due to the com-

plexity of subphenotypes and treatment exposures [150, 151]. There is an urgent need

to develop actionable approaches to account for patient backgrounds and subpopu-

lations for personalized medicine and improve patient-centered outcomes [152]. The

second task is in-hospital mortality prediction for general ICU patients, which is one

of the primary clinical outcomes of interest for ICU patients and is commonly used to

evaluate machine learning model performances [153, 145, 154]. Both tasks are chal-

lenging due to the complexity of patient data, the diversity of patient subpopulations,

and the importance of unbiased and fair data representation.

The contributions of our work are three-fold. Firstly, to our knowledge, MTATE

is the first model to seamlessly integrate domain-specific and domain-invariant fea-

tures in one model, making it possible to train fair representations and predict down-

stream tasks simultaneously. Secondly, MTATE employs time-wise, feature-wise, and

representation-wise attention mechanisms to compose data representations for down-

stream prediction tasks dynamically. Finally, we demonstrated that MTATE effec-
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Figure 6.1: Overall framework of masked triple attention transformer encoder
(MTATE). HR, SBP, and sCr stand for heart rate, systolic blood pressure, and serum
creatinine, respectively. xt represents all clinical features at time t, fi represents val-
ues of feature i at all time points. Z ′

i represents the data representations learned from
the ith feature relevance attention module.

Figure 6.2: Network structure of the masked triple attention transformer (MTATE)
algorithm. The TR-attention and domain-specific FR-Attention modules can be
stacked N times.

tively mitigated bias towards different subpopulations in the risk prediction tasks

and achieved the best overall performance compared to baselines. Overall, our work

demonstrates the potential of MTATE to improve fairness and accuracy in healthcare

AI and facilitate personalized medicine for diverse patient populations.
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6.2 Background

One of the primary reasons an AI model could be biased is the data distribution

shift problem [73]. Domain adaptation methods have been proposed to address this

issue. The central concept behind domain adaptation is to learn hidden features in-

variant across different domains so that the model performs consistently irrespective

of the domain to which the test cases belong. Pioneer domain adaptation models,

including DANN [74], VARADA [142], and VRNN [78], aim to learn invariant hidden

features by incorporating a domain classifier and employing a gradient reversal layer

to maximize the domain classifier’s loss, thereby inducing domain-invariant feature

representations. A recent work called MS-ADS [143] has demonstrated remarkable

performance across minority racial groups by maximizing the distance between the

globally-shared presentations with individual local representations of each domain.

This effectively consolidates the invariant globally-shared representations across do-

mains. Nevertheless, aligning large domain shifts and complex domain shifts across

multiple overlapping domains remains a challenging task.

To address the data distribution shift problem, another approach that has gained

attention is domain-specific bias correction. Recent research has shown that features

highly associated with the outcome of interest can be subpopulation-specific [144].

It indicates that amalgamating features from patients with different backgrounds

may conceal unique domain-specific characteristics. To overcome this challenge, [145]

adopted a multi-task learning framework, where each subpopulation is considered a

separate task, to enhance patient outcome prediction. Similarly, [146] used double

prioritized bias correction to train multiple customized candidate models for different

demographic groups. Similarly, AC-TPC [147] and CAMELOT [148] leveraged clus-

tering algorithms to generate patient representations with similar backgrounds and

use cluster-specific representations to predict outcomes.

To summarize, two main approaches, i.e., domain adaptation and domain-specific
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bias correction, have been proposed to address the AI model fairness problem. These

approaches rely on different assumptions about the relationship between latent rep-

resentation and the prediction outcome: the former assumes that performance varia-

tions across domains can be mitigated by learning invariant feature representations;

the latter contends that domain-specific representations can enhance prediction out-

comes. It is currently unclear which type of data representation, domain-invariant or

domain-specific, should be utilized for a given prediction task.

6.3 Method

MTATE consists of five components, and the detailed architecture is depicted in Fig-

ure 6.2. The first component is temporal-relevance attention (TR-Attention) which

associates all the time steps, resulting in time-attended representation. The second

is domain-specific feature-relevance attention which associates all the features, re-

sulting in multiple feature-attended representations, one for each domain. The third

is a set of domain classifiers, each classifies a feature-attended representation into a

predefined domain. The fourth component is a unified data representation module

that uses representation-wise attention to aggregate feature-attended representations

(either domain-invariant or domain-specific) into a final representation. The last

component is an outcome prediction module that utilizes the final representation to

make patient outcome predictions.

6.3.1 Notations

A patient EHR data can be represented as X = {x1,x2, ...,xt, ...,xNt}, X ∈ RNt×Nf ,

where Nf is the number of features and Nt is the number of time steps. xt ∈ R1×Nf

represents a vector of clinical parameters (e.g., heart rate, blood pressure, etc.) at

time step t. We consider a binary outcome and domain classification problem in this

study. The patient domain class labels are denoted as dy ∈ RNd , where Nd represents
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the total number of domains, dyi ∈ {0, 1} represents the label for the i-th domain, 1

and 0 represent whether a given patient falls in the target domain or not, respectively.

The patient outcome label is denoted as y ∈ {0, 1}, where 1 and 0 represent death

and alive before hospital discharge.

6.3.2 Temporal Relevance Attention

The temporal-relevance attention (TR-Attention) module is the first component of

MTATE. It enables each time step to attend to different time steps in patient EHR

and capture complex temporal dependencies between different time steps, considering

all input features, in X. To achieve this, we encode relative position information of X

using the position encoding and learn TR-Attention using the multi-head attention

mechanism from the Transformer [15] model. Specifically, query, key, and value

vectors (Q,K,V) are the linear projections of all features at every time step in

X. The attention weights computed from the query and key represent how much

focus the features at one single time step are associated with themselves at other

time steps. Then, the output of each head Zh is the multiplication of value vectors

and time-wise attention ATR. The final output of TR-Attention Z ∈ RNt×Nf is

the linear transformation of the concatenation of the output of every head. Lastly,

the residual connection and layer normalization are applied to Z, denoted as Z =

LayerNorm(Z+X). The TR-attention of each head is represented as:

Q,K,V = XWQ,XWK,XWV (6.1)

ATR = softmax(
QKT

√
dk

) (6.2)

Zh = ATRV (6.3)

Z = Concat(Zh
1 , ..., Z

h
i , ..., Z

h
Nh

)WO (6.4)

For simplicity, we assume all projection matrices WQ,WK,WV have the same

dimension dk. Thus, WQ,WK,WV ∈ RNf×dk , Q,K,V ∈ RNt×dk , the temporal
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relevance attention is ATR ∈ RNt×Nt , the output of each head is Zh ∈ RNt×dk . The

projection matrix for the final output is WO ∈ R(Nhdk)×Nf , where Nh represents the

number of heads.

6.3.3 Domain-specific Feature Relevance Attention

The domain-specific feature relevance attention (FR-Attention) module is another

key component of MTATE, which aims to learn each domain’s unique latent data

representation. This module includes a set of parallel FR-Attention sub-modules,

where each sub-module focuses on the representation of a specific domain considering

all time steps. Since features may not be equally important for different domains,

we randomly masked a certain percentage of latent features in each FR-Attention

module. This masking process enables each sub-module to attend to a unique subset

of features, allowing it to learn domain-specific representations effectively. In other

words, each sub-module learns to attend to the most relevant features for a given

domain while ignoring features that may be irrelevant or even harmful to that partic-

ular domain. The feature-wise attention in the FR-Attention is computed using the

multi-head attention mechanism similar to the TR-Attention. The output of each

FR-Attention sub-module is a feature-attended representation that captures the im-

portant and unique information for each domain. Using this approach, MTATE can

learn both domain-invariant and domain-specific representations, which are essential

for accurate and fair patient outcome predictions.

The input of each FR-Attention sub-module is ZT ∈ RNf×Nt , which is the trans-

posed output of TR-Attention Z. ZT is passed through a masking layer, where

MR × Nf number of latent features are randomly selected and removed from ZT ,

and MR is a masking rate. We denote the masked input of each sub-module as

M ∈ RNl×Nt , where Nl is the number of features after masking. M is passed through

the multi-head attention block as well as the residual connection and layer normal-
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ization. Finally, M is transposed back to the original form and passed through a

point-wise feedforward neural network (FNN) [155] as well as the residual connec-

tion and layer normalization to get the final output, denoted as Z′ ∈ RNt×Nl . The

architecture ( 6.3) and formula for FR-Attention are shown below:

The FR-Attention sub-module for each head is computed as:

Q′,K′,V′ = MUQ,MUK,MUV (6.5)

AFR = softmax(
Q′K ′T√

d′k
) (6.6)

M′h = AFRV ′ (6.7)

M′ = Concat(M ′h
1 , ...,M ′h

i , ...,M ′h
N ′

h
)UO (6.8)

Z′ = max(0, (M′)TW1 + b1)W2 + b2 (6.9)

Similar to TR-Attention module, we assume all projection matrix UQ,UK,UV

have the same dimension d′k. Thus, UQ,UK,UV ∈ RNt×d′k and Q′,K′,V′ ∈ RNl×d′k .

The feature-relevance attention AFR ∈ RNl×Nl . The output of each head is M′h ∈

RNl×d′k . Similar to the TR-Attention module, all outputs from all heads are concate-

nated to formM′ ∈ RNl×Nt , and linear transformation are applied with the projection

matrix UO ∈ R(N ′
hd

′
k)×Nt , where N ′

h represents the number of head.

6.3.4 Domain Classifier

The third component of MTATE comprises a set of domain classifiers, where each

classifier is responsible for classifying feature-attended representations into a prede-

fined domain, thereby assisting in learning the latent representation for each domain.

The input of each domain classifier is Z′
i ∈ RNt×Nl , where i denotes the index of

a given sub-module or domain. Z′
i is flattened by taking the max along the time

dimensions, which produces a feature representation of size RNl . This feature rep-

resentation is fed into a linear layer with a sigmoid activation function for binary

classification. We use binary cross-entropy as the loss for domain classification, de-
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Figure 6.3: A. The structure of FR-Attention module in MTATE. B. The multi-head
attention module from the original Transformer used in MTATE.

noted as Ldi . The domain loss is then used to generate representation-wise attention

in the next module, which is critical for learning fair and accurate data represen-

tations. Note that although the previous domain-specific FR-attention modules are

focused on representing their target domains, the resulting representations can be

domain-specific or domain-invariant, depending on the loss values from the domain

classifier.

6.3.5 Domain-focused Representation

Not all data representations are equally important for patient outcome predictions.

This domain-focused representation module in MTATE aims to generate the final data

representation for the outcome prediction by considering both domain-specific and

domain-invariant representations and assigns weights to each representation based

on their corresponding domain classification loss values. We call this a domain-

focused representation module, as it enables MTATE to dynamically generate differ-

ent masked representations and select the optimal data representation that is both

fair and accurate.
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The inputs to the domain-focused representation module are transformed la-

tent representations generated by each FR-Attention sub-module Z′
i. To align all

latent representations in the feature space, we transform Z′
i to its original dimen-

sion by filling the masked (removed) features with 0s, resulting in the form of Zo
i .

To generate the final representation C ∈ RNf×1, we first flatten all Zo
i representa-

tions by taking the maximum value along the time dimension, resulting in a matrix

E ∈ RNd×Nf , Next, we compute the representation-wise attention (RW-Attention)

vector a ∈ RNd×1 based on E and the domain prediction loss Ld ∈ RNd×1. Lastly,

The final representation C ∈ RNf×1 is computed as the weighted sum of E:

a = softmax(tanh(Concat(E,Ld)UA)WA) (6.10)

Cj =

Nd∑
i=1

aiEi,j (6.11)

where UA ∈ R(Nf+1)×da and WA ∈ Rda×1 are the projection matrices, i represents the

domain index, j represents the feature index.

6.3.6 Patient Outcome Prediction

To make fair and accurate patient outcome predictions, the final patient EHR repre-

sentation C generated by the domain-focused representation module is concatenated

with all static features, such as demographics and comorbidity. This combined fea-

ture representation is then fed into an FNN following a sigmoid activation function to

predict the patient outcome. Here, using a sigmoid activation function allows for the

output to be interpreted as a probability, enabling the model to provide interpretable

predictions. The prediction loss includes the binary cross entropy denoted as Lp and

the supervised contrastive loss [156] to mitigate further the model bias as another
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part of the final loss, denoted as Lc. The final prediction loss L is:

L = Lp + Lc (6.12)

Lp =
Ns∑
i=1

−(yi log(ŷi) + (1− yi) log(1− ŷi)) (6.13)

Lc =
Ns∑
j=1

−1

Np

Np∑
p=1

log
exp(hj ∗ hp/τ)∑Na

a=1 exp(hj ∗ ha/τ)
(6.14)

where y is the patient outcome label; ŷ is the predicted label; Ns,Np, Na are the

number of all samples, the number of samples having the same labels as the anchor

samples (j), and the number of samples having the opposite label to the anchor

samples (j); h represents the concatenation of the learned representation C and the

static features; and τ is a scale parameter.

6.4 Experiments Settings

This section describes the prediction task, experiment data, baseline methods, and

evaluation metrics.

6.4.1 Prediction Tasks

We evaluate the performance of MTATE and all baselines using two independent

prediction tasks:

Rolling mortality prediction for AKI-D patients: Continuously predict

patients’ mortality risk in their dialysis/renal replacement therapy (RRT) duration.

Given a period of EHR right before time T , we continuously predict the mortality

risk between T and T + 72hours.

In-hospital mortality prediction for ICU patients: Predict whether the

patient dies during the hospital stay using the data from the first 48 hours after

admission to ICU.
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6.4.2 Experiment Data

The performance of MTATE and all baselines are comprehensively evaluated using

proprietary and public data.

Proprietary EHR Data. For rolling mortality prediction, we use proprietary

data where the study population comprises 570 AKI-D adult patients (13,333 sampled

trajectories) admitted to ICU at XXX Hospital from January 2009 to October 2019.

Among them, 237 (41.6 %) died before discharge, and 333 (58.4%) survived. Patients

are excluded if they were diagnosed with end-stage kidney disease (ESKD) before or

at the time of hospital admission, are recipients of a kidney transplant, or have RRT

less than 72 or greater than 2,000 hours.

Data features include 12 temporal features (systolic blood pressure, diastolic blood

pressure, serum creatinine, bicarbonate, hematocrit, potassium, bilirubin, sodium,

temperature, white blood cells (WBC) count, heart rate, and respiratory rate) and

11 static features including demographics and comorbidities (age, race, gender, ad-

mission weight, body mass index (BMI), Charlson comorbidity score, diabetes, hy-

pertension, cardiovascular disease, Chronic Kidney Disease, and Sepsis). All outliers

(> 97.5% or < 2.5%) are excluded after a manual review, and missing values are

imputed with the last observation carried forward (LOCF) method.

To continuously predict mortality risks, we generate 30 samples from each pa-

tient’s EHR data with random start and end times as long as the duration exceeds

10 time steps. The class label of a sample is whether the patient died (positive) or

survived (negative) in the next 72 hours. From 570 AKI-D patients, 13,333 EHR sam-

ples are extracted, including 2,975 positive and 10,358 negative samples. The samples

are split into training (75%), validation (5%), and testing data (20%) patient-wise,

which ensures that samples from the same patient only appear in one of the three

sets (see detailed numbers of samples in Table 6.1). Eighteen subpopulations were

considered in this study based on nine domains according to patient demographics
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Table 6.1: Training, validation, and testing data. (Rolling mortality prediction on
the proprietary dataset)

Total N
Samples (Patient)

Alive N
Samples (Patient)

Death in the next 72 hours
N Samples (Patient)

Negative to Positive
Ratio (Patient)

Train 9979 (432) 7652 (388) 2327 (149) 3:1 (3:1)
Valid 642 (24) 519 (22) 123 (9) 4:1 (2:1)
Test 2712 (114) 2187 (104) 525 (31) 4:1 (3:1)
All 13333 (570) 10358 (514) 2975 (189) 3:1 (3:1)

(i.e., age, gender, race) and commodities (i.e., Charlson score, diabetes, hypertension,

cardiovascular disease, chronic kidney disease, and sepsis).

Public EHR Data. Publicly available data from the Medical Information Mart

for Intensive Care III (MIMIC-III) [116] are used for in-hospital mortality prediction.

We consider the first ICU admission for all adult patients and exclude the patients

with ICU length of stay of fewer than 48 hours. The data include 20,308 ICU admis-

sions, and the median ICU length of stay is 3.9 days [Q1-Q3: 2.8-7.1]. Among them,

2,708 (13%) died in the hospital, and 17,600 (87%) survived.

Data features include 20 temporal features (bicarbonate, bilirubin, hematocrit,

potassium, sodium, serum creatinine, pH, blood urea nitrogen, chloride, glucose,

hemoglobin, lactate, magnesium, oxygen saturation, systolic blood pressure, diastolic

blood pressure, respiratory rate, heart rate, temperature, and Glasgow coma scale) in

the first 48 hours of each ICU stay. The values are averaged if multiple observations

are present in the same hour. We consider three demographic variables (age, gender,

and race) as static features and the subpopulation domains. All outliers (> 99%

or < 1%) are excluded after a manual review, and missing values are imputed with

the LOCF method. The training, testing, and validation data sizes are shown in

Table 6.2.

95



Table 6.2: Training, validation, and testing data. (In-hospital mortality prediction
on MIMIC3 dataset)

Total Alive Hospital Death Neg to Pos Ratio

Train 15231 13213 2018 7:1

Validation 1015 884 131 7:1

Test 4062 3503 559 6:1

All 20308 17600 2708 7:1

6.4.3 Baseline Models

We compare MTATE with six baselines: two widely used sequence DL methods

(LSTM and Transformer), two well-known EHR-specific representations methods (

RETAIN [55] and ConvAE [157]), a pioneer domain-adaptation method (DANN* [74])

and one multi-task learning framework (MTL [145]). For the Transformer, the en-

coder part of the original Transformer is used. For ConvAE, we use the primary

model to train patient EHR representation, followed by multiple dense layers for out-

come predictions. For DANN*, we use the gradient reversal layer from the original

DANN to get domain-invariant representation with all other structures the same as

MTATE. For all models, the input data are the temporal features in EHR, and the

static features are concatenated with latent representation before the prediction layer,

as described in Section 6.3.6.

6.4.4 Performance Metrics

We evaluate the performance of all the compared models using supervised-learning

performance metrics: Area under the ROC Curve (ROCAUC), Accuracy(ACC), Area

under the Precision-Recall Curve (PRAUC), as well as three fairness metrics: De-

mographic Parity Difference (DPD), Equality of Opportunity Difference (EOD) and

Equalized Odds Difference (EQOD) [158, 159, 146] (see fairness equations and expla-

nation 6.15, 6.16, 6.17 below). All models are tested using imbalanced and balanced
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sets, where the positive (died) and negative (survived) ratios for the imbalanced tests

are 1:4 for the proprietary data and 1:6 for the public MIMIC3 data.

6.4.4.1 Fairness Metrics

Demographic parity suggests that a predictor is unbiased if the prediction is indepen-

dent of the protected attribute (e.g., Age, Gender, and etc.). We denote protected

attribute as A ∈ a, b, and A only take two groups a, b (e.g., Young vs Old for Age) for

simplicity. Thus, the Demographic parity difference (DPD) is the difference between

the two group a and b The formula for Demographic parity difference (DPD) is shown

in below:

DPD = P (ŷ = 1|A = a)− P (ŷ = 1|A = b) (6.15)

Equality of opportunity suggests that a predictor is unbiased if the true-positive

rate between two groups are equal. Similarly, the Equality of opportunity difference

(EOD) is the difference between the two group a and b. The formula for EOD is

shown in below:

EOD = P (ŷ = 1|y = 1, A = a)− P (ŷ = 1|y = 1, A = b) (6.16)

Equalized odds suggests that a predictor is unbiased if both the true-positive rate

(TPR) and false-positive rate (FPR) between two groups are equal. We computes

the Equalized odds Difference (EQOD) as the average of the difference in both TPR

and FPR. The formula for EQOD is shown in below:

EQOD = (TPRD + FPRD)/2 (6.17)

TPRD = P (ŷ = 1|y = 1, A = a)− P (ŷ = 1|y = 1, A = b) (6.18)

FPRD = P (ŷ = 1|y = 0, A = a)− P (ŷ = 1|y = 0, A = b) (6.19)

We compare all models on both imbalanced and balanced sets. The positive

samples (died) and negative samples (survived) are 1:4 and 1:1, respectively.
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Table 6.3: Performance comparison on rolling mortality prediction in the next 72
hours for proprietary imbalanced test data (pos:neg=1:4). DPD, EOD, and EQOD
are the lower the better.

Method ROCAUC ACC PRAUC DPD EOD EQOD

Transformer 0.71(0.08) 0.69(0.09) 0.39(0.17) 0.18(0.10) 0.08(0.08) 0.10(0.05)
LSTM 0.72(0.11) 0.77(0.07) 0.55(0.20) 0.12(0.08) 0.10(0.07) 0.07(0.04)
RETAIN 0.69(0.12) 0.78(0.07) 0.45(0.20) 0.13(0.12) 0.10(0.07) 0.07(0.06)
DANN* 0.60(0.12) 0.64(0.14) 0.31(0.16) 0.23(0.18) 0.08(0.06) 0.12(0.08)
MTL 0.67(0.13) 0.64(0.13) 0.44(0.21) 0.25(0.21) 0.10(0.08) 0.13(0.10)
ConvAE 0.65(0.08) 0.64(0.06) 0.34(0.16) 0.09(0.04) 0.07(0.06) 0.07(0.03)
MTATE (Ours) 0.72(0.09) 0.81(0.07) 0.49(0.18) 0.09(0.07) 0.07(0.06) 0.05(0.03)

6.5 Results and Discussion

6.5.1 Performance Comparison

Rolling Mortality Prediction The overall performance of rolling mortality pre-

diction in the next 72 hours is shown in Table 6.3. The results show that MTATE

outperforms all the compared baselines in almost all metrics. LSTM is the most com-

petitive model since it has the same highest ROCAUC as MTATE and the highest

PRAUC. Nevertheless, the fairness scores of LSTM are worse than MTATE. On the

other hand, ConvAE has the best or second-best fairness scores as MTATE on fairness

metrics, but its ROCAUC, ACC, and PRAUC are at the lower end. RETAIN and

Transformer have moderate performance. In addition, the performance comparison

on the balanced test data shows that MTATE has the overall best predictive power

and best fairness scores (see details in Table 6.4).

We compare the performance of MTATE with all baselines within each subpopula-

tion domain. Figure 6.4 shows that MTATE has the best (lowest) averaged normalized

EQOD score and has the best or second best for almost every subpopulation domain.

We also compare MTATE with all baselines regarding the difference in PRAUC be-

tween paired subpopulation domains (e.g., the difference in PRAUC between females

and males). The percentage difference in PRAUC for each domain pair and the av-

eraged score across all domains are listed in Figure 6.5. It shows that MTATE has
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Table 6.4: Balanced performance of MTATE and compared algorithms for rolling
mortality prediction in the next 72 hours for the proprietary test data (pos:neg =
1:1).

Method ROCAUC ACC PRAUC DPD EOD EQOD

Transformer 0.70(0.09) 0.67(0.09) 0.69(0.11) 0.17(0.13) 0.15(0.12) 0.10(0.06)
LSTM 0.71(0.11) 0.67(0.11) 0.76(0.12) 0.19(0.12) 0.20(0.12) 0.12(0.05)
RETAIN 0.68(0.12) 0.67(0.11) 0.72(0.13) 0.22(0.13) 0.21(0.12) 0.12(0.06)
DANN* 0.58(0.12) 0.54(0.14) 0.59(0.12) 0.21(0.19) 0.16(0.13) 0.12(0.08)
MTL 0.66(0.14) 0.65(0.10) 0.70(0.14) 0.24(0.17) 0.19(0.13) 0.13(0.08)
ConvAE 0.66(0.08) 0.62(0.07) 0.65(0.11) 0.10(0.07) 0.12(0.10) 0.09(0.05)
MTATE (Ours) 0.73(0.09) 0.65(0.11) 0.75(0.11) 0.15(0.10) 0.14(0.11) 0.08(0.05)

Figure 6.4: Normalized equalized odds difference (EQOD) for every subpopulation
domain on rolling mortality prediction in the next 72 hours for the proprietary test
data. A low EQOD score indicates high model fairness. The value and color repre-
sent the normalized EQOD score (the lower/lighter, the better), and X-axis represents
the subpopulation domains, where each domain consists of two subpopulations (e.g.,
young vs. old in age). CCI, DB, CVD, and CKD stand for Charlson comorbid-
ity score, diabetes, hypertension, cardiovascular disease, and chronic kidney disease,
respectively.

the lowest percentage difference in PRAUC between subpopulations in Age, Gender,

and Hypertension domains, and MTATE has the second-lowest overall percentage

difference in PRAUC.
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Figure 6.5: The comparison between MTATE with baseline methods for the percent-
age difference score in PRAUC for each domain. Y-axis represents the percentage
difference. X-axis represents the subpopulation domain, each domain consists of two
subpopulations (e.g., Young (< 65 y/o) vs. Old in Age domain, Sepsis vs. Non-
Sepsis in Sepsis Domain ). CCI stands for charlson comorbidity score, DB stands for
diabetes, HT stands for hypertension, CVD stands for cardiovascular disease, CKD
stands for chronic kidney disease.

Table 6.5: Performance comparison on in-hospital mortality prediction for MIMIC3
imbalanced test data (pos:neg=1:6). DPD, EOD, and EQOD are the lower, the
better.

Method ROCAUC ACC PRAUC DPD EOD EQOD

Transformer 0.79(0.02) 0.67(0.04) 0.37(0.06) 0.11(0.07) 0.05(0.03) 0.05(0.04)
LSTM 0.80(0.02) 0.87(0.02) 0.41(0.06) 0.06(0.01) 0.03(0.01) 0.03(0.01)
RETAIN 0.80(0.02) 0.72(0.05) 0.38(0.05) 0.13(0.09) 0.04(0.02) 0.06(0.04)
DANN* 0.60(0.04) 0.69(0.12) 0.20(0.04) 0.29(0.17) 0.04(0.04) 0.14(0.08))
MTL 0.75(0.05) 0.61(0.05) 0.37(0.07) 0.12(0.09) 0.04(0.04) 0.07(0.04)
ConvAE 0.68(0.02) 0.74(0.01) 0.27(0.04) 0.03(0.01) 0.02(0.01) 0.02(0.01)
MTATE (Ours) 0.80(0.02) 0.83(0.02) 0.41(0.06) 0.07(0.03) 0.03(0.02) 0.03(0.01)

In-hospital Mortality Prediction The overall performance of in-hospital mor-

tality prediction on the MIMIC3 test data with an imbalanced positive-to-negative

ratio is shown in Table 6.5. The results show that MTATE has the best overall per-

formance compared to baselines regarding in-hospital mortality prediction. MTATE

has the highest ROCAUC, PRAUC, and the second-best score on ACC and fairness
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Table 6.6: Balanced performance of MTATE and compared algorithms for in-hospital
mortality prediction for MIMIC3 dataset (pos:neg = 1:1).

Method ROCAUC ACC PRAUC DPD EOD EQOD

Transformer 0.80(0.02) 0.73(0.01) 0.78(0.04) 0.13(0.08) 0.12(0.06) 0.07(0.03)
LSTM 0.80(0.02) 0.63(0.01) 0.80(0.04) 0.11(0.04) 0.10(0.03) 0.05(0.02)
RETAIN 0.80(0.01) 0.73(0.01) 0.79(0.03) 0.15(0.09) 0.12(0.06) 0.08(0.04)
DANN* 0.60(0.04) 0.56(0.02) 0.60(0.06) 0.28(0.19) 0.13(0.13) 0.14(0.09)
MTL 0.76(0.05) 0.69(0.01) 0.77(0.06) 0.16(0.10) 0.09(0.11) 0.08(0.05)
ConvAE 0.69(0.02) 0.63(0.03) 0.69(0.04) 0.03(0.03) 0.04(0.02) 0.03(0.02)
MTATE (Ours) 0.80(0.01) 0.67(0.01) 0.79(0.05) 0.09(0.06) 0.09(0.06) 0.05(0.03)

metrics EOD and EQOD, as well as the third-best DPD score. LSTM is the most

competitive method since it has the same highest ROCAUC, and PRAUC as MTATE

and the highest ACC and the best or second-best fairness scores. On the other hand,

ConvAE has the best fairness scores on all fairness metrics, but its ROCAUC, ACC,

and PRAUC are lower than the others. The performance of all the compared algo-

rithms on the balanced test data shows that MTATE has the best or second-best

scores on almost all metrics (see details in Table 6.6).

6.5.2 Ablation Study

We conduct an ablation study to test how each component of MTATE contributes

to the model performance. Table 6.7 shows that the complete MTATE has the best

performance for almost all metrics. Comparing MTATE with the two ablation models

(”w/o RW-ATT” and ”w/o. DC & RW-ATT”), which has the lowest performance,

all performances of MTATE are boosted (the improvement ranges from 4% to 16%.

This comparison indicates that RW-ATT is the most effective component since the

performance drops the most in the two ablations without RW-ATT. Moreover, the

ablation model ”w/o. Lc” has a similar performance to MTATE, but all metrics are

1− 5% lower than MTATE, indicating that the contrastive loss component (Lc) did

improve the performance a little, but it is not a major factor.
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Table 6.7: Performance comparison of MTATE and its ablation components for
rolling mortality prediction in the next 72 hours for the proprietary test data (pos:
neg = 1:4). w/o. DC: remove all domain classifiers. w/o. RW-ATT: remove
representation-wise attention. w/o. DC & RW-ATT: remove both domain clas-
sifier and representation-wise attention. w/o. Masking: remove masking layers in
the FR-Attention module. w/o. Lc : remove contrastive loss.

Method ROCAUC ACC PRAUC DPD EOD EQOD

w/o. DC 0.70(0.09) 0.70(0.07) 0.47(0.18) 0.15(0.12) 0.09(0.07) 0.09(0.06)
w/o. RW-ATT 0.64(0.13) 0.72(0.10) 0.37(0.21) 0.23(0.20) 0.12(0.09) 0.13(0.09)
w/o. DC & RW-ATT 0.63(0.13) 0.70(0.11) 0.37(0.21) 0.25(0.20) 0.11(0.10) 0.13(0.09)
w/o. Masking 0.73(0.09) 0.63(0.06) 0.48(0.18) 0.15(0.12) 0.09(0.08) 0.09(0.06)
w/o. Lc 0.71(0.09) 0.77(0.07) 0.44(0.17) 0.11(0.11) 0.08(0.06) 0.07(0.05)
MTATE 0.72(0.09) 0.81(0.07) 0.49(0.18) 0.09(0.07) 0.07(0.06) 0.05(0.03)

XGBoost w/ MTATE 0.69(0.09) 0.70(0.07) 0.43(0.17) 0.09(0.08) 0.07(0.07) 0.07(0.03)
SVM w/ MTATE 0.71(0.10) 0.81(0.06) 0.48(0.19) 0.10(0.08) 0.07(0.06) 0.06(0.04)
RF w/ MTATE 0.72(0.09) 0.80(0.06) 0.49(0.17) 0.07(0.07) 0.06(0.06) 0.05(0.03)

6.5.3 Assessment of Data Representation

A primary goal of MTATE is to learn fair representations that can be utilized by

a wide spectrum of downstream predictive models. To evaluate this, we investigate

whether the learned representations from MTATE can be directly used by traditional

machine learning methods. The last three lines in Table 6.7 show that all three

traditional methods (XGboost, SVM, and Random Forest) have achieved similar

performance as MTATE and outperform some of the complex deep learning models.

This comparison provides strong evidence that MTATE can serve as a pre-trained

EHR data representation generator. The learned representations can be utilized by

downstream prediction tasks implemented with traditional classifiers. Using MTATE-

generated representations with different classifiers provides increased flexibility and

adaptability in predicting patient outcomes in real-world clinical settings.

6.5.4 Effectiveness Assessment of RW-Attention

Further model performance analysis investigates the behavior of RW-Attention with

respect to the changes in outcome prediction loss Lp and domain loss Ld. In Fig-
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Figure 6.6: Relationship between outcome loss, domain loss and representation-wise
attention. Y-axis represents the outcome loss, X-axis represents the domain loss. The
colored dots represent representation-wise attention, and the darker color represents
higher attention.

ure 6.6, each dot presents the average value of all samples from the same subpopula-

tion. The figure highlights three example domains in two separate facets. First, the

correlation between outcome prediction loss Lp and domain loss Ld is not constant.

It could be either negative, positive, or mixed, depending on the specific domain. In

the case of a negative correlation, a higher domain loss is associated with a lower

outcome prediction loss. This suggests that RW-Attention assigns more weight to

the representations with larger domain loss, which are domain-invariant representa-

tions. On the other hand, in the case of a positive correlation, a decrease in domain

loss is associated with a decrease in outcome prediction loss, indicating that RW-

Attention places more emphasis on the representations with smaller domain loss,

which are domain-specific representations. The mixed correlation scenario indicates

that the relationship between Lp and Ld is complex and varies based on the specific

subpopulation domain.

Attention weights, represented by the color of the dots in Figure 6.6, provide

additional insight into the relationship between RW-Attention and the outcome pre-
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Figure 6.7: Relationship between outcome loss, domain loss and representation-wise
attention in all domains. Y-axis represents the outcome loss, x-axis represents the
domain loss. The colored dots represent the representation-wise attention, and darker
color represents higher attention.

diction loss, where darker color indicates greater attention. It shows that darker

dots are consistently associated with a lower outcome prediction loss, regardless of

the correlation between the outcome prediction loss and domain loss. This suggests

that RW-Attention can weigh domain-specific and domain-invariant representations

toward more precise outcome prediction. The findings are consistent across all other

domains, as demonstrated in Figure 6.7.

6.5.5 Impact of Masking Rate

We analyze the impact of different masking ratios on model performance. Figure 6.8

depicts ROCAUC, PRAUC, and accuracy performance metrics as a function of the

masking ratio, ranging from 0.0 to 0.9. Our findings indicate that the appropriate
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Figure 6.8: Performance Score of ROCAUC, PRAUC, and Accuracy with different
masking rate

masking rate is highly dependent on the training data and that there is no universal

masking rate that is optimal across all data. For our experimental data, the masking

rate of 0.4 was found to be one of the most effective, yielding the highest accuracy

and PRAUC and the third-best ROCAUC. These results suggest carefully selecting

the masking rate is essential for maximizing model performance in different settings.

6.6 Conclusion

It is crucial to prioritize fairness and equity when designing and implementing health-

care AI models to ensure they serve all individuals and groups equitably. In this

chapter, we present MTATE, an attention-based encoder for EHR data, which uses

three different attention mechanisms to learn unbiased data representations. Our

experiments on real-world healthcare data demonstrate that MTATE outperforms

the compared state-of-the-art baselines and demonstrates the potential of MTATE to

improve fairness and accuracy in healthcare AI and facilitate personalized medicine

for diverse patient populations.

Copyright© Jing (Lucas) Liu, 2023.
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CHAPTER 7. Conclusion and Future Direction

7.1 Conclusion

Recent machine learning and deep learning methods for clinical risk prediction using

electronic health records data have been deployed for many applications. However,

the concerns about handling missingness, interpretability, and fairness issues have im-

peded its adoption in real healthcare settings. This dissertation focuses on developing

machine learning and deep learning frameworks (Chapters 3, 4, 5, 6) for electronic

health records data in addressing the three major limitations.

Chapter 3 presented a novel ensemble learning model (ELMV) to predict patient

outcomes using EHR data with substantial missing values. ELMV makes ensemble

predictions using multiple subsets with much lower missing rates and uses a support

set from the training data to estimate the distribution of testing data to avoid biases.

ELMV outperforms conventional missing value imputation methods and traditional

ensemble learning models in both simulation and real-world experiments. One limi-

tation of this model is that the effect of different missingness patterns or the reasons

for missingness, such as MCAR (Missing Completely at Random), MAR (Missing At

Random), and MNAR (Missing Not at Random) was not taken into account. There-

fore, EHR data with different missingness patterns may cause the presented models

to perform differently, which needs further caution and improvements. In the future,

we plan to assess the effect of model performances using data with different missing-

ness patterns and to modify the model architectures to be adapted to different types

of missingness.

Chapter 4 presented a novel deep learning model (KGDAL) for rolling mortality

prediction for temporal EHR data using prior knowledge and attention mechanism.

With guidance from the knowledge graph, the two-dimensional attention mechanism
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improves the model’s performance and interpretability. The experiment with two

large healthcare datasets showed that KGDAL outperformed all the compared mod-

els. Also, KGDAL-derived patient risk trajectories may assist healthcare providers

in making timely decisions and actions.

Chapter 5 presented a novel approach called Knowledge-guIded Time-aware LSTM

(KIT-LSTM). It is a new LSTM variant that uses two time-aware gates to ad-

dress irregular and asynchronous multi-variable temporal EHR data issues and one

knowledge-aware gate that infuses medical knowledge from ontology for better pre-

diction power and interpretations. Experiments on real-world data demonstrate that

KIT-LSTM performs better than the state-of-the-art baseline methods for predict-

ing patients’ risk trajectories and model interpretation. As a result, KIT-LSTM can

better support timely decision-making for clinicians.

In chapters 4 and 5, we introduced two deep learning models which used one sole

ontology as the prior medical knowledge to guide the prediction and the interpre-

tation of the model. However, including one ontology might impede performance

improvement due to the concern about the completeness of medical ontology. In the

future, we plan to integrate multiple ontologies for further improvement of the model

and incorporate a personalized/customized knowledge graph to better capture the

relationships between the temporal features for patients with different backgrounds.

Chapter 6 presented a masked triple attention transformer encoder (MTATE) to

learn an unbiased and fair representation based on different subpopulations for Elec-

tronic Health Records (EHR) to address the unfairness issue for healthcare AI appli-

cations. Specifically, MTATE includes multiple domain classifiers to assist in learning

diverse representations for different subpopulations by masking different randomly se-

lected latent features. Furthermore, MTATE uses three attention mechanisms to learn

attention regarding temporal relevance, feature relevance, and subpopulation rele-

vance. Finally, the downstream prediction task is trained together with the domain
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classifiers and the attention mechanisms. The experiments on real-world healthcare

data show that MTATE performs better than the baseline models.

7.2 Future Direction

7.2.1 Transfer and Federated Learning for Transportable Healthcare AI

The transportability of AI models in healthcare refers to the ability of the model to be

effectively and reliably used across different healthcare settings (i.e., produce accurate

predictions on new sets of patients from different clinical settings [160]. Healthcare

data can vary a lot across institutions due to different patient backgrounds, geo-

graphical locations, comorbidity status, etc., making it difficult to build models that

maintain good prediction power and performance across different sites. The trans-

portability of AI models is particularly critical to improving usability and scalability

in healthcare settings.

Models presented in Chapter 4,5,6 are trained and validated on one dataset (either

the proprietary EHR data from the University of Kentucky or the public MIMIC3

dataset). However, the transportability of all presented models across different in-

stitutions still needs to be discovered. Therefore, it would be worthwhile to explore

the following two frameworks to improve the model transportability in healthcare

settings:

• Use transfer learning to improve model transportability without requiring large

amounts of labeled data from a different institution. The model is first trained

on a large EHR dataset then the pre-trained model is adapted to make pre-

dictions on other EHR datasets from different hospitals. It can improve trans-

portability by enabling the model to leverage knowledge learned from large,

diverse datasets to adapt/transfer to new datasets from different hospitals.

• Use federated learning to improve model transportability without compromising
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patient privacy. Data from multiple hospitals will be used to collaboratively

train a shared model without sharing their raw data. First, each site trains and

generates a local model on their local data and shares the model parameters

with a central server. Then, the center server generates an aggregated model

from different sites. Finally, the aggregated model is sent back to each local

site for further training or testing.

7.2.2 Topic Modeling for EHR Data Harmonization

Training and validating DL models across different healthcare settings are challenging.

For example, different hospitals may have heterogeneous data due to different data

collection methods, terminology and codes, and various clinical practices such as

diagnostic criteria, treatment protocols, and outcome measures. These variations

result in non-interoperable data across hospitals, significantly hindering a model’s

transportability across different clinical settings. Techniques such as transferring

previous EHR data into a common format and using a common data model are

helpful. Or manual curation to harmonize different dataset are required to improve

the transportability of AI models. However, these approaches can be time and labor-

consuming. Therefore, in future work, we propose using topic modeling to support

data harmonization from multiple healthcare systems. Specifically, topic modeling

will be adopted to automatically identify and map different terminology and codes

used by each hospital to the common topics. This would ensure faster and more

accurate data harmonization for downstream prediction models.

7.2.3 Multi-modality Models for Personalized Medicine

Single modality models can achieve good prediction power, but the model is limited to

the information contained within one modality. As a result, a single modality model

may not be able to provide a complete picture of a patient’s condition. For example,
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models presented in Chapter 4,5,6 can identify and extract critical patterns and

information for patients’ risk prediction from laboratory measurements in EHR. Still,

those models may miss critical information from other modalities, such as patient

behavior observations and family disease history from clinical notes. Thus, developing

multi-modality deep learning models that can handle variable data formats from

different modalities such as laboratory measurement, unstructured text clinical notes,

medical images, and genetic data is worthwhile. Multi-modality models can provide a

more comprehensive view of a patient’s condition and tailor treatment plans to each

individual patient’s needs.

Copyright© Jing (Lucas) Liu, 2023.
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[45] Ionut, T, ĂRANU. Data mining in healthcare: decision making and precision.
Database Systems Journal BOARD, 33, 2016.

[46] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin
Yu. Interpretable machine learning: definitions, methods, and applications.
arXiv preprint arXiv:1901.04592, 2019.

[47] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust
you?” explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data min-
ing, pages 1135–1144, 2016.

[48] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 4765–4774. Curran Associates, Inc., 2017.

[49] Stan Lipovetsky and Michael Conklin. Analysis of regression in game theory
approach. Applied Stochastic Models in Business and Industry, 17(4):319–330,
2001.
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