
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Computer Science Computer Science 

2023 

Machine-Learning-Powered Cyber-Physical Systems Machine-Learning-Powered Cyber-Physical Systems 

Enrico Casella 
University of Kentucky, enricocasella1@gmail.com 
Author ORCID Identifier: 

https://orcid.org/0000-0002-3286-8598 
Digital Object Identifier: https://doi.org/10.13023/etd.2023.155 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Casella, Enrico, "Machine-Learning-Powered Cyber-Physical Systems" (2023). Theses and Dissertations--
Computer Science. 130. 
https://uknowledge.uky.edu/cs_etds/130 

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It 
has been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://orcid.org/0000-0002-3286-8598
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Enrico Casella, Student 

Simone Silvestri, Major Professor 

Simone Silvestri, Director of Graduate Studies 



Machine-Learning-Powered Cyber-Physical Systems

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for the
degree of Doctor of Philosophy in the

College of Engineering at the
University of Kentucky

By
Enrico Casella

Lexington, Kentucky

Director: Dr. Simone Silvestri
Assistant Professor of Computer Science

Lexington, Kentucky 2023

Copyright© Enrico Casella 2023



ABSTRACT OF DISSERTATION

Machine-Learning-Powered Cyber-Physical Systems

In the last few years, we witnessed the revolution of the Internet of Things (IoT) paradigm
and the consequent growth of Cyber-Physical Systems (CPSs). IoT devices, which include
a plethora of smart interconnected sensors, actuators, and microcontrollers, have the ability
to sense physical phenomena occurring in an environment and provide copious amounts of
heterogeneous data about the functioning of a system. As a consequence, the large amounts
of generated data represent an opportunity to adopt artificial intelligence and machine
learning techniques that can be used to make informed decisions aimed at the optimization
of such systems, thus enabling a variety of services and applications across multiple domains.
Machine learning processes and analyses such data to generate a feedback, which represents
a status the environment is in. A feedback given to the user in order to make an informed
decision is called an open-loop feedback. Thus, an open-loop CPS is characterized by the
lack of an actuation directed at improving the system itself. A feedback used by the system
itself to actuate a change aimed at optimizing the system itself is called a closed-loop
feedback. Thus, a closed-loop CPS pairs feedback based on sensing data with an actuation
that impacts the system directly. In this dissertation, we propose several applications in the
context of CPS. We propose open-loop CPSs designed for the early prediction, diagnosis,
and persistency detection of Bovine Respiratory Disease (BRD) in dairy calves, and for
gait activity recognition in horses. These works use sensor data, such as pedometers and
automated feeders, to perform valuable real-field data collection. Data are then processed
by a mix of state-of-the-art approaches as well as novel techniques, before being fed to
machine learning algorithms for classification, which informs the user on the status of their
animals. Our work further evaluates a variety of trade-offs. In the context of BRD, we adopt
optimization techniques to explore the trade-offs of using sensor data as opposed to manual
examination performed by domain experts. Similarly, we carry out an extensive analysis
on the cost-accuracy trade-offs, which farmers can adopt to make informed decisions on
their barn investments. In the context of horse gait recognition we evaluate the benefits
of lighter classifications algorithms to improve energy and storage usage, and their impact
on classification accuracy. With respect to closed-loop CPS we proposes an incentive-based
demand response approach for Heating Ventilation and Air Conditioning (HVAC) designed
for peak load reduction in the context of smart grids. Specifically, our approach uses machine
learning to process power data from smart thermostats deployed in user homes, along with
their personal temperature preferences. Our machine learning models predict power savings
due to thermostat changes, which are then plugged into our optimization problem that uses



auction theory coupled with behavioral science. This framework selects the set of users
who fulfill the power saving requirement, while minimizing financial incentives paid to the
users, and, as a consequence, their discomfort. Our work on BRD has been published on
IEEE DCOSS 2022 and Frontiers in Animal Science. Our work on gait recognition has
been published on IEEE SMARTCOMP 2019 and Elsevier PMC 2020, and our work on
energy management and energy prediction has been published on IEEE PerCom 2022 and
IEEE SMARTCOMP 2022. Several other works are under submission when this thesis was
written, and are included in this document as well.

KEYWORDS: cyber-physical systems, machine learning, internet of things, optimization
techniques, algorithm design
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1 Introduction

A recent study on the Internet of Things (IoT) has projected a growth of the number of IoT
devices from 8 million, back in 2017 [2], to 43 million by the end of 2023 [3]. Meanwhile,
investments in IoT are expected to grow at a rate of 11.3% throughout the years between
2020 and 2024, thanks to the efforts of IoT-powered services in sectors such as Industry 4.0,
smart cities and smart health [3]. IoT devices consist of electronic components embedded
into physical objects that extend their functionalities, which allow them to be integrated
into the worldwide physical infrastructure [4]. A new area of research has developed, with
the goal of integrating the low-level hardware capabilities of computation, communication,
and control (3C) [5] with the high-level cyber capabilities [6]: Cyber-Physical Systems
(CPSs). CPSs act as a bridge for the integration of electronic and embedded software via
the Internet on the basis of environmental sensing and actuation [7]. Recently, the pervasive
and ubiquitous diffusion of such devices led to an explosion of services in various domains,
such as health care, industrial automation, agriculture, transportation, and smart cities [8].

The main characteristic of IoT devices employed in a CPS is the presence of sensors,
such as accelerometers, cameras, GPS, and proximity sensors which enable the monitoring
and collection of a large array of information. Such data are often meaningless if they are
not properly processed and analyzed. Hence, a multitude of algorithms and approaches
can be applied to extract knowledge from the data and yield a deeper understanding of
the phenomena captured by the sensors. Once the algorithms have processed the data,
a feedback is generated, concerning a relevant outcome or recommendation that provides
useful knowledge for the specific domain of interest. There exists two categories of CPSs,
namely open-loop and closed-loop CPSs.

An open-loop CPS generates a feedback adopted by the for decision making, however the
system does not implement an actuation that aims at using the feedback in an automated
way. On the other other hand, a closed-loop CPS uses such feedback to automatically make
a decision and perform an action that aims at optimizing the system itself. For instance,
a fitness tracker allows the monitoring of data collected through accelerometers, GPS, or
heart rate sensors that are meaningful to produce useful and valuable information about a
user’s fitness performance by means of an open-loop feedback. The user can then decide to
embrace the recommendation in order to improve their well-being, by adopting an informed
informed behavior. However, there is no immediate response or actuation performed by the
system. On the other hand, a closed-loop feedback operates with the intention of explicitly
actuating a change that leads to an optimization of the system. Under such circumstances,
different environmental conditions may affect the system operations, which can include
spontaneous human behavior. For example, weather conditions and the use of every-day
appliances impact a smart grid and its energy usage. An automated system may understand
that the user is not home and actuate energy saving procedures. Alternatively, if the user
is home, a feedback may inform users about their energy usage in order to stimulate them
to adopt an informed behavior that leads to more efficient system performance.
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1.1 Contributions in Open-Loop CPS

In this thesis, our main focus is on the adoption and leverage of machine learning coupled
with optimization techniques and algorithm design to develop CPSs, both with open-loop
feedback and closed-loop feedback. Specifically, we implement an open-loop framework for
the diagnosis of Bovine Respiratory Disease (BRD) in dairy calves, which includes early
prediction of sickness behavior and early prediction of BRD persistency status. This was
a collaboration with animal scientists, namely, Dr. Melissa Cantor, Dr. Joao Costa, Dr.
David Renaud, and Ms. Megan Woodrum Setser. In this context, we couple precision
livestock technology, such as pedometers and smart feeders, with labor-intensive health
exams performed by domain experts. Data is processed by our machine learning pipeline,
and incorporated with novel optimization techniques inspired by reinforcement learning
to evaluate cost-accuracy tradeoffs, as well as the advantages and disadvantages of using
precision technology with respect to health exams. Experiments are carried out on a dataset
of 159 calves that was collected over a period of 2 years, and performance are evaluated
against a state-of-the-art approach. It is worth mentioning that, as a future work, a similar
framework could be extended to a close-loop CPS by including actuation. As an example, we
could administer antibiotics automatically through the smart feeders when a case of BRD
is suspected. These contributions have been published in IEEE International Conference on
Distribuetd Computing in Sensor Systems (DCOSS) 2022 and Frontiers in Animal Science
2022. An extended version of DCOSS is currently under submission at IEEE Access.

Another contribution of this thesis in the context of open-look feedback CPS is a fog
computing application for fitness tracking of horse gaits based on a smartwatch, smartphone,
and the cloud. Although plenty of hardware and software is available for the fitness tracking
of different categories of human activities, both at the academic [9] and consumer level
[10], horse riding is not as common, since expensive and dedicated hardware is required
[11, 12]. Our horse gait application finds natural use in horse riding, as it is important
to balance the horse work. For example, the user can check how much time was spent
on each gait, and compensate accordingly. For this purpose, we develop a smartwatch
application for data collection, and employ machine learning algorithms for offline and real-
time recognition of horse gaits. Moreover, we implement an adaptive setting of the sampling
frequency that eases computation, storage, and energy consumption, based on the required
precision of each gait. Experiments are carried out using real-field data collection using two
horses of different size and breed. We evaluate the performance of our system evaluating
different conditions, such as placement of the sensing device, sampling frequency, window
size, adopted machine learning algorithm, and compare performance with a state-of-the-art
approach. These contributions have been published in IEEE International conference on
Smart Computing (SMARTCOMP) 2019 and Elsevier Pervasive and Mobile Computing
(PMC) 2020.

1.2 Contributions in Closed-Loop CPS

In the domain of closed-loop feedback CPS, this thesis contributes to the context of smart
grids and smart energy systems. More specifically, we implement a framework for peak load
reduction that exploits widely available smart thermostats to monitor energy usage and
actuate energy savings. Our framework is based on an incentive-based approach, namely
reverse auctions, that aims at reducing the power demand of the smart grid through mon-
etary incentives paid to users in order to change their thermostat temperature for a small
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period of time. We carry out online surveys to collect user preferences in terms of comfort-
able temperature changes, the requested financial incentives, and their willingness to adopt
a similar system. We implement a machine learning algorithm deployed in each user’s
smart thermostat that is capable of predicting how much energy is saved with a certain
temperature change. Such information is plugged in our optimization problem, which aims
at minimizing the financial incentives paid to the users, and thus their discomfort, while
fulfilling the power saving constraint. We evaluate our proposed algorithms against two
state-of-the-art approaches, under several different scenarios that highlight the scalability
of our framework, and its adaptability to different time frames. We also investigate the use
of machine learning for the prediction of power consumption in residential buildings, and
analyze different dimensions that highlight possibilities and limitations of machine learning
in this context. These contributions have been published in IEEE International Conference
on Pervasive Computing and Communications (PerCom) 2022 and IEEE International con-
ference on Smart Computing (SMARTCOMP) 2022 (WiP). An extension of the PerCom
paper is currently under submission in ACM Transactions on Cyber-Physical Systems.

1.3 Roadmap of the Thesis

The rest of this thesis is organized as follows. First, we present the related work in Chapter
2. Then, the focus moves on open-loop CPSs. Specifically, Chapter 3 and Chapter 4 will
dive into several aspects of Bovine Respiratory Disease (BRD). Chapter 3 focuses on the
prediction of BRD stages, as well as the evaluation of cost-accuracy trade-offs. Chapter
4 focuses on certain aspects of our implementation in more details, and evaluates further
trade-offs such as the impact that data collection methodologies and corresponding effort
levels hasve on the accuracy. Finally, Chapter 5 illustrates a framework for horse gait
activity recognition through wearable devices in a fog computing environment, proposing
both offline and real-time algorithms, with an adaptable sampling frequency of the data
collection based on the gait being performed. Then, the focus is on closed-loop CPSs.
In this context, Chapter 6 introduces a reverse-auction-based approach to perform peak
load reduction by reducing the power demand from users by temporarily changing their
thermostat settings in exchange of financial rewards. This chapter also discuss the results
of a survey to understand user preference and simulate user behavior. Chapter 7 dissects the
problem of individual home power consumption predictions in real settings, and explores
the capabilities of machine learning in this context. Ultimately, Chapter 8 concludes this
thesis by highlighting the findings and contributions, and potential future directions.

Copyright© Enrico Casella, 2023.
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2 Related Work

2.1 Overview on open-loop feedback

A feedback is basically a recommendation that users can decide to adopt or discard. How-
ever, an open-loop feedback is characterized by the fact that users’ choice do not impact
the system. In other words, whether or not a user adopts the recommendation, the goal of
the system does not change.

For instance, in [13], a signage guidance is developed to suggest users the best routes
that lead to the exits of a building in case of fire, with the goal of avoiding hazardous
and crowded areas. The system consists of a set of sign panels with direction arrows,
fire and smoke detection sensors, and occupant traffic monitoring sensors. The sensors
are categorized in intermediate, staircase and final exit sensors, and connected in a graph
network in a three-dimensional space that takes into consideration all floors of the building.
In this context, the user is still free to take different routes, and the system will still keep
giving its recommendations. Similarly, in [14], the author develops a system to calculate
the best path to evacuate a building, and takes into account how users move during the
evacuation to update the model and provide better information as they move. Although
the provided information is updated, the goal of the system does not change as users take
routes different than the suggested ones.

Another area of works where an open-loop feedback is adopted is traffic management.
In fact, while ideas proposed in works like [15] present an ideal scenario where traffic can
be managed with no human interaction at all, those ideas are just a futuristic concept of
what would be possible with a widespread diffusion of smart vehicles. It is more realistic
to consider a scenario that takes into account all types of vehicles. In [16], both smart
vehicles and non-equipped vehicles are taken into account to evaluate traffic congestion
and suggesting an alternative route that will improve commuting time. Another important
aspect of traffic in smart cities is the understanding of human mobility. In [17], the authors
emphasize the importance of the human role in the management of urban spaces in smart
cities. The focus of this work is on the development of a human activity recognition system
that aims at extracting the mobility patterns in a hierarchical fashion that reflects levels of
geographical granularity. The idea of the authors is that, in order to develop and deliver
efficient services for traffic management and use of urban spaces, a deep understanding of
users’ activities needs to be captured.

As sensors become smaller and smaller, a lot of research has been focusing on body-
worn devices that are able to track body-vital signals, across different domains, such as
human activity recognition for fitness and health care. In [18], for instance, the author
refer to “patient-driven” and “personalized” care. An example of personalized care is given
in [19] where, other than monitoring patients with chronic diseases, the system delivers
recommendation for the specific type of issue affecting the patient so that they can improve
their conditions. As proposed in [20], the suggested training could be potentially tracked
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to make sure patients stay on track with their recommended tasks. In [21], the authors
use a body-worn photoplethysmogram (PPG) to track fitness activities such as jogging and
jumping. Similar applications are also available in the market through commercial products
such as fitness bands [22], smartwatches [23], rings [24] and shoes [25], to name a few. Other
reasons to monitor human activities can be useful in factories of assembly works. In [26],
an unsupervised method is developed to track a worker’s cycle time and avoid delays in the
assembly line.

2.1.1 Animal Activity Recognition (AAR)

It has been more than 10 years since attention to the use of wearable sensors started to
rise, mainly for the purpose of monitoring users’ behaviors and health-related issues. In
the very early attempts, there were no devices available in the market for commercial use,
so some of the first works were characterized by the development and implementation of
custom bulky hardware to be worn on the body.

For instance, the authors in [27] developed a custom hardware platform called eWatch,
which resembles the look of a smartwatch and incorporates a dual-axis accelerometer, mi-
crophone, temperature sensor and light, in addition to a microcontroller for computational
and storage purposes. Even though this device is presented as a smartwatch, they place
it in different locations over the body. They evaluate the performances on the recognition
of every-day activities in each case scenario, by evaluating different feature sets, sampling
frequencies and algorithms. Similarly, the authors in [28] developed a custom board with a
wide variety of sensors such as microphone, accelerometer, barometer and compass coupled
with a small processor and local storage. They packed everything into a pocket-sized device
with a clip on the back, which allows placement anywhere on the body. Their main goal
is to collect data and develop algorithms for the recognition of every-day human activities
such as walking, eating and cycling. Although both devices can be considered as body-worn
devices and allow sensing of Activities of Daily Living (ADL), they tend to be obtrusive and
are not truly comfortable and suitable to monitor users pervasively. For pervasive monitor-
ing and recognition of ADL, it is fundamental to monitor users without posing constraints
or burdens on their movements and behaviors.

When smartphones started to spread in our every-day lives, they have been adopted
extensively for recognition of ADL, thanks to the various sensors they include. For exam-
ple, in [29], the authors collect a dataset from 30 different subjects, who carried a waist-
mounted smartphone with built-in tri-axial accelerometer and gyroscope. They were able
to recognize ADL such as walking, sitting and laying down with an average accuracy over
90%. The extensive research on ADL pushed the boundaries towards the recognition of
more fine-grained activities. However, such activities may require the recognition of hand-
oriented gestures, such as eating, drinking, writing, brushing teeth, as well as swimming and
playing sports. These activities can be more challenging to recognize with smartphones.
Hence, smartwatches and wearables have emerged and become more popular among users.
Correspondingly, more research efforts have investigated the impact of wrist-worn devices
towards the performances of HAR.

In [30], for instance, the authors found that, while the contemporary use of both devices
outperforms the use of the wearable alone, using big sliding windows makes the use of
the smartphone negligible. Furthermore, the authors in [31] focused on hand-oriented and
not hand-oriented activities, and found that the smartwatch would perform better on 16
out of 18 activities. Specifically, all hand-oriented activities were better classified with the
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wearable dataset, while only 2 out of 6 not hand-oriented activities were better classified
by the smartphone dataset, but just by a small margin. This led to a wide adoption of
wearables, which consequently led to a numerous works in the area of HAR. The portability
of these devices, allowing unobtrusive and pervasive sensing of daily activities, guided us
to choose a commercial wearable device for our recognition system of animal activities.

While Human Activity Recognition (HAR) has been broadly investigated, there is not
such situation for Animal Activity Recognition (AAR). A lot of works in this field focus on
monitoring cows, because of the financial repercussions related to the effect of lameness on
their dairy products and meat. For example in [32], each cow is equipped with a collar-worn
GPS sensor, sampled at a frequency as low as 1 sample every 5 or 20 minutes, which seems
to be enough to reveal whether the animal is resting, grazing, or travelling. However, such
a low sampling frequency does not provide prompt feedback, but rather an overall idea of
what the animal has been doing over a long period of time.

Similarly, the authors in [33] developed an algorithm to detect when the animal is feed-
ing, standing or lying. It has been done by employing a Decision Tree algorithm of depth
equal to 2, where they simply look at a threshold which determines whether the cow is
feeding or not. This led to accurately recognize when a cow is feeding. However, in the
second stage of the Decision Tree, a single threshold does not seem to be enough to distin-
guish the two other activities, which shows that the approach is too trivial. Contrarily, the
authors in [34] carried out a similar study by employing an approach that seems excessively
computationally heavy. Other than the readings from the collar-worn tri-axial accelerome-
ter, derived orientation vectors (roll and pitch) and acceleration magnitude are calculated,
and a comprehensive feature extraction is conducted. In fact, not only statistical features,
but also spectral and information theory features are extracted. Nevertheless, their per-
formances are not satisfactory except for the grazing activity. In our real-time approach,
unlike [33], we are able to classify activities with higher accuracy while still using a light-
weight algorithm that can be run in a smartwatch. On the other hand, in the machine
learning approach, we classify activities by calculating only 3 features, which is extremely
lower than [34].

In [35], an accelerometer platform is placed on the collar of dogs of different sizes and
breeds, which allows the recognition of 17 activities total, classified by k-Nearest Neighbor
algorithm. However, performances show an overall accuracy around 70% which is not
satisfactory. Another interesting work on dogs has been presented in [36], where action
cameras are attached to the upper part of 4 dogs’ collars to collect first-person activities.
However, the performances of the recognition are poor, and the employed cameras might
be obtrusive and limiting to the dogs’ movements.

Although most works have focused on the recognition of cattle activities, there exist some
works on other animals as well. In [37] for example, the authors collect data from a collar-
worn tri-axial accelerometer mounted on the necks of goats and sheep. They investigated
and analyzed the impact of 7 different machine learning algorithms on memory and CPU
usage and found that deep neural networks have the best complexity-performance trade-off,
which they claim to be suitable for online recognition on a low-power device. However such
sensor device is only able to collect data, and they do not contemplate the presence of a
companion device that can run the algorithms or display the detected activities. Moreover,
wearable devices need to have specific characteristics such as “controllability”, which refers
to a responsive system that user can interact with and have control of it [38]. From this
analysis, we conclude that not only there are a few works investigating the use of wearables
in AAR, but also such works seem to fail at adopting wearables as defined in the literature.
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2.1.2 Calf-related works

Research on veal calves has observed that relapsed BRD calves had the slowest growth
performance, and a reduced carcass weight compared to their peers [39]. It is possible that
the reason for such reduced performance in relapsed BRD calves is because there is a delay
between the re-emergence of clinical signs of BRD and the re-intervention of antimicrobials
to resolve the disease. This is likely because calves initially sick with BRD require time
to approach convalescence and respond to the first antimicrobial intervention. Researchers
have established that Bovine Respiratory Disease in calves is associated with changes in
feeding behavior and activity patterns recorded by sensors up to four days prior to diagnosis
[40]. While some studies have shown the ability of machine learning paired with precision
technology to detect BRD and its early symptoms [41, 42], we propose that this is the first
approach to perform the prediction of BRD persistency status in dairy calves. Furthermore,
since a study has been published that uses machine learning to indicate BRD in calves, we
implement their solution and use it as a comparison in our experiments [43].

Managing dairy cattle is a challenge as farms increase in size and labor access becomes
more limited. Thus, it is important to consider the economic value of data collected by
precision technology and the budget allotted per calf since replacement dairy calves are the
largest economic investment on the dairy farm [44]. These sensors come with a collection of
features. However, researchers seldom consider the collective potential of multiple sensors
to indicate disease status in calves [45, 46]. Instead, each individual feature is assessed for
associations with disease status in calves [40]. Hence, we conducted our work to consider
the cumulative impact of groups of features on BRD prediction. Furthermore, in order to
fully enable the benefits of precision technologies, it is fundamental to design solutions that
find the best tradeoff between cost and accuracy.

In recent years, cost-sensitive feature selection has gained attention in the medical field
as a mean to reduce diagnostic costs as well as to gain a greater understanding of the
problem [47]. However, previous approaches have not considered precision technologies
with an abstract cost model; in fact, research has oversimplified the important differences
between feature selection and the cost to obtain those features in human models [48, 49].
Cost-sensitive feature selection is a problem where the term “cost” usually refers to either
misclassification costs, or test cost. While misclassification costs is a well studied topic
based on the impact of wrong predictions [50], test cost is gaining attention, especially in
the medical field [47]. In fact, this approach allows to not only reduce the cost of collecting
the necessary data to diagnose a disease, but also to gain a deeper understanding about the
problem itself [47]. Test cost generally refers to financial effort of data collection [48], as
well as time to collect data or overall required effort [49]. However, the current literature
considers abstract models that only consider a single general budget, rather than a more
refined and realistic model with a start-up budget and daily budget. Furthermore, such
models only consider an impractical cost per feature, rather than per feature group, which
is unrealistic as paying the cost of a feature from one sensor usually means that you have
already paid for that sensors and thus all other features.

A preliminary version of this work appeared in [41]. This paper extends the conference
version by proposing several improvements and additions. In fact, we implement the early
prediction of BRD persistency status, namely, relapse calves and chronic calves, using our
machine learning based methodology, which has not been previously addressed in the state
of the art. Besides, the adopted methodology has been thoroughly revised and updated to
better navigate the feature space when removing features, as demonstrated by Fig. 3.4. Our
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accuracy function A () has been thoroughly revised for persistency status predictions, prov-
ing to provide more accurate presick scenario predictions as well. Besides, all experiments
are based on a newly implemented realistic train/test methodology that was overlooked in
previous works [41, 42, 43]. Finally, we collected a lot more data, which we make publicly
available through this manuscript at [51].

Further details on our calf-related contributions are in Chapter 3 and Chapter 4.

2.1.3 Horse-related works

There exist some studies that are specifically focused on horses activity recognition. Most
of them address the lameness of horses, which is a sign of a possible physical issue [52].
Recognition of horse gaits can be performed by placing sensing devices on the horses body.
In [53], the authors mounted one accelerometer sensor on each leg, coupled with a GPS
sensor, with the goal of characterizing horse gaits by their foot-fall patterns. However,
their sensing approach seems over-complicated and too obtrusive for the daily monitoring
of horse gaits. In fact, sensor placement and sensor obtrusiveness are two fundamental
aspects towards the detection of animal activities, as stated in [11]. In this work, we ensure
that our proposed model is non-obtrusive.

In [54], an extensive study that uses a commercial product known as EquiMoves ad-
dresses lameness and gait performances, as well as upper-body and limb movements analysis.
It uses a set of up to 8 sensors with built-in Inertial Measurement Units (IMU) that are
comprised of accelerometer, gyroscope and compass. All data are sampled at a very high
frequency of 100Hz for the compass and 200Hz for accelerometer and gyroscope. However,
such a hardware-rich system, used at such a high frequency, is not enough for the recogni-
tion of activities like gallop, for which the frequency is said to be set at 1000Hz in order to
have good recognition performances. Moreover, there is not much information on the actual
recognition of the activities, but rather they focus on providing parameters that are impor-
tant to analyze the physical health of the horse. Our results show that our performances
can provide good results at sampling frequencies that vary from 5Hz to 15Hz.

Although activity recognition has been addressed widely in the last few years, most
of these works only focus on offline recognition of the collected data. Only a few works
can provide a real-time feedback to the user, especially when wearables are employed as a
sensing device. This is mostly due to the slow advancements of hardware technology, and
the limited resources that these devices have. As a result, the efforts to achieve real time
recognition look into implementing either very light algorithms or extending the hardware
capabilities with other technologies.

In [27], an early attempt towards the development of a custom wearable device is used
to detect ADL. Their aim is to analyze different feature sets, sampling frequencies, body
positions, as well as the trade-off between computational complexity of various algorithms
and accuracy. Once the best performing algorithm was found, the authors opted for the
implementation of a lighter version of the whole classification approach on the smartwatch
itself. However, the device seems to be bulky, and the classification result is not displayed
in real-time, but rather saved in the local storage of the device which makes the real-time
recognition capability pointless. Similarly, the authors in [55] developed a custom device
that is able to perform real-time recognition, and communicates with a mobile smartphone
where the length of activities are stored and editable for the purpose of allowing the user to
track and reach certain fitness goals. Likewise the previous study, the device is quite bulky
and it needs to be worn in a waist-mount case. Even though an overall score of 77% across
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all activities is given, the paper fails at providing a detailed analysis of the performances.
Studies in [56, 57] attempt to find ways to save on computational cost and memory usage
by developing a time-delay embeddings technique that does not rely on the calculation of
signal statistics, which they see as the main reason for higher computational complexity
and memory usage. However, an in-depth analysis of an actual recognition in real-time is
missing as they are mostly evaluating the performances of their approach offline.

Further details on our horse-related contributions are in Chapter 5.

2.2 Overview on closed-loop feedback

Contrarily to open-loop feedback, a closed-loop feedback has the goal and intention to
engage users for the benefit of the system itself.

For example, in [58], the authors focus on the cooperation between humans and au-
tonomous CPS, specifically, autonomous cars. They make an effort to “open the loop”,
i.e., engage and integrate humans in tasks performed by a machine whenever certain cir-
cumstances occur while the car runs on the street. In this case, the need to engage the
users is fundamental so that the car, which is the system itself, does not crash. Similarly,
in [59], the authors address the challenges of designing CPS with the human in the loop,
with a focus on autonomous vehicles. According to the authors, although complex and
advanced technologies allow the development of systems with high capabilities, the task of
autonomous driving will still be susceptible to small errors that can have big consequences.
Hence the need of human attention is fundamental, and will be highly desirable even as
technology progresses. In [60], an Electrical Control Unit (ECU) is developed to control
the electrical systems and subsystems of the vehicle that identifies issues and faults since
the very early stages of their development. Because of the high number (around 3000) of
types of faults that exists, a deep learning model is developed that can be used by humans
in order to proceed on fixing the issue and deal with the maintenance that will make the
system run more efficiently.

Lots of efforts are being put in the area of energy management, which is one of the
focuses of this work. For instance, in [61], an advanced and heterogeneous system couples
human activity recognition and human activity prediction with an energy saving system
where the user is prompted, throughout the day, with tips to save energy in a residential
environment to make more energy-efficient and cost-efficient decisions. Moreover, in [62],
users are naturally involved as part of an EV-integrated smart grid. The authors take
into account the social and human behavior by providing an architecture that intelligently
coordinates and manages energy for EV’s and the smart grid. In this work, users are engaged
by means of a financial and environmental well-being, as it is interest of the producers to
sell energy, and at the same time it is in the interest of the consumer to buy at a convenient
price.

2.2.1 Peak-load reduction

Due to modern urbanization [63], and increasing number of households [64], utility com-
panies have started to show interest in reducing the energy demand in residential areas
to avoid the risk of blackouts, decrease the costs related to creating energy, and maintain
the grid stability [65]. Some research efforts have focused on reducing the power demand,
especially during high demand hours, since the cost of generating energy increases expo-
nentially as the demand grows [66]. The state of the art refers to this problem as peak load
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reduction, or peak load shaving, a well-studied problem in power grids, that can be tackled
with Demand Response (DR) techniques [67]. DR techniques aim on reducing peak load in
one of two ways. One is to change the way that appliances and utilities are used [68]. For
instance, in [69], the authors focus on Heating Ventilation Air Conditioning (HVAC) load.
However, rather than reducing peak loads, the focus is to save overall power consumption
on a daily basis. In [70], an analysis of load increments and load reductions is carried out
in a domestic heating dominated climate, with a potential deployment of thermal storage.
However, the analysis strictly refers to a specific type of buildings typical of the geographical
area, where the materials are particularly good at maintaining heat. Moreover, the study
focuses on the potential of DR applied to a single building. Hence, a comprehensive study
that considers users’ behavior is missing. Similarly, in [71], the authors focus on reducing
the water heater usage. Finally, in [72] and [73], the focus is on reducing energy consump-
tion in colocation data centers. However, another way to perform peak load reduction is to
use external energy storage during a high peak load. For instance, Energy Storage Systems
(ESS) are based on the idea of utilizing equipment to store energy during the low-peak
hours that can later be used during the high-peak hours [74]. Similarly, some works have
focused on the integration of EV and the use of their batteries as a source of energy when
the vehicles are not in use [75].

Although it is important to distinguish DR approaches in terms of the way that the
peak load is reduced, as we just described, even more important is to address how users
are engaged in such systems. Hence, DR approaches are divided into two main categories:
Price-Based Demand Response (PBDR) and Incentive-Based Demand Response (IBDR).
In PBDR, the focus is on engaging the users by changing the economic prices of energy
throughout the day according to the demand. For instance, in [76], a time-of-use (TOU)
approach is used where the tariff changes during the times of the day and or season where
demand is usually higher. However, in this approach the price is usually not changed daily,
hence the price trend might not exactly reflect the actual demand. To cope with this, other
approaches try to reflect the actually real-time demand. For instance, in [77], prices change
in real-time during the day (every 5 minutes), while in critical-peak pricing the price may
change based on time-independent events that are communicated shortly before the tariff
change is applied [78].

2.2.2 Focus on Incentive-Based Demand Response (IBDR)

However, PBDR approaches do not take into account that the routine and comfort of the
users is affected, hence most users tend to ignore the energy saving benefits and not engage
enough with the system. Hence, in this thesis, we propose an approach known as Incentive-
Based Demand Response (IBDR), where the main goal is to engage users by means of
financial rewards in order to reduce peak loads more effectively [79, 80]. The main idea is
to pay users to adapt and change their usage of utilities and appliances. This can be done
in different ways. One way to do so is with Direct-Load Control (DLC), where the utility
company is allowed to directly control appliances such as the water heaters [71]. In this
approach, once the user agrees to participate in exchange of a financial reward of some sort,
the user is not pre-notified of the changes, hence not many users are willing to participate
in a similar program. However, a slightly larger portion of users is willing to participate
in curtail-able load programs. In similar approaches, users are given a financial reward in
order to turn off a specific appliance or delaying its usage [81], and therefore it usually
involves the so called Interruptible/Curtail-able services [82], such as dishwasher or dryer.
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Nevertheless, it may happen that some users are not actively using such appliances which
places a risk of not having enough resources to reduce the peak load. Similarly, in [79], the
authors calculate how much energy should be saved for each user by tackling curtail-able
loads and reducible loads. However, it is not specified which specific appliance or utility
should be curtailed/reduced. However, curtail-able load programs do not represent a robust
solution due to the fact that during a peak load certain appliances may already be off or
idle. On the other hand, while direct load control has the potential to curtail loads, it is
perceived as too invasive, hence resulting in low engagement and high abandonment rate.

The need for better user engagement in end-user power conservation is a core element
that has come to light in the current state of the art. One way to further engage users in
the long term is to allow users to submit their own set of personalized preferences for power
conservation, in exchange of a financial reward. This idea is at the basis of an approach
known as demand side bidding. For instance, [83] and [84] ask users to turn off certain
appliances during a peak load period in exchange of a payment. Similarly, in [85] the
authors exploit the storage of electric vehicles during times of peak loads, in the context of
an auction mechanism, where users provide their preferred options of power conservation.
A recent paper that provides power conservation for data center networks, following an
auction-based approach similar to ours, is [73]. We use this as a comparison approach
given the similarities of the considered problem and solution. Despite the above efforts
at engaging users by providing the possibility to submit personalized preferences, [86] has
shown that, if the system requires frequent interactions with users in order to adjust a set
of appliances, they might experience response fatigue. According to this phenomenon, users
stop interacting with the system because they become tired of engaging with it.

To further understand how users can be incentivized, while avoiding the response fatigue
phenomenon, researchers have proposed to include models of realistic user behavior in the
design of power conservation strategies. These models help understand and emulate how
users interact with a power conservation program. For instance, [87] and [88] strictly focus
on models of realistic user behavior in terms of the perceived utility of each appliance.
However, the former does not provide a way to submit personalized preferences of power
consumption, while the latter only considers an abstract representation of appliances and
their power consumption that, as stated in [89], represent a considerable limitation in the
design of power conservation systems.

Another important aspect to consider in the design of effective power conservation
strategies is to include realistic home-level power dynamics [66]. Additionally, HVAC has
been shown to be a promising appliance for power conservation, due to its energy consump-
tion being highly correlated with peak loads and the rapid adoption of smart thermostat
that can perform temperature adjustments automatically [90, 70]. An HVAC power con-
servation mechanism has been proposed in [70]. This approach provides equal rewards to
all users, irrespective of their preferences. Additionally, the authors rely on a white-box
approach, which requires a profound knowledge of the chemical and structural properties
of the house materials, as well as layout. Thus, it is not only unfeasible for the large-scale
deployment needed to achieve sufficient power conservation, but it is also impractical to
gather such information about a single house. Since this work shows similarities to ours,
we use it as additional comparison approach in the experimental section.

In summary, as shown in Table 2.1, most existing works lack at least one of the necessary
elements of successful power conservation related to the individuality of users. Conversely,
this paper proposes an effective power conservation framework that aims at long-term user
engagement by providing 1)personalized preferences for each user, 2) models of realistic
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Table 2.1: Related work summary

Personalized
preferences

Models of realistic
user behavior

Realistic home-level
power dynamics

Chen et al. [73] ✓ × ×
Khamesi et al. [84] ✓ × ×
Chapman et al. [83] ✓ × ×
Zhou et al. [85] ✓ × ✓
Shafie-Khah et al. [86] × ✓ ✓
Ciavarella et al. [91] × ✓ ×
Khamesi et al. [88] × ✓ ✓
Dolce et al. [87] × ✓ ✓
Kim et al. [92] × × ×
Asadinejad et al. [93] × × ×
Ali et al. [70] × × ✓
Wang et al. [81] × × ✓
Shi et al. [66] × × ✓
Ericson [71] × × ✓
Our approach ✓ ✓ ✓

user behavior to study how users engage with such system, and 3) realistic home-level
power dynamics, based on easily available information, that allow large-scale deployment
of the system.

Further details on our contribution on IBDR are in Chapter 6.

2.2.3 Power prediction

The prediction of power saving for a certain user who changes their thermostat settings
is one of the core components of our reverse auction mechanism. Power prediction has
attracted lots of attention in the literature. There are two ways to predict power consump-
tion. One is commonly known as white box approach, and the other as black box approach
[94].

The characteristic of white box approaches is that the prediction is implemented by
means of a set of equations that define a physical model of the building that describes its
thermal profile. In [66], for instance, a heat transfer model is defined, which requires a set
of very specific and low-level information such as heat transfer rate, thermal resistance, and
thermal capacitance, to name a few. Such detailed information may be hard to obtain [95].
This information needs to be obtained for every room of the house, which may have different
walls, window and door materials, different occupancy. Moreover, every house is different,
and a single house may have different doors and materials in each room. Therefore, it may
be hard to employ an approach for peak load reduction like the one proposed in this thesis,
where it is fundamental to pervasively deploy a power prediction system.

However, black box approaches simply rely on the existing historical data of the power
consumption. For instance, in [96], the authors rely on the existing information from
24 hours or 7 days before to make a prediction. In order to do so, machine learning,
and more specifically, deep learning techniques are used, since they are able to process
large sets of data and find useful patterns that allow to predict power consumption quite
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effectively. Some works also rely on any data that is available to them, such as weather or
any information that can be monitored inside the house. For instance, in [97], sensors are
used not only to monitor the power consumption, but also to detect occupancy. Another
advantage of deep learning techniques is that raw data can be used without the need to
pre-process or extract specific feature [98].

Further details on our contribution on power predictions are in Chapter 7.
In this thesis, the goal is two-fold. Firstly, we focus on the predictions of the transient

state, i.e., the situation that occurs when a user changes their thermostat set point to a
different degree, which is useful in DR scenarios. Then, we study the problem of individual
home power consumption from different perspectives and analyzing the impact of different
conditions such as the day of the week, the period of the day, the type of appliance being
predicted, and discuss important insights.
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3 Boosting Dairy Calves Health: Machine Learning and Optimization for the Early
Detection and Diagnosis of Bovine Respiratory Disease Stages

©2022 IEEE. Reprinted with permission from Enrico Casella, “Boosting Dairy
Calves Health: Machine Learning and Optimization for the Early Detection
and Diagnosis of Bovine Respiratory Disease Stages,” Extended version of
manuscript published in IEEE DCOSS 2022, and under submission in IEEE
Access 2023
DOI: 10.1109/DCOSS54816.2022.00031

Bovine Respiratory Disease (BRD) is an infection of the respiratory tract that is the
leading reason for antimicrobial use in dairy calves and represents 22% of calf mortalities.
The costs and effects of BRD impact a farm’s economic efficiency, since raising dairy calves
is one of the largest economic investments on a dairy, and the required intensive labor is
hard to find. However, precision technologies can record feeding behavior and activity in
calves, revealing behavioral changes before outward clinical signs of BRD. Studies suggest
that early detection, and thus early treatment, leads calves to faster recovery. Therefore,
pairing precision technologies with physical health exams to identify BRD needs further
investigation, especially considering the costs of BRD and its persistency. In this paper,
we propose a framework for BRD diagnosis, its early detection, and identification of BRD
persistency status. We adopt a machine learning model paired with a cost-sensitive feature
selection problem called Cost Optimization Worth (COW). COW maximizes prediction
accuracy given a budget constraint. We show that COW is NP-Hard, and propose an
efficient heuristic with polynomial complexity called Cost-Aware Learning Feature (CALF).
We validate our methodology on a real dataset of 97 features, representing 159 calves during
the preweaning period. Results show an accuracy of 0.88 for labeling sick and healthy calves.
70% of sick calves are predicted 4 days prior to diagnosis, and 80% of persistency status
calves are detected within the first five days of sickness. Performance outperforms a recent
state-of-the-art approach under all budget scenarios.

3.1 Introduction

Bovine Respiratory Disease (BRD) is an upper or lower infection of the respiratory tract
in cattle [99] that is not only economically costly, but also attributes to poor productivity
in young dairy calves [100]. Specifically, BRD was reported to affect 15% of dairy calves,
and it was attributed to be the cause of 22% of dairy calf deaths in the preweaning period
[101]. Furthermore, there is preliminary evidence that up to 20% of BRD calves develop
BRD persistency status, which may lead to calfhood pneumonia, a painful disease that
compromises calves’ normal behavioral patterns [102]. Calves with BRD persistency status
also require an additional antimicrobial treatment to recover, which can take several days
after the initial BRD diagnosis and treatment[102]. As a result, they either relapse and
recover from the second antimicrobial intervention, or they become chronic and may even die
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[103], thus burdening farms [102]. In addition, BRD persistency status must be managed on
dairies to ensure the judicious use of antimicrobials, as classes of these drugs are becoming
more tightly managed [101]. Thus, BRD and BRD persistency status are major animal
welfare and industry sustainability concerns that require research strategies to identify.

Dairy producers monitor their calves’ health daily for outward signs of disease [99].
However, assessing each calf for the cumulative signs of BRD is labor intensive [104], and
extensive training is required to achieve agreement [105]. Moreover, many dairy farms
struggle to find labor to raise their calves, especially during the COVID-19 pandemic [106,
107]. Because of these factors, farms are incorporating precision technologies based on the
Internet of Things (IoT) to raise their calves [40]. Examples of these technologies include
wearable sensors, which record activity behavior data in dairy cattle (e.g., number of steps
and lying time), and automatic feeders, which can dispense milk and grain resources and
record feeding behaviors (e.g., number of visits and liters of consumed milk) [108].

It is particularly important to research the utility of precision technologies coupled with
machine learning techniques to identify BRD status in a timely manner. There is evidence
that sickness behaviors occur before clinical signs of BRD in calves [109, 42]. In fact,
delayed antimicrobial treatment for BRD can lead to poor growth performance, reduced
milk production, and chronic disease in dairy cattle [103, 110]. In addition, early evidence
suggests that re-antimicrobial intervention provides better response when administered as
soon as possible on calves with BRD persistency status, i.e., BRD calves who relapse and
require an additional antimicrobial to recover, or calves who become chronic and rarely
recover from the disease [103]. The prediction of calves with BRD persistency status through
IoT precision technology and machine learning is yet to be explored in the literature.

Furthermore, the adoption of these technologies to monitor calves for signs of BRD may
be a viable alternative that also reduces the economic burden of BRD [111, 40]. Studies
suggest that producers may be willing to invest in these technologies to raise their dairy
calves as long as it mitigates the long-term effects of the disease [112]. However, IoT preci-
sion technology requires start-up investments as well as daily investments and maintenance.
Thus, it is important to analyze the financial implications of using machine learning to make
such inferences exploiting data from the different types of IoT precision technologies, and
the cost-accuracy trade-offs of their use in conjunction with manual health exams.

In this paper we propose a framework for BRD diagnosis in calves, as well as the detec-
tion of early BRD status and BRD persistency status. This framework is composed by a
machine learning model as well as by a cost-sensitive feature selection problem called Cost
Optimization Worth (COW). COW maximizes prediction accuracy given a budget con-
straint. We show that COW is NP-Hard and propose an efficient heuristic with polynomial
complexity called Cost Aware Learning Feature (CALF). CALF is an algorithm based on
ε-greedy [113], which uses a mix of exploration and exploitation to test different subsets of
features within the given start-up and daily budgets to maximize accuracy.

We validate our approach through extensive real-field data collection over a period
of 2 years from 159 calves for a total of 97 manual and automatic features collected by
trained researchers and precision livestock technologies, respectively. Our dataset is publicly
available [51]. Procedures of data analysis are carried out to prepare the data for feature
extraction. These features are paired with real start-up and daily costs to perform feature
selection. Post-processing methodologies are used to split the data into training and testing
sets implementing a calf-based approach that offers more realistic results than the current
state of the art [41, 43, 42]. Finally, data are cross validated and fed to machine learning
models for classification. Results show that our proposed approach outperforms a state-of-
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Figure 3.1: Outline of the proposed methodology.

the-art solution [43], with accuracy up to 0.88 in the diagnosis scenario, 0.7 in the presick
scenario four days prior to BRD, and 0.8 in the chronic scenario within the first five days
of illness.

To the best of our knowledge, this is the first work to publish a dataset used for the
early prediction and diagnosis of BRD, and the first work to study BRD persistency status
through cost-effective machine learning techniques. The main contributions of this paper
are listed below:

• We propose a framework for BRD diagnosis and its early prediction in dairy calves;

• We propose the first framework to ever perform early prediction of BRD persistency
status;

• We formalize COW, a cost-aware feature selection problem, to find the best cost-
accuracy tradeoff;

• We prove that COW is NP-Hard and propose an efficient heuristic called CALF;

• We perform real-field experiments with a 2-year long data collection;

• We make our dataset publicly available, with data from 159 calves;

• Results show the superiority of our approach with respect to the state of the art;

3.2 System Overview

The overview of our framework is depicted in Fig. 3.1. The framework consists of 4 steps,
namely, data collection, data processing, feature selection, and machine learning. Data
collection is the phase where data was collected from the calves using precision livestock
technologies and by researchers who performed physical health exams on the calves. Due to
the intrinsic characteristics of data collection methods, we identify automatic attributes and
manual attributes. Specifically, automatic attributes consist of data collected by precision
technologies including activity behavior, milk feeding behavior, and grain feeding behavior,
while manual attributes consist of variables collected by the researchers such as health
exams, body weights, and lung ultrasound imaging. Precision technologies are equipped to
automatically send data to the cloud, while manual exams are manually uploaded to the
cloud by the domain experts who collected the data. More details on each feature group is
given in Sec. 3.5.1.

The Data Processing phase includes several practices of data cleaning and data filling.
A segmentation step aggregates consecutive daily samples into windows of data, which
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allows for feature extraction. The extracted automatic features and manual features are
then organized in groups that share the same start-up cost and daily cost. For automatic
features, start-up and daily costs correspond, respectively, to the purchase of the equipment
and the daily maintenance costs. For manual features, costs reference personnel salary,
which includes training as a start-up cost. It is worth mentioning that selecting a single
feature in a group is equivalent to selecting all features in that group, from a financial
perspective. Intuitively, this is because you either purchase a sensor or not. Once a sensor
is purchased, then you have access to multiple attributes, regardless if they are all used.
This is a unique characteristic of our problem. In fact, previous cost-sensitive feature
selection approaches do not take into account such group-based cost modeling, and they
lack a refined definition of budget in terms of start-up cost and daily cost [48, 49].

The Feature Selection phase consists of the cost-aware feature selection problem called
COW (Cost Optimization Worth), further discussed in Section 3.3. We show that COW is
NP-Hard and propose an ε-greedy heuristic algorithm called CALF (Cost Aware Learning
Feature). CALF relies on exploration and exploitation to navigate the high-dimensional
feature space [113]. Note that not necessarily all features in a group should be selected,
although it is free from extra costs. In fact, noisy and uninformative features may worsen
the accuracy of a scenario. For this reason, selecting the best set of features within a
start-up and a daily budget is a challenging problem.

Finally, the Machine Learning phase is characterized by different methodologies to split
the dataset in training and testing sets, depending on the BRD scenario that we are in-
vestigating. Furthermore, we implement such splitting methods with a realistic calf-based
approach that guarantees realistic and balanced sample shuffling. Then, the selected fea-
tures are used to train the adopted machine learning models, such as Gradient Boosting
Classifier (GBC) and Support Vector Machines (SVM).

In the following, we present further details of each step of our framework. For ease
of exposition, we first present COW, discuss its complexity, and introduce CALF. Then,
we provide more details on the proposed scenarios of BRD development, followed by data
collection, data processing, machine learning, and finally the experimental results.

3.3 Problem Formulation

We consider a set of features F with N feature groups, defined as F = ∪N
i=1Gi where Gi is

the i-th group, with Mi features. We refer to the j-th feature of the i-th group as fi j. As a
result, F = { fi j|i = 1, . . . ,N; j = 1, . . . ,Mi}. Each group Gi has a start-up cost si, and a daily
cost di. Thus, we define a start-up budget BS and a daily budget BD. In the following, we
formulate Cost Optimization Worth (COW), a cost-sensitive optimization that finds the
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feature set with highest accuracy1 within budgets.

maxS⊆F A (S) (3.1a)
subject to

S =
∪

fi j∈F |xi j=1

{ fi j} (3.1b)

G

∑
i=1

zidi ≤ BD (3.1c)

G

∑
i=1

zisi ≤ BS (3.1d)

zi ≥ xi j ∀i = 1, . . . ,N, j = 1, . . . ,Mi (3.1e)
zi,xi j ∈ {0,1}, i = 1, . . . ,N, j = 1, . . . ,Mi (3.1f)

COW aims at finding the subset S⊆F that maximizes A (), as defined in (6.1a). Note
that A () is not necessarily a monotone nor a modular function, since including noisy or
uninformative features may decrease the accuracy. Eq. (3.1b) defines the set of selected
features S through a decision variable xi j, which is equal to 1 if feature fi j is selected, and 0
otherwise. In order to take into account the group nature of the incurred costs, we introduce
an additional decision variable zi for each group Gi. The variable zi defined in (3.1e) equals
one if at least one feature in the group is selected, and thus the corresponding costs incurred,
or zero otherwise. Then, (3.1c) and (3.1d) enforce the budget constraints, to ensure that
the cost of all groups for which a feature is selected stays within the daily budget BD and
start-up budget BS. Finally, (3.1f) defines the domains of the decision variables.

In the following, we prove that COW is an NP-hard problem, which motivates the
development of an efficient heuristic solution to solve such problem.

Theorem 1. COW is an NP-hard problem.

Sketch of proof. We provide a reduction from the the 0-1 knapsack problem (KP). A generic
instance of KP considers a set of items I, where each item fi ∈ I has cost ci and value ai.
The objective is to find the subset S ⊆ I of items which provide maximum value within a
budget B. Given such generic instance, we set COW as follows. Each group has only one
feature, i.e., Gi = { fi}N

i=1 (and Mi = 1). We set the cost ci for Gi equal to the corresponding
cost in KP. Then, we define the function A () as a modular linear function of the value
defined in KP, i.e., A (S) = ∑ fi∈S ai. In addition, we set BD = B and BS = ∞. Finally, since
we have a single feature per group, zi = xi j.

Solving such instance of COW corresponds to finding the set of features S that maximizes
accuracy within the daily budget. This can be polynomially translated into the the optimal
solution of KP. Therefore, COW is at least as difficult as KP, and thus it is NP-Hard.

3.3.1 Cost-Sensitive Feature Selection

Since COW is NP-hard, we present CALF (Cost Aware Learning Feature), a cost-aware
feature selection heuristic.

1“Accuracy” here is used as a general term of a classification metric
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CALF

Our heuristic algorithm is inspired by the reinforcement learning concept of exploration
versus exploitation [113]. Due to the non-monotone nature and non-modular property of the
accuracy function A (), exploring the feature space and discovering the accuracy of different
subsets is essential to finding a solution for COW. CALF iteratively builds a solution by
performing actions. An action consists of adding or removing a feature from the current
solution and testing the accuracy of CALF. In the following, we use the term “exploration”
to perform an action in a random fashion, while we use the term “exploitation” to perform
an action greedily, i.e., the best short-term action.

A recent approach to the exploration versus exploitation tradeoff is the ε-greedy algo-
rithm [113]. The idea of ε-greedy is that a variable ε is properly tuned to prioritize more
exploration at the beginning of the algorithm execution, while slowly exploiting the current
knowledge to perform the best next action over time. CALF uses two of such variables,
making it a ε2-greedy algorithm. A variable εEE regulates exploration and exploitation, as
intended in the original ε-greedy algorithm, while another variable εAR regulates the action
of adding or removing features, by considering the utilized budgets and the number of fea-
tures that could be added at no cost to prioritize either action. The pseudo-code of CALF
is given in Alg. 1.

Algorithm 1: Cost Aware Learning Feature (CALF) Algorithm
Input : F = ∪N

i=1,Gi, BD, BS, L, α, β
Output: A feature set SB and its accuracy score aB

1 S← /0,CD = 0,CS = 0 ; // Loop variables
2 εAR = 0,εEE = 1 ; // Tuning variables
3 Let F̂⊆F \S be the set of available features within budget
4 Pick one of the following actions while εEE > 0:
5 Let F̂ = {Gi∩ F̂}N

i=1, set of available features by group
6 Let F ∗ = {Gi∩S}N

i=1, set of selected features by group
7 RND - ADD with probability εEE εAR:
8 S← S+ f where f ∈ Ĝi = rnd_pick(F̂ )

9 RND - REM with probability εEE(1− εAR):
10 S← S−G∗i where G∗i = rnd_pick(F ∗)

11 GREEDY - ADD with probability (1− εEE)εAR:
12 S← S+ f where f = argmax f∈F̂A (S+ f )

13 GREEDY - REM with probability (1− εEE)(1− εAR):
14 S← S−G∗i where G∗i = min_ranking(F ∗)

15 Update costs CD and CS
16 SB,aB = update_i f _best(S) ; // update output
17 Re-calculate F̂
18 εAR = 1− (α CD

BD
+β CS

BS
)(

|S|
|S|+|F̂| ), εEE = εEE − 1

L

19 return SB,aB

The input variables and parameters of CALF are: the set of features F = ∪N
i=1Gi, the

total available budgets BS and BD, the total number of exploration/exploitation loops L, and
the normalizing variables α and β . The output is SB, i.e., the subset of features that had
the highest accuracy score aB. In line 1, we initialize the solution set S, as well as the costs
CD and CS to keep track of how much budget has been used. Then, in line 2, we initialize
εEE = 1, which regulates exploration and exploitation, and εAR = 0, which regulates addition
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and removal of features. These variables are set to initially favor exploration and addition
of new features. In line 3 we create F̂, the set of available features, i.e., the set of features
that can be selected at this iteration without violating budgets (CD < BD and CS < BS).

In lines 4-18 we have a loop of L iterations. In line 5, we define F̂ which corresponds
to the set of available features F̂, organized by group. Similarly, in line 6 we define F ∗ as
the set of selected features, organized by group. At each iteration, four possible actions can
be taken as a combination of exploration (RND) or exploitation (GREEDY), and addition
(ADD) or removal (REM). Each action is selected with a probability that depends on
the value of εEE and εAR. Lines 7-8 define the action (RND−ADD), corresponding to
exploration and addition, which occurs with probability εEEεAR. We select a random feature
f from a randomly selected group Ĝi ∈ F̂ , and add it to the current solution set S. When
action (RND−REM) occurs in lines 9-10 with probability εEE(1− εAR), a random group
is removed from the current solution set S. Note that, while the addition occurs for a
single feature of a group, the removal occurs for a whole group. This approach helps
to perform a thorough exploration because removing a group frees up budget that allows
exploration of other groups. On the contrary, removing one feature at a time would force us
to rely on the random removal of all features from the same group before freeing up budget.
Action (BEST−ADD), in lines 11-12, is executed with probability (1−εEE)εAR. This action
picks the feature that, once added to the current solution S, provides the highest accuracy
score among the available features F̂. In lines 13-14, action (BEST−REM), performed
with probability (1− εEE)(1− εAR), removes the feature group that provides the minimum
ranking criterion, defined as

rank =
A (S−G∗i )−A (S)

αs∗i +βd∗i
(3.2)

which prioritizes the removal of groups that either increase accuracy the most (positive
numerator) or reduce accuracy the least (negative numerator), while prioritizing the removal
of the most expensive ones (large denominator).

Finally, we update the current daily cost CD, and the start-up cost CS in line 15. Line
16 checks if the current solution in S provides better accuracy than the best solution en-
countered so far, SB, and updates it accordingly.

Subsequently, calculating F̂ in line 17 allows us to update the value of εAR in line 18,
where εEE is updated as well. The probability εAR of adding or removing a feature is updated
according to the remaining available budgets (properly scaled by α and β ) weighed by the
ratio |S|

|S|+|F̂| , which reduces the impact of the budgets if many features are still available
at no cost. The probability εEE of exploration over exploitation is reduced by 1

L at each
iteration.

Accuracy function A ()

CALF is designed to be used with any metric function A (). The metric function used in
our implementation is the harmonic mean of the two labels’ accuracy, i.e., sick and healthy.
This choice of a harmonic mean lies behind the idea that an arithmetic mean may have
prioritized a high score of a label over the other, and return high accuracy. However, the
harmonic mean requires, by definition, that both accuracy scores are high, which better
fits the purpose of finding the best performing set of features. On the other hand, we did
consider and experimented using the mean of per-class F1-scores, which is a harmonic mean
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by definition. Although we found F1-score to be a less intuitive metric, we tested its use
and its cross-validated performance, and found that the features sets selected by F1-score
did not perform as well. Note that, in experimenting with using either harmonic mean of
accuracy or F1-score, the evaluated cross-validation performance was always assessed using
both.

Computational Complexity

The computational complexity of CALF is dominated by the machine learning algorithm
employed to compute the accuracy score, since the loop is a costant value (L). In this
paper, as discussed in Section 3.6 we adopt Support Vector Machines (SVM) and Gradient
Boosting Classifier (GBC). As a result, the overall complexity depends on the adopted
algorithm, and specifically its training. Given T as the number of training samples, and F
as the number of features, the complexity of CALF using SVM is O(T 3) [114], while using
GBC the complexity is O(T ×F) [115].

3.4 Pre-sick and BRD persistency status scenarios

In this section we present additional prediction scenarios. So far, we have talked about
labeling calves as either sick, when their ground truth corresponds to BRD diagnosis, or
healthy. We refer to such prediction as the diagnosis scenario, because the algorithm aims
at finding sick calves when they show clinical outward signs of disease. However, in the
following we present three more scenarios that capture the other stages of BRD.

3.4.1 Characteristics

Firstly, we present the pre-sick scenario. Although a formal definition of this stage does
not exist, it represents what is commonly known as the sickness behavior stage. This is
when the immune system has encountered a pathogen in the body, and the activation of
inflammatory cytokines are present, which makes the animal adapt behavior to conserve
energy, and can occur before the calf is clinically outwardly sick [116]. In fact, the goal
is to perform the early prediction of a calf incurring BRD a few days prior to the clinical
diagnosis. A successful prediction of this stage is important because it would allow the first
Antibiotic Treatment (AT), displayed in Fig. 3.2 as “AT 1”, to occur before day 0, which
often results in faster recovery [117]. Some calves may at times be treated again on day 7,
as indicated by the “AT 2” arrow in Fig. 3.2, and they are always treated again on day
14 [102], if BRD persists. If calves are still sick after day 14, we identify two persistency
scenarios, namely the relapse scenario and the chronic scenario. Specifically, the relapse
scenario captures calves who do respond positively to the antibiotic treatment on day 14,
i.e., “AT 3”, and thus result healthy before day 21. However, the chronic scenario captures
those calves who receive such treatment and still do not recover even after 21 days from
BRD diagnosis, after which they may be given additional treatment, be euthanized, or sold
for beef once antimicrobials are no longer circulating in the calf’s system [103]. Fig. 3.2
shows a comprehensive representation of these stages. Note that, relapse and chronic calves
are labeled as such starting from day 0 because the objective of this paper is to detect these
calves during the first few days of sickness, i.e., capture those behavioral difference between
relapse or chronic calves against sick calves at an early stage. The ability to perform such
early prediction of BRD persistency status allows domain experts to provide additional
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Figure 3.2: Visual representation of BRD stages over time

appropriate treatment which, we suggest, can help farmers’ decision making and increase
the likelihood of fast BRD recovery.

3.4.2 Adapting CALF and A () to BRD scenarios

In the presick scenario and both persistency scenarios, additional steps are added to the
calculation of CALF’s accuracy score A (). The main difference of these scenarios is that
not only do we want to have accurate predictions, but it also matters how accurate they
are with respect to the day of BRD diagnosis. The goal is to make an accurate prediction
as early as possible, i.e., several days before BRD diagnosis in the presick scenario, and as
soon as BRD is diagnosed in the persistency scenarios. However, accuracy is a single score
that does not account for such time component. Thus, we envision a linear combination
of accuracy scores and weights, where weights can be properly tuned to prioritize the days
where high accuracy is most important. By doing so, we are instructing the algorithm to
give us a high score A () when high accuracy is obtained in the prioritized days.

Therefore, we split a window of 10 days in two sub-windows that can be properly tuned
to fit our weight requirements. One window is characterized by a low start and a quick
growth, while the other window starts high and decreases slowly. These behaviors are
defined, respectively, by an exponential function and a logarithmic function, as follows:

E (d) = e(d−q), L (d) = ln(−d− (p+1)) (3.3)

where p and q are properly set based on the day in which we want our weight functions
to go to 0, and d is the day in which the weight is calculated.

Specifically, in the presick scenario, L (d) is applied for −5≤ d ≤−1 with p = 0, while
E (d) is applied for −10 ≤ d ≤ −6 with q = −11, thus prioritizing the highest accuracy on
day -5. In fact, while trying to get a high accuracy any earlier would be unrealistic [41], a
high accuracy on day -5 intrinsically gives good performance in the days closer to diagnosis
as well (−5 ≤ d ≤ −1). Then, weights are normalized. Specifically, each sub-window is
individually normalized first, and then all weights properly scaled to have an overall sum
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Figure 3.3: Weights of A ()

equal to 1. Scaling parameters are set to 0.3 for the logarithmic weights and 0.7 for the
exponential weights, which give equal maximum values in each sub-window. On the other
hand, in both persistency scenarios, L (d) is applied for 2≤ d ≤ 9, with p =−12, while E (d)
is applied for 0≤ d ≤ 2 with q = 0, thus setting the highest weight on day 2, i.e., the third
day of BRD [102]. After individual normalization, futher scaling is applied with weights of
0.2 and 0.8 respectively. Fig. 3.3 shows a visual representation of the final weights for each
scenario.

3.5 Data Collection and Data Processing

3.5.1 Data Collection

We collected data from 159 calves through a mix of modern precision technologies for
automatic tracking, as well as manual health exams as supported by state-of-the-art dairy
veterinary research [109, 40]. Our dataset is publicly available at [51].

Automatic Attributes

Precision technology sensors deployed at the farm are employed for data collection of auto-
matic attributes and consist of the following 2 sub-groups: activity behavior data, and
feeding behavior data (divided in milk and grain).

Activity behavior data: Each calf wears a commercial pedometer sensor, IceQube2,
with a three-axis accelerometer strapped to the rear left leg at 24 hours of age. Data are
collected at a frequency of 4Hz, and a summary of the collected data are sent to a cloud
server every 15 minutes. Daily summaries of the following attributes are then generated:
total step count (steps/day), lying time (hours/day), lying bouts (bouts/day), and motion
index (a score for total activeness).

Feeding behavior data: Each calf has a commercial unique RFID tag attached to the
left ear. On average, at 3 days of age, calves are trained to drink up to 10 L/d of milk
replacer from a commercial automated calf feeder3 with a maximum 3L meal size allocated

2https://www.icerobotics.com/researchers/#sensors
3https://www.foerster-technik.com/calf-feeding/automatic-calf-feeder/
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across a 24 hour interval. A separate commercial automated feeder4 dispenses grain, but no
limits are set for grain meal size. When a calf approaches the automated milk feeder, the
software recognizes each RFID to identify if a calf qualifies for a milk meal. After each new
visit, data are sent to the cloud server, and at the end of each day, data are summarized
into daily attributes for each calf: milk intake (L/day), percentage of milk consumed (%),
daily average drinking speed (ml/min), 12-day average drinking speed (ml/t), rewarded
visits (visits/day), and unrewarded visits (visits/day). The grain smart feeder records the
daily grain intake (g/day) for each calf.

Manual Attributes

Conversely, manual attributes are manually collected by trained researchers and consist
of the following 3 sub-groups: health exam data, weight data, and lung ultrasound
data. As opposed to automatic features, which require a one-time setup of devices and
maintenance of the technology, highly skilled and intensive labor is required to retrieve
manual features about the calves.

Health exam data: A health exam is performed on each calf daily using a validated
veterinary system for identifying Bovine Respiratory Disease, the Wisconsin scoring system
[104]. Specifically, a score from 0 (no signs) to 3 (severe signs) is assigned to each of the
following attributes: nasal discharge score, eye discharge score, ear tilt score, cough score,
and a rectal temperature score. A BRD total score is also created, where abnormal scores in
each category are summed. Respiration rate for each calf is assessed daily as either normal
or labored [118]. Finally, each calf’s umbilical health, and fecal score are collected as part of
the daily health exam since these non-respiratory parameters have shown to be predictive
of mortality in calves [119].

Weight and ultrasound data: Body weight by scale5 and ultrasound attributes by
lung ultrasound6 are collected once every three days in each calf.

Finally, two more attributes are considered, namely, the age of the calf and the Im-
munoglobulin G (IgG) status at 48 to 72 hours of age, the IgG is a measurement of successful
transfer of passive immunity status from the cow’s colostrum to the postnatal calf.

3.5.2 Data Processing and Output Labels

Due to the nature of the data collection processes and the corresponding technologies, dif-
ferent datasets are created. Specifically, each automatic attribute group has its own cloud
server, due to the fact that the employed solutions are not built in-house, but rather pur-
chased from commercial precision livestock farming companies. Because the development of
signs of BRD in calves occurs over several days [109], daily summaries are created for each
dataset and they are merged together into one dataset. Reducing the data into daily sam-
ples, rather than, for example, hourly summaries, may seem like a loss of detail. However,
it is important to note that calf feeding behavior peaks in the morning and the evening,
thus certain information are not actually perceived at a finer detail [120]. However, weight
and ultrasound, are collected once every three days. Hence, weight data are filled in by
means of a linear interpolation to simulate the natural growth of the calf’s weight, while
ultrasound data are filled in by propagating each collected data point forward.

4https://www.foerster-technik.com/calf-feeding/calf-feeder-accessories/maxiflex-feeding-box/
5https://www.brecknellscales.com/products/veterinary-scales/ps1000-/-ps2000-veterinary-scales.html
6https://www.eimedical.com/pro
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An output label named BRD status defines the ground truth. BRD positive samples
are represented by two categories with abnormal scores according to the Wisconsin Scoring
System [104] and lung consolidation at 3cm2 is observed by ultrasound [110]. Thus, “day 0”
represents the first day of BRD. For each calf that develops BRD, the first day of diagnosis
is labeled with 0. Samples preceding day 0 are labeled from −1 up to −10. Similarly, the
days after day 0 are labeled with increasing numbers, until the signs of BRD are resolved.
Healthy data points are labeled with −∞.

In order to gather how behavior changes over a certain time frame, we perform a seg-
mentation to summarize the information within a window of consecutive days into one
single sample. For each of the 25 attributes within a window, four features are extracted,
namely, mean, minimum, maximum, and sum, excluding the age of the calf for which only
the maximum is calculated. Thus, we have a total of 97 features. Then, the window shifts
by one data point at a time, and each window is labeled based on BRD status of the last
sample.

In the diagnosis scenario, samples with BRD status ≥ 0 are labeled as sick (S(+)), BRD
status ≤ −10 as healthy (H(−)), while in the presick scenario, samples with −10 < BRD
status < 0 are labeled as pre-sick (PS). Furthermore, in the persistency scenarios, a portion
of the sick calves are labeled as relapse if they are sick for longer than 14 days and up to 20
days, while calves labeled as chronic are sick for longer than 21 days. Note that, as further
mentioned in Sec. 3.4.1 and shown in Fig. 3.2, relapse and chronic samples are labeled as
such from day 0, despite their eligibility being related to days 14 and 21. This labeling is
necessary in order to train models so that they can early predict such persistency status in
the first days of sickness.

Finally, we perform standardization, which consists of scaling each individual feature
to have mean equal to 0 and standard deviation equal to 1, thus creating homogeneous
distributions that machine learning models can fairly interpret.

3.6 Machine Learning

In this section we provide further details on the training of our models under each scenario,
such as how the dataset was split into training and testing, which samples and calves were
included in the model, and what algorithms were used. Specifically, we first provide general
information about our realistic calf-based train/test split methodology. Then, we discuss
the details of the training phase of each scenario.

3.6.1 Train/Test Split

The classic and most common approach of splitting the dataset into training and testing is
through a random sampling, based on a certain ratio of training and testing data. However,
in this specific context, such approach is unrealistic, even though it has erroneously been
proposed in similar works [41, 42, 43]. This would add samples of a single calf to both
training set and testing set. As a consequence, the trained model would classify a calf’s
sample almost perfectly, because it may already have information about its past and its
future. On the other hand, while it may be realistic to split your dataset in such a way
that only past knowledge is exploited to make inferences about the future, this approach
might never use information of calves beyond a certain age, which is undesirable. Thus,
in order to produce realistic experiments, we propose a methodology according to which a
calf belongs to either training or testing, but not both. At the same time, samples from a
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calf may have more than one label. Hence, selecting calves in a way that the training set is
properly balanced is non-trivial.

Firstly, our train/test split methodology finds the number of samples of the minority
label corresponding to a certain training percentage, e.g., 75%. Then, for each label, we
randomly pick calves and add the portion of their samples with such label, until the cal-
culated 75% threshold is reached. Finally, we randomly remove the excess samples of the
majority label, if such situation occurs, in order to ensure balance. All remaining data from
calves that have not been added to the training set are simply added to the testing set.

As a practical example, consider having 720 sick samples from 35 calves, and 1030
healthy samples from 25 calves. The 75% threshold of the minority label consist of 540 sick
samples. A portion of the 35 sick calves is randomly selected, and added one by one to the
training set until a total of at least 540 samples is reached. Then, the same exact process
is carried out for healthy samples. After this step, we may end up with 542 sick samples
from the first selection, and 551 healthy samples. Hence, we apply a further balancing step
by discarding 9 of the excess healthy samples, which are simply removed and not used in
either training or testing. All remaining samples, i.e., 178 sick samples and 479 healthy
samples are added to the testing set, without balancing.

In the rest of the paper, when referring to a 75/25 train/test split, we refer to 75% of
the minority label, as just described. Intuitively, this tends to be less than the 75% of the
whole dataset due to 1) 75% is applied to the minority label of a potentially imbalanced
dataset, depending on the scenario, and 2) a further balancing step is applied at the end
which leads to discarding a few extra samples.

3.6.2 Training models

The methodology used to train a model has a high impact on the prediction performance
of a classification task. In addition, the definition of labels in our dataset is complex and
dependent on a time component that needs to be taken into account. Thus, we now present
how our models were trained under each scenario, and the labels being classified.

First, the diagnosis scenario detects whether a calf is sick, with outward signs of BRD,
or healthy. In this scenario, we simply split the dataset into training and testing considering
all sick and healthy samples, as defined in Sec. 3.5.2. However, we remove presick samples
to make sure that our models are not trained with ambiguous data, since these samples
may exhibit sickness without having outward clinical signs of BRD.

The presick scenario detects if a calf is healthy or presick, i.e., the calf is going to get
sick but does not yet show clinical signs. A clear and formal definition of the time range
that defines the early stage of BRD status does not exist, which makes labeling these calves
challenging. Besides, if an additional presick label was added to sick and healthy labels,
the strength of our models would be damaged by the balancing step, since the number
of presick samples is much lower than sick and healthy ones. However, intuitively, it is
expected that presick samples would have a certain similarity to healthy samples when they
are chronologically farther from BRD diagnosis, and a similarity to sick samples otherwise.
Hence, we expect our model to classify our presick samples as sick when they are closer
to BRD diagnosis, and healthy otherwise. In light of this, our training set for the presick
scenario consists of only sick and healthy samples. Presick samples are only added to
the testing set, which also includes the remaining healthy samples not used for training.
Furthermore, sick samples of the training set are limited to the first five days of sickness,

26



since symptoms may start changing with prolonged BRD and not be representative enough
of the presick stage.

Finally, both persistency scenarios evaluate sick calves to assess whether they will re-
lapse or become chronic. Specifically, each scenario consists of a binary machine learning
model that includes labels from one BRD persistence status, i.e., either relapse or chronic,
evaluated against sick calves, i.e., calves that recover within 14 days. Training is carried
out using a 3-day moving window centered around the day where the prediction is being
made. Similarly to the presick scenario, due to the individual variation of sickness over
time, a small training window helps at performing a more accurate detection since it is
more indicative of the sample being classified, despite losing training samples from other
days. By doing so, we are able to perform the early prediction of BRD persitency status in
these calves within the first few days after sick diagnosis. Such contribution would prove
extremely helpful to domain experts, as this may increase the likelihood of faster BRD
recovery and more efficient decision making, such as flagging the calf to be sold for beef
once antimicrobials are no longer circulating [103].

3.7 Experiments

In this section we present the results of our solution and compare its performance against
the comparison approach.

3.7.1 Experimental Setup

We ran our experiments on real-field collected data consisting of 159 calves over a period
of 24 months, namely, a period from June 2018 to September 2019, and another period
from February 2020 to November 2020. Due to the pen size, only 20 calves at a time were
monitored simultaneously. Overall, 58 calves are healthy and never incurred BRD, 101
calves incurred BRD, of which 23 relapse and 47 become chronically ill. Note that sick
calves still contributed to the dataset with a portion of healthy samples, since they are not
born sick, and may recover after being sick. The dataset is divided in 7 cost groups, one per
data collection method. For each group, we have assigned a start-up cost and a daily cost.
Each cost is considered on a per-calf basis. Daily costs include maintenance and operation
costs where applicable. All costs are from [44], while costs associated with lung ultrasound
exams are from [121].

For manual labor, we consider the start-up cost as 12 weeks of training, which means
paying employee labor and management labor at $14/hour and $22/hour respectively, for
20 hours a week. We also take into account turnover rates at 38.8% [122]. For the daily cost,
we consider management labor at $22/hour. Daily costs are considered per day and per
calf. Hence we divide hourly rate by 12 (as a result of 5 minutes of manual labor per calf),
for each manual feature group. Daily cost related to weight and ultrasound were further
divided by 3 since they were collected once every three days. Monthly costs of maintenance
were divided by 30 (i.e., the average number of days in a month), and included as daily
costs. Then they were divided again by 20 (number of calves in pen) to consider costs
on a per-calf basis. In summary, we reported costs for start-up and daily costs as follows:
$89.50 and $0.38 for activity behavior, $13500 and $4.35 for milk feeding, $6500 and $1.62
for grain feeding, $890.5 and $0.73 for weight, $11,992 and $1.83 for health exam, $0.0 and
$6.23 for ultrasound, as well as $0.0 and $0.0 for calves’ age and Immunoglobulin G (IgG),
respectively.
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(b) Zoomed-in trend

Figure 3.4: Trends of CALF’s accuracy and solution size. Dashed line is the solution size;
continuous line is the accuracy

The algorithms we use are Gradient Boosting Classifier (GBC) for the diagnosis sce-
nario, and Support Vector Machines (SVC) for all other scenarios, with a window size of
3 for segmentation. Furthermore, the following parameters are set for CALF: L = 1000,
α = 0.5, and β = 0.5. Different budgets are considered as varying parameters of our exper-
iments, namely, start-up budgets of $7,500 and $15,000, and daily budgets of $0.5, $1.5,
$2.5, $5.0, and $9.0. The results are reported after performing a 10-fold cross validation with
a 75/25 train/test split in diagnosis and presick scenarios, and 70/30 split in the persistency
scenarios due to the small number of samples. Finally, we provide some of the machine
learning models’ parameters used in the experiments. For GBC, we used a binomial loss
function, the learning rate was 0.1, criterion to measure the quality of a split was the mean
squared error with Friedman improvement, the minimum number of samples to split a node
was 2, and the maximum an individual estimator had was 3. For SVC, we use a radial basis
function kernel, with a scalable value of gamma equal to 1

N×var (N is the number of training
samples and var their variance), a tolerance of 0.001, and a regularization parameter of 1.0.
Finally, results are displayed using the metric of unweighted mean accuracy, which means
accuracy values were calculated individually for each class, and then simply averaged. As
opposed to a weighted accuracy, which would heavily consider the dominant label in the
testing set, this metric fairly represents both, while resulting more intuitive than F1-scores.

3.7.2 Preliminary results

In Fig. 3.4, we show how CALF behaves and performs. For this experiment, the start-up
budget was set to $15,000, while the daily budget was set to $2.5, hence only a portion
of all features are available. Both plots show the accuracy obtained by the algorithm and
the respective size of the selected feature set across CALF’s iterations. In Fig. 3.4a the
results of the full execution are shown. Here, the trend of the length goes up and down
quite consistently throughout the 1000 iterations, showing that our algorithm effectively
explored the features set, increasing and decreasing its size to largely explore a wide variety
of combinations. However, we see a small gap between iteration 500 and 600. Intuitively,
this corresponds to the stage where greedy actions are more likely to occur, as opposed to
random actions. In fact, after this stage, the unstable trend of accuracy starts converging
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and a high accuracy is maintained. In addition, Fig. 3.4b demonstrates a zoomed-in
version of the full execution and thus allows us to present further details of the CALF’s
behavior. Here, it is clear that a high feature solution size does not necessarily lead to
a higher accuracy, and thus further highlights the non-trivial complexity of the problem.
Specifically, while the solution size has a local maximum between iteration 450 and 500,
the local maximum of the accuracy score is found between iteration 300 and 350.

3.7.3 Comparison Approach - Bowen et al.

We also compared our results against a recently published state-of-the-art approach that
performs BRD prediction in calves with machine learning techniques [43]. We implemented
the authors’ feature selection, which consisted of removing and adding back each feature,
and evaluated their importance, calculated as their mean accuracy decrease/increase. Each
feature was assigned an importance score, and those with a value higher than or equal to 0.09
were utilized. We further extended their feature selection to include budgets. Specifically,
we selected features, starting from features with the highest importance score, until the
maximum allotted budget was met. Train/test split was performed in each scenario using
the same methodology used for CALF, and it was fixed at a 70/30 ratio, as indicated by the
authors [43]. The adopted machine learning algorithm uses Random Forest, with a window
size of 3. Somne of the arameters provided in the manuscript include the number of trees
set to 3001, and the number of variables to use at each split set to 3. More details can be
found at [43].

3.7.4 Diagnosis Scenario

The first set of results on Fig. 3.5 shows a visual representation to qualitatively appreciate
how CALF performs, which uses feature selection CALF and prediction algorithm GBC.
In this graph, we use one of the cross-validated trained models, and a randomly selected
pool of calves from the testing set, using a start-up budget of $15,000 and a daily budget of
$5.0. The x-axis shows time information with daily precision, while each line on the y-axis
represents predicted labels and ground truth of a specific calf. Overall, it’s clear that our
predictions fairly match the ground truth. Besides, often the algorithm predicted evidence
of sickness behavior before the ground truth, or outward symptoms of BRD, such is the
case of calf ID 1966 and 303. This agrees with animal science research, calf behavior often
changes before outward symptoms are visible, a phenomena known as the sickness behavior
response [123, 41]. Furthermore, in the case of calf 1080, the algorithm is able to grasp a
slight improvement which is due to the antibiotic shot given on the 7th day of BRD (as
described in Sec. 3.4.1), which results in a relapse of the disease itself that CALF is able to
detect. In the the following, we dive deeper into these results with quantitative experiments
for the detection of BRD diagnosis as well as subsequent BRD stages.

Fig. 3.6 further evaluates the diagnosis scenario, looking at the performance of CALF
against the comparison approach Bowen et al. by means of unweighted mean accuracy.
Each figure has a fixed start-up budget, and daily budgets vary across the x-axis. Results
show that CALF outperforms Bowen et al. across all scenarios. Although the adopted
machine learning algorithms are different, CALF’s better performance is to be attributed
to its feature selection abilities. In fact, GBC (CALF’s adopted machine learning models)
and Random Forest (Bowen’s adopted model) are intrinsically very similar algorithms.
However, CALF shows significant improvements with a higher start-up budget, as shown
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Figure 3.5: Visual representation of diagnosis prediction
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Figure 3.6: CALF performance of the presick scenario against Bowen et al.
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in the differences between Fig. 3.6b and Fig. 3.6a, with a significant boost between daily
budgets $2.5 and $5.0. The improvement at these particular values resides on the fact that
feature groups such as feeding behaviors and health exams become available, and CALF is
able to take full advantage of the additional information, as opposed to the more traditional
feature selection proposed by Bowen et al.

These figures also provide additional information. We notice a big performance increase
when a daily budget of $9.0 is reached, which occurs with both start-up budgets. Intuitively,
this is due to the availability of ultrasound data, which costs over $6.0 daily and thus can
only be selected with this budget. In fact, lung consolidation detected by ultrasound tends
to be extremely informative of BRD, since it is how pneumonia is diagnosed with the
greatest sensitivity [105]. We also noticed that very small or very high daily budgets do not
benefit greatly from a higher start-up budget, as opposed to intermediate daily budgets.
In fact, on one hand, low daily budgets do not gain more information with higher start-up
budgets. On the other hand, ultrasound, available at a high daily budget with $0.0 start-up
cost, is able to perform well on its own without further additional information. However, it
is likely that only very large farms could afford this expertise at such a high daily budget
by diluting the cost through economies of scale.

3.7.5 Presick Scenario

In this experiment, we evaluate the presick scenario under two different budget scenarios.
The low-budget scenario shown in Fig. 3.7a consists of a start-up budget of $7,000 and
daily budget of $1.5, while the high-budget scenario shown in Fig. 3.7b consists of a start-
up budget of $15,000 and a daily budget of $5.0. Each data point shows the accuracy
of the algorithm regarding predictions in the days prior to BRD diagnosis in the calves.
Results are shown with respect to the maximum prediction accuracy of the algorithm in
the diagnosis scenario. Hence, the 0.79 accuracy at one day prior to BRD diagnosis in
Fig. 3.7a means that the accuracy is 79% of the maximum prediction of BRD diagnosis.
Thus, the actual accuracy of each data point can simply be multiplied by the maximum
diagnosis at 0.88. Finally, note that each data point also includes the prediction accuracy
of healthy samples and the displayed accuracy is the unweighted mean accuracy of pre-sick
and healthy labels.

The low-budget scenario in Fig. 3.7a involves activity behavior data, weight, and calf’s
age. Although prediction accuracy is not very high, our model can still classify 2 out
of 3 calves who are developing BRD up to 4 days prior to BRD diagnosis. In addition
CALF outperforms Bowen et al. on each day prior to BRD diagnosis. In the high-budget
scenario shown in Fig. 3.7b, CALF uses weight, calf’s age, and health exams, showing
significantly improved algorithm performance. In fact, 4 days prior to BRD diagnosis the
accuracy increased to 0.81 w.r.t. diagnosis prediction, corresponding to a final accuracy of
0.72. On the other hand, 1 day prior to BRD diagnosis, the prediction accuracy is 0.85
w.r.t. diagnosis prediction, corresponding to 0.76 final accuracy. Finally, CALF improves
performance with a higher budget by effectively selecting features, and is able to create a
bigger gap with respect to the lower budget scenario than Bowen et al., which are unable
to further improve performance due to their limited feature selection.
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Figure 3.7: CALF performance of the presick scenario against Bowen et al.
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Figure 3.8: CALF performance of the persistency scenario against Bowen et al.
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3.7.6 Persistency scenarios

Fig. 3.8 shows the performance of the relapse and chronic scenarios within the first five days
of BRD, i.e., the prediction of detecting calves who are sick for more than 14 days and 21
days respectively, within the first five days of sickness. In this experiment, we used a start-up
budget of $15,000 and a daily budget of $2.5. The relapse prediction of CALF has moderate
accuracy, showing the ability to predict about 2 out of 3 relapse calves. In addition, CALF
outperforms the comparison approach. It is worth mentioning that our dataset only has
23 relapse calves, which may not be enough to properly train a prediction model. Thus,
our performance may improve when more data is available. In addition, relapse calves tend
to show behaviors that are quite similar to sick calves. Thus, detecting 2 out of 3 calves
within the first five days of sickness is a significant achievement. On the other hand, the
prediction of chronic status calves is much higher, and performs significantly better than
the comparison approach. In addition, this is the first work of its kind that demonstrates
that relapse status BRD calves and chronic status BRD calves can be identified within a
few days after the initial antimicrobial intervention. In fact, with an overall accuracy of 0.8
within the first 5 days after BRD diagnosis, a similar model would prove extremely helpful to
farmers, who usually re-treat their relapsed calves once clinical signs of BRD re-emerge [42].
This is even more so for potential chronic cases, as these calves likely endure pain, have
compromised productivity, and long BRD bouts with several antimicrobial interventions
which are emotionally and fiscally taxing for dairy producers [39].
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4 Using Machine Learning and Behavioral Patterns Observed by Automated Feeders
and Accelerometers for the Early Indication of Clinical Bovine Respiratory Disease
Status in Preweaned Dairy Calves

©2022 Frontiers. Reprinted with permission from Enrico Casella, “Using Ma-
chine Learning and Behavioral Patterns Observed by Automated Feeders and
Accelerometers for the Early Indication of Clinical Bovine Respiratory Disease
Status in Preweaned Dairy Calves”, 2022 Frontiers in Animal Science
DOI: 10.3389/fanim.2022.852359

The objective of this retrospective cohort study was to evaluate a K-Nearest Neighbor
(KNN) algorithm to classify and indicate Bovine Respiratory Disease status using behav-
ioral patterns in preweaned dairy calves. Calves (N=106) were enrolled on this study which
occurred at one facility for the preweaning period. Precision dairy technologies were used to
record feeding behavior with an automated feeder and activity behavior with a pedometer
(automated features). Daily, calves were manually health scored for Bovine Respiratory
Disease (Wisconsin scoring system) and weights were taken twice weekly (manual features).
All calves were also scored for ultrasonographic lung consolidation twice weekly. A clinical
BRD bout (day 0) was classified as 2 scores classified as abnormal on the Wisconsin scoring
system and an area of consolidated lung ≥ 3.0cm2. There were 54 calves diagnosed with a
clinical BRD bout. Two scenarios were considered for KNN inference. In the first scenario
(diagnosis scenario), the KNN algorithm classified calves as clinical BRD positive or as
negative for respiratory infection. For the second scenario (pre-clinical BRD bout scenario)
the 14 days before a clinical BRD bout were evaluated to determine if behavioral changes
were indicative of calves destined for disease. Both scenarios investigated the use of auto-
mated features, manual features, or both. For the diagnosis scenario, manual features had
negligible improvements compared to automated features, with an accuracy of (0.95±0.02)
and (0.94± 0.02), respectively, for classifying calves as negative for respiratory infection.
There was an equal accuracy of (0.98±0.01) for classifying calves as sick using automated
and manual features. For the pre-clinical BRD bout scenario, automated features were
highly accurate at −6 days prior to diagnosis (0.90±0.02), while manual features had low
accuracy at −6 days (0.52± 0.03). Automated features were near perfectly accurate at
−1 days before clinical BRD diagnosis compared to the high accuracy of manual features
(0.86±0.03). This research indicates that machine learning algorithms accurately predict
clinical BRD status at up to −6 days using a myriad of feeding behaviors and activity
levels in calves. Precision dairy technologies hold the potential to indicate BRD status in
preweaned calves.

4.1 Introduction

Respiratory disease in cattle has a multifactorial etiology, an external stressor can lead
to a bacterial infection which compromises the respiratory tract [104]. The outward signs
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of respiratory disease include labored respiration [118], coughing, cloudy or colored nasal
and eye discharge, fever, and head tilt (cumulative scoring of abnormal categories, referred
to as the Wisconsin scoring system [104]). The Wisconsin scoring system has moderate
sensitivity (= 0.62) and specificity (= 0.74) for diagnosis compared to lung ultrasonography
scoring (> 1cm2= clinical BRD; [124]). Indeed, lung ultrasonography in combination with
the Wisconsin scoring system has improved the sensitivity (= 0.79) and specificity (= 0.94)
for diagnosis of respiratory diseases in calves, and thus, it is the optimal system to date
[125]. However, many producers are adopting precision technology on farm, and the utility
of these automated technologies to find calves who show outward signs of respiratory disease
and have lung consolidation needs investigation.

Precision dairy technology devices (PDT) could alert for calves who change their be-
havioral patterns prior to outward signs of respiratory disease, but producers will ignore
alerts that have poor sensitivity for detecting disease in cattle [126]. Thus, it is imperative
to develop an algorithm to indicate respiratory status in calves using behaviors captured
by precision technology. One of the largest barriers for a producer to adapt a PDT on
farm is the producer’s familiarity with the technology and the producer’s perceived value
of the data [127]. For socially housed calves, automated milk feeders were reported to be
used by 16% of Canadian dairy producers [128], providing an opportunity for researching
PDT which is familiar to some producers. Similarly, accelerometers were reported to be a
commonly researched PDT on dairy farms [129]. Additionally, less than half of producers
in the UK use individual housing, demonstrating a need for methods which detect diseases
in socially housed calves [130]. Thus, investigating the potential of familiar PDT such as
an automated feeder and an accelerometer to indicate a calf who has outward signs of
respiratory disease and is positive for lung consolidation is valuable.

Sickness behaviors are well-documented in research with automated milk feeders in
calves. It was observed in a scoping review by [131] that calves decreased their milk intake,
drinking speed, and their unrewarded visits prior to clinical diagnosis of disease. To a less
researched extent, sickness behaviors were also reported in research with accelerometers.
As reviewed by [40], calves decreased their daily lying bouts, step counts, and increased
their lying time prior to calves showing signs of respiratory disease. Thus, we suggest that
automated milk feeders and accelerometers are technologies which may capture sickness
behaviors in calves, but more research is needed to develop an accurate algorithm for
indicating calves who show outward signs of respiratory disease and have lung consolidation.

Machine learning techniques might be useful to detect respiratory bouts in dairy calves.
The addition of data in real time refines the inference capabilities of machine learning, plus
many behaviors can be collected with these devices to detect changes in an individual calf’s
patterns, the per animal approach [132]. However, in order to develop algorithms which
detect changes in behavioral patterns in individual calves, machine learning research must
first quantify if automatically collected variables are indicative of disease. Specifically,
it is important to find calves with lung consolidation and outwards signs of respiratory
disease. This has been the case with dairy cattle research. For example, [129] concluded
in a systematic review that changes in behavioral patterns (e.g., activity levels, rumination
etc.,) can accurately predict ketosis or mastitis in dairy cattle; 21 studies used either decision
tree algorithms, support vector machines, or neural networks to accurately detect these
diseases. However, to our knowledge, only one study has used machine learning techniques
(e.g., decision tree algorithms or deviations from rolling averages in lying time) to indicate a
respiratory disease in calves [43]. Furthermore, [43] observed only a moderate sensitivity (=
0.54) and accuracy (= 0.75) for these algorithms to indicate respiratory disease, highlighting
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that more research is needed.
A promising machine learning technique used for studying inference problems is the K-

Nearest Neighbor (KNN) algorithm. KNN classifies input data by considering the nearest
k neighbors in a multi-dimensional space based on a distance metric [133]. KNN has the
advantage of labeling time series data. For example, the days leading up to diagnosis of
clinical disease of the respiratory tract could be labeled as ”pre-clinical BRD bout” Thus,
the KNN algorithm can project data into a multi-dimensional space to label samples closer
to disease diagnosis as well as after the diagnosis as ”sick.” Similarly, this algorithm might be
able to distinguish behavioral patterns which are in high similarity between the behavior
of pre-clinical BRD labeled samples and the behavior of samples labeled as positive for
respiratory infection. Furthermore, KNN requires less training data than neural network
based approaches. Thus, we suggest that a KNN algorithm has the potential to accurately
indicate changes in respiratory status in preweaned dairy calves, but it is unknown how
accurate PDT data would be. Additional details on KNN are provided in Sec. 4.3.6.

The objective of this study was to use a novel approach to the industry challenge of
automatically finding calves who were positive for clinical bovine respiratory disease. We
also aimed to investigate if the algorithm could accurately label data as pre-clinical BRD
bout in the 14 days leading up to diagnosis of respiratory infection using automated features
such as feeding behavior and activity levels collected by PDT and manual features such as
health scores, body weights, and passive immunity status at 48 hours of age. Specifically,
we aimed to find calves with lung consolidation and outwards signs of respiratory disease.
We hypothesized that the KNN could label calves with pre-clinical BRD bouts using only
automatic features since others observed associations of these behaviors with disease status
in calves.

4.2 Materials

This study was conducted at the University of Kentucky Coldstream Research Dairy Farm
in Lexington, KY, USA from 28 May 2018 to 9 September 2019. All calves enrolled were part
of the Institutional Animal Care and Use Committee approval number 2018: 2864. This
study and manuscript were conducted following the quality standards of Strengthening the
Reporting of Observational Studies in Epidemiology Veterinary Guidelines [134].

4.2.1 Enrollment criteria and automated and manual attributes

Calves (N=106) were enrolled on this study which occurred at one facility for the preweaning
period of 50 days. Precision technologies (referred to hereafter as automated attributes)
were used to record feeding behavior, activity levels, and the barn ambient temperature and
humidity level (seasonal data) for all calves enrolled on this study. Feeding behavior was
recorded with an automated feeder which recorded daily milk intake (L/day), average daily
milk allotment consumed (percentage), drinking speed (ml/min), a rolling 12-day average
drinking speed (speed percent), rewarded visits (visits/day; where milk was consumed),
and unrewarded visits to the feeder (non-nutritive visits per day when calves were ineligible
to retrieve milk). A separate automated feeder recorded calf starter intake daily (g/day;
e.g., solid feed intake). All calves on this study also wore a pedometer (IceQube, Ice
Robotics, Scotland) attached to the left rear leg to track activity levels including lying time
(hours/day), lying bouts (bouts/day), total step count (steps/day) and activity index (a
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metric generated by the commercial algorithm based on average rate of acceleration and
total activeness).

Daily, calves were manually health scored for Bovine Respiratory Disease (clinical BRD;
Wisconsin scoring system, WI, USA). Twice weekly, calves were scored with thoracic ultra-
sonography to confirm clinical BRD diagnosis. A clinical BRD bout (day 0) was classified
as two categories of abnormal scores as defined by the Wisconsin scoring system and an
area of consolidated lung ≥ 3.0cm2. There were 54 calves diagnosed with a clinical BRD
bout at 29.0±9.0 days of age (mean ± SD). Health features such as outward signs of clinical
BRD (e.g., further described in health section), body weight, rectal temperature, and calf
passive immunity status at 48 hours of age are referred to hereafter as manual attributes.
Since some manual attributes required calf restraint to collect such as body weight, passive
immunity status, and rectal temperature, it was also of interest to quantify the additional
accuracy gained when collecting these attributes in the days approaching clinical BRD di-
agnosis. We assessed for 48 h serum BRIX value as an input feature since [135] observed
that increasing serum IgG status at 48 h was associated with improved health outcomes in
calves. Thus, manual attributes were also categorized by effort (e.g., further described in
statistical analysis section). A complete list of features evaluated is available in Table 4.1.

All calves enrolled on this study had, on average, 49.5/50 complete days of pedometer
and automated feeder data, with a maximum of 16% data loss. (e.g., more details in
statistical section). Calves were excluded from this study and sold if they were a twin,
or had indication of low passive immunity status at 48 hours of life (e.g., less than 8.0%
BRIX).

4.2.2 Management and feeding

A complete description of the care and management of calves on this study can be found
in [117].

Each calf was fitted with an RFID tag in the left ear for identification by the automated
feeders, and each calf wore a pedometer (IceQube, IceRobotics, Edinburgh, Scotland) at-
tached above the metatarsal of the rear left leg using a Velcro band to track activity behav-
iors. Calves were allotted up to 10L milk replacer every day from the automated milk feeder
(Cow’s Match Cold Front; Land O’ Lakes Animal Milk Products Co., Shoreview, MN) for
50 days. Calves enrolled on this study were trained to drink milk from the automated feeder
at 3.0± 2.0 days of age. Calves could consume milk in a minimum meal size of 0.5L and
a maximum meal size of 3L. There was one automated milk feeder located within a group
pen (4.57×10.67m2) and the stocking density was 6±3 calves (mean±SD).

A separate automated calf starter feeder (Compact Smart, Förster-Technik, Engen,
Germany) was present in each pen and contained calf starter (Special Calf Starter and
Grower, Baghdad Feeds, Baghdad, KY); calves were also offered chopped alfalfa hay in a
trough. Both the automated milk feeder and the calf starter feeder were calibrated weekly
according to manufacturer instructions. All calves had ad libitum access to an automated
waterer.

4.2.3 Health exams

Calves were health scored by one of three trained researchers daily every morning (inter-
observer agreement κ > 0.90) for Bovine Respiratory Disease (clinical BRD; [104]), diarrhea
[136] and umbilical infection. The main researcher health scoring the calves was not blind
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to the health status of the calves due to performing health exams daily. The decision
of treatment was performed by the farm staff manager who administered antimicrobial
treatments to the calves and was blinded to the daily examination. The other 2 observers
were blind to the health status of the calves.

Bovine Respiratory Disease signs were recorded daily by trained observers using the Wis-
consin scoring system [104]. The observer assigned a nasal discharge score, eye discharge
score, ear tilt score, cough score, and temperature score to each calf every day. Further-
more, a dichotomous score for heavy respiration was also recorded. The heavy respiration
variable was not used for clinical BRD diagnosis, and was only collected for evaluation as a
potential manual feature in the machine learning algorithm. A trained observer performed
the lung ultrasonography scoring system on all calves twice weekly (e.g., every Tuesday and
Friday) using a portable linear rectal ultrasound (Ibex Pro, E.I. Medical, Loveland, CO)
and 70% isopropyl alcohol as a transducing agent; lung lobes of each calf were evaluated
by 1 of 2 observers (inter-observer agreement Cohens’ kappa; κ = 0.90). The ultrasound
was set to a depth of 9cm, frequency of 6.2MHz, and gain of 23dB (near 13dB; far 36dB).
The observers used the lung ultrasonography methodology first described by [137]. Briefly,
both sides of the thorax were scanned starting at the tenth intercostal space as positioned
dorsally at the level of the scapula of the calf with the probe held parallel to the rib. The
observer first scanned the dorsal aspect of the tenth intercostal space, advancing cranially
toward the ventral aspect of the first to second intercostal space [137]. Lungs were scored
for consolidation according to previous methodology [110]. Briefly, normal lungs had a hy-
perechoic line and reverberation artifact. Calves with lung consolidation had a lung which
was hypoechoic and both the bright white band at the pleural interface and reverberation
artifact were absent. The extend of the lung consolidation was measured using 1 cm grid
marks on the ultrasound screen. We scored calf lungs based on the maximum lung consol-
idation found : normal, 1cm2, 2cm2, and 3cm2. For calves with 3cm2 in at least two lung
lobes we assigned calves a 4 and for calves with lung consolidation in 3 lobes we assigned
a calf a score of 5 to differentiate these clinical BRD calves from clinical BRD calves with
only one lobe of consolidation. However, only calves who relapsed with clinical BRD and
were re-treated at day 15 had lung consolidation at this level.

The diagnosis and treatment of a clinical BRD bout for preweaned calves on this study
required two criteria and these criteria were selected due to the improved sensitivity and
specificity of diagnosing clinical BRD in calves when using the Wisconsin scoring system
and lung ultrasonography collectively [124]. Lung consolidation at 3cm2 was selected to
reduce misclassification error in the observers and since lung consolidation at this level was
associated with long-term effects such as reduced milk in the first lactation [110]. This
was also the selected herd veterinary protocol for this research station and was also chosen
per consult of an expert veterinary researcher. We also selected 3cm2 lung consolidation
to maximize the sensitivity of the algorithm to diagnose a case of clinical BRD, as using a
lower threshold of lung consolidation 1cm2 in this dataset resulted in a poor sensitivity 32%
(13/41) compared to our current definition for disease since many of our calves never had this
level of lung consolidation. Specifically, a calf was clinical BRD positive on the Wisconsin
scoring system which required two or more examination parameters to be moderately (score
of 2) or severely (score of 3) abnormal (adapted from [104]). A calf was also positive for
lung consolidation, as described in [110], a consolidated lung 3cm2 appeared hypoechoic
and both the bright white band at the pleural interface and the reverberation artifact were
absent. Hence, a clinical BRD bout diagnosis on day 0 was the first day that a calf had
an abnormal Wisconsin scoring system score and a consolidated lung 3cm2. For simplicity,

38



the −14 days before a clinical BRD bout diagnosis are referred to as pre-clinical BRD
bout, to classify calves destined for a clinical BRD diagnosis. Calves were labeled as
clinical BRD, for the day of clinical BRD bout diagnosis, and the days after clinical BRD
diagnosis until lung consolidation and signs of clinical BRD resolved.

There were 54 calves who had a clinical BRD bout at an average age of diagnosis at 29.0±
9.0 days (mean ± SD). Calves received antimicrobials on day 0 for a clinical BRD bout. On
the same day of clinical BRD bout diagnosis, calves received enrofloxacin subcutaneously
with dosage calculated by BW (Baytril, Bayer, Leverkusen, Germany; 100mg/15kg body
weight) according to the herd veterinarian protocol. Calves were treated with tulathromycin
on day 15 if clinical BRD had not resolved per our definition (Draxxin, Zoetis Animal
Health, USA; 2.5mg/kg, once at second diagnosis, subcutaneously). Body weights were
recorded at birth and twice weekly using an electronic scale (Brecknell PS1000, Avery
Weigh-Tronix LLC, and Fairmont, MN) for all calves.

4.2.4 Automated technology data

Pedometer

The pedometer was a tri-axial accelerometer which recorded behavioral activity (IceQube,
IceRobotics, Edinburgh, Scotland). The frequency was recorded at 4Hz, and an automated
summary was generated for each behavior for every calf every 15 min and transmitted to
a data cloud wirelessly. Daily summaries were automatically generated by the software for
each calf on the following behaviors: lying bouts, lying time, and total step count as vali-
dated by [138]. Moreover, an activity index score was generated daily by an algorithm from
this accelerometer’s software (IceQube, Ice Robotics, Scotland). This algorithm evaluated
each calf’s average daily rate of acceleration and daily step count to generate an activity
index [139].

Automated calf feeder

The automated feeder’s software (KalbManagerWIN, Förster-Technik, Engen Germany)
summed milk intake, drinking speed, calf starter intake and milk feeder visits (rewarded
and unrewarded visits) into daily summaries for each calf and transmitted the data to a
data cloud associated with the automated feeder software.

Season

Seasonal temperature, and humidity were recorded by a wireless logger placed in the calf
barn (Hoboware, Onset, MA, USA). Seasonal data was summarized into winter, spring,
summer and fall based on temperature and humidity thresholds. These seasons were then
assigned to each calf day as a categorical variable. Details about seasonal summary data
were further described in [117]. A summary of all attributes is provided in Table 4.1.

4.3 Methods

In this section, we present the technical details of our algorithms to manipulate and process
the dataset, as well as lower-level information about the machine learning algorithm we
used.
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All coding and algorithm development was performed using open-source Python coding
(from Python Software Foundation1) along with several open-source sector leading libraries
such as pandas for data structures [140], NumPy for scientific computing [141], scikit-learn
for machine learning algorithm development [142] (e.g., further described in this section),
and matplotlib for the generation of figures [143]. All libraries are NumFOCUS-sponsored
projects2.

4.3.1 Labels and Experimental Scenarios

Data was collected from 106 calves. Each row was a data point of daily information including
automated features and manual features as listed in Table 4.1. Each data point also had a
class column indicating the clinical BRD status of the calf on that day.

The value of clinical BRD status decreased by 1 for every day prior to clinical BRD
diagnosis, until 14 days prior to clinical BRD diagnosis. All other data points had a clinical
BRD status value of −∞. Given such distribution of the clinical BRD status values, we
adopted the following labeling of clinical BRD status. Data points with a clinical BRD
status value of −∞ were labeled as no-clinical BRD (H(−)). Data points with a clinical
BRD status value greater than or equal to 0 were labeled as sick (S(+)). Data points within
the range (−14,0) were labeled as pre-clinical BRD (PS). In summary:

label =


S(+), if clinicalBRD status≥ 0
H(−), if clinicalBRD status≤−14
PS, if −14 < clinicalBRD status < 0

(4.1)

The definition of such labels is strictly related to the experiments we carried out. The
first experimental scenario is the diagnosis scenario, in which we evaluated the perfor-
mance of our algorithm to correctly label calves as sick with clinical BRD or negative for the
disease. We excluded pre-clinical BRD data from this experiment. The second experimen-
tal scenario is called pre-clinical BRD scenario, in which we evaluated the performance
of our algorithm to label calves with pre-clinical BRD bouts. More specifically, in the pre-
clinical BRD scenario, we evaluated the algorithm’s accuracy to correctly label calves as
pre-clinical BRD on a daily basis from day −14 to day −1 prior to clinical BRD diagnosis.

4.3.2 Data cleaning

Figure 4.1 summarizes the processing pipeline of this approach. Data cleaning represents
the first step in the pipeline that we have implemented to process the dataset, and it
consists of removing data points that may potentially alter patterns that the algorithm
tries to capture in order to make predictions [144]. Note that, hereafter, we use the words
“data point” and “day” interchangeably to refer to a row of our dataset, representing the
data of a calf on a single day.

First, we removed days where calves had missing pedometer values. Only 1/5300 days
for one clinical BRD negative calf was removed. Second, we removed days where calves
had missing automated feeder values. A total of 8 consecutive days for 5 BRD negative
calves (40/5299) were deleted due to an error with the automated feeder card storing the
data. Furthermore, one day on 5 different calves was removed since they had at least one

1https://www.python.org/psf/
2https://numfocus.org
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Figure 4.1: Overview of the processing scheme.

variable with incomplete feeder data. Overall, the data cleaning process removed data for
46/5300 day observations, which represented less than 1% of the enrolled days. 106 calves
were represented by the remaining 5254 day observations, with an average of 49.5/50 days
per calf.

Another step of data cleaning consisted of handling missing data for weight and ultra-
sound attributes, since both features were collected once every three days. Missing values
of weight data were filled in by means of a linear interpolation. Specifically, considering a
window of 4 data points (i.e., 4 days) where second and third were null, we replaced such
null values with a linear interpolation of first and the fourth data point, hence simulating
a realistic linear growth of a calf’s body weight. Finally, we filled in ultrasound score by
propagating the last valid observation forward until the next valid observation.

4.3.3 Data processing

In order to prepare the data for the machine learning model, we performed aggregation
and feature extraction. Aggregation is the process of summarizing the information from
a window of consecutive data points into one single sample of data by means of feature
extraction. Hereafter, the term “sample” refers to the result of such aggregation on a
window of consecutive data points. Aggregation is necessary because while outward signs
of respiratory disease may provide meaningful instantaneous information, other information
such as the activity level of a calf simply would not be meaningful if not observed within a
certain time window. Aggregation takes a window of data as input. A window is a matrix
of size N×M, where N is the number of consecutive data points (or days), and M is the
number of features as listed in Table 4.1. Each column of the window was processed through
feature extraction techniques, i.e., mean and standard deviation, hence leading to a sample
of size 1×2M, which summarizes the information of all N data points into 1 single sample.
This aggregation approach was repeated for the whole dataset by shifting the window one
data point at a time, as illustrated in Figure 4.1.

A sample from the dataset (e.g., represented as a calf day) was assigned to one of
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3 labels, not-sick, sick, or pre-clinical BRD. During the aggregation, given a window of
N×M, the set of clinical BRD status was an array of size N×1. We assigned the label of
the last element of such an array to the corresponding sample according to Eq. 4.1.

4.3.4 Data preparation

Data preparation affects the values of each feature since the mean and standard deviation
for each feature was calculated before it was fed to the machine learning algorithm. This
step was necessary because machine learning algorithms are often sensitive to different
distributions of data that each input feature has. By applying a transformation, we helped
the algorithm to make the best use of each input feature and avoided some features to be
improperly dominant over others. Specifically, standardization transformed the input data
by scaling its values to have mean equal to 0 and standard deviation equal to 1, hence
normalizing the distribution of each column.

4.3.5 Feature Selection

Feature selection was the last step before we ran the machine learning algorithm and this
was performed to remove redundant data, and to remove variables which were closely related
to improve the prediction accuracy of the KNN algorithm.

For example, we selected one variable from a pair of features that provided the same
knowledge to the machine learning model. We investigated this by calculating multiple
correlation coefficients, such as Kendall Tau, Pearson, and Spearman rank [145], which
work well with continuous data and categorical ordinal data. Information such as season
was removed and analyzed in the second step of feature selection since this variable was
a categorical nominal feature. For the first step of feature removal, correlation coefficients
were calculated using a portion of the dataset which included clinical BRD positive sick
labels and clinical BRD negative labels. This decision was guided by the fact that as
calves start developing clinical BRD in the pre-clinical BRD stage, the corresponding data
may demonstrate an overlap of the data, which may have significantly altered the feature
selection process.

The correlation score of each coefficient was within the range [−1,1], where values closer
to 1 and −1 represented high correlation. We calculated the absolute value of each pair and
grouped those features with a value higher than 0.75 as similar. We then picked one feature
to be eliminated for each pair. Specifically, if we found one feature to be present in multiple
pairs, then we eliminated its “partners” in each pair, otherwise we eliminated one of the two
randomly to avoid favorably selecting one variable over the other. This step allowed us to
remove a total of 12 out of the 48 extracted features, most of which showed high correlation
with respect to the mean or standard deviation counterpart. Features discarded during the
correlation coefficient process are described in the “Discarded” column of Table 4.1 with
the value “CC”.

In the next feature removal step, performance was tested with pre-clinical BRD calves
only, since we evaluated for high performance of this algorithm to indicate calves who had
pre-clinical BRD bouts. We carried out a leave-one-out approach where we tested the
performance of our algorithm by removing one feature at a time. Specifically a feature was
removed from the final dataset if algorithm performance improved following its removal,
or if the algorithm performance remained unchanged. This was done separately for the
subgroups of automated features. and manual features. We removed 8 additional features.
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Figure 4.2: Overview of training and testing splitting scheme for a K-Nearest Neighbor
algorithm to classify 106 calves as sick (S+) or without respiratory disease (H-) (diagnosis
scenario), and to predict calves as pre-clinical BRD (PS) (pre-clinical BRD scenario) for
Bovine Respiratory Disease.

Features discarded during the leave-one-out approach are described in the “Discarded”
column of Table 4.1 with the value “LOO”. We had a final set of 28 features for the KNN
algorithm.

The final list of features after performing feature selection are reported in bold in Ta-
ble 4.1. We grouped these features into categories by labor effort and also by their data
collection method. The purpose of this labeling was to determine if additional information
that required additional labor to retrieve improved the accuracy of the algorithm’s ability
to indicate a calf destined for clinical BRD diagnosis. We performed this analysis since we
wanted to quantify the value of variables that are associated with calf health outcomes, but
are labor intensive for a dairy producer to collect. All automated features were labeled as
0 effort. manual features that were passively observed by visual observation on calves were
labeled as 1 effort and included the outward visual signs of clinical BRD in calves. Manual
variables requiring calf restraint were labeled as 2 effort and included passive immunity
status, body weight, and rectal temperature. These groupings were used to evaluate what
is the effort and prediction accuracy trade off of a system which indicates calves destined
for clinical BRD status. A full summary of what features were fed to the machine learning
after the selection process are listed in bold in Table 4.1, along with information regarding
their effort category, and data collection method.

4.3.6 Machine learning predictions

Training and Testing Sets

It is common practice, to split the data into a training set and testing set when developing
a machine learning algorithm. A training test is a part of the dataset used to feed the
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Table 4.1: Features used by algorithm to indicate Bovine Respiratory Disease status in 106
calves

Variable Description1 Effort2 Feature Discarded (CC/LOO)3

Milk intake Automated feeder 0 mean No
SD CC

Milk consumed (%) Automated feeder 0 mean CC
SD LOO

Drinking speed Automated feeder 0 mean No
SD No

Drinking speed (%) Automated feeder 0 mean LOO
SD No

Rewarded visits Automated feeder 0 mean No
SD No

Unrewarded visits Automated feeder 0 mean No
SD CC

Starter intake Automated feeder 0 mean No
SD CC

Total step count Accelerometer 0 mean No
SD LOO

Lying time Accelerometer 0 mean No
SD No

Lying bouts Accelerometer 0 mean No
SD No

Activity index Accelerometer 0 mean CC
SD CC

Season Temperature logger 0 mean No
SD No

Nasal score Manual 1 mean CC
SD No

Eye score Manual 1 mean No
SD No

Ear score Manual 1 mean No
SD CC

Cough score Manual 1 mean No
SD CC

Umbilical score Manual 1 mean No
SD No

Respiration score Manual 1 mean LOO
SD CC

Rectal temperature Manual 2 mean No
SD No

Rectal temperature score Manual 2 mean CC
SD LOO

Wisconsin scoring system Manual 2 mean CC
SD LOO

Ultrasound score Manual 2 mean LOO
SD LOO

Body weight Manual 2 mean No
SD LOO

IgG status Manual 2 mean No
SD LOO

1Automated feeder, accelerometer, and seasonal data. Manual features ear, cough, eye, rectal temperature
scores, Wisconsin scoring system was the sum of these scores adapted from [104]. A sick calf had lung
consolidation and was abnormal in Wisconsin scoring system. 2Effort category (0) automated features,
effort (1) low labor manual features, and effort (2) high labor manual features. 3Removal during feature

selection process due to high Correlation Coefficient (CC), or Leave-one-out (LOO) approach. Bold
features in final algorithm44
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Figure 4.3: Intuitive diagram of KNN.

data to the machine learning model which allows it to create the knowledge it needs in
order to classify new samples accordingly. A testing set is the remaining portion of the
dataset, which can be used to evaluate the algorithm performance. Figure 4.2 shows how
our dataset was split into training and testing sets. Our machine learning model was
trained with only clinical BRD positive and clinical BRD negative samples. Not-sick and
sick samples were balanced in the training set to avoid labeling bias from unbalanced data.
We left out pre-clinical BRD samples from the training set since pre-clinical BRD samples
had some similarity to both clinical BRD positive and clinical BRD negative samples that
would have prevented proper training. Furthermore, not enough pre-clinical BRD samples
were available to be used for training. A testing set was created for the diagnosis scenario
and another was created for the pre-clinical BRD scenario introduced in Sec. 4.3.1.For the
pre-clinical BRD scenario, we trained the algorithm with varying proportions: 80% training
and 20% testing of the data samples 70% training and 30% testing, as well as 75% training
and 35% testing. We chose the best algorithm performance (training 80% testing 20%
data samples) to determine if variables which required labor to collect improved algorithm
accuracy.

Note that, as further discussed in Sec. 4.4, several iterations of cross validation were
performed for both training and testing sets improve the robustness of our findings.

K-Nearest Neighbor algorithm

We relied on a machine learning algorithm that makes predictions based on a distance
metric. Intuitively, we expected that, if any similarity existed between pre-clinical BRD
calves and sick calves, a distance-based approach would be the best fit to predict pre-
clinical BRD samples accordingly. Based on these assumptions, we decided to use K-Nearest
Neighbor (KNN) algorithm [146]. The idea behind this algorithm is shown in Figure 4.3.
On a high level, the training process is equivalent to placing each sample in the training
set in an multi-dimensional space and was shown as a bi-dimensional space in the figure
for simplicity. The algorithm performed a prediction by projecting the sample in multi-
dimensional space. Then, it calculated the Euclidean distance of the k nearest samples, and
labeled the new samples by means of majority voting on the k nearest samples. Moreover,
we used a kernel function which assigned weights to each sample and allowed a higher
separation of data into a bigger multi-dimensional space, which increased the accuracy of
predictions. This function was a major parameter of the algorithm along with the number
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k neighbors used to make a prediction. In order to calculate the distance between a sample
and its neighbors, we used a Euclidean metric coupled with a Gaussian Kernel function:

wi = e−
d2
i

σ2 , where di is the Euclidean distance of a sample with a neighbor, and σ2 is a
parameter we set experimentally, as explained in Sec. 4.4.2. In summary, the placement of
a training sample in the multi-dimensional space was affected by a Euclidean distance and
a weight given by our Gaussian kernel. Specific details on the values we set for σ2 and k,
as well as any other important parameter such as window size are provided in the results
section below.

4.4 Results

In this section we provide details about the experimental setup and show the performance
of the proposed approach across different scenarios.

4.4.1 Population parameters

Calves (54/106) were diagnosed with a clinical BRD bout on average at 29±7 days. The
proportion of calves with lung consolidation for the −14 days before clinical BRD diagnosis
is in Fig. 4.4. The majority of calves 64% (35/54) resolved lung consolidation 0 cm after
the first antimicrobial treatment within 10 days after clinical BRD diagnosis. Calves who
did not resolve lung consolidation after 10 days of antimicrobial treatment 35%(19/54)
were monitored from day 11 to day 14 and since lung consolidation was still present, they
were considered relapsed and re-treated at day 15 per veterinary protocol. Of the relapsed
calves, (3/19) did not resolve lung consolidation after the second antimicrobial intervention
by day 30 (in relation to first clinical BRD diagnosis) and these calves were euthanized per
veterinary recommendation. A necropsy was performed on all calves and pneumonia was
confirmed. The days that a calf was still positive for lung consolidation 3cm2 were labeled
as sick days for the algorithm to label data by day when a calf who was not convalescent.

4.4.2 Experimental setup

We validated our approach for machine learning predictions with the data described in
Section 4.2 by creating training and testing sets as described in Section 4.3.6. Training and
testing sets were split in 80% and 20% respectively, and 10 runs of cross-validation were
performed to provide robust results. We used the following settings for the KNN algorithm.
These settings were identified by performing a grid-search to provide best results in terms
of accuracy in the considered scenarios. The considered parameters were window size N,
number of neighbors k, and σ2 (parameter of the Gaussian kernel presented in Sec 4.3.6).
Specifically, we tested N = {7,10,12,14}, k = {1,3,5,7}, and σ2 = {2,4,6,8}. We found
the best performing values to be N = 14, k = 7, and σ2 = 2. Note that, we tested the
performance of other machine learning algorithms such as Support Vector Machines [147],
Random Forest [148], and Neural Networks [149]. We found that KNN outperformed such
algorithms.

4.4.3 Diagnosis scenario

We carried out the diagnosis scenario with the same model trained on 3 different feature sets,
manual features + automatic features, only manual features, and only automatic features.
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Figure 4.4: Proportion of 54 calves with lung consolidation prior to clinical diagnosis of
respiratory disease on day 0.

Table 4.2: Diagnose scenario: K-Nearest Neighbor algorithm’s accuracy, precision, recall
and F1 score for classifying 106 calves as sick (S(+)) or negative (H(−)) for Bovine Respiratory
Disease. Results are shown using automated features collected by an automated feeder and
accelerometer, manually collected features including outward signs of Bovine Respiratory
Disease, or both features collectively.

Accuracy Precision Recall F1-score
All features 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01
Manual features 0.97±0.02 0.97±0.01 0.97±0.01 0.97±0.01
Automated features 0.96±0.02 0.96±0.01 0.96±0.01 0.96±0.01

47



We found that the performance of KNN on the diagnosis scenario were nearly perfect,
achieving an accuracy score of 0.99 on average, and a standard deviation of 0.01, both for the
prediction of sick and clinical BRD negative samples when using all the available features,
as shown in Table 4.2. Briefly, the features of our dataset provided a clear separation
between labeling data as sick or not, and that the fine-tuning of our KNN parameters
accurately labeled sick and clinical BRD negative data. The Manual feature KNN performed
slightly, but negligibly better than the automated feature KNN, while the KNN which used
automatic features + manual features made close-to-perfect predictions. Thus, we suggest
that the use of automated features may be useful to develop an algorithm to use these
features to indicate clinical BRD status in calves.

4.4.4 Pre-clinical BRD scenario

We carried out the pre-clinical BRD scenario with the same model trained on 3 different
feature sets, manual features + automated features, only manual features, and only auto-
mated features as shown in Figures 4.5-4.6, Each data point represented the accuracy of the
KNN prediction for a set of days prior to clinical BRD diagnosis, specifically from −1 to
−14 days prior to clinical BRD diagnosis as represented using 80% training and 20% testing
of the data samples. As shown in Figure 4.5a, the PDT automatic features outperformed
the manually collected features, and this KNN algorithm was highly accurate at up to -6
days prior to clinical BRD diagnosis. Thus, we suggest that feeding behaviors and activ-
ity levels may be useful indicators of changes in behavioral patterns in pre-clinical BRD
calves. However, as calves approached clinical BRD diagnosis such as days -4 to day -1, the
manual + automatic features performed as well as the automatic feature KNN algorithm.
We would expect that calves would demonstrate sickness behavior such as reduced feeding
behavior and activity prior to clinical clinical BRD diagnosis as this is well documented in
the literature as reviewed by [131] and [40], however, our KNN algorithm labeled calves as
pre-clinical BRD quite early, at −6 days prior to clinical BRD diagnosis with an accuracy
above 90%. Thus, we suggest that monitoring changes in mean + SD feeding behavior
and activity levels of calves might be indicative of clinical BRD development. Our results
suggest that a KNN algorithm might be well-suited for monitoring feeding behaviors and
activity levels daily to flag potential pre-clinical BRD calves, but more research is needed
to test this in practice.

Finally, for the pre-clinical BRD scenario, we also used 70% training and 30% testing
proportion as shown in Figure 4.5b. The proportion of 70% training and 30% testing
proportion is also shown in Figure 4.5c. This was tested on the 3 different feature sets,
manual features + automated features, only manual features, and only automated features.
Each data point represented the accuracy of the KNN prediction for a set of days prior to
clinical BRD diagnosis, specifically from −1 to −14 days prior to clinical BRD diagnosis.
We see that varying the proportions for training and testing the data samples resulted in
very similar performance to 80% training 20% testing scenario. Specifically, high accuracy
above 90% was observed for the KNN using only automated features for up to −6 days
before clinical BRD diagnosis. The automated with manual features KNN performance
was similar to the automated features only algorithm starting at −4 days prior to clinical
BRD diagnosis.

In the experiment shown in Figure 4.6, we combined automatic and manual features
together. The goal of this experiment was to quantify the value of features considered
essential for calf health, but which are difficult for dairy producers to collect. The subgroups
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(b) 75% training, 25% testing
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Figure 4.5: K-Nearest Neighbor’s algorithm accuracy (mean ± SD) with varying train-
ing and testing percentages from 10 runs of cross validation for predicting calves destined
for Bovine Respiratory Disease diagnosis using automatically collected features by an auto-
mated milk feeder and accelerometer and manually collected features using outward clinical
signs of Bovine Respiratory Disease in a 106 dairy calf cohort.
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Figure 4.6: How much information is needed to accurately indicate calves destined for
Bovine Respiratory Disease Diagnosis? K-closest neighbor’s algorithm accuracy (mean ±
SD) from 10 runs of cross validation for predicting calves destined for Bovine Respiratory
Disease diagnosis using Effort 0 features recorded by an automated milk feeder and ac-
celerometer (blue line), Effort 1 features of outward clinical signs of Bovine Respiratory
Disease + effort 0 (yellow line), or Effort 2 features requiring calf restraint such as body
weight, passive immunity status at 48 hours of age, and rectal temperature + Effort 0 +
Effort 1 (grey line) in a 106 dairy calf cohort followed for 50 days.

were effort 0, automatic features, effort 1 outward signs of clinical BRD such as eye score,
nasal score, ear score, labored respiration, cough score + automatic features, and effort 2
features requiring calf restraint that are associated with calf health outcomes body weight,
passive immunity status, and rectal temperature + effort 0 and effort 1.

Surprisingly, the prediction accuracy of the algorithm was only slightly improved when
effort categories were combined. However, higher effort categories (effort 1 and effort 2)
only negligibly improved the prediction performance in the first −3 days prior to diagnosis,
while the performance of automatic features alone guaranteed great accuracy as early as
−6 days prior to diagnosis. To the best of our knowledge, no prior work was able to achieve
similar performance in the context for identifying calves destined for clinical BRD status.
Furthermore, precision technology data can accurately classify calves pre-clinical BRD with
Bovine Respiratory Disease.
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4.5 Discussion

The objective of this study was to use a novel approach to the industry challenge of au-
tomatically finding calves who were positive for clinical respiratory disease. A secondary
objective was to determine which variables were fundamental for high algorithm accuracy.
Specifically, we investigated the accuracy trade offs for predicting calves’ clinical BRD
bouts including investigating the value of features which required high effort to retrieve
from calves. We found that a KNN algorithm was very highly accurate and very precise
at classifying calves as clinical BRD positive and clinical BRD negative. Furthermore, this
algorithm performed well for the pre-clinical BRD scenario, in the 14 days prior to clini-
cal BRD bout diagnosis. Specifically, the accuracy of this algorithm using only automatic
features was over 0.96 up to six days before clinical BRD bout diagnosis compared to the
algorithm accuracy of 0.52 for manual attributes at this timepoint, and algorithm perfor-
mance was similar for varying proportions of training and testing the data samples. This
was sooner than we predicted, demonstrating the applicability of this algorithm for future
development regarding respiratory status in calves. Furthermore, we observed that high
effort variables such as body weight, rectal temperature, and passive immunity status at
48 hours of life only negligibly improved the accuracy of indicating clinical BRD status
in calves. We suggest that feeding behaviors and activity levels generated by precision
technology in conjunction with seasonal data are excellent features for indicating calves
at-risk for respiratory disease using a KNN algorithm. Future research should investigate
the potential of this algorithm for use in real-time on a commercial facility.

In this study, we used machine learning due to its ability to exploit the training data in
order to label unseen data. Furthermore, advanced statistical techniques such as controlled
variable charts were not successful at classifying disease status in dairy calves when feeding
behavior was used [150]. Thus, we opted to use machine learning techniques, and specifically
KNN, to investigate the potential of sickness behavior in calves to indicate clinical BRD
status. Specifically, because our biggest goal was to classify pre-clinical BRD calves, we
employed KNN algorithm due to its ability to label samples based on the nearest neighbors.
In fact, after training the model with not-sick and sick calves, we were able to detect pre-
clinical BRD calves that exhibited behaviors similar to the sick calves accordingly.

It is well known that there is an association of decreased feeding behavior [131] and
reduced activity levels [151] up to three days before diagnosis of respiratory disease in
calves. Sickness behavior precedes clinical signs of disease in mammals [152], and thus
behavior can be an early indicator of a calf at risk for disease diagnosis. However, to
our knowledge, only one research study has used machine learning techniques to identify
respiratory disease in calves [43]. Specifically, [43] investigated the potential of decision
trees (e.g., random forest) and deviations from average lying time to indicate respiratory
disease in calves. [43] observed a moderate sensitivity (= 0.54) and accuracy (= 0.75) to
indicate respiratory diseases in calves when both a random forest algorithm and deviations
in rolling average lying time were used. This disagreed with our findings, where we observed
a very high accuracy and precision for the algorithm to classify clinical BRD positive and
clinical BRD negative calves. Our findings likely disagreed with [43] since we used a different
machine learning algorithm, and we also classified clinical BRD using both outward signs
of clinical BRD and lung ultrasonography, which was recently validated as a diagnostic tool
[153]. While [43] observed a very high specificity (= 0.95) when combining both feeding
behavior and activity levels, only a moderate sensitivity (= 0.54) and accuracy (= 0.75)
were observed, it is possible that these were the limitations of the Wisconsin scoring system
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used to diagnose respiratory disease in that study. Furthermore, decision tree algorithms
are excellent data mining tools, but the categorical output is highly dependent on how root
nodes are classified as input data [154]. Thus, it is likely that our data differed from [43]
due to our daily health scoring and the different machine learning techniques used.

We observed 28 features that were valuable to the KNN for labeling clinical BRD calves.
Some of these manual features were selected as they were used to label a calf as clinical
BRD positive on day 0. These manual features such as nasal score, eye score, ear score,
cough score, and rectal temperature were part of a system validated for diagnosing calves
with respiratory disease, the Wisconsin Scoring System [104]. Respiration score was also
found to be a useful manual feature, and labored breathing is part of the UC Davis scoring
System to indicate respiratory disease in calves [118]. Therefore, it is not surprising that
these manual health features were found to be useful for the algorithm. We also observed
that 48 h serum BRIX was a useful feature in this study. Serum BRIX at 48 h is an indirect
measure of passive immunity status in dairy calves and recently a higher total IgG at this
age was associated with improved health outcomes in calves [135]. Therefore, we suggest
to researchers that even if enrollment criteria for passive immunity status is required for a
health study, researchers should collect this information as it is valuable. However, we were
surprised that the ultrasound score was removed during the Leave-one-out approach during
our feature selection. Ultrasound score was used to label calves with clinical BRD status
on day 0, and ultrasound score is considered as good as radiography for diagnosing calves
as respiratory disease positive when hospitalized [153]. However, [153] used calves with
severe non-responsive respiratory disease, it is possible that in early disease development,
that ultrasonography is not valuable to predicting disease when other variables such as
behavior are provided about the calf. We also observed that body weight was removed
during our feature selection process. [109] observed that decreased average daily gains in
calves occurred after diagnosis with lung consolidation. It is possible that in the early
phrase of disease development that body weight is not a useful indicator, or alternatively,
perhaps the inclusion of many other important variables such as feeding behavior, activity
levels, and seasonal information explains some of the variation that ultrasound score may
have added to the algorithm. Season is a well-known indicator for calf health as calves are
easily subject to cold stress due to low brown fat reserves, and a high body-surface ratio
when compared to cows [155].

All of the features collected by the automated feeder except percent of milk intake
consumed, which was highly correlated with milk intake, were useful in this study for
indicating clinical BRD status in the calves. For automated feeding behavior, we observed
that mean milk intake, starter intake, mean and SD visits to the automated feeder, and
mean and SD drinking speed were valuable for labeling calves these calves as pre-clinical
BRD when destined for clinical BRD status. A discussed above, a wealth of literature
has observed that feeding behaviors are associated with respiratory disease in calves. For
example, prior to disease diagnosis, sick calves had lower milk intakes up to - 5 days, slower
drinking speeds up to -4 days, and unrewarded visits up to -3 days when compared to
healthy calves [156]. Similar results were also observed in [157] who offered calves milk
levels similar to this study, milk intake, unrewarded visits, and starter intakes were lower
within the -5 days prior to diagnosis of respiratory disease when compared to healthy
calves. Indeed, [157] also observed that individual calves had relative changes in their own
unrewarded visits and starter intake prior to disease diagnosis when day -5 was set as a
baseline. However, we also found rewarded visits as a valuable feature in this study, which
disagreed with the findings of others who found no association with disease status with
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linear mixed modeling approaches [131, 157, 151]. Perhaps rewarded visits are a useful
feature when used collectively with other feeding behavior information, but that rewarded
visits alone as an outcome are not associated with clinical BRD status in calves. This is an
advantage of machine learning, that we can use a collective of features to make meaningful
predictions rather than one variable at a time [158]. This body of literature suggests that in
fact, calves do exhibit sickness behavior prior to disease diagnosis and that feeding behavior
may be useful features to include in a machine learning algorithm which identifies calves
destined for diagnosis of respiratory disease.

We also observed that several activity levels collected by a pedometer were useful for
indicating clinical BRD status in the calves in this study. For activity levels, we observed
that mean and SD lying time and lying bouts, as well as mean total step counts were
useful features for the algorithm to correctly identify clinical BRD status in these calves.
Our findings agree with others who have used activity levels in association with respiratory
disease in calves using mixed linear modeling approaches. For example, [151] observed that
calves increased their lying times, and decreased their lying bouts for the three days prior to
diagnosis compared to healthy calves. [157] also observed that calves increased their lying
times, but that these calves also decreased their lying bouts and step counts, and activity
index within the -5 days prior to diagnosis with respiratory disease. Once accounting for
relative changes in individual calf behavior, [157] observed that activity levels were no longer
associated with disease status in the calves when day -5 was used as a baseline. However,
[43] quantified that lying time yielded the best sensitivity for indicating respiratory diseases
in calves when using a decision tree algorithm as a machine learning approach. Thus, it
is not surprising that activity levels in this study were useful features to include in our
algorithm in this study. This body of literature suggest that calves do exhibit signs of
lethargy such as less activity in general prior to diagnosis with respiratory disease and that
activity levels may be useful features to include in a machine learning algorithm which
identifies calves destined for disease diagnosis. Future research should investigate the value
of individual features to indicate respiratory disease in calves.

To our knowledge, this study was the first to develop a highly accurate algorithm for
indicating a pre-clinical BRD calf approaching a clinical BRD diagnosis while also inves-
tigating the value of different features. However, there are a myriad of machine learning
applications which have predicted onset of disease status in lactating dairy cattle as re-
viewed by [129]. For example, support vector machine algorithms using automated milk
quality features have accurately predicted mastitis [159], and gradient boosted tree algo-
rithms using automated milk quality features [160] have also accurately labeled mastitis
in dairy cattle. Furthermore, random forest algorithms using deep learning and manually
collected milk features [161] were successful algorithms at labeling dairy herds with a high
prevalence of mastitis. Support vector machine and decision tree algorithms were also suc-
cessful at indicating metabolic status in fresh dairy cattle using manually collected blood
parameters [162]. Thus, we can conclude that machine learning algorithms are a useful
application to identify cattle requiring further attention. While these studies did not use
behavior-associated parameters, the results from these studies suggest that automated fea-
tures are useful for machine learning, and this is partially due to the frequency of which
this data can be collected. For example, [163] was successful at predicting calving onset
in lactating dairy cattle using activity behavior and automated rumination data due to
the frequency at which this data was retrieved. Thus, we suggest that machine learning
has a value for indicating behavioral changes in calves. We suggest future research should
investigate the potential of KNN algorithms for indicating respiratory status in calves in a
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commercial setting.
There were some limitations for this study. One of the limitations for this study is that

we used retrospective data in a research facility. While we can state that the algorithm
used was successful in indicating a calf destined for clinical clinical BRD diagnosis, this
cannot replace diagnostics on farm at this time. Another limitation to this study was the
use of data samples to train and test the algorithm. We suggest that a larger sample size
is required to determine if algorithm performance varies using animals rather than data
samples for testing and training. This results from the individual variability in feeding
behavior and activity levels in calves [157] and thus, more animals are required to represent
clinical BRD if the algorithm is trained in this way. However, we still believe that this novel
exploration of using features to classify clinical BRD status in calves is useful for the reader
since only one other study has used machine learning techniques to classify respiratory
disease in calves using decision trees, and that study only used a definition for disease that
has limited sensitivity [43]. This study is proof of concept, that automated features may
be useful for indicating clinical BRD status in calves, but we cannot use this algorithm on
farm in this setting. Future research is needed to validate this algorithm on farm, and to
test algorithm performance when using individual calves to train and test the algorithm.
Finally, while we can indicate that the feeding behaviors and activity levels used in this
algorithm were excellent at indicating a calf destined for clinical BRD, we did not evaluate
which features were most impactful. The next direction for our research is to determine
which features had the highest contribution to explain variance associated with clinical
BRD status in this study.

In summary, we observed that a KNN algorithm can accurately and precisely label calves
as clinical BRD positive or negative. Furthermore, a KNN algorithm can very accurately
label a calf destined to develop clinical BRD at up to six days beforehand using feeding
behavior, activity level, and season-related features. Furthermore, the addition of intensive
features which require calf restraint to collect only negligibly improved the performance of
our algorithms. This study demonstrated the value of precision dairy technology as a utility
tool for flagging calves as potentially sick for clinical BRD and future research is needed to
refine this algorithm for use on farm.
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5 A Framework for the Recognition of Horse Gaits Through Wearable Devices
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The wearable devices market has been growing exponentially in the last few years and
it is expected to count up to 930 million devices by the end of 2021. A common application
of wearable devices is Human Activity Recognition (HAR), i.e., the ability of using the
sensing capabilities of these devices to monitor and infer human activities. However, Animal
Activity Recognition (AAR) has received significantly less attention, and most works on
AAR are generally based on invasive specialized devices carried by or implanted on animals.
Conversely, in this work we exploit the potential of portable and unobtrusive devices, namely
smartwatches, for AAR and specifically for horse gaits recognition. This application finds
natural use in horse riding, to improve the structure and balance of the horse work and
training. We develop a framework that can be used in a fog computing system composed by
a smartphone and a smartwatch for the recognition of horse gaits. The framework performs
classification by means of a machine learning approach trained on ad-hoc features based on
accelerometer data. The framework allows an offline and an online modes of operation. In
the offline mode, the smartwatch is used to collect the accelerometer data and transfer it to
the smartphone at the end of the riding session. The feature extraction and classification
can be processed directly on the smartphone or offloaded to the cloud. Conversely, in the
online mode, the smartwatch is responsible to collect and process the data, thus being able
to provide real-time feedback to the rider. This modality also allows to reduce computation,
storage, and energy burden on the smartwatch through an adaptive setting of the sampling
frequency. We implement our approach on a system composed by a Fitbit Ionic smartwatch
and a Samsung Galaxy S10. We use two horses to evaluate the performance, versus recently
proposed AAR approaches. Results show that our framework achieves significantly higher
classification accuracy. Furthermore, the online scheme enables flexible real-time feedback,
at the expense of a small loss in the classification accuracy.

5.1 Introduction

Smart wearable devices, such as smartwatches, have become increasingly common in the
last few years. In fact, the number of wearable products in the market has been raising
exponentially and it is expected to grow up to 930 million by the end of 2021 [164]. Wear-
ables allow for ubiquitous and pervasive monitoring of user activities, opening up doors
for a wide range of applications in several domains such as fitness, healthcare, augmented
reality, and scientific research [165, 166]. Although such tasks, known as Human Activ-
ity Recognition (HAR) [167], have been widely investigated, Animal Activity Recognition
(AAR) has not been studied thoroughly. In addition, most works on AAR are based on
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obtrusive devices carried by animals [36, 34]. For instance, the authors in [36] make use of
action cameras mounted behind the neck of dogs to recognize their daily activities, while
in [34], the authors study the recognition of basic cows’ gaits using an accelerometer and a
gyroscope mounted on the cows’ neck.

In this work, we aim to show the applicability of unobtrusive wearable devices for AAR,
and specifically for horse gait recognition. Similar to today’s commercial human physical
activity recognition (run, bike, walk, etc.), the goal is to recognize how much time has been
spent at each gait, namely walk, trot, and canter, during a horse training session. This
information is vital for horse training, as it is of primary importance to balance the time
spent at each gait depending on the training goals. For example, if a horse is lacking fitness
at a certain gait, the rider may slowly increase the time spent at that gait in order to build
strength and resistance. In the literature, there exist only a few works that address horse
gaits recognition, and they often rely on obtrusive hardware setup. For example, in [53], the
authors place 5 sensors on the horse: 1 accelerometer sensor for each leg, and 1 GPS sensor
to account for location. In [54], up to 8 sensors are employed, each one coupled with an
accelerometer, a gyroscope and a compass, at frequencies as high as 100Hz and 200Hz, or
even up to 1000Hz for the recognition of a specific gait. Similarly, commercial products for
the recognition of horse gaits show limitations in terms of the extra and specialized hardware
that is required to classify the performed activities. We identified four main solutions in the
market. Equisense [168] uses an approach that requires the purchase of extra hardware that
attaches to the horse girth. Seaver [169] provides a girth with the sensors embedded into
it. Equilab [170] is a free app that provides rider feedback regarding the training session
in the smartphone, which may result cumbersome to carry while riding. Finally, Estride
[171] requires the use of sensors placed on the legs of the horse, embedded into the horse
protective boots. The latter also provides a feature that consists in the use of 2 wrist-worn
devices. However, such wearables are only used to address the steadiness of the rider’s
hands. To the best of our knowledge, currently there exists no product or work, capable of
performing gait recognition with the single use of an unobtrusive wrist-worn device. The
extra hardware necessary for the recognition task may be impracticable for most people.
Moreover, as mentioned in [11], portability and effortless setup are of primary importance
when it comes to AAR, making these approaches of limited applicability. Alternatively,
our solution involves the use of a pervasive wearable device, i.e., a commercial smartwatch,
which most people carry in their every-day life for personal use, and therefore does not
require any additional hardware.

In this paper, we envision a fog computing system composed by a smartwatch and a
smartphone with Internet access to the Cloud. We propose a framework for horse gaits
recognition based on such system. The framework can operate in two modalities, namely
offline and online. In the offline mode, the smartwatch is used to collect accelerometer data,
which is sent to the smartphone, and potentially to the Cloud, for feature extraction and
processing. We design three ad-hoc features that are used to feed different machine learning
models that perform the classification. These features are based on a pre-transformation
of the data to improve robustness. The online modality enables the ability of providing
feedback to the rider in real-time. This is a useful capability of gait recognition for horse
training, since the rider can adjust the training session while still riding. In this context,
however, it cannot be assumed that the smartphone would have Internet access during a
horse training session, as horse barns are often located in rural areas, and several riders
bring their horses in agricultural fields to train. In addition, in certain circumstances the
smartphone may not even be present during the riding session, as it may represent a burden
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for the rider to carry it while riding. As a result, only the smartwatch can be assumed to
be available in this online scenario. However, providing real-time gait classification relying
only on the smartwatch is challenging due to the insufficient processing capabilities, and
small battery capacities of this device. In the literature, there are not many contributions
in the context of real-time recognition. In [172], for example, the authors constantly upload
the collected stream of raw data to a web server for processing. To address the problem of
latency that such solution would incur, new approaches are oriented towards the paradigm
of fog computing [173] and Mobile Edge Computing (MEC) [174]. Nevertheless, the main
focus of these works is on application-specific architectures, algorithms for orchestration,
and smart environments [175, 176].

In order to provide real-time feedback in this challenging scenario, we develop a light-
weight classification algorithm that runs on the smartwatch. The algorithm uses a single
comprehensive feature, which is fed to a custom two-level Decision Tree. At each stage,
features of different axes are used, and their Euclidean distances from pre-calculated clusters
are used to label each sample. Moreover, to make the algorithm more robust, a window
of labels with a majority rule is used to account for mislabeled samples. Furthermore,
our experiments show that different gaits can be accurately classified by using different
frequencies for collecting accelerometer data. Intuitively, this is due to the different speeds
and accelerations involved in walk, trot, and canter. As a result, we exploit this property,
combined with the real-time classification system, to dynamically set the frequency based
on the gait inferred by the smartwatch. This has the benefits of reducing the computational,
memory, communication, and ultimately energy burden of the wearable device [177].

We implement our system on a Fitbit Ionic smartwatch and a Samsung Galaxy S10
smartphone. We perform a wide variety of real-field experiments using two horses with
significant different physical characteristics (breed, age, weight, etc.). We also consider
two configurations of the system, one with the smartwatch on the horse saddle, and the
other one on the rider’s wrist. Since the saddle is tightly anchored on the horse body, the
first configuration provides less noisy data, however it requires the design of specialized
hardware to be embedded in the saddle or the girth. Conversely, the second configuration
fully unleashes the potential of smart wearable devices by enabling unobtrusive horse gait
recognition, without requiring any additional hardware or setup. Our results show that
our approach achieves high accuracy and outperforms previous solutions for animal gait
recognition. The light-weight approach is able to provide real-time feedback to the rider
at the expense of a negligible loss in accuracy. Moreover, although wrist data are more
noisy, we prove the robustness of our approach by achieving similarly high performances
compared to the saddle data.

The main contributions of this paper are listed below:

• We develop a fog computing framework based on a smartwatch, a smartphone, and
the Cloud for horse gait activity recognition.

• We design a framework for horse gait recognition based on this system. The framework
exploits the accelerometer data collected by the smartwatch, and it allows an offline
and online mode of operation.

• We propose three ad-hoc features for the offline mode, and use them to train several
machine learning models.
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Figure 5.1: Schematic of the system.

• We propose a light-weight classification mechanism, based only on the smartwatch,
for the online modality. This enables to provide real-time information to the rider and
it exploits an adaptive sampling technique to reduce the burden on the smartwatch.

• We implemented our system on a commercial smartwatch and smartphone, and we
tested our framework on a variety of scenarios using two horses.

• We show that locating the sensing device on the rider’s wrist can provide good results,
at the cost of a negligible loss in accuracy, therefore relieving of the use of specialized
hardware.

• Results show that our approach outperforms recent works on animal gait recognition,
and that the light-weight approach is able to provide real-time feedback to the rider
at the expense of a small loss in accuracy.

• We have collected a dataset of accelerometer readings of horse gaits and made it
available for public use.

The rest of the paper is organized as follows. The system model and problem statement
are presented in Section 5.2. Our offline approach towards horse gait recognition exploiting
machine learning algorithms is explained in Section 5.3, while our online approach will be
discussed in Section 5.4. Subsequently, in Section 5.5 we describe a recent approach for
animal gait classification used as comparison. Finally, results are provided in Section 5.6.

5.2 System Model and Problem Statement

In this Section, we discuss the system model and define the problem studied in this paper.

5.2.1 System Model

In this paper, we consider a system composed of a smartwatch, carried by the rider, and
a smartphone with Internet connectivity, to access the Cloud and offload the computation
if necessary. We consider two modalities: an offline scenario where the information of
the training session is available to the rider after the session is completed, and a real-time
scenario where the rider receives a feedback while riding. The offline architecture and the
interactions between the different components is depicted in Figure 5.1. In this scenario,
the smartwatch is used to collect data using the built-in 3-axis accelerometer. The data
are transmitted to the smartphone, where features are extracted and sent to the Cloud for
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1 2
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(b) Trot
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(c) Canter

Figure 5.2: Sequence of horse gaits [1].

classification through machine learning models. The output is then transferred back to the
smartphone, where the rider can access it once the session is completed. Note that, there
could be several options in this scheme for offloading of computation, as for example the
smartphone may run the classification, or the Cloud may receive the raw data. However,
the optimization of such offloading is out of the scope of this paper, as we only focus on
designing a machine learning framework for horse gait recognition.

In the real-time architecture, we consider an extreme, but realistic, scenario in which
the rider is only equipped with the smartwatch. This scenario is realistic since carrying the
smartphone while riding is in general cumbersome, while relying on the sole smartwatch
would enable maximum flexibility. As a result, the smartwatch needs to collect the raw
data, extract simplified features, and execute low-complexity machine learning models.
Furthermore, in this modality the smartwatch is able to adapt the sampling frequency to
the activity being performed, thus enabling a reduction in computation and ultimately
energy consumption.

5.2.2 Horse Gaits Recognition

Before diving into the technical details of our approach, it is necessary to introduce the
main characteristics of the horse gaits we aim to recognize. Horses have three natural gaits,
namely walk, trot, and canter1. These gaits are all characterized by a sequence of hoof steps
that touch the ground. A complete sequence is referred to as a stride, and it is repeated
as the horse moves at a given gait. Figure 5.2 shows the sequences for each of the gaits.
In walk, the horse starts with a back hind leg (right hind in the figure), followed by the
corresponding front leg on the same lateral side. Then, the other back hind leg moves, and
the pattern terminates with the last front leg moving. The walk is the slowest gait and
it is characterized by no suspension time, i.e., there are always two or three hoofs on the
ground.

The trot is a diagonal symmetric gait. The horse alternates between one diagonal (e.g.,
left hind and front right legs) to the other, and it physically “jumps” between these two
diagonals, creating a suspension time in which there is no hoof on the ground. Finally,
the canter is an asymmetric gait. In fact, the horse can canter with the “right” or “left”
lead, which is determined by the last front hoof that touches the ground in a stride. Let us

1Very few breeds of horses have an additional gait known as able, which is not considered in this work.
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Figure 5.3: Raw accelerometer data from the saddle (x-axis).
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Figure 5.4: Raw accelerometer data from the rider’s wrist (x-axis).

consider the right lead canter as demonstrated in Figure 5.2(c). The horse initially moves
the left hind leg, then the left diagonal (right hind, front left leg), and finally the right front
leg, which gives the name to the lead. The left lead canter is symmetrical to the right lead.

In this paper, our goal is to recognize the gait at which the horse is moving, in order
to provide the rider useful information regarding the training session, i.e., how much time
has been spent at each of the gaits. As previously discussed, we use the accelerometer
sensor of the smartwatch for data collection. In Figure 5.3, we show some preliminary data
collected by placing the smartwatch on the saddle. The data refer to the x-axis, and they
are collected at 30Hz. We do not show other axes as they have similar trends. The data
evidence how the walk is the slowest activity, with a maximum acceleration around 5m/s2.
Conversely, the trot shows significantly higher acceleration peaks. These are due to the
push forward that the horse exerts as it switches from one diagonal to the other. As a
result, the acceleration peaks are between 15 and 20m/s2. Lastly, the canter shows a more
complex acceleration pattern. This is due to the asymmetry of the gait, and the resulting
acceleration/deceleration. The highest acceleration value in this case is up to 25m/s2. Note
that these values depend on the specific horse, as well as on the energy that the horse is
putting into the exercise at that moment.

In Figure 5.4, we show similar data collected by placing the smartwatch on the rider’s
wrist. It is evident that the data have less clear patterns, due to the rider being an external
object on the horse’s back, and thus adding additional noise to the data. This is particularly
true considering that the rider moves his hands to communicate with the horse while riding.
Our goal is to design a set of features extracted from the accelerometer data that enable
machine learning models to be trained and classify each gait with high accuracy, regardless
if the data are collected from the saddle or the wrist.
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It is worth noting that each gait can be executed differently by the same horse, especially
in the discipline known as Dressage. As an example, the horse may perform a collected,
medium, or extended trot. Additionally, gaits may present problems like four-beat canter,
or dissociated canter strides (e.g., front legs canter left lead, back hinds canter right lead).
These deviations from the basic three gaits are not the focus of this paper, and will be
considered in our future work.

5.3 Offline Modality: Horse Activity Recognition (HoAR)

In this Section, we present the offline modality of our framework. In this scenario, it is
required to calculate features that are robust enough to work on both the wrist data and
the saddle data indistinctively, while keeping the number of features low. After segmenting
the data, we present three robust and ad-hoc features that are used to characterize and
separate our datasets.

5.3.1 Data Representation and Segmentation

According to our approach, we first parse the raw accelerometer data and segment them
into sliding windows of length T with 50% overlap. Each window contains W = f × T
accelerometer readings, where f is the frequency at which accelerometer data are collected.
Therefore, we organize the data as a set of windows, where the ith window Sx

i is comprised
of the following W pairs of time and acceleration readings along the x-axis:

Sx
i = {(ti j,ax

i j)}Wj=1. (5.1)

Similarly, Sy
i and Sz

i are defined for the y and z-axes, respectively. Given the segmented
data, the idea behind the design of our features is to analyze and extract the characteristics
of the data from two points of view, i.e., time and acceleration, as explained in the follow-
ing. Note that, since our features are defined on each axis independently, in the following
discussion we drop the axis superscript and refer to each generic window as Si.

5.3.2 Feature Extraction

In this step, the goal is to extract a few numbers of features that exploit the characteristics
of the gaits. The main idea of our approach is to exploit the intrinsic nature of the gaits,
such as the periodicity of the movement, acceleration amplitude as well as the variance of
the acceleration.

A detailed analysis of the data shows that the horse movements are periodic, and the
frequency at which the movement is repeated is highly characterizing the gait. Accordingly,
we define a modified zero-crossing interval as the interval of time between consecutive
crossings of the horizontal axis. This leads to big values, representing a larger interval,
whenever a slower activity is being performed, and a small value whenever a high intensity
activity is being performed. Further analysis of the data shows that amplitude is very de-
scriptive as well. This is due to the fact that peaks in acceleration represent a major push
from the horse (positive acceleration) or a significant friction with the ground (negative
acceleration) as when a hoof hits the ground after a suspension time. So we define average
peak-to-peak amplitude, with the goal of isolating such events, and calculate their aver-
age amplitude. Finally, we include a more standard statistical feature, i.e., the variance of
the acceleration, which is representative of the intensity of the gait and provides a helpful
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support to the peak-to-peak amplitude, since it represents the intensity of the movements
by measuring how data are spread around the mean value.

In the following, description of the features is given along with their mathematical
definitions. In analyzing the modified zero-crossing interval feature, we noticed that,
as shown in Figures 5.3 and 5.4, data tend to have positive peaks with higher absolute value
compared to the negative ones. Since this may affect the reliability of the zero-crossing
feature, we apply the following data transformation individually to each accelerometer axis
in order to obtain more symmetrical data. Given a window Si, we calculate the maximum
and minimum acceleration values, referred to as Mi and mi, respectively. Then, we calculate
the max-min average as ∆i =

Mi+mi
2 . Finally, we generate a transposed window S′i by shifting

data points by ∆i along the acceleration axis, that is:

S′i = {(ti j,a′i j) | (ti j,ai j) ∈ Si, a′i j = ai j−∆i}. (5.2)

Note that this transformation differs from the mean-crossing, since we are not considering
the average value across all the elements of the set, but rather the maximum and minimum
values. We name the first feature modified zero-crossing interval, “modified” due to
the data transformation. We define the set of zero crossings, i.e., T (0)

i , for the window Si as
follows.

T (0)
i = {ti j | ai( j+1) ·ai j < 0, (ti j,a′i j) ∈ S′i}. (5.3)

Subsequently, we calculate the value of our feature, Z(0)
i , as the average time between

subsequent crossings, that is:

Z(0)
i = ∑

ti j∈T (0)
i

(ti( j+1)− ti j) ·
1

|T (0)
i |−1

. (5.4)

For the second feature, i.e., average peak-to-peak amplitude, we first identify the
sets of positive and negative peaks of the Si window, denoted by P(+)

i and P(−)
i , respectively.

Let us consider the positive peaks. An acceleration value â(+)
iz is recognized as a peak if it

satisfies the following two properties: (i) it is larger than a fraction α of the maximum of
the window, i.e., â(+)

iz ≥ α ×Mi and (ii) it is the largest value in a time interval of length
2ε, i.e., â(+)

iz ≥ ai j for ∀ j ∈ {z− ε, . . . ,z+ ε}. The latter condition is introduced in order
to avoid more than one local maxima in a time interval. In addition, we define a set of
negative peaks similarly, by changing the inequalities and considering the minimum mi of
the window. Formally, P(+)

i and P(−)
i are defined as follows.

P(+)
i = {â(+)

iz | â(+)
iz ≥ αMi and â(+)

iz ≥ ai j, ∀ j ∈ {z− ε, . . . ,z+ ε}}, (5.5)

P(−)
i = {â(−)iz | â(−)iz ≤ αmi and â(−)iz ≤ ai j, ∀ j ∈ {z− ε, . . . ,z+ ε}}. (5.6)

The average peak-to-peak amplitude feature ∆Pi for window Si is then calculated as the
average of all the positive peaks minus the average of all the negative peaks, as follows:

∆Pi =
1

|P(+)
i |

∑
a(+)

iz ∈P(+)
i

a(+)
iz −

1

|P(−)
i |

∑
a(−)iz ∈P(−)

i

a(−)iz . (5.7)
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Lastly, the definition of variance is as follows:

σi =
1

W −1

W

∑
j=1

(ai j−µi)
2, (5.8)

where µi is the average of the acceleration values in Si.
Each feature is calculated independently for all the three axes. Finally, since the absolute

values of these features depend on several factors such as size, fitness level, strength, and
breed of the horse, we normalize each feature separately, by means of feature scaling, to
make sure that its values fall between 0 and 1. Once the features are extracted, they are
used to feed machine learning models. In this paper, we exploit and rely on well-known
models, such as k-Nearest Neighbor and Decision Tree, as discussed in Section 5.6.

5.4 Online Modality: Real-time Approach with Adaptive Sampling (RT-HoAR)

In this Section, we discuss the online modality of our framework, to provide the rider
real-time feedback during the training session, while only wearing the smartwatch. In this
scenario, we clearly need a light-weight methodology to extract features and perform the
recognition, as obviously a smartwatch would not be able to execute a complex machine
learning model. To this aim, we exploit the knowledge of the currently performed activity
at the smartwatch level to adjust the sampling frequency dynamically, in order to reduce
the amount of data processed, stored, and transferred, without sacrificing accuracy.

The core of our algorithm is a custom two-level Decision Tree that performs comparisons
on a single feature, i.e., the variance. In the first level, a threshold value on just the x-axis
data are evaluated, which has been empirically proven to be enough for the recognition of the
Walk activity. If walk activity is not recognized, the second level of the Decision Tree looks
into y and z-axes to recognize either Trot or Canter. Because this approach simply relies on
thresholds, it may be prone to errors in classification. To improve reliability and make our
recognition more robust, we use a window of labels that contains the previously recognized

Set frequency Collect data Segmentation Feature extraction

Walk?
(x-axis)

Set current label 
to Walk Yes

No

Trot or Canter?
(y,z-axes)

Set current label 
to Trot

Set current label 
to Canter

Trot

Canter

Update label 
window

Majority rule

Start

Figure 5.5: Block diagram of the real-time recognition procedure with adaptive sampling.
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activities. More specifically, we label an upcoming window by means of a majority rule,
i.e., selecting the activity with the highest amount of instances in the window of labels.
Once the activity has been recognized, we adjust the accelerometer sampling frequency.
In fact, we empirically found that some activities can be successfully recognized at lower
sampling frequencies, allowing us to save storage and perform lighter computation. Figure
5.5 summarizes the approach.

5.4.1 Data Collection and Feature Extraction

Generally speaking, our real-time approach starts with data collection from the accelerom-
eter sensors, and is followed by the feature extraction of T seconds of activity. Similar to
the offline case, once data are collected, we segment the readings into sliding windows with
50% overlap. Each window of T seconds holds W samples and it is defined as seen in Eq.
(5.1).

In order to keep the computational complexity of the feature extraction reasonably low,
we only consider a single feature, the variance of the data, as defined in Eq. (5.8). Because
the variance is calculated for each one of the 3 axes separately, a three-dimensional point is
obtained and then passed to the classification stage. We will explain the two-level Decision
Tree in the following Subsection.

5.4.2 Two-level Decision Tree

Once the features are extracted, they are passed to a two-level Decision Tree for classi-
fication. During the training phase, we obtain the centroids corresponding to the three
activities. A centroid is a three-dimensional point containing the variance value for each
axis. The classification at each level of the decision tree is based on the calculation of the
Euclidean distances between the variance of the current window and the centroids. Specifi-
cally, the first stage of the Decision Tree focuses on the variance along the x-axis only. This
is due to the fact that, although the x-axis does not allow to distinguish between Trot and
Canter, it is very descriptive of the Walk activity. The reason for the reliability of just one
axis to recognize the Walk activity is that such gait has a fairly smaller speed and intensity
compared to other gaits along any of the three axes. Moreover, the x-axis is parallel to the
smartwatch’s screen, pointing in the direction from the left to the right edge of the screen.
It corresponds to the direction of the horse, and therefore it is very descriptive of the speed
of the horse. Note that, while it is possible to recognize the Walk with just the x-axis, such
approach is not as effective in discriminating between Trot and Canter.

If Walk is recognized at this stage, then we can skip the second stage of the Decision
Tree, otherwise it will be necessary to discern between Trot or Canter in the second stage.
Formally, we refer to Cx

k as the kth centroid (activity) along the x-axis, where k = 1,2,3
represent the Walk, Trot and Canter activities, respectively The Euclidean distance di of
the variance vx

i for the current time window Si from the x-axis centroid is calculated as
di = |vx

i −Cx
k |, for k = 1,2,3. If Walk is the the smallest distance, the window is temporary

marked as such. Note that, the final label will be assigned by the majority rule explained
in Section 5.4.3. Otherwise, if the distance from the Walk centroid is not the smallest one,
then the second stage of the classification looks into the other two axes to classify Trot
and Canter. To this purpose, we focus on the y and z-axes, to calculate the 2D Euclidean
distance between the features of the current window and the pre-calculated centroids along
such axes. The closest centroid will be the temporary label for the window Si.
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Once the window is temporary labeled, such label is passed to the next stage of the
model, which will ultimately define the classification, and, potentially, change the sampling
frequency.

5.4.3 Final Classification With Majority Rule

The goal of this stage is to improve the robustness of the algorithm, and ultimately the
overall accuracy. In fact, since we are considering a single feature, misclassification may
occur. Nevertheless, in a training session, the rider usually keeps the current gait for a
while, before transitioning into a different gait. Therefore, we exploit this fact to implement
a majority rule to determine the final label of a time window. To this purpose, we keep
track of the previously selected labels by means of a fixed size circular buffer. When a new
window is labeled by the Decision Tree, such label is added to the buffer, and the oldest
label is removed. The final label of the current time window Si is given by the label with
the highest number of instances in the buffer.

This approach leads to a small delay in the recognition upon switching activities, because
the previously recognized activity is initially favored by the majority rule. By properly
setting the size of the buffer, a more consistent frequency trend is ensured, providing more
robustness in the recognition, as shown in the experimental section.

5.4.4 Adaptive Setting of the Sampling Frequency

Finally, by detecting a change of activity, we adjust the sampling frequency based on the
activity currently performed. Based on the empirical results, reported in Subsection 5.6.3,
it is revealed that there exist a lowest sampling frequency for each activity which guarantees
an acceptable accuracy in detecting the activities. Accordingly, we obtain proper sampling
frequency of 5, 10 and 15Hz for the Walk, Trot and Canter activities, respectively. The use
of adaptive sampling leads to benefits in terms of energy consumption and memory usage.
Storage is saved simply because less data need to be saved in the memory, while battery
life prolongs for three main reasons:

• I/O operations are less frequent since less readings need to be stored;

• less data are transferred over Bluetooth/Wi-Fi to the fog node;

• computation in the smartwatch is lighter since less data are to process.

5.5 A Recent Comparison Approach for Animal Gait Classification

In this Section, we discuss the state-of-the-art approach recently proposed in [178] used for
comparison with our solution in the experiments. We refer to this method as Orientation
Independent Animal Activity Recognition (OIAAR). OIAAR has been proposed to recognize
6 activities of goats, namely stationary, walking, trotting, running, eating, and other. For
comparison purposes with horse activities in this paper, we consider only walking, trotting,
and running (equivalent to cantering). Note that, the natural gaits are the same for horses
and goats, and in fact for most 4-legged animals (e.g., dogs).

In OIAAR, data collection is performed by placing 6 sensor devices attached to the
collar of the goat. Each sensor has a 3-axis accelerometer and a 3-axis gyroscope. Such
amount of sensors is employed to avoid bias towards a specific sensor orientation, which
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is addressed by using the magnitude value of all the three axes, as well as other shuffling
techniques used in the dataset construction. Hence, the authors claim that their features
are orientation-independent and therefore their work qualifies as a good comparison.

After calculating the magnitude values along time and frequency domains, a large set
of features is extracted and the performances of different features are evaluated through
several steps of a forward selection scheme. This approach allows them to progressively
reduce the number of features used and find the best performing ones. The final step
evaluates a subset of 5 features, and tries to further reduce this amount. In our tests, we
perform similar evaluations to make sure we select the best features for OIAAR on our
dataset, in order to have a fair comparison.

5.5.1 Data Pre-processing

According to OIAAR, data are segmented into windows of T seconds with 50% overlap.
Each window Si consists of W readings from the accelerometer sensor. Since OIAAR relies
on both time-domain and frequency-domain features, the next step requires data transfor-
mation into the frequency domain using the Fast Fourier Transform (FFT):

Fx
i = FFT (Sx

i ) = {( fi j, px
i j)}Wj=1, (5.9)

where px
i j is the FFT of the acceleration value ax

i j. Similarly, Fy
i and Fz

i are defined for the
other two axes. Then, information from the three axes are combined in order to calculate
the magnitude of the original data in both domains:

mi j(t) =
√

ax
i j

2 +ay
i j

2
+az

i j
2, mi j( f ) =

√
px

i j
2 + py

i j
2
+ pz

i j
2 ,∀ j ∈ {1,2, . . . ,W} (5.10)

5.5.2 Feature Extraction

In [178] an extensive study is performed to select the features that perform best from a pool
of time-domain and frequency-domain features, using both accelerometer and gyroscope
data. To this aim, by applying a Chi-squared test, the authors are able to roughly eliminate
30% of the least informative features. Subsequently, several steps of feature selection and
classification are applied to determine the best feature sets by means of a forward selection
scheme, referred to as Embedded Forward Selection. The performance evaluation of each
feature set is carried out by means of the accuracy score of Decision Tree (DT) and Naive
Bayes (NB) algorithms. This results in 10 feature sets of incremental sizes, from which a
further selection process determines the best set. As an outcome of such selection approach,
the generated feature sets are listed here, respectively for DT and NB, we have:

• Decision Trees: 6th norm of accelerometer magnitude, accelerometer frequency en-
tropy, accelerometer standard deviation, accelerometer 25th percentile, 1th norm of
accelerometer magnitude;

• Naive Bayes: accelerometer standard deviation, accelerometer frequency entropy, gy-
roscope 25th percentile, accelerometer 25th percentile, accelerometer median.

Note that the features are listed in order of importance, e.g., the 6th norm of accelerometer
magnitude provides better performances than the accelerometer 25th percentile. It is worth
mentioning that only 1 out of 10 features comes from the gyroscope, which allows us to
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use this approach as a good test to evaluate our framework, given the absence of gyroscope
sensor in our work. Moreover, according to the authors, the gyroscope 25th percentile can be
swapped with either the accelerometer 25th percentile or the accelerometer median without
affecting performances. It is of significant importance to notice that the lack of gyroscope
features further proves the redundancy of such sensor when coupled with an accelerometer.
Therefore the adoption of a single accelerometer is justified, as mentioned in [179].

In order to have a fair comparison with HoAR we carry out preliminary experiments
testing all possible combinations of features and machine learning algorithms, with the
objective of finding out which combination performs best on our dataset. Results showed
that the combination of Decision Trees and its respective subset of 5 features achieved the
best performances.

5.6 Experimental Assessment

In this Section, we validate our proposed approaches through real-field experiments and
comparison with OIAAR [178], as well as with the approach proposed in the conference
version of this paper, which we refer to as SMARTCOMP [11]. We implemented our
approach using a Fitbit Ionic and a Samsung S10, as detailed in Section 5.6.2. Using such
application, we collected data from the tri-axial accelerometer at a frequency of 30Hz. We
used two horses, with remarkably different characteristics. Specifically, we used Gator, a 15
years old thoroughbred 16.2 hands tall, and Maddie, a 7 years old warmblood, 17.1 hands
tall.

Data collection was performed by either placing the smartwatch on the saddle or on
the rider’s wrist. Horses were lunged in the first scenario, i.e., smartwatch on the saddle,
while the horses were ridden in the second scenario. It is worth mentioning that in the
first scenario (lunging), the variance feature has been used to perform outlier removal, by
comparing the variance value of each window along the x-axis with a constant value of
2. This was necessary to account for the data collected, but erroneously labeled, during
the amount of time needed for the rider to start the data collection and actually give the
command to the horse to start the desired gait.

The collected dataset has been made publicly available in [180] and it consists of more
than 140,000 accelerometer data samples, each one with three values accounting for the
three axes and a timestamp. The dataset is approximately equally split between wrist and
saddle data, with 52% of data collected from the wrist and 48% from the saddle. 61%
of the dataset has been collected from Maddie while 39% has been collected from Gator.
Furthermore, Walk, Trot and Canter activities respectively account for 38%, 40% and 22%
of the dataset. While Walk and Trot activities have equal proportions, Canter constitutes
a smaller percentage simply as a consequence of the intrinsic nature of the activity, which
requires much more energy to be performed, and therefore can only be performed for a
shorter time [181].

5.6.1 Experimental Setup

Here, we provide all parameters and prerequisite information related to the setup of the
experiments. We examine sliding window sizes T , with ranges varying from 2 to 10 seconds,
with steps of 2 seconds. Windows overlap for 50% of their length, across all experiments.
Besides, the sampling frequency values f vary between 5 and 20Hz, with steps of 5Hz. We
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determine the best value of the window size and sampling frequency for our approach in
the experiments detailed in the next Subsection.

We also adopt and test several machine learning algorithms for the offline modality of
our framework, namely Neural Networks (NN), Decision Tree (DT), k-Nearest Neighbors (k-
NN) and Naive Bayes (NB). The most meaningful parameters used in the machine learning
algorithms are listed as follows. For Neural Networks, we have a constant learning rate of
0.001, with a RELU activation function, Adam as a solver for weight optimization and a
maximum of 200 iterations. For Decision Tree, the function to measure the quality of a
split is based on information gain criterion. The strategy to choose the split is to select the
best one. The minimum number of samples required to split a node is 2. The maximum
depth of the tree in OIAAR is 10, while there is no constraint in HoAR. For k-Nearest
Neighbors, number of neighbors is set to 3, uniform weights and euclidean metric distance
are considered. Ball tree is the algorithm used to compute the nearest neighbors. Finally,
for Naive Bayes, we use a Gaussian Naive Bayes approach. Besides, we do not set specific
prior probabilities of classes, and the smoothing variable is set to 1e−9.

To calculate the accuracy, we perform 10-fold cross validation and set size of the training
and testing is equal to 75% and 25%, respectively. Furthermore, in the real-time approach,
we use a buffer size of 5 for the majority vote approach. Finally, regarding the implemen-
tation details and libraries used in simulations, we employed pandas [140] and numpy [141]
libraries for data processing, while scikit-learn is the library employed for the implementa-
tion of machine learning algorithms and performing data preparation to feed the algorithms
[182].

5.6.2 Implementation Details and Challenges

In this Subsection, we discuss the design of the wearable application and the challenges that
had to be faced throughout the development. The application has been implemented on the
Fitbit Ionic smartwatch. Although Fitbit is known for tracking physical activities, the raw
data gathered from the sensors are never stored, hence they are not accessible. However,
APIs are available to allow developers to implement applications, and therefore interact
with the hardware. Fitbit API uses a programming language called JerryScript, which is
also known as “JavaScript engine for Internet of Things” [183]. It is envisioned that the
adoption of JavaScript as a programming language can be useful in future developments,
since many IoT devices that can be used as computing nodes support this programming
language.

An example of the interface of the developed application for the collection of ground
truth is depicted in Figure 5.6. In order to start an activity, the “play” button needs to be
tapped, while stopping an activity requires tapping on the “pause” button (Figure 5.6a). At
this point, a list of possible tags pops up, which allows the activity to be labeled accordingly
for data collection (Figure 5.6b). Two extra buttons are available in the first screen: one to
send data over Bluetooth to the companion application on the smartphone, and the other
one to discard collected data and free the memory.

From the software point of view, the development of our Fitbit app has 2 modules:
smartwatch module and smartphone module. The first step towards the development of
the smartwatch module is the implementation of the actual data collection through the
accelerometer readings, which are then stored in the memory along with a timestamp. This
is done by asynchronously performing I/O operations to interact with the memory, while
still letting the accelerometer collect data. At the time of the application development, the
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(a) Starting an activity (b) Labeling an activity

Figure 5.6: Fitbit app user interface for data collection.

APIs are at an early stage, and not really oriented towards scientific purposes, such as data
collection. Therefore, the only function available to let developers asynchronously write
data into the storage requires the use of a raw binary file. To do so, further processing of
the readings is necessary to convert from float type to raw bytes.

After data have been stored successfully, they need to be sent to the smartphone. An-
other challenge of the APIs is that Fitbit probably did not anticipate the collection of such
copious amount of data, therefore there is no tool for developers to transfer a whole file.
The only available function is the transfer of small messages. Consequently, we use such
function as a building block for our customized function to transfer files, where we break
down a file into small chunks that are individually sent to the smartphone via Bluetooth.

In order to receive data on the smartphone and provide a feedback to the smartwatch,
a smartphone module needs to be developed, which allows it to receive such data from the
smartwatch app via Bluetooth. Moreover, while the data are being transferred, we give a
feedback to the user on the smartwatch by showing what percentage of the file has been sent.
This is done by using incremental IDs for each sent message, that the smartphone sends back
to the smartwatch to acknowledge when data are received. We use an Android smartphone
for this purpose, namely a Samsung Galaxy S10 whose main role is to upload data to a
cloud over Wi-Fi to perform recognition using machine learning algorithms. However, the
use of JerryScript, and therefore JavaScript have allowed us to also implement a local server
on the smartphone which can be useful whenever data connection is not available.

5.6.3 Performances Evaluation

In this Section, we discuss the experimental results of our offline and online modalities, as
well as the comparison with the state of the art.
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Figure 5.7: Plot of our 3D feature for the z-axis: wrist on the left, saddle on the right.

Table 5.1: Performances on saddle data while testing different sliding window sizes and
machine learning algorithms.

NN DT k-NN
Walk Trot Canter Walk Trot Canter Walk Trot Canter

2 1 0.95 0.78 0.94 0.93 0.92 0.99 0.94 0.82
4 0.99 0.95 0.77 0.94 0.94 0.84 0.99 0.95 0.8
6 0.99 0.97 0.79 0.96 0.96 0.86 0.99 0.95 0.85
8 0.98 0.93 0.8 0.95 0.92 0.84 0.98 0.93 0.83

10 0.99 0.95 0.76 0.97 0.97 0.86 0.99 0.93 0.84

Offline Modality HoAR: Selection of Machine Learning Algorithm

We first show in Figure 5.7 a qualitative view of the feature extraction technique by means
of the separation of the raw data. We do this separately for the wrist (Figure 5.7 left) and
saddle (Figure 5.7 right) data. Each axis represents one of the proposed features. As the
figure shows, the saddle data presents less noise, therefore allowing for a better separation
of the three gaits. Conversely, when the smartwatch is located on the wrist of the rider,
there is additional noise that results in a partial overlap of the clusters. Nevertheless, as
we show in the following, our approach is able to achieve high accuracy in both scenarios.

Table 5.2: Performances on wrist data while testing different sliding window sizes and
machine learning algorithms.

NN DT k-NN
Walk Trot Canter Walk Trot Canter Walk Trot Canter

2 0.99 0.91 0.79 0.96 0.86 0.81 0.98 0.89 0.81
4 0.97 0.88 0.73 0.96 0.88 0.85 0.97 0.91 0.80
6 0.98 0.9 0.74 0.95 0.90 0.85 0.98 0.92 0.83
8 0.98 0.90 0.62 0.96 0.92 0.87 0.97 0.92 0.84

10 0.99 0.91 0.72 0.97 0.91 0.83 0.99 0.93 0.87
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Figure 5.8: Overall accuracy scores for varying sliding window sizes at fixed frequency
(20Hz).
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Figure 5.9: Overall accuracy scores for varying frequency and fixed sliding window sizes of
10 seconds

We now evaluate the performance of the machine learning algorithms on our datasets
with different setting of the sliding window size. For these experiments, the accelerometer
sampling frequency is fixed to 20Hz. Results are presented in Tables 5.2 and 5.1 for wrist
and saddle data, respectively. As observed in tables, Decision Tree and k-Nearest Neighbors
are the algorithms with the highest accuracy. This is due to the ability of our feature
extraction to successfully separate the data for the three gaits. In fact, these algorithms
can work well when close-by points are likely to have the same label. On the other hand,
neural networks do not perform as well as the other two because the size of the dataset
is not big enough to train the weights of the neurons properly. Between the two best
performing algorithms, we select k-Nearest Neighbors to use in all following experiments,
since it provides slightly better accuracy scores compared to Decision Tree, especially when
it comes to the recognition of Canter activity.
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Figure 5.10: Confusion matrices of HoAR.
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Figure 5.11: Confusion matrices of OIAAR.
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Figure 5.12: Confusion matrices of SMARTCOMP.

Offline Modality: Performances Comparison

In this Subsection, we compare our approach (HoAR) with the state-of-the-art approach
OIAAR as well as to the conference version of this paper (SMARTCOMP). Note that,
while k-NN has been selected for the HoAR approach due to its superior performance, DT
is used for OIAAR and SMARTCOMP. First, we investigate the overall accuracy of all three
approaches over different window sizes while setting the sampling frequency equal to 20Hz.
Results are shown in Figure 5.8. HoAR significantly outperforms OIAAR in all cases and
it outperforms SMARTCOMP approach on the wrist dataset. Although SMARTCOMP
shows acceptable performance on the saddle dataset, it acts poorly on the wrist dataset.
This is due to the feature extraction approach in SMARTCOMP, which was not able to
deal with the noisier data of the wrist.

Next, we compare HoAR with the other approaches under different settings of the
sampling frequency. Since all approaches perform best with a window size of 10 seconds,
we use this setting for this experiments. Results are shown in Figure 5.9. Once again, HoAR
consistently outperforms OIAAR and SMARTCOMP across all different frequencies. Since
these plots simply show an average accuracy score from the three activities, in Figures
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Figure 5.13: Performance of the real-time approach.

5.10, 5.11, and 5.12 we further analyze the performances by means of confusion matrices.
The idea behind these tests is to give a better overview of the performances, with the goal
of providing more details about the accuracy scores at the lowest and highest sampling
frequencies, i.e., 5 and 20 Hz. As usual, this is done separately for saddle and wrist dataset.
Results show that on both datasets HoAR outperforms OIAAR and SMARTCOMP at any
frequency, for all gaits.

Ultimately, we evaluated the F1-score of all the approaches to account for the unbal-
anced dataset. We calculated this measure by using a macro average, corresponding to
the harmonic average of the F1-score for each activity [184]. The experiments have been
performed with a sampling frequency of 20Hz. The results for respectively saddle and wrist
data are reported as follows: 0.93 and 0.92 for HoAR, 0.84 and 0.84 for OIAAR and finally
0.91 and 0.74 for SMARTCOMP.

Online Modality: Performances of Real-time Approach and Adaptive Sampling

In the following, we analyze the performances of our light-weight algorithm and investigate
the impact of different sliding window sizes and frequencies. To better understand the
behavior of the algorithm, we depict the accuracy of each activity in Figure 5.13a. Similar
to the previous experiment, first we set the frequency to 20Hz and evaluate the impact of
different window sizes on the accuracy, as illustrated in Figure 5.13b.

The results show that Walk and Trot have the highest accuracy with 10-second sliding
windows. Although this is not true for Canter, the accuracy at 10 seconds decreases just
slightly compared to the best performance obtained with 8 seconds window. Therefore, we
use a window of 10 seconds in the following experiments.

Subsequently, we fix the sliding window size to 10 seconds and evaluate the impact of
the sampling frequency on the accuracy of each activity. The goal of this experiment is
to identify the lowest frequency which ensures satisfactory accuracy for each activity. In
fact, reducing the sampling frequency reduces the storage, computation, and communication
burden, which is particularly important when classification is performed on the smartwatch.
As inferred from Figure 5.13b, the lowest possible frequencies for Walk, Trot and Canter
are 5, 10 and 15Hz, respectively.
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Figure 5.14: Performances of real-time recognition system for adaptive sampling.

Next, we consider the ability of the real-time approach to adapt the frequency to different
gaits. Results are shown in Figure 5.14a. In this experiment, we manipulate all possible
transitions between the three activities, with the goal of covering all possible scenarios and
avoiding bias towards some specific transition. As observed in Figure 5.14a, the majority
vote is able to provide stable and accurate classification, as there is no fluctuation in the
sampling frequency while a specific gait is being performed. Furthermore, the approach
adapts rapidly to transitions towards a different gait, with a minimum delay imposed by
the circular buffer.

Finally, we evaluate the benefits of adaptive sampling on the amount of collected data.
We compare the adaptive sampling with the best case of perfect adaptation, where the
sampling frequency adapts instantaneously to the gait, and to the worst case of always
sampling at the maximum rate of 15Hz. The results in Figure 5.14b show that our approach
behaves closely to the perfect adaptation. This strategy allows us to save more than one
third of data comparing to the flat sampling at 15Hz. It is worth mentioning that, although
each activity is performed for roughly the same amount of time in this test, in a more
realistic scenario Canter (the activity requiring the highest sampling frequency) is usually
performed for shorter periods of time, therefore the actual benefits to the storage would be
higher.
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6 A Human-Centered Power Conservation Framework based on Reverse Auctions and
Machine Learning
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Residential power consumption is on the rise. More and more frequent heat waves, win-
ter storms, and similar weather-related events lead to extreme outside temperatures that
trigger Heating Ventilation and Air Conditioning (HVAC) systems. As a consequence, such
extreme outside temperatures put a strain on power grids and may thus lead to blackouts.
In order to avoid the financial and personal repercussions of blackouts, power conservation
represents a promising solution. Despite numerous efforts, it has been shown that the cur-
rent state of the art fails to engage users in the long term. In fact, while technically sound,
these studies lack the consideration of a component that considers the complexity of user
behavior and our individual needs. Thus, in this work, we address such individual human
component through a three-fold approach: personalized preferences of power conservation,
models of realistic user behavior, and realistic home-level power dynamics. Our framework
exploits IoT-based smart thermostats and reverse auction theory to perform HVAC-based
human-centered power conservation. When a peak load is anticipated by the utility com-
pany, our system, based on an optimization problem called POwer Conservation Optimiza-
tion (POCO), asks each user to adjust their thermostat settings for a short period of time,
e.g., one hour. Users submit their own set of bids in the form of personalized preferences
of thermostat temperature adjustments, along with corresponding financial compensations.
We employ models of realistic user behavior by means of online surveys to gather user bids
and evaluate user interaction with such system. Realistic home-level power dynamics are
implemented by our machine-learning-based Power Saving Predictions (PSP) algorithm,
calculating the individual power savings in each user’s home resulting from such bids. We
prove that POCO is NP-hard, and thus provide two approaches to solve this problem. One
approach is an optimal pseudo-polynomial algorithm called DYnamic programming Power
Saving (DYPS), while the second is a heuristic polynomial-time algorithm called Greedy
Ranking Allocation (GRAN). We perform realistic experiments using the high-fidelity and
gold-standard energy simulator software EnergyPlus, funded by the U.S. Department of
Energy. We further evaluate the results of the auctions across five different dimensions,
showing that, as expected, DYPS finds the optimal solution, while GRAN outperforms
recent state-of-the-art approaches with results up to 98.78% closer to the optimum. Qual-
itative results also suggest that that GRAN enhances long-term user engagement through
improved comfort.
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6.1 Introduction

Residential power consumption has increased significantly in the last years, due to factors
such as growing urbanization [63], and it is expected to be rising further as a consequence of
economic development and limited progress towards energy efficiency [185]. Besides, more
and more frequent weather events, such as winter storms [186] and heat waves [187], lead
Heating Ventilation and Air Conditioning (HVAC) systems to cause peak loads, due to the
extreme outside temperatures [70]. These loads saturate the power grid capacity and are
economically costly, due to the exponential growth of the price-demand ratio [188], and
may lead to even greater financial consequences when they cause blackouts. As a matter
of fact, in 2021, Texas witnessed a historical winter peak demand record of 69,150MW
[186], leading to customer bills of $5,000 and a wholesale energy increase of 17,900% [189].
In addition, blackouts resulting from peak loads not only bring discomfort to users, but
they also represent a threat to the users’ health [190]. In fact, Texas peak demand record
registered a wide number of users left with no electricity in freezing temperatures [191].

Efforts to tackle peak loads have been an actively investigated by the research and en-
ergy industry communities for several years. Early attempts include price-based demand
response [76, 81], according to which higher tariffs are set to discourage users from con-
suming power during periods of high demand. However, since users do not keep up with,
and often ignore, such dynamic tariffs in the long term, this approach has been proved
to be ineffective [92, 93]. In order to reduce the impact of peak loads on the power grid,
several countries, such as Iran [192], South Africa [193], and the United States [187, 194]
are focusing on alternative methodologies. For instance, some utility companies urge users,
through various communication and media outlets, to reduce their power consumption when
a peak load is expected [195]. Since users often do not comply with these requests, utility
companies resort to rotating outages in order to prevent large scale blackouts. However,
these outages often last much longer than originally planned and cause great discomfort to
the users [187]. Furthermore, the recent extreme weather events, and consequent blackouts,
recently occurred in Texas [186] and California [187] bear witness to the reality that peak
loads remain a present issue without a concrete solution. Moreover, this issue is rapidly
worsening, since the number of blackouts from weather-related events has grown exponen-
tially since the year 2000 [196], while blackouts from non-weather-related events has stayed
more or less constant since 1984.

The diffusion of Internet-of-Things (IoT) devices in power systems, such as smart ther-
mostats (e.g., Nest [197]), energy management systems, and the Advanced Metering Infras-
tructure (AMI) [198, 199], enable a wide range of approaches to monitor power consumption
and realize previously impossible fine-grained energy management solutions. One of such
solutions is power conservation, where power consumption is reduced on the user side by
changing the settings, shutting down, or delaying the use of certain appliances. As a matter
of fact, a recent study [200] has shown that power conservation has the potential to greatly
reduce peak loads, by temporarily reducing the power consumption by more than 50%
on a global scale. Several studies [83, 84] have focused on IoT-based power conservation
techniques to address peak loads. Despite these numerous efforts, many solutions lack effec-
tiveness due to the unsuccessful long-term user engagement. In fact, these solutions require
users to excessively interact with both their devices and the utility company, thus leading
them to experience response fatigue, disengagement, and potentially even abandonment of
such systems [92, 86]. Hence, it is important to provide a more flexible program with per-
sonalized preferences that prioritizes user well-being and achieves long-term engagement.
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Figure 6.1: A schematic overview of the proposed framework

As a consequence, more recent efforts have focused on developing models of realistic user
behavior [87, 88, 90] that study user interaction of users with appliances and with the power
conservation program. Furthermore, in order to design accurate and well-targeted power
conservation programs, it has been shown that it is important to include realistic home-
level power dynamics [89], that consider easy-to-obtain information in order to support
large-scale deployment. Summarizing, a successful power conservation technique need to
explicitly address the individuality of user needs and behaviors. Such individuality consists
of three main elements, namely, 1) providing personalized preferences of power conservation,
2) adopting models of realistic user behavior, and 3) performing realistic home-level power
dynamics. To the best of our knowledge, our work is the first to design a comprehensive
framework for power conservation that addresses all these challenges, while fulfilling the
utility company’s goal to perform power conservation, and thus reduce the peak load.

Specifically, in this work, we propose a power conservation system that exploits reverse
auction theory to perform HVAC adjustments during events of extreme outside temperature
enabled by a Smart Energy Management System (SEMS) deployed in each user’s home that
learns HVAC power trends and controls thermostat settings remotely. As depicted in Fig.
6.1, when a peak load is anticipated by the utility company, users are asked to participate in
the power conservation program, which is expected to last for a certain period of time, e.g.,
30 minutes or one hour. In order to provide a flexible and customized program, users can
provide a set of personalized preferences. In auction terminology, such options are called
bids. Each bid is a pair of values consisting of an HVAC temperature adjustment along with
a financial reward. In this paper, in order to realistically model the user behavior, we carry
out an online survey involving 200 users. The survey is designed to understand how users
interact with a similar power conservation program. Subsequently, the SEMS of each user
sends the submitted bids back to the utility company along with a machine learning-based
prediction of the resulting power saved for each bid. Note that, in order to avoid frequent
interactions with the power conservation program, users can choose to have a default set of
bids stored in their SEMS that is automatically sent every time a peak load is detected.

Note that, the power savings corresponding to each bid are strictly dependent on various
factors individual to each home. Additionally, a bid is a short-term adjustment of the HVAC
thermostat. Thus our objective, differently from previous approaches on power prediction,
is to provide transient power saving predictions. In order to capture such home-level power
dynamics, we develop a machine learning-based model called Power Saving Prediction (PSP)
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that runs on each user’s SEMS. To enable large-scale deployment, this model uses easy-
to-obtain information and it is able to quickly learn the impact on power consumption of
HVAC usage, and thus perform accurate predictions. PSP can be implemented in modern
thermostats such as Nest [197], and it can learn from sporadic adjustments that these
thermostats perform automatically.

When the utility company receives bids along with the respective power savings pre-
dicted by PSP, a reverse auction mechanism selects the winners of the auction. The results
of the auction are communicated to the users’ SEMS, which in turn adjust the HVAC set-
tings accordingly. The auction mechanism is composed by an optimization problem named
POwer Conservation Optimization (POCO) and a payment rule. POCO minimizes the
financial rewards that the utility company pays the users while guaranteeing the required
power conservation. We prove that the mechanism is truthful and individually rational.
However, we also prove that POCO is NP-hard. Therefore, we propose a DYnamic pro-
gramming Power Saving (DYPS) and a Greedy Ranking AllocatioN (GRAN) heuristic.
DYPS is a pseudo-polynomial algorithm that optimally solves POCO, while GRAN pro-
vide an heuristic solution in polynomial time while providing truthfulness and individual
rationality.

We carry out realistic experiments to evaluate the performance of our framework using
the high-fidelity energy simulator EnergyPlus. EnergyPlus is funded by the U.S. Depart-
ment of Energy [201], and tested according to the ASHRAE Standard 140 methodology
[202], thus representing the gold-standard of energy data simulations. Furthermore, our
online survey shows that 79% of participants are willing to join such a power conservation
program, but it also reveals that bids are non-linear and highly variable. We further show
that PSP is able to predict power savings at different time frames with over 95% of samples
within a 5% error. DYPS and GRAN outperform recent state-of-the-art approaches on mul-
tiple scenarios with performance up to 98.78% closer to the optimum for GRAN. Finally,
our approaches provide high user comfort and predictability, thus supporting long-term
user engagement with the power conservation program.

6.2 Problem Formulation

We consider a set of N home users served by a utility company. Users are equipped with
an Internet-connected Smart Energy Management System (SEMS) that monitors, learns,
analyzes, and controls the HVAC system to set temperature changes. The SEMS also
interacts with the utility company to implement the auction framework. When the utility
company predicts a peak load with an expected total power consumption PT , it calculates
the power cap PC = α×PT , where α ∈ [0,1), according to the system’s characteristics, such
as generation capacity, cost of generation, capacity of transmission/distribution lines, etc.1
Therefore, the required power saving is PS = PT −PC.

The utility company alerts the user SEMSs that the power conservation auction is
activated, requesting for bids. A SEMS asks its user directly, or submits the bids based on
the pre-defined profile. In the following formulation, we assume that all users participate
in the auction. Such formulation can be easily extended to consider only a portion of
participating users. As a result, in order to provide personalized preferences for each user,
we let each user i submit to the utility company, through their SEMS, a set Bi = {Bi j =

1We assume that the utility company predicts the peak load and its duration. The proposed framework
is supposed to be executed for the duration predicted by the utility company.
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(∆Pi j,∆Ti j,Ci j) : 1≤ i≤ N,1≤ j ≤Mi} of Mi bids, where ∆Pi j, ∆Ti j, Ci j represent respectively
the power saving, temperature change, and monetary compensation2 for user i and bid
j. We discuss in Section 6.5 how realistic home-level power dynamics are implemented
through the PSP algorithm, in order to predict the power savings ∆Pi j, corresponding to
the temperature change ∆Ti j.

After receiving bids from the users, the utility company performs the auctioneer tasks,
i.e., selects the winners and computes the payments. The winners are a subset of N users,
and the utility company only selects one bid per winner. The winner selection strategy
is formulated as an Integer Linear Programming (ILP) optimization problem that aims
to minimize the costs in terms of the paid compensations, while satisfying the power cap
constraint. As shown in Section 6.6, there is a correlation between the cost Ci j and the
temperature change ∆Ti j of a bid. Intuitively, a user bids higher for higher temperature
changes due to higher discomfort. As a result, minimizing the cost has also the implicit
effect of minimizing the discomfort of the user. We refer to this as the POwer Conservation
Optimization (POCO) problem defined as:

min
N

∑
i=1

Mi

∑
j=1

Ci jwi j (6.1a)

subject to
wi j ∈ {0,1}, i = 1, . . . ,N, j = 1, . . . ,Mi (6.1b)
Mi

∑
j=1

wi j ≤ 1, i = 1, . . . ,N (6.1c)

N

∑
i=1

Mi

∑
j=1

∆Pi jwi j ≥ PS (6.1d)

Expression (6.1a) defines the goal of minimizing the total cost. Constraint (6.1b) defines
the decision variable wi j, which is equal to 1 when user i is selected as a winner in the j-th
bid, and 0 otherwise. Constraint (6.1c) ensures that no more than one bid is selected for
each user. Finally, inequality (6.1d) guarantees that the power cap constraint is met.

After selecting the winners by solving the above problem, we propose the payment rule
as follows. Let the objective function in (6.1a) be denoted as f (·). The payment Ek to the
user k, who is a winner of the reverse auction, is given by

Ek = f (w(−k)∗)− f (w∗)+
Mk

∑
j=1

Ck jw∗k j (6.2)

where w∗ is the optimal solution of POCO, w(−k)∗ is the optimal solution when user k does
not participate, and ∑Mk

j=1Ck jw∗k j corresponds to the winning bid of user k. Each winning user
k gains a non-negative utility, i.e., a revenue, defined as Uk = Ek−Ck. In the following, we
prove truthfulness and individual rationality of POCO in order to ensure an effective power
conservation program [72]. Truthfulness prevents potential unhealthy bidding behavior, by
providing reduced utility Uk when users bid differently than the true valuation. Individual
rationality guarantees that each winning user is paid an amount that ensures non-negative
utility (Uk ≥ 0). We provide proof of truthfulness in the following.

2Note that, in the following, we use the terms “cost” and “monetary compensation” to represent financial
rewards from the utility company and user perspective, respectively.
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Theorem 2. The reverse auction mechanism, as defined by the POCO problem and the
payment rule in Eq. (6.2), is truthful.

Proof. As stated in Eq. (6.2), the payment rule Ek to a selected winning user k is given
by f (w(−k)∗)− f (w∗)+∑Mk

j=1Ck jw∗k j. Therefore, the utility of this user is defined as Uk =

Ek−∑Mk
j=1Ck jwk j. Specifically, the utility is intended as a revenue with respect to the truthful

compensation Vk j. Thus, we can write Uk = Ek−∑Mk
j=1Vk jwk j.

In order to prove truthfulness, we show that the utility Uk of a user k in case that their
declared compensation is equal to the true valuation (Ck = Vk) is greater than the utility
U ′k of the same user in case the declared compensation is not equal to the true valuation
(Ck ̸=Vk), i.e., Uk−U ′k > 0, while all other bids are unchanged and exactly the same. Let us
define Uk and U ′k as:

Uk = f (w(−k)∗)− f (w∗) (6.3)

U ′k = f (w(−k)∗)− f (w∗)+
Mk

∑
j=1

(Ck j−Vk j)wk j (6.4)

where f (w∗) = ∑N
i=1 ∑Mi

j=1Ci jw∗i j. Note that in calculating Uk−U ′k, the terms f (w(−k)∗) and
f (w(−k)∗) are equal, since the optimal solution without the user k is the same in both cases,
truthful and untruthful bidding of user k.

Uk−U ′k =−
N

∑
i=1

Mi

∑
j=1

Ci jw∗i j +
N

∑
i=1

Mi

∑
j=1

Ci jw∗
′

i j−
Mk

∑
j=1

(Ck j−Vk j)w∗
′

k j

=−
N

∑
i=1

Mi

∑
j=1

Ci jw∗i j +
N

∑
i̸=k

Mi

∑
j=1

Ci jw∗
′

i j +
Mk

∑
j=1

Ck jw∗
′

k j−
Mk

∑
j=1

(Ck j−Vk j)w∗
′

k j

=−
N

∑
i=1

Mi

∑
j=1

Ci jw∗i j +
N

∑
i ̸=k

Mi

∑
j=1

Ci jw∗
′

i j +
Mk

∑
j=1

Vk jw∗
′

k j

Now we combine the last two terms into one summation by considering that Vk j is the
user compensation in the truthful scenario (Vk =Ck), therefore we have

Uk−U ′k =−
N

∑
i=1

M

∑
j=1

Ci jw∗i j +
N

∑
i=1

M

∑
j=1

Ci jw∗
′

i j

Since w∗i j is the optimal solution given declaring the truthful compensation (Vk = Ck) by
user k, then the first nested sum is always less than or equal the rest of the equation, and
therefore Uk−U ′k ≥ 0 is always true. The equality holds when w∗i j = w∗

′
i j .

Next, we prove that POCO is individually rational, i.e., the revenue Uk of each user is
non-negative.

Theorem 3. POCO is individually rational.

Proof. Consider payment rule defined in Eq. 6.2 Ek = f (w(−k)∗)− f (w∗)+∑Mk
j=1Ck jw∗k j and

utility Uk = f (w(−k)∗)− f (w∗). Since we want to prove that Uk ≥ 0, then we want to prove
that f (w(−k)∗)≥ f (w∗).
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By contradiction, it would be impossible to have f (w(−k)∗)< f (w∗). In fact, if w(−k)∗ is
the solution when user k does not participate in the auction, then the optimal solution w∗
can only improve, and thus we have f (w∗)≤ f (w(−k)∗), which proves that Uk ≥ 0.

Finally, we prove the NP-hardness of POCO, motivating the need for an efficient heuris-
tic.

Theorem 4. POCO is an NP-hard problem.

Proof. The NP-hardness can be proven as a reduction from the minimum 0-1 knapsack
problem (minKP) [203]. The minKP looks for the set of items with minimum weight and
a cumulative value larger than or equal to a target value. A reduction of POCO can be
solved by minKP. Thus, we set Mi = 1, according to which each user in POCO can only bid
one offer. Therefore the decision variable wi j can be written as a simple wi which is equal to
1 when the user is a winners of the auction, and 0 otherwise, thus obtaining the following
formulation:

min
N

∑
i=1

Ciwi (6.5a)

subject to: wi ∈ {0,1} (6.5b)
N

∑
i=1

∆Piwi ≥ PS (6.5c)

The optimal solution to this instance of our problem is a formulation of minKP where
values are represented in terms of compensations, while weights and maximum capacity
are represented in terms of power consumption values and the required powered saving.
Because this instance of POCO, formulated in the form of a minKP, provides a solution
that is also a solution to the knapsack problem, we can say that solving POCO is at least
as difficult as solving KP, and therefore POCO is NP-Hard.

6.3 The DYPS Algorithm

In this section, we present a pseudo-polynomial algorithm to solve POCO called DYnamic
programming Power Saving (DYPS). DYPS is based on dynamic programming and it is
composed of two phases. The first phase, divides the original problem into sub-problems,
and it exploits a recursive relation that provides the solution of bigger sub-problems by
exploiting the solutions of smaller sub-problems. The output of the first phase is the value
of the optimal solution of POCO. The second phase uses a recursive algorithm to find the
set of winning bids that provide the optimal solution of POCO by back-tracking the first-
phase decisions. Note that, since DYPS solves POCO optimally, we pair it with the same
payment rule in Eq. (6.2), and thus it inherits the property of individual rationality and
truthfulness.

6.3.1 DYPS: Recursive Relation

The core of DYPS is a recursive relation that allows us to solve larger sub-problems from
the solution of smaller sub-problems. Given an instance of POCO with a set of bids B and
a power saving PS, we define a sub-problem as an instance of POCO with a reduced input,
i.e., considering a subset of bids in B or a smaller value of PS. Starting from base cases
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that are straightforward to solve, the size of the input is gradually increased to find the
solution to the original problem, i.e., the value of the optimal solution. This is achieved by
exploiting a table T of size |B|×PS, which stores the solutions of the sub-problems. The
element T [x,y] is the solution to a sub-problem that considers the first x bids in B and a
power saving PS = y. In order to define such recursive relation, we first define the base cases
and subsequently the recursive cases.

Base cases

The base case occurs when x= 0 or y= 0. When x= 0, there are no bids (|B|= /0). Therefore,
it is impossible to satisfy the power saving. As a result, we set T [0,y] = ∞ for all values y of
power saving. Conversely, when y = 0 no power reduction is needed (PS = 0). As a result,
in order to minimize the cost for the power company, there are no auction winners and the
value of the optimal solution is zero. Thus, we set T [x,0] = 0 for all x. Note that, when
x = 0 and y = 0 we set T[0,0] = 0.

Recursive cases

Given the base cases, we can define the recursive cases for x > 0 and y > 0 as follows.
Let x be the bid Bi j = (∆Pi j,∆Ti j,Ci j). We identify two cases. In the first case, Bi j alone is
sufficient to satisfy the entire power saving needed, i.e., ∆Pi j ≥ y. In this case, the optimal
solution of POCO is either the cost Ci j (i.e., Bi j is the only winner), or it is the optimal
solution without Bi j (i.e., using x−1 bids). Between these two options, we should pick the
solution with minimum cost, that is T [x,y] = min(Ci j,T [x−1,y]).

In the second case, the bid Bi j is not sufficient to fulfill the entire power saving, i.e.,
∆Pi j < y. Thus, the optimal solution of POCO may or may not include Bi j. If it includes
Bi j, i.e., Bi j is a winning bid, no other bid of user i can be a winning bid. Therefore, the
optimal solution is composed by Bi j plus the bids of the optimal solution of the sub-problem
with x− j bids3 and a power saving of y−∆Pi j. Conversely, if we do not include Bi j in the
solution, then the optimal solution is the solution of the sub-problem with x− 1 bids and
power saving y. Among these two options, we should pick the solution with minimum cost,
that is T [x,y] = min(Ci j +T [x− j,y−∆Pi j],T [x−1,y]).

In summary, the recursive equation is the following:

T [x,y] =


0, if y = 0
∞, if x = 0
min(Ci j,T [x−1,y]), if ∆Pi j ≥ y
min(Ci j +T [x− j,y−∆Pi j],T [x−1,y]) if ∆Pi j < y

(6.6)

Pseudo code

The pseudo code of DYPS is shown in Algorithm 2. The algorithm takes as input the
set of bids B and the power saving PS. The base cases are initially addressed in lines 1-2.
Subsequently, two nested loops iterate x over the set of bids and y from 1 to PS. At each
iteration, the sub-problem T[x,y] is considered. Note that, we make use of an auxiliary
function x_to_bid() that returns the bid Bi j corresponding to x. Lines 6-7 correspond to

3We assume that the bids in B are numbered such that bids of the same user are adjacent. As a result,
since we are currently considering Bi j, x− j refers to the last bid of user i−1.
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Algorithm 2: DYPS Recursive Relation Algorithm
Input : B, PS

Output: Table T
/* Base cases */

1 T [0,y] = ∞ ∀y
2 T [x,0] = 0 ∀x
/* Recursive cases */

3 for x← 1 to |B| do
4 for y← 1 to PS do
5 Bi j = (∆Pi j,∆Ti j,Ci j) = x_to_bid(x)
6 if ∆Pi j ≥ y then

// Case 1) Bid alone fulfills power cap y
7 T [x,y] = min(Ci j,T[x− j,y])
8 else

// Case 2) Bid alone does not fulfill power cap y
9 T [x,y] = min(Ci j +T[x− j,y−∆Pi j],T [x−1,y])

10 return T

the first recursive case, in which the the current bid provides sufficient power saving to meet
the power cap (∆P[i, j] ≥ y) PS. Similarly, Lines 8-9 provide the recursive solution for the
case of ∆P[i, j]> y.

The algorithm returns the table T, which contains in position T[|B|,PS] the value of the
optimal solution of POCO. In the following, we describe how to obtain the actual solution
from T, i.e., the set of winning bids.

Algorithm 3: DYPS Solution Algorithm
1 DYPS-Sol(T, B, x, y, S)
2 if x == 0∨ y == 0 then
3 return S
4 Bi j = (∆Pi j,∆Ti j,Ci j) = x_to_bid(x)
5 if T [x,y] ==Ci j +T[x− j,y−∆Pi j] then
6 S← S∪{Bi j}
7 return DYPS-Sol (T, B, x− j, y−∆Pi j, S)
8 if T [x,y] ==Ci j then
9 S← S∪{Bi j}

10 return S
11 return DYPS-Sol (T, B, x−1, y, S)

6.3.2 DYPS: Finding the Solution

Given the table T returned by the previous phase of DYPS, we now provide a recursive al-
gorithm, called DYPS-Sol, to find the actual solution, i.e., the set of winning bids. DYPS-Sol
starts from T[|B|,PS], which contains the value of the optimal solution of POCO, and recur-
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sively navigates the table T to back track the decision of the algorithm during the first phase
until a base case is reached. A set S is updated by adding the winning bids encountered
during the recursive iterations.

The pseudo code of DYPS-Sol is shown in Algorithm 3. The algorithm takes as input the
table T, the set of bids B, the current sub-problem input x and y, and the current solution
S. The algorithm is initially called as DYPS-Sol(T, B, |B|, PS, S), where S is initially empty.

During a generic iteration, the algorithm first checks if we are in a base case (line
2), that is if x or y are zero. In that case, the current solution S is returned and the
algorithm terminates. If we are not in a base case, the algorithm extract the current bid
Bi j = (∆Pi j,∆Ti j,Ci j) in line 4. Subsequently, in line 5, the algorithm checks if the previous
phase picked the current bid and this bid was not able to fulfill the entire power saving.
This happens if T [x,y] ==Ci j +T[x− j,y−∆Pi j]. In this case, the bid is added to the current
solution and the algorithm is recursively called on x− j and y−∆Pi j. Then, the algorithm
checks if Bi j was picked as a single bid able to fulfill the entire power saving y. This can
be verified by checking if T [x,y] == Ci j. If this is the case, the algorithm adds Bi j to the
current solution and terminates the recursive calls (no other winning bid could have been
added). Finally, if all previous cases are not true, the current bid has not been selected by
the first phase. As a result, the algorithm calls itself recursively by excluding this bid, that
is on x−1 bid and power saving y.

6.3.3 DYPS: Complexity

The following theorem shows the pseudo-polynomial complexity of DYPS.

Theorem 5. The time complexity of DYPS mechanism is O(|B|PS).

Proof. The time complexity of DYPS results from the complexity of algorithm Alg. 2 and
algorithm 3. The first algorithm contains two for loops, the first one iterating over |B|
and the second one over PS. The rest of instructions are all constant, and therefore the
complexity is O(|B|PS). DYPS-Sol instead backtracks the table T recursively. It is to notice
that, there is at most one recursive call per bid, thus the complexity is upper bounded by
O(|B|).

Overall, the complexity of DYPS is O(|B|PS + |B|) = O(|B|PS). Note that, as discussed
in [204], this is a pseduo-polynomial complexity, since PS is a scalar.

6.4 The GRAN Mechanism

In this section, since POCO is NP-hard, and DYPS has pseudo-polynomial time complexity,
we propose a heuristic called Greedy Ranking AllocatioN (GRAN) to find an efficient so-
lution for POCO, while guaranteeing truthfulness and individual rationality of the auction
mechanism.

6.4.1 Winner Selection and Payment Rule

The basic idea of GRAN is to prioritize bids with a better ratio of cost over the amount
of power saved. This ratio is used to calculate a ranking criterion sorted in non-decreasing
order. Winners are selected by picking their best bid according to the ranking criterion,
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until the desired power saving PC is reached. The pseudo-code of GRAN is provided in
Algorithm 4.

Algorithm 4: GRAN: Greedy Ranking AllocatioN
Input : PT , α, and Bi i = 1, . . . ,N
Output: List of Winners W

1 W← /0,PCS = 0 ; // Variables initialization
2 PC = α ·PT ; // Power cap
3 PS = PT −PC

4 R←{Ri j =
∆Pi j
Ci j

i = 1, . . . ,N, j = 1, . . . ,Mi}
5 Sort elements of list R in a non-ascending order
6 while PCS < PS and R ̸= /0 do
7 Let Rî ĵ be the first element in R and
8 Let Bî ĵ = (∆Pî ĵ,∆Tî ĵ,Cî ĵ) be the bid corresponding to Rî ĵ

9 PCS = PCS +∆Pî ĵ ; // Update cumulative power saving
10 W← Bî ĵ ; // Update list of winners
11 Remove all bids of user î from R
12 return W

In line 1 of Algorithm 4, we initialize the list of the auction winners W and the variable
storing the cumulative power saving PCS. We then calculate the power cap PC and the
amount of power saving PS that represents the power constraint in the Inequality (6.1d)
(lines 2−3). Since our goal is to minimize the objective function in (6.1a), GRAN uses a
ranking criterion which gives precedence to the bids with low cost and large power saving.
GRAN uses a list R that stores the values of ranking criterion in non-ascending order (lines
4−5).

In the while loop (lines 6-12), we go through the list until the power cap constraint
is satisfied, i.e., the cumulative power saving PCS is greater than or equal to the required
power saving PS. At each iteration, we pick the bid Bî ĵ with the greatest ranking criterion
Rî ĵ in R (line 7−8). Therefore, we increase PCS by the corresponding power saved (line 9)
and we add the winning bid Bî ĵ to the list of winners W (line 10). Finally, we remove all
other elements from user î in R (line 11), since only one bid per winner should be selected.

GRAN terminates as soon as the power saving is met, i.e., PCS ≥ PS. Subsequently,
the new thermostat settings of the winners are sent to the corresponding SEMSs, and the
utility company pays the winners. For this purpose, we propose a truthful payment rule for
GRAN as described in Algorithm 5. It may be possible that GRAN is unable to meet the
power cap and terminates the while loop because R = /0. In this case, the utility company
may increase the power cap, thus reducing the required power saving, by supplementing
the auction mechanism with other approaches for power conservation. Nevertheless, in all
our experiments, we use a power cap that far exceeds similar power reductions [66], and
this situation never occurred.

To define a truthful payment rule, we guarantee that each user i is paid the critical
value Ei, which is defined as follows with respect to the critical bid Bī j̄. If user i submits a
compensation Ci j > Ei, it loses; otherwise, it wins. In Algorithm 5, we obtain the critical
bid as follows. We find the solution W−i of GRAN when user i is not participating in the
auction (line 2). Then, we select the critical bid Bī j̄ as the last bid added to the solution set
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Algorithm 5: GRAN payment rule
Input : List of Winners W, GRAN Algorithm
Output: Payment Vector E

1 foreach Bi j ∈W do
2 W−i = GRAN(B−i) ; // B−i =

∪N
k=1 Bk \{Bi}

3 Let Bī j̄ be the last element added to W−i

4 Ei =
∆Pi j
Rī j̄

5 return E

(line 3). Finally, in line 4, we define the critical value Ei =
∆Pi j
Rī j̄

. In the following subsection,
we will prove that this payment rule, paired with the winner selection algorithm, guarantees
truthfulness of the GRAN mechanism.

6.4.2 GRAN Properties

To prove that the GRAN mechanism is truthful, we follow the approach similar to [205].
More precisely, we first prove that the winner selection algorithm (Algorithm 4) is mono-
tonic, and then that the payment rule (Algorithm 5) pays the critical value.

Definition 6.4.1 (Monotonicity). An algorithm is monotonic if, by substituting any win-
ning bid Bi j = (∆Pi j,∆Ti j,Ci j) with B̃i j = (∆Pi j,∆Ti j,Ci j−δ ), B̃i j is selected as a winner.

Theorem 6. Algorithm 4 is monotonic.

Proof. Suppose the bid Bi j wins in the qth iteration. If we substitute Bi j with B̃i j =
(∆Pi j,∆Ti j,Ci j − δ ), δ > 0, and execute Algorithm 4 with such new input, B̃i j would ap-
pear in the ranking criterion R before the position of Bi j in the original execution. As a
result, B̃i j would be selected on or before the qth iteration.

Theorem 7. Each winning bid is paid the critical value.

Proof. Our goal is to prove that the payment rule we defined in Algorithm 5 pays the
critical value, as defined in line 4. More specifically, paying the critical value is equivalent
to proving that if user i submitted a compensation Ci j > Ei, then it will lose; otherwise (i.e.,
if user i submitted a compensation Ci j ≤ Ei), then it will win.

Consider a winning bid Bi j = (∆Pi j,∆Ti j,Ci j) selected by Algorithm 4, and consider the
critical bid Bī j̄ in line 3 of Algorithm 5, i.e., the last selected winning bid when Bi j is not
participating in the auction.
[Case 1]: if Ci j > Ei, then Bi j is a losing bid. The inequality Ci j > Ei can be rewritten
as Ci j >

∆Pi j
Rī j̄

. Multiplying both members by Rī j̄ and then dividing by Ci j yields Rī j̄ > Ri j.
Because Algorithm 4 sorts values of ranking criterion non-ascendingly, Ri j would be placed
after Rī j̄ in the list R. Therefore, Bi j will be a losing bid.
[Case 2]:if Ci j ≤ Ei, bid Bi j is a winning bid. Similarly to Case 1, Ci j ≤ Ei yields Rī j̄ < Ri j,
which makes Bi j a winning bid, since Ri j would be placed before Rī j̄ in R.

Theorem 8. The GRAN mechanism is truthful.
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Proof. Following [205, Theorem 9.36], the proof of this theorem follows from Theorems 6
and 7 proved above.

Theorem 9. The GRAN mechanism holds the property of individual rationality.

Proof. To prove individual rationality, we need to show that the utility Uk = Ek−Ck j is
non-negative, i.e., ∆Pi j

Rī j̄
−Ck j > 0. This is equivalent to Ck j <

∆Pi j
Rī j̄

, which is easily proven
because by construction of GRAN (Alg. 4 and 5), if we had Ck j >

∆Pi j
Rī j̄

, then user k would
not be a winning bid.

Let us know analyze the computational complexity of the GRAN mechanism.

Theorem 10. The time complexity of the GRAN mechanism is O(N2Mmax log(NMmax)),
where Mmax = maxi=1,...,N |Bi| is the maximum number of bids submitted by a user.

Proof. We analyze the time complexity of the winner selection (Algorithm 4) and the pay-
ment rule (Algorithm 5) separately.
[Algorithm 4]: In line 4 of Algorithm 4, we generate the list R and sort it in line 5. The list
size O(NMmax), where Mmax =maxi |Bi|. Thus the overall complexity is O(NMmax log(NMmax)).
The “while” loop in lines 6− 12 is executed at most N times, since each iteration selects
a user and all other bids of that user are removed from R. The cost of each iteration
is dominated by the cost of removing bids for the selected user from R in line 11. By
using a hash list to store the pointers to the bids, this operation can be done in O(Mmax)
time, implying the while loop requires O(NMmax) time. Therefore, the time complexity of
Algorithm 4 is O(NMmax log(NMmax)).
[Algorithm 5]: The “for” loop in line 1 makes at most N iterations, since the maximum
number of winners is N. At each iteration, we execute Algorithm 4. Therefore, it requires
O(N2Mmax log(NMmax)) time.

Overall, the time complexity of the GRAN mechanism is O(N2Mmax log(NMmax)), domi-
nated by Algorithm 5.

6.5 Power Saving Predictions

In order to effectively select the winners of the auction and meet the power cap constraint,
it is necessary to model realistic home-level power dynamics, i.e., know the power saving
corresponding to each bid. Predicting the power consumption for a given thermostat setting
is a complex task that depends on a plethora of parameters, such as weather, house size,
solar gain, physical and chemical characteristics of the house materials, etc. [95]. In our
case, this is even more challenging, since our goal is to predict the power saving resulting
from a sudden and short-time change in the thermostat setting.

6.5.1 Background on Power Prediction

In the literature, there exist two different approaches to predict power consumption, namely
the white box and black box approaches. In the white box approach, a physical model is
defined, consisting of equations that formulate the physical and chemical characteristics of
the house, layout, occupancy, and materials [66]. However, this approach is often imprac-
tical for two main reasons: (i) most of these parameters are unknown in practice [95]; and
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(ii) a different model would be required for each house, thus limiting large-scale deploy-
ment of the system. In contrast, the black box approaches rely on the historical data of
power consumption. The goal is to train a machine learning model capable of predicting
the future time series of power consumption under the current environmental (e.g., weather
information) and house conditions [98].

Most previous works adopting a black box approach focus on predicting the steady-state
energy consumption of a given house at a specified thermostat setting [96, 98]. However, in
our proposed work in this paper, we are interested in predicting the power saving during a
transient state, i.e., after a sudden and short-term change of the thermostat setting. In most
circumstances, the peak load period is not long enough to allow the power consumption to
reach the steady state [206], making the prediction problem extremely challenging. To the
best of our knowledge, no other work strictly focuses on the transient state predictions of
residential power consumption.

6.5.2 The PSP Algorithm

The proposed Power Saving Prediction (PSP) algorithm allows us to model realistic home-
level power dynamics by means of a regression technique that predicts cumulative power
saving resulting from a thermostat change. We assume that the SEMS of each user keeps
track of thermostat setting adjustments that occur over time during non-peak load periods,
and the resulting power consumption. These changes may be due to sporadic manual
adjustments, or automatic event-based adjustments supported by modern thermostats [207].
Note that the user may or may not be at home when such changes take place. For each
of these adjustments, the SEMS records the power saving at different time scales (e.g.,
multiple of 15 minutes), representing the potential duration of a peak load. A different
model is trained for each of these durations. Training is performed with a set of features
easily available to the SEMS. Therefore, potentially useful but hard to obtain information,
such as the window U-factor [95], is purposely omitted. Specifically, the PSP algorithm is
based on the following features:

• Weather information: outside temperature, wind speed, humidity at the beginning of
the peak load period;

• House information: default thermostat set point, new thermostat set point, inside
temperature;

• Time: hour of the day.4

The above features could be used to train several types of machine learning models.
However, since the data collected are from individual homes, and thus limited, models that
require large training sets (e.g., deep neural networks) would not be practical [208]. As a
result, the PSP algorithm exploits a regression technique that allows us to learn the cor-
relation between the features given as input, and the power saved during the peak load
period, with limited training data and at a very fast rate, as shown in the experimental
study (Section 6.7). We evaluated the performance of several regression algorithms (Ar-
tificial Neural Networks, Random Forest, Elastic-Net, Support Vector Machines, Nearest
Neighbors Regression, and Naive Bayes), and tested the values of various parameters with

4The season could be another important factor. Different models could be trained for different seasons
to take into account this aspect.
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a grid search. We found Random Forest regression (RF) [209] to provide the best perfor-
mance. In our experiments, we set the parameters as follows: (i) the criterion to measure
split quality to the mean squared error (MSE), (ii) the maximum depth of the tree to 1000,
(iii) the number of estimators to 150, (iv) the minimum number of samples needed to split
a node to 2, (v) the maximum number of features while deciding the best split equal to the
total number of features (7 in this case), and (vi) the minimum number of samples required
to be at a leaf node to 1.

6.6 Online Survey

We conduct an online survey involving 200 subjects in order to model realistic user behav-
iors. Specifically, the objective of the survey is to assess bidding behavior and the willingness
to participate in the proposed Incentive-Based Power Conservation (IBPC) program. The
study was approved by the Institutional Review Board at the University of Missouri System
(#IRB-2025242-ST). This section discusses the survey and the results.

6.6.1 Overview of the Survey

The participants are recruited using Amazon Mechanical Turk are pre-screened to include
only Florida residents who use an adjustable thermostat in their homes, receive an energy
bill each month based on the energy usage, and review their bill every month or most
months. We focused on a specific geographic area for a more uniform perception of the
system. Eligible participants were informed of their rights and compensation before com-
pleting the survey. In our online study, the mean time to complete the survey was just
under 10 minutes and the participants were compensated for $1.75. This translates into
the rate of $10.60/hr which was above the federal minimum hourly wage of $7.75/hr at the
time the study was conducted, and above the top 4% earning rate of $7.50/hr for M-Turk
workers [210].

The survey began by asking participants to indicate their typical thermostat setting on
a hot summer day. Then, they read a brief description of peak load and power conservation
to ensure that each participant had an understanding of the context. This was followed by
a description of the proposed system that would help reduce energy consumption during
peak times by compensating the customers via an automated system to temporarily adjust
their thermostat setting.

The participants were asked to imagine that they were participating in such a program
and setting up their smart thermostat temperature. This was completed in two steps. First,
the participants were reminded of their response for their typical thermostat setting on a hot
summer day. Then, from a list of options, they were asked to select the highest thermostat
setting to which they would be willing to occasionally adjust for a maximum of one hour per
day. This list of options was customized for each participant to include 8 degrees of change
above their typical setting (for example, if their typical setting was 70oF, their range of
options was 71oF-78oF). Next, for each thermostat temperature setting within the selected
range, the participants were asked to use a slider to indicate the minimum compensation
they would like to be paid in order to allow the thermostat adjusted to that setting. For
uniformity of the results, we asked everyone to imagine the following scenario when they
provided their bids:
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Figure 6.2: Summary of online survey results per degree change

“Imagine it is daytime on a hot summer day, you are at home, and you are
doing low to moderate effort activities (for example, sleeping, sitting, or light
chores) and imagine that the maximum duration of the change would be 1 hour,
at which point the thermostat then returns to the previous setting.”

The slider range was $0.00 to $5.00 and could be moved in increments of .01. This dollar
range was proposed in [66]. The participants were told a compensation of $0.00 implied
they would make the adjustment for free. Finally, they were asked whether they would
participate in such a system if it existed. The outcome of the survey is reported in the
following.

6.6.2 Survey Results

A total of 200 participants took part in the survey. However, results do not include 44
users who failed to correctly answer the attention check questions. Overall, more than 79%
of users answered that they would be willing to use this system in their homes. Fig. 6.2a
shows, for a given change in the temperature value (measured in degrees Farhenheit) along
the X-axis, the number of survey participants who agreed to change their thermostat up
to that value, but not more. The results are clearly non-linear: most users are comfortable
with small temperature changes, and become less comfortable as the change increases.

Fig. 6.2b shows the mean and standard deviation of user compensations. The plot shows
a monotonic trend, suggesting that higher temperature changes require higher monetary
incentives. Nevertheless, users show significant heterogeneity in the requested amount for
a given temperature change. This, coupled with the non-linear willingness to adjust the
temperature setting, results in an interesting and non-trivial optimization scenario for our
proposed approach.

Overall, the survey results support the feasibility of the proposed IBPC auction frame-
work. We use these results to define models of realistic user behavior in engaging with the
power conservation framework. Specifically, we follow the survey results to determine how
many degrees a user is willing to change and the corresponding compensation.
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6.7 Performance Evaluation

This section presents the experimental setup followed by a thorough performance compar-
ison of our methods versus recent state-of-the-art solutions.

6.7.1 Experimental Setup

We adopt EnergyPlus and integrate it with Python scripts implementing our solutions as
well as other approaches used for comparison. EnergyPlus is a simulator funded by the
U.S. Department of energy, and tested according to ASHRAE Standard 140 methodology
[201] which makes it the gold standard of power data simulation. It is a high-fidelity tool
that allows for modeling of very low-level parameters of residential buildings, with the goal
of producing extremely accurate power consumption data [201].

In order to consider a variety of houses with realistic home-level power dynamics, we
employed the EnergyPlus residential prototype building models provided by the U.S. depart-
ment of Energy in collaboration with the Pacific Northwest National Laboratory [211]. The
models have 4 foundation types (slab, crawlspace, heated basement, and unheated base-
ment) and 2 cooling system types (central air conditioning cooling and heat pump cooling).
The combination of these characteristics gives us a total of 8 considerably different houses
and therefore different utility loads. Furthermore, EnergyPlus allows low-level control of
many house details. Hence, we exploit this functionality by varying the window U-factor,
a parameter that greatly impacts the thermal resistance of a residential building. For each
one of the 8 models previously mentioned, we generate 5 additional models by changing the
U-factor within [2,4]W/(m2K) range [212]. As a result, we obtain a total of 40 heteroge-
neous models that capture a wide spectrum of thermal resistance of a house. We used each
model twice for a total of 80 houses. Note that, further increase in the number of houses
by using additional copies of these models would result in more homogeneous, and thus less
realistic, scenarios. However, since the total power consumption PT and the power cap PC

scale linearly with the number of houses, we expect the trends observed in our results to
hold in larger deployments of the system.

6.7.2 Performance of the PSP Algorithm

In this section, we study the performance of the power saving prediction (PSP) algorithm.

Comparison Approach Sha-SVR

We compare PSP to a recent state-of-the-art approach for power prediction proposed in [95],
which we refer to as Sha-SVR. We select this approach because, similar to our framework,
it is designed to work in specific building settings and it uses limited and easily available
features in order to facilitate large-scale deployment of the system.

The authors of Sha-SVR adopt Support Vector Regression (SVR) as prediction model.
To select the features set, the Pearson correlation coefficients between a vast array of mete-
orological parameters and the HVAC power data are analyzed. This allows to considerably
reduce the size of the feature set. The authors conclude that the dry-bulb temperature has
the highest impact, with a correlation coefficient of 0.91 on a summer day, which is the
season considered in our experiments. Besides the dry-bulb temperature, the authors also
consider the balance point temperature, Tc. The dry-bulb temperature is transformed into
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Cooling Degree-Day (CDD), a simple but effective method for building energy analysis [213].
CDD = max{(Tmax−Tmin)/2−Tc,0}, where Tmax and Tmin are the maximum and minimum
hourly temperature in a day, and Tc = 59◦F(15◦C) is the standard temperature value they
intuitively set for their experiments. Finally, the authors add two features to describe the
behavioral pattern of users, by adding the month type and the day type.

Note that Sha-SVR has been designed for the prediction during a steady-state, rather
than transient-state. Hence, we adapt the algorithm as follows. We add to the feature set
the current temperature set point. Then, in order to calculate the power saving resulting
from a transition from set point Told to a set point Tnew, we use Sha-SVR to predict the
steady-state power consumption P(Told) and P(Tnew) separately. We then calculate the power
saving ∆P = P(Told)−P(Tnew). For more details on Sha-SVR, refer to [95].

Results

To train and compare the PSP algorithm with Sha-SVR, we use the weather information
from Miami provided with the EnergyPlus residential prototype building models [211].
Miami has been chosen since it experiences very hot summer days, and it is the area where
the online survey was conducted. Because the focus is on the hottest days and hours, we
consider a time range from July to September, between 1 PM and 6 PM. For each of the
houses, we consider 8 thermostat change options, each representing a 1◦F (approx. 0.55◦C)
degree difference, and we consider three different time frames for the auction duration,
namely, 15 minutes, 30 minutes, and 1 hour. The thermostat set point is altered at the
beginning of the auction and restored to the original value at the end. As a result, our
objective is to predict the energy saving for the auction duration. We use EnergyPlus to
collect the resulting power consumption data and pair it with the features required by each
algorithm. The data is then shuffled before forming training and testing set, 75% and
25% samples respectively. We analyze the performance of PSP in terms of Mean Average
Percentage Error (MAPE), median error, and explained variance (EV)5. EV is a statistical
measure used to evaluate the quality of a regression prediction, based on the variance of
the real value and the error [214]. EV ∈ [0,1] and a higher value (i.e., close to 1) represents
more accurate predictions.

Fig. 6.3 shows the percentage of testing samples, along the y-axis, that are predicted
within a certain MAPE. PSP achieves very high accuracy for the vast majority of samples
in all time frames. In fact, the dashed red line in Fig. (6.3a)-(6.3c) indicates that 95%
of testing samples are predicted within a 5% MAPE in all scenarios. On the other hand,
Sha-SVR achieves poor performance. This is due to their steady-state approach, which
prevents the algorithm from capturing the dynamics that occur after a sudden change of
the thermostat set point. Quantitatively, across all time frames shown in each subfigure,
more than 75% of Sha-SVR’s predictions incur more than 60% MAPE on average, which
further proves the need for a ad-hoc transient-state approach, such as PSP.

Next, in Fig. (6.4a)-(6.4c), we study the learning rate of PSP. This is particularly
important in our context since, in order to enable large-scale deployment, and capture
realistic home-level power dynamics, the SEMS of each user has its own power saving
prediction model, trained with only limited data. We adopt the median error as a metric,
along with EV. The goal of this experiment is to analyze the value of the adopted metrics
by progressively increasing the size of the testing set along the x-axis. We performed tests

5These are typical metrics for regression algorithms, comparable to the accuracy, F-score, etc., for
classification algorithms.
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Figure 6.3: Performance of prediction models based on error distribution.
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Figure 6.4: Performance of prediction models based on learning rate.

individually for each home and averaged the results. The testing samples for a home are
randomly selected. As shown in Fig. 6.4, 20-30 samples are sufficient to obtain a very
high EV and very low median error for all time frames. These results show that PSP can
quickly learn and perform accurate individual home power saving predictions. Recall that
these samples do not need to be collected during peak load periods, but can instead be
gathered by the SEMS during manual or automatic adjustments that are possible with
modern thermostats even more than once a day [207].

6.7.3 Power Conservation

In this section we study the performance of the auction framework in dealing with peak
loads. We first introduce two recent comparison approaches, and then discuss the results.

Comparison Approach MEDR

A recent paper [73] proposes a truthful auction-based incentive-based power conservation
approach in data centers called Mechanism for Emergency Demand Response (MEDR).
Similar to our scenario, in the event of a peak load, N tenants are required to reduce their
power consumption below a power cap. Each tenant may submit one bid consisting of a
power reduction and monetary compensation. This paper defines an NP-Hard problem
to select winners of the auction that, similarly to POCO, aims at minimizing the overall
cost. Since the users in our settings may submit multiple bids, for each user i we randomly
pick a bid in the set Bi. We implement the authors’ NP-Hard optimization problem to
select winners. This implementation gives an advantage to MEDR, since the solution of
the NP-Hard problem guarantees the minimization of the objective function, at the cost of
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a higher complexity. The authors also propose their own truthful payment rule, which we
also implement for the calculation of payments. For more details, refer to [73].

Comparison Approach FLAT

The recent paper [66] proposes a subscription-based power conservation system. Users
agree to participate on a monthly contract which pays all users the same fixed amount in
exchange of a fixed temperature change. Once users subscribe, the adjustment can occur
up to once a day at the utility company’s will. Due to such flat approach to payments with
fixed temperature changes, we call this approach FLAT.

Although the context of this approach is similar to ours, in the sense that users get paid
to perform a temperature change in the thermostat, its subscription-based implementation
is actually quite different. Hence, for the sake of fair comparison, we slightly adapt the
FLAT by performing the following changes. First, we divide the required power saving
PS by all participating users N. Then, we require that each house performs a thermostat
adjustment to the closest integer temperature that ensures a power saving of PS/N. Note
that, the integer adjustment is due to the intrinsic characteristics of thermostats which
allow temperature changes at 1◦F steps. In order to process payments, we calculate the
average compensation requested by all users of our survey, for each temperature change.
We pay users the average compensation corresponding to required temperature change.

Note that, FLAT does not provide the properties of truthfulness nor individual rational-
ity. This is an advantage for FLAT in terms of raw performance metrics, since providing
such properties leads to payments that are always greater than or equal to the requested
value.

Results

In the following, we compare the performance of different approaches, namely, the opti-
mal solution OPT obtained with the Gurobi optimizer [215], DYPS, the heuristic solution
GRAN presented in this work, our conference version6 solution GRAN_PC [90], and the
comparison approaches MEDR [73] and FLAT [66]. Note that, as highlighted in Table 2.1,
FLAT and MEDR cover different key properties of power conservation mechanisms, jointly
providing a robust comparison for our approaches.

Experiments are run during hot summer days in July and August 2009 with an aver-
age temperature of 89.06◦F (31.7◦C). In all experiments, the total power consumption is
PT = 261.95kW , and it is the result of the power consumption of all users. We consider power
reduction values between 3% to 9% of PT , in line with other state-of-the-art power conser-
vation approaches [73], [66]. User bidding behavior, i.e., bids consisting of temperature
change and financial compensation, are selected from the models of realistic user behavior
gathered through our online survey. In order to obtain and provide reliable results, we
average the values of each experiment over several runs.

We explore three experimental scenarios. Each scenario investigates the impact of an
input dimension on the algorithms’ performance.

Scenario 1: Varying the percentage of auction participants. In this scenario,
we increase the percentage of users participating in the auction from 40% to 100% along
the x-axis. In these experiments, we use perfect knowledge predictions of power savings

6The main differences between GRAN and GRAN_PC are the bids ranking criterion and the payment
rule.
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Figure 6.5: Performance of reverse auction varying the percentage of participants.

and consider a one-hour auction. Additionally, we set the power cap to 95% of the total
power consumption PT , i.e., a power reduction of 5% which leads to a required power saving
PS = 13.09kW . Fig. 6.5 shows the reverse auction performance in terms of objective value
(Fig. 6.5a) and payment (Fig. 6.5b).

Overall, a clear downward trend of both objective value and payment is reported as the
number of participants increases for all approaches, except FLAT. This is due to the fact
that all auction-based approaches become more efficient as more bids become available, since
better winning bids can be selected. On the contrary, FLAT suffers as more participants
become available. This is due to the lack of flexibility of this approach, resulting from the
equal power saving imposed to all users and the step-wise 1◦F thermostat adjustments. In-
tuitively, as we increase the percentage of participants, the total payment of FLAT increases
linearly, as more and more participating users will have to apply a thermostat adjustment.
The linear growth is briefly interrupted as soon as there are sufficient participating users to
decrease the adjustment to the next lower temperature. This happens, in our experiments,
at 70% of participating users, and thus leads to brief interruption of the increasing trend.
However, after the thermostat adjustment reaches 1◦F for all participating users (as further
shown in Fig. 6.5c), the total payment increases linearly with the number of participants.
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On the other hand, MEDR shows better performance than FLAT, proving the benefits
of auction-based approaches versus a flat subscription. However, MEDR under-performs
in comparison to GRAN and GRAN_PC, even though MEDR is solving an NP-Hard
problem to select the winning bids while GRAN and GRAN_PC are heuristic solutions.
This is due to MEDR’s limitation of allowing a single bid per user. Conversely, both GRAN
and GRAN_PC are able to efficiently make use of multiple bids per user to find a better
solution. Furthermore, the results show that our improvements to GRAN’s ranking criterion
and payment rule, with respect to GRAN_PC, achieve better performance. As expected,
DYPS achieves the best performance, matching that of OPT, by finding the optimal solution
of POCO in pseudo-polynomial time. As a numerical example, the objective value of GRAN
is between 11.7% and 95.24% closer to the optimal solution than MEDR and FLAT, while
the payment is 30.4%-98.78% lower. Overall, the results show that providing multiple
personalized preferences can achieve more power conservation with lower payments.

In Fig. 6.5c we show the average temperature change among winning users, and in Fig.
6.5d the number of users who change temperature settings (for FLAT, this refers to all
participating users, while for auction-based approaches, it refers to auction winners only).
Figures show that, as more participants are available, the average temperature tends to
decrease for most approaches, while the number of users who change temperature tends
to increase. FLAT shows the least temperature change, which intuitively results from all
participating users changing their temperature, thus requiring less change on average. How-
ever, this also results in very high cost, as previously shown. All auction-based approaches
benefit from having more participating users, since this allows more flexibility in selecting
bids and thus to find more efficient solutions. All auction-based approaches tend to select
a relatively stable number of winners, as more users are available. This is to be expected,
since the power saving required is kept constant. Nevertheless, the presence of more bids
allows the selection of better bids, with lower cost. OPT and DYPS tend to select fewer
bids, thus resulting in higher temperature changes for winners. GRAN shows a relatively
stable temperature change with the participating users. This results form the bids’ ranking
that gives preference to bids that balance power savings and cost. This is a desirable sec-
ondary property, since it makes the system actions more predictable to the participating
users over different scenarios.

We now focus on the impact of PSP predictions versus perfect knowledge of power
savings in the auction performance of our approaches. Similar to the previous experiment,
we increase the percentage of participants and observe the objective value and payments.
Since PSP only applies to our proposed methods, we compare OPT and GRAN with perfect
knowledge (OPT - PK and GRAN - PK) to DYPS and GRAN with PSP prediction (DYSP -
PSP and GRAN - PSP). Results are shown in Fig. 6.6. The performance of the algorithms
with PSP prediction closely resemble those with perfect knowledge of the power saving.
This results prove once again the high accuracy of the predictions provided by PSP, making
it a practical tool to capture realistic home-level power dynamics. Given the similarities
between perfect knowledge and PSP predictions, in the following we present only results
for the PSP predictions case.

Scenario 2: Varying the power reduction. In the second scenario, we fix the
percentage of participants to 60% and decrease the power reduction from 9% to 3% of PT .
We consider again the objective value, payment, temperature change, and number of users
changing the temperature. Fig. 6.7 shows the results. FLAT once again performs the
worst. Although performance slightly improve with lower power reductions, the approach
lacks the flexibility of selecting a subset of the users with a minimum temperature change
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Figure 6.6: Performance of reverse auction varying percentage of power reduction using
PSP data.
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Figure 6.7: Performance of reverse auction varying the percentage of power reduction.

to achieve the power reduction objective. Such inefficiency is particularly evident when
the power reductions are smaller (more realistic scenario), since FLAT imposes all users
to change their temperature, even when this is not needed. This of course results in a
lower temperature change and a constant number of users changing their temperature with
respect to the percentage of reduction.

In this scenario, we see a downward trend for all auction-based approaches with respect
to all considered metrics, as the percentage of reduction decreases. This is due to lower
reductions leading to a lower number of winners. Similar to the previous scenario, DYPS
finds the optimal solution to the problem, while GRAN outperforms both GRAN_PC and
MEDR. Even in this case, MEDR suffers from the inability of handling multiple bids.
Once again, GRAN shows stability even under different percentages of reduction, further
supporting the predictability, and thus the acceptance, of this approach. Numerically,
GRAN achieves an objective value up to 81.41% closer to the optimum at 9% reduction,
and payment up to 94.31% closer to the optimum at 3% reduction.

It is worth noting that, FLAT has payments similar to auction-based approaches when
the power reduction is 9%, as shown in Fig. 6.7b. This suggests that such strict power
cap may give FLAT a slight advantage, since most users are required to change their
thermostat even under auction-based solutions. However, it is to consider that FLAT
does not provide properties such as truthfulness and individual rationality, different from
auction-based approached that pay more than the original bid. Additionally, while GRAN
achieves a payment comparable to FLAT, DYPS outperforms FLAT with lower payments.
Finally, such high power reductions are unlikely in practice, and FLAT pays more in all
other cases.
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Figure 6.8: Performance at different auction durations.

Scenario 3: Duration of the reverse auction. Scenario 3 investigates the impact of
the auction duration on the performance of the algorithms. We consider an auction duration
of 15 minutes, 30 minutes, and 1 hour. In these experiments, we fix the percentage of
participants to 60%, the power reduction to 5%, and we kept the user bids for temperature
changes the same as of our survey.

In Fig. 6.8 we show the impact that the auction duration has on the objective func-
tion and payment. FLAT clearly is penalized by requiring a temperature adjustment to
all participating users. The performance of all other algorithms are in line with the previ-
ously discussed experiments. In fact, while OPT and DYPS have the best results, GRAN
outperforms all other comparison approaches for all auction duration.

It is interesting to note that, the objective value and payments increase non-linearly with
the auction duration. This is due to the fact that the transitory nature of the temperature
adjustment has non-trivial impact on the HVAC dynamics. Intuitively, during the first
few minutes following a temperature adjustment, the HVAC stop cooling the house until
the new temperature is reached. Many physical and weather factors affect the temperature
dissipation that determines this process, highlighting the importance of modeling individual
home-level power dynamics. As a result, the amount of energy to curtail for a 60min
auction is much higher than twice the energy of the 30min auction, requiring more bids to
be selected, and thus increasing objective value and payments.

In this work, we present a human-centered HVAC-based power conservation framework
based on reverse auctions. We show the limitations of the current state of the art which
fails at engaging users in the long term, and propose a comprehensive solution that aims
at further incentivizing users to participate. In order to obtain long-term user engagement,
our framework exploits three aspects, namely, [1) ]
personalized preferences of power conservation for each user
models of realistic user behavior to evaluate user interaction with such system,
realistic home-level power dynamics suitable for large-scale deployment of the system.
Specifically, under this framework, a reverse auction-based approach lets users submit their
personalized preferences of power conservation called bids, which consist of temperature
adjustments of their thermostat along with a financial compensation for such change. We
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formulate an optimization problem that selects the winning users of the auction, and a
payment rule that guarantees truthfulness and individual rationality. We prove that the
problem is NP-hard, and thus propose an algorithm that finds the optimal solution in
pseudo-polynomial time, and a heuristic algorithm that finds a sub-optimal solution in
polynomial time. We prove that this solution also guarantees truthfulness and individual
rationality. We employ models of realistic user behavior by means of an online survey to
gather user bids, while showing significant interest and willingness to participate in a similar
power conservation system. We provide realistic home-level power dynamics by employing
power data from EnergyPlus, the gold standard of energy simulation. We show that our
solution outperforms recent state-of-the-art approaches under multiple scenarios.

In our future directions, we plan to extend our framework to include multiple consecutive
auctions and evaluate whether they would outperform a single longer auction. We also plan
to investigate the performance of our framework during colder seasons, in which solutions
such as the use of natural gas for heating purposes may pose additional challenges.
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7 Dissecting the Problem of Individual Home Power Consumption Prediction using
Machine Learning

©2022 IEEE. Reprinted with permission from Enrico Casella, “Dissecting the
Problem of Individual Home Power Consumption Prediction using Machine
Learning”, 2022 IEEE International Conference on Smart Computing (SMART-
COMP)
DOI: 10.1109/SMARTCOMP55677.2022.00037

The growth and widespread diffusion of Internet-of-Things devices and advanced me-
tering infrastructure allows to closely monitor appliances in a user home. Although only
few works have focused on the issue of individual home power consumption predictions,
recent efforts have unveiled the complexity of this task. As opposed to building-level power
predictions, the finer granularity of single home predictions is characterized by the high im-
pact that individual user actions have on the power consumption. As a matter of fact, the
current state of the art shows inadequate prediction performance. In this work, we investi-
gate the issue of single home power prediction by analyzing a recent dataset of real power
consumption data. We carry out a profound analysis of several processing parameters and
environmental parameters that make this task so challenging, thus providing meaningful
insights that can guide future research on individual home power consumption predictions.
Results show an overall low daily error, and very accurate hourly predictions when less
variable usage patterns occur.

7.1 Introduction

Many studies exist that focus on the prediction of aggregated power consumption for mul-
tiple residential and commercial buildings. These scenarios allow quite accurate inference,
since the unpredictability of human behaviors is balanced out by the aggregated data [216].
The task of single-home power consumption prediction represents an important milestone
to further improve demand response and power conservation programs [90]. However, this
poses many more challenges, as proven by the low number of works investigating this issue,
and related unsatisfactory results.

For instance, in [217], a LTSM model is used to predict hourly and daily power con-
sumption of Heating Ventilation and Air Conditioning (HVAC). However, results measured
with R2 scores are well below 0.51. Similarly, [218] focuses on HVAC using LSTM Neu-
ral Networks but does not achieve satisfactory prediction errors. In [219], the focus shifts
on the net total power consumption with SVR models, with highly variable performance
that show better daily predictions over hourly ones. Nonetheless, other appliances are not
investigated. Clearly, most efforts are directed to hourly and daily HVAC or net total pre-
diction, while the power prediction of other appliances and the net total power consumption

1R2 ∈ [0,1], higher score represents a better prediction
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Figure 7.1: Pipeline overview of our methodology

have not been considered. Overall, the current state of the art does not offer a comprehen-
sive study that analyzes the impact of several factors that provide meaningful insights to
guide future research on single home power predictions. Hence, additional investigation is
required to investigate the characteristics that make this task so complicated.

In this work, we investigate the potential of machine learning in predicting the power
consumption of an individual home. We take a holistic approach that considers multiple
dimensions and data processing techniques, including several machine learning algorithms,
multiple appliances, time granularity, learning rate, feature impact, etc. We validate our
results using a real dataset from Honda Smart Home US [220], an innovative smart home
project designed to gather deeper understanding of efficient home building with real ten-
ants. Data is collected at 60 samples per hour from a variety of appliances, beyond just
HVAC and net total. Results confirm that predicting individual home power consumption
is non-trivial. Nevertheless, we provide several important insights on the ability of machine
learning algorithms to solve this problem. To the best of our knowledge, this is the first
study that focuses on providing such a comprehensive overview of the problem, and guide
future research on the development of single home power prediction systems.

7.2 Methodology

In Fig. 7.1, an overview of our methodology is depicted. The main system is represented
by a smart house, equipped with widely available smart meters to collect readings from
all appliances. A hub, known as the Home Energy Management System (HEMS), collects
the information and processes the data. Data is collected at a certain sampling rate from
all smart meters, say one sample per minute, and stored, before being processed at a
certain granularity, e.g. hourly or daily. As samples are collected, data cleaning procedures
check for any missing data which may occur due to malfunctioning of the sensors. When
a request for power prediction occurs, a time frame (i.e., the hour grouping) is specified,
declaring how far ahead such prediction needs to occur. Hour grouping, sampling rate,
and other parameters are set prior to the third step, feature extraction. In fact, at this
stage, a processing step called aggregation fits the data into windows with characteristics
determined by such parameters. Windows are then passed to the feature extraction step, in
which weather information, time information, and power consumption history are processed
further before being fed to machine learning models.

Specifically, weather information includes the mean and standard deviation of sun alti-
tude, outdoor temperature, and incident solar radiation, along with the inside temperature
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of the house. Time information include the hour of the day, day of the week, and a binary
value to indicate day light. Finally, power history information consists on the processing of
net total, HVAC, lighting, and an additional group that considers all other appliances. For
each one of these quantities, we create a brief history of data consisting of six past moments,
resulting from a combination of the power consumption during previous hour groupings and
previous days. Before feeding this data to the machine learning models for training and
testing, additional processing steps such as standardization and quantile transformation are
applied to further help the models make accurate predictions.

7.3 Experimental Section

In this section we provide details about all the information and details related to the exper-
iments, such as the dataset used, and parameters necessary to replicate the experiments.

7.3.1 Dataset

The dataset used in this work is provided by Honda Smart Home US [220]. It is a project of
a smart home designed for the specific purpose of studying and understanding the complex
dynamics of power consumption in a regular home. The house is provided with plenty of
sensors and smart meters that allow the collection of data for such scientific purposes. Power
data is collected from the beginning of spring, i.e., 03/20/2018, until august 08/10/2018, at
a sampling rate of 60 samples an hour. Raw data consist of 207,359 rows and 10 columns.

7.3.2 Experimental setup and Preliminary Results

In this work we adopt overlap values of 1, 10, 30, and 60 minutes, and hour groupings of 1, 2,
4, 12, and 24 hours. Furthermore, quantile transformation is characterized by 200 quantiles,
and the number of folds for cross validation is set to 10, a value that was chosen to create
testing sets consisting of exactly 2 weeks of data. The impact of different hour groupings
is shown in Fig. 7.2, in which we also test performance of a few baseline machine learning
algorithms by means of Mean Average Percentage Error (MAPE). A clear trend is depicted
in the figure, which shows a decreasing error of predictions as the hour grouping increases.
This is due to the fact that, while sudden actions of the house tenants can have quite a
big impact at finer granularity, predicting the overall power consumption during a whole
day is just slightly less affected by these events. However, all algorithms seem to behave
similarly, with slightly worse performance from Linear Regression (LR). Although some of
these predictions show to be not satisfactory, especially on the hourly, it is important to
mention that, when the power consumption is close to 0, a very small absolute error can
lead to a very big percentage error. When it comes to the daily prediction however, i.e.,
the 24 hour grouping, our error is in line with the current state of the art. Furthermore,
since RF has the best overall performance, we will use it as the baseline algorithm of the
following experiments.

Another important detail of the experimental setup concerns the adopted K-fold cross
validation, which does not use data randomization. This is an important detail that allows
us to create realistic experiments because each testing set contains a set of consecutive
data points that never overlaps with the training set. In fact, randomization may lead to a
training set that contains several samples adjacent to testing samples, potentially leading
to unfairly accurate results. In Fig. 7.3, we show the impact of overlap on the predictions,
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Figure 7.3: Impact on net total prediction of overlap and randomization of samples in K-
fold cross validation
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Figure 7.4: Prediction performance at different time slices with heterogeneous variability
of human behavior

and further analyze performance when the training and testing sets are created randomly.
As anticipated, randomization widely benefits performance. As shown in Fig. 7.3a, daily
predictions have the lowest error, well within 5% across all overlap values. On the other
hand, the impact of overlap on the hourly shows a 15% improvement in the error prediction.
Furthermore, hourly performance in the case of randomization are also better compared to
Fig. 7.3b.

The results depicted in Fig. 7.3b show that overlap does not have quite the same
impact in the performance. Hourly and daily prediction improve, respectively, by 4.1% and
6% when going from 60 minute overlap to 1 minute overlap. Overall, while overlap does have
an impact, it is a parameter that relies on the sampling rate of smart meters. For instance,
if smart meters collect data at a sampling rate of 4 samples per hour, the most frequent
overlap would have to be a 15-minute overlap. Hence, it is worth evaluating whether the
HEMS has the capacity to store data at a higher sampling rate, and the processing power to
perform timely predictions on the bigger dataset that results from more frequent overlaps.
In fact, dataset size may vary largely with sampling rate of 60 samples per hour, and window
overlap of one minute.

7.3.3 Impact of Environmental Parameters

The following experiment depicted in Fig. 7.4 shows the prediction performance in a differ-
ent light. We fix the hour grouping to 1 hour. On the x-axis, we vary the type of appliance
that is being recognized, while on the y-axis we show the performance in two different
scenarios. In Fig. 7.4a, we show the performance when the prediction occurs in the day
time and in the night time. While in Fig. 7.4b, we analyze the performance of predicting
weekdays and weekends. Unexpectedly, results suggest that time frames characterized by
more spontaneous behaviors are affected by a greater error and variability.

Overall, lighting is well predicted in all scenarios. It is clear, however, that the prediction
of power consumption at night and during the weekdays is far better than their counterparts.
Specifically, HVAC, net total, and appliances categorized as “Other” have roughly 50% (or
more) improvement on performance when we predict their consumption during times with
more predictable behavior. This further proves that having more detailed information about
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the user behavior can highly help to make better predictions. However, the current state of
the art has not yet found a smart and pervasive solution to solve this problem. Although the
patterns and habits of families with extremely fixed routines could be well detected by these
algorithms, it is clear that the currently publicly available datasets do not have sufficient
information to make accurate predictions, as it is further proven by the performance of the
current state of the art.

105



8 Conclusions & Final Remarks

Internet of Things (IoT) and machine learning have been spreading on to different envi-
ronments and several disciplines, unlocking a realm of smart solutions and services beyond
the area of computer science. This thesis proposes several novel solutions that leverage IoT
devices and machine learning to create services and applications that show the capability
to tackle important issues in several scientific domains. We find that most of these environ-
ments are able to collect information that exhibit certain statistical patterns that machine
learning are able to exploit in order to create knowledge. At the same time, we encounter
the limits of such approaches under specific scenarios in which performance degrade due to
a higher degree of randomness in the monitored environments.

8.1 Findings

In this proposal, we focused on different areas of CPS with open-loop and closed-loop feed-
back. In Chapter 3, we investigate the prediction of BRD stages and the cost-accuracy
trade-off. Such trade-off is explored through the formulation of an optimization problem
that finds the maximum accuracy given a certain monetary budget. We prove that the
problem is NP-hard, and thus propose a novel algorithm inspired by reinforcement learning
to navigate the feature space and find a sub-optimal solution in polynomial time. This
work represents the first work to address the prediction of BRD persistency status, namely
relapse calves and chronic calves, and we show that these calves can be detected with up
to 0.8 accuracy within the first five days of sickness.

In Chapter 4, we focus on prediction of BRD through different lenses, in which we
adopt more standard feature selection approaches, dive deeper into some of the adopted
pre-processing strategies, and evaluate the performance of BRD detection with different
parameters and machine learning algorithms. Furthermore, we investigate and compare
performance of using precision technology as opposed to manual examination, and evaluate
how accuracy is impacted under different data collection methodologies with different effort
levels.

In Chapter 5, we implement a framework for the recognition of horse gaits through
wearable devices in a fog computing scenario. We implement novel and ad-hoc feature
extraction methodologies, propose an offline prediction system that uses standard machine
learning algorithms, and implement a custom online prediction that is not only less com-
putationally intensive, but is also capable of adapting the sampling frequency based on the
gait to be more storage efficient.

In Chapter 6, we focus on peak load reduction in the context of smart grids that focuses
on Heating Ventilation and Air Conditioning (HVAC). We proposes a reverse-auction-based
approach formulated in terms of an optimization problem, with the goal of jointly mini-
mizing user payments (and thus user discomfort), while satisfying the power constraint.
Because such optimization problem is NP-hard, we develop an algorithm based on dynamic
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programming to find the optimal solution in pseudo-polynomial time, and then propose a
heuristic to efficiently find the solutions of the problem in polynomial time. Reverse auc-
tions hold certain properties, such as truthfulness and individual rationality, which make
them robust against improper bidding behavior. Thus, we prove that such properties hold
for all of our proposed solutions. Performance is evaluated against multiple state-of-the-art
approaches using realistic simulation data from EnergyPlus.

In Chapter 7, we explore the use of machine learning for the prediction of power con-
sumption using real data from a smart house with real residents. Under these settings, we
were able to explore some of the opportunities and limitations of using machine learning to
predict power usage. We do so by looking at the problem through different dimensions. For
instance, the prediction of power usage for lighting is accurate, since lighting tends to be
used at similar times throughout the day. On the other hand, the cumulative power usage
may not be as consistent, due to the randomness of user behavior, which is impacted by
the number of tenants being currently present, their habits or lack thereof. Similar trends
are observed when comparing prediction performed at night rather than during the day, as
well as weekends as opposed to weekdays.

8.2 Future Works and New Directions

There are numerous research problems that remain open. For instance, to what extent can
machine learning be applied for the prediction of certain events? Some research directions
are exploring the use of physics-informed neural networks or deep-reasoning networks, which
enhance the capabilities of such predictions tasks by incorporating domain knowledge that
has been shown to potentially greatly enhance such predictions. For instance, in animal
science, while it may be intuitive to think of animals as acting more or less similarly, there
can certainly be specific traits in their genome that can be exploited to further improve the
predictive models. Furthermore, it is worth exploring models that can be fine-tuned and
that can keep learning the characteristics of each individual animal to further specialize the
model for that specific animal.

Another area to explore has to do with actuation. When talking about “closing the
loop”, we refer to performing a certain action or making a decision. While, implement-
ing such actuation may be non-trivial, the real issue is in the data collection that comes
with such actuation. Exploring what would happen under different conditions when this
actuation is performed is a challenging task that requires an extensive number of real-world
experiments. For instance, in the specific case of the early prediction of BRD, the ideal goal
would be to treat these calves early, since studies suggest that they can have faster and more
effective recovery. However, further evaluation is needed to study whether such early pre-
dictions and the consequent administration of antibiotics would be effective. Furthermore,
it is important to start incorporating optimization techniques more heavily. Specifically, I
believe that such predictions should not only be evaluated by means of an accuracy score or
similar metric, but rather by a measurement of interest for the domain-specific application.
For instance, predictions with low or high confidence can be guided by the productivity or
financial goals of the dairy, which may result in either allowing some wrong predictions if
the consequences are negligible, or only providing a certain output label when confidence
is extremely high.
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