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ABSTRACT OF DISSERTATION

Novel Architectures and Optimization Algorithms for Training Neural Networks and
Applications

The two main areas of Deep Learning are Unsupervised and Supervised Learning.
Unsupervised Learning studies a class of data processing problems in which only de-
scriptions of objects are known, without label information. Generative Adversarial
Networks (GANs) have become among the most widely used unsupervised neural net
models. GAN combines two neural nets, generative and discriminative, that work si-
multaneously. We introduce a new family of discriminator loss functions that adopts
a weighted sum of real and fake parts, which we call adaptive weighted loss func-
tions. Using the gradient information, we can adaptively choose weights to train a
discriminator in the direction that benefits the GAN’s stability. Also, we propose
several improvements to the GAN training schemes. One is self-correcting optimiza-
tion for training a GAN discriminator on Speech Enhancement tasks, which helps
avoid “harmful” training directions for parts of the discriminator loss. The other
improvement is a consistency loss, which targets the inconsistency in time and time-
frequency domains caused by Fourier Transforms. Contrary to Unsupervised Learn-
ing, Supervised Learning uses labels for each object, and it is required to find the
relationship between objects and labels. Building computing methods to interpret
and represent human language automatically is known as Natural Language Process-
ing which includes tasks such as word prediction, machine translation, etc. In this
area, we propose a novel Neumann-Cayley Gated Recurrent Unit (NC-GRU) archi-
tecture based on a Neumann series-based Scaled Cayley transformation. The NC-
GRU uses orthogonal matrices to prevent exploding gradient problems and enhance
long-term memory on various prediction tasks. In addition, we propose using our
newly introduced NC-GRU unit inside Neural Nets model to create neural molecular
fingerprints. Integrating novel NC-GRU fingerprints and Multi-Task Deep Neural
Networks schematics help to improve the performance of several molecular-related
tasks. We also introduce a new normalization method - Assorted-Time Normaliza-
tion, that helps to preserve information from multiple consecutive time steps and
normalize using them in Recurrent Nets like architectures. Finally, we propose a
Symmetry Structured Convolutional Neural Network (SCNN), an architecture with
2D structured symmetric features over spatial dimensions, that generates and pre-



serves the symmetry structure in the network’s convolutional layers.

KEYWORDS: Deep Learning, Adaptively Weighted Discriminator Generative Ad-
versarial Network, Self-Correcting Optimization, Orthogonal Gated Recurrent
Unit with Neumann-Cayley Transformation, Assorted-Time Normalization, Sym-
metric Convolutional Neural Network
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Chapter 1 Deep Learning Introduction

Deep Learning is a subset of machine learning, a field of Artificial Intelligence (AI)
that trains machines (computers) to learn from data. Deep Learning does this by
using artificial neural networks with structures and operations inspired by those of
the human brain. These neural networks can evaluate enormous volumes of complex
data and draw out patterns and insights, enabling machines to carry out previously
thought to be the sole preserve of humans.

Deep learning has seen substantial progress in recent years, including innovations
in areas such as speech and picture recognition, gaming, video rendering, computer
vision, autonomous vehicles, natural language processing, etc. The availability of co-
pious amounts of data and the processing capacity necessary to evaluate it have been
some of the leading forces behind this development. Big Data and cloud comput-
ing have made it feasible to train neural networks that are more intricate and vast,
which has increased the accuracy of the developed model and advanced and broader
applications.

By enabling machines to automate operations and deliver insights that were dif-
ficult to gain, deep learning can potentially transform many industries, including
healthcare, banking, transportation, communication, and advertising. Despite its
achievements, Deep Learning is still an active field of study, and there are several
issues that scientists are attempting to resolve, including creating more effective al-
gorithms, addressing bias and ethical issues, and enhancing the interpretability of
models. Deep Learning is developing quickly, and over the next several years, its
influence on society will only increase.

1.1 Neural Networks

A form of machine learning model that mimics the human brain’s composition and
operation is called a neural network. They are made up of networked nodes called
neurons that analyze data and provide predictions. Each neuron takes information
from other neurons and then applies a nonlinear function to create an output sent
back to those neurons. As a result, the network may run intricate calculations on the
incoming data to provide predictions.

Neural networks can perform various tasks, including speech and picture recogni-
tion, natural language processing, and gameplay. They work particularly effectively
for complex, multidimensional data applications, like audio or pictures. In recent
years, neural networks have achieved amazing success, outperforming humans in nu-
merous tasks and reshaping industries like computer vision and natural language
processing.

The capacity of neural networks to learn from data is one of its main advantages.
The network learns to generate predictions based on the patterns and correlations
it finds in a massive dataset while being exposed to it during training. As a result,

1



the network can generalize to novel, unexplored data and provide precise forecasts
regarding current issues.

Neural networks, however, may also be computationally expensive and challenging
to train. When a neural network is being trained, its weights are adjusted depending
on the discrepancy between expected output and actual output. This procedure fre-
quently uses the backpropagation technique, which may be slow and computationally
expensive for big datasets or intricate networks.

Despite these difficulties, neural networks are still a hot topic for study and de-
velopment. New network designs that are more suited for particular tasks are being
investigated by researchers. For example, convolutional neural networks are well
suited for images; however, recurrent neural networks are better for time-series data.
Additionally, they are looking into approaches like transfer learning and pruning that
improve the effectiveness and simplicity of neural network training. With these devel-
opments, neural networks will play an essential part in developing machine learning
and artificial intelligence.

1.1.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a type of generative neural network
trained and used for generative purposes, that is, the generation of “new” data similar
to an original dataset. Since their first introduction in 2014 by Ian Goodfellow [72],
they have become one of the most popular and active fields in deep learning research.

The original Generative Adversarial Network [72] consists of two models: a gener-
ative model that produces new data, such as images, text, or audio, from input that
consists of random noise and a discriminative model that attempts to differentiate
between actual data from the training dataset and produced data from the generator
network when given both as inputs. Both models are trained in tandem to resemble
a game, with the generator trying to trick the discriminator by producing realistic
(similar to the original dataset) data and the discriminator attempting to accurately
distinguish the real data from the one produced by the generator. The generator net-
work learns to produce more and more realistic output that the discriminator cannot
tell apart from actual data through the adversarial training process. Consequently,
the discriminator network learns to differentiate between real and fake data.

Realistic pictures like people, landscapes, and animals, as well as other data like
music and text, may be produced with astonishing accuracy using these networks.
GANs have also been utilized for tasks like movie creation, image-to-image transla-
tion, and speech enhancement.

Unfortunately, GANs are known to be very sensitive to hyperparameters and sub-
ject to mode collapse, which occurs when the generator only generates a small fraction
of all potential outputs [215]. Training GANs may be challenging. Researchers are ac-
tively researching to overcome these difficulties and increase the capabilities of GANs.
Generally speaking, GANs represent an interesting and exciting area of deep learning
research that can transform industries like the creative arts, design, entertainment,
and communication, as well as influence domains like drug development and medical
imaging.

2



1.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a particular class of neural networks that
excel at tasks involving sequential input, such as audio and natural language process-
ing, including prediction and translation tasks. Contrary to the feedforward neural
networks, which process each input independently, RNNs process each input sequen-
tially where the order matters. RNNs transfer information using a feedback loop from
one stage in the sequence to the next. The network receives an input at each time
step, combines it with data from the previous time step, and generates an output.
As a result, the network can preserve an internal state that describes the sequence’s
history up until that moment.

The capacity of RNNs to process input sequences of different lengths is one of
its main advantages. In jobs like sentiment analysis or machine translation, where
the length of the input fluctuates based on the input text, they are ideally suited for
such tasks. Unfortunately, the vanishing gradient problem, which occurs when the
gradients used to update the network’s weights becomes practically zero, might make
it challenging for RNNs to learn long-term relationships. Researchers have created
numerous RNN variations that are intended to capture long-term dependencies better
to overcome the above issue, including Long Short-Term Memory (LSTM) [88] and
Gated Recurrent Unit (GRU) [37].

RNNs have excelled in many natural language processing tasks, including text
generating, machine translation, and character and word prediction. They have also
been used for handwriting and speech recognition. Researchers are also looking at
novel RNN uses, such as creating music, analyzing videos, and making stock value
predictions. RNNs are a formidable tool for managing sequential data and might
change a wide range of disciplines that use sequence processing.

1.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a particular class of neural networks that
excel at computer vision and image recognition applications. They were initially pre-
sented in the 1980s-1990s [61, 114] but only took off in the advent of potent graphics
processing units (GPUs) and sizable datasets like ImageNet [46]. Convolutional filters
are applied to input data, such as an image, by CNNs in order to function. These
filters look for specific features in the image, such as edges or textures, and produce a
feature map that shows where these features are in the image. Several convolutional
filters can be used to create distinct feature maps that each highlight certain aspects
of the picture.

The network often contains one or more pooling layers [113, 114, 160] after the
convolutional layers, which downsample the feature maps to lessen their dimension-
ality and produce spatial invariance. This makes the network more resistant to input
modifications, such as adjustments to the size or position of objects in the picture.
A fully connected layer or layers, the network’s last component, employ the features
extracted from the convolutional and pooling layers to predict outcomes. These final
(also known as output) layers can be customized to fit the specific task, for example,
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classifying images into different categories or identifying the object in the picture.
In certain circumstances, CNNs have outperformed humans in image identification

tests, which is impressive. They have been used for various purposes, including face
and object identification, object detection, and medical imaging. CNNs have been
used in numerous fields outside image identification, including speech recognition and
natural language processing. CNNs still need help despite their success. Overfitting,
which happens when the network grows too complex and begins to match the train-
ing data too closely, is one of the critical problems and results in worse performance
on new data. Researchers are looking for solutions to this problem, including data
augmentation and regularization methods. CNNs are anticipated to keep playing a
crucial role in image identification and computer vision jobs with further improve-
ments in the area.

1.2 Thesis Outline

This manuscript is broken into three main parts.
In Chapter 2, we study Generative Adversarial Networks. Particularly, we look

into the Discriminative model and issues that can cause training to harm parts of the
model. The original Discriminative model loss function is an equally weighted linear
combination of real and fake losses that only depend on the actual and generated data.
However, with an equally weighted loss, the training may benefit one part of the loss
but harm the other, which can cause instability and mode collapse. We introduce
an adaptively weighted discriminator loss function(s) that adopts a weighted sum of
real and fake parts using the gradients of the real and fake parts of the loss. We
can adaptively choose weights to train a discriminator in the direction that benefits
the GAN’s stability. Later, we extend this idea to the speech enhancement domain,
where the discriminator loss function can have two or three parts and has a very
different behavior from the image-generating domain.

In Chapter 3, we study Recurrent Neural Networks like architecture and propose
several improvements. We introduce orthogonal weights into Gate Recurrent Unit,
where orthogonality is preserved via the newly introduced Neumann-Cayley Trans-
formation and helps to capture long-term behavior in sequential data. Moreover, we
show that such orthogonal weights help to derive a more desirable molecular descrip-
tor and help to create more reliable prediction models for drug design. In addition,
we propose a new normalization technique for the Long Short-Term Memory model,
which helps to incorporate temporal dependencies into normalizations.

In Chapter 4, we study Convolutional Neural Networks and applications with
underlying symmetric structures. In order to get a symmetrical structure and main-
tain it during the training phases, we introduce symmetry-generating and symmetry-
preserving kernels and use convolutional kernel reparameterization to help enforce
the symmetrical structure into the convolutional layer output.

Copyright© Vasily I Zadorozhnyy, 2023.
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Chapter 2 Generative Adversarial Networks

2.1 Adaptive Weighted Discriminator for Training Generative Adversar-
ial Networks

Generative adversarial network (GAN) has become one of the most important neural
network models for classical unsupervised machine learning. A variety of discrimi-
nator loss functions have been developed to train GAN’s discriminators and they all
have a common structure: a sum of real and fake losses that only depends on the
actual and generated data, respectively. One challenge associated with an equally
weighted sum of two losses is that the training may benefit one loss but harm the
other, which we show causes instability and mode collapse. This paper introduces a
new family of discriminator loss functions that adopts a weighted sum of real and fake
parts, which we call adaptive weighted loss functions or aw-loss functions. Using the
gradients of the real and fake parts of the loss, we can adaptively choose weights to
train a discriminator in the direction that benefits the GAN’s stability. Our method
can be potentially applied to any discriminator model with a loss that is a sum of the
real and fake parts. Experiments validated the effectiveness of our loss functions on
unconditional and conditional image generation tasks, improving the baseline results
by a significant margin on CIFAR-10, STL-10, and CIFAR-100 datasets in Inception
Scores (IS) and Fréchet Inception Distance (FID) metrics.

2.1.1 Introduction

Generative Adversarial Network (GAN) [72] has become one of the most important
neural network models for unsupervised machine learning. The origin of this idea lies
in the combination of two neural networks, one generative and one discriminative,
that work simultaneously. The task of the generator is to generate data of a given
distribution, while the discriminator’s purpose is to try to recognize which data are
created by the generative model and which are the original ones. While a variety of
GAN models have been developed, many of them are prone to issues with training,
such as instability, where model parameters might destabilize and not converge, mode
collapse, where the generative model produces a limited number of different samples,
diminishing gradients where the generator gradient vanishes and training does not
occur, and high sensitivity to hyperparameters.

We focus on the discriminative model to rectify the issues of instability and mode
collapse in training GAN. In the GAN architecture, the discriminator model takes
samples from the original dataset and the output from the generator as input and tries
to classify whether a particular element in those samples is real or fake data [72]. The
discriminator updates its parameters by maximizing a discriminator loss function
via backpropagation through the discriminator network. In many of the proposed
models [72, 74, 121, 130], the discriminator loss function consists of two equally
weighted parts: the “real part” that purely relies on the original dataset and the
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“fake part” that depends on the generator network and its output; for simplicity, we
will call them Lr and Lf for real and fake losses, respectively. For example, in the
original GAN paper [72], the discriminator loss function LD is written as

LD = Lr + Lf , (2.1)

with Lr = Ex∼pd

[
logD(x)

]
and Lf = Ez∼pz

[
log(1−D(G(z)))

]
, where D and G are

the discriminative and generative models, respectively, pd is the probability distribu-
tion of the real data, and pz is the probability distribution of the generator parameter
z.

The GAN discriminator training aims to increase both Lr and Lf so that the
discriminator D(·) assigns high scores to real data and low scores to fake data. This
is done in (2.1) by placing equal weights on Lr and Lf [72]. However, the training
with LD is not performed equally on Lr and Lf . Indeed, a gradient ascent training
step along the ∇LD may decrease Lr (or Lf ), depending on the angle between ∇LD

and ∇Lr (or ∇Lf ). For example, if we have a large obtuse angle between ∇Lr and
∇Lf , which is the case in most training steps (see Section 2.1.5.1), training along the
direction of ∇LD may potentially decrease either Lr or Lf by going in the opposite
direction to ∇Lr or ∇Lf (see Section 2.1.3 and Section 2.1.5.2). We suggest that
this reduction on the real loss may destabilize training and cause mode collapses.
Specifically, if a generator is converging with its generated samples close to the data
distribution (or a particular mode), a training step that increases the fake loss will
reduce the discriminator scores on the fake data and, by the continuity of D(·),
reduce the scores on the nearby real data as well. With the updated discriminator
now assigning lower scores to the regions of data where the generator previously
approximated well, the generator update is likely to move away from that region and
to the regions with higher discriminator scores (possibly a different mode). Hence,
we see instability or mode collapse. See Section 2.1.5.3 for experimental results.

We propose a new approach for training the discriminative model by modifying
the discriminator loss function and introducing adaptive weights in the following way,

Law
D = wr · Lr + wf · Lf . (2.2)

We adaptively choose wr and wf weights to calibrate the training in the real and
fake losses. Using the information of ∇Lr and ∇Lf , we can control the gradient
direction, ∇Law

D , by either training in the direction that benefits both Lr and Lf or
increasing one loss while not changing the other. This attempts to avoid a situation
where training may benefit one loss but significantly harm the other. Section 2.1.3
presents a more detailed mathematical approach.

Our proposed method can be applied to any GAN model with a discriminator loss
function composed of two parts as in (2.1). For our experiments, we have applied
adaptive weights to the SN-GAN [142], AutoGAN [71], and BigGAN [18] models
for unconditional as well as a conditional image generating tasks. We have achieved
significant improvements on them for CIFAR-10, STL-10 and CIFAR-100 datasets in
both Inception Scores (IS) and Fréchet Inception Distance (FID) metrics, see Section
2.1.4. Our code is available at
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https://github.com/vasily789/adaptive-weighted-gans

Notation: We use ⟨·, ·⟩2 to denote the Euclidean inner product, ∥x∥2 the Eu-

clidean 2-norm, and ∠2(x, y) := arccos

( ⟨x, y⟩2
∥x∥2 ∥y∥2

)
the angle between vectors x and

y.

2.1.2 Related Work

GAN was first proposed in [72] for creating generative models via simultaneous op-
timization of a discriminative and a generative model. The original GAN may suffer
from vanishing gradients during training, non-convergence of the model(s), and mode
collapse; see [30, 138, 140, 158, 165] for discussions. Several papers [6, 74, 121, 130]
have addressed the issues of vanishing gradients by introducing new loss functions.
The LSGAN proposed in [130] adopted the least squares loss function for the discrim-
inator that relies on minimizing the Pearson χ2 divergence, in contrast to the Jensen–
Shannon divergence used in GAN. The WGAN model [6, 74] introduced another way
to solve the problem of convergence and mode collapse by incorporating Wasserstein-
1 distance into the loss function. As a result, WGAN has a loss function associated
with image quality, improving learning stability and convergence. The hinge loss
function introduced in [121, 184] achieved smaller error rates than cross-entropy, be-
ing stable against different regularization techniques and having a low computational
cost [49]. The models in [12, 117, 189] adopted a loss function called maximum mean
discrepancy (MMD). A repulsive function to stabilize the MMD-GAN training was
employed in [198], and the MMD loss function was weighted in [48] according to the
contribution of data to the loss function. [151] presented a dual discriminator GAN
that combines two discriminators in a weighted sum.

New loss functions are not the only way of improving GAN’s framework. DC-
GAN [158], one of the first and more significant improvements in the GAN architec-
ture, was the incorporation of deep convolutional networks. The Progressive Growing
GAN [104] was created based on [6, 74] with the main idea of progressively adding
new layers of higher resolution during training, which helps to create highly realistic
images. [51, 71, 180] developed neural architecture search methods to find an optimal
neural network architecture to train GAN for a particular task.

Many works are dedicated to conditional GAN, for example, BigGAN [18], which
utilized a model with many parameters and larger batch sizes showing a significant
benefit of scaling.

There are many works devoted to improving or analyzing GAN training. [140]
trained the generator by optimizing a loss function unrolled from several training
iterations of the discriminator training. SN-GAN [142], normalized the spectral norm
of each weight to stabilize the training. Recent work [168] introduced stable rank
normalization that simultaneously controls the Lipschitz constant and the stable rank
of a layer. [119] developed an analysis to suggest that first-order approximations of the
discriminator lead to instability and mode collapse. [146] proved local stability under
the model that both the generator and the discriminator are updated simultaneously
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via gradient descent. [38] analyzed the stability of GANs through the stationarity of
the generator. [139] points out that absolute continuity is necessary for GAN training
to converge. Relativistic GAN [101] addressed the observation that with generator
training increasing the probability that fake data is real, the probability of real data
being real would decrease. [11] proposed a method of re-weighting training samples
to correct for the mass shift between the transferred distributions in the domain
transfer setup. [31] viewed GAN as an energy-based model and proposed an MCMC
sampling-based method.

2.1.3 Adaptive Weighted Discriminator

In GAN training, if we maximize LD to convergence in training discriminator D, we
should meet the goal to increase both Lr and Lf . However, in practice, we train with
a gradient ascent step along ∇LD = ∇Lr +∇Lf , which may be dominated by either
∇Lr or ∇Lf . Then, the training may be done primarily on one of the losses, either
Lr or Lf . Consider a gradient ascent training iteration for LD,

θ1 ←− θ0 + λ∇LD, (2.3)

where λ is a learning rate. Then using the Taylor Theorem, we can expand both Lr

and Lf about θ0,

Lr(θ1) = Lr(θ0) + λ∇LT
r∇LD +O(λ2) (2.4)

= Lr(θ0) + λ ∥∇Lr∥2 ∥∇LD∥2 cos (∠2 (∇Lr,∇LD)) +O(λ2)

and

Lf (θ1) = Lf (θ0) + λ ∥∇Lf∥2 ∥∇LD∥2 cos (∠2 (∇Lf ,∇LD)) +O(λ2), (2.5)

where we have omitted the evaluation point θ0 in all gradients (i.e. ∇L∗ = ∇L∗(θ0))
to avoid cumbersome expressions. If one of ∠2 (∇Lr,∇LD) and ∠2 (∇Lf ,∇LD) is
obtuse, then to the first order approximation, the corresponding loss is decreased.
This causes a decrease in the discriminator assigning a correct score D(·) to the real
(or fake) data. Thus, a gradient ascent step with loss (2.1) may turn out to decrease
one of the losses if the angle ∠2 (∇Lr,∇Lf ) > 90◦. This situation occurs often in
GAN training; see Section 2.1.5 for some experimental results illustrating this.

This undesirable situation is expected to happen in GAN training when the gen-
erator has produced samples close to the data distribution or specific modes. If a
training step in the direction ∇LD results in an increase in the fake loss or, equiva-
lently, a decrease in the discriminator scores D(G(z)) on the fake data, it will decrease
the scores D(x) on the real data as well by the continuity of D(·). Equivalently, this
reduces the real loss. With the updated discriminator assigning lower scores to the
regions of the data where the generator previously approximated well, the genera-
tor update using the new discriminator will likely move in the direction where the
discriminator scores are higher and hence leave the region it was converging to. We
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suggest that this is one of the causes of instability in GAN training. If the regions
with high discriminator scores contain only a few modes of data distribution, this
leads to mode collapse; see the study in Section 2.1.5.3.

To remedy this situation, we propose to modify the training gradient ∇LD to
encourage high discriminator scores for real data. We propose a new family of dis-
criminator loss functions, which we call adaptive weighted loss function or aw-loss
function; see equation (2.2).

We first show that the proposed weighted discriminator (2.2) with fixed weights
carries the same theoretical properties of the original GAN as stated in [72, 139] for
binary-cross-entropy loss function, i.e., when the min-max problem is solved exactly,
we recover the data distribution.

Theorem 1. Let pd(x) and pg(x) be the density functions for the data and model
distributions, Pd and Pg, respectively. Consider Law(D, pg) = wrEx∼pd

[
logD(x)

]
+

wfEz∼pg

[
log(1−D(G(z)))

]
with fixed wr, wf > 0.

1. Given a fixed pg(x), Law(D, pg) is maximized by

D∗(x) =
wrpd(x)

wrpd(x) + wfpg(x)
(2.6)

for x ∈ supp(pd) ∪ supp(pg).

2. Moreover,

min
pg

max
D
Law(D, pg) = wr log

wr

wr + wf

+ wf log
wf

wr + wf

(2.7)

with the minimum attained by pg(x) = pd(x).

Proof.

1. First, the function f(t) = a log t + b log(1 − t) has its maximum in [0, 1] at

t =
a

a+ b
. Given a fixed pg(x), wr > 0 and wf > 0.

Law(D, pg) = wrEx∼pd [log (D(x))] + wfEx∼pg [log (1−D(x))] (2.8)

=

∫
x

wrpd(x) log (D(x)) + wfpg(x) log (1−D(x)) dx (2.9)

≤
∫
x

wrpd(x) log (D
∗(x)) + wfpg(x) log (1−D∗(x)) dx (2.10)

= wrEx∼pd

[
log

(
wrpd(x)

wrpd(x) + wfpg(x)

)]
+ wfEx∼pg

[
log

(
wfpg(x)

wrpd(x) + wfpg(x)

)]
. (2.11)

where the equality holds if D(x) = D∗(x). Therefore, Law(D, pg) is maximum
when D = D∗.
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2. If pg(x) = pd(x), then D∗(x) =
wr

wr + wf

and

max
D
Law(D, pg) = wrEx∼pd

[
log

(
wr

wr + wf

)]
+ wfEx∼pg

[
log

(
wf

wr + wf

)]
(2.12)

= wr log

(
wr

wr + wf

)
+ wf log

(
wf

wr + wf

)
. (2.13)

On the other hand,

max
D
Law(D, pg) = wrEx∼pd

[
log

(
wrpd(x)

wrpd(x) + wfpg(x)

)]
+ wfEx∼pg log

[(
wfpg(x)

wrpd(x) + wfpg(x)

)]
(2.14)

= wr log

(
wr

wr + wf

)
+ wf log

(
wf

wr + wf

)
+ wrKL

(
pd

∣∣∣∣wrpd + wfpg
wr + wf

)
+ wfKL

(
pg

∣∣∣∣wrpd + wfpg
wr + wf

)
(2.15)

≥ wr log

(
wr

wr + wf

)
+ wf log

(
wf

wr + wf

)
, (2.16)

where KL is the Kullback-Leibler divergence and equality holds when pd =
wrpd + wfpg
wr + wf

and pg =
wrpd + wfpg
wr + wf

. Thus we have shown that

min
pg

max
D
Law(D, pg) = wr log

(
wr

wr + wf

)
+ wf log

(
wf

wr + wf

)
. (2.17)

and the minimum is attained when pg = pd.

To choose the weights wr and wf , we propose an adaptive scheme where the
weights wr and wf are determined using gradient information of both Lr and Lf .
This structure allows us to adjust the direction of the discriminator loss function’s
gradient to achieve the training goal to increase both Lr and Lf , or at least not to
decrease either loss. We propose Algorithm 1 based on the following gradient relations
with various weight choices.

Theorem 2. Consider Law
D in (2.2) and the gradient ∇Law

D .
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1. If wr =
1

∥∇Lr∥2
and wf =

1

∥∇Lf∥2
, then ∇Law

D is the angle bisector of ∇Lr and

∇Lf , i.e.

∠2 (∇Law
D ,∇Lr) = ∠2 (∇Law

D ,∇Lf ) = ∠2 (∇Lr,∇Lf ) /2. (2.18)

2. If wr =
1

∥∇Lr∥2
and wf = − ⟨∇Lr,∇Lf⟩2

∥∇Lf∥22 · ∥∇Lr∥2
, then

∠2 (∇Law
D ,∇Lf ) = 90◦, ∠2 (∇Law

D ,∇Lr) ≤ 90◦. (2.19)

3. If wr = −
⟨∇Lr,∇Lf⟩2
∥∇Lr∥22 · ∥∇Lf∥2

and wf =
1

∥∇Lf∥2
, then

∠2 (Law
D ,∇Lr) = 90◦, ∠2 (∇Law

D ,∇Lf ) ≤ 90◦. (2.20)

Proof.

1. If wr =
1

∥∇Lr∥2
and wf =

1

∥∇Lf∥2
, then

Law
D =

1

∥∇Lr∥2
Lr +

1

∥∇Lf∥2
Lf . (2.21)

Using the definition of Euclidean inner product,

cos (∠2 (∇Law
D ,∇Lr)) =

⟨∇Law
D ,∇Lr⟩2

∥∇Law
D ∥2 ∥∇Lr∥2

(2.22)

=

1

∥∇Lr∥2
⟨∇Lr,∇Lr⟩2 +

1

∥∇Lf∥2
⟨∇Lf ,∇Lr⟩2

∥∇Law
D ∥2 ∥∇Lr∥2

(2.23)

=
1

∥∇Law
D ∥2

+
⟨∇Lr,∇Lf⟩2

∥∇Law
D ∥2 ∥∇Lr∥2 ∥∇Lf∥2

(2.24)

cos (∠2 (∇Law
D ,∇Lf )) =

⟨∇Law
D ,∇Lf⟩2

∥∇Law
D ∥2 ∥∇Lf∥2

(2.25)

=

1

∥∇Lr∥2
⟨∇Lr,∇Lf⟩2 +

1

∥∇Lf∥2
⟨∇Lf ,∇Lf⟩2

∥∇Law
D ∥2 ∥∇Lf∥2

(2.26)

=
1

∥∇Law
D ∥2

+
⟨∇Lr,∇Lf⟩2

∥∇Law
D ∥2 ∥∇Lr∥2 ∥∇Lf∥2

(2.27)

We can rewrite ∥∇Law
D ∥2 in term of ∠2 (∇Lr,∇Lf ), that is

∥∇Law
D ∥22 = ⟨∇Law

D ,∇Law
D ⟩2
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=

〈
1

∥∇Lr∥2
∇Lr +

1

∥∇Lf∥2
∇Lf ,

1

∥∇Lr∥2
∇Lr +

1

∥∇Lf∥2
∇Lf

〉
2

=
⟨∇Lr,∇Lr⟩2
∥∇Lr∥22

+
⟨∇Lf ,∇Lf⟩2
∥∇Lf∥22

+
2 ⟨∇Lr,∇Lf⟩2
∥∇Lr∥2 ∥∇Lf∥2

= 2 (1 + cos (∠2 (∇Lr,∇Lf ))) . (2.28)

Notice that (2.24) can be rewritten using ∠2 (∇Lr,∇Lf ) as

cos (∠2 (∇Law
D ,∇Lr)) =

1

∥∇Law
D ∥2

+
⟨∇Lr,∇Lf⟩2

∥∇Law
D ∥2 ∥∇Lr∥2 ∥∇Lf∥2

(2.29)

=
1

∥∇Law
D ∥2

(1 + cos (∠2 (∇Lr,∇Lf ))) (2.30)

=

√
1 + cos (∠2 (∇Lr,∇Lf ))

2
(2.31)

= cos (∠2 (∇Lr,∇Lf ) /2) . (2.32)

Thus, ∠2 (∇Law
D ,∇Lr) = ∠2 (∇Law

D ,∇Lf ) = ∠2 (∇Lr,∇Lf ) /2.

2. If wr =
1

∥∇Lr∥2
and wf = − ⟨∇Lr,∇Lf⟩2

∥∇Lf∥22 ∥∇Lr∥2
then

Law
D =

1

∥∇Lr∥2
Lr −

⟨∇Lr,∇Lf⟩2
∥∇Lf∥22 ∥∇Lr∥2

Lf . (2.33)

Using this aw-loss function, we have

⟨∇Law
D ,∇Lf⟩2 =

〈
1

∥∇Lr∥2
∇Lr −

⟨∇Lr,∇Lf⟩2
∥∇Lf∥22 ∥∇Lr∥2

∇Lf ,∇Lf

〉
2

(2.34)

=
⟨∇Lr,∇Lf⟩2
∥∇Lr∥2

− ⟨∇Lr,∇Lf⟩2 ⟨∇Lf ,∇Lf⟩2
∥∇Lf∥22 ∥∇Lr∥2

(2.35)

=
⟨∇Lr,∇Lf⟩2
∥∇Lr∥2

− ⟨∇Lr,∇Lf⟩2
∥∇Lr∥2

= 0, (2.36)

and

⟨∇Law
D ,∇Lr⟩2 =

〈
1

∥∇Lr∥2
∇Lr −

⟨∇Lr,∇Lf⟩2
∥∇Lf∥22 ∥∇Lr∥2

∇Lf ,∇Lr

〉
2

(2.37)

=
∥∇Lr∥22
∥∇Lr∥2

− ⟨∇Lr,∇Lf⟩22
∥∇Lf∥22 ∥∇Lr∥2

(2.38)

≥ ∥∇Lr∥2 −
∥∇Lf∥22 ∥∇Lr∥22
∥∇Lf∥22 ∥∇Lr∥2

(2.39)

= ∥∇Lr∥2 − ∥∇Lr∥2 = 0. (2.40)

Thus, ∠2 (∇Law
D ,∇Lf ) = 90◦ and ∠2 (∇Law

D ,∇Lr) ≤ 90◦.
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3. If wr = −
⟨∇Lr,∇Lf⟩2
∥∇Lr∥22 · ∥∇Lf∥2

and wf =
1

∥∇Lf∥2
then

Law
D = − ⟨∇Lr,∇Lf⟩2

∥∇Lr∥22 · ∥∇Lf∥2
Lr +

1

∥∇Lf∥2
Lf , (2.41)

and similar argument as above proves that ∠2 (∇Law
D ,∇Lr) = 90◦ and

∠2 (∇Law
D ,∇Lf ) ≤ 90◦.

The first case in the above theorem allows us to choose weights for (2.2) such that
we can train Lr and Lf by going in the direction of the angle bisector. However,
sometimes the direction of the angle bisector might not be optimal. For example,
if the angle between ∇Lr and ∇Lf is close to 180◦, then the bisector direction will
effectively not train either loss. During training, Lf is often easier to train than Lr

meaning that the fake gradient has a larger magnitude. In this situation, we might
want to train just on the real gradient direction by simply choosing wf = 0, but if the
angle between ∇Lr and ∇Lf is obtuse, we will increase Lr but significantly decrease
Lf which is undesirable. The second case in Theorem 2 suggests a direction that forms
an acute angle with ∇Lr and orthogonal to ∇Lf (see Figure 2.1); such a direction will
increase Lr and to the first order approximation will leave Lf unchanged. When Lr

is high, the third case in Theorem 2 would allow us to increase Lf while minimizing
changes to Lr.

Inspired by the Theorem 2 and observations that we have made, we can calibrate
discriminator training in a way that produces and maintains high real loss to reduce
fluctuations in the real loss (or real discriminator scores) to improve stability. Algo-
rithm 1 describes the procedure for updating weights of the aw-loss function in (2.2)
during training using the information of ∇Lr and ∇Lf .

Algorithm 1 is designed to first avoid, up to the first order approximation, de-
creasing Lr or Lf during a gradient ascent iteration. Furthermore, it chooses to favor
training real loss unless the mean real score is greater than the mean fake score (i.e.,
sf ≤ sr) and the real mean score is at least α1 = 0.5 (i.e., α1 ≤ sr). Here the mean
discriminator scores sr and sf represent the mean probability that the discriminator
assigns to xi’s and yj’s, respectively, as real data. When sr is highly satisfactory
with sr ≥ α2 = 0.75 (the midpoint between the minimum probability 0.5 and the
maximum probability 1 for correct classifications of real data), we favor training the
fake loss; otherwise, we train both equally. Maintaining these training criteria will
reduce the fluctuations in real and fake discriminator scores and avoid instability. See
the study in Section 2.1.5.3. Note that we impose a small gap δ = 0.05 in sf − δ > sr
to account for situations when sr is nearly identical to sf .

The way we favor training the real or fake loss depends on whether the angle
between ∇Lr and ∇Lf is obtuse or not. In Algorithm 1, the first and the third cases
are concerned with the more frequent situation (see Section 2.1.5.1 and Figure 2.4)
where the angle between ∇Lr and ∇Lf is obtuse. These cases are the ones that are
developed in Theorem 2. In the first case, we favor training real loss by going in the
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Algorithm 1: Adaptive weighted discriminator method with normalization
for one step of discriminator training.

1: Given: Pd and Pg - data and model distributions;
2: Given: α1 = 0.5, α2 = 0.75, ε = 0.05, δ = 0.05;
3: Sample: x1, . . . , xn ∼ Pd and y1, . . . , yn ∼ Pg;

4: Compute: ∇Lr, ∇Lf , sr =
1

n

n∑
i=1

σ(D(xi)), sf =
1

n

n∑
j=1

σ(D(yj));

5: if sr < sf − δ or sr < α1 then
6: if ∠2 (∇Lr,∇Lf ) > 90◦ then

7: wr =
1

∥∇Lr∥2
+ ε and wf =

−⟨∇Lr,∇Lf⟩2
∥∇Lf∥22 · ∥∇Lr∥2

+ ε;

8: else

9: wr =
1

∥∇Lr∥2
+ ε and wf = ε;

10: end

11: else if sr > sf − δ and sr > α2 then
12: if ∠2 (∇Lr,∇Lf ) > 90◦ then

13: wr =
−⟨∇Lr,∇Lf⟩2
∥∇Lr∥22 · ∥∇Lf∥2

+ ε and wf =
1

∥∇Lf∥2
+ ε;

14: else

15: wr = ε and wf =
1

∥∇Lf∥2
+ ε;

16: end

17: else

18: wr =
1

∥∇Lr∥2
+ ε and wf =

1

∥∇Lf∥2
+ ε;

19: end

direction orthogonal to the ∇Lf , illustrated in Figure 2.1. In the third case, we favor
the fake loss by going in the direction orthogonal to ∇Lr. Similarly, the second and
the fourth cases are concerned with the situation when the angle between ∇Lr and
∇Lf is acute. We use the same criteria to decide if training should favor the real or
fake directions, but in this case we favor training the real or fake loss by using the
direction of the corresponding gradient. Lastly, in the fifth case, it is desirable to
increase both sr and sf without either taking priority, so we choose to train in the
direction of the angle bisector between ∇Lr and ∇Lf .

The two thresholds α1 and α2 in Algorithm 1 can be treated as hyperparameters.
Our ablation studies show that the default α1 = 0.5 and α2 = 0.75 as discussed
earlier, are indeed good choices; see Ablation Study in Section 2.1.5.4.

All weights stated in Algorithm 1 normalize both the real and fake gradients for
the purpose of avoiding differently sized gradients, which has the effect of preventing
exploding gradients and speeds up training, i.e., achieves better IS and FID with fewer
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∇Law
D

∇Lr ∇Lf

Figure 2.1: Depiction of the second case of Theorem 2.

(a) CIFAR-10 (b) STL-10 (c) CIFAR-100

Figure 2.2: AutoGAN vs. aw-AutoGAN IS and FID plots for the first 40 epochs.

epochs, see Figure 2.2. With this implementation, we implement a linear learning
rate decay to ensure convergence. However, the aw-method performs well without
normalization and achieves comparable results. The corresponding results are stated
as the following theorem.

Theorem 3. Consider Law
D in (2.2) and the gradient ∇Law

D .

1. If wr = 1 and wf = −⟨∇Lr,∇Lf⟩2
∥∇Lf∥22

, then

∠2 (∇Law
D ,∇Lf ) = 90◦, ∠2 (∇Law

D ,∇Lr) ≤ 90◦. (2.42)

2. If wr = −
⟨∇Lr,∇Lf⟩2
∥∇Lr∥22

and wf = 1, then

∠2 (Law
D ,∇Lr) = 90◦, ∠2 (∇Law

D ,∇Lf ) ≤ 90◦. (2.43)

Proof. Identical to the proof of Theorem 2.

Similar to Algorithm 1, we have developed Algorithm 2 using Theorem 3. The key
difference between Algorithms 1 and 2 is the normalization of the gradients; the rest
of the algorithm is unchanged including the values for α1 = 0.5, α2 = 0.75, ε = 0.05
and δ = 0.05.
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Algorithm 2: Adaptive weighted discriminator method without normal-
ization for one step of discriminator training.

1: Given: Pd and Pg - data and model distributions;
2: Given: α1 = 0.5, α2 = 0.75, ε = 0.05, δ = 0.05;
3: Sample: x1, . . . , xn ∼ Pd and y1, . . . , yn ∼ Pg;

4: Compute: ∇Lr, ∇Lf , sr =
1

n

∑n
i=1 σ(D(xi)), sf =

1

n

∑n
j=1 σ(D(yj));

5: if sr < sf − δ or sr < α1 then
6: if ∠2 (∇Lr,∇Lf ) > 90◦ then

7: wr = 1 + ε and wf = −⟨∇Lr,∇Lf⟩2
∥∇Lf∥22

+ ε;

8: else
9: wr = 1 + ε and wf = ε;

10: end

11: else if sr > sf − δ and sr > α2 then
12: if ∠2 (∇Lr,∇Lf ) > 90◦ then

13: wr = −
⟨∇Lr,∇Lf⟩2
∥∇Lr∥22

+ ε and wf = 1 + ε;

14: else
15: wr = ε and wf = 1 + ε;
16: end

17: else
18: wr = 1 + ε and wf = 1 + ε;
19: end

On average, normalized weights achieve better results than non-normalized ones.
We advocate the normalized version (Algorithm 1), but both produce quite compet-
itive results (See Subsection 2.1.4) and should be considered in implementations.

A small constant ε is added to all the weights in Algorithms 1 and 2 to avoid
numerical discrepancies in cases that would prevent the discriminator model from
training and updating. For example, there are cases when our algorithm would set
wr = 0 but at the same time, ∇Lf would be almost zero, which will result in ∇Law

D

being practically zero. We have set ε = 0.05 in all of our experiments.
Algorithms 1 and 2 have a small computational overhead. At each iteration, we

compute inner products and norms that are used for computing wr and wf , and then
use these weights to update ∇Law

D . If we have k trainable parameters, then it takes
an order of 6k operations to compute inner products between real–fake, real–real, and
fake–fake gradients, and an order of 3k operations to form ∇Law

D , totaling to an order
of 9k operations for Algorithms 1 and 2. This is a fraction of the total computational
complexity for one training iteration.
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(a) CIFAR-10 (b) STL-10 (c) CIFAR-100

Figure 2.3: Samples randomly generated by aw-AutoGAN model.

2.1.4 Experiments and Results

We implement our Adaptive Weighted Discriminator for SN-GAN [142] and Auto-
GAN [71] models, and for SN-GAN [142] and BigGAN [18] models, on unconditional
and conditional image generating tasks, respectively (commonly referred to as un-
conditional and conditional GANs). AutoGAN is an architecture based on neural
search. In our experiments, we do not invoke a neural search with our aw-loss; we
have implemented the aw-method on the model and architecture exactly provided
by [71].

We test our method on three datasets: CIFAR-10 [111], STL-10 [39], and CIFAR-
100 [111]. The datasets details are provided below.

• The CIFAR-10 dataset [111] consists of 60,000 color images with 50,000 for
training and 10,000 for testing. All images have resolution 32 × 32 pixels and
are divided equally into 10 classes, with 6,000 images per class. No data aug-
mentation;

• The STL-10 is a dataset proposed in [39] and designed for image recognition
and unsupervised learning. STL-10 consists of 100,000 unlabeled images with
96 × 96 pixels and is split into 10 classes. All images are resized to 48 × 48
pixels, without any other data augmentation;

• The CIFAR-100 from [111] is a dataset similar to CIFAR-10 that consists of
60,000 color 32 × 32 pixel images that are divided into 100 classes. No data
augmentation.

We follow the original implementations of SN-GAN, AutoGAN and BigGAN-
PyTorch [17] that use the following hyperparameters:

• Generator: learning rate: 0.0002; batch size: 128 (SN-GAN, AutoGAN) and 50
(BigGAN); optimizer: Adam optimizer with β1 = 0 and β2 = 0.999 [109]; loss:
hinge [121, 184]; spectral normalization: False; learning rate decay: linear; # of
training epochs: 320 (SN-GAN), 300 (AutoGAN), and 1000 (BigGAN);
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• Discriminator: learning rate: 0.0002; batch size: 64 (SN-GAN, AutoGAN) and 50
(BigGAN); optimizer: Adam optimizer with β1 = 0 and β2 = 0.999; loss: hinge;
spectral normalization: True; learning rate decay: linear; training iterations ratio:
3 (SN-GAN) and 2 (AutoGAN, BigGAN).

Experiments based on SN-GAN and AutoGAN models are performed on a single
NVIDIA® QUADRO® P5000 GPU running Python 3.6.9 with PyTorch v1.1.0 for
AutoGAN-based models and Chainner v4.5.0 for SN-GAN based models. Experi-
ments based on BigGAN-Pytorch [17] model are performed on two NVIDIA® Tesla®

V100 GPU running Python 3.6.12 with PyTorch v1.4.0.
The above-mentioned models train the discriminator by minimizing the negative

hinge loss [121, 184]. Our aw-loss also uses the negative hinge loss as follows:

Law
D =− wr · Ex∼pd

[
min(0, D(x)− 1)

]
− wf · Ez∼pz

[
min(0,−1−D(G(z))

]
, (2.44)

with wr and wf updated every iteration using either Algorithm 1 with weights nor-
malization or Algorithm 2 without it.

To evaluate the performance of the models, we employ the widely used Inception
Score [165] (IS) and Fréchet Inception Distance [85] (FID) metrics; see [127] for more
details. Proposed in [165], IS is one of the most popular methods for evaluating
GAN’s performance. It uses a pre-trained ImageNet dataset V3 network model for
image classification to classify the generated images. FID [85] is another popular
method for evaluating the performance of GAN models.

We compute these metrics every 5 epochs and we report the best IS and FID
achieved by each model within the 320 (SN-GAN), 300 (AutoGAN), and BigGAN
(1,000) training epochs as in the corresponding original works.

We first present the results for the unconditional GAN for the datasets CIFAR-
10, STL-10, and CIFAR-100 in Tables 2.1, 2.2, and 2.3, respectively. In addition
to baseline results, we have included the top published results for each dataset for
comparison purposes.
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Table 2.1: Results for Unconditional GAN on CIFAR-10 dataset

Method IS ↑ FID ↓
ProbGAN [79] 7.75 24.6
Imp. MMD GAN [198] 8.29 16.21
MGAN [87] 8.33±.10 26.7
Dist-GAN [186] - 17.61
Progressive GAN [104] 8.80±.05 -
SS-GAN [33] - 19.73
MSGAN [187] - 11.40
SRN-GAN [168] 8.53±.04 19.57
StyleGAN2 [105] 9.21±.09 8.32

SN-GAN [142] 8.22±.05 21.7
aw-SN-GAN (ours; Algorithm 1) 8.53±.11 12.32
aw-SN-GAN (ours; Algorithm 2) 8.43±.07 12.65

AutoGAN [71] 8.55±.10 12.42
aw-AutoGAN (ours; Algorithm 1) 9.01±.03 11.82
aw-AutoGAN (ours; Algorithm 2) 8.98±.06 13.17

Our methods significantly improve the baseline results for CIFAR-10 in Table 2.1.
Indeed, our aw-AutoGAN achieves the IS substantially above all comparisons other
than StyleGAN2. StyleGAN2 outperforms aw-AutoGAN but uses 26.2M parameters
vs. 5.4M for aw-AutoGAN.

Table 2.2: Results for Unconditional GAN on STL-10 dataset

Method IS ↑ FID ↓
ProbGAN [79] 8.87±.09 46.74
Imp. MMD GAN [198] 9.34 37.63
MGAN [87] 9.22±.11 -
Dist-GAN [186] - 36.19
MSGAN [187] - 27.10

SN-GAN [142] 9.10±.04 40.10
aw-SN-GAN (ours; Algorithm 1) 9.53±.10 36.41
aw-SN-GAN (ours; Algorithm 2) 9.61±.12 34.72

AutoGAN [71] 9.16±.12 31.01
aw-AutoGAN (ours; Algorithm 1) 9.41±.09 26.32
aw-AutoGAN (ours; Algorithm 2) 9.59±.14 27.97

For STL-10 in Table 2.2, our methods also significantly improve SN-GAN and Au-
toGAN baseline results. Our aw-SN-GAN achieved the highest IS and aw-AutoGAN
achieved the lowest FID score among comparisons.
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Table 2.3: Results for Unconditional GAN on CIFAR-100 dataset: ∗ - results
from our test; † - quoted from [187].

Method IS ↑ FID ↓
SS-GAN [33] - 21.02†

MSGAN [187] - 19.74
SRN-GAN [168] 8.85 19.55

SN-GAN [142] 8.18±.12∗ 22.40∗

aw-SN-GAN (ours; Algorithm 1) 8.31±.02 19.08
aw-SN-GAN (ours; Algorithm 2) 8.30±.11 19.48

AutoGAN [71] 8.54±.10∗ 19.98∗

aw-AutoGAN (ours; Algorithm 1) 8.90±.06 19.00
aw-AutoGAN (ours; Algorithm 2) 8.72±.05 19.89

For CIFAR-100 in Table 2.3, our methods improve the IS significantly for Auto-
GAN but modestly for SN-GAN. Our aw-Auto-GAN achieved the highest IS and the
lowest FID score among comparisons.

We have also included some visual examples that were randomly generated by our
aw-Auto-GAN model in Figure 2.3. We also consider the convergence of our method
against training epochs by plotting in Figure 2.2 the IS and FID scores of 50,000
generated samples at every 5 epochs for AutoGAN vs. aw-AutoGAN. Our model
consistently achieves faster convergence than the baseline for all the datasets.

We next consider our aw-method for a class conditional image generating task
using two base models, SN-GAN [142] and BigGAN [18], on CIFAR-10 and CIFAR-
100 datasets. Results are listed in Table 2.4.
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Table 2.4: Results for Conditional GAN on CIFAR-10 and CIFAR-100
datasets: † - quoted from [173]; BigGAN [18] CIFAR-100 results of our tests us-
ing code from [17].

CIFAR-10 CIFAR-100
Method IS ↑ FID ↓ IS ↑ FID ↓
FQGAN [217] 8.48±.03 5.59 9.59±.04 7.42
cGAN [143] 8.62 17.5 9.04 23.2
CRGAN [216] - 11.48 - -
MHinge [106] 9.58±.09 7.50 14.36±.17 17.3

SNGAN [142] 8.60±.08 17.5 9.30† 15.6†

aw-SNGAN (ours; Algorithm 1) 9.03±.11 8.11 9.48±.13 14.42
aw-SNGAN (ours; Algorithm 2) 9.00±.12 8.03 9.44±.16 14.00

BigGAN [18] 9.22 14.73 10.99±.14 11.73
aw-BigGAN (ours; Algorithm 1) 9.52±.10 7.03 11.22±.17 10.23
aw-BigGAN (ours; Algorithm 2) 9.50±.07 6.89 11.26±.20 10.25

Table 2.4 shows that our method works well for conditional GAN. The aw-method
significantly improves the SN-GAN and BigGAN baselines. Indeed, our aw-BigGAN
achieved the best FID for both CIFAR-10 and CIFAR-100 among comparisons.

2.1.5 Exploratory & Ablation Studies

In this section, we present four studies to illustrate potential problems of equally
weighted GAN loss, the advantages of our adaptive weighted loss, and analysis on
newly introduced hyperparameters. The hinge loss is implemented in the first, second,
and fourth studies, and a binary cross-entropy loss function is used for the third.

2.1.5.1 Angles between Gradients

In the first study, we examine the angles between ∇Lr, ∇Lf , ∇LD (or ∇Law
D ). We

use the CIFAR-10 dataset with the DCGAN architecture [158] and look at 50 iter-
ations in the first epoch of training. In Figure 2.4, we plot the following 3 angles:
∠2(∇Lr,∇Lf ), ∠2(∇Lr,∇LD) and ∠2(∇Lf ,∇LD) against iterations for the original
loss LD (2.1) on the top and for the aw-loss Law

D on the bottom. For the original loss
(Left), ∠2(∇Lr,∇Lf ) (blue) stays greater then 90◦, closer to 180◦. ∠2(∇Lr,∇LD)
(green) often goes above 90◦, and so the training is often done to decrease the real
loss. ∠2(∇Lf ,∇LD) also goes above 90◦, though to a lesser extent. With the aw-loss
(Right), ∠2(∇Lr,∇Law

D ) and ∠2(∇Lf ,∇Law
D ) stay below the 90◦ line and indicate

that we train in the direction of ∇Lr and orthogonal to ∇Lf in most steps.
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Figure 2.4: Angles between gradients at each iteration. Top: original loss; Bottom:
aw-loss.

2.1.5.2 Real Discriminator Scores and Real-Fake Gap after Training

Our second experiment is an ablation study to show that aw-loss increases the discrim-
inator scores for real data and increases the gap between real and fake discriminator
scores. We again apply the DCGAN model with the original loss LD to CIFAR-10.
At every iteration, we examine the mean discriminator score for the mini-batch of
the real set and the mean discriminator scores for the mini-batch of the fake dataset
generated by the generator. We use the logit output of the discriminator network
as the score. We plot these two mean scores against each iteration before training
in the first row of Figure 2.5 and after training (with the original loss LD) in the
second row. At each of the above training iterations, we replace LD by the aw-loss
Law

D (2.2) and train for one iteration with the same training mini-batch. We plot the
mean discriminator scores for the mini-batches of the real and fake datasets after this
training in the third row of Figure 2.5. We further present the gaps between the two
scores before training and after training using the original loss and using aw-loss in
the fourth row of Figure 2.5.

Figure 2.5 shows that training with aw-loss leads to higher real discriminator
scores (0.921 epoch average) than training with the original loss (0.248 epoch average).
The average gap between real and fake scores is also larger, with the aw-loss at 1.413
vs. 1.262 of the original loss. Therefore, with the same model and training mini-batch,
the aw-loss produces higher discriminator scores for the real dataset and larger gaps
between real and fake scores. These are two essential properties of a discriminator
for generator training.
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Figure 2.5: Mean discriminator scores for real data D(x) and fake data D(G(z)) (Row
1: before training, Row 2: after original training with LD, Row 3: after training with
aw-loss Law

D ) and their gap (Row 4: GBT - gap before training; GAOT - gap after
original training; GAAWT - gap after aw-loss training)

2.1.5.3 Instability and Real Discriminator Scores

Our third study examines the benefits of high discriminator scores for a real dataset
regarding instability and mode collapse of GAN training. We use a synthetic dataset
with a mixture of Gaussian distributions to test unrolled GAN in [140]. The dataset
consists of eight 2D Gaussian distributions centered at eight equally distanced points
on the unit circle. We train with a plain GAN as in [140] and we plot samples of
(fake) data generated by the generator every 5,000 iterations on the first row of Figure
2.6. We see the generated data converges to two or three points but then moves off,
demonstrating instability and mode collapse. To understand this phenomenon, at
each of the iterations that we study in Figure 2.6, we generate 100 (real) data points
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Figure 2.6: Mixture of eight 2D Gaussian distributions centered at 8 points (right-
most column). Row 1: GAN sample points produced by generators; Row 2: GAN
mean discriminator scores for each of 8 classes; Row 3: aw-GAN sample points pro-
duced by generators; Row 4: aw-GAN mean discriminator scores for each of eight
classes;

from each of the eight classes and compute their mean discriminator scores (as the
logit output of the discriminator). We plot the mean scores against the classes in
the second row of Figure 2.6. We observe that the discriminator scores for the real
data do not increase much during training, staying around 0, which corresponds to
0.5 probability after the logistic sigmoid function. The scores are also uneven among
different classes. We believe these cause the instability in the generator training.

We compare the GAN results with aw-GAN that applies our adaptive weighted
discriminator to the plain GAN. We present the corresponding plots of generated
data points (fake) in the third row of Figure 2.6 and the corresponding discriminator
scores on the eight classes in the bottom row. In this case, the generator gradually
converges to all eight classes and the discriminator scores stay high for all eight
classes. Even though the generator started converging to a few classes (step 5,000),
the discriminator scores remained high for all classes. Then the generator continues
to converge while convergence to other classes occurs. We believe the high real
discriminator scores maintain stability and prevent mode collapse in this case.

2.1.5.4 Study of α1 and α2 parameters

In our last study, we have considered the choice of α1 and α2 by experimenting with
aw-AutoGAN models on the CIFAR-10 dataset. We recorded IS and FID scores after
the first and the fifth epochs, where the models were trained with the parameters in
the grids shown in Figure 2.7 with all other settings fixed. We present the IS and FID
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Figure 2.7: Top-left: IS grid after the first epoch; Bottom-left: IS grid after the fifth
epoch; Top-right: FID grid after the first epoch; Bottom-right: FID grid after the
fifth epoch.

scores in heat map plots in Figure 2.7. The results show that neighbors around the
point (0.5, 0.75) lead to good scores; the point (0.5, 0.75) produces one of the highest
IS and one of the lowest FID. In particular, the performance is not too sensitive to
the selections.

2.1.6 Conclusion

Section 2.1 pinpoints the potential negative effects of traditional GAN training on real
loss (and fake loss). It points out that this is a potential cause of instability and mode
collapse. We have proposed the Adaptive Weighted Discriminator method to remedy
these issues to increase and maintain high real loss. Our experiments demonstrate
the benefits and the competitiveness of this method. This work has been published
in [215].
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2.2 SCP-GAN: Self-Correcting Discriminator Optimization for Training
Consistency Preserving Metric GAN on Speech Enhancement Tasks

In recent years, Generative Adversarial Networks (GANs) have produced significantly
improved results in speech enhancement (SE) tasks. They are difficult to train,
however. In this work, we introduce several improvements to the GAN training
schemes, which can be applied to most GAN-based SE models. We propose using
consistency loss functions, which target the inconsistency in time and time-frequency
domains caused by Fourier and Inverse Fourier Transforms. We also present self-
correcting optimization for training a GAN discriminator on SE tasks, which helps
avoid “harmful” training directions for parts of the discriminator loss function. We
have tested our proposed methods on several state-of-the-art GAN-based SE models
and obtained consistent improvements, including new state-of-the-art results for the
Voice Bank+DEMAND dataset.

2.2.1 Introduction

Speech Enhancement (SE) is a process of making deteriorated speech signals more
understandable and perceptually pleasing. The SE has been widely used for various
applications, including mobile communication, speech recognition systems, hearing
aids, etc. SE as an area of research interest has been around for several decades.
Traditional SE techniques [13, 120] often use a heuristic or straightforward signal
processing algorithm to estimate a gain function, which is then applied to the noisy
input to produce improved speech. Recent developments in deep learning have in-
spired many Deep Neural Network (DNN)-based SE techniques [19, 58, 155, 185, 203]
that outperform conventional signal processing-based methods. One particular DNN-
based architecture, Generative Adversarial Net (GAN), has garnered much interest
in the SE community for the past few years [23, 58, 59, 155]. In the applications of
SE, GAN architecture is primarily employed to generate enhanced speech. One of
the earliest works where GAN models were implemented on the SE domain is the
SEGAN [155] model. It utilizes an adversarial framework to map the noisy waveform
to a corresponding enhanced speech. Later, MetricGAN [58] introduced a metric
score optimization scheme, where an evaluated metric was introduced into adversar-
ial loss functions, replacing a traditional binary-classifier [155] and creating a new
branch for SE GAN-based research. There have been several improvements to the
MetricGAN model, e.g. MetricGAN+ [59], iMetricGAN [118], CMGAN [23], etc.
More recently, with a rise of Transformers [192] and Conformers [73], models such
as DB-AIAT [214], DPT-FSNet [44], SE-Conformer [107], CMGAN [23], etc. show
significant improvements on SE tasks.

Despite much work, training of GAN-based models is prone to problems such as
non-convergence, overfitting, and gradient instabilities. One common issue in GAN’s
discriminator training is potentially “harmful” gradient direction [215] where parts of
the model might train opposite to the desired direction. To overcome this problem,
we propose a new method called Self-Correcting (SC) Discriminator Optimization.
At the same time, the SE DNN-based models are subject to problems caused by the
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signal-processing tools, e.g., an inconsistency in the Short-Time Fourier Transform
(STFT) and its inverse (iSTFT) [112, 203]. Inspired by [15], we adapt and introduce
the consistency loss function as a part of Consistency Preserving (CP) Net into the
GAN framework, where loss and architecture take into account the iSTFT effects.
From our experiments, the combination of SC and CP methods improves the SE
GAN-based models even further than either single method; we call such a combination
SCP-GAN.

The remainder of this paper is laid out as follows. In section 2.2.2, we list earlier
works pertinent to our work. In section 2.2.3, we introduce improvements to current
GAN-based SE models. We present and compare the SCP-GAN results on Voice
Bank+DEMAND dataset [190] to the current state-of-the-art (SOTA) models in sec-
tion 2.2.4. Then, in section 2.2.6, we provide an extensive ablation study to show
the advantages of the proposed methods. Finally, in section 2.2.3, we highlight the
methods’ contributions to the field.

2.2.2 Related Work

2.2.2.1 Adaptively Weighted GAN (awGAN)

The discriminator plays a very important role in training GAN-based models. How-
ever, optimizing the discriminator loss function(s) has been a challenge [215]. In the
image generation domain, most discriminator loss functions have the following form:

LD = Lr + Lf , (2.45)

where Lr is the part that only relies on the original dataset; [215] calls it the ‘real
part’. Lf depends on the generator network, its output, and not the original data;
[215] calls this one the ‘fake part’. However, the training with LD is not performed
equally on the real and fake parts, but it depends on the angle between ∇Lr and
∇Lf and their magnitudes. Under such conditions, the actual training direction
∇LD might end up being in the opposite direction to either ∇Lr or ∇Lf , which is
undesirable. To solve such issue [215] proposed the method of adaptive weights for
the discriminator loss function:

Law
D = wrLr + wfLf , (2.46)

and the algorithm for choosing these weights.

2.2.2.2 STFT Consistencies in SE DNN models

In audio signal processing, the short-time Fourier transform (STFT) is one of the most
fundamental and widely used methods. Most DNN-based SE models [23, 112, 203] use
a complex-valued STFTs generator to suppress noise and preserve speech. However,
using STFT methods has its issues. One of those issues is the STFT consistency.
This is an issue when a loss function does not consider iSTFT signal reconstruction.

Several works have been done to resolve this issue. [112] presented an algorithm for
a phase reconstruction based on a local approximation of the consistency constraints.
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Adding simple differentiable projection layers to the enhancement DNN to solve the
issue was proposed by [203]. More recently, [15] introduced the iSTFT into back-
propagation methods for SE DNN-based models.

2.2.3 SCP-GAN

We propose the following two innovative learning strategies to enhance the perfor-
mance of the SE GAN-based models.

2.2.3.1 Self-Correcting Discriminator Optimization

Notation: The angle between two gradients ∇Lα and ∇Lβ is defined as

∠2 (∇Lα,∇Lβ) = cos−1

( ⟨∇Lα,∇Lβ⟩2
∥∇Lα∥2 ∥∇Lβ∥2

)
, (2.47)

where ⟨·, ·⟩2 and ∥·∥2 denote the Euclidean inner product and the Euclidean 2-norm,
respectively.

We introduce the Self-Correcting (SC) Discriminator Optimization method, a
generalization of the method from [215] to the SE domain. A large number of exist-
ing SE GAN-based models have the discriminator loss function consisting of either
two [23, 58] or three [59] equally weighted parts:

LD = LC + LE (2.48)

LD = LC + LE + LN , (2.49)

where LC , LE, and LN exclusively rely on clean, enhanced, and noisy datasets, re-
spectively; for example, MetricGAN [58] has a two-part discriminator loss with

LC = Ey (D(y, y)−Q(y, y))2 (2.50)

LE = Ex,y (D(G(x), y)−Q(G(x), y))2 , (2.51)

where x is a noisy signal, y is its corresponding clean version, and D(·, ·), G(·), and
Q(·, ·) are the discriminative model, generative model, and evaluation metric function,
respectively. Moreover, notations Ey and Ex,y denote the expectation over {y} and
{(x, y)}, respectively. In such a setup [58], G only takes the noisy signal while both
D and Q take two inputs, either (y, y) (as in (2.50)) or (G(x), y) (as in (2.51)) for
training D to approximate Q on clean and enhanced signals, respectively.

However, gradient descent training with ∇LD is not performed equally on clean
and enhanced parts; its effect depends on the angle between ∇LC and ∇LE and
their magnitudes. For example, if the angle between ∇LC and ∇LE is a large obtuse
angle and ∥∇LC∥2 >> ∥∇LE∥2, then ∇LD would make an obtuse angle with ∇LE

and thus training along ∇LD would increase the loss LE, which would be harmful to
the enhanced part of the model. In addition, MetricGAN+ [59] uses the LN of the
following form
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LN = Ex,y (D(x, y)−Q(x, y))2 . (2.52)

To address this issue, as in [215] for GAN, we introduce weights into the two-part
discriminator loss in Equation (2.48),

LSC
D = wCLC + wELE (2.53)

and call it SC2 - Self-Correcting two terms discrimination loss. Moreover, we intro-
duce weights into the three-part discriminator in Equation (2.49)

LSC
D = wCLC + wELE + wNLN (2.54)

and call it SC3 - Self-Correcting three terms discrimination loss. We choose the
weights so that ∇LSC

D does not make an obtuse angle with any of ∇LC , ∇LE, or
∇LN . While for the SC2 method, weights can be easily generalized from the aw-GAN
algorithm in [215]; for the SC3 method, determination of the weights is much more
complicated involving many cases. We have analyzed all possible cases and derived
corresponding formulas for each scenario. The following Theorem summarizes them.

Theorem 4. Consider Self-Correcting discriminator loss function

LSC
D = wCLC + wELE + wNLN =

∑
i∈I

wiLi (2.55)

where I = {C,E,N} index represents Clean, Enhanced, and Noisy datasets, respec-
tively.

1. (no obtuse angles) If ∠2 (∇Lα,∇Lβ) ≤ 90◦ for any α ∈ I and β ∈ I \ {α}, then

∠2

(
∇LSC

D ,∇Lη

)
≤ 90◦ (2.56)

for any η ∈ I and any wC , wE, wN ≥ 0.

2. (One obtuse angle) Let α ∈ I, β ∈ I \ {α}, and γ ∈ I \ {α, β}.

a) (Opposite to ∇Lα) If ∠2 (∇Lα,∇Lβ) ≤ 90◦, ∠2 (∇Lα,∇Lγ) ≤ 90◦, and
∠2 (∇Lβ,∇Lγ) ≥ 90◦, then

∠2

(
∇LSC

D ,∇Lη

)
≤ 90◦ (2.57)

for any η ∈ I and any wα, wβ ≥ 0 and wγ = −w∗
γ

⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

where wβ ≥

w∗
γ ≥ wβ + wα

⟨∇Lα,∇Lγ⟩2
⟨∇Lβ,∇Lγ⟩2

.

b) (Adjacent to ∇Lα) If ∠2 (∇Lα,∇Lβ) ≥ 90◦, ∠2 (∇Lα,∇Lγ) ≤ 90◦, and
∠2 (∇Lβ,∇Lγ) ≤ 90◦, then

∠2

(
∇LSC

D ,∇Lη

)
≤ 90◦ (2.58)
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for any η ∈ I and any wα, wγ ≥ 0 and wβ = −w∗
β

⟨∇Lα,∇Lβ⟩2
∥∇Lβ∥22

where wα ≥

w∗
β ≥ wα + wγ

⟨∇Lγ,∇Lβ⟩2
⟨∇Lα,∇Lβ⟩2

.

3. (Two obtuse angles) Let α ∈ I, β ∈ I \ {α}, and γ ∈ I \ {α, β}.

a) (One adjacent and one opposite to ∇Lα) If ∠2 (∇Lα,∇Lβ) ≤ 90◦,
∠2 (∇Lα,∇Lγ) ≥ 90◦, and ∠2 (∇Lβ,∇Lγ) ≥ 90◦, then

i. If cos (∠2 (∇Lα,∇Lβ)) ≥ cos (∠2 (∇Lα,∇Lγ)) cos (∠2 (∇Lβ,∇Lγ)), then

∠2

(
∇LSC

D ,∇Lα

)
≤ 90◦, ∠2

(
∇LSC

D ,∇Lβ

)
≤ 90◦, (2.59)

∠2

(
∇LSC

D ,∇Lγ

)
= 90◦ (2.60)

for any wα, wβ ≥ 0 and wγ = −wα ⟨∇Lα,∇Lγ⟩2 + wβ ⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

.

ii. If cos (∠2 (∇Lα,∇Lβ)) < cos (∠2 (∇Lα,∇Lγ)) cos (∠2 (∇Lβ,∇Lγ)), then
∇Lβ′ satisfies conditions of 3.-(a)-i. with ∇Lβ = ∇Lβ′ for any ∇Lβ′ :=
∇Lα + λ∇Lβ

and 0 ≤ λ ≤ ⟨∇Lα,∇Lγ⟩22 − ∥∇Lα∥22 ∥∇Lγ∥22
∥∇Lγ∥22 ⟨∇Lα,∇Lβ⟩2 − ⟨∇Lα,∇Lγ⟩2 ⟨∇Lβ,∇Lγ⟩2

.

b) (Both adjacent to ∇Lα) If ∠2 (∇Lα,∇Lβ) ≥ 90◦, ∠2 (∇Lα,∇Lγ) ≥ 90◦, and
∠2 (∇Lβ,∇Lγ) ≤ 90◦, then

∠2

(
∇LSC

D ,∇Lα

)
≤ 90◦, ∠2

(
∇LSC

D ,∇Lβ

)
= 90◦, (2.61)

∠2

(
∇LSC

D ,∇Lγ

)
= 90◦ (2.62)

for any wα > 0,

wβ = wα



〈
∇Lα,∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

〉
2

⟨∇Lγ,∇Lβ⟩2∥∥∥∥∥∇Lγ −
⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

∥∥∥∥∥
2

2

∥∇Lβ∥22

− ⟨∇Lα,∇Lβ⟩2
∥∇Lβ∥22

,

and wγ = −wα

〈
∇Lα,∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

〉
2∥∥∥∥∥∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

∥∥∥∥∥
2

2

.

4. (No acute angles) If ∠2 (∇Lα,∇Lβ) ≥ 90◦ for any α ∈ I and β ∈ I \ {α}, then

∠2

(
∇LSC

D ,∇Lα

)
≤ 90◦, ∠2

(
∇LSC

D ,∇Lβ

)
= 90◦, (2.63)

∠2

(
∇LSC

D ,∇Lγ

)
= 90◦ (2.64)
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for any wα > 0,

wβ = wα



〈
∇Lα,∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

〉
2

⟨∇Lγ,∇Lβ⟩2∥∥∥∥∥∇Lγ −
⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

∥∥∥∥∥
2

2

∥∇Lβ∥22

− ⟨∇Lα,∇Lβ⟩2
∥∇Lβ∥22

,

and wγ = −wα

〈
∇Lα,∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

〉
2∥∥∥∥∥∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

∥∥∥∥∥
2

2

.

Proof.

1. Let wC , wE, wN ≥ 0 and fix η ∈ I, then

LSC
D =

∑
i∈I

wiLi and ∇LSC
D =

∑
i∈I

wi∇Li (2.65)

and 〈∑
i∈I

wi∇Li,∇Lη

〉
2

=

〈 ∑
i∈I\{η}

wi∇Li,∇Lη

〉
2

+ wη ⟨∇Lη,∇Lη⟩2 (2.66)

=
∑

i∈I\{η}

wi ⟨∇Li,∇Lη⟩2 + wη ∥∇Lη∥22 ≥ 0. (2.67)

Thus, ∠2

(
∇LSC

D ,∇Lη

)
≤ 90◦ for any η ∈ I and any wC , wE, wN ≥ 0.

2. Let α ∈ I, β ∈ I \ {α}, and γ ∈ I \ {α, β}.

a) Let wα, wβ ≥ 0 and wγ = −w∗
γ

⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

for wβ ≥ w∗
γ ≥ wβ +wα

⟨∇Lα,∇Lγ⟩2
⟨∇Lβ,∇Lγ⟩2

. Note that under such conditions on w∗
γ,

we have wβ − w∗
γ ≥ 0 and

w∗
γ ≥ wβ + wα

⟨∇Lα,∇Lγ⟩2
⟨∇Lβ,∇Lγ⟩2

(2.68)(
wβ − w∗

γ

)
⟨∇Lβ,∇Lγ⟩2 + wα ⟨∇Lα,∇Lγ⟩2 ≥ 0 (2.69)

and as a consequence

wα ⟨∇Lα,∇Lγ⟩2 − w∗
γ ⟨∇Lβ,∇Lγ⟩2 ≥ 0. (2.70)
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With such weights, we have

LSC
D = wαLα + wβLβ − w∗

γ

⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

Lγ (2.71)

and

∇LSC
D = wα∇Lα + wβ∇Lβ − w∗

γ

⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

∇Lγ. (2.72)

Then using Cauchy-Schwarz inequality, (2.69), and (2.70), we have〈
∇LSC

D ,∇Lα

〉
2
= wα ∥∇Lα∥22 + wβ ⟨∇Lβ,∇Lα⟩2
− w∗

γ

⟨∇Lβ,∇Lγ⟩2 ⟨∇Lγ,∇Lα⟩2
∥∇Lγ∥22

(2.73)

≥ ⟨Lα,Lγ⟩2
∥∇Lγ∥22

(
wα ⟨∇Lα,∇Lγ⟩2 − w∗

γ ⟨∇Lβ,∇Lγ⟩2
)

+ wβ ⟨∇Lβ,∇Lα⟩2 ≥ 0, (2.74)

〈
∇LSC

D ,∇Lβ

〉
2
= wα ⟨∇Lα∇Lβ⟩2 + wβ ∥∇Lβ∥22 − w∗

γ

⟨∇Lβ,∇Lγ⟩22
∥∇Lγ∥22

(2.75)

= wα ⟨∇Lα∇Lβ⟩2 + wβ

∥∇Lβ∥22 ∥∇Lγ∥22
∥∇Lγ∥22

− w∗
γ

⟨∇Lβ,∇Lγ⟩22
∥∇Lγ∥22

(2.76)

≥ wα ⟨∇Lα∇Lβ⟩2 +
⟨∇Lβ,∇Lγ⟩22
∥∇Lγ∥22

(
wβ − w∗

γ

)
≥ 0, (2.77)

and〈
∇LSC

D ,∇Lγ

〉
2
= wα ⟨∇Lα,∇Lγ⟩2 + wβ ⟨∇Lβ,∇Lγ⟩2
− w∗

γ

⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

∥∇Lγ∥22 (2.78)

= wα ⟨∇Lα,∇Lγ⟩2 +
(
wβ − w∗

γ

)
⟨∇Lβ,∇Lγ⟩2 ≥ 0. (2.79)

Thus, we can conclude that ∠2

(
∇LSC

D ,∇Lη

)
≤ 90◦ for any η ∈ I and any

wα, wβ ≥ 0 and wγ = −w∗
γ

⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

with wβ ≥ w∗
γ ≥ wβ+wα

⟨∇Lα,∇Lγ⟩2
⟨∇Lβ,∇Lγ⟩2

.

b) Let wα, wγ ≥ 0 and wβ = −w∗
β

⟨∇Lα,∇Lβ⟩2
∥∇Lβ∥22

for wα ≥ w∗
β ≥ wα+wγ

⟨∇Lγ,∇Lβ⟩2
⟨∇Lα,∇Lβ⟩2

. Note that under such conditions on w∗
β,
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we have wα − w∗
β ≥ 0 and

w∗
β ≥ wα + wγ

⟨∇Lγ,∇Lβ⟩2
⟨∇Lα,∇Lβ⟩2

(2.80)(
wα − w∗

β

)
⟨∇Lα,∇Lβ⟩2 + wγ ⟨∇Lγ,∇Lβ⟩2 ≥ 0. (2.81)

and as a consequence

wγ ⟨∇Lγ,∇Lβ⟩2 − w∗
β ⟨∇Lα,∇Lβ⟩2 ≥ 0. (2.82)

With such weights, we have

LSC
D = wαLα − w∗

β

⟨∇Lα,∇Lβ⟩2
∥∇Lβ∥22

Lβ + wγLγ (2.83)

and

∇LSC
D = wα∇Lα − w∗

β

⟨∇Lα,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ + wγ∇Lγ. (2.84)

Then by Cauchy-Schwarz inequality, (2.81), and (2.82), we have

〈
∇LSC

D ,∇Lα

〉
2
= wα ∥∇Lα∥22 − w∗

β

⟨∇Lα,∇Lβ⟩22
∥∇Lβ∥22

+ wγ ⟨∇Lγ,∇Lα⟩2 (2.85)

≥ ⟨∇Lα,∇Lβ⟩22
∥∇Lβ∥22

(
wα − w∗

β

)
+ wγ ⟨∇Lγ,∇Lα⟩2 ≥ 0, (2.86)

〈
∇LSC

D ,∇Lβ

〉
2
= wα ⟨∇Lα,∇Lβ⟩2 − w∗

β

⟨∇Lα,∇Lβ⟩2 ∥∇Lβ∥22
∥∇Lβ∥22

+ wγ ⟨∇Lγ,∇Lβ⟩2 (2.87)

=
(
wα − w∗

β

)
⟨∇Lα,∇Lβ⟩2 + wγ ⟨∇Lγ,∇Lβ⟩2 ≥ 0, (2.88)

and〈
∇LSC

D ,∇Lγ

〉
2
= wα ⟨∇Lα,∇Lγ⟩2 − w∗

β

⟨∇Lα,∇Lβ⟩2 ⟨∇Lβ,∇Lγ⟩2
∥∇Lβ∥22

+ wγ ∥∇Lγ∥22 (2.89)

≥ wα ⟨∇Lα,∇Lγ⟩2 +
⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

×
(
wγ ⟨∇Lγ,∇Lβ⟩2 − w∗

β ⟨∇Lα,∇Lβ⟩2
)
≥ 0. (2.90)

Thus, we can conclude that ∠2

(
∇LSC

D ,∇Lη

)
≤ 90◦ for any η ∈ I and any

wα, wγ ≥ 0 and wβ = −w∗
β

⟨∇Lα,∇Lβ⟩2
∥∇Lβ∥22

with wα ≥ w∗
β ≥ wα+wγ

⟨∇Lγ,∇Lβ⟩2
⟨∇Lα,∇Lβ⟩2

.
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3. Let α ∈ I, β ∈ I \ {α}, and γ ∈ I \ {α, β}.

a) i. Assume that

cos (∠2 (∇Lα,∇Lβ)) ≥ cos (∠2 (∇Lα,∇Lγ)) cos (∠2 (∇Lβ,∇Lγ)) .

Let wα, wβ ≥ 0, and wγ = −wα ⟨∇Lα,∇Lγ⟩2 + wβ ⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

. With

such weights, we have

LSC
D = wαLα + wβLβ −

wα ⟨∇Lα,∇Lγ⟩2 + wβ ⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

Lγ (2.91)

and

∇LSC
D = wα∇Lα + wβ∇Lβ

− wα ⟨∇Lα,∇Lγ⟩2 + wβ ⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

∇Lγ. (2.92)

Then〈
∇LSC

D ,∇Lα

〉
2
= wα ∥∇Lα∥22 + wβ ⟨∇Lβ,∇Lα⟩2
− wα ⟨∇Lα,∇Lγ⟩2 + wβ ⟨∇Lβ,∇Lγ⟩2

∥∇Lγ∥22
⟨∇Lγ,∇Lα⟩2

(2.93)

≥ wβ ⟨∇Lβ,∇Lα⟩2 −
wβ ⟨∇Lβ,∇Lγ⟩2 ⟨∇Lγ,∇Lα⟩2

∥∇Lγ∥22
(2.94)

= wβ ∥∇Lβ∥2 ∥∇Lα∥2
(
cos (∠2 (∇Lβ,∇Lα))

− cos (∠2 (∇Lβ,∇Lγ)) cos (∠2 (∇Lγ,∇Lα))
)
≥ 0,

(2.95)

similarly〈
∇LSC

D ,∇Lβ

〉
2
= wα ⟨∇Lα,∇Lβ⟩2 + wβ ∥∇Lβ∥22
− wα ⟨∇Lα,∇Lγ⟩2 + wβ ⟨∇Lβ,∇Lγ⟩2

∥∇Lγ∥22
⟨∇Lγ,∇Lβ⟩2

(2.96)

≥ wα ⟨∇Lα,∇Lβ⟩2 −
wα ⟨∇Lα,∇Lγ⟩2 ⟨∇Lγ,∇Lβ⟩2

∥∇Lγ∥22
(2.97)

= wα ∥∇Lα∥2 ∥∇Lβ∥2
(
cos (∠2 (∇Lα,∇Lβ))
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− cos (∠2 (∇Lα,∇Lγ)) cos (∠2 (∇Lγ,∇Lβ))
)
≥ 0.

(2.98)

Lastly,〈
∇LSC

D ,∇Lγ

〉
2
= wα ⟨∇Lα,∇Lγ⟩2 + wβ ⟨∇Lβ,∇Lγ⟩2
− wα ⟨∇Lα,∇Lγ⟩2 + wβ ⟨∇Lβ,∇Lγ⟩2

∥∇Lγ∥22
∥∇Lγ∥22 = 0.

(2.99)

Thus, we can conclude that ∠2

(
∇LSC

D ,∇Lα

)
≤ 90◦, ∠2

(
∇LSC

D ,∇Lβ

)
≤

90◦, and ∠2

(
∇LSC

D ,∇Lγ

)
= 90◦ for any wα, wβ ≥ 0

and wγ = −wα ⟨∇Lα,∇Lγ⟩2 + wβ ⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

.

ii. Assume that

cos (∠2 (∇Lα,∇Lβ)) < cos (∠2 (∇Lα,∇Lγ)) cos (∠2 (∇Lβ,∇Lγ)) .

Define ∇Lβ′ := ∇Lα + λ∇Lβ with

0 ≤ λ ≤ ⟨∇Lα,∇Lγ⟩22 − ∥∇Lα∥22 ∥∇Lγ∥22
∥∇Lγ∥22 ⟨∇Lα,∇Lβ⟩2 − ⟨∇Lα,∇Lγ⟩2 ⟨∇Lβ,∇Lγ⟩2

.

Note that

λ ≤ ⟨∇Lα,∇Lγ⟩22 − ∥∇Lα∥22 ∥∇Lγ∥22
∥∇Lγ∥22 ⟨∇Lα,∇Lβ⟩2 − ⟨∇Lα,∇Lγ⟩2 ⟨∇Lβ,∇Lγ⟩2

(2.100)

∥∇Lα∥22 −
⟨∇Lα,∇Lγ⟩22
∥∇Lγ∥22

+λ

(
⟨∇Lα,∇Lβ⟩2 −

⟨∇Lα,∇Lγ⟩2 ⟨∇Lβ,∇Lγ⟩2
∥∇Lγ∥22

)
≥ 0 (2.101)〈

∇Lα −
⟨∇Lα,∇Lγ⟩2
∥∇Lγ∥22

∇Lγ,∇Lα + λ∇Lβ

〉
2

≥ 0 (2.102)〈
∇Lα −

⟨∇Lα,∇Lγ⟩2
∥∇Lγ∥22

∇Lγ,∇Lβ′

〉
2

≥ 0 (2.103)

⟨∇Lα,∇Lβ′⟩2 ≥
⟨∇Lα,∇Lγ⟩2 ⟨∇Lγ,∇Lβ′⟩2

∥∇Lγ∥22
(2.104)

cos (∠2 (∇Lα,∇Lβ′)) ≥ cos (∠2 (∇Lα,∇Lγ)) cos (∠2 (∇Lβ′ ,∇Lγ))
(2.105)

Moreover ∠2 (∇Lα,∇Lβ′) ≤ 90◦, ∠2 (∇Lγ,∇Lβ′) ≥ 90◦. Thus, we can
apply the 3.-(a)-i. with ∇Lβ = ∇Lβ′ .
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b) Let wα > 0, then the weights for wβ and wγ are obtained using the Gram–Schmidt
process on {∇Lβ,∇Lγ, wα∇Lα} (exactly in this order) and where the third
Gram–Schmidt vector is set to be ∇LSC

D :

∇LSC
D := wα∇Lα − wα

⟨∇Lα,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

− wα

〈
∇Lα,∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

〉
2∥∥∥∥∥∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

∥∥∥∥∥
2

2

∇Lγ

+ wα

〈
∇Lα,∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

〉
2

⟨∇Lγ,∇Lβ⟩2∥∥∥∥∥∇Lγ −
⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

∥∥∥∥∥
2

2

∥∇Lβ∥22

∇Lβ

(2.106)

or equivalently

∇LSC
D := wα∇Lα

+ wα

〈
∇Lα,∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

〉
2

⟨∇Lγ,∇Lβ⟩2∥∥∥∥∥∇Lγ −
⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

∥∥∥∥∥
2

2

∥∇Lβ∥22

∇Lβ

− wα

⟨∇Lα,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

− wα

〈
∇Lα,∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

〉
2∥∥∥∥∥∇Lγ −

⟨∇Lγ,∇Lβ⟩2
∥∇Lβ∥22

∇Lβ

∥∥∥∥∥
2

2

∇Lγ. (2.107)

From the construction, using the Gram–Schmidt process, ∠2

(
∇LSC

D ,∇Lα

)
≤

90◦, ∠2

(
∇LSC

D ,∇Lβ

)
= 90◦, and ∠2

(
∇LSC

D ,∇Lγ

)
= 90◦.

4. Identical to the proof of 3.-(b).

It is important to note that the MetricGAN discriminator loss function(s) has little
in common with traditional loss functions [215] (e.g., approximation of the metric vs.
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binary classification). Moreover, SE GAN’s behavior differs from image-generating
GAN since one takes a noisy counterpart of clean speech and the other takes a random
sample from a simple distribution. These differences affect their behavior and must be
considered when designing algorithms for adaptive decision-making regarding which
parts of the loss to prioritize, how to rotate gradients, etc. With that in mind, we
propose Algorithm 3, which determines weights for (2.53) and (2.54) using ∇LC ,
∇LE, or ∇LN , resulting in a self-correcting discriminator gradient. Similar to [215],
the goal of Algorithm 3 is to minimize the potential harm to parts of the model by
ensuring the training gradient ∇LSC

D does not go obtuse to ∇LC , ∇LE, or ∇LN .

Algorithm 3: Self-Correcting Discriminator Method

1: Compute: ∇LC , ∇LE, ∇LN if LN is used
2: if ∠2 (∇LC ,∇LE) < 90◦ then
3: wC = 1 and wE = 1
4: if LN is used and ∠2 (wC∇LC + wE∇LE,∇LN) < 90◦ then
5: wN = 1
6: else

7: wN = −⟨∇LC ,∇LN⟩2
∥∇LN∥22

− ⟨∇LE,∇LN⟩2
∥∇LN∥22

8: end

9: else

10: wC = 1 and wE = −⟨∇LC ,∇LE⟩2
∥∇LE∥22

11: if LN is used and ∠2 (wC∇LC + wE∇LE,∇LN) < 90◦ then
12: wN = 1
13: else

14: wN = −⟨∇LC ,∇LN⟩2
∥∇LN∥22

+
⟨∇LC ,∇LE⟩2 ⟨∇LE,∇LN⟩2

∥∇LE∥22 ∥∇LN∥22
15: end

16: end

Algorithm 3 is designed using Theorem 4 to ensure that the angle between ∇LC

and ∇LE never becomes obtuse while prioritizing the ∇LC direction, which is par-
ticularly important in earlier training since the model has not seen much clean data.
Towards the end of the training, ∇LE leans towards ∇LC (in both direction and
magnitude) as enhanced examples become less noisy; therefore, prioritization of di-
rection would not be necessary. With the add-on of the noisy part, we want to ensure
that ∇LN never goes in the opposite direction to wC∇LC + wE∇LE (after the ro-
tation), which is already a strong direction since the 2-term loss model performs at
a good level. Figure 2.8 depictures the aforementioned behavior of ∠2 (∇LN ,∇LE)
and ∠2 (∇LC ,∇LE) during training.
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(a) Process of computing Time and TF-magnitude losses inside the GAN-
based SE model Generator (G)
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(b) Consistency Preserving (CP) Net: Depiction of the process for
computing Time and TF-magnitude losses with CP method inside the
GAN-based SE model Generator (G)

Figure 2.9: Traditional vs. Consistency Preserving SE GAN-based models

Figure 2.8: Depiction of the behavior of ∠2 (∇LN ,∇LE) and ∠2 (∇LC ,∇LE) during
the SE MetricGAN’s training

Note: When implementing Algorithm 3, it is enough to check the inner product’s
sign without any angle computation.
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2.2.3.2 Consistency Preserving Network

Most GAN-based SE models [23, 44, 58, 214] have a generator (G) that accepts the
STFT spectrogram of a noisy waveform as input. The G’s output is an enhanced
spectrogram that later uses iSTFT to produce the enhanced waveform; Figure 2.9a
illustrates the process. The G is then updated using a combination of various loss
functions, e.g., Time Loss [3], TF-magnitude Loss [16], Adversarial Metric Loss [58],
etc. For example, the TF-magnitude Loss [16] is computed between the enhanced
and clean spectrograms; see Figure 2.9a. However, such loss and architectural setup
do not consider the effect of the iSTFT reconstruction, which causes inconsistencies
between signals.

We incorporate the idea from [15] to SE GAN-based model by modifying archi-
tecture and loss function(s) such that any input into a loss function (including the
Adversarial Loss) undergoes the same process, taking into consideration the effects
of signal reconstruction from the spectrogram; we call such process and loss function
a Consistency Preserving (CP) Network and a consistency loss, respectively. Partic-
ularly, the CP Net ensures that the same number of STFT and iSTFT transforms
are applied on clean, enhanced, and noisy (if used) signals and avoids distortion(s)
that could happen on the ends of the audio segments, where the edge regions have
insufficient data to reconstruct a signal from the spectrogram with the overlap-add
operation. Our approach addresses this issue using the same STFT-iSTFT process
and avoids such unexpected behavior. Figure 2.9b depicts the process of computing
Time and TF-magnitude losses using the proposed CP method by ensuring that the
same transforms are applied on enhanced, clean, and noisy (if used) signals.

Note: The Clean Audio to the Clean∗ Audio process inside the CP Net (2nd row
of Figure 2.9b) can be performed at the data preprocessing stage.

2.2.4 Experiments and Results

2.2.4.1 Dataset

We use the publicly accessible Voice Bank+DEMAND [190] dataset to evaluate and
compare our proposed SCP-GANmethod. The training set of the Voice Bank+DEMAND
dataset consists of 11,572 individual recordings of 28 speakers from the Voice Bank
corpus [193], which are mixed with DEMAND [179] database and some artificial back-
ground noises at the signal-to-noise ratios (SNRs) of 0, 5, 10, and 15 dB. The test set
has 824 utterances of two speakers from the Voice Bank corpus, mixed with unseen
DEMAND noises at the SNRs of 2.5, 7.5, 12.5, and 17.5 dB.

2.2.4.2 Evaluation Metrics

To assess the speech quality, we select a set of widely used metrics, including the Per-
ceptual Evaluation of Speech Quality (PESQ) [161] (ranging between -0.5 and 4.5),
the Mean Opinion Score (MOS) [91], prediction of the signal distortion (CSIG), the
MOS prediction of the intrusiveness of background noise (CBAK), MOS prediction
of the overall effect (COVL) (all MOS metrics range between 1 and 5), the Seg-
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Table 2.5: Performance comparison on Voice Bank+DEMAND
dataset [190]: “-” denotes the results not provided in the original paper; † -
quoted from [29]; repro. - our reproduction of experiments

Model # of Param. PESQ CSIG CBAK COVL SSNR STOI

Noisy Data n/a 1.97 3.35 2.44 2.63 1.68 0.91

SE-Conformer [107] - 3.13 4.45 3.55 3.82 - 0.95
MANNER [154] - 3.21 4.53 3.65 3.91 - -
DB-AIAT [214] 2.81M 3.31 4.61 3.75 3.96 10.79 0.96
DPT-FSNet [44] 0.91M 3.33 4.58 3.72 4.00 - 0.96
PCS [29] - 3.35 4.43 - 3.92 - 0.95

MetricGAN+ [59] 2.6M 3.15 4.14 3.16 3.64 - 0.93†

MetricGAN+ (repro.) 2.6M 3.08 4.05 3.01 3.60 - 0.92
SCP-MetricGAN+ (ours) 2.6M 3.19 4.20 3.20 3.65 - 0.93

CMGAN [23] 1.83M 3.41 4.63 3.94 4.12 11.10 0.96
CMGAN (repro.) 1.83M 3.39 4.62 3.93 4.13 10.61 0.96
SCP-CMGAN (ours) 1.83M 3.52 4.75 3.97 4.25 10.82 0.96

mental Signal-to-Noise Ratio (SSNR), and the Short-Time Objective Intelligibility
(STOI) [176] (with a range 0 to 1). For all metrics, higher numbers denote better
performance.

2.2.5 Experimental Results

We have applied our proposed methods to two baseline models: a widely-used Met-
ricGAN+ [59] model and a current SOTA model - CMGAN [23]. Our SCP method
shows a consistent improvement over the compared baseline. On the MetricGAN+
model, our SCP-MetricGAN+ improved by 0.04, 0.06, 0.04, and 0.01 on the PESQ,
CSIG, CBAK, and COVL metrics, respectively. Our improvements with the SCP-
CMGAN model are 0.11, 0.12, 0.03, and 0.13 on the same scores. Moreover, we have
compared our method to other recent SOTA models, which can be seen in Table 2.5.

Note: Results provided in Table 2.5 for MetricGAN+ and CMGAN models are
quoted from the original papers; however, to verify them, we have obtained our results:
MetricGAN+ (repro.) and CMGAN (repro.). The results for the CMGAN (repro.)
model are very similar to the results from [23] with one exception - the SSNR metric,
where our result is lower: 10.61 (ours) vs. 11.10 [23]. Furthermore, the results for
MetricGAN+ (repro.) model are slightly lower than the ones provided in the original
paper [59].

Finally, to demonstrate the significance of our best model, we ran a paired T-test
between SCP-CMGAN and CMGAN(repro.) (as our baseline) models
(scipy.ttest_rel(scp-cmgan,cmgan(repro.))) using a VoiceBank-DEMAND test
dataset, see Table 2.6 for results. The test confirmed that our results are better than
the baseline, with a p-value less than 0.05 for every metric.
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Table 2.6: T-test Statistics and p-value: Results of a paired T-test between SCP-
CMGAN and CMGAN(repro.) models on Voice Bank+DEMAND test dataset [190],
a p-value less than 0.05 indicates statistically significant results.

Metric Statistic p-value

PESQ 14.889 1.419 · 10−44

CSIG 18.402 1.326 · 10−63

CBAK 14.565 6.322 · 10−43

COVL 19.515 5.362 · 10−70

SSNR 4.830 1.630 · 10−6

STOI 2.511 1.222 · 10−2

2.2.6 Exploratory & Ablation Studies

We have conducted an ablation study to demonstrate the importance of our meth-
ods. We have chosen the CMGAN [23] model as the base model due to its SOTA
performance at the time of this study. Table 2.7 shows the average results of each
model’s best performance over three randomly chosen seeds.

First, we have retrained the CMGAN [23] model to verify the results from [23].
The results obtained from our experiments are relatively close to the results stated
in [23], except for the SSNR metric where we have obtained slightly lower results,
i.e., SSNR of 10.61 (ours) vs. SSNR of 11.10 [23].

Next, we have added Noisy Data (ND) to the CMGAN model discriminator train-
ing (‘+ ND’ in Table 2.7); however, such an addition had slight improvement over
the baseline. Following it, we have considered adding our SC method to the baseline
model (‘+ SC2’ in Table 2.7) and nothing else. With SC2, we saw some improvements
in PESQ, COVL, and SSNR metrics. Furthermore, we have analyzed the advantages
of the CP method (‘+ CP’ in Table 2.7) without any add-ons. The CP shows sig-
nificant improvements in PESQ, CSIG, and COVL metrics and is comparable in the
others.

Then, we combined ND and SC3 methods (‘+ ND, SC3’ in Table 2.7). Such
a setup further improves baseline as well as single methods, particularly in COVL
and SSNR metrics. A combination of ND and CP methods (‘+ ND, CP’ in Table
2.7) has the same nature of improvements, producing better results in PESQ, CSIG,
and COVL metrics. The last combination of SC2 and CP methods (‘+ SC2, CP’
in Table 2.7) demonstrates that together both proposed methods achieve significant
improvements on the SE task. Moreover, this particular model achieved the highest
SSNR result of 10.91.

Finally, we have combined ND, SC3, and CP methods in the model we call SCP-
CMGAN in Table 2.5. Adding ND and switching from SC2 to SC3 further improves
the ‘CMGAN + SC2, CP’ model, achieving new SOTA results.

Note that all the above models were trained under the same conditions without
changing the hyperparameters and with identical software and hardware settings:
Python 3.8.13, PyTorch 1.10, and CUDA 11 on NVIDIA Tesla V100 GPUs.
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Table 2.7: Ablation Study on Voice Bank+DEMAND: STOI results are equal
to 0.96 for all the tests; † - results from our tests; ND - Noisy Data, CP - Consistency
Preserving Generator, SC2 - SC with LC and LE, SC3 - SC with LC , LE, LN .

Model PESQ CSIG CBAK COVL SSNR

CMGAN (repro.)† 3.39 4.62 3.93 4.13 10.61

+ ND 3.41 4.65 3.92 4.13 10.68
+ SC2 3.44 4.65 3.92 4.17 10.70
+ CP 3.47 4.71 3.93 4.20 10.54

+ ND, SC3 3.43 4.64 3.93 4.18 10.76
+ ND, CP 3.47 4.73 3.93 4.22 10.53
+ SC2, CP 3.49 4.72 3.96 4.24 10.91

+ ND, SC3, CP 3.52 4.75 3.97 4.25 10.82

2.2.7 Conclusion

This paper presents several improvements to SE GAN-based models. The pro-
posed method of Consistency Preservation reconciles the issue with Fourier and
Inverse-Fourier transforms inside the generative models. At the same time, the Self-
Correcting Discriminator Optimization method helps with training the discriminative
model by avoiding gradient directions that are potentially harmful to the training.
Our experiments and ablation study demonstrate the advantages of using one or both
of the proposed methods, including new SOTA results for the Voice Bank+DEMAND
dataset.

Copyright© Vasily I Zadorozhnyy, 2023.
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Chapter 3 Recurrent Neural Networks

3.1 NC-GRU: Orthogonal Gated Recurrent Unit with Neumann-Cayley
Transformation

In recent years, using orthogonal matrices has been shown to be a promising ap-
proach to improving Recurrent Neural Networks (RNNs) with training, stability, and
convergence, particularly to control gradients. While Gated Recurrent Unit (GRU)
and Long Short Term Memory (LSTM) architectures address the vanishing gradient
problem by using a variety of gates and memory cells, they are still prone to the
exploding gradient problem. In this work, we analyze the gradients in GRU and pro-
pose the usage of orthogonal matrices to prevent exploding gradient problems and
enhance long-term memory. We study where to use orthogonal matrices and propose
a Neumann series-based Scaled Cayley transformation for training orthogonal matri-
ces in GRU, which we call Neumann-Cayley Orthogonal GRU, or simply NC-GRU.
We present detailed experiments of our model on several synthetic and real-world
tasks, which show that NC-GRU significantly outperforms GRU as well as several
other RNNs.

3.1.1 Introduction

One of the preferred neural network models for working with sequential data is the
Recurrent Neural Network (RNN) [90, 164]. RNNs can efficiently model sequential
data through a hidden sequence of states. However, training vanilla RNNs have
obstacles [90, 164], one of which is their susceptibility to vanishing and exploding
gradients [10]. In the case of vanishing gradients, the optimization algorithm faces
difficulty continuing to learn due to very small changes in the model parameters. In
the case of exploding gradients, the training could overstep local minima, potentially
causing instabilities such as divergence or oscillatory behavior. It may also lead to
computational overflows.

There have been several works studying how to solve these problems. For example,
gates have been introduced into the RNN architecture: Long Short-Term Memory
(LSTM) [88] and Gated Recurrent Units (GRU) [37]. They can pass long-term in-
formation and help to overcome vanishing gradients. In practice, GRU and LSTM
models are still prone to the problem of exploding gradients.

More recently, several RNN models have been proposed using unitary or orthog-
onal matrices for the recurrent weights [7, 50, 81, 99, 100, 128, 141, 195, 204] along
with methods to preserve those properties. Introducing such weights into RNN mod-
els brought new development into the RNN community. One of the main reasons
behind this is a theoretical explanation of why the performance is better when using
unitary or orthogonal weights [7]. The key step in these methods is preserving or-
thogonal or unitary properties at every training iteration. There have been several
different techniques for updating the recurrent weights to preserve either orthogonal
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or unitary properties, including, for example, multiplicative updates [204], Givens
rotations [100], Householder reflections [141], Cayley transforms [81, 82, 116, 128],
and other similar ideas that have shown effective usage of orthogonal or unitary ma-
trices [7, 84, 92, 169, 177, 196].

In this work, we study the benefits of applying orthogonal matrices to one of the
most widely used RNN models, Gated Recurrent Unit (GRU) [37], both theoretically
and experimentally. We analyze the gradients of the GRU loss and based on this
analysis, we propose the usage of orthogonal matrices in several hidden state weights
of the model. We introduce a Neumann series-based Scaled Cayley transform for
training the orthogonal weights. Our method utilizes a reliable and stable method of
Scaled Cayley transforms, which was studied and used in [81, 128] for training orthog-
onal weights for RNNs. In addition, we propose a Neumann series approximation of
the matrix inverse inside the Cayley transform. Such substitution not only performs
on the same or even better level as the traditional inverse (see Section 3.1.5.1 for
experiments) but also decreases computation time which might come of particular
assistance when working with larger models. We call our method Neumann-Cayley
Orthogonal Gated Recurrent Unit or NC-GRU for simplicity. Experiments show that
the proposed method is more stable with faster convergence and produces better
results on several synthetic and real-world tasks.

3.1.2 Related Work

Many models have been designed to improve classical RNN [90, 164] for sequential
data. They include, for example, the establishment of gates [37, 88], normalization
methods [8, 42, 93, 166, 188, 206, 208], and the introduction of unitary and orthogonal
matrices into RNN structure [7, 50, 99, 100, 141, 196], etc. This section will discuss
some of the works most relevant to our proposed method.

Unitary RNNs (uRNNs) [7] presented an architecture that learns a unitary weight
matrix. The construction of the recurrent weight matrix consists of a composition
of diagonal matrices, reflection matrices in the complex domain, and Fourier trans-
form. The uRNN model presented in [204] is based on constrained optimization over
the space of all unitary matrices rather than a product of parameterized matrices.
EUNN [100] is another work that utilizes the product of unitary matrices. The recur-
rent matrix in this architecture is parameterized with products of Givens Rotations.
Also, the representation capacity of the unitary space is fully tunable and ranges from
a subspace of unitary matrices to the entire unitary space.

Work by [141] proposed orthogonal RNNs, or simply oRNNs, which involve the
application of Householder reflections. Such parameterization of the transition matrix
allows efficient training and maintains the orthogonality of the recurrent weights while
training. The method introduced in [196] proposes a weight matrix factorization by
bounding the matrix norms. Moreover, it controls the degree of gradient expansion
during backpropagation. Besides that, this technique enforces orthogonality as well.
GORU [99] presented a RNN, an extension of unitary RNN with a gating mechanism.
Unitarity is preserved by using the ideas from EURNN [100]. The results compared
to GRU [37] are mixed, depending on the task. More recently, [50] presented an
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embedding of a linear time-invariant system that contains Laguerre polynomials in
the model.

3.1.2.1 Gated Recurrent Unit (GRU)

We have studied in depth the Gated Recurrent Unit (GRU) architecture which was
proposed in [37] as an alternative to the well-known LSTM [88] cell. The structure
of a GRU cell is

rt = σ (Wrxt + Urht−1 + br)

ut = σ (Wuxt + Uuht−1 + bu)

ct = Φ(Wcxt + Uc (rt ⊙ ht−1) + bc)

ht = (1− ut)⊙ ht−1 + ut ⊙ ct

(3.1)

where Wr, Wu, and Wc are input weights in Rn×m, Ur, Uu, and Uc are recurrent
weights in Rn×n, and br, bu and bc are the bias parameters in Rn. Here, m represents
the dimension of the input data, and n represents the dimension of the hidden state.
In (3.1), the activation functions σ and Φ are sigmoid and hyperbolic tangent function
(tanh) respectively, and ⊙ is the Hadamard product. In addition, the initial hidden
state h0 is set to zero.

The main difference between GRU and LSTM is the long-term memory imple-
mentation not as a separate channel but inside the hidden state ht itself. GRU has a
single gate ut that controls both forget and input gates. For example, if the output
of ut is 1, the forget gate is open, implying that the input gate is closed. Similarly,
if ut is 0, the forget gate is closed, and the input gate is open. This structure allows
GRUs to discard random or insignificant information while grasping the important
details.

3.1.2.2 Cayley Transform Orthogonal RNN

We have implemented and studied the effects of orthogonal matrices inside the GRU
cell based on the Cayley transforms [177]. Some initial work to use Cayley transform
for orthogonal weights in RNNs was presented in [81] together with the scoRNN
model. This model introduced a skew-symmetric matrix A, which is used to define
an orthogonal matrix W via the Scaled Cayley transform

W = (I + A)−1 (I − A)D, (3.2)

where matrix D is a diagonal matrix of ones and negative ones, which scales the tradi-
tional Cayley transform [177]. It is proved in [102] that the matrix D, with a suitable
choice on the number of negative ones, can avoid a potential problem of eigenvalue(s)
of A being negative one(s), making matrix I + A non-invertible. The number of
negative ones in matrix D can be considered a tunable hyperparameter. Further, it
guarantees that the skew-symmetric matrix A that generates the orthogonal matrix
will be bounded.

[81] presents the following process to train the scoRNN model using Scaled Cayley
transforms:
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A(k+1) = A(k) − λ∇AL
(
Usco

(
A(k)

))
(3.3)

U (k+1)
sco =

(
I + A(k+1)

)−1 (
I − A(k+1)

)
D (3.4)

where ∇AL (Usco (A)) is computed using

∇AL (Usco (A)) = V T − V, (3.5)

with
V = (I + A)−T ∇UscoL (Usco (A))

(
D + UT

sco

)
(3.6)

in which ∇UscoL (Usco (A)) is computed via standard backpropogation methods.
Even though rounding errors may accumulate over several repeated matrix mul-

tiplications, orthogonality in scoRNN [81] is maintained to the machine’s precision.
This property helps to achieve significant improvements over other orthogonal or
unitary RNNs for long sequences on several benchmark tasks; see the Experiments
section in [81] for more details.

3.1.3 Efficient Orthogonal Gated Recurrent Unit

We now present an efficient orthogonal GRU.

3.1.3.1 Gradient Analysis of Hidden States in GRU

Gradient behavior is important in model training, convergence, stability, and per-
formance. However, when it comes to backpropagation through time for the GRU
model from (3.1), the gradients of the loss function L with respect to intermediate
hidden states, weights, and biases can be found from the respective gradients of the
final hidden state hT , which is simplified to finding the gradient of ht with respect to
ht−1 for t between 1 and T . Namely,

∂L
∂hi

=
∂L
∂hT

T∏
t=i+1

∂ht

∂ht−1

. (3.7)

Thus, to analyze the gradients, we consider the gradient of the hidden state ht

with respect to the hidden state ht−1 as well as its upper bound in the following
theorem.

Theorem 5. Let ht−1 and ht be two consecutive hidden states from the GRU model
stated in (3.1). Then ∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥
2

≤ α + β ∥Uc∥2 (3.8)

where
α = δu

(
max

i
{[ht−1]i}+max

i
{[ct]i}

)
∥Uu∥2 +max

i
{(1− [ut]i)} (3.9)
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and
β = max

i
{[ut]i}

(
δr ∥Ur∥2max

i
{[ht−1]i}+max

i
{[rt]i}

)
, (3.10)

with constants δu and δr defined as follows:

δu = max
i
{[ut]i (1− [ut]i)} (3.11)

and
δr = max

i
{[rt]i (1− [rt]i)} . (3.12)

Proof.
Since ht depends on ut and ct (which is also depends on rt), we will start by finding

∂rt
∂ht−1

, and
∂ut

∂ht−1

, and
∂ct

∂ht−1

as well as corresponding bounds of these gradients.

Recall that
rt = σ (Wrxt + Urht−1 + br) (3.13)

then

∂rt
∂ht−1

= diag (σ′ (Wrxt + Urht−1 + br))Ur = diag (rt ⊙ (1− rt))Ur (3.14)

since σ′(x) = σ(x) (1− σ(x)). Moreover, we can bound
∂rt

∂ht−1

in the following way∥∥∥∥ ∂rt
∂ht−1

∥∥∥∥
2

≤ δr ∥Ur∥2 (3.15)

with
δr := max

i
{[rt]i (1− [rt]i)} . (3.16)

The constant δr is defined to be the largest entry of the vector rt ⊙ (1 − rt) and

it is bounded by
1

4
. Similarly,

∂ut

∂ht−1

= diag (σ′ (Wuxt + Uuht−1 + bu))Uu = diag (ut ⊙ (1− ut))Uu, (3.17)

and ∥∥∥∥ ∂ut

∂ht−1

∥∥∥∥
2

≤ δu ∥Uu∥2 (3.18)

with
δu := max

i
{[ut]i (1− [ut]i)} . (3.19)

The definition of the vector ct is

ct = Φ(Wcxt + Uc (rt ⊙ ht−1) + bc) (3.20)

and

∂ct
∂ht−1

= diag (Φ′ (Wcxt + Uc(rt ⊙ ht−1) + bc))Uc

(
diag (ht−1)

∂rt
∂ht−1

+ diag (rt)

)
, (3.21)
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with Φ′ applied entrywise, and∥∥∥∥ ∂ct
∂ht−1

∥∥∥∥
2

≤ max
i
{[Φ′ (Wcxt + Uc (rt ⊙ ht−1) + bc)]i}

·
(∥∥∥∥ ∂rt

∂ht−1

∥∥∥∥
2

max
i
{[ht−1]i}+max

i
{[rt]i}

)
∥Uc∥2 (3.22)

≤
(
δr ∥Ur∥2max

i
{[ht−1]i}+max

i
{[rt]i}

)
∥Uc∥2 (3.23)

since Φ′ is bounded by 1. Finally,

ht = (1− ut)⊙ ht−1 + ut ⊙ ct (3.24)

with

∂ht

∂ht−1

= −diag (ht−1)
∂ut

∂ht−1

+diag (1− ut)+diag (ct)
∂ut

∂ht−1

+diag (ut)
∂ct

∂ht−1

(3.25)

and ∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥
2

≤ max
i
{[ht−1]i}

∥∥∥∥ ∂ut

∂ht−1

∥∥∥∥
2

+max
i
{(1− [ut]i)}

+max
i
{[ct]i}

∥∥∥∥ ∂ut

∂ht−1

∥∥∥∥
2

+max
i
{[ut]i}

∥∥∥∥ ∂ct
∂ht−1

∥∥∥∥
2

.

(3.26)

Furthermore, using (3.15), (3.18), and (3.23), we get∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥
2

≤ δu

(
max

i
{[ht−1]i}+max

i
{[ct]i}

)
∥Uu∥2 +max

i
{(1− [ut]i)}

+max
i
{[ut]i}

(
δr ∥Ur∥2max

i
{[ht−1]i}+max

i
{[rt]i}

)
∥Uc∥2 (3.27)

=: α + β ∥Uc∥2 (3.28)

where

α = δu

(
max

i
{[ht−1]i}+max

i
{[ct]i}

)
∥Uu∥2 +max

i
{(1− [ut]i)} (3.29)

and
β = max

i
{[ut]i}

(
δr ∥Ur∥2max

i
{[ht−1]i}+max

i
{[rt]i}

)
. (3.30)

The following corollary provides some simple upper bounds for α, β obtained in
the above theorem.

Corollary 1. For the hyperbolic tangent activation function in (3.1) (i.e. Φ = tanh),

we have δu, δr ≤
1

4
, [ht]i ≤ 1 for any i and t as well as

α ≤ 1

2
∥Uu∥2 + 1 and β ≤ 1

4
∥Ur∥2 + 1. (3.31)
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Proof.
The function σ′(x) = σ(x) (1− σ(x)) is bounded above by 1

4
, thus both δu, δr ≤ 1

4
.

Now, to show that [ht]i ≤ 1 for any i and t, we first need to note that h0 is
initialized to zero (i.e. [h0]i = 0 for all i) and 0 ≤ [ut]i, [ct]i ≤ 1 for all i and t from
the definition of GRU cell in (3.1). Then for any fixed i

[h0]i = 0 (3.32)

[h1]i = [1− u1]i · [h0]i + [u1]i · [c1]i (3.33)

= [u1]i · [c1]i ≤ 1 (3.34)

Furthermore, if we assume that [hτ ]i ≤ 1 for some τ ≥ 1, then

[hτ+1]i = [1− uτ+1]i · [hτ ]i + [uτ+1]i · [cτ+1]i (3.35)

≤ [1− uτ+1]i · 1 + [uτ+1]i · 1 (3.36)

= [1− uτ+1]i + [uτ+1]i = 1. (3.37)

Thus, by induction, we can conclude that [ht]i ≤ 1 for any i and t. Finally, using
these obtained bounds, we can bound constants α and β as follows

α = δu

(
max

i
{[ht−1]i}+max

i
{[ct]i}

)
∥Uu∥2 +max

i
{(1− [ut]i)} (3.38)

≤ 1

4
· (1 + 1) · ∥Uu∥2 + 1 (3.39)

=
1

2
∥Uu∥2 + 1 (3.40)

and

β = max
i
{[ut]i}

(
δr ∥Ur∥2max

i
{[ht−1]i}+max

i
{[rt]i}

)
(3.41)

≤ 1 ·
(
1

4
· ∥Ur∥2 · 1 + 1

)
(3.42)

=
1

4
∥Ur∥2 + 1. (3.43)

Note, that all of these bounds are independent of i and t.

These bounds may be pessimistic because the gate elements may be expected to
be close to 0 or 1. Consequently, the following corollary presents the relationship
between the constants α and β presented in Theorem 5 when GRU’s gates are nearly
closed or opened. Below we use a notation x ≲ y to denote that x is bounded by a
quantity approximately equal to y.

Corollary 2. When elements of GRU gates ut and rt are nearly either 0 or 1, then
constants α and β from Theorem 5 satisfy the following inequality:

α + β ≲ 2. (3.44)

Moreover, if ut and rt are nearly either the zero vector or the vector of all ones, then

α + β ≲ 1. (3.45)
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Proof.
Recall the definition of α and β

α = δu

(
max

i
{[ht−1]i}+max

i
{[ct]i}

)
∥Uu∥2 +max

i
{(1− [ut]i)} (3.46)

and
β = max

i
{[ut]i}

(
δr ∥Ur∥2max

i
{[ht−1]i}+max

i
{[rt]i}

)
. (3.47)

If we assume that [ut]i ≈ 0 and [ut]j ≈ 1 for some i ̸= j, then δu ≈ 0 and α ≲ 1.
Additionally, if we assume that the elements of rt are nearly either 0 or 1, then δr ≈ 0
and β ≲ 1. Putting these two inequalities together yields

α + β ≲ 2. (3.48)

Now, if we assume that ut is nearly a zero vector (i.e. maxi {[ut]i} ≈ 0), then
constant δu ≈ 0, α ≈ 1, and β ≈ 0. On the other hand, if we assume that ut is
nearly the vector of all ones (i.e. mini {[ut]i} ≈ 1) then δu ≈ 0 and α ≈ 0. Moreover,
if we also assume that rt is nearly a zero vector (i.e. maxi {[rt]i} ≈ 0) then δr ≈ 0
and β ≈ 0. However, if we assume that rt approaches a vector of all ones (i.e.
mini {[rt]i} ≈ 1), then δr ≈ 0 but β ≈ 1 for this case. Putting all of these cases
together, we obtain

α + β ≲ 1. (3.49)

3.1.3.2 Neumann-Cayley Orthogonal Transformation

Based on Theorem 5 and Corollary 2, we propose the usage of orthogonal weights in
the hidden parameters of GRU to obtain better-conditioned gradients. As discussed
in section 3.1.2, there have been different techniques proposed and used to initialize
and preserve orthogonal weights while training, for example, Givens rotations [100],
Householder reflections [141] etc. In this work, we implement a version of the Scaled-
Cayley transformation method discussed in 3.1.2.2 with one key difference. The
Scaled Cayley transform method requires a calculation of the inverse of I + A(k) to
update the orthogonal matrix U (k) in (3.4). When it comes to the computation of
this inverse, classical numerical methods such as using LU-decomposition or solving
the Least Squares problem can be implemented. These methods work well when the
dimension of the matrix is small. However, if the matrix’s dimension is large, these
methods are very expensive from both memory and computational time perspectives.
Moreover, classical methods might overflow and not converge at all. We propose
solving this possible complication using the Neumann Series method to approximate
the inverse of I + A(k).

To derive the Neumann series approximation for the inverse of I + A(k) in (3.4),
we consider the following:(

I + A(k)
)−1

=
(
I + A(k−1) − δA(k)

)−1
(3.50)
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=
(
I −

(
I + A(k−1)

)−1
δA(k)

)−1 (
I + A(k−1)

)−1
(3.51)

=

(
∞∑
i=0

((
I + A(k−1)

)−1
δA(k)

)i)(
I + A(k−1)

)−1
(3.52)

where δA(k) := optA

(
∇AL = V (k)T − V (k)

)
, here optA includes a learning rate λ

inside of it. Note that the equality in Equations (3.51) and (3.52) relies on the

assumption that
∥∥∥(I + A(k−1)

)−1
δA(k)

∥∥∥ < 1 for some operator norm ∥·∥; see [45] for

more details. We have conducted an ablation study that shows empirical evidence
that this condition is indeed satisfied; see [145] for more details.

In our experiments, we have considered the first and the second-order Neumann
series approximations, estimating the series in (3.52) with two (i = 0, 1) and three
(i = 0, 1, 2) terms respectively. As expected, the model performs slightly better
when using second-order approximation. However, it comes with a marginal increase
in computational time; see 3.1.5.1 for the ablation study regarding the accuracy and
computational time of such approximations. Mathematically speaking, if we are using

the second-order approximation, the error is of order O
(((

I + A(k−1)
)−1

δA(k)
)3)

.

Even though this error is quite small, there is a chance that the errors from this
approximation can accumulate and cause a loss of orthogonality. To avoid this issue,
we recommend resetting orthogonality by computing the matrix inverse explicitly
using a factorization method at the beginning of each epoch. However, it might be
necessary to do it more often, particularly in the earlier training (e.g., every 100
iterations), due to more fluctuations in the gradients.

Algorithm 4: Update Rule for Orthogonal Weight U

1: Given: D, A(0), U (0), ∇UL
(
U (0)

(
A(0)

))
, optA

2: Define: Ã(0) :=
(
I + A(0)

)−1

3: for k = 1, 2, . . . do

4: V (k) := Ã(k−1)T∇UL
(
U (k−1)

(
A(k−1)

)) (
D + U (k−1)T

)
5: δA(k) := optA

(
∇AL = V (k)T − V (k)

)
6: A(k) := A(k−1) − δA(k)

7: Ã(k) :=

(
I + Ã(k−1)δA(k) +

(
Ã(k−1)δA(k)

)2)
Ã(k−1)

8: U (k) := Ã(k)
(
I − A(k)

)
D

9: end

We present Algorithm 4 that outlines the Neumann-Cayley Orthogonal Trans-
formation method for training weight A and updates the corresponding orthogonal
weight U . It is important to note that during the initialization step, the weight A(0) is
defined to be skew-symmetric using the same initialization technique as in [81], which
is based on the idea from [84]. Then, we apply the Cayley transform in A(0) to obtain
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U (0). Another peculiar detail that we want to point out is that Algorithm 4 includes
optA, which is the standard optimizer such as SGD, RMSProp [181], or Adam [110],

etc., that takes ∇AL = V (k)T − V (k) as an input. Moreover, the skew-symmetric
property of the weight A and its gradient are preserved under such an optimizer.

3.1.3.3 Neumann-Cayley Orthogonal GRU (NC-GRU)

Finally, we introduce a Neumann-Cayley Orthogonal GRU (NC-GRU) model that
utilizes the proposed Neumann-Cayley Orthogonal Transform.

The structure of the NC-GRU cell is shown below:

rt = σ (Wrxt + Ur(Ar)ht−1 + br)

ut = σ (Wuxt + Uuht−1 + bu)

ct = Φ(Wcxt + Uc(Ac) (rt ⊙ ht−1))

ht = (1− ut)⊙ ht−1 + ut ⊙ ct

(3.53)

here σ - sigmoid function, ⊙ - Hadamard product, and Φ - modReLU function defined
in [7] as

Φ(x) := modReLU(x) := sgn(x) · ReLU (|x|+ b) (3.54)

with b as a trainable bias.
Most experiments show that the best performance is achieved using orthogonality

in Uc and Ur hidden weights. For an additional ablation study about the usage and
performance of orthogonal weights throughout the GRU model, see [145]. Similar
to the GRU Cell, Wr, Wu, Wc, Uu, br, bu, b, are trainable parameters as well as Ur

and Uc together with their associated weights Ar and Ac respectively. Moreover, all
of them except Ur with Ar and Uc with Ac are trained using standard backpropa-
gation algorithms such as Stochastic Gradient Descent (SGD), RMSProp [181], or
Adam [110] similarly as in GRU [37], but Ur, Ar, Uc, and Ac are trained using Al-
gorithm 4. Figures 3.1a and 3.1b depict the NC-GRU cell 3.53 forward pass and
backward propagation of orthogonal weight Uc(Ac), respectively.

As we mentioned, orthogonal weights lead to a better-conditioned gradient, and
the following Corollary summarizes this result.

Corollary 3. Let ht−1 and ht be two consecutive hidden states from the NC-GRU
model defined in (3.53). Then ∥Ur∥2 = ∥Uc∥2 = 1 and if elements of the gates ut and
rt are nearly 0 or 1, then the following inequality is satisfied:∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥
2

≲ 2. (3.55)

Furthermore, if ut and rt are nearly either zero vector or vector of all ones,∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥
2

≲ 1. (3.56)
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T + ⨉
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(b) Backpropagation of Uc(Ac)

Figure 3.1: NC-GRU Cell and diagram for updating the orthogonal weight Uc(Ac)
Notation: σ - sigmoid function, Φ - modReLU [7], ⊙ - Hadamard product (entrywise
multiplication), T - transpose, × - matrix multiplication, optA - weight A optimizer,
any algebraic expression (e.g., 1−x) is evaluated with previous step output as input (1
represents an identity matrix); refer to Algorithm 4 for the order of non-commutative
operations

Proof.
By the definition of NC-GRU model, weights Ur and Uc are orthogonal which

implies ∥Ur∥2 = ∥Uc∥2 = 1, and by Theorem 5 and Corollary 2, we conclude∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥
2

≲ 2 (3.57)
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when element of the gates ut and rt approach either 0 or 1; and∥∥∥∥ ∂ht

∂ht−1

∥∥∥∥
2

≲ 1 (3.58)

if ut and rt approach either zero vector or vector of all ones.

3.1.4 Experiments and Results

We have performed various experiments to demonstrate the robustness and efficiency
of our NC-GRU method. To this end, we apply NC-GRU to commonly used synthetic
tasks: Parenthesis [57, 99], Denoise, Adding, and Copying Tasks, see [145] for the
last two tasks. In addition, we have considered non-synthetic experiments, Language
Modeling with the character and word level tasks for the Penn TreeBank (PTB) [133]
dataset as well as WikiText-2 [137], see [145] for more information and results for these
tasks.

All the experiments were trained with equal numbers of trainable parameters,
also known as parameter-matching architecture. Moreover, all models were trained
using a single NVIDIA® Tesla® V100 GPU with TensorFlow 1.13.2 (Parenthesis,
Denoise, Adding, and Copying Tasks), PyTorch 1.1.0 (PTB and WikiText-2), and
Python 3.6.9.

3.1.4.1 Parenthesis Task

This experiment derives from the descriptions in [57] and [99]. This task tests the
ability of the network to remember the number of unmatched parentheses contained
in our input data. The input data consists of 10 pairs of different types of parentheses
combined with some noise data in between, and it is given as a one-hot encoding vector
of length T . As stated in [99], there are not more than 10 types of parentheses. The
output data is given as one hot-encoding vector, counting the number of unpaired
parentheses in the corresponding input data. The goal of our model is to forget the
noise data and absorb information from the long-term dependencies related to the
parentheses. This synthetic data requires the model to develop a memory and to be
able to select the most relevant information.

We present two versions of the NC-GRU model; the first one only has orthogo-
nality in Uc weight (NC-GRU(Uc)); however, the second model utilizes orthogonality
in both weights Ur and Uc (NC-GRU(Ur, Uc)). Both models were trained using the
Neumann series method with a reset every 50 iterations.

Implementation Details: All of the models consisted of a single layer net with
the following hidden dimensions for each model: LSTM [88] - 42, GRU [37] - 50,
scoRNN [81] - 110, GORU [99] - 64, and NC-GRU - 56. Furthermore, we trained
all models for 200 epochs with a batch size of 16, and the number of negative ones
for the D matrix in scoRNN [81] and NC-GRU models was 20 and 40, respectively.
All models were trained using Adam optimizer [110] with a learning rate of 10−3

including A associated weights in scoRNN [81] and NC-GRU models. We conducted
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experiments using input length of T = 100, see Figure 3.2a, and T = 200, see Figure
3.2b.

Results: We observed and recorded the behavior of the five models on the Paren-
thesis task when the input length is set to 100 and 200. Our results showed that
both versions of NC-GRU models outperform GRU [37], LSTM [88], scoRNN [81],
and GORU [99] models with a significant gap; see Figure 3.2. On this task, NC-
GRU(Ur, Uc) model shows a better performance than NC-GRU(Uc); however, both
of them perform better than the rest of the compared models. The minimum value
of the loss attained during training is presented in Table 3.1.

0 25 50 75 100 125 150 175 200
Iterations (x100)

10 4

10 3

10 2

10 1

Lo
ss

LSTM
GRU

scoRNN
GORU

NC-GRU(Uc)
NC-GRU(Ur, Uc)

(a) T = 100
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Figure 3.2: Parenthesis Task Results: NC-GRU(Uc) denotes the NC-GRU model
(3.53) where the Neumann-Cayley method was only applied to the weight Uc, similarly
NC-GRU(Ur, Uc) represents the NC-GRU model (3.53) where both Ur and Uc weights
were updated using the Neumann-Cayley method.

55



Table 3.1: Parenthesis Task Results: Minimum attained loss values (↓ - the
smaller, the better). All results are based on our tests.

Loss ×10−3 ↓
Sequence Length T = 100 T = 200

LSTM 0.62 6.93
GRU 29.94 1.526
scoRNN 24.85 18.957
GORU 1.199 1.66
NC-GRU(Uc) (ours) 0.286 0.227
NC-GRU(Ur, Uc) (ours) 0.149 0.167

3.1.4.2 Denoise Task

The Denoise Task [99] is another synthetic problem requiring filtering out the noise
from a noisy sequence. This problem requires the forgetting ability of the network
as well as learning long-term dependencies coming from the data [99]. The input
sequence of length T contains 10 randomly located data points and the other T − 10
points are considered noise data. These 10 points are selected from a dictionary
{ai}n+1

i=0 , where the first n elements are data points, and the other two are the “noise”
and the “marker” respectively. The output data consists of the list of the data points
from the input, and it should be outputted as soon as it receives the “marker”. The
model task is to filter out the noise part and output the random 10 data points chosen
from the input.

Implementation Details: We implemented one NC-GRU cell with a hidden size
of 118 and the number of negative ones in the D matrix to 50. The hidden size for
the LSTM [88] was 90, GRU [37] – 100, scoRNN [81] – 200, and GORU [99] – 128.
We implemented Adam optimizer [110] with a learning rate of 10−3 to train all the
aforementioned models, including scoRNN [81] and NC-GRU A weights. We trained
all the models for 10,000 iterations with a batch size of 128. Similar to the Parenthe-
sis Task 3.1.4.1, we implemented the Neumann series method of approximation the(
I + A(k)

)−1
when training the NC-GRU model with the reset option to be applied

every 50 iterations.
Results: Based on our experiments, NC-GRU(Uc) and NC-GRU(Ur, Uc) mod-

els significantly outperformed LSTM [88], GRU [37], scoRNN [81], and GORU [99]
models on the denoise data; see Figure 3.3. Similar to what we observed from the
parenthesis task, using two orthogonal weights leads to better results. In addition,
Table 3.2 compares attained minimum loss for each model.

3.1.5 Exploratory & Ablation Studies

This section considers several ablation studies that help us justify using the Neumann
series, orthogonal matrices, and Scaled-Cayley transforms.
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Figure 3.3: Denoise Task Results

3.1.5.1 Neumann Series Method vs Inverse

In this experiment, we study the sharpness of approximating
(
I + A(k−1)

)−1
with the

Neumann series in the NC-GRU(Uc) model on the Parenthesis task; see 3.1.4.1 for
implementation details and description of NC-GRU(Uc) model. We consider using
the Neumann series approximation of orders 1, 2, and 3 and compare them to the
Least Squares method for taking a matrix inverse, one of the widely used methods
from Deep Learning libraries such as TensorFlow, PyTorch, and NumPy.

Our experiments showed that the Neumann series approximation method achieves
better results than the classical Least Squares method for finding the matrix inverse.
Figure 3.4 shows that the Neumann series method of order 2 performs marginally
better than order 1 and order 3 Neumann series methods and significantly better
than the Least Squares method.

We have also compared the time it takes to train our model using the methods
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Table 3.2: Denoise Task Results: Minimum attained loss values. All results are
based on our tests.

Loss ×10−2 ↓
Sequence Length T = 200 T = 400

LSTM 10.08 5.427
GRU 9.799 5.2338
scoRNN 8.258 3.812
GORU 4.453 2.29
NC-GRU(Uc) (ours) 1.639 0.878
NC-GRU(Uc, Ur) (ours) 1.633 0.774
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Figure 3.4: Inverse vs Neumann series: In this graphs, Inverse represents NC-

GRU(Uc) model with
(
I + A(k−1)

)−1
computed using the Least Squares method and

Neumann i represents NC-GRU(Uc) model with
(
I + A(k−1)

)−1
computed using the

Neumann series method of order i.

mentioned. Figure 3.5 shows the time it takes to train one epoch of the NC-GRU(Uc)
model on a Character Level PTB dataset on a single NVIDIA® Tesla® V100 GPU
using Inverse (Least Square), Neumann 1, Neumann 2, and Neumann 3 methods.

The observed behavior appears to be quite general, and we have conducted all of
the experiments in section 3.1.4 using the second-order Neumann series method.

Several other Ablation Studies regarding the Orthogonality in the hidden weights
of GRU and necessary conditions for the Neumann series method can be found
in [145].

3.1.6 Conclusion

We have presented a thorough analysis of the Gated Recurrent Unit (GRU) model’s
gradients. Based on this analysis, we introduced the Neumann-Cayley Gated Re-
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Figure 3.5: Computational time comparisons: The amount of time (in seconds)
it takes to train one epoch of NC-GRU(Uc) model on Character Level PTB dataset
using a single NVIDIA® Tesla® V100 GPU.

current Unit model, NC-GRU. Our model incorporates orthogonal weights in the
hidden states of the GRU model, which are trained using a newly proposed method
of Neumann-Cayley transformation for maintaining the desired orthogonality in those
weights. We have conducted experiments demonstrating the superiority of our pro-
posed method outperforming GRU, LSTM, scoRNN, and GORU models on different
tasks. Moreover, we conducted several ablation studies that empirically confirmed
our theoretical results.
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3.2 Novel Molecular Representations using Neumann-Cayley Orthogonal
Gated Recurrent Unit
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Researchers in various fields of study, including the bio-medical and cheminfor-
matics communities, now have access to a potent machine learning method thanks
to advancements in Deep Neural Networks and Deep Learning. They aid in tasks
like protein performance, molecular design, drug discovery, etc. Many of those ac-
tivities use molecular descriptors to express molecular properties in cheminformatics.
Unfortunately, quantitative prediction of molecular attributes is still tricky despite
major efforts and the advent of several approaches that produce molecular descriptors.
Molecular fingerprints are a popular technique for encoding molecule characteristics
into bit strings. This section suggests creating neural molecular fingerprints called
NC-GRU fingerprints utilizing novel Neumann-Cayley Gated Recurrent Units (NC-
GRU) inside the Neural Nets encoder (AutoEncoder). Orthogonal weights are added
by NC-GRU AutoEncoder to the famous GRU architecture, producing quicker, more
stable training and more trustworthy molecular fingerprints. The performance of dif-
ferent molecular-related tasks, including toxicity, partition coefficient, lipophilicity,
and solvation-free energy, is improved by integrating unique NC-GRU fingerprints
with Multi-Task Deep Neural Network schematics, leading to state-of-the-art results
on multiple benchmarks. The above Figure summaries the methods used and devel-
oped in this section.

3.2.1 Introduction

Drug development has made significant strides in recent years, yet it is still difficult to
create affordable, effective molecules with appropriate pharmacological and biochem-
ical qualities [63]. A drug candidate’s binding affinity, toxicity, and octanol-water
partition coefficient (logP) are all essential factors to consider [62]. Before coming
to the market, a drug goes through several stages, including target identification,
lead optimization, preclinical development, and three phases of clinical testing [63].
According to [191], over half of the medication candidates fail to make it to market
because of unfavorable results on the toxicity and pharmacokinetic features. To test
the qualities of drugs, experiments are conducted in vivo or in vitro. These methods

60



are time- and money-consuming, as well as animal research raises important moral
questions and concerns.

Recently, machine and deep learning algorithms have been successfully used in
drug development. A significant amount of work has been devoted to deriving molec-
ular descriptors from the representation of a molecule [32, 63, 202], particularly
molecular fingerprints that profile a molecule, usually in the form of a bit string
or a vector, with each vector element indicating the existence, the degree, or the fre-
quency of one particular structure feature [27, 126, 162]. The majority of molecular
fingerprints are created using either two-dimensional [54, 76, 153, 162, 174, 183] or
three-dimensional [147, 194] molecular structural formulas, where two-dimensional
structure can be viewed as if molecules were flat. The most well-known finger-
prints include Molecular Access System (MACCS) [54], Extended Reduced Graph
(ERG) [174], Electro Topological State (Estate) [76], Extended-Connectivity Fin-
gerprint(ECFP) [162], FP2 [153], Daylight [183], etc. In machine and deep learning,
methods such as [32, 55, 70, 202, 209, 212] have been very successful in getting helpful
and useful information on molecular fingerprints.

For instance, two-dimensional deep learning algorithms try to learn an appropri-
ate data representation from a straightforward embedding layer, where the input is
a one-hot vector of each atom in a molecule [78]. Such embedding is often a com-
ponent of the encoding mechanism, and one of the popular deep learning methods is
AutoEncoder [163], which learns the descriptors in an unsupervised and data-driven
manner [32, 70, 202, 209]. In theory, AutoEncoder can accept any molecular rep-
resentation or nomenclature as input; however, in practice, researchers tend to con-
centrate on sequence-based molecular representations like Simplified Molecular-Input
Line-Entry System (SMILES) [199], International Chemical Identifier (InChI) [83],
International Union of Pure and Applied Chemistry (IUPAC) [56], etc. A typical Au-
toEncoder consists of Encoder and Decoder networks, where embedded input passes
through the Encoder and outputs a latent representation which will be fed into the
Decoder network. Then, the Decoder network takes that latent vector and attempts
to turn it back into the input sequence of a different or identical nomenclature. The
latent representation vector is connected to an information bottleneck between the
Encoder and Decoder networks. Since the information is compressed, the latent rep-
resentation vector learns more general molecular information [209]. Although the
structure of the AutoEncoder can vary, the Gated Recurrent Unit (GRU) is one of
the most optimized architectures to implement as the AutoEncoder cells [202] in com-
parison to Long-Short Term Memory (LSTM) [89] or Convolutional Neural Network
(CNN) [115].

Finally, as deep learning approaches benefit from a high number of training sam-
ples, they may generate better and more effective molecular descriptors from big
training datasets like ChEMBL [64], ZINC15 [96], PubChem [108], etc. The result-
ing fingerprints can then be applied to various prediction tasks, including toxicity
prognosis, partition coefficient analysis, solubility predictions, etc., where the latent
representation vector is used as the input for a prediction model [63, 167, 202].

This work proposes a novel AutoEncoder equipped with Neumann-Cayley Or-
thogonal Gated Recurrent Units (NC-GRU) [145] to generate high-quality finger-

61



prints for complex and diverse molecules. To do this, we used the ChEMBL 28 [64]
dataset to train NC-GRU AutoEncoder with the Canonical SMILES representation
of a molecule inputted into and outputted from the NC-GRU Autoencoder. The
ability of NC-GRU to capture long-term relationships using orthogonal matrices and
the capacity of GRU gates to forget unneeded information make NC-GRU architec-
tures preferable to ordinary GRU cells. The combination of training AutoEncoder on
the ChEMBL 28 dataset with NC-GRU cells results in NC-GRU FingerPrints (FPs),
improving many benchmarks during the inference phase. Using NC-GRU FPs pro-
duced state-of-the-art results on several prediction tasks, including toxicity, partition
coefficient, solubility, and solvation-free energy.

3.2.2 Neumann-Cayley Orthogonal Gated Recurrent Unit based AutoEn-
coder

3.2.2.1 Architecture

In this study, our primary goal is to apply NC-GRU [145] to the AutoEncoder’s hidden
layers [163]. Refer to Figures 3.1a and 3.1b for the NC-GRU cell architecture and
the orthogonal weight Uc(Ac) update process diagrams, respectively. Before feeding
it to the AutoEncoder, the input sequence-based molecular representation, provided
as canonical SMILES, is tokenized and encoded in a one-hot vector representation.
Our NC-GRU AutoEncoder has 2 or 3 stacked NC-GRU layer cells, depending on the
effectiveness of the fine-tuning procedure. The two-layer NC-GRU model has hidden
layer dimensions of 160 and 320. An additional NC-GRU layer cell of dimension
640 is used for the three-layer version. Afterward, the state of each cell from the
Encoder is concatenated and used as an input vector in a Fully-Connected Layer of
dimensions 512. The Fully-Connected Layer is activated using a hyperbolic tangent
(tanh) function. The 512-unit extracted features vector is used as an input vector in
another Fully-Connected Layer. The output of this Fully-Connected Layer is divided
into three parts, corresponding to each dimension from the Encoder, and used as
the initialization in every Decoder cell. Simultaneously, the Molecular Properties
Consistency Network (MPCN) uses the output of the Fully Connected mentioned
above Layer. In its architecture, the Molecular Properties Consistency Network is a
regression network with three Fully-Connected Layers of dimensions 512, 128, and
7 (as an output dimension) and ReLU activation function after the first and second
layers and no activation after the output layer, respectively. The Molecular Properties
Consistency Network predicts the following properties logP, the Molar refractivity,
Balaban’s J-value, the number of acceptors, the number of hydrogen bond donors, the
number of valence electrons, and the Topological polar surface area. These properties
are extracted from the encoded input sequence’s molecular structure using the Python
RDKit library. The network functions as a regularizer for the AutoEncoder and
helps AutoEncoder to produce better molecular descriptors while maintaining the
RDKit attributes. The AutoEncoder with Molecular Properties Consistency Network
is trained to reduce the Mean Squared Error between RDKit features and the output
of the Molecular Properties Consistency Network, LMPCN , while simultaneously it is
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trained to minimize the softmax cross-entropy between each input sequence and the
Decoder output, LAutoEncoder, the following Equation provides the total loss function.

Ltotal = LAutoEncoder + LMPCN (3.59)

In addition to our suggested NC-GRU AutoEncoder, we experiment with tradi-
tional GRU [37] in AutoEncoder for a fair comparison. Figure 3.6 provides a visual
aid to help comprehend the NC-GRU AutoEncoder design discussed above.
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Figure 3.6: NC-GRU AutoEncoder w/ MPCN: Architecture for training NC-
GRU fingerprints using NC-GRU AutoEncoder together with Molecular Properties
Consistency Network (MPCN)

3.2.2.2 Data Processing

We have trained AutoEncoder architecture with Molecular Properties Consistency
Network on the ChEMBL 28 dataset [64]. The ChEMBL 28 dataset was processed
with the help of the RDKit Python module. First, we removed all the duplicates.
Then, we filtered the remaining molecules with the following criteria: only organic
molecules, molecules with molecular weight between 12 and 600, molecules with
at least three heavy atoms, molecules with a partition coefficient logP between -
7 and 5, only non-stereochemistry molecules, no salts, and molecules that RDKit
could not process were removed. The remaining post-filtered dataset has 1,852,637
chemical compounds, which we randomly split 90/10 into training and testing sets
of sizes 1,667,373 and 185,264, respectively. After the processing, we extracted
seven RDKit molecular properties for each molecule that are used in the Molecular
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Properties Consistency Network: logP (MolLogP in the RDKit), number of valence
electrons (NumValenceElectrons in the RDKit), number of hydrogen bond donors
(NumHDonors in the RDKit), number of acceptors (NumHAcceptors in the RDKit),
Balaban’s J-value (BalabanJ in the RDKit), molar refractivity (MolMR in the RD-
Kit), and topological polar surface area (TPSA in the RDKit). Further, the above
properties are normalized using the following equation:

x̂ =
x− µ

σ
, (3.60)

where x, x̂, µ, and σ represent the element of the dataset under the property,
its normalized version, and the mean and standard deviation of the property for the
whole dataset, respectively. The above molecular properties were chosen to follow
setups from [202] and [70]. These published works have testified that the constraints
of RDKit features on the latent space are necessary to avoid dead areas in molecular
representation learning; otherwise, it could cause the decoder network to produce
invalid SMILES strings.

Table 3.3 provides data processing criteria and selected statistics about normalized
RDKit molecular properties.

Table 3.3: ChEMBL 28 Dataset: ChEMBL 28 processing criteria and statistics of
RDKit processed and normalized molecular properties

Processing Criteria Normalized Molecular Properties

Removal of duplicates Property min max
Only organic molecules logP -5.08 2.26
Molecular weight between 12 and 600 # of valence electrons -3.46 3.16
More than three heavy atoms # of hydrogen bond donors -1.18 10.89
A partition coefficient logP between 7 and 5 # of acceptors -2.47 7.86
Only non-stereochemistry compounds Balaban’s J-value -2.53 12.86
No salts Molar refractivity -4.08 3.40
Molecules that RDKit could not process were removed Topological polar surface area -2.26 8.68

3.2.2.3 NC-GRU Fingerprints

Molecular descriptors are critical to chemoinformatics because they encode crucial
chemical information about molecules in a manner that computers can understand [182].
The benefit of the AutoEncoder models over the traditional fingerprints is their ca-
pacity to learn a broad range of molecules and provide encoded data in the appro-
priate latent space - fingerprints [209]. This study uses the ChEMBL 28 dataset to
train the suggested NC-GRU AutoEncoder. The NC-GRU AutoEncoder’s Decoder
must output molecular sequence in the exact representation - Canonical SMILES. As
previously indicated [37], GRU is one of the best-optimized models for generating
neural fingerprints; nevertheless, the recently developed NC-GRU cell [145] exhibits
superior theoretical characteristics than GRU cell. The NC-GRU is equipped with
orthogonality methods to identify and preserve long-term dependencies. However,
its gates also aid in erasing unnecessary information from memory. Our proposed
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NC-GRU FingerPrints (NC-GRU FP), which inherit these cutting-edge properties,
would deliver durable molecular descriptors suitable for various applications. As a
result, the NC-GRU fingerprint vector representation between the encoder and de-
coder is expected to comprehend the input molecular sequence more thoroughly than
GRU-based fingerprints. We evaluated NC-GRU fingerprint performance on several
prediction tasks, including toxicity, solubility, partition coefficient, and solvation-free
energy predictions, using seven benchmark datasets to show the value of our finger-
prints compared to existing methods.

3.2.2.4 AutoEncoder Translation Accuracy

We examined training accuracies on ChEMBL 28 to show the benefits of the NC-
GRU-based AutoEncoder over the GRU-based one. We trained models for 100,000
iterations, and for every 1,000 iterations, we recorded test accuracy results.

The corresponding findings are displayed in Figure 3.7, where NC-GRU- and
GRU-based AutoEncoders have two hidden layers with sizes 160 and 320. (we ob-
served a similar performance with three-layer AutoEncoders). When using NC-GRU
AutoEncoder, we noticed a considerable improvement in training accuracy vs. GRU
AutoEncoder, particularly in the early training. However, in the later epochs, the
accuracy of both models reach 99%.
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Figure 3.7: NC-GRU vs. GRU Accuracies: Comparison of Testing Accuracies
between NC-GRU and GRU-based AutoEncoders on CheMBL 28 Dataset

We believe that the earlier-faster convergence of NC-GRU-based AutoEncoder
creates more reliable and robust AutoEncoder fingerprints based on our tests with
molecular property prediction tasks.

3.2.3 Prediction Models with Molecular Fingerprints

By identifying patterns in input data, a prediction model helps to forecast future
results. Numerous machine and deep learning algorithms have shown to be quite suc-
cessful in applications requiring prediction, including predicting molecular character-
istics. The classical predicting models include linear and logistic regressions, logistic
classification, k-nearest neighbors, support vector machine [43], etc. More recently,
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deep learning methods based on ideas from algebraic topology [21, 22], differential ge-
ometry [149], geometric graph theory [14, 150], and algebraic graph theory [148] show
promising results on predictive modeling. However, several sophisticated algorithms
combine the aforementioned techniques with molecular fingerprints to increase con-
vergence speed and provide a more accurate model: Gradient Boosting Decision Tree
(GBDT) [170], Random Forest (RF) [175], Single-Task Deep Neural Networks [9],
Multi-Task Deep Neural Networks [26], etc. These methods employ fingerprints as
input into prediction models because they include more structural information about
compounds, particularly stereochemical descriptions, than chemical formulae or other
non-neural fingerprint representations. Such algorithms frequently demonstrate high
efficiency when using two- or three-dimensional molecular fingerprints.

We use multitask neural networks in our prediction studies to enhance the accu-
racy of predicting molecular properties.
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Figure 3.8: MT-DNN models for prediction tasks;

3.2.3.1 Multitask Deep Neural Network

Multi-Task Deep Neural Network (MT-DNN) [25] or simply a multitask model is
a technique for learning numerous tasks or activities simultaneously. Multitask
networks have been used effectively in various applications, including natural lan-
guage processing [41], computer vision [66], speech recognition [47], and drug discov-
ery [24, 62, 159, 200, 213]. The multitask model training method uses a combined
representation of trainable parameters to learn from various jobs and improve perfor-
mance. It gains strength by simultaneously learning several datasets. However, the
multitask model relies significantly on the notion that the input datasets are corre-
lated. The number of tasks used in the input data determines how many neurons are
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present in the output layer of the multitask network architecture. Despite the fact
that the output layer contains several neurons, the loss function only considers the
specific output that corresponds to the input task when updating the parameters.
For instance, the four-task multitask model begins training by using a batch of data
from the first task and updating the shared and first task output weights without
affecting the output weights of the other tasks. Then the multitask model goes to the
second dataset and trains the shared and only the second task output weights after
it has finished with the full dataset for the first task; this is also known as task-epoch
training. The third and fourth tasks are then completed as part of the procedure.
This process comprises a single complete epoch of multitask training with four tasks.
Note that multitask models are trained using standard backpropagation algorithms
such as Stochastic Gradient Descent (SGD), RMSProp [181], and Adam [110] while
using a single optimizer throughout all the training and tasks.

Figure 3.8 illustrates the multitask models implemented in our experiments.

3.2.3.2 Prediction Tasks and Datasets

We have used a total of seven datasets in our experiments over four prediction tasks.
This section describes each task and some information about each of the used datasets.

Table 3.4: Prediction Datasets: Selected Statistics for Prediction Tasks Datasets;
“ - ” - no Valid. (validation) data; Part. Coeff. - Partition Coefficient.

Dataset Train Valid. Test Min. Value Max. Value Units Task

LD50 7,413 - 1,482 0.291 7.201 − log10 mol/L Toxicity
IGC50 1,434 - 358 0.334 6.36 − log10 mol/L Toxicity
LC50 659 - 164 0.037 9.261 − log10 mol/L Toxicity
LC50DM 283 - 70 0.117 10.064 − log10 mol/L Toxicity

logP 8,199 - 406 -4.64 8.42 n/a Part. Coeff.
FreeSolv 513 65 65 -25.47 3.43 kcal/mol Free energy
Lipophilicity 3,360 420 420 -1.5 4.5 n/a Solubility

Toxicity Prediction Datasets
For public health, toxicology forecasting is essential. One of the most significant

applications of toxicity prediction is reducing the cost and effort of a drug’s preclin-
ical and clinical studies. Because of the anticipated toxicity, many pharmacological
investigations can be avoided. We employed four datasets for our toxicity prediction
experiments: the oral rate LD50 (LD50), the 40-hour Tetrahymenapyriformis IGC50
(IGC50), the 96-hour fathead minnow LC50 (LC50), and the 48-hour Daphnia Magna
LC50DM (LC50DM).

The LD50 [2, 134] task measures the number of chemicals that can kill half
of the rat population when orally ingested. The IGC50 [5, 218] records the 50%
growth inhibitory concentration of Tetrahymena pyriformis organism after 40 hours.
The LC50 [1, 135] reports the concentration of test chemicals in the water in mil-
ligrams per liter that cause 50% of fathead minnows to die after 96 hours. Lastly,
the LC50DM [1, 135] represents the concentration of test chemicals in the water in
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milligrams per liter that cause 50% Daphna Magna to die after 48 hours. The unit
of toxicity reported in these four datasets is − log10 moles per liter (mol/L). Note
that the small size of the LC50 and LC50DM datasets and LD50 data being very
uncertain [62] are only some of the reasons why training these datasets can be very
difficult and challenging. Table 3.4 provides more information and some selected
statistics about these datasets.

Partition Coefficient Prediction Dataset
We have been using the logP dataset to complete the task of partition coeffi-

cient prediction. The expression “logP” stands for the logarithm of the octanol-water
partition coefficient of a chemical compound. The ratio of a compound’s concentra-
tions in a two-phase equilibrium system is known as the partition coefficient. It is a
quantitative approach to describe lipophilicity, the ability to dissolve, which affects a
pharmaceutical drug’s elimination, toxicity, distribution, metabolism, and absorption.
Note that the Food and Drug Administration (FDA) has approved all the compo-
nents in the test data as organic drugs. The logP values for the partition coefficient
data are compiled by [34]. See Table 3.4 for selected statistics about the logP dataset.

Lipophilicity Prediction Dataset
A drug’s potency, distribution, and elimination in the body are determined by

its lipophilicity. The dataset for the current study is selected from the CheMBL
database, yielding 4,200 compounds [207], with the distribution coefficient of oc-
tanol/water at pH 7.4 serving as the basis for the lipophilicity index. See Table 3.4
for selected statistics about this dataset.

Solvation Free Energy Prediction Dataset
A transfer of a solute molecule from an ideal gas to water calls Solvation-free

energy. To understand the uncertainty in predicting the binding free energy between
tiny molecules and proteins, it is necessary to characterize solvation-free energy pre-
cisely. A lot of people are interested in this for computer-aided drug discovery. The
solvation-free energy dataset utilized in this study is FreeSolv, which contains 643
molecules and is created in [144]. Then, MoleculeNet [207] suggested dividing it
into training, validation, and testing subsets in an 80/10/10 split. See Table 3.4 for
selected statistics about this dataset.

3.2.3.3 Optimized FingerPrints for Prediction Tasks

Multitask models may greatly enhance prediction tasks, as described in section 3.2.3.1.
However, a near-optimal AutoEncoder structure will provide desired molecular repre-
sentations, further enhancing downstream prediction networks. This section describes
how we choose the near-optimal GRU and NC-GRU AutoEncoders to provide more
desired molecular fingerprints for the datasets used for prediction tasks and the fol-
lowing multitask training.

According to the research presented in the NC-GRU paper [145], a model’s perfor-
mance may be enhanced by altering the number of layers and the gate initializations.
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We investigated and evaluated six AutoEncoder fingerprint extraction models based
on this claim: two GRU-based models with two and three layers, and four NC-GRU-
based AutoEncoders with two and three layers and two different initializations (He
Normal [80] and Glorot Uniform [68]).

We have considered a Single-Task Deep Neural Network (ST-DNN) model with a
fully-connected architecture to select preferable fingerprints for a prediction job and
future multitask training. For prediction datasets with more than 1,000 data points,
the single-task model has two fully-connected layers with dimensions of 256 and 128.
The dimensions for datasets with fewer than 1,000 molecules are 128 and 64. One
of the main reasons why we consider two different models is the issue of overfitting.
Our studies confirmed that smaller datasets are more likely to overfit on structures
with higher complexity [152]. All single-task models were trained for 1,000 epochs
using Adam [110] optimizer with the learning rate 5 · 10−3 and the batch size of 32.
Table 3.5 lists the above hyperparameters.

Table 3.5: ST-DNN Prediction Model hyperparameters: d.p. - data points;
ReLU - Rectified Linear Unit [60]

Hyperparameter Values

Input size 512

Hidden sizes
> 1K d.p. < 1K d. p.
256, 128 128, 64

Activation function ReLU
Batch size 32
Optimizer Adam [110]
Learning rate 5 · 10−3

By comparing the average r2 and RMSE values over ten random runs of the single-
task models where we use 10-Fold Cross-Validation (CV) for the datasets without
validation sets (LD50, IGC50, LC50, LC50DM, and logP) and validation sets for
the ones with one (Lipophilicity and FreeSolv) to select an appropriate AutoEncoder
fingerprint extraction model. Table 3.6 summarizes the selected AutoeEncoder ar-
chitecture for each benchmark.

3.2.3.4 Multitask Deep Neural Network: Hyperparameters and Setup

Machine and deep learning algorithms can learn various properties from a molecular
fingerprint. We apply multitask learning to create Multitask Deep Neural Network
(see Section 3.2.3.1) models to predict toxicity, partition coefficient, solubility, and
solvation-free energy. Multitask Deep Neural Network hyperparameters are provided
in Table 3.7. Note that the input size of 512 corresponds to the latent representation
vector from the fingerprint extraction AutoEncoder models. The multitask models
have four hidden layers of dimensions, and all models were trained using an initial
learning rate of 10−2 and a step-learning rate decay, where the initial learning rate was
decayed to 10−3 after 2,000 epochs. For the FreeSolv dataset, we used a validation
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Table 3.6: NC-GRU/GRU Autoencoder hyperparameters
With the exception of the datasets for FreeSolv and Lipophilicity, which utilize their
own validation data instead, the autoencoder for each dataset is chosen using ten-fold
cross-validation.

NC-GRU GRU

Dataset Hidden sizes Gate Init. Hidden sizes

IGC50 160, 320 He Normal 160,320, 640
LC50 160, 320 Glorot Uniform 160, 320, 640
LC50DM 160, 320, 640 He Normal 160, 320
LD50 160, 320, 640 He Normal 160, 320, 640
logP 160, 320 He Normal 160, 320, 640
FreeSolv 160, 320 He Normal 160, 320
Lipophilicity 160, 320, 640 He Normal 160, 320

set to determine the termination of training criteria. Moreover, we apply the Batch
Normalization [94] on every task to enhance the models’ predictive power.

Table 3.7: MT-DNN Prediction Model hyperparameters: ∗ - this batch size
was chosen to minimize the cutoff of data in the last batch training; † - initial learning
rate was used for the first 2,000 epochs and then reduced to 10−3; ‡ - validation set
was used to determine the termination of training criteria for FreeSolv dataset

Hyperparameter Values

Input size 512
Hidden sizes 1024, 512, 256, 64
Activation function ReLU [60]
Batch size 18∗

Initial Learning rate 10−2†

Learning rate decay True†

Number of epochs 3,000‡

Optimizer SGD
Momentum 0.5
Batch Normalization [94] True

There is a physicochemical link between the toxicity datasets; see [62] for more
details. During training toxicity datasets, we use this assumption to create two Mul-
titask Deep Neural Network models. One model uses all of the toxicity data to train
the LD50 and IGC50 predictors, and another for training the LC50 and LC50DM
without using the LD50 dataset; Figures 3.8a and 3.8b depict those models. Due to
the high levels of uncertainty in the LD50 dataset [62], which may be detrimental
for multitasks learning when test datasets are small, the LD50 dataset was excluded
from the second model. Similarly, logP, FreeSolv, and Lipophilicity datasets have a

70



chemical correlation. We use three of them altogether to implement the Multitask
Deep Neural Network model; see Figure 3.8c.

Note: We do not use transfer learning of any kind; instead, we use ChEMBL
28 dataset pretrained AutoEncoder to obtain the fingerprints for prediction datasets.
Following that, the obtained fingerprints were fed into the prediction models.

3.2.4 Experiments and Results

Table 3.8: Results on Toxicity Prediction Tasks; “∗” - result from our experi-
ments

Toxicity Data (r2 ↑)
Dataset IGC50 LC50 LC50DM LD50

NC-GRU (ours) 0.816 0.759 0.785 0.634
AGBTs-FP [32] 0.805 0.75 0.83 0.612
GRU∗ 0.813 0.73 0.706 0.6
BTAMDL1 [98] 0.721 0.750 0.7 0.605
HybridModel [103] 0.81 0.678 0.616 0.629
Daylight [62] 0.717 0.724 0.694 0.617
Estate1 [62] 0.735 0.694 0.684 0.605
Hierarchical [134] 0.719 0.710 0.695 0.578
Estate2 [62] 0.742 0.662 0.623 0.589
Nearest Neighbour [134] 0.600 0.667 0.733 0.557
FDA [134] 0.747 0.626 0.565 0.557
MACCS [62] 0.643 0.608 0.434 0.643
FP2 [62] 0.681 0.609 0.357 0.631
ECFP [62] 0.647 0.573 0.452 0.586
Pharm2D [62] 0.384 0.528 0.275 0.443
ERG [62] 0.274 0.348 0.336 0.392

We present the results of various experiments to demonstrate the reliability and
effectiveness of the proposed NC-GRU fingerprints using four types of molecular prop-
erties: toxicity, partition coefficient, solubility, and solvation-free energy predictions
where we have used seven benchmark datasets: IGC50, LC50DM, LC50, LD50, logP,
Lipophilicity, and FreeSolv; see section 3.2.3.2 for details about these tasks and
datasets. To validate our suggested models, we compare them to existing models
that incorporate two- and three-dimensional molecular fingerprints, including results
for GRU-based fingerprints as a baseline. The performance of the models is mea-
sured in the squared Pearson correlation coefficient (r2) for IGC50, LC50DM, LC50,
LD50, and logP datasets, and the Root Mean Square Error (RMSE) for FreeSolv and
Lipophilicity datasets.

The NC-GRU and GRU results reported in Tables 3.8, 3.9, and 3.10 are the
consensuses among five random seeds to limit the variation in deep learning model
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Table 3.9: Partition Coefficient Data Results
MT-DNN is the model applied in NC-GRU and GRU to obtain the prediction. r2 is
the measure used in all of the toxic data. “ - ” denotes the results not provided in
the original paper. “ ∗ ” results from our experiments

Dataset logP(r2 ↑)
NC-GRU (ours) 0.913
GRU∗ 0.913
AGBTs-FP [32] 0.905
ESTD1 [205] 0.893
Estate2 [62] 0.893
XLOGP3 [34] 0.872
Estate1 [62] 0.870
MACCS [62] 0.867
ECFP [62] 0.857
ESTD2 [205] 0.848
XLOGP3-AA [34] 0.847
AG-FP [32] 0.838
CLOGP [34] 0.838
Daylight [62] 0.819
TOPKAT [34] 0.815
xlogp2 [34] 0.800
alogp98 [34] 0.777
KOWWIN [34] 0.771
HINT [62] 0.491

performances. In addition, we include the performance of earlier models in these
tables. Our NC-GRU fingerprint-based models show encouraging results, coming in
first place in three out of seven tests. The best r2 values are specifically obtained by
NC-GRU predictors on the IGC50 (0.816) and LC50 (0.759) datasets. The NC-GRU
model has the lowest RMSE of 0.757 kcal/mol for the solvation-free energy prediction
challenge. Our NC-GRU is ranked second on the LC50DM and LD50 benchmarks,
with r2 coefficients of 0.785 and 0.634, respectively. The top model on LC50DM is
AGBTs-FP [32] (0.830) and the best performance on LD50 is MACCS [62] (0.643).
Our model is the fourth-ranked predictor in the Lipophilicity dataset; however, it
is still superior to the GRU model, with RMSE=0.688, whereas Chemprop [211] is
the top predictor, with RMSE=0.555. In all the interested experiments, we include
GRU FP-based models for a direct comparison with its successor, NC-GRU. We
include GRU fingerprint-based models for a direct comparison with its successor,
NC-GRU, in all aforementioned tests. As seen in Tables 3.8, 3.9, and 3.10, our NC-
GRU outperforms GRU in all the benchmarks except for the logP task, where both
models produce the same r2 of 0.913.

In addition, Figure 3.9 provides the comparison plots of the NC-GRU vs. GRU
vs. target data points for the seven prediction datasets mentioned above. We also
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Table 3.10: Solubility and Solvation Free Energy Data Results
MT-DNN is the model applied in NC-GRU and GRU to obtain the prediction. RMSE
is the measure used in all of the toxic data. “ - ” denotes the results not provided in
the original paper. “ ∗ ” results from our experiments

Dataset FreeSolv (RMSE ↓) Lipophilicity (RMSE ↓)
NC-GRU (ours) 0.757 0.688
GRU∗ 0.882 0.704
Chemprop [211] 1.075 0.555
AGBTs-FP [32] 1.039 0.579
MMNB [171] 1.155 0.625
GraphConv [207] 1.150 0.715

computed the mean absolute and the mean square residual errors, provided in Figures
3.9a and 3.9b, respectively.

3.2.5 Conclusion

A fingerprint-based AutoEncoder with a Gated Recurrent Unit (GRU) can reliably
depict molecules to predict molecular properties. But unfortunately, the GRU-
AutoEncoder systems cannot attain cutting-edge precision when dealing with various
biological datasets because of the exploding gradient problem and long-term depen-
dency restriction. This issue inspired us to create an improved GRU variant called
NC-GRU, where orthogonal weights help to capture small molecular structures more
effectively.
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(a) Mean Absolute Residual Error (b) Mean Square Residual Error

(c) NC-GRU and GRU predicted points for
IGC50 with ground truth (target)

(d) NC-GRU and GRU residual plots for
IGC50

(e) NC-GRU and GRU predicted points for
LC50 with ground truth (target)

(f) NC-GRU and GRU residual plots for
LC50

(g) NC-GRU and GRU predicted points for
LC50DM with ground truth (target)

(h) NC-GRU and GRU residual plots for
LC50DM
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(i) NC-GRU and GRU predicted points for
LD50 with ground truth (target)

(j) NC-GRU and GRU residual plots for
LD50

(k) NC-GRU and GRU predicted points for
logP with ground truth (target)

(l) NC-GRU and GRU residual plots for logP

(m) NC-GRU and GRU predicted points for
FreeSolv with ground truth (target)

(n) NC-GRU and GRU residual plots for
FreeSolv

(o) NC-GRU and GRU predicted points for
Lipophilicity with ground truth (target)

(p) NC-GRU and GRU residual plots for
Lipophilicity

Figure 3.9: Predictions and Residual Plots: Predictions (GRU and NC-GRU)
vs. Target and Residual plots with mean absolute and mean square residual errors
for IGC50, LC50, LC50DM, LD50, logP, FreeSolv, and Lipophilicity datasets
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3.3 Breaking Time Invariance: Assorted-Time Normalization for Recur-
rent Neural Networks

It has been demonstrated that normalization techniques like Layer Normalization and
Batch Normalization efficiently enhance the training of Recurrent Neural Networks
(RNNs). However, current approaches only normalize using the data available at a
single point in time. The final result of such normalizations is a preactivation state
with a time-independent distribution. The RNN with such architecture does not
consider the temporal connections of the input. However, RNN weights are shared
across temporal dimensions, and it could also be helpful to introduce such links across
time steps into normalization. We propose a normalization technique called Assorted-
Time Normalization (ATN), which preserves information from multiple consecutive
temporal steps and then normalizes using those steps. This configuration can extend
the conventional normalizing techniques’ temporal dependencies without adding ad-
ditional trainable parameters. To demonstrate the weight scaling invariance property,
we provide theoretical derivations for the gradient backpropagation. In addition, our
tests showed steady improvement when ATN is added to Layer Normalization on
several synthetic and real-world tasks.

3.3.1 Introduction

Some of the primary architectures used for modeling time-series data in Deep Learn-
ing today include the Recurrent Neural Network (RNN) [90, 164], and variants such as
Gated Recurrent Unit (GRU) [37, 99, 145] or Long Short Term Memory (LSTM) [88].
Unfortunately, these recurrent models are susceptible to issues with exploding gra-
dients and over-fitting, even though LSTMs and GRUs are good at avoiding issues
with vanishing gradients. One of the most effective concepts that have been pro-
posed is the normalization of RNN preactivation states using techniques like Layer
Normalization (Layer Norm) [8] and Batch Normalization (Batch Norm) [42, 95]. All
the mentioned methods use statistics from a particular time step to recenter and
rescale the preactivation data. Such techniques help expedite training and eliminate
exploding gradients by controlling the model’s states and gradients’ norms.

These normalizing techniques have proved themselves effective, but when applied
to RNNs, they do not consider variation across the temporal dimension. For instance,
the Layer Norm or Batch Norm models are independent of the norm of the input
vector at each time step because they are invariant to the scaling in the input at every
time step. This might have disastrous effects depending on the situation. Moreover,
these methods produce a preactivation state with an invariant distribution across the
temporal dimension. Such time invariance architectural design of RNN limits it to use
temporal dependencies fully. Including this reliance in the normalization procedure
would be logical since RNNs also share weights across the temporal direction. In
the literature, [42] mentions an unsuccessful attempt to involve averaging statistics
across time; however, they presented it with few details. Simply averaging over the
entire temporal dimension is an overcorrection that makes the statistics susceptible to
diluted averages and loses effectiveness further into the sequence. We are considering
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collecting the mean and variance across a smaller subsequence where one can benefit
from these time dependencies without overly weakening the impact of a single time
step.

We present a normalization technique called Assorted-Time Normalization, or
simply ATN, which preserves information from multiple consecutive temporal steps
and then normalizes using those steps. Other normalization techniques, such as Layer
Norm and Batch Norm that normalize input data along the none-temporal dimension
can be coupled with our ATN method. It can account for the temporal dependencies
in a way that prior approaches could not by keeping a short-term memory of the
preceding k time steps. We use that memory to calculate the statistics, which we
normalize, resulting in an output with a regulated mean and variance capable of
varying across time steps. We may avoid the issues that arise from utilizing all or
none of the sequences by using a small subsequence at each time point. In addition, we
can choose the most appropriate number of subsequences (k value) for the dataset of
interest. This procedure adapts without introducing additional trainable parameters
since it gives the normalization method a temporal component.

We provide theoretical derivations for the gradient backpropagation to demon-
strate the weight scaling invariance property. Our tests show consistent improvement
when ATN is added to Layer Normalization on several synthetic and real-world tasks.

3.3.2 Related Work

Batch Normalization [95] (BN) was one of the early efforts to employ a normalizing
approach throughout model layers. Fully Connected (FC) and Convolutional (CNN)
Neural Networks were the original architectures to employ Batch Normalization to
normalize network activations across the batch dimension. Batch Normalization is
frequently credited as offering a more dependable and speedier training schedule
while enhancing generalizations. In contrast to Batch Normalization, the Instance
Normalization (IN) [188] approach behaves like contrast normalization and has mostly
been used for image datasets.

The research points out that normalizing the instances is helpful since the output-
styled pictures should not rely on the contrast of the input image content. The
Group Normalization (GN) [206] approach, which is generally used for Convolutional
networks, normalizes a three-dimensional feature in a convolutional layer by grouping
the features in the group in all three dimensions after separating the channels into
groups.

Consider a standard Recurrent Neural Network (RNN) cell:

h(t) = f
(
Whh

(t−1) +Wxx
(t) + βh

)
(3.61)

y(t) = Wyh
(t) + βy (3.62)

where f is some nonlinear activation function defined by the application.
Recurrent Batch Normalization [42] reduces the internal covariate shift across suc-

cessive time steps by applying Batch Normalization to the hidden-to-hidden and mem-
ory cell components of the Long Short-Term Memory (LSTM) model [88]. Weight
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Normalization (WN) is a technique that was suggested by [166]. They propose to
alter the network settings to accelerate training by decoupling the magnitude from
the direction of the weight vector. Unfortunately, given that Weight Normalization is
less stable than Batch Normalization [67], it does not seem to be employed as much
in practice.

Layer Normalization [8] (LN) was introduced to normalize activations along the
hidden dimension for Fully-Connected and Recurrent Neural Networks. Since then,
Layer Normalization has gained much popularity in Recurrent-like networks. The
preactivation state of the Recurrent Network is normalized by Layer Normalization
as follows:

h(t) = f
(
LN

(
Whh

(t−1)
)
+ LN

(
Wxx

(t)
)
+ βh

)
(3.63)

y(t) = LN
(
Wyh

(t)
)
+ βy (3.64)

where the LN (Layer Normalization) operator is defined by

µt =
1

n

n∑
i=1

a
(t)
i σ2

t =
1

n

n∑
i=1

(
a
(t)
i − µt

)2
(3.65)

y(t) = LN(a(t); γ, β) = γ ⊙ a(t) − µt√
σ2
t + ε

+ β (3.66)

with ⊙ - Hadamard product (entrywise multiplication). A setup like this makes it
easier to apply to RNNs and helps remove the Batch Normalization batch reliance.

More recently, Adaptive Normalization (AdaNorm) [208] conducted a thorough
analysis of Layer Normalization and came to the conclusion that the backward gra-
dients of the mean and variance within the Layer Normalization method are more
important than the rescaling and recentering factors, γ and β, in (3.66). They also
suggested a brand-new approach called AdaNorm, which substitutes a new transfor-
mation function for weight and bias.

3.4 Assorted Time Normalization

Calculating the normalization statistics at each time step leads to a post-normalization
state with mean and variance that are invariant across temporal dimension, which is
an unfavorable aspect of the adaption of Layer Normalization to Recurrent Nets. Due
to this, the model cannot accurately capture the changing distributions over time,
which may be essential for modeling sequential data. For instance, the normalization
LN

(
Wxx

(t)
)
in (3.64) is invariant to scaling in x(t), which prevents the model from

learning the changing norm of x(t). A bias in the linear term, frequently utilized in
implementations, could help lessen this effect. Most of what was previously discussed
also can be applied to Batch Normalization.

To overcome this temporal invariance, we suggest a novel normalizing approach.
Consider a sequence a =

{
a(t)
}
⊂ Rn produced in a Recurrent Net, such as the
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Figure 3.10: ATNMethod: Illustration of the Assorted Time Normalization method
combined with Layer Normalization using three-time steps (i.e., k = 3). Consider the
preactivation state tensor in R5×3×3. At t = 1, we use a standard Layer Normalization;
at t = 2, we normalize using information from time steps 1, 2; at t = 3 Assorted Time
Normalization method uses information from time step t = 1, 2, 3; at t = 4, we
normalize with respect to time steps t = 2, 3, 4; and so on after that.

preactivation state that we wish to normalize. At time step t of the model, we
maintain a memory of the previous k entries, a

(t)
k =

{
a(t−k+1), . . . , a(t−1), a(t)

}
⊂ a, in

the normalization layer, using this extended set we compute the mean and variance
to use in the normalization layer. Such idea and approach can be combined with
other normalization methods, e.g., Layer or Batch Normalizations. Combining with
Layer Normalization, we calculate statistics at time-step t as follows:

µt,k =
1

nk

k−1∑
j=0

n∑
s=1

a(t−j)
s (3.67)

σ2
t,k =

1

nk

k−1∑
j=0

n∑
s=1

(
a(t−j)
s − µt,k

)2
(3.68)

Figure 3.10 visually depicts our Assorted Time Normalization method.
After these statistics are calculated, we normalize only the current term a(t) and

optionally recenter and rescale using γ and β, two trainable parameters shared across
time while adding a small epsilon to the variance to prevent division by zero, similar
to the Layer Normalization method in (3.66).

y(t) = ATN(a
(t)
k ; γ, β) := γ ⊙ a(t) − µt,k√

σ2
t,k + ε

+ β (3.69)

We use several time steps in our statistic computations, which vary from the
method in (3.66) and result in a double sum rather than a single one for Layer
Normalization. With only one word in the set being replaced at each time step, this
definition of the statistics is more stable over time, at least for large k. This leads to
a normalized output that does not have a mean and variance that are uniform over
time steps. We contend that this is advantageous for sequential tasks. This capacity
for variation enables the model to account for shifting input norms throughout the
sequence, adding details about the distribution that were lost with earlier approaches.
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The statistics may be computed using all prior terms in the series, although they
will vary more in the earlier time steps than in the later ones. The statistics will
change gradually over time if just k time steps of the series are kept, and we can
reduce the memory and computing expenses, which might be substantial for lengthy
sequences.

Effectively, using data from numerous time steps gives a larger set on which to
calculate statistics. This makes it possible to approximate the underlying data dis-
tribution better. In other words, Assorted Time Normalization uses statistics over
a larger set that is more stable across time so that the normalized state can retain
more variations in time. In contrast, conventional normalization techniques create a
normalized state that is time-invariant by using high-frequency statistics at each time
step. The Assorted Time Normalization network particularly depends on scaling the
input vector at a time step, while Layer and Batch Normalizations do not. How-
ever, Assorted Time Normalization preserves the desirable weight scaling invariant
property, which we show as follows:

Let H and H̃ be weight matrices for two sets of model parameters, θ and θ̃
respectively, which differ by a scaling factor of δ, i.e. H̃ = δH. Then the outputs of
Assorted Time Normalization are the same:

ỹ(t) =
γ

σ̃t,k

⊙
(
H̃a(t) − µ̃t,k

)
+ β =

γ

σt,k

⊙
(
Ha(t) − µt,k

)
+ β = y(t) (3.70)

where σ̃t,k = δσt,k and µ̃t,k = δµt,k. This invariance property makes the Assorted
Time Normalization network independent of the weight matrix H norm, reducing
the exploding/vanishing gradient problems. Assorted Time Normalization is likewise
invariant to rescaling the entire input sequence, but it is not invariant to rescaling
only one element in the sequence. See [157] for a complete list of invariant properties.

We backpropagate the gradients with respect to the model parameters during
training. Propagating the gradient via the normalization layer with Assorted Time

Normalization,
∂y

(t)
i

∂a
(t−m)
i

, is an important step. The formulae for calculating these

derivatives are provided in the following statement.

Proposition 1. Consider ATN for a sequence a = {a(t)} ⊂ Rn produced in a RNN

and let y(t) = ATN(a
(t)
k ; γ, β). Then, for 0 ≤ m ≤ k − 1, we have:

∂y
(t)
i

∂a
(t−m)
i

= γ ⊙

∂a
(t)
i

∂y
(t−m)
i

∂y
(t−m)
i

∂a
(t−m)
i

− ∂µt,k

∂a
(t−m)
i√

σ2
t,k + ε

− γ ⊙ a
(t)
i − µt,k

2
(
σ2
t,k + ε

)3/2 ∂σ2
t,k

∂a
(t−m)
i

(3.71)

where

∂µt,k

∂a
(t−m)
i

=
1

nk

m∑
j=0

∂a
(t−j)
i

∂a
(t−m)
i

(3.72)
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∂σ2
t,k

∂a
(t−m)
i

=
2

nk

m∑
j=0

(
a
(t−j)
i − µt,k

) ∂a
(t−j)
i

∂a
(t−m)
i

−
k−1∑
j=0

n∑
s=1

(
a(t−j)
s − µt,k

) ∂µt,k

∂a
(t−m)
i

. (3.73)

See [157] for the proof of the above proposition. Also, the computations of
∂y

(t)
i

∂β

and
∂y

(t)
i

∂γ
are straightforward and are omitted.

In our experiments, we equip Long Short-Term Memory (LSTM) networks with
Assorted Time Normalization. Following [8] and [42], our Assorted Time Normaliza-
tion method for LSTM is as follows :


f (t)

i(t)

o(t)

g(t)

 = ATN(Whh
(t−1)) + ATN(Wxx

(t)) + b (3.74)

c(t) = σ(f (t))⊙ c(t−1) + σ(i(t))⊙ tanh(g(t)) (3.75)

h(t) = σ(o(t))⊙ tanh(ATN(c(t))) (3.76)

where ⊙ is the Hadamard product and σ(·) is the sigmoid function.

3.4.1 Experiments and Results

We have performed a series of experiments which include the Copying [89], Adding [89],
and Denoise problems [57, 99] as well as Language Modeling on character level Penn
Treebank dataset [132] and word level WikiText-2 dataset [137]. This section presents
results on the language modeling task with word level Wikitext-2 dataset. Detailed
experiments regarding others can be found in [157]. All experiments were run using
Python 3.7.0, PyTorch 1.1.0, and CUDA 9.0 on a single NVIDIA Tesla V100 GPU.

3.4.1.1 WikiText-2

The WikiText-2 dataset was introduced in [137]. It is approximately two times
the size of the Penn Treebank dataset and contains preprocessed Wikipedia articles
while maintaining the original structure, punctuation, and symbols. The WikiText-2
dataset consists of approximately 2.2 million words: 2 million for the training set and
200 thousand for the validation and test sets, with a vocabulary size of 33,278. This
task is a word-level Language Modeling problem with the goal of predicting the next
word given the preceding sequence of words.

Implementation Details: We used a batch size of 32; three LSTM layers with
embedding and hidden sizes of 400 and 1,150, respectively; BPTT values of 70; gra-
dient clipping on the norm of 0.25; and learning rate of 30 with Stochastic Gradient
Descent (SGD) optimizer without any momentum or learning rate decay, and switch
to ASGD [156] optimizer using nonmono criteria from [136] with value 5 (our exper-
iments showed that switching happens approximately between epochs 20 and 30 for
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all models: LSTM, LN, and ATN). The ATN model is implemented with a k value
of 25.

Results: In this experiment, the ATN method shows improvement over LSTM
and LN method in both training and validation perplexity (PPL); see Table 3.11.

Table 3.11: WikiText-2 Results: Attained minimum values. ↓ - denotes the
smaller, the better result.

PPL ↓
train validation

LSTM 80.68 65.65

LN 80.24 58.0

ATN 78.55 56.06

3.4.2 Exploratory & Ablation Studies

3.4.2.1 Optimal k Value for ATN method

To highlight the importance of normalizing with respect to k time steps instead of
just one or all of them, we present a study on various k values. In Figure 3.11, we
present results on the Copying Problem [89] with T = 100, a full description of the
task and dataset can be found in [157]. For this experiment, we have trained the
Long Short-Term Memory model (LSTM), LSTM with Layer Normalization (LN),
and three LSTM with Assorted Time Normalization models, which we abbreviate as
ATN(k), with values of k being 25, 45, and 65 under the same conditions.

All Assorted Time Normalization (ATN) models perform better than LSTM and
LSTM with LN. The ATN(k = 45) model performs better than ATN(k = 25), which
should not be a surprise since the larger k value would mean we are normalizing
with respect to a larger set and getting better statistics for the mean and variance;
however, ATN(k = 65) performs poorer than ATN(k = 45) and even poorer than
ATN(k = 25) which suggests that too large k may actually degrade the result. This
may be due to numerical difficulties in propagating derivative through k steps in ATN
for a large k.

3.4.2.2 Post Normalization Statistics

In Figures 3.12a, 3.12b, and 3.12c, we present the statistics of the post-normalization
components from a single iteration of training for the Adding Problem [89] with
T = 75, a full description of the task and dataset can be found in [157]. We present
the statistics from four different models, an LN-LSTM, and three ATN(k) models
with k values of 5, 25, and 55. All of the models did not include the use of trainable
bias and gain parameters inside the normalization methods.
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Figure 3.11: Ablation Study on Optimal k Value: k value study in ATN method

In Figure 3.12a, we show the mean and variance after normalization of the product
of the hidden-to-hidden weight and the hidden state, Whh

(t−1). While Layer Normal-
ization produces constant mean and variance, the ATN method allows the statistics
to vary at each time step, resulting in curves that do not differ too much from those
for LN in terms of scale but demonstrate the natural fluctuations in the hidden states.
From this, we can see that we are achieving the combination of a controlled output
that can still reflect the temporal changes of the network.

In Figure 3.12b, we show the statistics from the product of the input-to-hidden
weight and the input, Wxx

(t). The ATN model provides highly variable means and
variances, showcasing the amount of information about the dataset which is lost when
LN resets the statistics to these constant values.

In Figure 3.12c, we show the post-normalization statistics of the memory cell, c(t).
These statistics demonstrate the effect of a shorter k value instead of a longer one in
the mean. In the early iterations for ATN(k = 5), the mean has a larger spike that
flattens to a bit above zero by the end. For the larger k values, this initially increased
mean was maintained throughout a larger portion of the iteration, causing the lower
values further along to have less influence on the statistics.

3.4.3 Conclusion

To overcome the temporal invariance of the conventional normalization methods, we
have developed a technique for applying statistics-based normalization methods to
Recurrent Neural Networks (RNNs). In addition to demonstrating the retention of
invariance to rescaling the weight matrix, we have given analytical findings on this
technique’s effect on the model’s gradients. Our tests show that the ATN-LSTM out-
performs the Layer Normalization (LN) for Long Short-Term Memory (LSTM) model
on training and testing outcomes. Our approach presents a significant alternative for
enhancing RNN performance, given the prevalence of LN in real-world settings.

Copyright© Vasily I Zadorozhnyy, 2023.
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(c) Memory Cell

Figure 3.12: Ablation Study on Post Normalization Statistics: Post Normal-
ization Statistics for Adding Problem with T = 75
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Chapter 4 Convolutional Neural Networks

4.1 SCNN: Symmetry Structured Convolutional Neural Network

This section studies convolutional neural networks (CNNs) with symmetric spatially
organized 2D features. Such networks find applications in areas with pairwise rela-
tionships, for example, modeling for sequential recommendation problems and RNA
and protein sequences secondary structure inference problems, etc. We developed
a CNN architecture that produces and maintains the CNN’s symmetry structure.
In addition, we present parameterizations for the convolutional kernels that create
update rules to maintain symmetry during the training are presented. We use the
sequential recommendation task to test our architecture and update rules, and the
findings demonstrate that symmetric structured networks perform better while using
fewer machine-trainable parameters.

4.1.1 Introduction

Convolutional Neural Networks (CNNs) were first created to model visual data; how-
ever, they have been adapted to numerous other issues. Contrary to image domains,
some applications could have non-obvious structural features, for example, symmetry
in the spatial dimensions. We are interested in such architectural variants of CNNs
that can provide symmetry-structured features to increase performance for such tasks
while lowering the computational time and memory costs.

Our interest lies in characteristics that explain how elements of a 1-dimensional
sequence interact with each other. A symmetric matrix can be used to explain this
relationship. We want to create a 2-dimensional matrix with the entry (i, j) that
describes the interaction of elements i and j from a 1-dimensional sequential input.
The entries (i, j) and (j, i) of such a matrix will be identical since they represent the
same mutual interaction of the elements i and j. Forming a self-Cartesian of the
1-dimensional series, which a CNN can subsequently process, is one of the popular
methods to extract a 2-dimensional interaction feature from a 1-dimensional sequence
of n individuals. A general CNN does not generate symmetric features from the self-
Cartesian input because the self-Cartesian product is not symmetric. However, even
if the CNN’s input is symmetric, a standard convolution layer does not maintain
that symmetry. In addition, if we can generate and preserve the symmetry, storing
the entire symmetric matrix is unreasonable; thus, only the lower (or upper) trian-
gular portion of feature maps is needed to represent all the interactions. Therefore,
it is desirable to alter the conventional CNN designs to enable the generation and
preservation of symmetric features for improved interpretability and effectiveness.

We propose the Symmetry-Generating and Symmetry-Preserving Convolutional
Layers, which provide symmetric feature maps over the spatial dimensions. In addi-
tion, we present a backpropagation reparametrization technique that could be utilized
for updating symmetry-generating and symmetry-preserving networks. We demon-
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strate how the network’s overall performance and training may be enhanced by
symmetry using three application problems: the sequential recommendation prob-
lem [210], the RNA secondary structure prediction problem [201], and the Protein
Contact map prediction problem [197]. The Recommender Systems [86, 178, 210] are
aimed at suggesting relevant items to users given the sequence of previously inter-
acted items. The hidden interaction features are matrices processed by a CNN. Then
the feature is naturally symmetric and can be better captured using our symmetry-
structured CNNs. On the other hand, the RNA Secondary Structure Inference prob-
lem [75] is to find the native structure of a given RNA sequence of nucleotide, and
the Protein Prediction Problems [4, 197] is to predict the contact map from the
sequence profile and predicted structure, and co-evolution and pairwise potential fea-
tures. CNNs are widely used in these problems to produce a 2D matrix that describes
the secondary structure or the contact map. Such a matrix is symmetric and can
benefit from using our symmetry-structured CNNs. Information and results regard-
ing the last two experiments can be found in [129]. Our experimental results show
that imposing the symmetric structure increases the network’s capacity for prediction
while lowering network trainable parameters and, therefore, the computational and
memory costs.

4.1.2 Related Work

To recognize patterns in medical picture data, CNNs with rotation and shift-invariant
kernels were proposed in [124]. The same team also created the CNN with wavelet
kernels, also known as CNN/WK [123], and the CNN with circular kernels - CNN/CK
[125]. Because each updated convolution kernel in the CNN/WK network was made
to be orthonormal, features chosen for the transform domain are linearly independent.
As a result, the fully connected layers of CNN’s classification level may work more
efficiently. There have been other suggested improvements to the CNN structure,
for example, the kernel structure and different from our method symmetric struc-
tured CNNs [65, 172]. Recently, [35, 131] suggested rotation invariant CNNs based
on Fourier Transform. In [35], a novel scheme is proposed using the magnitude re-
sponse of the 2D-discrete-Fourier transform to encode rotational invariance in neural
networks, along with a new, efficient convolutional scheme for encoding rotational
equivariance throughout convolutional layers.

Deep symmetry networks [65] (symnets) form feature maps over any symmetry
group. The symnets propose a generalization of ConvNet and use kernel-based inter-
polation to tie parameters tractably and pool over symmetry spaces of any dimension
based on symmetry group theory, which is a relatively different and complicated ar-
chitecture compared to our model.

When an input transformation does not include interpolation, the transformation-
ally identical CNN [122] (TI-CNN) aims to use families of transformationally identical
vectors that can cause the CNN to give a quantitatively same output over a sequence
of operations in the CNN. The kernel of the TI-CNN employs a dihedral symmet-
ric group structure made up of reflection and 90◦ rotation. The group-equivariant
CNNs [40] (G-CNNs) broaden the CNN convolution operation from summing over
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the spatial translations to an operation termed G-correlation that sums over all trans-
formations of a symmetry group G. These convolutions can capture characteristics
that are invariant under a symmetry group. These approaches differ from ours in
calculating features that identify potential symmetry invariance in the input rather
than attempting to construct symmetric output features. Note that the transpose
operation may be included in such a symmetry group.

Structured receptive field networks [97] express the kernel as a weighted sum of a
smooth and compact filter basis which learns this structured kernel from the basis.
It improves efficiency and generalization. Structure pruning [20] also imposes certain
structures on the CNN kernels for the pruning of parameters. A conditional gener-
ative neural decoding approach [52] explores using CNNs as a decoder to generate a
structured multi-output for fMRI data through a constrained optimization. In our
work, we use an explicit kernel structure, i.e., a special basis of the kernel, to achieve
a symmetric output exactly.

Four distinct degrees of symmetry are added to convolutional kernels for image
applications as a regularizer to enhance generalizations [53]. These degrees of symme-
try force the convolution kernels to be invariant under horizontal flips, horizontal and
vertical flips, and 90◦ rotation. However, their networks’ feature maps may have dif-
ferent degrees of symmetry. Our approach varies from theirs in that it generates and
preserves symmetric features in the spatial dimensions using symmetry-structured
networks, and we need the kernel to have symmetry in both the channel and spatial
dimensions.

To overcome CNNs’ limitations in handling non-Euclidean structured data, for
example, traffic flow data on traffic networks, relational data on social networks,
and active data on molecule structure networks, structure-aware convolution [28]
(SACNNs) has been developed. Structure-aware convolution combines local inputs
with various topological structures using a single shared filter. Using the function
approximation theory, SACNN generalizes the classical filters to univariate functions
that can be parameterized efficiently and effectively. It also introduces local structure
representations to express topological features quantitatively.

4.1.3 Symmetry Structured CNN

We are drawn to structures with convolution layers that are symmetric in the spa-
tial dimension. A convolution layer feature Z = [Zi,j,k] ∈ Rn×n×c is symmetric if
Zi,j,: = Zj,i,: for all i, j. This kind of structure appears in the CosRec architec-
ture [210] pairwise embedding structure in the Sequential Recommendation Problem,
RNA secondary structure inference problem [201], and protein contact map predic-
tion problem [197]. We present two new kernels for CNNs: symmetry-generating and
symmetry-preserving kernels that can be used in the CNNs and propose update rules
together with the reparametrization technique to be used during the backpropagation
stage.
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Figure 4.1: Symmetry-Generating Layer: Illustration of a symmetry-generating
convolutional layer for one output channel: from an input of a vector sequence of
dimension L, a self-Cartesian product produces a 3D L×L× 2n representation. For
one output channel, a C×C×2n (C = 3 here) kernel has a symmetry in the channel
direction and, for each channel, is symmetric in the spatial dimensions. This results
in output with symmetric features.

4.1.3.1 Symmetry-Generating Kernel

We look at creating a 2-dimensional feature matrix using CNNs to describe certain
subject interactions in a 1-dimensional sequence. We must construct two-dimensional
structures before applying CNNs to a series of inputs. Utilizing the self-Cartesian
product of the 1-dimensional input feature is one of the most popular approaches to
achieve this. Consider a 1-dimensional sequence x = (x(1), . . . , x(L)) ∈ Rn×L where
x(ℓ) =

[
xℓ
k

]n
k=1
∈ Rn then the self-Cartesian product of this sequence with itself is the

tensor y = [yi,j,k]
L,L,2n
i,j,k=1 ∈ RL×L×2n defined as

yi,j,k =

{
x
(i)
k if 1 ≤ k ≤ n,

x
(j)
k−n if n+ 1 ≤ k ≤ 2n.

(4.1)

Under such conditions, y(i, j, :) is the ith and jth terms of x(i) and x(j) stacked
together; and tensor y is not symmetric. In order to produce a symmetric output
from the self-Cartesian product y, we need to convolve it with a kernel. We call such
a convolutional kernel a symmetry-generating kernel.

Consider a convolutional layer that inputs the self-Cartesian product y. Let C, 2n,
and F be the kernel size, the number of input channels, and the number of output
channels, respectively. We sayW = [Wi,j,k,f ] ∈ RC×C×2n×F is a symmetry-generating
kernel if

Wi,j,:,: = Wj,i,:,: and Wi,j,k,: = Wi,j,n+k,: (4.2)

for any i, j and any k ≤ n.

Theorem 6. Let y be the self-Cartesian product of the 1D sequential input x of the
shape [L, n]. Consider a convolutional layer with W ∈ RC×C×2n×F as the kernel and
y as the input. If W is a symmetry-generating kernel, then the convolution layer’s
output is symmetric.
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See Figure 4.1 for an illustration of such a convolution layer and see Appendix A
of [129] for proof.

Notation: To avoid the cumbersome notation, let
∂L

∂W(k)
denotes

∂L

∂W

(
W(k)

)
We first initialize the kernel as a symmetry-generating kernel. But if we train the

network as normal, let’s say using a gradient descent step

W(k+1) = W(k) − α
∂L

∂W(k)
, (4.3)

we are not guaranteed the symmetry ofW(k) since
∂L

∂W(k)
has no underlying structure

of W(k). To keep the symmetric structure throughout the training, we introduce

reparametrization of W ∈ RC×C×2n×F with S = [Sl,k,f ] ∈ R
C(C+1)

2
×n×F as follows

Wi,j,k,f =



Sl,k,f if i ≤ j, l =
1

2
(j − 1) j + i, k ≤ n,

Sl,k,f if i > j, l =
1

2
(i− 1) i+ j, k ≤ n,

Sl,k−n,f if i ≤ j, l =
1

2
(j − 1) j + i, k > n,

Sl,k−n,f if i > j, l =
1

2
(i− 1) i+ j, k > n.

(4.4)

Under such reparametrization, W = W(S) ∈ RC×C×2n×F is defined by Sl,k,f with

1 ≤ k ≤ n and 1 ≤ l ≤ 1

2
C(C + 1). Proposition 2 guarantees that l can be uniquely

written as l =
1

2
(j − 1)j + i under the condition that i ≤ j.

Proposition 2. For every l ∈
{
1, . . . ,

1

2
C(C + 1)

}
, there exist unique i, j ∈ {1, . . . , C}

and i ≤ j, such that l =
1

2
(j − 1)j + i.

Proof.

Since 1 ≤ l ≤ 1

2
C(C+1), there exists a unique j ∈ {1, . . . , C} such that

1

2
(j−1)j <

l ≤ 1

2
j(j + 1). After such j is chosen, i is uniquely determined by i = l − 1

2
(j − 1)j.

Under this condition,

1 ≤ i = l − 1

2
(j − 1)j ≤ 1

2
j(j + 1)− 1

2
(j − 1)j = j. (4.5)

Trainable parameters S are updated using gradient descent during CNN training.
Then we use these updated S to update W using Equation (4.4). In this case, for
a single channel, our symmetry-generating kernel needs to be symmetric in spatial
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dimensions and has dimension C×C, which is parameterized by S, contributing only
C× (C +1)/2 trainable parameters. Additionally, there is a symmetrical behavior in
the dimension of input channels, which is reduced to n with our parameterization S
vs. 2n in the original. This reduces the number of kernel trainable parameters from
C22nF to C(C + 1)nF/2.

We may calculate the gradient of a loss function from its gradient with respect to
W using S as trainable parameters. The update rule for a backpropagation algorithm
may be found in the following theorem.

Theorem 7. Let L be a differentiable loss function for a CNN with symmetry gener-
ating kernel W, i.e., L = L(W). Let W = [Wi,j,k,f ] be parameterized by S = [Sl,k,f ]

as in (4.4). Then the gradient
∂L

∂S
=

[
∂L

∂Sl,k,f

]
satisfies

∂L

∂Sl,k,f

=


∂L

∂Wi,j,k,f

+
∂L

∂Wj,i,k,f

+
∂L

∂Wi,j,k+n,f

+
∂L

∂Wj,i,k+n,f

if l =
1

2
j(j − 1) + i, i < j,

∂L

∂Wj,j,k,f

+
∂L

∂Wj,j,k+n,f

if l =
1

2
j(j + 1).

(4.6)

Proof.
For any i < j, k ≤ n, and f ≤ F , all the entries Wi,j,k,f , Wj,i,k,f , Wi,j,k+n,f , and

Wj,i,k+n,f are equal and are parameterized by Sl,k,f , where l =
1

2
(j − 1)j + i. Thus

the gradient term for i < j, l =
1

2
(j − 1)j + i is

∂L

∂Sl,k,f

=
∑
s,t,u,v

∂L

∂Ws,t,u,v

∂Ws,t,u,v

∂Sl,k,f

=
∂L

∂Wi,j,k,f

+
∂L

∂Wj,i,k,f

+
∂L

∂Wi,j,k+n,f

+
∂L

∂Wj,i,k+n,f

, (4.7)

where
∂Ws,t,u,v

Sl,k,f

= 0 except for indices (i, j, k, f), (j, i, k, f), (i, j, k+n, f), and (j, i, k+

n, f).
When i = j, Wj,j,k,f and Wj,j,k+n,f are parameterized by S 1

2
j(j+1),k,f . This yields

the gradient:

∂L

∂Sl,k,f

=
∑
s,t,u,v

∂L

∂Ws,t,u,v

∂Ws,t,u,v

∂Sl,k,f

=
∂L

∂Wj,j,k,f

+
∂L

∂Wj,j,k+n,f

, (4.8)

where
∂Ws,t,u,v

Sl,k,f

= 0 for (s, t, u, v) /∈ {(j, j, k, f), (j, j, k+n, f)}. From Equation (4.7)

and Equation (4.8) we have the desired gradient as in Equation (4.6).
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When we train a symmetry-generating kernel, we first calculate
∂L

∂W
using the

standard backpropagation methods, and then we update
∂L

∂S
using Theorem 7 and

∂L

∂W
. After that, we update S by S(k+1) = S(k)−α ∂L

∂S(k) , where α is the learning rate,

and then finally, we obtain W(k+1) using Equation (4.4).

4.1.3.2 Symmetry-Preserving Kernel
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Figure 4.2: Symmetry-Preserving Layer: Symmetry-Preserving Convolution for
1 input and 1 output channel: given a symmetric input, applying a symmetric kernel
to a windowed section and its transpose produces the same outputs.

A typical deep network requires more than one convolution layer. The input for
further convolution layers would be already symmetric since it would be the output of
the symmetry-generating convolutional layer. We introduce and employ a symmetry-
preserving kernel Q =

[
Qi,j,k,f

]
∈ RC×C×m×F with

Qi,j,:,: = Qj,i,:,: (4.9)

for any i and j to preserve the output’s symmetry throughout training with the
multiple-layer network. Figure 4.2 illustrates such process. Further, we use an
aforementioned reparametrization technique to parameterize Q by R = [Rl,k,f ] ∈
R

C(C+1)
2

×m×F as:

Qi,j,k,f =


Rl,k,f if i ≤ j, l =

1

2
(j − 1)j + i,

Rl,k,f if i > j, l =
1

2
(i− 1)i+ j.

(4.10)

Similar to symmetry-generating kernel case, Q = Q(R) is defined byR. Then, during
the training, we update Q through updating R:
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∂L

∂Rl,k,f

=


∂L

∂Qi,j,k,f

+
∂L

∂Qj,i,k,f

if l =
1

2
(j − 1)j + i, i < j,

∂L

∂Qj,j,k,f

if l =
1

2
j(j + 1).

(4.11)

Consequently, this method reduces the number of trainable parameters in the
convolutional kernel from C2mF to C(C + 1)mF/2 in Q and R, respectively.

The 2-dimensional symmetry-preserving convolution kernel and its backpropaga-
tion updates from Equation (4.11) help to maintain the symmetry in all feature maps,
including the final output feature maps for the symmetry-structured CNNs (SCNNs).
See the section 4.1.4 and the Experiment section from [129] for experimental results
and further details.

4.1.3.3 Complexity and Initialization

While improving the CNN model issues with underlying symmetric structures is our
main goal, our designs save nearly half of the computational and memory expenses
associated with the CNN layer(s) during training and inference. Our symmetry-
generating kernel has C(C +1)nF/2 trainable parameters, compared with C22nF of
a full kernel. Furthermore, for the forward propagation during training or inference,
each feature map is symmetric in the spacial dimension requiring the memory of the
lower (or upper, depending on the implementation) triangular part with L(L+1)m/2
entries for input and the lower triangular part with L(L + 1)F/2 for output. This
reduces the cost of memory by nearly half. Additionally, rather than computing the
entire matrix, the convolution technique may be used to compute only the bottom
triangular portion of the result, which roughly reduces the computational cost in half.
To benefit from this, the conventional convolution algorithm must be modified.

Last but not least, we advise utilizing half of the usual initialization, such as
Glorot [69], for the initialization of the trainable parameters S and R since each
element of S and R contributes twice to the W and Q, respectively. Therefore, in
our studies, half-Glorot initialization is applied.

4.1.4 Experiments and Results

In this section, we compare the performance of a symmetry-structured CNN architec-
ture with a corresponding traditional CNN. We mainly compare the two architectures
by matching the architecture hyperparameters with respect to feature map dimen-
sions and kernel dimensions. We study the application of CNNs where the feature
maps are naturally symmetric, which the traditional CNN architecture ignores.

4.1.4.1 Sequential Recommendation

Recommender systems have become a core technology in many applications. In se-
quential recommendation models, each user is represented as a sequence of items
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Table 4.1: Sequential Recommendation Task Results: Sequential Recommen-
dation Problem - CosRec [210] vs. SCosRec. On both datasets, SCosRec outperforms
the CosRec model in every metric. It also outperforms other neural networks models
such as GRU4Rec [86] and Caser [178]; ∗ - quoted from [210] and reproduced with
our experiments.

Dataset Metric GRU4Rec∗ Caser∗ CosRec∗ SCosRec(our)

ML-1M

MAP 0.1440 0.1507 0.1883 0.1970
Prec@1 0.2515 0.2502 0.3308 0.3458
Prec@5 0.2146 0.2175 0.2831 0.2920
Prec@10 0.1916 0.1991 0.2493 0.2586
Recall@1 0.0153 0.0148 0.0202 0.0223
Recall@5 0.0629 0.0632 0.0843 0.0895
Recall@10 0.1093 0.1121 0.1438 0.1519

# of trainable parameters: 1.983M 1.730M

Gowalla

MAP 0.0580 0.0928 0.0980 0.1006
Prec@1 0.1050 0.1961 0.2135 0.2171
Prec@5 0.0721 0.1129 0.1190 0.1211
Prec@10 0.0782 0.0571 0.0884 0.0898
Recall@1 0.0155 0.0310 0.0337 0.0350
Recall@5 0.0529 0.0845 0.0890 0.0920
Recall@10 0.0826 0.1223 0.1305 0.1330

# of trainable parameters: 5.641M 5.383M

that interacted with in the past, and we aim to predict the next item or top N
items that a user will likely interact with in the near future. The order of interaction
implies that sequential patterns play an essential role where more recent items in
a sequence significantly impact the next item. Some early works on this problem
include [86, 178, 210].

Our experiment was motivated by the most competitive model (at the time of
experimenting) called CosRec [210], which is based on CNNs. Having feature maps
modeling interactions of items, it is well suited for applying our symmetric kernels to
the CNN layers. We compare the performance of our new model Symmetric CosRec
(SCosRec) with the CosRec model.

The sequential recommendation problem can be formulated as follows. Suppose
we have a set of users U = u1, u2, . . . , u|U| and a set of items I = i1, i2, . . . , i|I|. For
each user u ∈ U , given the sequence of previously interacted items Su = (Su

1 , . . . S
u
|Su|),

Su
i ∈ I, we seek to predict the next item to match the user’s preferences. We follow

the same setup given in the CosRec model that embeds the item matrix EI ∈ R|I|×d

and user matrix EU ∈ R|U|×d, where d is the latent dimensionality, ei and eu denote
the ith and the uth rows in EI and EU respectively. Then for user u at time step t, we
retrieve the input embedding matrix EL

u,t ∈ RL×d by looking up the previous L items
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(Su
t−L, . . . S

u
t−1) in the item embedding matrix EI . Using pairwise encoding [210],

CosRec is a CNN model that creates a three-way tensor TL
(u,t) ∈ RL×L×2d on top of

the input embeddings EL
u,t. The input structure of the three-way tensor TL

(u,t) can
be incorporated with our symmetry generating and symmetry preserving CNN layers
to obtain a symmetric TL

(u,t) that better models the pairwise encoding. We call our
model Symmetric CosRec or simply SCosRec.

We test our SCosRec model with hyperparameter matching architecture with the
CosRec model on two standard benchmark datasets: MovieLens-1M (ML-1M) [77]
and Gowalla [36]. We use the MovieLens-1M (ML-1M) version of a popular bench-
mark dataset for evaluating the performance of collaborative filtering algorithms, and
the Gowalla dataset, which is a location-based social networking website uses time
and location information from check-ins made by users.

Evaluation metrics: Results were evaluated in three top-N metrics: Mean Average
Precision (MAP), Precision@N , and Recall@N with N = 1, 5, and 10.

Implementation Details: All experiments were implemented using Python 3.6.9
and PyTorch 1.1.0 on an NVIDIA Quadro P5000 GPU. Similarly to CosRec models,
we used 2 symmetric convolution blocks with 2 layers in each. The latent dimension
d is 50 and 100 for ML-1M and Gowalla datasets, respectively. Markov order L is
5, prediction of the next T items is 3, the learning rate is 10−3, learning rate decay
on plateau with reducing factor 0.15 and patience 3 with respect to the MAP metric,
the batch size is 512, negative sampling rate is 3, and the dropout rate is 0.5.

Results: Indeed, SCosRec models improvements are between 3 − 10% on ML-
1M and 1− 4% on Gowalla datasets compared to the original CosRec models while
using less trainable parameters, see the number of trainable parameters in Table 4.1.
Results of our experiments are provided in Table 4.1.

4.1.5 Conclusion

We presented a new symmetry-structured convolutional neural network architecture,
SCNN, which generates and preserves symmetric structures in CNN using symmetry-
generating and symmetry-preserving kernels. Moreover, we introduced an update
scheme and reparametrization technique to optimize trainable parameters, their train-
ing, and memory (computational and storage) used in the symmetry-generating and
symmetry-preserving kernels. We have demonstrated that our SCNN architecture im-
proves the performance of traditional CNN while having fewer trainable parameters,
which saves computational costs at both training and inference.

Copyright© Vasily I Zadorozhnyy, 2023.
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