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ABSTRACT OF THESIS 

 

 
LIFE CYCLE ASSESSMENT OF AIR CLASSIFICATION  

AS A SULFUR MITIGATION TECHNOLOGY  
IN PINE RESIDUE FEEDSTOCKS 

 

Sulfur accumulation during biofuel production is pollutive, toxic to conversion 
catalysts, and causes the premature breakdown of processing equipment. Air 
classification is an effective preprocessing technology for ash and sulfur removal from 
biomass feedstocks. A life cycle assessment (LCA) sought to understand the 
environmental impacts of implementing air classification as a sulfur-mitigation technique 
for pine residues. Energy demand and material balance for preprocessing were simulated 
using SimaPro and the Argonne National Laboratory’s GREET model, specifically 
focusing on comparing the global warming potential (GWP) of grid electricity versus 
bioelectricity scenarios. Overall, the grid electricity scenario had a GWP impact over 7 
times that of the bioelectricity scenario with the largest source of impact from steam 
generation during rotary drying. Air classification represents 0.4% and 1.6% of total 
GWP impact for the grid electricity and bioelectricity scenarios, respectively. Therefore, 
air classification can facilitate significant sulfur reduction to improve rates of biofuel 
conversion and lessen corrosion of combustion equipment while contributing minimal 
GWP impact during preprocessing.   

 
KEYWORDS: life cycle assessment, sulfur, air classification, feedstock variability, 

GWP, forest residues 
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CHAPTER 1.  INTRODUCTION 

1.1 Project Overview 

This project, funded by the U.S. Department of Energy’s (DOE) Office of Energy 

Efficiency and Renewable Energy, aims to correlate the form and fate of sulfur in pine 

feedstocks to thermochemical conversion performance and develop effective feedstock 

preprocessing and sulfur mitigation strategies. The long-term goals are to produce a 

detailed sulfur profile database and implement predictive models to guide the design of 

thermochemical conversion of biomass feedstocks with varying sulfur profiles.  

Sulfur content in pine feedstocks varies based on a tree’s age, location, growth and 

harvesting conditions, and anatomical fraction. Preliminary analyses of samples collected 

from Oregon by Red Rock Biofuels reveal wide variability (10 to 100-fold difference) in 

sulfur content in pine residues. This project includes 18 representative pine residue samples 

provided by FTX, North Carolina State University, Auburn University, and Red Rock 

Biofuels. The samples were collected from Georgia, South Carolina, North Carolina, 

Alabama, and Oregon and varied based on age, species, harvesting practices, and 

anatomical fractions.  

Sulfur accumulation through the production of biofuels from pine feedstocks can be 

pollutive, toxic to conversion catalysts, and cause premature breakdown of processing 

equipment. Previous research has shown the effectiveness of air classification for the 

removal of sulfur, therefore the goal of air classification in this model is to facilitate a 30% 

reduction in feedstock sulfur. A life cycle assessment (LCA) was conducted to understand 
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the environmental impacts of implementing air classification as a sulfur mitigation 

technique. 

The first objective is to develop an LCA of the preprocessing of pine residue 

feedstocks using air classification. The second objective is to perform electrical grid mix 

and bioelectricity scenario analyses to compare efficiencies. The third objective is to 

determine the environmental advantages and disadvantages of the implementation of air 

classification technology for sulfur mitigation in pine feedstocks.  

We expect this project will produce valuable information regarding tradeoffs 

between environmental impact categories from the implementation of air classification 

technology as well as determine the feasibility of implementing air classification 

technology in biofuel refineries to mitigate sulfur and emissions. This project will address 

a critical need in the cellulosic biofuel industry to improve efficiency and reliability and 

mitigate the environmental impacts of thermochemical conversion to produce biofuels.  

1.2 Project Objectives 

1.2.1 Objective #1: Develop an LCA of the preprocessing of pine residue feedstocks 

using air classification.  

Air classification is an ash mitigation technique that separates materials based on 

particle density and size. Air classification is effective and economical for the separation 

of low and high ash content biomass fractions. The goal of implementing air classification 

is to reduce ash, and therefore sulfur, content mixed in the biomass fractions. The LCA in 

this study references the International Organization for Standardization’s (ISO) series 
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14040:2006 and 14044:2006 standards and aims to glean information regarding 

environmental consequences associated with the implementation of air classification as a 

sulfur-mitigation technology. 

1.2.2 Objective #2: Perform grid electricity mix and bioelectricity scenario analyses to 

compare efficiencies. 

There is a gap in the literature regarding emissions associated with the 

implementation of air classification on an industrial scale. This objective will test a 

traditional and best-case scenario to weigh the environmental consequences of each. 

1.2.3 Objective #3: Determine the environmental advantages and disadvantages of the 

implementation of air classification preprocessing technology for sulfur mitigation 

in pine residue feedstocks. 

We expect that the outcomes of this project will elucidate the tradeoffs between 

environmental impact categories due to the implementation of air classification 

technology. This objective aims to look at the project holistically to weigh if the amount 

of sulfur/ash content being reduced before conversion is worth the environmental 

consequences of air classification. Additionally, this objective aims to perform sensitivity 

and uncertainty analyses to further understand which process parameters are most 

impactful to the environmental footprint. 
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1.3 LCA Goals and Scope 

Defining the goals and scope is the first phase of an LCA that addresses the purpose 

and methods of including life cycle environmental impacts in the decision-making process 

(NRMRL, 2006). 

1.3.1 Goals 

Defining the goals of an LCA includes identifying the audience, objectives, 

applications, and how the results might be interpreted.  

The intended audience for this study is biofuel refineries or researchers interested 

in technology to mitigate sulfur and/or emissions associated with biofuel production from 

forest residues.  

The main objectives of this study are: 1) develop an LCA of preprocessing of pine 

feedstocks including air classification, 2) perform energy scenario analyses to compare 

efficiencies, and 3) determine the environmental advantages and disadvantages of air 

classification as a preprocessing technology for sulfur mitigation in pine feedstocks.  

There are two main applications of this study. First, this study should provide 

information and direction to decision-makers. As stated, the intended audience for this 

LCA is biofuel refineries or researchers interested in technology to mitigate sulfur and/or 

emissions associated with biofuel production, therefore, this study should offer guidance 

for large-scale implementation of air classification. This study should also provide valuable 

information regarding the energy efficiency of preprocessing with air classification. 
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Second, this study should support broad environmental assessments by elucidating the 

change in environmental impact by implementing air classification at an industrial scale. 

This study is conducted as an attributional LCA (ALCA). The ALCA is an LCA 

methodology for assessing what share of global environmental burdens belongs to a 

product. The model considers the environmental burden of preprocessing usable feedstock 

for conversion. 

1.3.2 Scope 

The scope of this LCA is pine wood chips (PWC) entering the biorefinery gate 

through preprocessing. Since the goals of this study pertain to gleaning information 

regarding the environmental effects of air classification, raw material acquisition and 

transportation of PWC to the biorefinery were not considered. Preprocessing includes the 

steps to prepare the biomass for conversion; in this case, the steps for preprocessing include 

air classification, drying, and size reduction. This LCA will consider the end-of-life of dry 

matter loss (DML) during air classification and wastewater treatment from drying. The 

scope of the LCA focuses on end-of-life of matter leaving the biorefinery, therefore, the 

mass discarded to combustion is not in the system boundary because it is assumed to be 

combusted to power other parts of the process. The system boundary is outlined in Figure 

1 where the oval, rectangle, and parallelogram represent start/end points, processes, and 

inputs/outputs, respectively. The red color of the rectangles represent end-of-life processes. 

The rest of the document follows this flow diagram shape/color convention.   
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Figure 1. PWC conversion process flow diagram including the LCA system boundary.  
 

1.3.3 Functional Unit 

The ISO defines the functional unit as the “quantified performance of a product 

system for use as a reference unit” (ISO, 2006-07). A functional unit should be application-

specific, quantitative, precise, and broad enough to encompass competing technologies. 

The function of the system within this LCA scope is to preprocess pine feedstock. 

However, a fraction of the processed feedstock will be “lost” during preprocessing due to 

high ash content and normal matter loss. This system should be normalized to the output 

of usable feedstock (feedstock that will continue to conversion processes) rather than the 

total feedstock going into the system (feedstock that will continue to conversion processes 

+ feedstock lost during preprocessing). This process will be further explained in Chapter 

3. Therefore, the functional unit is one dry metric tonne of usable feedstock. 

System Boundary 
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1.3.4 Data Requirements 

The data requirements of an LCA are resource and time intensive. The availability 

and utilization of data can greatly sway the accuracy of results; therefore, it is vital to 

carefully consider the time and resources required to complete an LCA. With this idea in 

mind, data was applied thoughtfully and at a carefully selected specificity level. 

Only about two percent of annual energy consumption in the U.S. comes from 

wood-derived fuels (White, 2010). Therefore, this project currently has a niche-level 

application for researchers and biorefineries. The niche-level application means that the 

data used in this LCA is specific to equipment available to research facilities rather than 

based on common industrial practices. Assumptions had to be made at certain levels 

because no data currently exists for this system at an industrial level for preprocessing 

woody feedstocks. It is clearly noted where assumptions have been made. 

Data sources for this project include Greenhouse Gases, Regulated Emissions, and 

Energy Use in Technologies (GREET) life cycle model, SimaPro inventory databases, 

experiments, and literature. See Chapter 2 for more information about GREET and 

SimaPro. 
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CHAPTER 2. LITERATURE REVIEW 

First, a brief history of biofuel policy in the U.S. and processes to convert cellulosic 

material to fuel will be presented. Next, the relationship between ash and sulfur content in 

feedstocks accompanied by methods for mitigation and additional considerations such as 

moisture content and size reduction will be explored. Last, LCA standards, relevant 

databases and software, and previous studies will be explained. 

2.1 The Need for Biofuels 

The relationship between population, consumption, and emissions is complex. 

Throughput is the flow of raw materials and energy from the global ecosystem’s sources 

of low entropy (mines, wells, fisheries, croplands), through the economy, and back to the 

global ecosystem’s sinks for high entropy wastes (atmosphere, oceans, dumps). While it 

seems that consumption fits the definition of throughput, the concept of consumption is 

more complex. If the quality or quantity of inputs is transformed in a system, then the 

resource has been partly or wholly consumed (Gößling-Reisemann, 2008). Consumption 

is accelerated by population growth (Khan et al., 2021). Higher levels of consumption lead 

to higher use of greenhouse gas (GHG)-intensive fossil fuels in the processing, 

manufacturing, transportation, usage, and/or disposal of goods and services (Khan et al., 

2021). Current United Nations models predict an 80% probability of the world population 

rising to 9.6 to 12.3 billion by 2100 (Gerland et al., 2014). Therefore, by maintaining 

current reliance levels on fossil fuel-based energy, GHG levels will continue to rise from 

mounting population. However, as more research has been conducted regarding the 

repercussions of current energy trends, governments are incentivizing a transition to 
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renewable fuels. This drives the need for comprehensive research on the harvesting, 

preprocessing, conversion, and distribution of lignocellulosic biomass for fuel production. 

2.2 Biofuels Policy 

The Renewable Fuel Standard (RFS) was the United States’ first federal policy to 

begin transitioning to renewable fuels and lessen GHG emissions. In 2009, the U.S. 

required an annual production of 36 billion gallons of renewable fuel to be mixed into the 

motor fuel supply by 2022 (Schnepf & Yacobucci, 2013). Of these 36 billion gallons, 16 

billion gallons were required to be cellulosic ethanol derived from lignocellulosic biomass 

demonstrating at least a 60% reduction in life cycle GHG emissions compared to gasoline 

(Schnepf & Yacobucci, 2013).  

The targets set by the RFS were far overestimated. Various economic factors and 

technological setbacks have resulted in poor economics for biorefineries (Valdivia et al., 

2016). However, it is generally agreed upon that cellulosic biofuels offer a promising route 

for energy security, support for farmers, and mitigation of GHGs if proper investments are 

made to support and expand efforts (Valdivia et al., 2016). The updated proposed volume 

targets set by the Environmental Protection Agency (EPA) for 2023 are 0.72 and 20.82 

billion RINs for cellulosic biofuel and renewable fuel, respectively, where one RIN is one 

ethanol-equivalent gallon of renewable fuel. 

2.3 Lignocellulosic Biofuels 

Second-generation biofuels utilize feedstocks not suitable for human consumption. 

This includes feedstocks such as wood, forest waste, food crop waste, waste vegetable oil, 
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and industrial waste (Antizar-Ladislao & Turrion-Gomez, 2008). The U.S. DOE’s Billion-

Ton Report concluded the U.S. can produce at least one billion dry tons of biomass, 

including agricultural, forestry, waste, and algal materials, annually without adverse 

environmental impact (Langholtz et al., 2016). Lignocellulosic feedstocks are of particular 

interest as cellulose is the most abundant biomass on the planet (Naik et al., 2010). It is 

estimated that there are over 36.2 million dry tons of recoverable logging residues and 37 

million dry tons of forest thinnings in the U.S. each year (Lacey et al., 2015). This woody 

biomass offers a significant opportunity for energy conversion pathways.  

Lignocellulosic, also known as cellulosic, biomass is composed primarily of lignin, 

hemicellulose, and cellulose (Basu, 2013). Cellulose is a polysaccharide consisting of 

chains of glucose monomers and occurs in nature surrounded by a polymer called 

hemicellulose. As shown in Figure 2, the cellulose and hemicellulose are embedded in the 

matrix of phenolic polymer lignin. 

 

Figure 2. Structure of lignocellulosic biomass with cellulose, hemicellulose, and lignin 
represented (Alonso et al., 2012). 
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Biomass conversion occurs biochemically or thermochemically (Basu, 2013). 

Biochemical processing does not require much external energy and relies on bacteria or 

enzymes to break down biomass molecules (Basu, 2013). This is accomplished through 

aerobic or anaerobic digestion, fermentation, or enzymatic or acid hydrolysis. Cellulose is 

composed of thousands of glucose units connected by β-(1→4) glycosidic linkages (Wertz 

& Bedue, 2013). By breaking up cellulose, sugars are made available for biochemical 

conversion. However, the structure of cellulose is recalcitrant to conversion due to the 

tightly packed structure of the β-(1→4) linkages. Additionally, lignin acts as a barrier 

holding together the cellulose and hemicellulose and has evolved to be resistant to 

microbial attack. Therefore, breaking down the lignin matrix is an added complication 

when pretreating cellulosic biomass for biochemical conversion.  

Thermochemical processing requires significant thermal energy to convert biomass 

into gases (Basu, 2013). The gases can be used directly or synthesized into desired 

chemicals (Basu, 2013). This is accomplished through combustion, gasification, 

torrefaction, pyrolysis, or liquefaction. Conversion pathways are outlined in Figure 3.  
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Figure 3. Pathways for conversion of biomass into fuel gases or chemicals (Ong et al., 
2019). 

 

Thermochemical conversion using gasification is the pathway considered in this 

model. Gasification uses high heat and an oxidizing agent (air, oxygen, or steam) to 

produce combustible gas, volatiles, biochar, and ash in an enclosed gasifier (Boerrigter & 

Rauch, 2006). After gasification, the Fischer-Tropsch (F-T) process converts syngas to bio-

oil. Bio-oil is preferred over biochar and syngas because of higher energy density and ease 

of transport/storage (Ahamed et al., 2021).  

The primary types of gasification are entrained flow, fixed bed, moving bed, and 

fluidized bed. Entrained flow gasification is the chosen technology in this model. Entrained 

flow gasification transforms the feedstock into syngas at high temperatures (1200-1500℃) 

with a residence time of a few seconds (Boerrigter & Rauch, 2006). The resulting syngas 

is mainly composed of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), and 

water (H2O) (Boerrigter & Rauch, 2006). Small amounts of tar and ash are also present 

(Kumar & Aarthi, 2020). Entrained flow is preferred to other gasification technologies due 
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to low tar production and high carbon conversion efficiency (Kumar & Aarthi, 2020). 

However, it is difficult to prepare the required feedstock for entrained flow gasification 

due to a small required particle size and variability in ash content. Elevated ash content in 

biomass can deactivate necessary catalysts during conversion processes, corrode 

equipment, and increase pollutants.  

2.4 Ash Content 

The variability of ash content in woody biomass creates complications for 

thermochemical conversion. Elevated ash content is known to have significant negative 

effects on thermochemical conversion efficiency (Lacey et al., 2015). Ash causes slagging, 

bed agglomeration, fouling, and corrosion of combustion equipment (Werkelin et al., 

2010). While there are major benefits to utilizing logging residues and forest thinnings as 

feedstocks, the issue of elevated ash content must be addressed before commercial 

implementation to avoid such consequences.  

Ash content is composed of “physiological ash” and “exogenous ash” (Thompson 

et al., 2016). Physiological ash is innate to the plant and derived from plant tissue. 

Physiological elements present due to biological processes include calcium (Ca), 

potassium (K), magnesium (Mg), sulfur (S), manganese (Mn), and phosphorous (P) (Lacey 

et al., 2015). Exogenous ash is acquired from soil contamination during harvest. Exogenous 

elements present due to external processes include silicon (Si), aluminum (Al), iron (Fe), 

sodium (Na), and titanium (Ti) (Lacey et al., 2015). This information is summarized in 

Table 1. 
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Table 1. Ash content in woody biomass. 
 Physiological Ash Exogenous Ash 

Definition Ash that is innate to the 
plant and derived from 

plant tissue. 

Ash that is acquired from 
soil contamination during 

harvest and collection. 
Elements Ca, K, Mg, S, Mn, and P Si, Al, Fe, Na, and Ti 

 

Many carbon footprint studies have been completed examining the detriment of 

high ash content on conversion efficiency and yield. One study examined the correlation 

between ash content and GHG emissions from 346 different feedstocks grouped into six 

representative categories: treated wood, untreated wood, husk/shell/pit, grass/plant, straw 

(stalk/cob/ear), and organic residue/product (Li et al., 2017). As ash content increases for 

each biomass type, GHG emissions decrease (apart from husk/shell/pit due to indirect land 

use change from food production). This relationship is due to the increase in carbon 

sequestration credits from the production of biochar. Biochar is charcoal produced by the 

pyrolysis of plant matter in the absence of oxygen and sequesters CO2 when stored in the 

soil. Therefore, high ash content biomass produces lower biofuel yields and emissions per 

unit of fuel (Li et al., 2017). This relationship is shown in Figures 4 and 5. 

 

Figure 4. The impact of ash content (%) of biomass on GHG emissions (g CO2 e/MJ fuel) 
(Li et al., 2017). 
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Figure 5. The impact of ash content (%) of biomass on fuel output (MM gal/year) (Li et 
al., 2017). 

 

While the increase in biochar from elevated ash content decreases GHG emissions 

from sequestration credits, the fuel output also dramatically decreases. This is problematic 

for conversion efficiency. Therefore, it would be beneficial to devise alternative methods 

to lower emissions while simultaneously maintaining high fuel outputs. 

2.5 Sulfur 

Sulfur in particular contributes to reactions during combustion that lead to fouling 

and slagging (Lacey et al., 2015). Sulfur comprises 0.3%-0.5% of plant dry weight and is 

an essential macronutrient for plant growth and development (Ma et al., 2020). Sulfur is 

absorbed from the plant’s root system in the form of inorganic sulfate (SO4
2-) and from the 

air in the form of sulfur dioxide (SO2). Fertilizers can also supply elemental sulfur, but the 

plant must convert the sulfur to inorganic sulfate for uptake (Ma et al., 2020). The inorganic 

sulfate is distributed across the plant where it is reduced to sulfide and absorbed into the 

protein-building amino acids cysteine and methionine (Kaufman Rechulski et al., 2014). 

While the plant converts much of the inorganic sulfate to sulfide, as much as 65% of the 

total sulfur remains in inorganic form (Kaufman Rechulski et al., 2014). Sulfuric products 
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such as hydrogen sulfide (H2S) and carbonyl sulfide (OCS) are highly corrosive gases 

formed during thermochemical processes and pose major concerns to catalysts in 

downstream upgrading processes such as F-T. 

Furthermore, sulfur content and utilization vary according to biomass type. Sulfur 

content ranges from 0.02% dry weight for softwood and hardwood to 1.0% or more dry 

weight for municipal solid wastes (Patton et al., 2009; Liu et al., 2017). Additionally, sulfur 

content varies based on growth/harvesting conditions in woody biomass. For example, 

sulfur content is higher for loblolly pine forest thinnings than for logging residues (Lacey 

et al., 2015). The sulfur content of each anatomical fraction also varies, with the highest 

content for loblolly pine occurring in the needles and bark (Lacey et al., 2015). The variable 

nature of sulfur across different biomass types as well as within the anatomical fractions 

adds significant challenges to designing and sizing sulfur mitigation systems.  

Sulfur mitigation technologies exist for coal gasification: sulfur scrubbers, feed 

washing, and coal separation; however, the technologies do not translate directly to 

mitigation in biomass feedstocks. Overall, there is a research gap in evaluating ash-

mitigation preprocessing technology for reductions in sulfur content and changes in 

environmental impact for woody biomass. It is necessary to complete an LCA to determine 

the environmental burden from the implementation of air classification technology before 

thermochemical conversion.  

2.5.1 Air Classification 

There are previously studied ash removal techniques. Air classification is a well-

studied and economical separation technology that separates materials based on particle 
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density and size (Lacey et al., 2015). Air classification uses the physical characteristics of 

biomass to isolate fractions based on chemical compositions, such as low or high ash 

content (Lacey et al., 2015). One study found that over 40% of ash content by mass was 

concentrated into less than 7 wt% of the total biomass (Lacey et al., 2015). If the high ash 

content fractions are separated from the low ash content fractions before thermochemical 

conversion, the high content fractions can undergo further extractive treatment before 

being sent to conversion or be used in other value-added processes. A drawback to this 

technology is it is more effective at the differentiation of exogenous ash than physiological 

ash (Lacey et al., 2015).  

Another study examined air classification as a method to improve feedstock quality 

of high moisture short rotation woody crops hybrid poplar (HP) and shrub willow (SW) 

(Emerson et al., 2018). It was found that the optimal air classification air velocity of ~4.7 

m/s reduced ash content from 2.34% to 1.67% for HP and 2.60% to 2.14% for SW 

(Emerson et al., 2018). Increased air velocity correlates to increased ash removal, however, 

this is at the expense of biomass losses exemplified in Figure 6.  

 
Figure 6. Biomass and ash removed or remaining for sequential air classification air 
velocity for hybrid poplar (HP), shrub willow (SW), and below screen (BS) fractions 

(Emerson et al., 2018). 
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For example, a 6.2 m/s air velocity resulted in a ~10% rate of ash removal, but 

biomass loss was increased by a factor of four (Emerson et al., 2018). This is an important 

consideration for an LCA as the reduction in ash content alongside air classification speed 

must be optimized for minimum biomass loss.  

The air classifier assumed in this study is a two-piece system produced by Key 

Technology. The biomass is fed onto the Iso-Flo dewatering vibratory conveyor which 

lands in the Model 2x Hi-Flo Air Cleaner. The machine is pictured in Figure 7 with key 

areas defined. 

 
Figure 7. Key Technology a) air separator setup and b) example of woody feedstock on 

conveyer. (Image source: Idaho National Laboratory’s Bioenergy Program). 
 

2.5.2 Bioleaching 

In addition to air classification, bioleaching is an ash-mitigation technology that is 

well-studied in the mining industry but has been recently utilized for cellulosic biomass 

(Zhang et al., 2019). Bioleaching uses a range of microorganisms with varied leaching 

capabilities to separate metals from ore or recover elements from solid waste materials 

a. b. 
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(Zhang et al., 2019). This technique has shown promising results for cellulosic biomass. 

One study found that up to 96% of silica was leached from rice husks within 24 hours using 

the microbe Fusarium oxysporum (Bansal et al., 2006). Additionally, recent studies have 

explored bioleaching for switchgrass, corn stover, sorghum, and wheat straw, with 

Aspergillus niger proving to be most efficient at removing most relevant elements by 80% 

in 48 hours (Zhang et al., 2019). Therefore, it would be beneficial for the high ash content 

fractions (mass discarded portion) separated in air classification to undergo bioleaching 

before continuing to thermochemical conversion processes.  

2.6 Moisture Content and Drying 

Preprocessing within the scope of this project includes air classification, drying, 

and size reduction steps. Preprocessing far outweighs the costs of other steps in a woody 

feedstock supply chain system. Conventional preprocessing of logging residues includes 

rotary drying and size reduction using a hammer mill and is estimated to produce ~180 kg 

CO2 eq/dry ton and cost ~$39/dry ton (Hartley et al., 2021). For reference, the next highest 

emitter in the supply chain is field-side preprocessing to field dry and chip the feedstock at 

just ~18 kg CO2 eq/dry ton and ~$12/dry ton (Hartley et al., 2021). Drying is often the most 

expensive and GHG-intensive step of preprocessing. 

Drying is critical for the efficient gasification of biomass. The goal of drying before 

gasification is to dry biomass to at least 10% moisture content wet basis. Higher moisture 

content could result in low gas heating values due to reduced thermal efficiency from the 

heat being used to drive off water instead of for conversion reactions (FAO). The higher 

the moisture content, the more energy will be expended during drying. Additionally, size 
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reduction steps are sensitive to biomass moisture content, with energy consumption 

increasing dramatically with increasing biomass moisture content (DOE, 2014). 

Direct-heating rotary dryers are the most commonly used in woody feedstock 

biorefineries due to superior heat and mass transfer, high processing capacity, and low 

electrical power (Yi et al., 2020). Biomass is fed into an inclined rotating shell where the 

heating medium, either flue gas/hot air or steam, flows in the concurrent or countercurrent 

direction to dry the biomass (Yi et al., 2020).  

 
Figure 8. Simplified diagram of direct-heat rotary dryer (Mujumdar, 2006). 

 

Drying is often the most challenging step in the pretreatment of biomass due to 

considerations regarding energy efficiency, emissions, heat integration, and dryer 

performance (Fagernäs et al., 2010). However, it can be beneficial to integrate the drying 

process with the energy infrastructure of the main process (Fagernäs et al., 2010). For 

example, after gasification, leftover biochar can be separated using a cyclone and 

unconverted syngas can be fed to a boiler to generate steam for rotary drying and/or 

bioelectricity generation using a steam turbine. The LCA considers both options in a best-

case scenario explored in Chapter 4.  
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2.7 Size Reduction 

Biomass moisture content, incoming size of particles, degree of size reduction, type 

of grinding, and biomass type all affect energy consumption when size reducing biomass 

(Naimi et al., 2016). There are also specifications for particle size based on the type of 

conversion process. For example, fluidized bed and downdraft gasification require 10-mm 

particles, while entrained flow gasification is more stringent and requires a 1-mm grind. 

There is a balance that must be established between these parameters. 

Also called comminution, milling theory is based primarily on equations originally 

intended for the ore industry proposed by Rittinger, Kick, and Bond (Temmerman et al., 

2013). These equations have since been applied to biomass. Rittinger’s theory asserts the 

energy consumed by grinding is proportional to the surface area created and is considered 

the most accurate for predicting the energy uptake of grinding woody biomass (Naimi et 

al., 2016). The Rittinger equation is expressed below where E is the energy demand 

(kWh/tonne), CVR is a constant characteristic of the material, Lp is the mean product particle 

size (mm), and Lf is the mean feed particle size (mm).  

𝐸𝐸 = 𝐶𝐶𝑉𝑉𝑉𝑉 �
1
𝐿𝐿𝑝𝑝

−
1
𝐿𝐿𝑓𝑓
�  

Size reduction typically occurs in two steps when preparing woody biomass for 

energy production using gasification (Naimi et al., 2016). In this LCA, the pine residues 

are course ground to two-inch (50.8-mm) chips at the harvest site and directly fed to a truck 

for transportation to the biorefinery (Hartley et al., 2021). The chips are further refined to 

one inch or smaller during a fine grinding step. Forest residues are contaminated with dirt 
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and stones, therefore hammer mills should be used over knife mills to avoid dulling the 

knives and lowering efficiency (Naimi et al., 2006). This process is outlined in Figure 9. 

 
Figure 9. Two stage size reduction process of woody biomass (Naimi et al., 2006). 

 

Not much literature data have been produced regarding biomass moisture content’s 

effect on comminution energy consumption, however, it is correct to assume higher 

moisture content means more energy consumption due to increased shear resistance of the 

material (Temmerman et al., 2013). Assumptions for the energy demand of size reduction 

steps in this LCA model will be based on an iteration of the Rittinger equation developed 

by Temmerman that also accounts for the moisture content of feedstocks (Temmerman et 

al., 2013). Temmerman’s equation is expressed below where E is the energy demand 

(kWh/tonne), H is the moisture content (%), M is a constant characteristic of the material 

(9.65 for pine), Lp is the mean product particle size (mm), and Lf  is the mean feed particle 

size (mm). 

𝐸𝐸 = 𝐻𝐻𝐻𝐻�
1
𝐿𝐿𝑝𝑝

−
1
𝐿𝐿𝑓𝑓
�  
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This study used a hammermill equipped with six T-shaped swinging hammers at 

2800 rpm. Using five different moisture content scenarios (0<H1<4.99%, 5<H2<9.99%, 

10<H3<14.99%, 15<H4<19.99%, and 20<H5<24.99%), Temmerman correlated grinding 

power consumption with particle size distribution medians at moisture contents H1 to H5 

(Temmerman et al., 2013). The correlation is shown in Figure 10 accompanied by each 

scenario’s coefficient of determination (R2) value. 

 
Figure 10. Pine grinding energy consumption for five moisture content scenarios 

(Temmerman et al., 2013). 
 

 An important consideration is Temmerman’s equation does not account for other 

factors such as feed rate or hammer speed. However, no fully comprehensive equation 

exists, and Temmerman’s equation has been used in other recent biorefinery LCA studies 

(Ou & Cai, 2020a).  
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2.8 LCA Standards 

2.8.1 ISO 

The LCA was conducted according to the ISO series 14040:2006 and 14044:2006 

standards (ISO, 2006). These standards describe the principles and framework for a 

successful LCA. The standards include information on the limitations of the LCA, 

reporting and critical review of the LCA, and relationships between the LCA phases. The 

four steps to the LCA are 1) Goal and Scope Definition, 2) Life Cycle Inventory (LCI), 3) 

Life Cycle Impact Assessment (LCIA), and 4) Interpretation.  

Defining the goals of the LCA includes identifying the audience, application, 

objectives of the study, and how the results might be interpreted. Defining the scope 

identifies the function and functional unit, system boundaries, and any data requirements 

or assumptions. Goal and scope definitions are outlined in Chapter 1. The LCI quantifies 

relevant inputs and outputs for the chosen system throughout its life cycle. LCIA focuses 

on classification and characterization. Classification sorts the inputs/outputs from the LCI 

into classes based on how they impact the environment such as global warming potential 

(GWP), acidification, ozone depletion, etc. Next, characterization models the inventory 

results for each category in terms of a category indicator. For example, substances 

contributing to acidification will be measured according to their kg SO2 equivalent (eq) per 

kg of substance. Last, an interpretation of the LCI and LCIA can be made based on the 

defined goals and scope accompanied by uncertainty and sensitivity analyses. While the 

steps to an LCA appear to occur linearly, they often do not. It is important to incorporate 
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flexibility while performing an LCA and adjust parameters as needed. Phases of the LCA 

along with direct applications are shown in Figure 11.   

 
Figure 11. Phases of the LCA according to ISO 14040 (Klöpffer & Grahl, 2014). 

 

2.8.2 EPA 

The U.S. EPA protects land, air, and water resources while striving to implement a 

harmonious balance between human activities and natural systems (NRMRL, 2006). The 

National Risk Management Research Laboratory (NRMRL) is an agency under the EPA 

that investigates preventing and reducing risks associated with pollution. In accordance 

with the goals of the NRMRL, the agency produced the document “Life Cycle Assessment: 

Principles and Practice” as an educational tool for conducting LCAs. It includes the four 

main stages of LCA along with examples. This document was referenced in conjunction 

with the ISO standards for LCA.  

The EPA also developed the Tool for Reduction and Assessment of Chemicals and 

Other Environmental Impacts (TRACI) for LCIA (Bare, 2011). TRACI uses 

characterization factors to quantify impacts that inventory items have on TRACI impact 
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categories in common equivalence units. The ten impact categories for TRACI with 

associated units are listed in Table 2.  

Table 2. TRACI impact categories and units. 
Impact Category Unit 
Ozone depletion kg CFC-11 eq 
Global warming kg CO2 eq 

Smog kg NOx eq 
Acidification kg SO2 eq 

Eutrophication kg N eq 
Carcinogens CTUh 

Non-carcinogens CTUh 
Ecotoxicity kg PM2.5 eq 

Respiratory effects CTUe 
Fossil fuel depletion MJ surplus 

 

2.9 LCA Databases and Software 

2.9.1 SimaPro 

Developed by PRé Sustainability, SimaPro has been a leading LCA software for over 

30 years. SimaPro is a powerful LCA tool that combines inventory analysis and impact 

assessment to output comprehensive environmental impact data. SimaPro incorporates 

various inventory databases such as U.S. Life Cycle Inventory (USLCI), Ecoinvent, and 

Agri-footprint for a comprehensive selection of life cycle inventory data. Then, through 

the user’s selected impact assessment method, inventory results are translated to impacts. 

This LCA used TRACI as the impact assessment method because data is U.S.-based. 

SimaPro was used extensively to build this model.  
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2.9.2 GREET 

The Greenhouse Gases, Regulated Emissions, and Energy use in Technologies 

(GREET) model was developed by the Argonne National Laboratory for the performance 

of LCAs regarding transportation fuels, feedstocks, and vehicles. GREET translates inputs 

to three traditional GHGs: CO2, methane (CH4), and nitrous oxide (N2O). The GHGs are 

aggregated to calculate the GWP equivalent of a process, expressed as the CO2 eq. GREET 

was referenced primarily to obtain impacts associated with steam production from natural 

gas and production of bioelectricity. Figure 12 shows the groupings used in GREET for 

fuel pathways.  

 

Figure 12. GREET grouping by feedstock used for pathways in the model (GREET 
Model). 
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2.10 Previous LCA Studies 

It is difficult to directly compare previous LCA studies due to differences in 

assumptions, scope, time-horizons, and data sources. This section will explore previous 

LCA studies related to this work, but the studies will not be directly comparable to the 

results of this LCA due to the reasons listed above. 

The Idaho National Laboratory (INL) releases an annual Woody Feedstocks State of 

Technology Report that uses data and experimental results to update the status of feedstock 

supply system technology development for biomass to biofuels (Hartley et al., 2021). In 

2020, INL reported on three distinct woody feedstock conversion pathways: indirect 

liquefaction (IDL), catalytic fast pyrolysis (CFP), and algal-blend hydrothermal 

liquefaction (AHTL). The AHTL assumes a conventional feedstock supply system and is 

most similar to the pathways used in this LCA. Therefore, the AHTL will be explored in 

more detail. The AHTL pathway is outlined in Figure 13.  

 
Figure 13. INL 2020 Woody State of Technology feedstock supply system design 

supporting AHTL (Hartley et al., 2021). 
 

The AHTL pathway assumes a 90% algae-10% woody feedstock blend with ≤10% 

moisture content (wet basis) and a particle size requirement of ≤¼ inch (Hartley et al., 

2021). The forest residues have been chipped to 2 inches upon arrival to the biorefinery 
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where they are stored for preprocessing. Preprocessing includes drying in a rotary dryer to 

10% moisture content (wet basis) and grinding to ¼ inch particles. Preprocessing GHG 

emissions reported for this scenario are 180.03 kg CO2e/dry ton (Hartley et al., 2021). 

Another recent study assessed life cycle GHG emissions from drop-in fuel production 

via fast pyrolysis of pine residues followed by hydroprocessing (Ou & Cai, 2020a). This 

study was completed as a dynamic life cycle analysis and calculated GHG emissions from 

over 4600 simulated runs varying the moisture content of incoming feedstock from 25 to 

35% and product particle sizes from 0.5 to 5 mm. Case A in this study is most similar to 

this LCA and will be explored in more depth. Case A assumes drying the feedstock from 

30 to 10% moisture content (wet basis) and rotary shearing to 2 mm particle size. 

Preprocessing accounts for about 18 g CO2e/MJ of fuel (Ou & Cai, 2020a). A key finding 

of the study is that the energy penalty associated with a small particle size requirement 

outweighs the benefit of increased fuel yields (Ou & Cai, 2020a). Additionally, the study 

found that increased field drying saves energy consumption during feedstock transportation 

and preprocessing (Ou & Cai, 2020a). 

There are many other LCA studies on conversion of woody feedstocks to biofuels, 

however the studies above were referenced the most. There is a gap in the literature on 

large-scale implementation of air classification assuming a conventional feedstock supply 

system. This study aims to complete an LCA on pine residue preprocessing that 

incorporates air classification as a sulfur mitigation technology.  
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CHAPTER 3.  LIFE CYCLE INVENTORY 

A life cycle inventory (LCI) is the quantification of relevant energy and material 

flows and the associated emissions for a chosen life cycle (NRMRL, 2006). The key steps 

to complete an LCI include the development of detailed process flow diagrams, data 

collection, and consolidation of results. The LCI feeds directly into the results outlined in 

the LCIA in Chapter 4, so it is critical to ensure accurate and well-assumed data for the 

LCI. First, the process overview will be described. Then, detailed information regarding 

each of the LCI steps for preprocessing will be outlined.  

3.1 Process Overview 

The process of making biofuels from harvested pine residues is complex. Chapter 

1 outlined the chosen scope and scope justification for this LCA. For the sake of full 

process comprehension, a flow diagram overview will be presented along with the basis of 

calculations, then more detailed flow diagrams for each subsystem within the scope of this 

LCA will be presented. 

3.1.1 Process Overview Flow Diagram 

Process flow diagrams should model the inputs and outputs of a system which 

includes materials and energy flowing in (electricity, water, gas, etc.) and out (finished 

parts/components, waste, etc.) of the system or subsystem. A generic unit process flow 

diagram is shown in Figure 14.  
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Figure 14. Generic unit process diagram (NRMRL, 2006). 
 

The primary steps in converting pine residue feedstocks to biofuels are 

preprocessing (including air classification, drying, and size reduction), gasification, syngas 

cleaning, F-T catalysis, and upgrading to obtain the final products of fuel gas and jet fuel. 

A byproduct of the F-T process is flue gas which is processed for power. An overview of 

the process is shown in Figure 15. 

 

Figure 15. PWC conversion process flow diagram. 
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3.1.2 Basis of Calculations 

FTX, North Carolina State University, Auburn University, and Red Rock Biofuels 

provided 18 pine residue samples. The samples were sourced from Georgia, South 

Carolina, North Carolina, Alabama, and Oregon and varied according to species/genetics, 

age, growth location (soil type), harvesting practices, and anatomical fractions. Refer to 

Appendix 1 for a link to an ArcGIS story map sharing all feedstock sample information.  

As described in Chapter 1, a milestone of this project is to quantify baseline sulfur 

content in pine residue samples and verify a 30% reduction in sulfur using air classification. 

Three samples from FTX were chosen for air classification experiments – Samples 1, 2, 

and 8 shown on the story map. These samples were chosen as they share a similar makeup 

of anatomical fractions, but vary in age, location, and harvesting practice. Each sample was 

run according to the air classification process flow diagram shown in Figure 17. A 30% 

sulfur reduction occurred in Samples 1 and 2. Based on these experiments, Sample 1 will 

serve as the representative sample in this LCA. See section 3.2.1 on Air Classification to 

read more about this study. It is listed in the assumptions when data from these experiments 

are used. 

The basis of calculations are data that process inputs and outputs are based upon. 

Outlined below are the basis of calculations for plant operations, incoming feedstock, and 

outgoing feedstock.  

The plant availability is 310 days per year (85%) with a plant capacity of 2000 dry 

metric tonnes/day (Swanson et al., 2010). For simplicity’s sake, “dry metric tonnes” will 

simply be referred to as “tonnes.” 
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Table 3. Basis of calculations for plant operations. 
Plant Operation Average Unit Reference 
Operating hours 7440 hours/year (Swanson et 

al., 2010) 
Tonnage processed 2000 tonnes/day (Swanson et 

al., 2010) 
Mass flow rate 83.33 tonnes/hour Calculated 

 

The incoming feedstock has a moisture content of 30% wet basis (Hartley et al., 

2021). The forest residues are size reduced at the harvesting site with a mobile chipper to 

two-inch (50.8-mm) PWC and fed directly to a truck for transport to the biorefinery 

(Hartley et al., 2021).  

Table 4. Basis of calculations for incoming feedstock. 
Incoming Feedstock Average Unit Reference 

Moisture content 30 percent (Hartley et 
al., 2021) 

PWC 50.8 mm (Hartley et 
al., 2021) 

 

The outgoing feedstock (feedstock that has been preprocessed for conversion) has 

been dried to a moisture content of 10% wet basis (Hartley et al., 2021). This is the required 

moisture content for gasification. It is assumed the feedstock is being prepared for 

entrained flow gasification which requires size reduction to 1-mm particles (Swanson et 

al., 2010).  

Table 5. Basis of calculations for outgoing feedstock. 
Outgoing Feedstock Average Unit Reference 

Moisture content 10 percent (Hartley et 
al., 2021) 

Particle size requirement 1 mm (Swanson et 
al., 2010) 
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3.2 Preprocessing LCI 

The scope of the LCA is outlined below. Seeing that the goals of this study pertain 

to gleaning information regarding the environmental effects of air classification and 

preprocessing, raw material acquisition and transportation of PWC to the biorefinery were 

not considered. The LCI will inventory energy demand for operating equipment, 

wastewater treatment, steam generation, end-of-life of DML from air classification to a 

landfill, and, in the bioelectricity scenario, transportation associated with feedstock 

delivered. Transportation associated with feedstock delivered is considered for the 

bioelectricity scenario because burning the biomass is biogenic except for the emissions 

released during transport of the pine residue to the biorefinery. The scope of the LCA 

focuses on end-of-life of matter leaving the biorefinery, therefore, the mass discarded to 

combustion is not in the system boundary because it is assumed to be combusted to power 

other parts of the process. Process flow diagrams along with data collection for each step 

will be presented. 

 

Figure 16. Scope of LCA. 
 

This model collects LCI data on air classification, drying, and size reduction. The 

grinder and dryer steps (highlighted in Table 6) conventionally use electricity and natural 

gas, respectively. Air classification is a novel technology in LCA feedstock preprocessing, 

but it is assumed to be powered by electricity.  
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Table 6. Fuel type for steps in preprocessing (Meyer et al., 2016). 
Machine Fuel Type 

Air Classifier Electricity 

Dryer Natural gas 

Grinder Electricity 

 

3.2.1 Air Classification 

3.2.1.1 Process Flow Diagram 

Air classification experiments were carried out to separate fractions with higher 

sulfur contents. Pine residue samples were fed through the air classifier four times, each 

time labeled as heavy, light, or below screen. This process recovered four distinct fractions: 

white wood rich, bark rich, needle rich, and fines/dirt rich. Runs 1 and 2 separated most of 

the heavy and large biomass, while Runs 3 and 4 sorted the remaining lighter and dirt-

heavy fractions. Figures 17 and 18 depict flow diagrams of the materials being air classified 

along with visual examples of the air classified fractions.  
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Figure 17. Air classification experiments to separate large white wood rich, white wood 
rich, bark rich, needle rich, and fines/dirt rich fractions. 
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Figure 18. Air classified fractions including a) fines/dirt rich, b) needle rich, c) white 
wood rich, and d) bark rich. 

 

There was also dry matter loss (DML) and mass discarded fractions from air 

classification. DML represents biomass lost due to clogging in the equipment, falling on 

the ground, etc. The mass discarded portion represents biomass that is considered too 

“dirty” from high ash/sulfur content and sent to other value-added processes. This is shown 

in Figure 19.  

a. b. 

c. d. 
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Figure 19. Air classification process flow diagram. 
 

3.2.1.2 Data Collection 

An overarching goal of the project is for air classification to facilitate at least a 30% 

reduction in the sulfur content of the biomass. From experimental data based on the 

representative Sample 1, it was determined 4% of Fraction 3 (bark rich fraction), 100% of 

Fraction 4 (needle rich fraction), and 100% of Fraction 5 (fines/dirt rich fraction) must be 

“discarded” to achieve the 30% sulfur reduction goal. The mass discarded fraction 

represents 19% of the total feedstock sample mass and is the percentage assumed discarded 

in this model (380 tonne/day). When normalized to the functional unit of usable tonnes per 

day, this becomes 25%. The mass discarded fraction is not included in the scope as it is 

assumed to be combusted to power other parts of the process while this LCA focuses on 

the end-of-life of materials. See Chapter 5 for future work incorporating the mass discarded 

portion into the model. 

DML, on the other hand, is assumed to be landfilled after air classification. 

Experimental data determined about 6% of biomass was lost during air classification, so 
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that is the amount assumed for DML in this model (120 tonne/day). However, when scaled 

to industrial size, it is likely the fraction will be even higher than 6% (Lin et al., 2021). 

This uncertainty is explored further in Chapter 4. When normalized to the functional unit 

of usable tonnes per day, this fraction becomes 8%. It is assumed that end-of-life landfill 

emissions are biogenic and, therefore, carbon-neutral. However, transportation of the DML 

to a landfill is accounted for. Based on recommendations from the National Renewable 

Energy Laboratory (NREL), for distances less than 15 miles (24.14 km), trucks can 

transport either wet or dry material without disrupting traffic (Atchison & Hettenhaus, 

2003). Therefore, it is assumed the DML is transported 24.14 km to a landfill using 

USLCI’s transport process for a short-haul, diesel-powered combination truck for the 

Southeast region. 

The energy demand for the air classifier was assumed as “Air Classifier – Large” 

from the INL Woody Feedstocks 2021 State of Technology Report (P. H. Burli et al., 

2022). Material and energy inputs and outputs per usable tonne of feedstock are listed in 

Table 7.  

Table 7. Process inputs and outputs for air classifying feedstock. 
Process Inputs/Parameters Average Unit (per 

usable tonne 
of feedstock) 

Reference 

Energy 0.923 kWh (P. H. Burli 
et al., 2022) 

Process Outputs/Parameters Average Unit Reference 
DML 8 percent Experimental 
Mass discarded 25 percent Experimental 
Transport of DML to landfill 0.016 tonne-km (Atchison & 

Hettenhaus, 
2003) 
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3.2.2 Dryer 

3.2.2.1 Process Flow Diagram 

The dryer used in the process is a direct-contact steam rotary dryer that dries the 

biomass to 10% moisture content using steam generated in a boiler. Electricity is needed 

to power the dryer and a heating source is needed to generate steam. Steam is constantly 

evaporating and recirculating between the dryer and boiler for reheating. Excess water is 

sent to wastewater treatment. This process is shown in Figure 20. 

 

Figure 20. Dryer process flow diagram. 
 

3.2.2.2 Data Collection 

This model assumes moisture content is measured on wet basis. Wet basis is 

assumed as this follows most assumptions made in related literature and for the sake of 

simplicity, as wet basis moisture content is always between 0% and 100%. The formula for 

calculating the wet basis of biomass is as follows: 
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𝑚𝑚𝑚𝑚𝑤𝑤𝑤𝑤 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑤𝑤𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑤𝑤𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑡𝑡
∗ 100%  

Pine feedstocks typically arrive at biorefineries with a moisture content ranging 

from 30-60% based on location, time of harvest, and storage time after harvest (Fagernäs 

et al., 2010). This model assumes biomass is entering the system boundary at 30% moisture 

content. This is an estimate that is in line with related studies conducted by the DOE 

(Hartley et al., 2021). However, this uncertainty is explored further in Chapter 4. 

The dryer used in the process is based on a direct-contact rotary steam dryer that 

uses a 9:1 steam to evaporated moisture ratio resulting in a 4000-tonne per day steam loop 

for a 2000-tonne per day biomass input drying from 25% to 10% moisture content from 

recommendations provided by NREL (Amos, 1999). This means that 90% of steam leaving 

the dryer is reheated and recirculated while the remaining 10%, representing moisture 

evaporated from the biomass, is removed to be condensed or used in other parts of the plant 

(Amos, 1999). See Appendix 2 for calculations scaling the steam requirements to this 

model. 

Two scenarios are considered in this LCA. The first scenario assumes a natural 

gas/grid electricity mix to dry the feedstock. Natural gas is used to generate steam while 

grid electricity powers the rotary dryer. The second scenario assumes a combusted 

biomass/bioelectricity mix to dry the feedstock. In this case, steam is heated in a boiler 

from the combustion of biochar and unconverted syngas after the gasification process. The 

techno-economic analysis (TEA) team confirmed there is enough excess unconverted 

syngas to meet the steam requirements for drying based on Swanson’s “Techno-Economic 

Analysis of Biofuels Production Based on Gasification” (Swanson et al., 2010). In both 
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cases, steam enters the dryer at 200°C, drops to 120°C during drying, and is fed to the 

boiler for reheating. The dryer efficiency was used to estimate the energy needed to dry the 

feedstock based on the above parameters. The dryer efficiency is 3838 kJ/kg of evaporated 

water. When normalized to the functional unit, the efficiency is 1,220,484 kJ/tonne of 

usable feedstock. This calculation is found in Appendix 2. 

Steam dryers produce organic compound emissions as inert gases dissolved in the 

condensed wastewater stream or floating on the condensed water as tar; therefore, the 

majority of emissions will appear in the steam condensate (Fagernäs et al., 2010). It is 

recommended the condensed evaporated moisture undergo biological filtration (Fagernäs 

et al., 2010; Vidlund, 2004). It is assumed that the 10% fraction representing moisture 

evaporated is sent to biological filtration water treatment. The biological filtration water 

treatment process was found in Ecoinvent. Material and energy inputs and outputs per 

usable tonne of feedstock are listed in Table 8.  
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Table 8. Process inputs and outputs for drying feedstock. 
Process Inputs/Parameters Average Unit (per 

usable tonne 
of feedstock) 

Reference 

Dryer efficiency 1,220,484 kJ (Worley, 
2011); (Ou & 
Cai, 2020a); 
Calculated, 
see Appendix 
2 

Energy 339 kWh Calculated, 
see Appendix 
2 

Steam (recirculating) 2.86 tonnes H2O (Amos, 1999); 
Calculated, 
see Appendix 
2 

Process Outputs/Parameters Average Unit Reference 
Evaporated moisture to wastewater 
treatment 

0.32 tonnes H2O (Amos, 1999); 
Calculated, 
see Appendix 
2 

 

3.2.3 Size Reduction 

3.2.3.1 Process Flow Diagram 

This model assumes size reduction to 1-mm particles. The incoming feedstock is 

composed of 50.8-mm PWCs at 10% moisture content. This process assumes one size 

reduction step using a hammer mill based on recommendations from INL’s Woody 

Feedstocks State of Technology Report (Hartley et al., 2021). 
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Figure 21. Size reduction process flow diagram. 
 

3.2.3.2 Data Collection 

Size reduction energy assumptions are based on the article “Von Rittinger theory 

adapted to wood chip and pellet milling, in a laboratory scale hammermill” (Temmerman 

et al., 2013). Refer to Chapter 2 to read about this study. The energy demand for grinding 

is based on the following equation where E is the specific grinding energy (kWh/tonne), H 

is moisture content (%), M is a constant for pine feedstocks (9.65), Lp is the mean product 

particle size (mm), and Lf is the mean feed particle size (mm). 

𝐸𝐸 = 𝐻𝐻𝐻𝐻�
1
𝐿𝐿𝑝𝑝

−
1
𝐿𝐿𝑓𝑓
�  

A summary of energy usage for size reduction for entrained flow gasification is shown in 

Table 9. 
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Table 9. Size reduction power requirement equation parameters. 
Equation Parameter Average 

Moisture content (%) 10 

Pine feedstock constant 9.65 

Mean product particle size (mm) 1 

Mean feed particle size (mm) 50.8 

Specific grinding energy 
(kWh/tonne) 

94.6 

 

It is assumed no DML occurs during size reduction. It is also assumed moisture 

content stays the same, although there is some evidence that size reduction steps can 

facilitate further drying (Esteban & Carrasco, 2006), therefore energy estimates are 

assumed to be conservative. Material and energy inputs and outputs per usable tonne of 

feedstock are listed in Table 10.  

Table 10. Process inputs and outputs for size reduction of feedstock. 
Process Inputs/Parameters Average Unit (per 

usable tonne 
of feedstock) 

Reference 

Energy 126 kWh (Temmerman 
et al., 2013); 
Calculated, 
see 
Appendix 2 
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CHAPTER 4.  LIFE CYCLE IMPACT ASSESSMENT 

Most of the LCIA was performed using TRACI embedded in SimaPro (Bare, 2011). 

SimaPro sets up calculations to output each of the TRACI impact categories, however only 

GWP impact will be compared across scenarios in this analysis because it is the most used 

in related studies. Additionally, the International Life Cycle Data Handbook classifies 

GWP as Level I for recommended and satisfactory in terms of best available 

characterization models to midpoint. GREET software, literature values, and experimental 

data were used when inventory data from Ecoinvent or USLCI were unavailable.  

Two scenarios were considered for evaluation. The first scenario is considered 

more traditional and is based on natural gas and grid electricity. The second scenario is a 

best-case scenario based on the combustion of biochar and bioelectricity.  

4.1 Electrical Grid Scenario 

It is assumed the biorefinery is in the state of South Carolina in the United States. 

The energy portfolio of South Carolina for the year 2021 was obtained from the Energy 

Information Administration (EIA). The total electric power industry percentages are shown 

below. This is the makeup that will be assumed when calculations are made with grid 

electricity. It is unclear what the “other” and “other biomass” categories encompass, so 

they are excluded from the analysis. Therefore, 99.85% of the grid makeup is accounted 

for. Refer to Appendix 3 for complete energy source data from the EIA. 
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Table 11. South Carolina energy portfolio for 2021. 
Electric Power Industry Contribution (%) 

Nuclear 55 
Natural gas 24 

Coal 15 
Hydroelectric conventional 3 

Solar thermal and 
photovoltaic 

2 

Wood and wood derived 
fuels 

2 

Other biomass 0.1 
Petroleum 0.1 

Other 0.04 
Pumped storage -1 

 

The GWP values associated with each electric industry per kWh of energy were 

found in either Ecoinvent or USLCI. See Appendix 3 for specific product assumptions. 

Respective GWP values were multiplied by the contribution percentage in the grid makeup 

to obtain the GWP of the South Carolina electrical grid makeup per kWh of energy. The 

final GWP value for the South Carolina grid per kWh of energy was multiplied by the 

respective energy demand for each process. 

4.1.1 Impact Assessment 

The air classification impact represents equipment electricity usage and transport 

of DML to a landfill based on assumptions listed in Chapter 3. The electricity usage and 

transportation of DML were normalized to the functional unit. These calculations can be 

found in Appendix 3.  

The dryer impact represents wastewater treatment and natural gas/grid electricity 

energy demand to heat steam and power the rotary dryer. GWP values were calculated 
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through TRACI for the Ecoinvent wastewater pathway conventional tap water production 

with biological treatment for one tonne of water. The output values were then multiplied 

by a ratio to normalize to the functional unit. The process assumptions and calculations can 

be found in Appendix 3. The ratio of natural gas to electricity to produce steam and power 

the dryer, 87.4% and 12.6%, respectively, was determined from INL’s Woody Feedstocks 

State of Technology Report (Hartley et al., 2021). GWP values for natural gas to generate 

steam are from the “Production of Displaced Steam from NG at DME/FTD plant” process 

in GREET.  

The size reduction impact represents the electricity required to power the equipment 

and mill the fractions to the required particle size of 1 mm for entrained flow gasification. 

The grinding energy values were normalized to the functional unit. 

The GWP of each process is listed in Table 12 as kg CO2 eq per tonne of usable 

feedstock. A visual of the relative GWP for the grid electricity scenario is shown in Figure 

22. 

Table 12. GWP of preprocessed feedstock assuming grid electricity. 
Process GWP  

(kg CO2 eq per 
tonne of usable 

feedstock) 
Air Classification Total 0.53 

Grid electricity 0.31 
Transport DML to landfill 0.22 

Dryer Total 92.46 
Natural gas 77.83 
Grid electricity 14.45 
Wastewater treatment 0.19 

Size Reduction Total 42.67 
Grid electricity 42.67 

Total 135.66 
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Figure 22. GWP of preprocessed feedstock for the grid electricity scenario. 
 

A sensitivity analysis was completed with key decision parameters grouped based 

on feedstock/product parameters and energy demand parameters. The feedstock/product 

parameters include particle size requirement (mm), moisture content requirement (%), 

DML (%), and feedstock particle size (mm). The energy demand parameters include dryer 

efficiency (kJ) and energy demand (kWh) for drying, size reduction, and air classification. 

A one-at-a-time sensitivity analysis changed the decision parameters by ±20% from the 

respective baseline values to understand the impact of each parameter on the overall GWP. 

The sensitivity analysis results for the grid electricity scenario are shown in Figure 23.  
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Figure 23. Sensitivity analysis results for the grid electricity scenario where the centerline 
represents the baseline preprocessing GWP value. 

 

 The Monte Carlo method for repeated random sampling predicts outcomes based 

on an estimated range of probability distributions for variables with inherent uncertainty. 

Monte Carlo simulations were implemented to obtain uncertainty associated with the GWP 

results. GWP values were calculated 5000 times using a range of values assuming uniform 

distributions for the following parameters: feedstock moisture content (30 to 60% wet 

basis), moisture content requirement (5 to 15% wet basis), and DML (5 to 15%). The range 

for feedstock moisture content was chosen based on variation explored in “Drying of 

biomass for second generation synfuel production” and INL’s Woody Feedstocks State of 

Technology Report (Fagernäs et al., 2010; Hartley et al., 2021). Moisture content 

requirement was varied by ±5% from the baseline value. It is likely that the DML will be 

higher than the experimental results of 6% found in this study considering INL recently 

reported a 12% DML value (P. Burli et al., 2022). Therefore, the values for DML 
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considered up to 15% loss. Uniform distributions were assumed for each parameter as a 

conservative estimate. For future iterations of this model, it may be beneficial to obtain 

normal distributions for the parameter values.  

The Monte Carlo simulation results were ranked by relative size of the numbers, 

and each of the parameter’s ranks were correlated to the GWP ranks to obtain Spearman’s 

rank correlation coefficients (SCC). SCC measures the strength and direction of monotonic 

association between two ranked variables for a range between -1 and +1. The closer the 

SCC is to ±1, the stronger the relationship is between the variables based on an increase in 

the associated parameter. Multiple 5000-time simulations were run to ensure similar 

correlation results. Figure 24 shows the SCC for the uncertainty parameters with red 

representing increased impact. 

 
Figure 24. Spearman's rank correlation coefficient results for dry matter loss, moisture 

content requirement, and feedstock moisture content in the grid electricity scenario. 
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4.1.2 Analysis 

Drying by far has the highest GWP in this scenario due to the use of natural gas for 

steam generation. As a result, the model is most sensitive to the dryer efficiency and dryer 

energy demand. Size reduction has a GWP almost half of drying, but it is still a high-impact 

process because it requires high energy demand to power the hammer mill. Relatively, air 

classification has a trivial GWP. Air classification represents just 0.4% of preprocessing 

GWP, therefore, the model is least sensitive to changes in air classification energy demand. 

Furthermore, the SCC supports the finding that the grid electricity scenario is sensitive to 

changes in parameters surrounding drying. The sensitivity analyses showed that GWP is 

highly sensitive to uncertainty in feedstock moisture content (SCC=1.00). However, it is 

interesting that the impact of feedstock moisture content far outweighs that of the moisture 

content requirement. See section 4.3 for further interpretation and comparison of scenario 

results. 

4.2 Bioelectricity Scenario 

The second scenario assumes power provided is bioelectricity generated from 

combusted biomass driving shaft work in steam turbines attached to electric generators 

(Swanson et al., 2010).  The combustion of biomass emits carbon that is part of the biogenic 

carbon cycle, so the only GWP associated with the combustion of biomass is the 

transportation of biomass to the biorefinery. To account for transportation in each process, 

the ratio of the energy demand to the higher heating value (HHV) of pine (~23,260 kJ/kg) 

was multiplied by total transportation emissions (19.91 kg CO2 eq/dry tonne) reported in 
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INL’s 2021 Woody Feedstocks State of Technology Report (P. Burli et al., 2022). 

Calculations can be found in Appendix 3. The GWP impact associated with bioelectricity 

generation was found in GREET. The GWP value per kWh of energy was multiplied by 

the respective energy demand for each process. 

4.2.1 Impact Assessment 

GREET was used for bioelectricity GWP impact values within the process “Forest 

residues to bioelectricity (North Carolina)” and subprocess “Pine (Steam Turbine) Power 

Plant.” This process links power plant electricity generation data with emissions data to 

represent the combustion of pine to drive steam turbines attached to electric generators  

(Ou & Cai, 2020b).  

 
Figure 25. Pine to electricity process in GREET. 

 

Air classification impact represents equipment bioelectricity energy demand, 

transportation of DML to a landfill, and transportation of biomass delivered. These values 

were normalized to the functional unit. This process follows the same format as found in 

the electrical grid scenario. 

The dryer impact represents wastewater treatment, bioelectricity energy demand to 

power the rotary dryer, and transportation of biomass delivered. Drying in this scenario 
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assumes steam is heated in a boiler from the combustion of biochar coming off a cyclone 

after the gasification process. Identical to the electrical grid scenario, emission factors were 

found from Ecoinvent within SimaPro for wastewater using the pathway conventional tap 

water production with biological treatment for one tonne of water. These values were 

normalized to the functional unit. 

The size reduction impact represents the bioelectricity energy demand to power the 

equipment and transportation of biomass delivered. These values were normalized to the 

functional unit.  

The GWP of each process is listed in Table 13 as kg CO2 equivalent per tonne of 

usable feedstock. A visual of the relative GWP for the bioelectricity scenario is shown in 

Figure 26. 

Table 13. GWP of preprocessed feedstock assuming bioelectricity. 
Process GWP  

(kg CO2 eq per 
tonne of usable 

feedstock) 
Air Classification Total 0.31 

Bioelectricity 0.09 
Transport DML to landfill 0.22 
Transport of biomass delivered 0.003 

Dryer Total 5.41 
Bioelectricity 4.18 
Wastewater treatment 0.19 
Transport of biomass delivered 1.04 

Size Reduction Total 12.72 
Bioelectricity 12.33 
Transport of biomass delivered 0.39 

Total 18.44 
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Figure 26. GWP of preprocessed feedstock for the bioelectricity scenario. 
 

Identical to the grid electricity scenario, a one-at-a-time sensitivity analysis 

changed the decision parameters by ±20% from the respective baseline values to 

understand the impact on the overall GWP. The sensitivity analysis for the bioelectricity 

scenario is shown in Figure 27. 
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Figure 27. Sensitivity analysis results for the bioelectricity scenario where the centerline 
represents the baseline preprocessing GWP value. 

 

Identical to the grid electricity scenario, an uncertainty analysis was completed 

using the Monte Carlo method for repeated random sampling over 5000 simulations to 

predict GWP based on the following parameters assuming uniform distributions: feedstock 

moisture content (30 to 60% wet basis), moisture content requirement (5 to 15% wet basis), 

and DML (5 to 15%). Again, uniform distributions were assumed for each parameter as a 

conservative estimate; however, it may be beneficial to obtain data on normal distributions 

of parameter values for future iterations.  

 SCCs were then determined for each parameter. Multiple 5000-time simulations 

were run to ensure similar correlation results. Figure 28 shows the SCCs for the uncertainty 

parameters with red representing increased impact.  
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Figure 28. Spearman's rank correlation coefficient results for dry matter loss, moisture 

content requirement, and feedstock moisture content in the bioelectricity scenario. 
 

4.2.2 Analysis 

Size reduction has the highest GWP in this scenario. As a result, the model is most 

sensitive to the particle size requirement and size reduction energy demand. Size reduction 

has a higher GWP than drying in this scenario because steam generation for drying is 

considered biogenic except for the small impact associated with transportation of feedstock 

to the biorefinery. Moisture content requirement is also sensitive to change because size 

reduction energy demand accounts for moisture content of the feedstock. The model shows 

that if the moisture content of the feedstock is increased by 20%, then total GWP will 

significantly increase. Air classification represents just 1.6% of preprocessing GWP in this 

scenario. Therefore, the model is least sensitive to air classification energy demand of the 

energy demand parameters. Furthermore, the SCC results support the finding that the 

bioelectricity scenario is sensitive to changes in parameters surrounding size reduction. 
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The sensitivity analyses showed that GWP is sensitive to uncertainty in moisture content 

requirement (SCC=0.63) and feedstock moisture content (SCC=0.85). The model supports 

the finding that moisture content requirement is sensitive to uncertainty, as size reduction 

parameters have the greatest effect on GWP impact in the bioelectricity scenario. However, 

it is interesting that the impact of feedstock moisture content is so high for this scenario 

because that is not seen directly in the GWP results or one-at-a-time sensitivity analysis. 

Therefore, it is important the feedstock moisture content reaches the biorefinery at 30% 

wet basis to ensure GWP is not significantly increased during preprocessing. See section 

4.3 for further interpretation and comparison of scenario results. 
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4.3 Interpretation and Comparison 

The GWP of each step was compared according to the kg of CO2 eq per tonne of 

usable feedstock as shown in Figure 29.  

 
Figure 29. Comparison of GWP for grid electricity and bioelectricity scenarios. 

 

The grid electricity scenario has a GWP impact over 7 times higher than the 

bioelectricity scenario. Therefore, for each usable tonne of feedstock preprocessed, the 

traditional grid electricity scenario has a much higher GWP impact than the best-case 

bioelectricity scenario.  

The highest GWP step for preprocessing feedstock from grid electricity is drying. 

Production of steam from natural gas accounts for about 84% of dryer emissions or 57% 

of total emissions in this scenario. This makes the electrical grid scenario highly sensitive 

to the dryer efficiency and dryer energy demand. Assuming a 20% decrease in the dryer 

efficiency (from 3838 kJ/kg of evaporated water to 4606 kJ/kg of evaporated water) and a 
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20% increase in dryer energy demand (from 255 kWh/tonne to 306 kWh/tonne), GWP 

would increase by about 14% for each parameter. The GWP of drying is about 17 times 

higher in the grid electricity scenario than in the bioelectricity scenario. Emissions can be 

significantly reduced in preprocessing by using biogenic sources to generate steam for 

drying. 

Size reduction is another significant source of GWP in both the electrical grid and 

bioelectricity scenarios. Both scenario models are sensitive to product particle sizes. In the 

grid electricity scenario, by increasing product particle size by 20% to 1.2 mm, the total 

GWP could be reduced by 6%. In the bioelectricity scenario, product particle size is the 

parameter most sensitive to change. If the product particle size is increased by 20% from 

1 mm to 1.2 mm, the total scenario GWP decreases by 17%. Therefore, the required particle 

size is a key consideration when choosing a type of gasifier. For example, entrained flow 

gasification requires a particle size of 1 mm, whereas fluidized bed and downdraft 

gasification have less stringent standards of 10 mm. Assuming grid electricity, the GWP 

of size reduction for a biorefinery preparing biomass for entrained flow gasification would 

be about 12 times higher per year than for fluidized bed or downdraft gasification. 

Similarly, for the bioelectricity scenario, the GWP of size reduction for entrained flow 

gasification would be about 5 times higher per year than for fluidized bed or downdraft 

gasification. 

Air classification has a relatively trivial contribution in both scenarios, representing 

just 0.4% and 1.6% of GWP for the grid electricity and bioelectricity scenarios, 

respectively. The small contribution to the GWP is significant because air classification 

facilitated a 30% reduction in sulfur content in this model which will potentially improve 
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rates of biofuel conversion and lessen corrosion of combustion equipment. Therefore, the 

small GWP of the process further points toward the industrial implementation of air 

classification technology in biorefineries. 

The Monte Carlo method elucidated uncertainty associated with each scenario by 

random sampling from a range of values for the following parameters: feedstock moisture 

content (30 to 60% wet basis), moisture content requirement (5 to 15% wet basis), and 

DML (5 to 15%). The GWP was calculated for each of the 5000 scenarios. The results are 

shown in Figure 30. 

 
Figure 30. Comparison of GWP with the minimum, 25th and 75th percentiles, median, and 

maximum represented for the grid electricity and bioelectricity scenarios. 
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 The grid electricity scenario minimum and maximum GWP are 131.6 and 450.3 kg 

CO2 eq per tonne of usable feedstock, with a median of 247.9 kg CO2 eq per tonne of usable 

feedstock. The bioelectricity scenario minimum and maximum GWP are 13.1 and 38.6 kg 

CO2 eq per tonne of usable feedstock, with a median of 23.7 kg CO2 eq per tonne of usable 

feedstock. These analyses showed that there is no overlap in GWP between the grid 

electricity and bioelectricity scenarios even considering uncertainty. The maximum GWP 

in the bioelectricity scenario will still be lower than the minimum GWP in the grid 

electricity scenario.  

The SCCs explained the amount of DML transported to the landfill has very little 

impact on the overall uncertainty of GWP (SCC=0.03 for grid electricity; SCC=0.04 for 

bioelectricity). Moisture content requirement also has very little impact on the uncertainty 

of GWP in the grid electricity scenario (SCC=0.04). However, the moisture content 

requirement has a much larger impact on GWP in the bioelectricity scenario (SCC=0.62). 

This is explained by the contributions of GWP in each scenario coupled with the energy 

demand parameters for size reduction. Size reduction accounts for 69% of GWP in the 

bioelectricity scenario, but only 31% of GWP in the grid electricity scenario. Additionally, 

energy demand for size reduction increases as moisture content of the feedstock increases. 

Therefore, the model supports the finding that uncertainty in moisture content requirement 

could lead to uncertainty in overall GWP. 

Both scenarios are most sensitive to the feedstock moisture content (SCC=1.00 for 

grid electricity; SCC=0.77 for bioelectricity). Drying is the largest contributor to GWP in 

the grid electricity scenario; therefore, it aligns that increasing the feedstock moisture 

content would significantly impact overall GWP. Size reduction is the largest contributor 



63 
 

to GWP in the bioelectricity scenario; however, the feedstock moisture content has the 

largest impact on GWP. This was an interesting finding of the sensitivity analyses because 

size reduction does not account for feedstock moisture content. This could be explained by 

the large range of uncertainty for feedstock moisture content (30 to 60% wet basis). 

Regardless, this finding is important because increasing the moisture content of feedstock 

entering the biorefinery has a significant impact on overall GWP in both scenarios. 
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CHAPTER 5.  CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Sulfur accumulation in feedstocks can be pollutive, toxic to conversion catalysts, and 

cause premature breakdown of processing equipment. The LCA evaluated the 

environmental impact of air classification facilitating a 30% reduction in feedstock sulfur 

content. The LCA found that air classification represented 0.4% and 1.6% of GWP for the 

grid electricity and bioelectricity scenarios, respectively. This small contribution to GWP 

supports the large-scale implementation of air classification as a sulfur-mitigation 

technology at biorefineries.  

Furthermore, this model sought to compare efficiencies between a traditional scenario 

using grid electricity/fossil fuels and a best-case scenario using bioelectricity/biogenic 

sources. Overall, the grid electricity scenario had a GWP over 7 times that of the 

bioelectricity scenario. The largest source of emissions in the grid electricity scenario, 

representing over 57% of total GWP, is from natural gas to produce steam for drying. This 

finding supports the transition to biogenic heating sources for steam production.  

As the cellulosic biofuel industry moves forward, it is important to consider how the 

electrical grid is changing. Historically, coal-fired power plants supplied most of the grid 

electricity. This benefited cellulosic biorefineries because the fuels received significant 

carbon offset credits derived from excess electricity. However, as the U.S. grid transitions 

to primarily renewables, carbon offset credits are shrinking. Additionally, carbon markets 

in the past have treated biofuels as zero-emission fuels, however, agencies are beginning 

to step away from this concept as more information is gleaned regarding emissions 
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associated with land use change and transportation (EPA). Therefore, it is vital to focus on 

lowering the carbon footprint of biofuels to maintain biofuel production as a net-negative 

process. 

5.2 Future Work 

The data requirements of an LCA are resource and time intensive. The availability 

and utilization of data can greatly sway the accuracy of results; therefore, it is vital to 

carefully consider the time and resources required to complete the LCA. Careful effort was 

made throughout the model to provide transparency about data sources and flexibility for 

change. Additionally, it is important to consider this model focuses on the GWP impact, 

but there could be tradeoffs between other impact categories that are not reflected in this 

study. With this in mind, iterations of this model should incorporate several processes to 

increase accuracy.  

First, it should be considered how the mass discarded portion will be handled as 

this process was not included in the scope of this study. It would be beneficial to compare 

the efficiencies of sending the discarded mass portion to bioleaching versus combustion. 

There will be pros and cons to each pathway. Bioleaching will provide increased sulfur 

mitigation, possibly further increasing biofuel yield or generating co-products. However, 

it is unknown if the amount of sulfur leached out would be worth the time/cost of 

implementation and processing. Combustion, on the other hand, is a process that is already 

incorporated into the model and could create excess energy.  

Next, it would be beneficial to characterize the pollutants in the steam condensate 

that is sent to wastewater treatment. The condensate contains particulate matter that is not 
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well-characterized. This would be beneficial for a more accurate representation of the 

emissions associated with the steam condensate and taking appropriate measures for 

wastewater treatment. 

Furthermore, this work should be combined with a holistic LCA of the cradle-to-

gate process. This would include harvest, transportation, preprocessing, gasification, 

syngas cleaning, F-T catalysis, and upgrading to obtain the final products of fuel gas and 

jet fuel. It would be interesting to investigate the opportunity to air classify feedstock at the 

harvesting site prior to transport to the biorefinery and compare cost savings. Eventually, 

it would be beneficial to compare burned biofuels with and without air classification to 

compare emissions. 
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APPENDICES 

APPENDIX 1. PINE RESIDUE SAMPLE STORY MAP 

https://www.arcgis.com/apps/Shortlist/index.html?appid=21917fe655bb41c3b95982a6b0
1a4e86 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.arcgis.com/apps/Shortlist/index.html?appid=21917fe655bb41c3b95982a6b01a4e86
https://www.arcgis.com/apps/Shortlist/index.html?appid=21917fe655bb41c3b95982a6b01a4e86
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APPENDIX 2. LIFE CYCLE INVENTORY CALCULATIONS 

Dryer energy requirements 

 

The energy requirements for the dryer were calculated using rotary dryer efficiency 

numbers reported from Worley (Worley, 2011). Worley reported rotary dryers have an 

efficiency of 3489 to 4187 kJ/kg of evaporated water. The average of 3838 kJ/kg of 

evaporated water was assumed. The calculations are shown below where q is evaporation 

heat (kJ), m is mass of liquid (kg), and he is evaporation heat (kJ/kg). 

𝑞𝑞 = 𝑚𝑚ℎ𝑒𝑒 

3838
𝑘𝑘𝑘𝑘

𝑘𝑘𝑘𝑘 𝑡𝑡𝑒𝑒𝑚𝑚𝑠𝑠𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑟𝑟 𝑤𝑤𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡
∗ 477 

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 𝑡𝑡𝑒𝑒𝑚𝑚𝑠𝑠𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑟𝑟 𝑤𝑤𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡
𝑟𝑟𝑚𝑚𝑑𝑑

∗
1000 𝑘𝑘𝑘𝑘
1 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

 

= 1,830,726,000
 𝑘𝑘𝑘𝑘
𝑟𝑟𝑚𝑚𝑑𝑑

= 508,535 
𝑘𝑘𝑘𝑘ℎ
𝑟𝑟𝑚𝑚𝑑𝑑

= 254 
𝑘𝑘𝑘𝑘ℎ
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

 

254
𝑘𝑘𝑘𝑘ℎ
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

∗
2000 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚

1500 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
= 339

𝑘𝑘𝑘𝑘ℎ
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
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 Dryer efficiency calculations 

 

The average of 3838 kJ/kg of evaporated water was assumed. The following 

calculation was used to normalize the efficiency to the functional unit.  

 

1,830,726,000
 𝑘𝑘𝑘𝑘
𝑟𝑟𝑚𝑚𝑑𝑑

∗  
𝑟𝑟𝑚𝑚𝑑𝑑

1500 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘

= 1,220,484 
𝑘𝑘𝑘𝑘

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
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Steam Calculations 

 

1500
0.7

= 2142.857 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚
𝑟𝑟𝑚𝑚𝑑𝑑

𝑜𝑜𝑜𝑜 𝑢𝑢𝑏𝑏𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑡𝑡 30% 𝑚𝑚𝑜𝑜𝑏𝑏𝑚𝑚𝑡𝑡𝑢𝑢𝑡𝑡𝑡𝑡 

 

1500
0.9

= 1666.67 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚
𝑟𝑟𝑚𝑚𝑑𝑑

𝑜𝑜𝑜𝑜 𝑢𝑢𝑏𝑏𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑡𝑡 10% 𝑚𝑚𝑜𝑜𝑏𝑏𝑚𝑚𝑡𝑡𝑢𝑢𝑡𝑡𝑡𝑡 

 

2142.857 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚
𝑟𝑟𝑚𝑚𝑑𝑑

− 1666.67 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚
𝑟𝑟𝑚𝑚𝑑𝑑

= 𝟒𝟒𝟒𝟒𝟒𝟒 
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝒅𝒅𝒅𝒅𝒅𝒅

𝒕𝒕𝒐𝒐 𝒕𝒕𝒆𝒆𝒅𝒅𝒆𝒆𝒕𝒕𝒆𝒆𝒅𝒅𝒕𝒕𝒕𝒕𝒅𝒅 𝒎𝒎𝒕𝒕𝒎𝒎𝒕𝒕𝒕𝒕𝒎𝒎𝒆𝒆𝒕𝒕 

 

𝐴𝐴𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚𝑏𝑏𝑡𝑡𝑘𝑘 𝑚𝑚 9: 1 𝑡𝑡𝑡𝑡𝑚𝑚𝑏𝑏𝑚𝑚𝑡𝑡𝑢𝑢𝑠𝑠𝑚𝑚𝑡𝑡𝑏𝑏𝑡𝑡𝑘𝑘 𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚 𝑡𝑡𝑜𝑜 𝑡𝑡𝑒𝑒𝑚𝑚𝑠𝑠𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑟𝑟 𝑚𝑚𝑜𝑜𝑏𝑏𝑚𝑚𝑡𝑡𝑢𝑢𝑡𝑡𝑡𝑡 𝑡𝑡𝑚𝑚𝑡𝑡𝑏𝑏𝑜𝑜. 

477 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚
𝑟𝑟𝑚𝑚𝑑𝑑

∗ 9 = 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝒅𝒅𝒅𝒅𝒅𝒅

 𝒕𝒕𝒐𝒐 𝒆𝒆𝒕𝒕𝒓𝒓𝒎𝒎𝒆𝒆𝒓𝒓𝒎𝒎𝒓𝒓𝒅𝒅𝒕𝒕𝒎𝒎𝒕𝒕𝒓𝒓 𝒕𝒕𝒕𝒕𝒕𝒕𝒅𝒅𝒎𝒎 

𝑁𝑁𝑜𝑜𝑡𝑡𝑚𝑚𝑚𝑚𝑠𝑠𝑏𝑏𝑁𝑁𝑏𝑏𝑡𝑡𝑘𝑘 𝑡𝑡ℎ𝑡𝑡 𝑡𝑡𝑒𝑒𝑚𝑚𝑠𝑠𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑟𝑟 𝑚𝑚𝑜𝑜𝑏𝑏𝑚𝑚𝑡𝑡𝑢𝑢𝑡𝑡𝑡𝑡 𝑡𝑡𝑜𝑜 𝑡𝑡ℎ𝑡𝑡 𝑜𝑜𝑢𝑢𝑡𝑡𝑚𝑚𝑡𝑡𝑏𝑏𝑜𝑜𝑡𝑡𝑚𝑚𝑠𝑠 𝑢𝑢𝑡𝑡𝑏𝑏𝑡𝑡: 

477 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 𝐻𝐻2𝑂𝑂

𝑟𝑟𝑚𝑚𝑑𝑑
∗  

𝑟𝑟𝑚𝑚𝑑𝑑
1500 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘

= 𝟎𝟎.𝟑𝟑𝟒𝟒 
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑯𝑯𝟒𝟒𝑯𝑯

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒎𝒎𝒕𝒕𝒅𝒅𝒖𝒖𝒓𝒓𝒕𝒕 𝒐𝒐𝒕𝒕𝒕𝒕𝒅𝒅𝒕𝒕𝒕𝒕𝒕𝒕𝒓𝒓𝒕𝒕
 

𝑁𝑁𝑜𝑜𝑡𝑡𝑚𝑚𝑚𝑚𝑠𝑠𝑏𝑏𝑁𝑁𝑏𝑏𝑡𝑡𝑘𝑘 𝑡𝑡ℎ𝑡𝑡 𝑡𝑡𝑡𝑡𝑚𝑚𝑏𝑏𝑡𝑡𝑚𝑚𝑢𝑢𝑠𝑠𝑚𝑚𝑡𝑡𝑏𝑏𝑡𝑡𝑘𝑘 𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚 𝑡𝑡𝑜𝑜 𝑡𝑡ℎ𝑡𝑡 𝑜𝑜𝑢𝑢𝑡𝑡𝑚𝑚𝑡𝑡𝑏𝑏𝑜𝑜𝑡𝑡𝑚𝑚𝑠𝑠 𝑢𝑢𝑡𝑡𝑏𝑏𝑡𝑡: 

4286 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 𝐻𝐻2𝑂𝑂

𝑟𝑟𝑚𝑚𝑑𝑑
∗  

𝑟𝑟𝑚𝑚𝑑𝑑
1500 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘

= 𝟒𝟒.𝟒𝟒𝟒𝟒 
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑯𝑯𝟒𝟒𝑯𝑯

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒎𝒎𝒕𝒕𝒅𝒅𝒖𝒖𝒓𝒓𝒕𝒕 𝒐𝒐𝒕𝒕𝒕𝒕𝒅𝒅𝒕𝒕𝒕𝒕𝒕𝒕𝒓𝒓𝒕𝒕
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 Size Reduction Energy Requirements 

The energy demand for grinding is based on the following equation where E is the 

specific grinding energy (kWh/tonne), H is moisture content (%), M is a constant for pine 

feedstocks (9.65), Lp is the mean product particle size (mm), and Lf is the mean feed 

particle size (mm). 

𝐸𝐸 = 𝐻𝐻𝐻𝐻�
1
𝐿𝐿𝑝𝑝

−
1
𝐿𝐿𝑓𝑓
� 

𝐸𝐸 = 10 ∗ 9.65 �
1
1
−

1
50.8

� = 94.6
𝑘𝑘𝑘𝑘ℎ
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

= 126
𝑘𝑘𝑘𝑘ℎ

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
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APPENDIX 3. LIFE CYCLE IMPACT ASSESSMENT CALCULATIONS 

South Carolina Energy Portfolio 

 

https://www.eia.gov/electricity/data/state/ 
 

“Net Generation by State by Type of Producer by Energy Source” for 2001-present.  

Averaged monthly energy source data for the year 2021. Divided by total to get the 

energy portfolio percentages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.eia.gov/electricity/data/state/
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LCI Process Assumptions Translated to LCIA using TRACI in SimaPro 

Process Product Amount Unit Database 
Nuclear in grid mix Electricity, nuclear, at 

power plant/US 
1 kWh USLCI 

Natural gas in grid 
mix 

Electricity, natural gas, at 
power plant/US 

1 kWh USLCI 

Coal in grid mix Electricity, bituminous coal, 
at power plant/US 

1 kWh USLCI 

Hydroelectric 
conventional in grid 

mix 

Electricity, high voltage 
{SERC}| electricity 

production, hydro, run-of-
river | APOS, U 

1 kWh Ecoinvent 3 
– allocation 
at point of 

substitution - 
unit 

Solar thermal and 
photovoltaic in grid 

mix 

Electricity, low voltage 
{SERC}| electricity 

production, photovoltaic, 
570kWp open ground 
installation, multi-Si | 

APOS, U 

1 kWh Ecoinvent 3 
– allocation 
at point of 

substitution - 
unit 

Wood and wood 
derived fuels in grid 

mix 

Electricity, biomass, at 
power plant/US 

1 kWh USLCI 

Petroleum in grid 
mix 

Electricity, residual fuel oil, 
at power plant/US 

1 kWh USLCI 

Pumped storage in 
grid mix 

Electricity, high voltage 
{SERC}| electricity 

production, hydro, pumped 
storage | APOS, U 

1 kWh Ecoinvent 3 
– allocation 
at point of 

substitution - 
unit 

Transportation of 
DML to landfill 

Transport, combination 
truck, short-haul, diesel 

powered, 
Southeast/tkm/RNA 

24.1402 tkm USLCI 

Wastewater 
treatment 

Tap water {RoW}| tap 
water production, 

conventional with biological 
treatment | APOS, U 

1000 kg Ecoinvent 3 
– allocation 
at point of 

substitution - 
unit 
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Dryer normalizing to functional unit calculations 

 
First, we take the ratio of biomass moisture evaporated to dry tonnage processed 

per day. 

477 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 𝐻𝐻2𝑂𝑂 𝑠𝑠𝑡𝑡𝑡𝑡 𝑟𝑟𝑚𝑚𝑑𝑑
1500 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘 𝑠𝑠𝑡𝑡𝑡𝑡 𝑟𝑟𝑚𝑚𝑑𝑑

= 0.318 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚 𝐻𝐻2𝑂𝑂

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
 

Therefore, to normalize to the functional unit of 1 dry metric tonne of usable feedstock, the 

values for impact categories are multiplied by 0.318 to get tonnage of H2O per tonne of 

usable feedstock. It is assumed the moisture evaporated from biomass is equivalent to tap 

water being sent to biological treatment. For example, take the following calculation for 

GWP to receive kg CO2 eq per tonne of usable feedstock processed. 

0.585917 𝑘𝑘𝑘𝑘 𝐶𝐶𝑂𝑂2 𝑡𝑡𝑞𝑞
1 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝐻𝐻2𝑂𝑂  

∗ 0.318 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝐻𝐻2𝑂𝑂

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘

= 0.18632 
𝑘𝑘𝑘𝑘 𝐶𝐶𝑂𝑂2 𝑡𝑡𝑞𝑞

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
 

Product 

1000 kg Tap water | tap water production, conventional 
with biological treatment | APOS, U (of project Ecoinvent 3 
- allocation at point of substitution - unit) 

Impact category Unit Value Value * 0.318 
Ozone depletion kg CFC-11 eq 4.52E-08 1.44E-08 
Global warming kg CO2 eq 0.585917 0.18632 
Smog kg O3 eq 0.035048 0.01115 
Acidification kg SO2 eq 0.002838 9.03E-04 
Eutrophication kg N eq 0.002353 7.48E-04 
Carcinogenics CTUh 6.37E-08 2.03E-08 
Non carcinogenics CTUh 1.69E-07 5.39E-08 
Respiratory effects kg PM2.5 eq 0.000925 2.94E-04 
Ecotoxicity CTUe 5.274152 1.67718 
Fossil fuel depletion MJ surplus 0.488244 0.15526 
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Air classification energy normalizing to functional unit calculations 

 

The electricity usage should be normalized to the functional unit. To do this, first 

multiply the given electricity usage by the tonnage processed per day. 

0.692
𝑘𝑘𝑘𝑘ℎ

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
∗ 2000

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
𝑟𝑟𝑚𝑚𝑑𝑑

= 1384
𝑘𝑘𝑘𝑘ℎ
𝑟𝑟𝑚𝑚𝑑𝑑

 

Next, multiply by the amount of usable feedstock per day to get the kWh of electricity 

needed per tonne of usable feedstock. 

1384
𝑘𝑘𝑘𝑘ℎ
𝑟𝑟𝑚𝑚𝑑𝑑

∗
1 𝑟𝑟𝑚𝑚𝑑𝑑

1500 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑡𝑡𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
= 0.923

𝑘𝑘𝑘𝑘ℎ
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
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Air classification transport of DML normalizing to functional unit calculations  

 

It is assumed that the transport of the DML occurs in a diesel-powered combination 

truck in the Southeast region of the United States. It is assumed the truck travels 24.1405 

km (15 miles) to reach a landfill. Emissions values for transport of 1 tonne of DML 

traveling 24.1405 km were calculated. This yields the unit of each impact category per 

tonne of DML. However, the unit should be normalized to the unit of each impact category 

per tonne of usable feedstock. Therefore, each value was multiplied by the ratio of DML 

to tonnes of usable feedstock. The following calculation was made to each impact category 

value, taking GWP as an example calculation.  

120 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐻𝐻𝐿𝐿
2000 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘

∗
2000 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘

1500 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘

= 0.08 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐻𝐻𝐿𝐿

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
 

2.7204512 𝑘𝑘𝑘𝑘 𝐶𝐶𝑂𝑂2 𝑡𝑡𝑞𝑞
1 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐻𝐻𝐿𝐿  

∗ 0.08 
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐻𝐻𝐿𝐿

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘

= 0.217636096 
𝑘𝑘𝑘𝑘 𝐶𝐶𝑂𝑂2 𝑡𝑡𝑞𝑞

𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
 

Product 
24.1402 tkm Transport, combination truck, short-haul, 
diesel powered, Southeast/tkm/RNA (of project USLCI) 

Impact category Unit Value Value * 0.08 
Ozone depletion kg CFC-11 eq 1.14E-10 9.10599E-12 
Global warming kg CO2 eq 2.7204512 0.217636096 
Smog kg O3 eq 0.76351717 0.061081374 
Acidification kg SO2 eq 0.030312307 0.002424985 
Eutrophication kg N eq 0.001809192 0.000144735 
Carcinogenics CTUh 4.07E-08 3.25996E-09 
Non carcinogenics CTUh 3.93E-07 3.14368E-08 
Respiratory effects kg PM2.5 eq 0.000943807 7.55046E-05 
Ecotoxicity CTUe 7.5949646 0.607597168 
Fossil fuel depletion MJ surplus 5.7155621 0.457244968 
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Transport of biomass delivered for bioelectricity scenario 

 

The HHV is a measure of heat content based on the gross energy content of a 

combustible fuel. It is assumed each process’s energy use value is divided by pine’s HHV 

of 23,260 kJ/kg (or 6461.1 kWh/tonne). When multiplied by 100%, this ratio represents 

the percentage of energy needed for the process out of the gross energy content. Last, the 

calculation was normalized to the functional unit. The following calculation was made 

for air classification, drying, and size reduction, taking drying as an example calculation. 

 

338 𝑘𝑘𝑘𝑘ℎ
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

6461.1 𝑘𝑘𝑘𝑘ℎ
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

= 0.05 

19.91 𝑘𝑘𝑘𝑘 𝐶𝐶𝑂𝑂2 𝑡𝑡𝑞𝑞
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

∗ 0.05 = 1.04
𝑘𝑘𝑘𝑘 𝐶𝐶𝑂𝑂2 𝑡𝑡𝑞𝑞
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

 

1.04
𝑘𝑘𝑘𝑘 𝐶𝐶𝑂𝑂2 𝑡𝑡𝑞𝑞
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

∗
2000 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘

1500 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚
= 1.39

𝑘𝑘𝑘𝑘 𝐶𝐶𝑂𝑂2 𝑡𝑡𝑞𝑞
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑚𝑚𝑚𝑚𝑢𝑢𝑠𝑠𝑡𝑡 𝑜𝑜𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡𝑜𝑜𝑚𝑚𝑘𝑘
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