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ABSTRACT OF DISSERTATION

Multi-agent Learning for Game-theoretical Problems

Multi-agent systems are prevalent in the real world in various domains. In many
multi-agent systems, interaction among agents is inevitable, and cooperation in
some form is needed among agents to deal with the task at hand. We model the type
of multi-agent systems where autonomous agents inhabit an environment with no
global control or global knowledge, decentralized in the true sense. In particular, we
consider game-theoretical problems such as the hedonic coalition formation games,
matching problems, and Cournot games. We propose novel decentralized learning
and multi-agent reinforcement learning approaches to train agents in learning
behaviors and adapting to the environments. We use game-theoretic evaluation
criteria such as optimality, stability, and resulting equilibria.
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Chapter 1 Introduction

Humans are social beings and naturally tend to interact and, in some situations,
affect each other through their decisions, indirectly or otherwise. This interrela-
tion can also be seen in terms of different organizations, communities, and even
countries. Needless to say that this is also reflected in many scenarios involving
robots and online bots. Thus, there has been much study on the interaction be-
tween entities, humans or otherwise. The interactions between two entities can fall
anywhere in the collaborative-competitive spectrum. There could be full collabo-
ration, for example, robots in rescue missions, or there could be full competition,
for example, playing chess; however, many times, real-world situations require
some collaboration along with some competition among participating entities. Usu-
ally, the participants do not have all the relevant information about the situation.
Participants need to implement strategies to navigate through such interactions
and gain something out of them. Figuring out such strategic approaches per the
requirements of various real-world situations is crucial.

Social or economic interactions are modeled as games in game theory, giving
those interactions some rules and structures that are supposed to provide insight
into real-world situations. Following are the three main variants of games that we
focus on:

1. Hedonic coalition formation games

2. Matching problems

3. Cournot games

A coalition formation game is a cooperative game in which agents must come
together to form groups or coalitions. It can be defined as two or more parties
who agree to cooperate (pool their resources) in order to obtain some mutually
desired outcome. The parties involved may be individuals, groups, or collectivities
of any size. Similarly, the outcomes may be anything humans desire (money, status,
power, etc.), and the resources that are pooled may be whatever is needed to
obtain the desired outcome (skills, abilities, money, etc.) Komorita and Kravitz
[1983]. Hedonic games have applications in team formation and social group
formation, where agents can have preferences over coalitions. Matching, which is
a variant of hedonic games, finds application in problems like matching between
workers-employers, students-colleges, residents-hospitals, etc. Cournot games
mostly pertain to economic markets. In a standard Cournot game Cournot [1838],
firms compete over the production of identical goods. Production or services in
various real-world markets can be modeled as Cournot games; for example, energy
systems Kirschen and Strbac [2018], transportation networks Bimpikis et al. [2019],
and healthcare systems Chletsos and Saiti [2019]. While in the first two games,
i.e., hedonic coalition formation games and matching problems, the agents can
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cooperate explicitly with each other either by forming coalitions or matches, in
Cournot games, cooperation (also known as collusion) cannot happen explicitly;
however, there is still a possibility of indirect cooperation. These games/problems
can also be considered as multi-agent systems.

A multi-agent system (MAS) is a computer-based environment made of multiple
interacting intelligent agents. There is no categorical definition of MAS. It can be
seen as a loosely coupled network of problem-solving entities/agents that work
together to find answers to problems that are beyond the individual capabilities or
knowledge of each entity/agent Stone and Veloso [2000]. Multi-agent systems have
applications in a wide variety of domains, including robotic teams, grid comput-
ing, electronic business, the semantic web, bioinformatics, computational biology,
monitoring and control, resource management, education, space, military, and
manufacturing applications Oprea [2004], Luck et al. [2003] and also collaborative
decision support systems, computer networks, traffic and distributed control, in
general Bu et al. [2008].

Most of the previous approaches for the types of multi-agent systems that
we have considered have been centralized, assuming the presence of a central
agency to control agents. However, this assumption is infeasible for many real-
world scenarios. In the centralized approaches, typically, a centralized agency
requires perfect knowledge about the system and every agent, and it determines
the action course for every agent. In real-world situations, the applications of
centralized techniques are very limited due to the fact that the agents operating
in the environment are often concerned about their privacy and are reluctant to
share any information about themselves. We consider decentralized multi-agent
systems and train autonomous agents to learn behavior strategies using novel
decentralized learning and multi-agent reinforcement learning approaches. No
centralized agency is present in our models to direct the agents, and moreover, all
the agents are autonomous, very much like most real-world scenarios.

As we model the problems as decentralized multi-agent systems with fully
autonomous agents, challenges arise due to the dynamicity of the environment,
defined by the uncertainty and non-stationary behavior of the agents. Because
of these complex challenges, solving them with pre-programmed agents is hard.
Instead, agents must look for solutions on their own, using some sort of learning
approach. It is often important for agents to learn new behaviors online to gradually
adapt to a system to improve their performance as well as that of the whole system
Stone and Veloso [2000], Sen and Weiss [1999]. This is usually necessary for complex
environments where making an apriori design of good agent behavior is difficult
and sometimes impossible.

Additively separable hedonic games (ASHGs) are one of the simplest formula-
tions of the coalition formation problem, and Aziz et al. Aziz et al. [2011a] show
that finding optimal partitions for ASHGs is NP-hard in the strong sense. Therefore,
we propose two approaches: decentralized learning and multi-agent reinforcement
learning. In decentralized learning, autonomous agents explore the unknown envi-
ronment and collect useful information about the environment, i.e., other agents
present in the system, obtainable utility values, locations of other agents/coalitions,
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etc. Agents consistently update their information while making rule-based deci-
sions based on current knowledge. Our motivation behind using decentralized
learning is that we wanted to know its effectiveness before proceeding to use
reinforcement learning, as we considered decentralized learning simpler and com-
putationally easier than reinforcement learning.

A significant part of the research on multi-agent learning concerns reinforcement
learning techniques. As using those techniques has been proven successful, we
want to contribute by exploring new multi-agent reinforcement learning approaches
for solving a subset of problems in multi-agent settings, as discussed above. Re-
inforcement learning (RL) is learning by interacting with an environment. An RL
agent learns from the consequences of its actions rather than from being explicitly
taught, and it selects its actions on the basis of its past experiences (exploitation)
and also by new choices (exploration), which is essentially trial and error learning
Sutton and Barto [2018]. The simplicity and generality of the setting make rein-
forcement learning attractive for multi-agent learning, but with added challenges
of non-stationarity of environment, scalability in terms of the number of agents,
and defining proper learning goals. In multi-agent systems, it is important to learn
strategies/behaviors. Unlike single-agent environments, multi-agent systems are
inherently non-stationary.

Multi-armed bandits (MAB) framework is a simpler version of reinforcement
learning. It is also called a k-armed bandit problem where an agent repeatedly faces
a choice among k different actions. After each choice, it receives a numerical reward
depending on the selected action. It is named by analogy to a slot machine except
that it has k levers instead of one Sutton and Barto [2018]. We model repeated
Cournot games using a MAB framework, where firms learn independently and
are autonomous. Each agent deals with its own multi-armed bandit problem
separately. This setting provides a practical framework to model the Cournot
game when there are assumptions of low cognitivity for the firms involved. Here,
information on competitors is not available to the firms, and they cannot deduce
the market demand function. Moreover, firms do not necessarily even need to
know their own cost function. In any MAB problem, dealing with the exploration-
exploitation trade-off is a crucial task. Hence, the MAB framework facilitates the
use of exploration-exploitation approaches.

We simulated the above-mentioned problems in such a way that the simulations
closely reflect real-world scenarios. We investigated the results according to the
conventional game-theory metrics, such as the resulting equilibria (for Cournot
games), optimality, or stability (for matching and coalition formation problems).

Copyright© Kshitija Taywade, 2023.
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Chapter 2 Decentralized Hedonic Coalition Formation1

A coalition formation game is a cooperative game in which agents must come
together to form groups, or coalitions. A hedonic game is a coalition formation game
in which agents have preferences over the coalitions they can be a part of.

Many real-world problems can be modeled as hedonic games. Examples in-
clude team formation and social group formation. Typically these problems are
solved using centralized approaches in which one controlling agent contains perfect
knowledge about each agent’s preferences and determines how coalitions should be
formed. While these techniques have been shown to be effective, it is unlikely that
all preferences will be known a priori in most real-world situations, limiting their
effectiveness. In this work, we address these issues by introducing a decentralized
algorithm for solving hedonic games.

For simplicity, we focus on solving additively separable hedonic games (ASHGs).
In an additively separable hedonic game, an agent’s utility for a coalition is equal
to the sum of its utility for every other agent in the coalition. While this may be
the simple formulation of the problem, Aziz et al. Aziz et al. [2011a] show that
finding optimal partitions for ASHGs is NP-hard in the strong sense. Therefore,
finding optimal coalition structures requires a heuristic approach. To this end,
we model coalition formation as autonomous agents exploring a grid world and
forming coalitions with other agents they meet. Unlike a centralized approach, in
this formulation, each agent is responsible for finding its own coalition and does
not initially know the preferences of other agents.

We also propose an extension to our decentralized technique inspired by Roth
and Vate [1990] and Diamantoudi et al. [2004]. This extension, which we refer to
as budding, is an additional search heuristic in which new coalitions are formed
by breaking apart previously formed coalitions in a locally centralized way. We
hypothesize that this will lead to higher utility coalitions for all agents involved.
We introduce three budding heuristics in Section 2.3.

We explore how our decentralized approach performs on unconstrained coali-
tion formation. In the unconstrained case, there are no restrictions on how coalitions
can be formed. By exploring how our decentralized approach performs, we aim
to show that our technique is applicable to a variety of potential problems. In
experiments, we model all types of environments as grid worlds. The motivation
behind using grid-world is that it can better represent real-world problems where
agents must expend some effort to seek out information about other agents or form
coalitions with others. For example, consider a situation in which students are
asked to form teams for an assignment on the first day of class in school. Lack-
ing any other information on their fellow students, they will physically explore
around and inquire about forming teams with other students. This process is better
modeled using a grid world so that the effort spent navigating is taken into account.

1The work in this chapter was published in EUMAS 2018 Taywade et al. [2018].
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2.1 Related Work

Much of the past work on hedonic games has focused on centralized approaches
where a single controller contains knowledge of agent preferences and determines
how each agent should act in order to get a stable outcome Aziz et al. [2011b,
2013], Gairing and Savani [2010] or optimal coalition structure which improves
the performance of overall system Rahwan et al. [2009], Rahwan and Jennings
[2008], Michalak et al. [2010], Sandholm et al. [1998]. There have been extensions
made to these techniques recently, however, in which each agent is responsible
for forming its own coalitions Janovsky and DeLoach [2016a,b]. In each of these
types of algorithms, a centralized is used to determine which solution is the best
overall solution. This is possible because it knows the preferences of all agents.
Our technique is truly decentralized since there is no controller that contains this
additional information.

In this work, we develop a decentralized approach for solving hedonic coali-
tion formation games. The idea of using decentralized approaches to solving
this problem is not new. One common approach used to solve this problem in a
decentralized way is to use reinforcement learning Abdallah and Lesser [2004],
Jiang et al. [2008]. In these approaches, each agent explores its environment and
learns how to form coalitions based on its own reward signal. Researchers have
also explored the idea of augmenting reinforcement learning-based approaches
by using additional heuristics Li and Soh [2004] or through the use of Bayesian
reinforcement learning Chalkiadakis and Boutilier [2004]. The primary limitation of
these approaches is that one must be able to model the hedonic game as a Markov
decision process (MDP) in order to make use of reinforcement learning, which
can be difficult to do depending on the nature of the hedonic game. In addition,
reinforcement learning-based approaches also rely on reward functions that can be
difficult for humans to define. Our decentralized algorithm does not rely on the
environment having an MDP structure or on external reward functions and, thus,
is more generally applicable than reinforcement learning-based approaches.

In this work, we also propose a novel heuristic for generating new candidate
coalitions, which we call budding. This technique is inspired by the work done by
Roth and Vate Roth and Vate [1990] and by the work of Diamantoudi, et al. Dia-
mantoudi et al. [2004] which involve using sequences of blocking pairs as a means
to find stable coalitions in matching problems.

2.2 Preliminaries

Definition 1. Banerjee et al. [2001], Bogomolnaia and Jackson [2002] A hedonic coalition
formation game (also just “hedonic game") G is defined by a set of agents, and the utilities
each agent, a, holds for each coalition C containing a. A coalition structure π for G
is a partition of the agents into coalitions. The goal of a hedonic game may be to find a
utility-maximizing coalition structure or a stable one.

There are many notions of stability for coalition structures for hedonic games.
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In this work, we use a myopic notion of stability within a coalition, called proximal
stability Schlueter and Goldsmith [2018]. This is related to “budding,” introduced
in Section 2.3, and is based on the standard hedonic games notion of core stability.

Definition 2. Richardson [1956] Given a hedonic game G and a coalition structure π, a
blocking coalition C /∈ π is a set of agents that have higher or equal utility for being in C
as for being in their assigned coalition in π, and where at least one agent has strictly higher
utility in C.

We have decided to model problems as an additively separable hedonic game
which is defined as follows:

Definition 3. Banerjee et al. [2001], Bogomolnaia and Jackson [2002] In an Additively
Separable Hedonic Game (ASHG), each agent ai has a utility, pi,j, for each other agent
aj. The total utility ui(C) of agent ai from the coalition C is Σj ̸=i pi,j.

In hedonic games, preferences can be either symmetric or asymmetric. When
preferences are symmetric, pi,j = pj,i for all pairs i, j. In the asymmetric case, i’s
utility for j might differ from j’s utility for i (so it’s possible that pi,j ̸= pj,i).

2.3 Method

The core element of our decentralized algorithm for hedonic games is that we
model the problem as a multi-agent system where agents explore a grid-world
environment. Each agent is initialized with no prior knowledge except for some
basic information about the environment (such as its dimensions). As agents explore
the environment, they will encounter other agents by moving into the same grid
position as other agents and, in doing so, obtain preference information about them.
Coalitions are formed when agents occupy the same grid cell and then choose to
enter into a coalition. We go into more detail on this algorithm and the budding
extension to this algorithm below.

Decentralized Algorithm for Hedonic Games

The core of our approach is that we model a hedonic game as a multi-agent system
in which each agent navigates a grid-based environment and builds up knowledge
of its own preferences. The agents themselves are autonomous, selfish, and myopic.
They are selfish in that they are only concerned with their own utility, and they
are myopic in that the only part of the environment they can see is their current
grid cell location. In other words, each agent is unable to comprehend the whole
environment. After each agent is initialized, it will explore the environment for
a given number of time steps. This constitutes one episode of learning, and our
algorithm will return the set of discovered coalitions after a set number of learning
episodes. The number of time steps in an episode and the number of learning
episodes can be customized for a specific hedonic game.
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We will now discuss two key elements of our approach: what each agent can
remember and recognize in the environment and how agents operate in the grid
world environment.

What Agents Remember:

Agents store limited knowledge of the environment. Specifically, agents in our
environment remember the following information:

1. After seeing another agent for the first time, an agent assigns a utility value to
that agent and stores it for future reference. Agents only know their utility for
other agents after they interact with them. Note that agents can only see other
agents when they are in the same cell location on the grid.

2. Agents also remember the location where they last saw their friends. In
this algorithm, we define an agent’s friends to be other agents for whom it
has a positive utility. This encourages agents to revisit these locations while
exploring, as there is an increased likelihood of it being able to form a coalition
with a friendly agent in that location.

3. Each agent also contains information about the highest utility values it has
received from joining coalitions in the past. In our experiments, we store 10
values, but this parameter can be tuned to the problem being solved. This
helps the agent evaluate the quality of its current coalition in terms of its own
past experience. This further encourages the agent to seek out higher utility
coalitions. One important thing to note is that this does not guarantee that
an agent will always discover the coalition that results in its overall highest
utility. This only encourages the agent to form coalitions that improve upon
its past coalitions.

Operating in grid-world:

At the beginning of each episode, each agent is placed at a random position on the
grid. At each time step, all agents simultaneously act in the grid world environment.
The most common action for an agent is to explore, i.e., move to a different location
in the grid world. The agent can also take the following actions depending on the
specific situation it finds itself in. If an agent occupies the same grid position as
another agent, these two can decide to form a coalition. The decision to form a
coalition must be mutual, so it will never be the case that a coalition will be formed
with only one willing party. The agents will enter into a coalition if the resultant
coalition results in positive utility for both agents. If a coalition is formed, then
that coalition will remain in that location on subsequent time steps. After entering
into a coalition, agents will remain in that coalition for several time steps waiting
for others to join. After a sufficient amount of time has passed, the agents in this
coalition can consider leaving to form better ones or explore the environment.

If an agent moves into a square occupied by a pre-existing coalition, it can lobby
to join the coalition. If the agent wishes to join this coalition, then each coalition
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member casts a vote to either let the new agent in or reject them. Agents will vote to
accept the candidate if the resulting coalition has a higher utility than their current
one, or they will vote to reject the candidate if the resulting coalition has a lower
utility. If more than half of the agents in the coalition vote to let the new agent into
the coalition, then the new agent becomes a member of the coalition.

If an agent is already in a coalition, it is possible that changes in coalition
membership could cause the agent to want to leave. Since an agent’s utility towards
its coalition is affected by its preference over coalition members, new members being
added or old members leaving will greatly affect how an individual agent views
the coalition. If an agent’s utility towards its own coalition becomes sufficiently
small, then it may decide to leave the coalition to seek out better ones. This decision
is influenced by utility values and the amount of time remaining in the episode. If
there is still sufficient time remaining in the episode, it may choose to explore more
to find higher-scoring coalitions. However, if a small amount of time is left, agents
may choose to exploit the knowledge and remain in high-scoring coalitions. Note
that just after joining the coalition, for a few steps, agents remain in the coalition
(while still having positive utility) and wait to see if changes in the coalition caused
by leaving or joining of other agents can improve its utility. Agents follow the
following mechanism to maximize their utility and settle down in coalitions:

• For the first (1/3)rd of the total steps, an agent compares their current utility
from the current coalition with the average of the top 10 highest utilities it has
got so far. If its current utility is greater or equal to that average utility, then it
stays in the coalition.

• For the second (1/3)rd steps, an agent compares their current utility with the
average value of the top 10 utilities seen multiplied by 0.75. It stays in the
coalition if its current utility is greater or equal to that value. This means an
agent is more likely to stay in a coalition rather than further explore.

• For the next (1/6)th steps, an agent compares their current utility with the
average value of the top 10 utilities seen multiplied by 0.5. It stays in the
coalition if its current utility is greater or equal to that value.

• For the last (1/6)th steps, agents only leave a coalition if they have a negative
utility for that coalition.

In this way, agents set high expectations and then gradually lower them as the clock
runs down. The coalition structure at the end of the last episode is considered the
solution coalition structure.

Budding

In the base form of our approach, coalitions can only be formed when multiple
agents occupy the same location, and all agree to enter into a coalition. To further
improve our approach, we have proposed an extension to our baseline approach,
which introduces a new way to form coalitions. This technique, called budding,
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allows large coalitions to break apart into smaller ones. This helps avoid the
situation in which many agents keep joining a pre-existing coalition when one
or more sub-coalitions could be formed from this one, resulting in higher overall
utility for the agents involved. Formally, we define budding as follows:

Definition 4. Consider a set of agents A = {a1, a2, ..., an}, among which some agents
form coalition C. Budding is when a sub-coalition, B, is formed from C. This happens
when the number of agents in C reaches a certain threshold T, and forming a sub-coalition
produces better total utility for agents in B than their total utility from the original coalition
C.

We have the following three budding heuristics:

1. Random: When a coalition, C, reaches a sufficient size, a random sub-coalition,
B, is formed and the total utility of agents in B which they can get from being
part of B is compared with their total utility from being part of C. This process
is repeated until a B with higher total utility is found, or until the specified
number of iterations of trying new sub-coalitions is reached.

2. Greedy: A random agent, a, is chosen from C to “seed” B. While it is possible
to increase the total utility of the agents in B by adding an agent from C to B,
we do so.

3. Clique Detection: We define a graph on C where vertices are agents in C, and
edges are between friends. We set B as the first clique we find where the total
utility of agents in B, which they are getting from being part of B, is higher
than their total utility from being part of C.

We consider these budding strategies to be only locally centralized in that they
only occur on a subset of agents that happen to be in a coalition. Since this requires
only minimal information sharing between agents that are in a coalition, we still
consider this approach to be decentralized in general.

2.4 Experiments

we initialize the grid world by placing agents in random positions on the grid. We
then run the algorithm for 100 learning episodes of 4000 time steps each. Since
our algorithm is non-deterministic, we run 10 instances with different preference
profiles and report the average total utility of all the agents, averaging over those
10 instances.

For evaluating our approach for unconstrained hedonic games, we explored how
it would perform in an environment with 10 agents exploring a 10 × 10 grid. One
aspect of the environment that can have a large effect on the outcome is the range
of expected utility values. In this test case, we experimented with two possible
ranges of utility values: the range (−5, 10) and the range (−10, 10). When one
agent encounters another agent for the first time, both agents will uniformly sample
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a preference from these ranges and assign it to the other agent. We evaluate both
asymmetric and symmetric preferences. For this evaluation, we compare the results
of our approach with the results of an algorithm that generates random partitions.
We do not compare our results against the optimal solution as finding the optimal
involves evaluating the utility of every possible partition, which is an NP-hard
problem Aziz et al. [2011a].

We also evaluate the effect that our budding technique has on the quality of
discovered coalitions. To do this, we performed experiments where we compared
versions of our decentralized algorithm with budding implemented using each
heuristic introduced earlier against a version of our algorithm that did not have
budding implemented. We tested these methods in a 10 × 10 grid world with 10
agents, and also with 20 agents. For this study, we only consider a utility value
range of (−10, 10), and we assume that agents have asymmetric preferences. Since
we are using budding, we must define a threshold value that determines when the
budding process starts. We set this value to 9 when there are 20 agents on the grid
(meaning that budding will begin when a coalition has 9 members), and we set this
value to 6 when we examined 10 agents on the grid.

2.5 Results

The performance of our decentralized algorithm compared to random partitioning
can be found in Table 2.1. As you can see in the table, our decentralized approach
was able to outperform our random baseline significantly. Notably, this behavior is
consistent across all utility ranges regardless of whether preferences were symmetric
or asymmetric. While this baseline is not very sophisticated, this shows that our
approach can drastically outperform this worst-case scenario.

The results of the comparison between versions of our decentralized algorithm
with and without budding can be seen in Table 2.2. The results of this comparison
show that the versions of our decentralized algorithm that had the ability to produce
new coalitions through budding consistently outperformed the base version of our
technique. This shows that our intuition about the potential benefits of budding
for coalition formation was well founded. Of the three heuristics, it appears as
though the clique-based approach performed better than both random and greedy
heuristics. A more rigorous evaluation is required, however, before more definitive
conclusions can be drawn.
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Preference Type Utility Range Decentralized Approach Random Partitions

Asymmetric (-5,10) 188.3 57.8

(-10,10) 67.3 -9.1

Symmetric (-5,10) 224.2 37.2

(-10,10) 134.7 19.6

Table 2.1: Comparison of Decentralized Approach with Random
partitions for both Asymmetric and Symmetric cases

Number of Agents Without Budding Random Greedy Clique

10 69.55 72.44 74.55 75.88

20 229.6 235.8 235.2 241.1

Table 2.2: Comparison of decentralized approach with and without
Budding heuristics for the 10-agent environment and the 20-agent
environment.

2.6 Summary

We proposed a decentralized approach for solving hedonic games based on model-
ing the problem as a grid-world exploration problem. We feel that decentralized
approaches better simulate how these problems work in a real-world environ-
ment and are, thus, more generally applicable than more common, centralized
approaches. We also introduced a novel coalition discovery technique called bud-
ding, in which large coalitions spawn smaller sub-coalitions if they would increase
the total utility of agents in the new sub-coalition. Our experiments showed promis-
ing results as our techniques both with and without budding performed well on a
variety of hedonic games. We believe that our experiments provide strong evidence
of the quality of our approach.

Copyright© Kshitija Taywade, 2023.
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Chapter 3 Decentralized Matching

3.1 Roommate Matching 1

In chapter 2, we have seen unconstrained coalition formation. In the unconstrained
case, there are no restrictions on how coalitions can be formed, whereas in con-
strained coalition formation, explicit restrictions, such as limiting the total number
of agents allowed in a coalition or limiting the number of total coalitions allowed,
are present. Roommate matching is one such example of constrained coalition
formation hedonic games. Roommate matching places constraints on the number
of agents that can be in a coalition and the number of coalitions that can be formed.
We formulated this problem on the grid. To implement our decentralized algorithm
in this scenario, we must take these constraints into account when agents form
coalitions. To do this, we make the following alteration to our algorithms proposed
in chapter 2:

• Because the number of roommates per room is limited to C, if more agents
converge on a cell, we choose the set of C that has the highest utility in a
centralized manner. All other agents must leave the cell and explore further.

• Since the number of coalitions must not exceed R, our approach has certain
pre-designated time steps on which the total number of coalitions on the grid
is checked. If there are more than R coalitions, then the coalition with the
lowest total utility across all its agents will be forced to dissolve and agents in
that coalition will search for other coalitions to join.

Here, we make the assumption that agents do not have preferences over specific
rooms, only over their roommates.

Related Work

Irving proposed an algorithm to find the complete stable roommate matching or
report if it does not exist Irving [1985]. Tan proposed the modified version of the
algorithm proposed by Irving to find a maximum stable matching, i.e., a maximum
number of disjoint pairs that are stable among themselves Tan [1990]. Irving and
Manlove further proposed an algorithm to find stable roommate matching with ties
in the preferences or the incomplete list of preferences Irving and Manlove [2002].
Fleiner et al. also proposed methods for handling generalized stable roommate
matching in which preference lists may be partially ordered and forbidden pairs
may be present Fleiner et al. [2007]. However, all of these works assume the
centralized framework and are limited to finding the pairs of roommates, i.e.,
matching only up to two roommates.

1The work in this section appeared in our EUMAS 2018 paper Taywade et al. [2018].
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Preliminaries

Definition 5. An instance of Roommate Matching consists of a set of agents A =
a1, a2, .., an and R, the available number of rooms, and a uniform maximum capacity per
room of c. The goal is to form a partition P of agents where each coalition in P has at most
C agents, and there are at most R coalitions.

Experiments

For roommate matching, we consider a 10x10 grid with 9 agents. In this environ-
ment, a “room” can contain 3 agents, and there are 3 rooms available. In other
words, it is possible for each agent to be a member of a coalition as long as each
coalition has 3 members. In these experiments, we compare the results of our
decentralized algorithm against the utility associated with optimal matching. We
consider 3 different utility ranges in these experiments: a range of (1, 10), a range
of (−5, 10), and a range of (−10, 10). In this problem, we assume that agents have
asymmetric preferences.

Results

The results of the experiments we conducted on the roommate matching problem
can be seen in Table 3.1. In these experiments, we were able to compare against
the optimal matching. The first thing to note is that our technique is not able to
reproduce the optimal matchings. That being said, we feel that our performance
was comparable to this upper bound. We can see from Table 3.1 that our approach
gives results close to the optimal matching for all three utility ranges.

Utility Range Decentralized Approach Optimal Matching

(1,10) 102.3 129.6

(-5,10) 65.8 91.3

(-10,10) 42.9 64.6

Table 3.1: Comparison of average total utility over 10 instances
obtained by adaption of our approach for Roommate Matching
with the utilitarian optimal matching

Summary

We showed that our decentralized learning approach could be adapted for room-
mate matching, and we can get near-optimal results. Our proposed algorithm can
work for an arbitrary number of rooms (coalitions to form) and capacity of rooms
(limit on the number of agents per coalition).

13



3.2 Decentralized Marriage Models 2

Finding a good partner has always been one of the important things in people’s
lives. The problem of determining who should marry whom is referred to as the
marriage problem, and it is frequently modeled as a two-sided matching problem. A
two-sided matching problem consists of two disjoint sets of agents where agents
are matched to members of the other set. In this problem, we assume that agents
have preferences over the types of matches that can be made.

There are several personal, social, and cultural factors that influence how people
find potential mates and, thus, which people will end up together. There are many
social structures that control what potential matches can be made.

We explore the problem of finding optimal partner matchings under different
assumptions about how people are introduced. Specifically, we model the mar-
riage problem using three different environments: a grid-world environment, a
small-world network graph, and an affiliation network graph. Each of these envi-
ronments represents a practically grounded way that people meet each other in the
real world. In the grid-world models, the agents that actively seek out potential
partners on their own have little to no prior information about the other agents
they will meet. In the small-world network environment, agents are presented
with potential matches based on their degrees of separation. In other words, agents
that are closer to each other in terms of their social network are more likely to be
considered as candidates for a match. Affiliation networks model the situation
where agents are registered to matrimonial agencies and get potential matches
suggested by those agencies. In many real-world scenarios, it is not feasible for
a centralized agent or agency to optimally select partners for agents. Typically,
agents — people — act to find partners autonomously without the need for a
centralized agency. Thus, to better simulate real-world scenarios, we introduce
a heuristic-based, decentralized approach for solving the marriage problem and
show how it can be used, with slight modifications, to help agents find matches in
each of the three environments described above. We show the effectiveness of our
approach by demonstrating its ability to find good matchings in each of our three
test models, where good matchings are defined as those that maximize the utility of
all agents. We then compare the matches produced by our decentralized algorithms
with several baselines. As an upper bound, we compare our matches against the
matches found using the (centralized) Hungarian algorithm Kuhn [1955], which
produces optimal matches. We also compare against matches produced from the
Gale-Shapley algorithm Gale and Shapley [1962] and a bidirectional local search
algorithm Viet et al. [2016] as a more informed set of baselines. Note that all of these
comparisons are with centralized algorithms. We include them to get some sense
of the range of possible total utilities. We also compare with Hoepman distributed
matching algorithm Hoepman [2004]. We also show that our methods scale for large
instances of up to 500 agents. As our method produces outcomes in polynomial
time, it is fitting for environments/models where large numbers of agents need to

2The work in this section was published in the proceedings of FLAIRS 2020 Taywade et al. [2020].
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make quick decisions.

Preliminaries

Definition 6. An instance of Bipartite Matching is a bipartite graph G = (S1 ∪ S2, E)
with E ⊆ U × V. A solution is maximal matching. We consider the problem of Weighted
Bipartite Matching, where the edge weights correspond to preferences.

Definition 7. An instance of the optimal marriage problem is an instance of the weighted
bipartite matching problem, where U and V correspond to the categories of agents, pi,j is
the preference of i for j, i.e., the weight of edge (i, j), and the goal is to find a maximum
weight matching. When preferences are asymmetric, the weight of a single pair is the sum
of the weights of the two directed edges between those nodes.

Definition 8. A social network is a graph, where nodes are individuals and edges are
relationships. The edges can be annotated with the type of relationship, and nodes may
be annotated, for instance, to indicate membership in a node set in a bipartite graph for
matching purposes.

One measure of interest in social network graphs is the clustering coefficient,
which is the average “cliquishness’ of nodes in the graph. Note that, for a node
with k neighbors, those neighbors may or may not connect with each other, for a
maximum of (k

2) = k(k − 1)/2 edges.

Definition 9. For a given graph G and node n with k neighbors, we define the cliquishness
of n to be the ratio of the number of edges connecting n’s neighbors to (k

2). The clustering
coefficient of G is the average of Cn over all nodes n Watts and Strogatz [1998].

We now define the network of interest, inspired by the folkloric “six degrees of
separation.”

Definition 10. A small-world network is a network where the expected distance D between
two randomly chosen nodes grows proportionally to the logarithm of the number of nodes
N in the network (D ∝ log N), while the clustering coefficient C is not small Watts and
Strogatz [1998].

Definition 11. The Erdös-Renyi graph generation model is specified by two parameters:
the number of vertices in the graph n, and the probability of an edge p. Given n and p,
we choose a graph on n vertices by including an edge between each pair of vertices with
probability p, independently for each pair. Mathematically, G ⇐ G′(n, p

)
, which indicates

that G is a random graph chosen from this distribution G′.
Our affiliation/bipartite graph is a bipartite version of the Erdös-Renyi graph. The

bipartite random graph generator chooses each of the n × m (undirected) or 2 × n × m
(directed) possible edges with probability p and each node has an attribute BIPARTITE with
value 0 or 1 to indicate which bipartite set the node belongs to.
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Related Work

One popular approach to solving marriage market problems and job matching prob-
lems is to use decentralized approaches. These methods explore how random meet-
ings can result in stable matches since matches are generated by the agents them-
selves rather than a centralized controller agent. Most decentralized approaches
for solving marriage problems are focused on finding stable matches Lauermann
and Nöldeke [2014], Wu [2015]. Many of these techniques have focused on using
preferences or interests as the basis for their matchings Vanzin and Barber [2006],
Roth and Xing [1997], Foner [1997] and we also do the same in our work. Since
there may be many potential stable matchings in marriage problems, there has also
been work that seeks to identify the stable matchings that are most likely to pre-
vail Boudreau [2011]. Contrary to much of this work, our decentralized approach
focuses on generating optimal matchings instead of stable matches. Some earlier
work has looked at optimal matchings in the centralized setting Irving et al. [1987],
Nemhauser and Weber [1979]. While these algorithms are elegant solutions to the
problem of assigning individuals to pairs, they presuppose the central authority
with access to all individuals’ preferences. Our work avoids this assumption.

Distributed algorithms for weighted matching mainly include algorithms that
are distributed in terms of agents acting on their own either synchronously or
asynchronously Hoepman [2004], Wattenhofer and Wattenhofer [2004], Khan et al.
[2016], and algorithms that are distributed using parallel programming to find
approximate maximum matchings (references omitted due to space constraints). In
our work, we explore how social networks and pre-existing preferences affect the
pairings produced by a decentralized matching algorithm, which has not, to our
knowledge, been examined in previous research.

Methods

As mentioned before, we model the marriage problem in three types of models:
grid-world, affiliation network, and small-world network. In this section, we
introduce our three models thoroughly. We assume that agents start off agnostic
about the world and about their potential mates in every model. We propose a
decentralized approach to help autonomous agents find their partners in all three
models. The models differ in how, and how often, agents meet.

Grid-world Environment

Model The grid-world model is a spatial environment where agents can freely
navigate the grid and encounter each other. We deploy agents at random cell
locations on the grid. Agents can only see the contents of their current grid location.

Algorithm The grid-world environment contains S1 and S2 agents in equal numbers.
At the beginning of each episode, agents are initialized at random starting locations.
From here they start randomly exploring the grid environment. When an agent
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(a) Grid-world with 10
agents on 10 × 10 grid

(b) Affiliation Network
with 10 agents and 3
agencies

(c) Small-world graph with
30 nodes, average degree of
separation ≈ 6

Figure 3.1: Marriage Models

encounters another agent of the opposite category, it discovers how much utility it
can get if it is matched with that agent and it stores that utility value if it is positive
(which indicates that it can be a potential match). It does not store the identity of
the other agent. If two agents from the same category encounter each other, they
ignore each other. Each agent also has basic information about the total number of
agents of the opposite category present in the environment. Using this, they can
calculate how many potential matches could be formed and can, from that, reason
about how many candidate agents they have not encountered yet. As explained
below, this helps determine if an agent forms a match and stays there, or if the
agent chooses to explore to form a potentially better match.

We define the exploration rate r to be the ratio of steps so far to the total number
of steps. For each individual, we define h to be the average of all positive utilities an
agent has seen so far, c is the highest possible utility for an agent in the environment
and u is the utility agent is getting from a match if it is part of the one. An agent
decides to form a match with another agent when they encounter each other in
the same cell location if they each get positive utility from the match. If an agent
encounters more than one agent of the opposite category at the same cell location
then it chooses the best among them. If two opposite-category agents are willing,
then the match is formed (they begin dating). Agents only stay in the match when
they find themselves in one of the following situations:
• If u ≥ 0.75 × c;
• If r ≤ 0.6, u ≥ h;
• If 0.6 ≤ r ≤ 0.8, u ≥ 0.5 × h;
• If r ≥ 0.8, u ≥ 0.

In this way, agents first set high expectations and then gradually lower their
expectations as time passes. Note that, if an agent encounters a better agent at the
same cell location, while in a match, then it may leave the current match and form
a new one with a better agent if that new agent is also interested. The matching
at the end of the last episode is the resulting matching (the marriage). The values
used for each of these situations can be tuned to specific tasks or environments. We
use these values because they worked well for us in practice.
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Affiliation Network/Bipartite Network

Model An affiliation network is usually used to represent common membership of
groups, and in our case refers to membership in matrimonial agencies or dating
websites. In this affiliation network, actors are connected by common membership.
We represent such a network as a bipartite graph, with nodes being either individ-
uals or matrimonial agencies. Edges represent individuals’ memberships in the
agency. In our affiliation network model, actors are people who are looking for part-
ners and collectives are agencies to which actors are registered. These matrimonial
agencies suggest matches to their members. Note that an actor can be a member of
more than one agency.

Algorithm As mentioned before, we create two types of agents, matrimonial agen-
cies and people, as nodes in the affiliation graph; people are randomly assigned
to agencies. At each step, agencies randomly suggest a match to everyone who is
registered with them. Note that these suggestions are not necessarily symmetric:
an agent may be suggested to another, without receiving the other as a suggestion.
The one receiving a suggestion might express interest in the other. When individu-
als accept each other as a match, they are removed from the agencies’ registered
candidate lists.

Each individual has a list of possible matches, including others they are inter-
ested in, and those who are interested in them. They may select one match to
propose to, and be accepted or not. However, if they receive a better proposal in
that time step, they retract their own proposal. If a proposal is offered and accepted
and not retracted in that time step, then the marriage happens. If no marriage
happens for an individual in a particular time step, then the individual’s list is
updated at the next step when they get new suggestions from agencies, until they
get married. People are removed from others’ lists when they get married. To recap:
when an agent expresses interest in another agent, the couple is married unless the
agent receives interest from a better candidate at the same time step, or the recipient
refuses them. The factors that affect an agent’s decisions on whether to propose, or
to accept a proposal, are the utilities the agent has seen so far, and the time left.

We define the exploration rate r to be the ratio of steps so far to the total number
of steps. For each individual, we define h to be the average of the five highest
utilities an agent has seen so far (Note that h is particular to an agent and their
history so far). Finally, c is the utility of the candidate on that individual’s current
list. We denote by max the maximum possible utility. There are four possibilities
listed below when agents decide to take action (proposing to someone or accepting
a proposal).
• If r < 0.4 and c ≥ 0.75 × max;
• If 0.4 ≤ r ≤ 0.6 and c ≥ h;
• If 0.6 ≤ r ≤ 0.8 and c ≥ 0.75 × h;
• If 0.8 ≤ r and c ≥ 0.5 × h.

If any of these conditions hold for an individual with respect to someone who
was suggested, then they propose. If a proposal has been received, and the recipient
finds themselves in one of those conditions, then they will accept the proposal. Note
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that, in the fourth step, expectations have been lowered, similar to what happens as
time runs out in the grid-world environment. As before, each of these conditions
can be tuned for specific environments. We selected these because they performed
well for us in practice.

Small-World Network

Model The final model we consider is a social network graph. This model is meant
to formalize the process of finding matches through one’s social network. In practice,
people are often introduced by friends, or through chains of acquaintances. We
randomly generate suggested matches, with probability inversely proportional to
their distance in the graph, as a proxy for such introductions. Every node represents
someone in search of a mate, and also a conduit for introductions. We use a small-
world network, where the average distance between nodes is somewhere between 6
and 7, based on the folkloric “six degrees of separation” introduced by Travers et al.
Travers and Milgram [1967, 1977] and further confirmed by Dodds et al. Dodds et al.
[2003]. We use the Watts-Strogatz model Watts and Strogatz [1998] of small-world
graph construction to build our model.

Algorithm This is a variant of the Affiliation Network algorithm, where suggestions
come not from agencies, but from the individuals’ social network (small-world
network). The likelihood of two individuals i and j meeting is a function of their
distance d(i, j) in the network. At each stage, individuals receive at most 3 sugges-
tions/introductions. To generate the list of suggestions for i, the algorithm first
samples (uniformly at random) one from each distance from i. The sampled indi-
viduals are added to the list with probability 1

2d(i,j) . (Note that closer individuals are
more likely to be added.) Finally, if the list has more than 3 suggestions, individuals
on the list are chosen uniformly at random for culling from the list for this stage.
We have chosen these parameters as they keep the number of introductions per
agent balanced (not too high and not too low) and realistic while comparing with
that of other models.

Note that, unlike the grid world, in the affiliation network and social network
algorithms, once agents become paired with someone they are considered married
forever.

Experiments

In experiments, we evaluate our algorithms on three criteria: 1) The quality, mea-
sured as total utility; (2) the scalability with respect to the number of agents, and
(3) robustness with respect to changes in the range of utilities. To test quality, we
calculate the total utility of all matchings found by our algorithm in each of the
three environments. Note that in our decentralized models, agents selfishly try to
increase their own utility; their aim does not include optimizing the total utility
of the whole system. We also examine the total number of matches found by each
algorithm. We run each algorithm on each environment 10 times using different
randomly assigned preferences between agents each time.
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The performance of our method is the average cumulative utility over these tri-
als. To evaluate scalability, we perform these trials with varying numbers of agents.
Specifically, we consider trials with 100 agents in each environment, and trials with
500 agents. To evaluate the robustness of each algorithm with respect to observed
utility values, we also perform trials with different utility ranges. We consider the
following two ranges: (1, 10) and (−10, 10). Thus, for each environment model, we
perform 4 sets of experiments with different parameters: 100 agents, (1, 10) utility
range and (−10, 10) utility range; 500 agents, (1, 10) utility range and (−10, 10)
utility range. Recall that preferences can be symmetric or asymmetric. For com-
pleteness, our experiments consider both symmetric preferences and asymmetric
preferences for each set of trials run. To contextualize these results, we compare
them against five baseline algorithms discussed in the next section.

Baselines

For this evaluation, we compare our decentralized algorithms against four baselines:
Gale-Shapley algorithm Gale and Shapley [1962], bidirectional local search Viet
et al. [2016], Hoepman algorithm (decentralized) Hoepman [2004] and optimal
matchings found using the Hungarian algorithm Kuhn [1955]. The random match-
ing algorithm provides a lower bound on the expected quality of matches found,
whereas the matches found by the Hungarian algorithm are optimal. The Gale-
Shapley and bidirectional local search algorithms serve as a more informed baseline
to compare against. Note that the goal of each of these algorithms is to find stable
matches, which is different than our goal.

The Hungarian algorithm is optimal in a utilitarian sense, meaning that individ-
ual agents may get low-utility matches in order to maximize the total utility. This
happens particularly in the asymmetric-preference case. Therefore, comparison
with distributed Hoepman algorithm is important because there, agents also act
selfishly, as in our approaches.

We discuss each of these baselines in greater detail below.

Gale-Shapley: We assume familiarity with this algorithm.

Bidirectional Local Search: This algorithm also attempts to find optimal stable
matchings but via bidirectional local search. It simultaneously searches forward
from the man-optimal stable matching and backward from the woman-optimal
stable matching until the search frontiers meet.

Hoepman Algorithm: This is a decentralized variant of the sequential greedy
algorithm Preis [1999] which computes a weighted matching that has utility at
least half that of the maximum-utility matching. Agents act independently and
communicate via asynchronous messages. Unlike our setting, agents all know each
other a priori.

Hungarian Algorithm: The Hungarian algorithm finds optimal weighted bipartite
matchings.
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Decentralized Algorithm Parameters

In the following sections, we discuss the parameters that we used for designing our
decentralized models and algorithms.

It is difficult to get impartial real-world data for these models, so we have chosen
parameters according to our intuition. We will discuss the parameters we have
chosen in greater detail below.

Grid-world Model: In the grid-world environment, learning occurs in episodes in
which agents are allowed to take a fixed number of actions before the learning for
that episode concludes. For our experiments, we only use two episodes to train each
agent. Between episodes, agents remember the positive utilities they have received
so far by being matched with other agents. The number of training steps in each
episode changes based on whether there are 100 or 500 agents in the environment
as well as the size of the grid: • 100 agents:

(
20 × 20

)
grid, 1000 steps • 500 agents:(

45 × 45
)

grid, 30,000 steps. After exhausting the specified number of time steps,
agents are reset to random starting locations and learning resumes.

Affiliation Network Model: Our affiliation network model is a bipartite version of
the binomial (Erdös-Renyi) graph model Erdos and Renyi [1959], Bollobás [2001],
Gilbert [1959]. For the experiments, we use the following parameter combinations:
• n=100, m=5, p=0.5 • n=500, m=10, p=0.5.

Thus, for experiments with 100 agents, we have 5 agencies that agents can be
members of and there is a 50% chance that an agent belongs to a given agency. For
experiments with 500 agents, we increase the number of agencies to 10. Using these
parameters, we create affiliation networks in which each agent is affiliated with
4–5 agencies on average. We chose these parameters by conducting an informal
social survey among people that are registered with matrimonial agencies. We
found that people that are registered to these agencies are typically registered to
4–5 on average. As in the grid world, we use 2 learning episodes for each set of
experiments. For the experiments involving 100 agents, an episode lasts for 1000
time steps. For experiments involving 500 agents, an episode lasts for 30, 000 time
steps.

Small-world Network Model: For constructing a small-world graph, the following
parameters are required: the number of nodes, n; the number of nearest neighbors
that each node is joined with, k; and the probability of rewiring each edge, p.
Depending on how these values are assigned, the average shortest path between
any two nodes will change. We have chosen parameters such that the average
shortest path between any two nodes is about 6. This is inspired by the six degrees of
separation phenomenon Travers and Milgram [1967], Dodds et al. [2003]. To achieve
this average distance between nodes, we set the parameters for a network with
100 agents as follows: n=100, k=5, and p=0.05. This results in a network where the
average shortest path between two nodes is approximately 6.2. For a network with
500 agents, we assign the following values: n=500, k=4, and p=0.15. This results in
a network where the average shortest path between two nodes is approximately 6.6.
For the social network graph model, we also use learning episodes. The number of
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Agents;
Utility
Range

Gale-
Shapley

Bidirec-
tional
Local

Search

Hoep-
man

Algori-
thm

Grid-
world

Affilia-
tion

Network

Small-
world

Network

Opti-
mal

(Hunga-
rian)

100;
(1,10)

608.5
(65.1%)

915.2
(98.05%)

742.2
(79.51%)

790.5
(84.69%)

776.2
(83.14%)

753.3
(80.7%) 933.4

100;
(-10,10)

134.6
(16.4%)

779
(95.10%)

676.9
(82.63%)

678.1
(82.78%)

592.5
(72.34%)

606.7
(74.06%) 819.1

500;
(1,10)

2841.5
(57.30 %)

4881.7
(98.45 %)

3740.7
(75.44 %)

4018
(81.03 %)

4368.1
(88.09 %)

3924.2
(79.14 %) 4958.4

500;
(-10,10)

461.5
(9.8%)

4577.3
(97.41 %)

3667
(78.04 %)

3821.9
(81.34%)

3935.4
(83.76%)

3626.8
(77.18%) 4698.6

100;
(1,10)

943.4
(94.4%)

988
(98.89%)

738.8
(73.95%)

852.9
(85.37%)

843.2
(84.40%)

875
(87.58%) 999

100;
(-10,10)

856.6
(87.8%)

937.4
(96.08 %)

729.6
(74.78 %)

799.3
(81.92%)

817
(83.74%)

814.2
(83.45%) 975.6

500;
(1,10)

4943.6
(98.9%)

4995
(99.9 %)

3739
(74.78 %)

4332.1
(86.64%)

4666.8
(93.33%)

4553.6
(91.07%) 5000

500;
(-10,10)

4827.2
(96.5%)

4974.6
(99.49 %)

3687.6
(73.75 %)

4237.6
(84.75%)

4582.8
(91.65%)

4486
(89.72%) 5000

Table 3.2: Upper: Results of asymmetric preference experiments in
terms of average total utility averaged over 10 runs. We also list the
percentage of the optimal utility obtained. The highest performers
among the three models for each set of experiments are listed in
bold. Lower: Results of symmetric preference experiments in terms
of average total utility averaged over 10 runs. We also list the
percentage of the optimal utility. The highest performers among
the three models for each set of experiments are listed in bold.

episodes and number of time steps per episode are defined the same as they were
for the grid-world environment model and the affiliation model network.

Results

We have compared our methods for the three marriage models to several central-
ized algorithms and to the decentralized Hoepman algorithm. These results are
summarized in Table 3.2 for both asymmetric and symmetric preferences. Note that
our approaches significantly outperform the Hoepman algorithm in most cases.

For asymmetric preferences, all three of our decentralized algorithms outper-
form the Gale-Shapley algorithm in average total utility but bidirectional local
search algorithm performs better than our decentralized algorithms. For 100 agents
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with a utility range of (1,10), all three of our decentralized algorithms achieved
roughly 80% of the performance of the Hungarian algorithm. When utility ranges
were expanded to include values from (-10,10), the performance of our algorithms
with respect to the optimal matchings decreased to about 70% for affiliation net-
works and small-world networks. The performance of our algorithm in the grid-
world environment remained consistent by achieving around 83% of the perfor-
mance of the Hungarian algorithm. When the number of agents increased to 500
with asymmetric preferences, the performance of our algorithms with respect to the
Gale-Shapley algorithm and bidirectional local search algorithm remains consistent.
In both utility ranges (1,10) and (-10,10), our algorithms’ performance relative to the
optimal matching improves compared to the experiments with fewer agents, and
also, the difference between results for two different utility ranges goes down. Each
of our algorithms is able to achieve roughly 80% of the performance of the optimal
matchings in this case. Interestingly, the affiliation network setting performs better
than the other two settings in both types of utility ranges.

In the set of experiments with symmetric preferences, the matchings produced
by the Gale-Shapley and bidirectional local search algorithm outperformed the
matchings produced by our decentralized algorithms in all environment models in
terms of average total utility. For experiments using 100 agents, our decentralized
algorithms achieved about 80–85% of the performance of the Hungarian algorithm
across both utility ranges. When the number of agents was increased, the perfor-
mance of our decentralized approaches increased to 85–90% of the performance of
the utility of the optimal matchings. The affiliation network setting performs better
than the other two settings except for the case of 100 agents with a (1, 10) utility
range. And the overall performance of small-world and affiliation network settings
improves over the grid-world setting in the symmetric case.

The performance of our methods compared to the Hoepman algorithm high-
lights the power of our decentralized approach for solving matching problems
when using a variety of representations. In addition, the fact that our method pro-
duced matchings with higher total utility despite each agent being selfish further
shows the power of our algorithm.

Another thing to note is that our decentralized algorithms drastically outper-
formed the Gale-Shapley algorithm and gave quite close results to the bidirectional
local search algorithm in the set of experiments with asymmetric preferences. This
shows that our decentralized approaches are very effective in these situations. This
is especially notable because our decentralized approaches are more generally appli-
cable since they do not rely on a centralized agent that contains perfect knowledge
of agent preferences. Despite their performance in asymmetric environments, our
decentralized approaches were not able to outperform the Gale-Shapley algorithm
in environments with symmetric preferences. This is likely due to how the Gale-
Shapley algorithm finds matches. When preferences are symmetric, it is likely that
the matchings produced by the algorithm are not so bad for the second group. The
explanation for the bidirectional local search algorithm performing better than our
approach is that, even if it attempts to optimize a solution like our approach, it does
it in a centralized manner which is a big advantage that our approach does not
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have.

Summary

When we compare our decentralized methods for the three different marriage
models against each other, we find that they give somewhat similar results. This
roughly indicates that different environment settings do not significantly change the
quality or the quantity of matches found. When we compare results for affiliation
network and small-world network settings as both of them are social networks,
we noticed that in 8 out of 10 different experiment settings, the affiliation network
performs better than the small-world network setting. This may suggest that when
agents are affiliated with agencies, there is a slightly better chance of finding a good
partner than just depending on interpersonal networks, but it certainly needs more
investigation as some of our parameters were based on our discretion and not on
real-world data.

Recall that one of the motivations for using a decentralized approach is that it
better simulates how people find matches in the real world. The fact that each of
our decentralized algorithms performed well across all environments and test cases
indicates that they can be useful across different strategies for finding partners.

We proposed the use of three decentralized models for matching in marriage
problems and proposed algorithms for those models. In each case, the overall
utility of matches found was, on average, 84% of the utility achieved by the optimal
(Hungarian) centralized algorithm. Since we argue that the social problem is
inherently decentralized, agents have limited information, and preferences are
typically asymmetric, so optimal sets of matchings are quite rare; our results are
quite strong. Our approaches outperform the distributed Hoepman algorithm,
which supports our claim of good results. We also compared our results to those of
the Gale-Shapley algorithm for a stable marriage and the bidirectional local search
algorithm. Gale-Shapley is optimal for one side and not the other; as expected,
when preferences were asymmetric, our algorithms performed significantly better
than Gale-Shapley. However, when preferences are symmetric, the Gale-Shapley
algorithm produced nearly optimal utility matchings better than the decentralized
algorithms. Millennia of literature assures us that human romantic preferences,
however, are not symmetric. As expected, the bidirectional local search algorithm
performed better than our approach.

One can view the models in this work as reflecting three different approaches to
find a partner. Our work, as presented here, offers no insight into which of these
approaches is better. Nonetheless, we successfully provided simple, scalable, and
easily adaptable methods for utilizing individually acting agents in three different
decentralized environments with a large number of agents.
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3.3 Multi-agent Reinforcement Learning for Decentralized Stable Matching3

Matching markets are prevalent in the real world, for example, matching of students
to colleges, doctors to hospitals, employees to employers, men and women, etc.
A two-sided market consists of two disjoint sets of agents. In a two-sided stable
matching problem, each participant has preferences over the participants on the
other side. A matching is stable if it does not contain a blocking pair. A blocking pair
is formed if two agents from disjoint sets prefer each other rather than their current
partner. Although, most of the prior literature focuses on centralized algorithms
where the entire set of preferences is known to some central agency, having such a
central clearinghouse is not always feasible. Therefore, we consider a decentralized
matching market with independent and autonomous agents.

There have been several decentralized matching methods proposed in recent
years. However, many of them assume that the agents have knowledge of one
another’s preferences and can easily approach/contact each other, i.e., negligible
search friction. In reality, it takes time to meet a partner and to learn the value of
said partnership. Furthermore, there is seldom a scope for knowing the preferences
of other agents. Also, it is a crucial task to locate and approach a potential match,
either by navigating physically or virtually. Several decentralized matching markets,
such as worker-employer markets and buyer-seller trading markets, consist of
locations at which matching agents may meet, be it physically or online. The level
of information, search cost, medium of interaction, and commitment laws can vary
across markets. Nonetheless, these are the important features of decentralized
markets. Some research works study the impact of these features on the final
outcomes for certain types of markets Echenique and Yariv [2012], Pais et al. [2012,
2017]. To better represent these features, we propose a generalized matching
problem in which agents are placed in a grid world environment and must learn to
navigate it in order to form matches. We see this as a generalized case for matching
problems. While it contains the features described above, it does not conform to the
standards set by any individual market type.

There are multiple factors involved in deciding a preferred match in real-world
situations, and having a score for each match is more expressive. Thus, we consider
weighted preferences for a stable matching problem, which is discussed in Gusfield
[1987], Irving et al. [1987], Pini et al. [2013]. The weighted preference is used as the
utility value (or reward) for being in the match. These scores reflect the underlying
preference order. Agents are initially unaware of others’ preferences as well as of
their own. In many matching markets, knowledge acquisition is important: in labor
markets, employers interview workers; in matching markets, men and women date;
and in real estate markets, buyers attend open houses. We have taken this into
account, so an agent gets to know a noisy version of its utility for a match only after
being part of it. Noise represents uncertainty in the value of a partnership, e.g., the
uncertain nature of human behavior in relationships.

Finding a long-term match in this scenario is quite a complex task. Therefore,
3The work in this section was published in the proceedings of ADT 2021 Taywade et al. [2021].
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we propose multi-agent reinforcement learning (MARL) as an alternative paradigm
where agents must learn how to find a match based on their experiences interacting
with others. We equip each agent with its own reinforcement learning (RL) module.
We use SARSA, a model-free, online RL algorithm. Instead of a common reward
signal, each agent has a separate intrinsic reward signal. Therefore, we model this
problem as a stochastic/Markov game Littman [1994], which is useful in modeling
multi-agent decentralized control where the reward function is separate for each
agent. Agents learn to operate in the environment with the goal of increasing the
expected total reward by getting into a long-term, stable, or close-to-stable and
fair match. We impose search cost as a small negative reward (-1) for each step
whenever an agent is not in a match.

We investigate the applicability of the MARL approach to the conventional
stable matching (SM) problem, as well as its extensions, such as stable matchings with
incomplete lists (SMI), where agents are allowed to declare one or more partners
unacceptable Gusfield and Irving [1989], and stable matching with ties (SMT), where
agents have the same preference for more than one agent Gusfield and Irving [1989],
Irving [1994]. Moreover, we study both the cases of symmetric and asymmetric
preferences of agents towards each other. Stability is one of the main measures in
our investigation. We check whether our method yields stable results and then to
which stable matching the method will converge if there are multiple stable match-
ings. As we have a dynamic decentralized system with agents having incomplete
information, it is hard to guarantee stability for every instance. For unstable out-
comes, we check instability with three measures: the degree of instability calculates
the number of blocking agents, i.e., those agents who are part of blocking pairs
Roth and Xing [1997]; the ratio of instability gives the proportion of blocking pairs
out of all possible pairs Eriksson and Häggström [2008]; and maximum dissatis-
faction, which is the maximum difference between an agent’s current utility and
their obtainable utility by being part of the blocking pair. Overall, we found that
many of our outcomes are stable, or if not, they are close to stable. Also, it is easy
to get stable outcomes for instances with symmetric preferences and harder for
asymmetric ones.

It is important for the outcome to be fair to all the agents, as the goal of the
agents is to increase only their own happiness. Therefore, we use three measures
of fairness: set-equality cost, regret cost, and egalitarian cost Gusfield and Irving
[1989]. We compare the fairness of our results to those of bidirectional local search,
a centralized approach, and two decentralized approaches: Hoepman’s algorithm
Hoepman [2004], and a decentralized algorithm by Comola and Fafchamps. Note
that these algorithms solve the much easier, non-spatial problems, usually with
the assumptions of complete information on the part of agents. Nonetheless, our
approach performs competitively in terms of fairness. Lastly, similar to Echenique
and Yariv [2012], we check the proportion of overall median stable matchings, as
well as individual median matchings in our results, which are other important
measures of fairness.
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Related Work

Reinforcement Learning has not been used for the decentralized two-sided stable
matching problem, but researchers have applied both RL and Deep RL mechanisms
to solve coalition formation problems. This is closest to our work as matching
problems are a special case of coalition formation problems. In Bachrach et al.
[2020], Bachrach et al. proposed a framework for training agents to negotiate
and form teams using deep reinforcement learning. They have also formulated
the problem spatially. Bayesian reinforcement learning has also been used for
coalition formation problems Chalkiadakis and Boutilier [2004], Matthews et al.
[2012]. Unlike most of the work in MARL approaches for coalition formation and
task allocation, our agents cannot communicate with each other (although they can
observe other agents in the same cell). Nonetheless, their utilities get affected by
the actions of other agents.

Researchers have studied several decentralized matching markets, and have
proposed frameworks for modeling them and techniques for solving them, and have
also analyzed different factors that affect the results Niederle and Yariv [2007, 2009],
Satterthwaite and Shneyerov [2007], Haeringer and Wooders [2011], Echenique
and Yariv [2012], Pais et al. [2012, 2017], Diamantoudi et al. [2015]. Most of these
works focus on job markets. Echenique and Yariv, in their study of one-to-one
matching markets, proposed a decentralized approach for which stable outcomes
are prevalent, but unlike our formulation of a problem, agents have complete
information of everyone’s preferences Echenique and Yariv [2012]. Unlike our
work, none of these works have formulated the problem spatially, and also, they
have used different methods than RL. Some distributed algorithms for weighted
matching include algorithms that are distributed in terms of agents acting on their
own either synchronously or asynchronously Hoepman [2004], Wattenhofer and
Wattenhofer [2004], Khan et al. [2016]. The crucial assumption in these works is
that agents already know their preferences over the members of the opposite set
and can directly contact other agents to propose matches.

Most of the decentralized methods mentioned here allow agents to make match-
ing offers and accept/reject such offers. While in our approach, an agent shows
interest in pairing with an agent from the other set that is present at the same
location by selecting a relevant action. The agent’s state space represents those
agents from the opposite set that are present at the same cell location and also which
ones among them are interested in pairing. Agents get matched only when both
agents select an action for pairing with each other. While this may seem similar to
making, accepting, or rejecting offers, it is not exactly the same.

Preliminaries

Our two-sided stable matching problem consists of n agents divided equally into
two disjoint sets S1 and S2. These agents are placed randomly on the grid with
dimensions H × L. We investigate if agents can learn good matching policies in a
decentralized, spatial setting.
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Definition 12. In the classical two-sided stable matching problem (SM), each agent has
a strict preference order p over the members of the other set. Given matching M, the pair
(i, j) with an agent i ∈ S1 and an agent j ∈ S2 is a blocking pair for M, if i prefers j and
j prefers i to their respective partners in M. A matching is said to be stable if it does not
contain any blocking pairs.

The preferences are expressed as weights and hence referred to as weighted
preferences. A weight/score represents the true utility value an agent may receive
by being in a particular match. These weights still correspond to a strict preference
order for each agent. An agent only gets to know the utility from a match when it is
in that particular match. Even then, it only receives a noisy utility value for that
match rather than the true, underlying utility value. It can be formally written as:
for i ∈ S1 and j ∈ S2, agent i receives the utility Uij · C for being in a match with
j, where C is the noise, sampled from a normal distribution with mean µ = 1 and
standard deviation σ = 0.1 and Uij is the true utility value that agent i can get from
a match with agent j. Agents still have a strict preference order p over the agents
on the other side. Uij is picked uniformly from range [k, l] ∈ Z, while maintaining
the strict preference order.

We also consider the following two extensions of the SM problem.

Definition 13. The stable matching problem with incomplete preference lists (SMI)
may have incomplete preference lists for those involved. In this case, the members of the
opposite set who are unacceptable to an agent simply do not appear in their preference list
Gusfield and Irving [1989].

As we have a score-based formulation, an agent has negative scores for unac-
ceptable agents of the other set.

Definition 14. Some agents may be indifferent (i.e., have the same utility) between two or
more members of the opposite set. This is called the stable matching problem with ties
(SMT) Gusfield and Irving [1989], Irving [1994].

We consider two types of preferences among agents: symmetric and asymmetric.
For i ∈ S1 and j ∈ S2, let pi(j) (pj(i), respectively) denote the position of i in j’s

preference list (the position of j in i’s preference list, respectively). In symmetric
preferences, pi(j) = pj(i) (in our case, Uij = Uji as well), which is not guaranteed
to be the case in asymmetric preferences. With asymmetric preferences (similar to
random preferences in literature), there can be many different stable matchings in a
market. However, in the case of symmetric preferences, there can be only one stable
matching where each agent gets their best choice. Our environment is dynamic
and uncertain, and also, due to the narrow difference between noisy utilities, it can
be hard for agents to discriminate between their choices efficiently. This can cause
unstable outcomes, especially for asymmetric preferences. Therefore, if a stable
outcome does not emerge, then we investigate the nature of instability with the
following three measures.
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Definition 15. The degree of instability (DoI) of the matching is the number of blocking
agents, i.e., the agents that belong to some blocking pair Roth and Xing [1997].

Eriksson and Häggström pointed out that, rather than only looking for the
number of blocking agents, it can also be helpful to look at the number of blocking
partners of an agent, as it gives insight into how likely the agent will exploit
instability Eriksson and Häggström [2008]. Their notion of instability is defined as
follows.

Definition 16. For any matching M under preference structure P(m) on a set of m agents,
let B(m)

P (M) denote the number of blocking pairs. Let B̂(m)
P (M) denote the proportion of

blocking pairs: B̂(m)
P (M) = B(m)

P (M) / m2 Eriksson and Häggström [2008].

While Eriksson and Häggström call this measure the ‘instability’ of the matching
M, we call it the ratio of instability (RoI). We also use a third measure, maximum
dissatisfaction (MD). It is inspired by the notion of α-stability in Pini et al. [2013]
which is specific to SM with weighted preferences.

Definition 17. In matching M, for every blocking agent x, let y be their current match
and v be their partner in some blocking pair, then

MD(M) = max
(x,v)

{Uxv − Uxy}.

An increase in this number may lead to the exploitation of instability by agents
in the market. Stability in the outcomes does not guarantee fairness. We consider
three measures of fairness to check the quality of matchings as given in Gusfield
and Irving [1989].

Definition 18. The regret cost, r(M) = max
(i,j)∈M

max {pi(j), pj(i)}.

Definition 19. The egalitarian cost, c(M) = ∑
(i,j)∈M

pi(j) + ∑
(i,j)∈M

pj(i).

Definition 20. The set-equality cost, d(M) = ∑
(i,j)∈M

pi(j) − ∑
(i,j)∈M

pj(i).

Lower values for these measures indicate better quality of the matchings. Espe-
cially, low regret cost and set-equality cost indicate fairness among agents. It is well
known that the Gale-Shapley algorithm provides a matching that is optimal for
only one side, over all possible stable matchings. Thus, one notion of fairness is to
consider the median of the set of stable matchings, so as to privilege neither set over
the other. Thus, similar to Echenique and Yariv [2012], we check whether the final
matchings are median stable matchings (MSM), and overall, what proportion of
individual matches are median matches (MM). The well-known median property is
first discovered by Conway Gusfield and Irving [1989]. A median matching exists
whenever there is an odd number of stable outcomes. It is the matching that is in
the middle of the two sides’ orders of preference. Thus, the median stable matching
represents some sense of fairness as it balances the interests of both sides.
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Definition 21. Let P be a preference profile with the set of stable matchings S(P). If
K = |S(P)| is odd, the median stable matching (MSM) is a matching M ∈ S(P) such
that for all agents a ∈ S1 ∪ S2, M(a) occupies the K+1

2 th place in a’s preference among the
agents in {M′(a)|M′ ∈ S(P)}. M(a) is a’s median partner among a’s stable-matching
partners Echenique and Yariv [2012]. While MSM is for overall matching, median match
(MM) refers to individual matches between the agents, i.e., an individual agent being
matched to its median stable match partner.

Multi-agent Reinforcement Learning

As mentioned earlier, we propose a multi-agent reinforcement learning (MARL)
approach that enables each agent to learn independently to find a good match for
itself. A reinforcement learning agent learns by interacting with its environment.
The agent perceives the state of the environment and takes an action, which causes
the environment to transition into a new state at each time step. The agent receives
a reward reflecting the quality of each transition. The agent’s goal is to maximize
the expected cumulative reward over time Sutton and Barto [2018]. In our sys-
tem, although agents learn independently and separately, their actions affect the
environment and in turn affect the learning process of other agents as well. As
agents receive separate intrinsic rewards, we modeled our problem as a Markov
game. Stochastic/Markov games Littman [1994] are used to model multi-agent
decentralized control where the reward function is separate for each agent, as each
agent works only towards maximizing its own total reward.

A Markov game with n players specifies how the state of an environment changes
as the result of the joint actions of n players. The game has a finite set of states
S. The observation function O : S × {1, . . . , n} → Rd specifies a d-dimensional
view of the state space for each player. We write Oi = {oi|s ∈ S, oi = O(s, i)} to
denote the observation space of player i. From each state, players take actions
from the set {A1, . . . , An} (one per player). The state changes as a result of the
joint action ⟨a1, ..., an⟩ ∈ ⟨A1, ..., An⟩, according to a stochastic transition function
T : S× A1 × ...× An → ∆(S), where ∆(S) denotes the set of probability distributions
over S. Each player receives an individual reward defined as ri : S× A1 × ...× An →
R for player i. In our multi-agent reinforcement learning approach, each agent
learns independently, through its own experience, a behavior policy πi: Oi → ∆(Ai)
(denoted π(ai|oi)) based on its observation oi and reward ri. Each agent’s goal is to
find policy πi which maximizes a long-term discounted reward Sutton and Barto
[2018].

Method

We propose a MARL approach for decentralized two-sided stable matching prob-
lems that are formulated spatially on a grid. For each agent, the starting location
is picked uniformly randomly from the grid cells. As agents go through episodic
training, they start in this same cell location in each episode and explore the environ-
ment. Agents must first find each other before they can potentially form matches.
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This approximates the spatial reality of meeting with individuals (at, e.g., bars or
parties) or organizations (at, e.g., job fairs).

We believe that finding a partner for oneself is an independent task, where
agents do not necessarily need to compete or even cooperate. Agents only need to
learn to find a suitable partner. Each agent independently learns a policy using the
RL algorithm, SARSA Rummery and Niranjan [1994], Sutton and Barto [2018], with
a multi-layer perceptron as a function approximator to learn the set of Q-values.
An agent’s learning is independent of other agents’ learning as all the agents have
separate learning modules (neural networks). We use SARSA because it is an on-
policy algorithm in which agents improve on the current policy. Unlike off-policy
algorithms like deep Q-learning where agents’ behavior while learning can be
erratic due to inconsistencies in the policy, on-policy algorithms follow the same
policy and improve on it, which is useful when the agent’s exploratory behavior
matters. In real-world matching markets, there is value to the path of finding a final
match. SARSA is also a model-free algorithm, so that agents directly learn policies,
without having to learn the model.

While exploring, agents cannot perceive any part of the environment other than
their cell location. If an agent encounters another agent from the opposite set in
the same cell and both agents show interest in matching with each other, at the
same time step, then they get matched. As agents can only view their current grid
cell, agents can only match with one another if they are in the same cell. As long
as agents are matched, they receive a noisy reward as a utility value at each time
step. This noise is sampled from the normal distribution and the true utility value
is multiplied by this noise. Note that our environment is deterministic. We now
describe the agents’ observation space, action space, and reward function.

Observation space: An observation Oi for an agent i at time step t, let’s say Oi[t],
consists of three one-hot vectors. The first one represents an agent’s position on the
grid, the second vector represents which members of the opposite set are present
in the current cell, and the third one shows if any of those agents are interested in
forming a match. The size of Oi is R × C + 2 · m, where R and C are the number of
rows and columns in the grid and m is the total number of members of the opposite
set. The size of the first hot vector is equal to the total number of grid cells, and the
size of the second and third vectors is equal to the size of the opposite set. Thus,
an agent initially starts out knowing only the dimensions of the grid and the total
number of agents in the opposite set.

Action space: There are two types of actions available to an agent: navigating the
grid and expressing an interest in matching with an agent from the opposite set.
The action space is of size m + 4, where m is the size of the opposite set and each
member has an action associated with it for showing an interest in matching with
that member. There are 4 additional actions for navigating the grid by moving up,
down, left, and right. There is no specific action for staying in the same grid cell
because whenever an agent is interested in forming a match with another agent, it
automatically stays in the same cell. When two collocated agents show an interest
in forming a match with one another, then the match is considered to be formed.
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Note that once a match is formed, the agents must continue to express interest in
each other at each time step in order to maintain the match. If at some point, one
ceases to express interest, the match is dissolved.

Reward Function: We have a noisy reward function described as: (1) −1 reward
for not being in a match. (2) The immediate reward received by an agent i for the
matching of agents i and j is Rij = Uij · C, where C is the noise, sampled from a
normal distribution with mean µ = 1 and standard deviation σ = 0.1 and Uij is the
true utility value that agent i can get from a match with agent j.

Agents have prior knowledge of the grid size and the total number of agents
in the opposite set because of the way the states are constructed. However, they
completely lack knowledge of the weighted preferences/utility values of other
agents. Furthermore, agents only get to know their own utility for an agent on the
other side when they get into a match with it, and that utility value is noisy. In our
setup, individuals may choose to be in a match until someone better comes along or
may choose to leave a match in order to explore further and look for someone better.
Thus, a time step in which all agents are paired is not necessarily stable, because
agents may break off a partnership to explore, or another, more appealing agent
may be willing to partner with them.

Experiments

In this section, we present the ways we tested our approach on stable matching
problems. Our main focus is on investigating the applicability of our MARL ap-
proach. Along with the classical stable matching case (SM), we examine how MARL
performs on variations such as stable matching with incomplete lists (SMI) and
ties (SMT). We consider two types of preferences among agents: symmetric and
asymmetric. As mentioned earlier, agents have weighted preferences over agents
on the other side. For an agent i ∈ S1, it can be seen as the utility value Uij that it
gets while in a match with agent j ∈ S2. In the case of SM and SMT problems, these
weights are generated from a uniform random distribution in the range [1, 10]; for
SMI, the weights are generated from a uniform random distribution in the range
[−10, 10] (negative weights indicate how much one agent dislikes the other). For SM
and SMI problems, the instances where agents have weights reflecting the strictly
ordered preferences are chosen for the experiments. This constraint is removed
while choosing SMT instances.

As we formulate the problems on a grid, we investigate results for increasingly
complex environments. This complexity is in terms of grid size and the number
of agents. We use grid sizes 3 × 3, 4 × 4, and 5 × 5 in combination with 8, 10, 12,
and 14 agents as follows: (1) Grid: 3 × 3 ; Agents: 8; (2) Grid: 4 × 4 ; Agents: 8,
10, 12, 14; (3) Grid: 5 × 5 ; Agents: 8, 10, 12, 14. We do not place more than 8
agents on a 3 × 3 grid to keep a reasonable density of the population. We chose
grid sizes such that agents find other agents easily accessible. This is motivated by
real-world places like bars, parties, job fairs, etc. We think that our choices of grid
size and the number of agents are sufficient to get the essence of realistic situations.
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Starting cell locations of agents are chosen uniformly randomly from the grid cells,
and agents are placed back to these locations at the start of each episode. We run
experiments for every possible combination of matching problem variation (SM,
SMI, and SMT), preference type (symmetric and asymmetric), grid size, and total
agents. We implement 10 different instances of each of these combinations. Each
instance is generated by assigning weights between the agents uniformly randomly
while still maintaining the preference order if needed.

Parameter Settings: Each agent independently learns a policy using SARSA Rum-
mery and Niranjan [1994], Sutton and Barto [2018] with a multi-layer perceptron as
a function approximator to learn a set of Q-values. Each network consists of 2 hid-
den layers with 50 and 25 hidden units, respectively. We trained models using the
Adam optimizer Kingma and Ba [2014] with a learning rate 10−4 to minimize TD-
control loss. We used the discount factor, γ = 0.9. We have combined SARSA with
experience replay for better results. The use of experience replay along with SARSA
has been proposed by Zhao et al. Zhao et al. [2016]. As SARSA is an on-policy
algorithm, we only used data from recent (last 10) episodes in our experience replay
buffer, which increased our performance over not using a replay buffer. The number
of training episodes and steps varies based on grid size and the total number of
agents in an instance. The number of steps per episode varies between 300–700 and
training can take between 100k to 400k episodes to converge. When there are multi-
ple suitable matches available in the environment for an agent, a proper exploration
strategy is needed to find the best among them. Therefore, we used an exploration
rate with non-linear decay, such that it is high in the beginning but decays later
(with a minimum exploration rate, ϵ = 0.05). The learning rate and discount factor
are fine-tuned as the outcomes are slightly sensitive to these hyper-parameters;
however, results are robust to the changes in other hyper-parameters.

We investigate the stability and fairness of the outcomes. Roth hypothesized
that the success of a centralized labor market depends on whether the matchmaking
mechanism generates a stable matching Roth [1991]. Although we have a decen-
tralized matching market, we think that stability is still an important measure of
success. For the SM problem, stable matchings always exist, and for the SMI and
SMT problems, at least a weakly stable matching exists Iwama and Miyazaki [2008].
In weak stability, a blocking pair is defined as

(
i, j

)
such that M(i) ̸= j, j ≻i M(i),

and i ≻j M(j) Iwama and Miyazaki [2008]. Note that in SMI instances, agents
can end up without a partner as incomplete lists make some potential matches
unacceptable.

As we have a dynamic and uncertain environment and agents with incomplete
knowledge, there is a scope for the rise of instability. Economic experiments on de-
centralized matching markets with incomplete information Ünver [2005], Niederle
and Roth [2006] have yielded outcomes with considerable instability. We use three
more measures to study instability: the degree of instability (DoI), the ratio of insta-
bility (RoI), and maximum dissatisfaction (MD) (details in Preliminaries). Stable
or close-to-stable solutions do not guarantee fairness, specifically for asymmetric
preference cases. As agents are independent and autonomous, we need to check

33



the efficacy of our approach from an individual agent’s point of view. Therefore,
we use three fairness measures: set-equality cost, regret cost, and egalitarian cost.
Additionally, we check the proportion of both median stable matchings as well as
individual median matches. We compare our results with both centralized and
decentralized algorithms. The comparison baselines are detailed below.

Bidirectional Local Search Algorithm (BLS) Viet et al. [2016] is a centralized local
search algorithm for stable matching with set equality. It uses the Gale-Shapley
algorithm Gale and Shapley [1962] to compute S1-optimal and S2-optimal stable
matchings and executes a bi-directional search from those matchings until the
search frontiers meet.

Hoepman’s Algorithm (HA) Hoepman [2004] is a variant of the sequential greedy
algorithm Preis [1999] which computes a weighted matching at most a factor
of two away from the maximum. It is a distributed algorithm in which agents
asynchronously message each other.

Decentralized Algorithm by Comola and Fafchamps (D-CF) Comola and Fafchamps
[2018] is designed to compute a matching in a decentralized market with deferred
acceptance. Deferred acceptance means an agent can be paired with several other
partners in the process of reaching their final match. This algorithm includes a
sequence of rounds in which agents take turns in making proposals to other agents,
who can accept or reject them. While Comola and Fafchamps focused on many-to-
many matching, the method can be easily adapted for one-to-one matching.

Note that not only BLS but also HA and D-CF are non-spatial algorithms where
agents already have knowledge of every other agent present in the system. This
gives them a significant advantage over the agents in our system, both because the
agents know whom they prefer and because they have instantaneous contact, rather
than having to wander around in a grid world. Both of the decentralized algorithms
use randomness while forming their final matching, giving different results each
time. Therefore, we run each instance 5 times and compare to the average of those
runs. We also run our MARL approach 5 times for each instance. We discovered
that if a stable outcome is found, the same one is found consistently, but if not, then
the outcomes vary.

Results

We evaluate the results for stability, as well as the level of instability for unstable
outcomes. We use three measures to evaluate instability: the degree of instability
(DoI), the ratio of instability (RoI), and maximum dissatisfaction (MD). As fairness
in the outcomes is also important, we use three fairness measures: set equality
cost, regret cost, and egalitarian cost. In addition to this, we check what percent of
the stable matchings are median stable matchings, as well as what percent of the
individual matches are median matches. Results for SM and SMT problems with
symmetric preferences and for SMI problem with both symmetric and asymmetric
preferences are straightforward, therefore, are mentioned in the text. However,
the results for SM and SMT problems with asymmetric preferences needed more
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Grid 3 × 3 4 × 4 5 × 5

Agents 8 8 10 12 14 8 10 12 14

Stability(%) 100 92.0 82.0 68.0 56.0 80.0 74.0 54.0 46.0

DoI 0 2 ±
0.0

2 ±
0.0

3.3±
1.3

3.2±
1.7

2 ±
0.0

2.5±
1.1

2.8±
0.9

3.5±
1.6

RoI 0 0.04±
0.0

0.04±
0.0

0.06±
0.01

0.07±
0.02

0.04±
0.0

0.04±
0.01

0.05±
0.02

0.07±
0.03

MD 0 1.75±
0.9

2.89±
1.7

3.13±
1.9

3.89±
1.8

2.33±
1.5

2.77±
1.4

3.25±
1.9

4.44±
2.3

MM(%) 83.1 73.2 65.3 63.4 52.4 75.0 67.1 58.9 48.7

Table 3.3: For SM (asymmetric) case, MARL results on stability (%),
instability measures (Avg ± Std) and median matches (%).

analysis. We elaborate on the results of SM problem with asymmetric preferences in
Tables 3.3–3.5, as we think that this is the most relevant and adverse case. Due to lack
of space, we omitted a similar analysis of the results for the SMT-asymmetric case;
however, those results are very similar to the ones presented for the SM-asymmetric
case.

Many of our outcomes are stable or close to stable. For SM problem with
symmetric preferences, there is only one possible stable matching, and all the
outcomes converge to that. However, for asymmetric preferences, more than one
stable matching is possible. The instances with symmetric preferences converge
faster than the asymmetric ones. The instances of SM and SMT with asymmetric
preferences take longer to converge, with lower rates of convergence to stability.
The results of SM and SMT are similar. Additionally, for SM asymmetric instances,
we have observed that the agents disliked by everyone in the opposite set (low
utility associated with them by everyone) find it difficult to get a long-term match.
Similarly, unsurprisingly, the most-liked agent (high utility associated with them
by everyone) easily settles with its ideal match. We also noticed that the noise in
utilities adversely affects convergence to stable outcomes.

When it comes to SMI, our results are always stable. The number of agents that
are matched is the maximum possible. This is important because when agents have
incomplete lists (negative utilities for matches), it is hard to get a match for everyone,
even though it is easier for some agents to find a stable partner due to fewer choices.
Here, the final outcome always has the lowest regret cost. Importantly, between
the agents in the matched pair, there can be an agent having zero utility towards its
match, while the other agent still has positive utility for the same match. As the
agent with positive utility tries to get in a match, having noise in the reward causes
the agent with zero utility to stick to the match. Note that this does not happen
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N Set-equality Cost; d(M) Regret Cost; r(M)

MARL
(4 × 4)

MARL
(5 × 5) BLS HA D-

CF

MARL
(4 × 4)

MARL
(5 × 5) BLS HA D-

CF

8 3.1 ±
2.4

3.9 ±
2.5

2.9±
2.1

2.6±
1.8

3.1±
1.7

3.6 ±
0.8

3.5 ±
0.8

3.5±
0.8

3.7±
0.7

3.5±
0.8

10 2.9 ±
2.1

3.2 ±
2.8

3 ±
2.8

3.5±
1.6

4 ±
2.7

4.3 ±
0.8

4.1 ±
0.7

4 ±
0.8

4.6±
0.5

4.2±
0.9

12 4.6 ±
3.5

6.6 ±
3.8

5 ±
4.2

4 ±
4.2

4 ±
4.2

5.4 ±
0.8

5.3 ±
0.9

5.1±
0.9

5.3±
1.1

5.1±
0.9

14 7 ±
9.2

7.4 ±
7.7

7.5±
4.9

7.2±
4.4

7.5±
4.9

6.7 ±
0.7

5.9 ±
1.3

5.7±
1.1

5.6±
1.0

5.7±
1.1

Table 3.4: For SM (asymmetric) case, comparison of set-equality
cost and regret cost in (Avg ± Std) format; results for 8 agents on
3 × 3 grid not included due to limited space.

N Egalitarian Cost; c(M)

MARL
(4 × 4)

MARL
(5 × 5) BLS HA D-CF

8 15.3 ±
2.8

15.1 ±
2.3

15.5 ±
2.7

16.6 ±
2.8

15.5 ±
2.7

10 20.3 ±
2.7

20.4 ±
3.4

19.8 ±
2.8

25.1 ±
3.7

20.4 ±
2.9

12 31 ± 5.9 28.4 ±
4.6

27.6 ±
3.4

32.6 ±
5.1

27.8 ±
3.3

14 41.4 ±
6.1

39.4 ±
5.6

34.9 ±
3.5

41.2 ±
6.9

34.9 ±
3.5

Table 3.5: For SM (asymmetric) case, comparison of egalitarian cost
in (Avg ± Std) format.

when both the agents in the match have zero utility for the match, as neither of
them tries to stick with the match.

From Table 3.3, which elaborates on the results of the SM-asymmetric case, we
can see the curse of dimensionality in how the number of agents affects stability.
Although the grid size also affects stability, its impact is much less. Both of these
factors affect the convergence rate as well: more complex environments take longer

36



to converge. The environment with 8 agents on a 3 × 3 grid is the easiest one
for training agents, and 100% of the outcomes are stable, while the one with 14
agents on a 5 × 5 grid is the hardest to train and the stability of the final outcomes
declined significantly to 46%. Nonetheless, we can also see from the measures of
instability that the outcomes are close-to-stable. Note that in Table 3.3 the values
associated with these measures are averaged over only unstable outcomes. The
average number of blocking agents (DoI) is low in all cases. We also checked the
proportion of blocking pairs (RoI), as the greater this number, the more likely that
blocking agents will discover and exploit the instability at some point Eriksson
and Häggström [2008]. Our approach does well for this measure. This follows
the suggestion by Eriksson and Häggström that if agents increase the search effort
rather than picking random partners, then we can expect outcomes to have a very
small proportion of blocking pairs Eriksson and Häggström [2008].

Furthermore, we look at the maximum dissatisfaction (MD) that an agent can
have for an outcome, as great dissatisfaction may also lead to exploiting instability.
This number is also low, which assures that there is a low likelihood of blocking
agents exploiting unstable outcomes in the market. We think that the dynamic and
uncertain environment, incomplete information, noisy utilities, and the narrow
differences in the utilities between matches found for an individual over different
episodes are potential reasons behind the emergence of instability in the outcomes.
Especially in the case of asymmetric preferences, it is unlikely that an agent’s ideal
partner also best prefers that agent.

In Tables 3.4 and 3.5, we compare fairness in the outcomes with three other
algorithms. Here, we can see that MARL performs competitively, and there is
no significant difference between the fairness results. The regret cost of MARL
is slightly, but not significantly, higher for all the types of instances. Hoepman’s
algorithm (HA) and the decentralized algorithm by Comola and Fafchamps (D-CF)
are decentralized approaches. While D-CF always produces stable outcomes, that
may not be the case with HA. Our approach performed better than HA in almost all
cases and was very similar to the D-CF algorithm. Again, our approach performs
well despite being implemented on a fundamentally more complex formulation
of the problem than the ones for HA and D-CF. Further, when our outcomes are
stable, they usually match with those found by BLS. It shows that despite the
decentralization, our MARL approach is capable of producing outcomes as good as
those found by a central agency. This is further supported by the fact that a good
proportion of individual matches are median matches (shown in Table 3.3). Also,
approximately half of the stable matchings are median stable matchings. We think
that fairness is achieved because agents are self-interested and independent, and
stability is achieved as agents learn to find their best viable matches.

The learned policies include agents moving to a fixed location from their starting
point and getting into a match corresponding to the final outcome. It is possible
that more than one pair is formed at the same location, but it is rare. The location
where agents in a pair move to form the match is not necessarily the mid-point
of the distance between starting points of two agents, nor is it guaranteed to be
close to either starting point. Centralized algorithms do not work on a grid; they
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produce matchings but not the learned policies. This shows that real-world entities
can benefit from using our MARL approach to learn to efficiently navigate the
environment in finding and maintaining a good match.

Summary

We have shown that the MARL paradigm can be successfully used for decentralized
stable matching problems that are formulated spatially in a dynamic and uncertain
environment, with independent and autonomous agents having minimum initial
knowledge. Our MARL approach is also applicable for variations such as SM with
incomplete lists and ties. Agents tend to be happy with their final matches, as
outcomes are stable or close-to-stable and fair for everyone. Even with unstable
outcomes, agents are less likely to exploit instability.

Copyright© Kshitija Taywade, 2023.
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Chapter 4 Cournot Games1

We investigate using a multi-armed bandit (MAB) setting for modeling repeated
Cournot oligopoly games. The firms acting as agents choose from the set of arms
representing production quantity. Agents interact with separate bandit problems.
An agent can choose from a set of arms/actions representing discrete produc-
tion quantities; here, the action space is ordered. Agents are independent and
autonomous and cannot observe anything from the environment; they can only see
their own rewards after taking action and only work towards maximizing these
rewards. We first study Cournot models with stationary market demand where
random entry or exit from the market is not allowed. Given these assumptions, we
found that an ϵ-greedy approach offers a more viable learning mechanism than
other traditional MAB approaches, as it does not require any additional knowledge
of the system to operate. We also propose two novel approaches that take advantage
of the ordered action space: ϵ-greedy+HL and ϵ-greedy+EL. These new approaches
help firms focus on more profitable actions by eliminating less profitable choices
and are designed to optimize the exploration. However, in real-world scenarios,
market demands evolve over a product’s lifetime for a myriad of reasons. There-
fore, we investigate repeated Cournot games with non-stationary demand such
that firms/agents face independent instances of the non-stationary multi-armed
bandit problem. We propose a novel algorithm Adaptive with Weighted Exploration
(AWE) ϵ-greedy which is loosely inspired by the ϵ-greedy approach. We use com-
puter simulations to study the emergence of various equilibria in the outcomes and
empirically analyze joint cumulative regrets. Using our proposed method, agents
are able to swiftly change their course of action according to the changes in demand
and produce collusive outcomes without communicating with each other.

The Cournot oligopoly model is a well-known model in economic game theory.
In a standard Cournot game Cournot [1838], firms compete over the production
of identical goods. Production or services in various real-world markets can be
modeled as Cournot games; for example, energy systems Kirschen and Strbac
[2018], transportation networks Bimpikis et al. [2019], and healthcare systems
Chletsos and Saiti [2019]. There are three main types of equilibria associated
with this model: Walrasian equilibrium, Cournot/Nash equilibrium, and collusive
equilibrium (described in Section 4.2). Cournot games have been modeled in several
ways in the literature with various assumptions on the firms’ cognitive capabilities
and rationalities. Different learning mechanisms have been analyzed in order to
understand the conditions required to arrive at a specific equilibrium.

We study Cournot models with both stationary and non-stationary demands.
Most of the literature on Cournot games assumes stationary demand functions.
However, it is also necessary to consider non-stationary demand patterns since,
in many real-world market settings, the demand is mostly non-stationary due to

1Part of the work in this chapter was published in the proceedings of FLAIRS 2022 Taywade
et al. [2022].
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factors such as changing seasons, trends, and, as seen most recently, global health
crises. For example, the decision problem of fresh food production, where products
have limited shelf life, after which the products cannot be sold. The demand for
such products is constantly fluctuating for various reasons, such as promotional
offers by retailers. We consider three different types of non-stationarities in the
market demand. Demand patterns are inspired by the works based on economic
markets Berry [1972], Tunc et al. [2011]. We cover both sudden and incremental
changes, as well as reoccurring and uncertain changes.

Moreover, in real-world markets, firms often do not have access to knowledge
about market demands or their competitors’ behavior. This also contradicts many
of the assumptions made by prior works. To better model these situations, we
consider Cournot games such that the firms/agents are not able to directly observe
information about other agents in the environment or the demand function. The
only information available to an individual agent is the profit obtained after select-
ing a production quantity, which is a single play of a Cournot game where firms
produce simultaneously.

To incorporate the assumption of low cognitivity, we model repeated Cournot
games using a MAB framework, where firms learn independently and are au-
tonomous. Each agent deals with its own multi-armed bandit problem separately.
This setting provides a practical framework to model the Cournot game with the
assumptions of low cognitivity. Here, information on competitors is not available
to the firms, and they cannot deduce the demand function. Moreover, firms do not
necessarily even need to know their own cost function. In multi-armed bandits,
there is only one state, or we can say there is no context, and the Cournot game is a
one-step game that is played multiple times sequentially; therefore, we model it
using a multi-armed bandit framework. The MAB framework facilitates the use
of exploration-exploitation approaches. In any MAB problem, dealing with the
exploration-exploitation trade-off is crucial. Because of the lack of market knowl-
edge, firms are naturally bound first to explore and learn. In our multi-agent setting,
agents learn simultaneously. As learning involves exploration, high uncertainty in
the rewards can be seen from the perspective of a single agent having no knowledge
of the environment, regardless of the demand being stationary or otherwise.

As multiple agents learn simultaneously, where learning involves exploration,
high uncertainty in the rewards can be seen from the perspective of a single agent
having no knowledge of the environment. This uncertainty can vary based on
agents’ exploration-exploitation strategies. However, for models with stationary
demand, it is guaranteed that the rewards are generated using the same mechanism
every time. We also assume that agents learn simultaneously using the same
learning mechanism, and as they learn, their strategies converge. Because of this,
we consider these bandits to be stochastic for models with stationary demand.
However, for models with non-stationary demand, we consider a non-stationary
bandits problem.

One potential issue with using MABs for this problem is that many popular
learning algorithms, such as UCB and Thompson sampling, rely on additional
knowledge from the environment about reward distributions of the arms, i.e., those
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methods require the magnitude of the rewards. As mentioned previously, this infor-
mation is unavailable to our agents while they are learning. While these methods
are unsuitable for our goals, ϵ-greedy approaches do not require any additional
knowledge about the problem. Therefore, all our approaches are inspired by the ϵ-
greedy strategy. However, one potential disadvantage of using traditional ϵ-greedy
approaches is that the learning process can slow down as the exploration space
increases, limiting how well these algorithms scale with larger exploration spaces.
To address this limitation, our proposed methods take advantage of the ordered
nature of the action space to optimize the exploration. For models with stationary
demand, we propose two novel approaches. The first approach is similar to hierar-
chical learning; we call it ϵ-greedy+HL. It is based on partitioning the action space
into several buckets and choosing the best bucket. The second method resorts to
action/arm elimination to reduce the action space, and hence is called ϵ-greedy+EL;
EL stands for elimination. In real-world scenarios, the exploration can be costly, and
the operating mechanism of our proposed approaches can significantly reduce the
exploration cost. Therefore, these newly proposed approaches are more adaptable
for real-world usage and also applicable to other similar problems with ordered
action spaces, such as dynamic pricing.

In Cournot games with non-stationary demand, the reward distribution changes
with time. With changing reward distribution, the optimal action also changes, and
it is necessary to manage exploration-exploitation properly to discover the new
optimal action. In this case, it is not practical to completely eliminate actions as
we did in two proposed approaches for Cournot games with stationary demand.
Therefore, for models with non-stationary demand, we propose a novel approach
called Adaptive with Weighted Exploration (AWE) ϵ-Greedy. It is also remotely based
on the ϵ-greedy strategy. Here, each agent quantifies changes in the reward and
uses them to adjust both exploration and learning rates. This enables the agent to
quickly discover new optimal arms in response to changes in perceived reward
distributions. Furthermore, this approach utilizes a weighted sampling method
that allows it to reduce the search space quickly. This mechanism also can be used
for problems with ordered action space, such as the one considered in this work.
It can also deal with the uncertainty in rewards caused by the activities of other
agents operating in the system.

We evaluate our proposed approaches empirically by running different kinds of
simulations. We study the resulting equilibria, which signify the degree of success
achieved by agents in learning to navigate through a multi-agent system. We
also study the effects of scaling the models on the resulting equilibria; we scale
the models in terms of the number of agents in the environment and the action
space. Furthermore, we study the sensitivity of our proposed methods to different
hyperparameter values. In addition to Cournot models with symmetric firms (same
marginal cost), we also study models with asymmetric firms (different marginal
costs). With Cournot models with stationary demand, we consider the deterministic
demand function. In experiments, we start with simulations the same as that used in
Waltman and Kaymak [2008], Xu [2020]; these are small-scale simulations containing
between two and six firms. We further scale the models in terms of the number of
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firms and the action space size. We investigate our outcomes concerning three types
of equilibria associated with Cournot games: Walrasian equilibrium, Cournot/Nash
equilibrium, and collusive equilibrium. For models with stationary demand, we
compare joint quantity, joint profit, and joint cumulative regret obtained by ϵ-greedy
and our proposed methods. Joint cumulative regret is the difference between the
joint profit obtained by agents over the course of learning and the joint profit that
could have been obtained if agents acted as a cartel throughout the process. For
models with non-stationary demand, we use the adaptive ϵ-greedy algorithm dos
Santos Mignon and da Rocha [2017] as a baseline to compare our results; this
algorithm is somewhat similar to our approach as it is also based on the ϵ-greedy
strategy.

For simulations with stationary demand, collusion in various degrees can be
seen, in small-scale settings, with a limited number of firms and action choices.
Here, in general, outcomes obtained by our proposed methods are more collusive
than baseline ϵ-greedy, although full collusion usually does not emerge. By collusive
behavior, we mean outputs anywhere between the Nash and collusive equilibria.
Although the real-world scenarios are more complex than our simulations, the
results still indicate the possibility of the emergence of collusive behavior, even
without explicit instructions to collude.

We also evaluate the quality of our outcomes using joint cumulative regret,
a metric not actually available to the individual agents. The joint cumulative
regret obtained by ϵ-greedy+HL is the lowest, followed by that obtained by ϵ-
greedy+EL. Moreover, our proposed approaches converge much faster than the
baseline ϵ-greedy method. In models with symmetric firms (firms with the same
marginal cost), individual agents produce similar quantities; however, asymmetry
in firms can cause them to produce outcomes with substantial differences. As
expected, due to asymmetric costs, firms with lower production costs make higher
profits. We further our investigation by running simulations of Cournot models
where agents do not use the same learning algorithm but instead are assigned
learning algorithms from ϵ-greedy+HL, ϵ-greedy+EL, and baseline ϵ-greedy. In
contrast to the models where all agents use the same method, we found that the
agents using ϵ-greedy+HL yield lower profits than the agents using the other two
learning algorithms. For simulations with non-stationary demand, we found that
by using our approach, AWE ϵ-greedy, agents can readily change their action course
according to the changing demand. Similar to models with stationary demand,
agents show collusive behavior, although full collusion usually does not emerge.
However, the collusive behavior declines with an increasing number of firms in the
system.

4.1 Related work

In this section, we first discuss the literature on various learning methods for
Cournot games. Furthermore, we look at non-stationarity in Cournot games and
then the MAB frameworks for modeling non-stationarity. We then look at reinforce-
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ment learning approaches for Cournot games and MAB algorithms for dynamic
pricing.

Learning algorithms for Cournot Games

Cournot oligopoly games, and their convergence to various equilibria, have been
widely studied in past research. The literature establishes that the long-term out-
come of a Cournot oligopoly model depends on the underlying learning mechanism,
firms’ rationality, and the memory size of the firms. The learning of economic agents
can be widely divided into two categories: individual learning and social learning
Vriend [2000]. In individual learning models, an agent learns exclusively from
its own experience, whereas in social learning models, an agent also learns from
the experience of other agents. Learning frameworks also reflect the rationality
of agents. Several works have studied individual learning mechanisms Vriend
[2000], Arifovic and Maschek [2006], Vallée and Yıldızoğlu [2009], Fudenberg et al.
[1998], Riechmann [2006]. Some works claim that while social learning leads to
the Walrasian equilibrium, individual learning schemes result in convergence to
the Nash equilibrium Vriend [2000], Vega-Redondo [1997], Franke [1998], Dawid
[2011], Bischi et al. [2015]. In this work, we use MAB problem Thompson [1933] as
a learning framework. Firms make decisions based on the profit/reward they are
getting, mostly unaware of the impact of other firms’ actions on the market price;
this can be described as implicit individual learning.

Non-stationarity in Cournot Games

Literature based on learning methods in Cournot games mostly assumes stationary
demand. However, in real-world scenarios, non-stationarity is integral to economic
markets. Depending on the market type, demand changes follow various patterns,
i.e., small and slow changes to large and sharp changes. Several works study the
inventory management model where companies have to decide efficiently about the
production or stocking of goods [Graves and Willems, 2008, Silver, 2008, Tunc et al.,
2011, Yue et al., 2010, Mohebbi and Choobineh, 2005]. These inventory management
models can be seen as a non-stationary version of Cournot games.

Multi-armed Bandit Frameworks for Modelling Non-stationarity

Non-stationary multi-armed bandits are mainly divided into two categories: rested
bandits Gittins and Jones [1979], Bouneffouf et al. [2014], Bouneffouf and Féraud
[2016], Levine et al. [2017], Seznec et al. [2020] and restless bandits Gafni and
Cohen [2018], Liu et al. [2012], Meshram et al. [2018], Besson and Kaufmann [2018],
Cheung et al. [2019], Russac et al. [2019], Wei et al. [2016], Seznec et al. [2020]. In
the rested bandit case, the underlying distribution changes only when the arm
is played. While in the case of restless bandits, the underlying distribution of all
the arms changes at every time step according to a known but arbitrary stochastic
transition function. Additionally, some problems are categorized as piece-wise
stationary Garivier and Moulines [2011], Yu and Mannor [2009], Cao et al. [2019]
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in which the reward distributions for the arms are piece-wise stationary and will
shift at some unknown time steps. Several approaches have been proposed to deal
with different kinds of non-stationarities. Garivier and Moulines proposed sliding
window UCB and discounted UCB algorithms. We use these algorithms in our
comparison baselines as these can work with normally distributed reward functions.
Raj and Kalyani and Cavenaghi et al. proposed discounted Thompson sampling
and f-Discounted-Sliding-Window Thompson Sampling, respectively, but these
methods assume that the rewards follow the beta distribution. Ghatak and Ghatak
et al. proposed Thompson sampling with change-detection and Kolmogorov-
Smirnov test based Thompson Sampling algorithms, respectively. While both
methods assume that rewards follow Gaussian distribution, those are restricted to
two-armed bandit settings only and can not be extended to multi-armed bandit
settings. Mellor and Shapiro proposed a family of algorithms, collectively termed
as Change-Point Thompson Sampling; however, they also assume that the rewards
follow the beta distribution. Liu et al. proposed Change Detection UCB algorithm
for piecewise-stationary MAB problems; in contrast, we consider different types of
non-stationarities.

Our approach is remotely based on the ϵ-greedy algorithm. Closely related
to our work is the work by dos Santos Mignon and da Rocha in which authors
propose the adaptive ϵ-greedy algorithm, which modifies the exploration rate based
on changes detected in rewards [dos Santos Mignon and da Rocha, 2017]. Our
algorithm employs a different mechanism to quantify changes than the ones used
in this work. Our algorithm also uses the weighted exploration technique; this
technique is specific to Cournot games where the action set is ordered.

Reinforcement Learning for Cournot Games

Researchers have used RL (not MAB) methods to facilitate learning in repeated
Cournot games Kimbrough and Lu [2003], Waltman and Kaymak [2008], Xu [2020],
but as per our knowledge, all of them consider stationary demand. Waltman and
Kaymak analyze the results of Q-learning in a Cournot game with a discrete action
space and explain the emergence of collusive behavior. They focus on three types
of firms; firms in our experiments are similar to those without memory in their
paper. Kimbrough and Lu [2003] also reported results on Q-learning behavior in
a Cournot oligopoly game where they found a slight tendency towards collusive
behavior in their simulation study. Xu incorporated memory and imitation with
RL. In their model, firms do not have any information about market demand, but
they can observe quantities produced by the other firms and their profits. They
use a continuous action space and parametric function approximation. They use
three different settings, the first of which (Treatment 1 in their paper) resembles our
models. They have used the same experimental setup as in Waltman and Kaymak
[2008]. Unlike our results, they observe convergence to the Nash equilibrium for
these settings. Both of these papers evaluate scalability up to a limited range. In
contrast, our work incorporates a more thorough investigation of scalability in
terms of the number of firms and the size of the action space. Huck et al. studied
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another trial-and-error method. In their work, firms do not have information about
their rivals and the payoff function of the game. However, their method allows
agents only to decrease or increase the production level; therefore, firms have a
great deal of responsibility in choosing the starting quantity. They showed that full
collusion could be achieved with their approach; however, they did not study the
scalability of their approach.

Multi-armed Bandit Algorithms for Dynamic Pricing

We think that the dynamic pricing problem is similar to Cournot games. There is
a wide variety of work that uses RL for dynamic pricing problems. The market
models considered in these works are diverse Den Boer [2015]. Kephart and Tesauro
[2000] use Q-learning in one of such settings, and Könönen [2006] use Q-learning
with function approximation as well as policy gradient method. Misra et al. [2019]
proposed a multi-armed bandit based algorithm for a multi-period dynamic pricing
problem where firms face ambiguity. Hansen et al. [2020], Trovo et al. [2015] studied
the applicability of MAB algorithms on dynamic pricing problems and proposed
variants of the UCB algorithm. Hansen et al. found that with static demand having
low noise, it is possible to get collusive behavior in firms, but as the noise increases,
the results become indistinguishable from Nash equilibrium. In contrast, we did
not notice any significant changes in our outcomes due to the increase in noise.

4.2 Preliminaries

In this section, we have included the formal definition of the Cournot game and
described the stationary and non-stationary variants of the market demand. We
have also described three equilibria associated with Cournot games, along with the
description of the MAB framework.

Cournot Games

We consider a standard Cournot model with n firms offering an identical product.
Firms produce independently and simultaneously, and compete on the quantity
they produce. In our model, the product quantity is a discrete number. Firm i
produces quantity qi at each time step t. Firm i’s total cost is Ci = cqi, where c is
the constant marginal cost. The linear demand function with an inverse demand
equation is

p = max(u − v
n

∑
i=1

qi, 0) (4.1)

where u > 0 and v > 0 denote two parameters. This is the stationary demand
function when parameters u and v are constant. In our models, we still use the same
function to calculate the demand; however, parameter u is no longer a constant
value. We change it throughout the game to add non-stationarity to the market
demand.
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The profit of a firm i is calculated as

πi = pqi − Ci f or i = 1, . . . , n. (4.2)

Non-stationarity in Demand

In our second set of experiments, we add three different types of non-stationarities
in the underlying demand presented in eq. 4.1. As mentioned above, we make
changes in the parameter u to make the demand non-stationary. Parameter v is
always constant (v = 1) in our models; therefore, u dictates the changes in demand.
The patterns emerging from these changes are shown in fig. 4.1. These patterns
are inspired by works based on economic markets Berry [1972], Tunc et al. [2011].
We have chosen to explore these patterns as they incorporate some of the common
non-stationary behaviors of demand seen in real-world industrial settings, i.e.,
sudden changes (shocks), slow changes, and more erratic changes in demand. We
refer to these demand patterns as patterns 1, 2, and 3, respectively. Unlike other
works, we derive the demand pattern solely by changing u. At the start of the game,
u is initialized with some value, us, and the changes are made to this initial value to
change the demand. Fig. 4.1a represents sudden and reoccurring changes in market
demand; us changes according to following rules:

ut =


us/2, when t=T/3
us, when t=T/2
us/2, when t=3T/4

where T is the total number of time steps in a simulation of a repeated Cournot
game. For the time steps other than the ones mentioned above, the uts remain
stationary, i.e., ut = ut−1. Fig. 4.1b represents a sinusoidal pattern with demand
changing continuously; there are no sudden changes; instead, the demand changes
incrementally and then gradually decreases with small variations. Here, ut is
calculated as follows:

ut =
us

f (T/2|T/2,T/2) · f (t|T/2, T/2)

where f represents the normal probability density function. Both the demand
patterns discussed above are dynamic but deterministic. Unlike these patterns,
the third pattern, presented in fig. 4.1c, is stochastic. It is an example of an erratic
demand pattern which is an extreme case of non-stationarity. Here, ut is calculated
as follows:

ut =

{
ut−1 · |X|, if zt < γ

ut−1, otherwise
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(a) (b) (c)

Figure 4.1: Examples of three different demand patterns. X-axis represents time
steps in the simulation, and Y-axis represents varying values of parameter u (from
the inverse demand function u − vQ, presented in eq. 4.1). Here, default value for
u, us = 40. Figs. 4.1a, 4.1b, and 4.1c show demand patterns 1, 2, and 3, resp.

where X ∼ N (µ, σ2), with µ = 1 and σ = 0.2; zt ∼ U (0, 1). γ = 0.01; it dictates the
probability of change in demand at any time step t.

There are three main equilibria associated with Cournot games. The following
definitions are for models with symmetric firms.

Definition 22. The Cournot (Nash) Equilibrium is obtained if each firm chooses the
production level that maximizes its profit, given the production levels of its competitors. No
firm wishes to unilaterally change its output level when the other firms produce the output
levels assigned to them in the equilibrium. Firms individually maximize their profit; they
do not maximize their joint profit. The resulting joint production level is (u−c)n

v(n+1) .

Definition 23. The Walrasian Equilibrium is obtained if firms are not aware of their
influence on the market price and therefore behave as price takers. They adopt Walrasian
rule and produce Walrasian quantity. The Walrasian rule is based on the assumption that a
firm acting as a price taker decides next-period output to maximize its profit. The resulting
quantity dynamics lead to a dynamic equation that allows the Walrasian equilibrium output
as the unique steady state Radi [2017]. The resulting joint production level is (u−c)

v .

Definition 24. In a Collusive Equilibrium, firms form a cartel and maximize the joint
profit. They produce a smaller quantity than the quantity that maximizes their individual
profit. Hence, they have the incentive to increase their production levels. The resulting joint
production level is (u−c)

2v .

Multi-armed Bandit Framework

We consider n firms in a repeated Cournot game. Let Ki be the set of arms/actions
faced by agent i; arms represent different production choices. The action space
is discrete and ordered; every action represents a production level choice, and
the action set consists of integer values in a specific range. Agents do not have
any knowledge of the environment; agents only have knowledge about their own
payoffs/rewards after taking action. As agents are independent and autonomous,
they each face a separate non-stationary MAB problem. Each agent’s goal is to
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maximize their individual reward/profit over a long (possibly infinite) time horizon
T. At time step t, the reward is calculated using eq. 4.2. From eq. 4.1 and 4.2, we
can see that the reward not only depends on demand (or parameter u) but also
depends on individual agents’ production as well as total industry output at time
step t. This adds more uncertainty to the rewards.

4.3 Methods

In our formulation of Cournot games, agents do not have any information about
their opponents and environment. They can only see their own profits/rewards.
ϵ-Greedy approaches do not require any knowledge about possible reward distri-
butions or the priors of reward distributions, while other MAB approaches usually
have this requirement. Therefore, our proposed methods are remotely based on the
ϵ-Greedy strategy.

ϵ-Greedy

The ϵ-Greedy method Sutton and Barto [1998] is a common method for balancing
exploration and exploitation trade-offs. At each time step t = 1, 2, .., an agent
chooses a random action with probability ϵ or otherwise chooses the action with
the highest empirical mean. The empirical mean of rewards after taking action a is
often referred to as that action’s Q-value, denoted as Qt(a) for time step t. However,
in our formulation of the proposed method, Qt(a) is calculated using learning rate
α (inspired by Q-learning algorithm Sutton and Barto [1998]). It is calculated as
follows:

Qt(a) = αRt + (1 − α)Qt−1(a)

where Rt is the reward obtained at time step t. A linear bound on the expected
regret can be achieved with constant ϵ. For a variant of the algorithm where ϵ
decreases with time, Cesa-Bianchi and Fischer [1998] proved poly-logarithmic
bounds. However, Vermorel and Mohri [2005] did not find any practical advantage
to using these methods in their empirical study. Here, we are referring to regret as
it is used conventionally in single agent stochastic MAB problems Kuleshov and
Precup [2014], Lattimore and Szepesvári [2020].

Methods for Models with Stationary Demand

In models with stationary demand, every agent faces separate stochastic MAB. As
every agent is learning and its actions affect the reward of other agents, these are not
perfect stochastic MABs. We feel that this is important to investigate since, as stated
in Lattimore and Szepesvári [2020], perfectly stochastic MABs cannot necessarily
be expected in the real world. We initially analyzed the applicability of three well-
known multi-armed bandit algorithms: ϵ-greedy, UCB (Upper Confidence Bound),
and Thompson sampling. Most of the literature deals with Bernoulli bandits;
however, we are dealing with normal bandits with unknown means and variances
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associated with the arms. We found that the UCB-Normal algorithm Cowan et al.
[2017], which is designed for such scenarios, fails to converge. Thompson sampling
proposed in Honda and Takemura [2014] is also designed to handle such scenarios;
however, the outcomes depend on priors. As it is required to set appropriate priors,
we cannot use it for our models. We think that ϵ-greedy is the only one among these
three algorithms which can work with our assumption of the lack of knowledge
about reward distributions. We propose two novel approaches specifically to deal
with the ordered action space in the Cournot games. Both of these approaches use
ϵ-greedy as a sub-routine.

ϵ-Greedy with Hierarchical Learning (ϵ-greedy+HL)

We propose a new approach similar to hierarchical learning. This approach makes
use of the fact that the action set is ordered in Cournot games. Learning happens
in multiple phases. In each phase, the ϵ-Greedy algorithm is applied to certain
arms. In the initial phase, the whole action set is divided into K equally-sized
ranges (buckets). Each action range/bucket is then considered as a single arm.
When such an arm is pulled, the action is chosen uniformly at random from the
bucket associated with that arm. Each phase ends when the same arm/bucket
is chosen during exploitation mode for some pre-specified number of time steps.
At the end of each phase, the arm with the highest Q-value is selected, and the
associated bucket is further split into smaller-sized buckets. These new smaller
buckets are then considered as arms for the next phase of learning. This continues
until the bucket cannot be further divided. In this way, underperforming arms are
eliminated, and the focus of learning shifts to high-performing arms. Firms can
select the value of K as per their choice. This learning process can also be visualized
as the search for the best action in a K-ary tree.

ϵ-Greedy with Elimination of Arms (ϵ-greedy+EL)

With hierarchical learning, firms need to make partitions of their action space, which
is a crucial but delicate task. To do it efficiently, firms may need some information
about the environment. Wrong partitioning may lead to losing out on optimal
actions, i.e., a seemingly optimal bucket may contain sub-optimal actions. For the
circumstances where firms may not want to take the responsibility of partitioning
the action space, we propose another novel approach that is based on eliminating,
rather than partitioning, the actions.

This approach also relies on ϵ-greedy as an underlying mechanism and, similar
to hierarchical learning, works in multiple phases. Unlike the previous approach,
the initial phase starts with considering each action as an arm. Each phase ends
when the same action a is chosen during exploitation mode for some pre-specified
number of time steps. At the end of each phase, an action a with a maximum
Q-value is selected. Let m be the size of the action space. If available, m/4 many
actions on either side of action a on the ordered scale are kept in the action space,
and other actions are eliminated. This continues until m <= 3.
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Method for Models with Non-stationary Demand

In Cournot games with non-stationary demand, the reward distribution changes
with time. With changing reward distribution, optimal action also changes, and
it is necessary to manage exploration-exploitation properly to discover the new
optimal action. In this case, it is not practical to completely eliminate actions as
we did in two proposed approaches for Cournot games with stationary demand.
Therefore, for models with non-stationary demand, we propose a novel approach
called Adaptive with Weighted Exploration (AWE) ϵ-Greedy.

Adaptive with Weighted Exploration (AWE) ϵ-Greedy

This approach is based on the ϵ-greedy strategy combined with techniques for quan-
tifying changes in rewards and weighted exploration. It changes the exploration
rate, ϵ, as well as learning rate, α, dynamically, with the changes in rewards.

In a typical ϵ-greedy approach, a random arm is selected with a small probability
ϵ; otherwise, the current optimal arm is selected. Since the optimal arm is selected,
overall, at more time steps, we can say that the changes that are detected in rewards
of the optimal arm reflect more up-to-date fluctuations in the market demand in
comparison to other arms. Therefore, we only focus on the current optimal arm
for detecting changes. As agents can see only their own rewards, our change
quantification mechanisms are based on changes in rewards. Unlike other works
based on change detection Liu et al. [2018], Cao et al. [2019], Ghatak [2020], our
algorithm quantifies the change instead of just getting a signal when change is
detected. Quantifying the changes helps in making suitable modifications to the
learning rate, exploration rate, and weighted exploration.

We quantify changes for two separate purposes: one for modifying α and ϵ, and
the other for weighted exploration. For our calculations, we store values that are
based on rewards in memory of length M: those are Q-values and the running
averages of rewards. Let µ̄ be the mean of any of these two sets of values. We
quantify the change with formula: |(rk

t − µ̄)/µ̄|, where rk
t is the reward obtained by

selecting arm k (current optimal) at time t. The resulting value can be directly used
as both α as well as ϵ, given that it is within their pre-specified limits. We did not
find much difference in results over which set of values we use. In the algorithm
given below, we use Q-values in our calculations.

For weighted exploration, we take advantage of the specific nature of this
problem, i.e., the ordered action space, and that the significance of an action is
dependent on its distance from the optimal action. While assigning weights to the
actions, we use a normal pdf (probability density function). We consider the normal
distribution with mean at the optimal action and standard deviation as a quantified
change. Here, we quantify changes mainly in two ways: |(rk

t − (Qk
t )| and std in Q-

values (or the running averages) stored in memory for arm k (used in the algorithm
below). In our observation, results are similar for using these techniques. Deriving
std in this way ensures that the focus range of exploration narrows down or spans
out based on the degree of change. These techniques play a crucial role in deriving
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the agility of algorithm for changing the course of actions with varying demand.
As the received reward deviates from the expected (mean) reward, the exploration
rate goes up, and weights associated with the arms tend towards uniformity and
vice versa. This helps in promptly finding a new optimal arm and sticking to it
until changes in rewards are detected again. If we skip updating both or any of the
learning rate and exploration rate, we usually see a delay in changing the action
course when the demand changes. If we do not weigh our sampling of actions,
then it takes longer to converge to optimal actions for particular time periods, and
unimportant actions are explored unnecessarily, which often causes outcomes to
drift away from collusion.

4.4 Experiments

We evaluate our proposed approaches empirically by running different kinds of
simulations for models with stationary and non-stationary demands. We study
the resulting equilibria. We also study the effects of scaling on resulting equilibria;
we scale the models in terms of the number of agents in the environment and the
action space.

Parameters

We describe the hyper-parameters used in our learning approaches in the following
two sub-sections.

Models with Stationary Demand

The exploration rate, ϵ, is one of the main hyper-parameters in ϵ-greedy approaches.
In the reported experiments, we use the exploration rate ϵ = 0.1 for all three ap-
proaches. We also tried other exploration rates and found that the final outcomes
are robust to different exploration rates; however, an increase in joint cumulative
regret can be seen with higher exploration rates. Moreover, the decay in the explo-
ration rate does not make any difference in outcomes or the convergence rate. We
use the running average of rewards as the Q-values; therefore, the learning rate is
not needed. Instead of learning for a pre-specified amount of steps, agents learn
until they consistently pick a particular action in exploitation mode for the specific
number of steps. For ϵ-greedy+HL and ϵ-greedy+EL, agents have to pick the same
arm in exploitation mode for 100 consecutive steps in each phase of the method.
However, for baseline ϵ-greedy, agents have to pick the same arm in exploitation
mode for 1000 consecutive steps. This difference is because there is no reduction in
the size of the action space for baseline ϵ-greedy, and it takes more steps to get to the
steady choice. Therefore, we run simulations with a varying number of time steps
depending on the scale of the model and the learning approach. By simulation, we
mean the entire process of a repeated Cournot game that lasts for several time steps.
For ϵ-greedy+HL, we use K (the number of partitions) to be 3. The outcomes in
terms of equilibrium are robust to the choice of K; nonetheless, it can affect joint
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Algorithm 1 Adaptive with Weighted Exploration (AWE) ϵ-Greedy
Input:

K > 2, number of arms
M ∈ Z, memory length
ϵ, ϵmin, ϵmax ∈ (0, 1), exploration rate and its thresholds
α, αmin, αmax ∈ (0, 1), learning rate and its thresholds

Initialize Q(k) to arbitrary values between (0, 1), for k = 1 . . . K.
Initialize f lag = False (for tracking if current optimal action is taken)
Initialize w(k) = Q(k), for k = 1 . . . K.
for t ∈ {1, . . . , T} do

Sample rNum ∼ U (0, 1)
if rNum ≤ ϵ then

Play arm kt chosen from arms 1 . . . K according to weights wt(k)
else

Play arm kt = argmaxk(Qt(k)); flag = True
end if
Receive reward rk

t calculated using eq. 4.2.
Update Qt(k) = αrk

t + (1 − α)Qt−1(k)
if flag = True then

Calculate

µ̄ =
1
M

t

∑
i=t−M

Qi(k)

µ̂ = argmaxk(Qt(k))

σ̂ =
1

M − 1

t

∑
i=t−M

Qi(k)− µ̄

for k ∈ {1, . . . , K} do
Update wt+1(k) = f (k|µ̂, σ̂), where f is normal probability density

function
end for
Calculate newRate = |(rk

t − µ̄)/µ̄|
if newRate < ϵmin then ϵ = ϵmin
else if newRate > ϵmax then ϵ = ϵmax
else ϵ = newRate
end if
if newRate < αmin then α = αmin
else if newRate > αmax then α = αmax
else α = newRate
end if
flag = False

end if
end for
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cumulative regret as the number of phases in the algorithm and total time steps
depend on this parameter.

Models with Non-stationary Demand

Here, we run each simulation for 100, 000 time steps. We use the memory length
of 10 for all types of simulations. We found that results are moderately sensitive
towards memory length, i.e., small changes do not affect the outcomes, but big
changes can do so. However, a memory length of 10 helps the method to detect
changes in rewards better than any other lengths, and we do not fine-tune it for
every type of simulation. Modifications in learning rate α and exploration rate ϵ are
confined to certain thresholds. The limits are defined as: αmax = 0.3, αmin = 0.01,
ϵmax = 0.3, and ϵmin = 0.05. Similar to the memory length, these values are used
for all the simulations, and outcomes are moderately sensitive to these hyper-
parameters.

Small-scale Simulations

We first evaluate our approaches using the same simulations as those used by
Waltman and Kaymak [2008]. They used Cournot models with symmetric firms
in their simulations. They used u = 40, v = 1 as constants in an inverse demand
function (eq. 4.1), along with constant marginal cost, c = 4. The action space is
discrete, where agents can choose a production quantity between 0 − 40. They ran
simulations with the total number of firms varying from 2 to 6.

Models with Stationary Demand

The results of these simulations are shown in figure 4.2a, 4.2b, and 4.2c for joint
quantities, joint profits, and joint cumulative regrets, respectively. From figure 4.2a
and 4.2b, we can see that with ϵ-greedy, the outcomes mostly converge somewhere
between Nash and Walras equilibrium; however, for the model with 2 firms, output
coincides with Nash equilibrium in figure 4.2a. For both ϵ-greedy+HL and ϵ-
greedy+EL, outcomes are collusive. However, with ϵ-greedy+HL, those are closer
to collusive equilibrium. We consider an outcome to be collusive when it is anywhere
in between Nash and collusive equilibrium; therefore, the degree of collusion may
vary based on its closeness to collusive equilibrium. The outcomes seen in the
graphs of joint quantities may not be perfectly reflected in the corresponding
graphs of joint profits. This is a consistent outcome that can be seen throughout our
experiments. We think that this is because we allow profits/rewards to be negative
in our models. Firms lose production costs regardless of the market price. Because
of this, there is more variance in joint profits obtained through different simulations.
During producing graphs, we averaged the results of 100 different simulations.

From figure 4.2c, we can see that the ϵ-greedy+HL method obtains lowest re-
gret, followed by ϵ-greedy+EL, and ϵ-greedy. ϵ-Greedy obtains very high regret
in comparison to the other two methods. One of the reasons is that our proposed
approaches take fewer steps to converge than ϵ-greedy. ϵ-greedy+HL on average
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(a) Comparison of
joint quantities

(b) Comparison of
joint profits

(c) Comparison of
joint cumu. regrets

Figure 4.2: For small-scale simulations, comparisons of different measures obtained
by ϵ-greedy, ϵ-greedy+HL, and ϵ-greedy+EL algorithm, along with collusive, Nash
and Walrasian equilibrium. Cournot model has symmetric firms with v = 40,
w = 1, and c = 4.

(a) Comparison of joint quan-
tities

(b) Comparison of joint prof-
its

(c) Comparison of joint cumu.
regrets

Figure 4.3: For simulations with scaled actions, comparisons of different measures
obtained by ϵ-greedy, ϵ-greedy+HL, and ϵ-greedy+EL algorithm, along with collu-
sive, Nash and Walrasian equilibrium. Cournot model has symmetric firms. The
size of action space, S, varies from 50 to 500, with u = S and v = 1, and c = 4.

takes only 300 steps while ϵ-greedy+EL takes around 650 steps. The graph com-
paring the total time steps taken by these three approaches (shown in 4.5a) is very
similar to the joint cumulative regrets’ graph shown in figure 4.2c. In addition to
this, we think that more collusive outcomes and rapid decrease in action space size
cause ϵ-greedy+HL to have lower regret than ϵ-greedy+EL.

Models with Mixed Algorithms So far, we have seen models with all the firms
using the same learning algorithm. We further investigate the models having
agents equipped with different learning algorithms. In figures 4.7 and 4.8, we
present results for models where each agent uses either one of the three learning
algorithms: ϵ-greedy, ϵ-greedy+HL, and ϵ-greedy+EL. Agents are separated into
three same-size groups, and agents in each group are assigned one of the three
methods. For example, in a model with 30 agents, three groups with 10 agents each
are created, and agents in a group use one of the mentioned algorithms for learning;
different groups use different algorithms. We compare the performance of agents
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(a) Comparison of joint quan-
tities

(b) Comparison of joint prof-
its

(c) Comparison of joint
cumu. regrets

Figure 4.4: For simulations with scaled number of agents, comparisons of different
measures obtained by ϵ-greedy, ϵ-greedy+HL, and ϵ-greedy+EL algorithm, along
with collusive, Nash and Walrasian equilibrium. Cournot model has symmetric
firms with u = 1000 and v = 1, and c = 20.

(a) Small-scale
simulations

(b) Large-scale simulations
(scaled actions)

(c) Large-scale simulations
(scaled agents)

Figure 4.5: Comparison of average total time steps taken by agents to converge

(a) Small-scale
simulations

(b) Large-scale simulations
(scaled actions)

(c) Large-scale simulations
(scaled agents)

Figure 4.6: Comparison of variances in actions/production quantities chosen by
different firms in an environment.
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using different learning algorithms with each other, as well as with three equilibria.
Figures 4.7a, 4.7b, and 4.7c show the results in terms of production quantities for
models with 3, 15, and 30 total number of agents respectively. Similarly, figures
4.8a, 4.8b, and 4.8c show the results in terms of profits for models with 3, 15, and 30
total number of agents respectively. We take the average of the outputs produced
by the agents using the same algorithm. In the model with 3 agents, agents can
choose production quantity between 0 − 40 as an action; here, c = 4, u = 40, and
v = 1. Additionally, in model with 15 and 30 agents, agents can choose production
quantity between 0 − 50 as an action; here, c = 5, u = 200, and v = 1.

From figure 4.7, we can see that the quantities produced by using ϵ-greedy+HL
are always much lower in comparison to those produced by the other two algo-
rithms. Quantities produced by using ϵ-greedy+EL algorithms are almost always
higher, although there is a small difference in quantities when compared with those
produced by using basic ϵ-greedy. This difference in quantities also reflects in
the profits presented in figure 4.8. However, the profit graphs do not follow the
exact same pattern seen in the graphs representing quantities. We think that this is
because the profit depends not only on agents’ own production quantities but also
on the production of other agents.

We also investigate models having agents equipped with any two of the men-
tioned algorithms. We use models with 10 agents where we separate them into two
groups. Agents can choose any production quantity between 0 − 50 as an action.
Here, c = 5, u = 200, and v = 1. In figure 4.9, we compare the performances of
two groups of agents where one group is using basic ϵ-greedy for learning, and
the other group is using ϵ-greedy+HL. We can see that the two groups obtain al-
most similar profits with ϵ-greedy performing slightly better, even though there
is some difference in production quantities. Unlike in figure 4.7, agents using ϵ-
greedy+HL do not produce quantities that are too low. In figure 4.10, we compare
the performances of two groups of agents where one group is using basic ϵ-greedy
for learning, and the other group is using ϵ-greedy+EL. Similarly, In figure 4.11,
we compare the performances of two groups of agents where one group is using
ϵ-greedy+HL for learning, and the other group is using ϵ-greedy+EL. From both
the figures, we can see that ϵ-greedy+EL outperforms the other two algorithms in
terms of profit (figures 4.10b and 4.11b).

We can see from figures 4.7, 4.9a, 4.10a, and 4.11a that the firms using ϵ-
greedy+EL and ϵ-greedy algorithms sometimes produce quantities even more
than what they would have produced when in Walrasian equilibrium. It is mainly
because agents using ϵ-greedy+HL algorithm produce much lower quantity, even
lower than what they would have produced when in the cartel, i.e., when in col-
lusive equilibrium. This gives leverage to other agents who are not following
ϵ-greedy+HL algorithms. Consequently, we can see from figures 4.8, 4.9b, 4.10b,
and 4.11b that the firms using ϵ-greedy+EL and ϵ-greedy algorithms sometimes
obtain profits even more than what they would have obtained by being in a cartel.
Despite this, the agents that are using ϵ-greedy+HL never converge to a profit lower
than what they would have gotten in Walrasian equilibrium. Mostly, their profits
are closer to Nash equilibrium, nonetheless, still lower than the agents following
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(a) (b) (c)

Figure 4.7: Comparison of average quantities obtained by agents using assorted
algorithms in the Cournot models, along with collusive, Nash, and Walrasian
equilibrium. (a) Cournot model has n = 3, K = 40, c = 4, u = 40, and v = 1. (b)
Cournot model has n = 15, K = 50, c = 5, u = 300, and v = 1. (c) Cournot model
has n = 30, K = 50, c = 5, u = 300, and v = 1.

(a) (b) (c)

Figure 4.8: Comparison of average profits (corresponding to the quantities shown
in the graphs above) obtained by agents using assorted algorithms in the Cournot
models, along with collusive, Nash, and Walrasian equilibrium. (a) Cournot model
has n = 3, K = 40, c = 4, u = 40, and v = 1. (b) Cournot model has n = 15, K = 50,
c = 5, u = 300, and v = 1. (c) Cournot model has n = 30, K = 50, c = 5, u = 300,
and v = 1.

other algorithms. This behavior highlights the disadvantages of using ϵ-greedy+HL
in an environment where not all the firms are following the same learning strategy.
ϵ-Greedy+HL tends to eliminate good actions prematurely because of the parti-
tioning in the action space. We have also discussed before that the performance of
ϵ-greedy+HL is sensitive to the number of partitions we make in action set at each
phase in learning.

Models with Non-stationary Demand

In our experiments, adaptive ϵ-greedy consistently performed significantly worse
than our approach. For ease of viewing, we present only the graphs of experiments
on the duopoly model in figures 4.12 and 4.13. We do not include the comparison
with adaptive ϵ-greedy in other graphs.

57



(a) (b)

Figure 4.9: Comparison of average quantities and corresponding average profits
obtained by agents using assorted algorithms in the Cournot models, along with
collusive, Nash, and Walrasian equilibrium. Cournot model has firms with n = 10,
K = 50, c = 5, u = 200, and v = 1.

(a) (b)

Figure 4.10: Comparison of average quantities and corresponding average profits
obtained by agents using assorted algorithms in the Cournot models, along with
collusive, Nash, and Walrasian equilibrium. Cournot model has firms with n = 10,
K = 40, c = 5, u = 200, and v = 1.

(a) (b)

Figure 4.11: Comparison of average quantities and corresponding average profits
obtained by agents using assorted algorithms in the Cournot models, along with
collusive, Nash, and Walrasian equilibrium. Cournot model has firms with n = 10,
K = 40, c = 5, u = 200, and v = 1.
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Fig. 4.12 shows the comparison of joint quantities; it shows collective changes
in the action course of agents. With adaptive ϵ-greedy, agents are able to somewhat
change the action course according to changes in demand, but the degrees/pattern
of those changes does not match the demand pattern properly as compared to
the nearly perfect alignment of outputs obtained by using our approach with the
demand pattern. Moreover, with adaptive ϵ-greedy, the overall outputs are closer
to Walrasian equilibrium, and in some cases more than Walrasian equilibrium. This
also reflects in fig. 4.13, where the joint profits for adaptive ϵ-greedy go to negative
values for some parts of the simulations. With our approach, the outcomes are
either collusive or either in Nash equilibrium, with some exceptions where those
are between Nash and Walrasian equilibrium. By the notion of regret discussed
above, we can see that our approach causes less regret than adaptive ϵ-greedy as
the results obtained by it are farther from collusive equilibrium than the results
obtained by our approach. We have also observed that the outputs produced by
individual but identical firms in a symmetric Cournot model are mostly similar
when the firms use our approach. It means that the results are fair to each agent,
and individual agents can rely on our method to get a fair share of the market profit
despite being autonomous and independent.

For all the simulations of the models with non-stationary demand, we can see
that the sudden changes in demand sometimes cause a sharp drop in joint outputs,
however, quick recovery towards matching new demand can also be seen. The
scale of simulation seems to affect the degree of sharp drops and recovery from
those. This is especially true for results with demand patterns 1 and 3 which consist
of sudden shocks in demand. Interestingly, the type of non-stationarity does not
seem to affect the resulting equilibrium in outcomes obtained by our approach.

Scaling the Number of Firms

Cournot models with a large number of firms have rarely been explored in the
literature. We simulate models consisting of 20, 40, 60, 80, and 100 total number
of firms. Here, we consider the demand function with v = 1000 and w = 1, along
with c = 20. The action choices range from 0 to 50. The results for joint quantity,
joint profit, and joint cumulative regret are shown in figures 4.4a, 4.4b, and 4.4c,
respectively. With the increasing number of firms, Nash equilibrium approaches
Walrasian equilibrium.

Models with Stationary Demand

In figure 4.4a, for ϵ-greedy, we can see that the outcome is collusive for models with
20 firms; with 40 firms, it coincides with the Nash equilibrium; for models with 60
and 80 firms, it seems to coincide with the Walras equilibrium and interestingly,
outcomes seems to be slightly more than the Walras equilibrium for the model with
100 firms. Therefore, we can say that ϵ-greedy performs very poorly for models
with a large number of firms and begins to break down when the total number of
firms is greater than 80. Surprisingly, if we compare its performance in terms of joint
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profits, it is better in the sense that it does not fall below the Walras equilibrium for
models with 100 firms. This is unlike the results for previous sections where joint
profits tend to be worse than their counterparts in joint quantities (if we assume
that collusive ≻ Nash ≻ Walras).

The ϵ-greedy+HL and ϵ-greedy+EL algorithms both obtain collusive results in
these simulations. For models with a comparatively smaller number of firms (20
and 40), ϵ-greedy+HL seems to be more collusive; however, the outcomes of both
approaches are similar for larger models. Unlike previous results, ϵ-greedy+HL
and ϵ-greedy+EL methods obtain nearly the same regrets. Not surprisingly, we
found that both ϵ-greedy+HL and ϵ-greedy+EL run for almost equal time steps
(shown in 4.5c). Overall, the graph for total time steps is very similar to figure 4.4c
showing joint cumulative regrets. Interestingly, even though the model with 20
firms converges to collusive outcomes, the regret obtained by ϵ-greedy, in this case,
is higher than other larger models. As the demand and size of action space stay the
same across all models with the varying number of firms, agents in smaller models
have more viable action choices that give positive payoffs/rewards. It causes a
delay in converging to the final outcome and hence more exploration, which in
turn causes more regret. From both types of large-scale simulations, we can see that
having more viable action choices leads to more regret.

Models with Non-stationary Demand

We show results for models with 10 firms in fig. 4.14, with 50 firms in fig. 4.15,
and with 100 firms in fig. 4.16. With more firms in the system, there is less degree
of collusion among them, and outcomes are either Nash or much closer to Nash,
except for the demand pattern 2. From fig. 4.15a, we can see that, for the same
demand, our algorithm might perform a bit differently in two separate time spans.
Overall, these results suggest that with AWE ϵ-greedy, firms can show collusive
behavior even when there are large number of firms present in the market. This is
in contrast with popular belief in the literature that with bigger markets, industry
outputs tend to move towards Walrasian equilibrium.

Scaling the Action Space

Firms with high production capacities can exist in the market. With high production
capacity, more actions, i.e., production level choices, are available to the firms. Here,
we use the Cournot duopoly model consisting of 2 symmetric firms. However, the
size of the action space, S, varies from 50 to 500. Available actions in the specific
model are in the range of 0 − S. For the meaningful exploration of action space, the
market demand also varies according to the size of the action space, such that the
value of parameter v in the demand function is equal to the size of action space, S.

Models with Stationary Demand

From figure 4.3a, we can see that most of the outcomes converge to the Nash
equilibrium. However, for ϵ-greedy+HL, outcomes are somewhat collusive, and
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(a) (b) (c)

Figure 4.12: For Cournot duopoly model with 2 firms: comparison of joint quantity
obtained by AWE ϵ-greedy and adaptive ϵ-greedy algorithm, along with collusive,
Nash and Walrasian equilibrium. Cournot model has symmetric firms with n = 2,
K = 40, c = 4, us = 40, and v = 1. Fig. 4.13a, 4.13b, and 4.13c show results for
demand patterns 1, 2, and 3, resp.

for ϵ-greedy, those are a bit off from Nash equilibrium and lie between the Nash
and Walras equilibria.

For the reasons discussed in the previous section, joint profits shown in figure
4.3b are slightly different from their counterpart joint quantities in figure 4.3a. As
shown in figure 4.3c, the regret with ϵ-greedy is larger than that for ϵ-greedy+EL,
which is, in turn, larger than the regret for ϵ-greedy+HL. In figure 4.3c, joint
cumulative regret increases with the size of action space for all three approaches,
but this pattern is not seen with the total steps required to converge (from 4.5b); for
all approaches, total steps required to converge do not differ much with varying
action space size; nonetheless, they are directly proportional to joint regrets.

Models with Non-stationary Demand

For the duopoly model, the degree of collusion is not affected by the increase in
action space; however, for the model with 10 firms, outcomes are between Nash
and Walrasian equilibrium. This shows that agents are not able to collude in a
system with a large number of agents and big action space. For the duopoly model,
although the joint profit drops sharply towards the Walrasian outcome when there
are sudden changes in the demand, it quickly converges back to collusive or Nash
outcomes. These drops are bigger than the ones observed in most of the other
simulations; we think that increased exploration due to the large action space might
be the reason behind it.

Asymmetric Firms

We also study Cournot models with asymmetric firms, i.e., firms with different
marginal costs. In real-world settings, the production costs often vary among
different sellers.

61



(a) (b) (c)

Figure 4.13: For Cournot duopoly model with 2 firms: comparison of joint profit
obtained by AWE ϵ-greedy and adaptive ϵ-greedy algorithm, along with collusive,
Nash and Walrasian equilibrium. Cournot model has symmetric firms with n = 2,
K = 40, c = 4, us = 40, and v = 1. Fig. 4.13a, 4.13b, and 4.13c show results for
demand patterns 1, 2, and 3, resp.

(a) (b) (c)

Figure 4.14: For Cournot model with 10 firms: comparison of joint profit obtained
by AWE ϵ-greedy with collusive, Nash and Walrasian equilibrium. Cournot model
has symmetric firms with n = 10, K = 50, c = 10, us = 500, and v = 1. Fig. 4.14a,
4.14b, and 4.14c show results for demand patterns 1, 2, and 3, resp.

(a) (b) (c)

Figure 4.15: For Cournot model with 50 firms: comparison of joint profit obtained
by AWE ϵ-greedy with collusive, Nash and Walrasian equilibrium. Cournot model
has symmetric firms with n = 50, K = 50, c = 20, us = 1000, and v = 1. Fig. 4.15a,
4.15b, and 4.15c show results for demand patterns 1, 2, and 3, resp.
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(a) (b) (c)

Figure 4.16: For Cournot model with 100 firms: comparison of joint profit obtained
by AWE ϵ-greedy with collusive, Nash and Walrasian equilibrium. Cournot model
has symmetric firms with n = 100, K = 50, c = 20, us = 1000, and v = 1. Fig. 4.16a,
4.16b, and 4.16c show results for demand patterns 1, 2, and 3, resp.

(a) (b) (c)

Figure 4.17: For Cournot model with scaled actions: comparison of joint profit ob-
tained by AWE ϵ-greedy with collusive, Nash and Walrasian equilibrium. Corunot
model has symmetric firms with n = 2, K = 500, c = 4, us = 500, and v = 1. Fig.
4.17a, 4.17b, and 4.17c show results for demand patterns 1, 2, and 3, resp.

(a) (b) (c)

Figure 4.18: For Cournot model with scaled actions: comparison of joint profit ob-
tained by AWE ϵ-greedy with collusive, Nash and Walrasian equilibrium. Cournot
model has symmetric firms with n = 10, K = 500, c = 4, us = 500, and v = 1.
Fig. 4.18a, 4.18b, and 4.18c show results for demand patterns 1, 2, and 3, resp.
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(a) (b) (c)

Figure 4.19: For Cournot duopoly model with 2 asymmetric firms: comparison
of quantity obtained by an individual agent using AWE ϵ-greedy algorithm with
respective Nash outputs. Corunot model has asymmetric firms with n = 2, K = 40,
c0 = 1, c1 = 3, us = 40, and v = 1. Fig. 4.19a, 4.19b, and 4.19c show results for
demand patterns 1, 2, and 3, resp. (AWE) in graphs refer to AWE ϵ-Greedy.

(a) (b) (c)

Figure 4.20: For Cournot duopoly model with 2 asymmetric firms: comparison
of quantity obtained by an individual agent using AWE ϵ-greedy algorithm with
respective Nash outputs. Corunot model has asymmetric firms with n = 2, K = 40,
c0 = 1, c1 = 5, us = 40, and v = 1. Fig. 4.20a, 4.20b, and 4.20c show results for
demand patterns 1, 2, and 3, resp.

(a) (b) (c)

Figure 4.21: For Cournot duopoly model with 2 asymmetric firms: comparison
of quantity obtained by an individual agent using AWE ϵ-greedy algorithm with
respective Nash outputs. Corunot model has asymmetric firms with n = 2, K = 40,
c0 = 2, c1 = 6, us = 40, and v = 1. Fig. 4.21a, 4.21b, and 4.21c show results for
demand patterns 1, 2, and 3, resp.
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(C1, C2)
Nash

Equilibrium ϵ-greedy
ϵ-greedy

+ HL
ϵ-greedy

+ EL

(1,2) Q
[13.3,
12.3]

[13.8±4.3,
12.4±3.9]

[11.3±2.9,
10.8±2.7]

[11.4±3.9,
12.7±4.7]

P
[177.8,
152.2]

[170.6±49.0,
143.2±49.3]

[181.6±35.0,
164.2±27.7]

[163.9±38.2,
164.5±30.3]

(1,3) Q
[13.7,
11.7]

[13.7±5.2,
12.3±5.5]

[11.8±3.7,
10.0±3.0]

[12.8±3.1,
10.5±4.1]

P
[186.7,
136.1]

[166.8±69.5,
122.3±66.5]

[196.9±45.3,
142.4±43.0]

[189.2±29.4,
138.3±36.0]

(1,4) Q
[14.0,
11.0]

[13.5±4.6,
12.1±5.2]

[11.9±3.2,
9.7±2.4]

[12.8±3.6,
10.1±3.2]

P
[196.0,
121.0]

[177.2±62.1,
117.6±58.8]

[199.6±39.1,
129.6±43.5]

[196.7±23.1,
125.3±31.8]

(1,5) Q
[14.3,
10.3]

[13.5±4.6,
11.3±4.8]

[12.6±2.4,
8.4±3.1]

[12.4±2.7,
10.0±2.1]

P
[205.5,
106.8]

[180.9±59.6,
107.1±56.4]

[216.0±47.5,
109.5±34.4]

[194.6±24.5,
122.9±31.9]

(2,3) Q
[13.0,
12.0]

[13.1±5.1,
13.2±5.7]

[11.6±3.0,
9.6±2.2]

[12.8±2.7,
11.1±3.3]

P
[169.0,
144.0]

[148.6±67.1,
133.2±67.5]

[186.9±43.8,
142.8±36.2]

[173.9±26.4,
141.3±35.0]

(2,4) Q
[13.3,
11.3]

[13.6±5.0,
11.2±4.9]

[11.9±3.3,
10.0±3.6]

[12.3±3.4,
10.7±2.1]

P
[177.8,
128.5]

[167.5±67.2,
115.8±60.1]

[185.9±44.3,
131.8±31.7]

[175.9±36.0,
133.6±33.0]

(2,5) Q
[13.7,
10.7]

[13.3±4.7,
12.1±4.7]

[12.7±3.9,
7.9±3.2]

[12.6±2.6,
9.6±2.7]

P
[186.7,
113.7]

[160.1±62.2,
106.5±64.1]

[211.8±49.8,
103.0±32.4]

[186.1±30.4,
118.2±27.0]

(3,4) Q
[12.7,
11.7]

[12.9±4.5,
11.9±5.1]

[11.6±2.3,
8.9±2.1]

[11.4±2.4,
11.4±2.3]

P
[160.4,
136.1]

[149.6±62.4,
121.3±64.0]

[179.9±29.2,
130.1±27.2]

[152.6±23.9,
142.8±31.9]

(3,5) Q
[13.0,
11.0]

[13.3±5.4,
11.3±3.5]

[11.5±2.9,
9.0±3.0]

[12.2±2.2,
10.2±2.8]

P
[169.0,
121.0]

[149.8±58.4,
115.6±54.7]

[180.8±23.0,
121.1±21.3]

[168.5±27.9,
120.5±23.6]

Table 4.1: Results of computer simulations for asymmetric Cournot
duopoly model with firms having different marginal costs C1 and
C2; u = 1000, v = 1. Q=Quantity; P=Profit. Results are in format
[q1, q2] for quantities and [p1, p2] for profits; qi and pi represents
quantity and profit for firm i, respectively.
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Models with Stationary Demand

Here, we use Cournot duopoly models with two firms having different marginal
costs. These costs vary in different simulations. We used the same model parameters
as those used in small-scale simulations. We have u = 40 and v = 1 as constants in
an inverse demand function (eq. 4.1), but the constant marginal cost c is different
for the two firms. Let c1 and c2 be the marginal costs for two firms, then c1 lies in
the range 1 − 3 and c2 in the range 3 − 5. Overall, the results (shown in 4.1) are
similar to those with symmetric firms. ϵ-greedy mostly converges to outcomes
worse than Nash equilibrium. However, for ϵ-greedy+HL and ϵ-greedy+EL, most
of the outcomes are collusive. We see closer-to-collusive policies with ϵ-greedy+HL
than with ϵ-greedy+EL.

Models with Non-stationary Demand

Again, we use Cournot duopoly models with two firms having different marginal
costs. We show the results for the Cournot duopoly model where the constant
marginal cost of one firm is 1, while that of another is 3. We show a comparison
with Nash outcomes in fig. 4.19. We can see that both firms perform better than their
respective Nash outcomes, i.e., showing collusive behavior. However, during fur-
ther investigation, we found that as the difference between marginal costs increases
or as the number of agents in the market increases, firms tend to produce highly
diverse outcomes in terms of comparison with their respective Nash quantities.
Also, not all firms are able to produce collusive or Nash outcomes.

4.5 Summary

We have investigated the modeling of Cournot games in the MAB setting, especially
when the firms have no knowledge of the market. Using the MAB setting allows for
the implementation of approaches based on the exploration-exploration paradigm.
To deal with ordered action sets, we proposed two novel approaches, which are
extensions of the ϵ-greedy algorithm. Given the assumption of static demand,
the proposed methods optimize the exploration by reducing the action space.
ϵ-greedy+HL performs best in terms of joint cumulative regret but comes with
the additional responsibility of deciding the number of partitions in action space.
With ϵ-greedy+EL, there is no such burden, but it may cause more regret than
ϵ-greedy+HL. Our proposed approaches converge much faster than the baseline
ϵ-greedy method. ϵ-greedy rarely produces collusive outcomes but mostly obtains
Nash quantity or any state between Nash and Walrasian outcome. Our proposed
approaches mostly obtain somewhat collusive outcomes for all kinds of simulations,
although full collusion usually does not emerge.

We also modeled the decision-making in repeated Cournot games with non-
stationary demand as a non-stationary bandit problem. We used three different non-
stationary demand patterns to represent various kinds of non-stationarities found
in real-world settings. We proposed AWE ϵ-greedy algorithm, which incorporates
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mechanisms for quantifying changes in rewards, to help it adapt to the varying
demand. Outcomes obtained by our proposed approach show that it can help
firms to readily and smoothly change their action course according to the changing
demand. We think that our results are supportive of the concern over online
algorithms being collusive without any external intervention Klein [2020].
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Chapter 5 Conclusion

In the previous chapters, we have described our work in detail. In Chapter 2,
we have included the work done on decentralized hedonic coalition formation
games Taywade et al. [2018]. Here, we modeled the problem as a grid-world
exploration problem and proposed a novel decentralized learning approach. We
also introduced a novel coalition discovery technique called budding, in which
large coalitions spawn smaller sub-coalitions if they would increase the total utility
of agents in the new sub-coalition. Our experiments showed promising results as
our techniques, both with and without budding, performed well on a variety of
hedonic games and showed huge improvement over random partitioning.

In Chapter 3, which is based on three different matching problems, we have
worked on optimal bipartite matching problem Taywade et al. [2020], roommate
matching Taywade et al. [2018], and stable bipartite matching problem. In Taywade
et al. [2018], we have worked on the roommate matching problem and also obtained
results close to optimal matching as we implemented a modified version of the
decentralized learning algorithm. In Taywade et al. [2020], we have considered
the decentralized marriage problem, modeled spatially as a grid world, and non-
spatially as an affiliation network and a small-world network. We implemented
the novel decentralized learning approach (different from the one in Taywade et al.
[2018]) and obtained results very close to optimal matching, for every type of the
model. In Taywade et al. [2021], we have shown that the multi-agent reinforcement
learning paradigm can be successfully used for decentralized stable matching
problems that are formulated spatially in a dynamic and uncertain environment,
with independent and autonomous agents having minimum initial knowledge. Our
approach is also applicable for variations such as stable matchings with incomplete
lists and ties. Agents tend to be happy with their final matches, as outcomes are
stable or close-to-stable and fair for everyone. Even with unstable outcomes, agents
are less likely to exploit instability.

In Chapter 4, we modeled the decision-making in repeated Cournot games
with stationary as well as non-stationary demand. For Cournot games with station-
ary demands, we modeled the problem using the stochastic multi-armed bandit
framework and proposed two extensions of ϵ-greedy algorithm, i.e., ϵ-greedy+HL
and ϵ-greedy+EL Taywade et al. [2022]. For Cournot games with non-stationary
demands, we modeled the problem using the non-stationary multi-armed bandit
framework and proposed Adaptive with Weighted Exploration (AWE) ϵ-greedy
algorithm. This algorithm is able to assist agents in dealing with non-stationary
market demand. The collusive nature of most of the outcomes in our simulations
is supportive of the concern over online algorithms being collusive without any
external intervention Klein [2020].

Copyright© Kshitija Taywade, 2023.
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