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Abstract
Organization’s sustainability performance is influenced by its suppliers’ sustainability per-
formance. This relationship makes sustainable supplier development a strategic competitive
option for a buyer or focal organization. When considering sustainable supplier develop-
ment practices (SSDPs) adoption, organizations have to balance and consider their limited
financial resources and operational constraints. It becomes necessary to both select the best
SSDPs set and investment allocation among the selected SSDP set such that the organization
can maximize overall sustainability performance level. In this paper, an integrated formal
modeling methodology using DEMATEL, the NK model, and multi-objective linear pro-
gramming model is used support this objective. The proposed methodology is evaluated in
a practical sustainable supply chain field study of an equipment manufacturing company in
China. Through case study, we found that the interdependency among SSDPs must be con-
sidered in SSDPs selection and investment allocation problem. Theoretical, managerial and
methodology implications, conclusions, and directions for future research are also presented.
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1 Introduction

Increasing globalization and outsourcing hasmeant greater emphasis on cooperation between
organizations and their suppliers, more attention to supply chain management, and adher-
ence to continuous improvement for maintaining long-term competitive advantage (Bai et al.,
2021a, 2021b, 2021c; Charpin et al., 2021; Sting et al., 2019). Increasing stakeholder pressure
to be environmental conscious and social responsibility has caused organizations and their
suppliers to actively engage in supplier development (SD) efforts, especially those that intro-
duce sustainable management principles (Bai and Sarkis, 2010; Liu et al., 2018; Saghiri &
Mirzabeiki, 2021). Within this competitive context, sustainable supplier development (SSD)
has become an increasingly important supplier management activity (Bai & Satir, 2022; Cole
& Aitken, 2019).

Investigations have shown that SSD adoption can significantly affect other supply chain
sustainability supportive processes (Bai & Satir, 2020; Sancha et al., 2015). An effective way
for organizations to improve their suppliers’ operational capabilities and sustainability per-
formance is by organizations investing in various sustainable supplier development practices
(SSDPs) (Bai et al., 2021a, 2021b, 2021c).

SSDPs can involve a variety of dimensions, from sharing of transactional information to
involvement of suppliers in top management decisions (Bai et al., 2016). Increasingly more
research has addressed SSDPs evaluation issues in sustainable supply chain from a decision-
method perspective (e.g. Bai and Sarkis, 2010; Fu et al., 2012; Dou et al., 2014; Trapp &
Sarkis, 2016; Bai et al., 2021a, 2021b, 2021c). Effective SSDPs implementation not only
significantly improves suppliers’ sustainable performance, such as safety and environmental
concerns, but also creates competitive advantages for focal organizations (Awasthi&Kannan,
2016;Blome et al., 2014;Dou et al., 2014; Fu et al., 2012; Saghiri&Mirzabeiki, 2021; Sancha
et al., 2015). Additionally, there exist cause-and-effect, interdependency relationships among
SSDPs that will further change SSDPs performance or effectiveness (Fu et al., 2012; Blome
et al., 2014; Dou et al., 2014; Powell and Coughlan, 2020).

When considering SSDPs adoption and implementation, organizationsmust consider allo-
cation of limited resources and other operational constraints. This situation makes it unwise
for haphazard SSDPs adoption by organizations (Bai et al., 2016; Zhao et al., 2022). Hence,
organizations will need to choose themost appropriate and effective SSDPs and the resources
allocated to these selected SSDPs to maintain competitiveness. SSDPs selection and invest-
ment allocation are strategic sustainable supply chain management decisions. A decision
method aid to help in this strategic decision is valuable tool for guiding organizations in
SSDPs planning. As far as we know, no such method is available that incorporates the vari-
ous characteristics of allocation of resources amongst interrelated SSDPs.

Modeling selection of sustainable suppliers and order of allocation amongst them has
been investigated, which is very similar to the problem in this paper, and both are the objects
selection and resources allocation (e.g. Feng & Gong, 2020; Liu et al., 2022). These studies
have conductedmultidimensional research on supplier selection and order allocation (SSOA)
problem from the perspectives of green, sustainable, gresilient, low-carbon and circular econ-
omy (Bai & Satir, 2022; Mohammed et al., 2021). Although SSOA problem is very similar
to the SSDPs selection and investment allocation problem, these SSOA models cannot be
directly used to solve it for the following two reasons. First, these models assume that sup-
pliers act independently of each other and one supplier’s market share or activities do not
affect those of other suppliers. In the SSD context, we must take in to account the synergy
and/or counter-synergy caused by selected SSDPs. A set of selected SSDPs can complement
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each other such that their total effectiveness or performance exceed the sum of individual
effectiveness. Alternatively, another set of SSDPs may interact is such a fashion that the
total effectiveness is less than the sum. Therefore, organizations need to explicitly measure
and consider interdependent SSDPs interactions in the selection and investment of desir-
able SSDPs. Second, above models always divided SSOA into sustainable supplier selection
and order allocation two independent problems to solve. Therefore, the result of sustainable
supplier selection decision will affect the result of order allocation, and then may produce
a local optimal solution, especially when there has interdependency among these suppliers.
The organizations need to consider the SSDPs selection and investment allocation at the
same time, and find the global optimal solution. Therefore, this is a very complex problem,
especially SSDPs have the synergy with each other. Therefore, this paper aims to solve the
following research questions (RQ):

RQ1 What SSDPs can effectively improve the collaborative advantages of organization and
its suppliers?

RQ2 What interdependency relationships exist between these SSDPs?

RQ3 How can an organization with limited capital select a set of SSDPs and invest them
based on their interdependency to improve the collaborative advantages?

This study seeks to address the above research questions in sustainable supply chain plan-
ning where no previous works consider SSDPs interactions in their selection and resource
allocation. This study includes the following contributions: (1) We study a novel SSDPs
selection and investment allocation decision problem and methodology in sustainable sup-
ply chain. To our knowledge, this paper the first integration and consideration of a SSDPs
selection and investment allocation problem in the field of sustainable supply chain. Previ-
ous studies only evaluated the performance of these SSDPs, few involve how to invest in
these SSDPs, especially the integration of SSDPs selection decision and investment alloca-
tion decision (Saghiri & Mirzabeiki, 2021). (2) We develop a SSDPs framework from four
groups based on relation view: sustainable product development (SPD), sustainable knowl-
edge exchange (SKE), effective sustainable governance (ESG), and trust relationship (TR).
The relational view is a good fit theoretical framework to explain how organization and its
suppliers achieve collaborative advantages through SSDPs that could not be created by any
single organization (Dyer and Singh, 1998). From the perspective of relational view, orga-
nization can improve the necessary knowledge and capabilities of its suppliers, and then
seek support from these suppliers, rather than trying to overcome the challenges alone. This
framework can comprehensively reflect the specific SSDPs that organization can invest in,
and can also be used to evaluate the existing and cooperative relationship between the orga-
nization and its suppliers. (3) We propose a novel methodology that integrates established
decision-analysis techniques of DEMATEL (Decision Making Trial and Evaluation Labo-
ratory), the NK model and MOLP (multi-objective linear programming) model; which no
previous supplier development study has adopted all three types of analysis tools (see Glock
et al., 2017). The previous multi-objective model seldom considered the multiple complex
influence relationship between the evaluation objects (Kaur&Singh, 2021). These techniques
are innovatively integrated to evaluate the interdependency between SSDPs while seeking
to optimize a company’s investment decisions. DEMATEL is applied to identify, segregate,
and then evaluate the interdependency among the SSDPs. The NK model is used to select
a set of SSDPs among the available set using an iterative process. MOLP, incorporating
capital budgeting constraints, optimally allocates investment resources among the selected

123



Annals of Operations Research

SSDPs; maximizing economic and environmental objectives. (4) We apply the methodol-
ogy developed in the paper to data collected from an equipment manufacturing company in
China helping to help evaluate the methodology in a practical context. Various policy, theo-
retical, managerial, and methodology insights for the organization are identified for optimal
investments in SSDPs. In the remainder of this paper, we first provide a brief background on
sustainable supplier development, supplier selection and order allocation research literature.
Formal models in those areas are identified and a succinct overview is provided. We then
provide a comparison between existing models and the methodology proposed in this paper
with a table. The basic concepts associated with DEMATEL, the NK model are described.
The general background information about the case company and proposedmethodology that
integrates DEMATEL and the NK model results with a multi-objective linear programming
are then introduced. The field application is discussed, with policy, theoretical, managerial,
and methodology implications and insights presented. We end the paper with major study
findings, conclusions, and limitations. Directions for future research and some ideas about
how the proposed framework and methodology might be improved are also presented in the
final section.

2 Background

2.1 Sustainable supplier development and practices

The term “supplier development” has existed for decades (Leenders, 1966). SD is defined as
buying organization (buyer) effort, in conjunction with its suppliers, to increase the perfor-
mance and/or capabilities of the suppliers to meet the buyer’s needs (Charpin et al., 2021;
Govindan et al., 2010; Jin et al., 2019; Wuttke et al., 2018; Zhou et al., 2022). Environmental
regulations and community awareness of environmental issues have caused organizations to
consider them for competitiveness reasons. Integrating environmental and social sustainabil-
ity concerns into supplier development is a relatively recent phenomenon (Bai and Sarkis,
2010; Karaer et al., 2017; Chan et al., 2018; Govindan et al., 2018; Kumar et al., 2019; Powell
and Coughlan, 2020) and has been termed “sustainable supplier development”.

SSD goes beyond just requiring supply chain partners to become sustainability; it involves
an organization actively and strategically helping its suppliers to become sustainability (Bai&
Satir, 2022; Sharma et al., 2022; Saghiri&Mirzabeiki, 2021). Recent occurrence of numerous
serious incidents of environmental damage due to lack of responsible behavior and proactive
action have made it necessary to promote supplier development and management from a
sustainability perspective (Sancha et al., 2015). Organizations increasingly recognize that
continuously improving supplier sustainable performance strengthens their own competitive
advantage (Wagner, 2011), SSDPs as a collaborative strategy have received greater attention
from both academia and practice (Bai et al., 2021a, 2021b, 2021c; Wu, 2017).

In recent years, organizations have implemented monitoring and collaborative SSDPs to
ensure that suppliers can provide materials and services with high quality while adhering
to environmental standards (Awasthi & Kannan, 2016; Bai & Satir, 2020; Dou et al., 2014;
Sancha et al., 2015). SSDPs broadly include practices such as providing green technolog-
ical advice, setting environmental improvement targets for suppliers, information sharing
on environmental topics, transferring employees with environmental expertise to suppliers,
investment in supplier capacity enhancement, requiring ISO14000 certification for suppliers,
and obtaining top management commitment for suppliers for sustainable supply practices.
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SSDPs vary widely, and may be grouped into three categories (Bai and Sarkis, 2010): green
knowledge transfer and communication, investment and resource transfer, and management
and organizational practices.

The relational view is a theoretical framework to provide a good fit with the SSDPs studied
for understanding the effects of SSDPs for gaining collaborative advantage to both suppliers
and organizations, at least in a dyadic relationship (Zhao et al., 2022; Govindan et al., 2021;
Dubey et al., 2020; Rodríguez et al., 2016). There are two differences between the relational
view and other theories, such as resource-based view, transaction cost economics, dynamic
capabilities (Bai & Satir, 2022). First, the unit of analysis in the relational view is a dyad
or even a network of organizations, rather than a single organization. Second, instead of
considering competitive advantage, the relational view considers the collaborative advantage
that can be obtain by the support of the external organizations or partners. Collaborative
advantage refers to the common benefits of both parties in rent-seeking behavior, while com-
petitive advantage encourages individual rent-seeking behavior for its benefits. According
the relational view, collaborative advantages can be obtained due to inter-firm specific assets,
complementary resource endowments, exchange substantial knowledge, and effective gover-
nance (Bai et al., 2021a, 2021b, 2021c). To analyze the nature of the SSDPs as a collaborative
advantage under sustainability, four groups of SSDPs are identified and shown in Table 1
based on the SSDPs literature review and relational view. SPD, which measures “comple-
mentary resource endowments”, refers to shared heterogeneous resources and capabilities
among organization and its supplier to design, product, and purchase sustainable products.
SKE, whichmeasures “exchange substantial knowledge”, refers to shared critical sustainable
information and knowledge among organization and its supplier through various ways. ESG,
which measures “effective governance mechanisms”, is characterized by informal manage-
ment systems, such as sustainable evaluation, sustainable verification, sustainable disclosure
and report, carbon management, and so on. TR, which measures “inter-firm specific assets”,
refers to trust or capital investments made by organization and its suppliers that are used to
achieve consistent sustainable goals. A list of four SSDPs in each of the four major categories
was developed from published literature (Chen et al., 2013; Bai and Sarkis, 2010; Hsu et al.,
2013; Zhen, 2016; Liu et al., 2018; Bai et al., 2019a, 2019b; Govindan et al., 2021). These
16 SSDPs are used to identify and evaluate the characteristics of SSDPs in this study.

Not all SSDPs contribute equally to improving supplier sustainable performance. Some
SSDPs will be more effective if a certain subset of them is implemented simultaneously. For
example, (1) assessing suppliers’ performance, and (2) feedback about evaluation results are
two SSDPs that may need to be simultaneously implemented. Alternatively, other SSDPs
subsets if deployed concurrently may diminish the effectiveness of individual SSDP. We
attempt to quantify such vagaries and unique interactions, either, positive or negative, by
DEMATEL in the SSDPs selection process. NKmodel andMOLPmodel is then integrated to
optimally allocate resources given constrained investment funds among the selected SSDPs.

2.2 Optimal model for SSDPs

Literature on SSD using analytical decision-methods is relatively limited, although growing
(Bai et al., 2019a, 2019b; Dou et al., 2014; Glock et al., 2017; Hosseini-Motlagh et al., 2019).
Bai and Sarkis (2010) introduce an analytical model using rough set theory to investigate
the relationships between organizational attributes, green supplier development programs
(GSDPs), and performance outcomes. Fu et al. (2012) introduce a grey-based DEMATEL
methodology for organizations to help evaluate the influence relationships amongst GSDPs.
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Table 1 A list of SSDPs

Categories Relational practices Abbreviation

Sustainable product development (SPD) Cooperation with suppliers for
sustainable procurement

SSDP 1

Cooperation with suppliers for
sustainable design

SSDP 2

Cooperation with suppliers for
sustainable production

SSDP 3

Cooperation with suppliers for
sustainable objectives

SSDP 4

Sustainable knowledge exchange (SKE) Inform suppliers of sustainable evolving
needs

SSDP 5

Share sustainable knowledge of core
business processes with suppliers

SSDP 6

Exchange information to help establish
sustainable plan

SSDP 7

Provide sustainable technological advice
to suppliers

SSDP 8

Effective sustainable governance (ESG) Provide supplier with clear feedback
about sustainable evaluation

SSDP 9

Sustainable verification SSDP 10

Sustainable disclosure and report SSDP 11

Carbon accounting and inventory SSDP 12

Trust relationship (TR) Construct consistent sustainable goals SSDP 13

Competent and effective in the
interactions on sustainable controls

SSDP 14

Honest in business practices with respect
to sustainability

SSDP 15

Act in partners best interest with respect
to sustainability

SSDP 16

(Adapted from: Chen et al., 2013; Bai and Sarkis, 2010; Hsu et al., 2013; Zhen, 2016; Liu et al., 2018; Bai
et al., 2019a, 2019b; Govindan et al., 2021; Bai & Satir, 2022; Govindan et al., 2023.)

Blome et al. (2014) develop a structural equation model to test the relationship among top
management commitment, and green supplier development. Dou et al. (2014) introduce a
grey analytical network process-based model to identify the relation between the GSDPs and
suppliers’ performance. Akman (2015) applied fuzzy c-means and VIKORmethods to select
suppliers for green supplier development programs. Awasthi and Kannan (2016) propose a
fuzzy NGT-VIKOR based solution approach to evaluate the performance of GSDPs. Rashidi
and Saen (2018) propose a data envelopment analysis (DEA)-based model to incorporate
dynamic concept into gradual improvement approach to improve suppliers in sustainable
supplier development. Bai and Satir (2020) developed a hybrid methodology by involving
Grey-DEMATEL and Grey-ISM to identify the relationships among barriers and roles in the
implementation of GSDPs under uncertainty.

Each of these studies uses some analytical technique to investigate SSDPs, especially
the relationship amongst SSDPs or between SSDPs and other factors including supplier
performance, organizational attributes and barriers. These techniques can aid in development
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and execution of SSDPs strategy. None of these studies provide a systemic methodology that
can optimally allocate resources among SSDPs to arrive at the best performance. Few studies
have focused on a comprehensive scrutiny of SSDPs interrelationships, their impact on total
sustainability performance, and how to allocate SSDPs resources optimallywhile considering
these interrelationships. It is within this context that this study seeks to make a research and
practical contribution.

2.3 Supplier selection and order allocation

Supplier selection is a fundamental concern for strategic supply chain management and is
closely related to SSDPs targeting and selection. It has received considerable attention in the
supply chain management literature (Govindan et al., 2015; Kaur & Singh, 2021; Mota et al.,
2018; Kannan, 2018; Sun et al., 2022). Two types of supplier selection problems typically
exist: single sourcing and multiple sourcing (Setak et al., 2012). In single sourcing, the
challenge is to select the best single supplier, which can satisfy all organization requirements
(Bai et al., 2021a, 2021b, 2021c; Aditi et al., 2022). The second approach is about selecting
an appropriate combination of suppliers when no single supplier can satisfy the organization
requirements for a given source material. In the latter situation, management can split order
quantities among suppliers, and may do so, as an example, for competitive or risk reasons
(Sawik, 2014).

SSOA is a complex and multiple-criteria decision-making problem (Hu et al., 2018;
Mohammed et al., 2021; Sun et al., 2022). It considers different tangible and intangible
variables including price, quality, performance, technical capability, and delivery (Ghadimi,
et al., 2018; Ho et al., 2010; Li et al., 2018a, 2018b). The scope of potential factors has
expanded due to governmental legislation and greater societal awareness in social issues
such as protecting the environment, which has caused a shift to green or sustainable SSOA
(Govindan et al., 2015; Torabi et al., 2015; Jia et al., 2020).

Recent papers have employed several analytical methods in the supplier selection pro-
cess. These methods include the analytic hierarchy process (AHP), analytic network process
(ANP), technique for order performance by similarity to ideal solution (TOPSIS), potential
support vector machine (P-SVM), preference programming (PP), fuzzy logic, and case-based
reasoning (CBR), etc. (Govindan et al., 2015; Ho et al., 2010; Rezaei et al., 2020).

Supplier selection and order lot-sizing modeling studies have seen growth within the
broader supplier selection literature. Much of this literature relies on various mathemati-
cal programming models (linear, mixed integer, goal and multi-objective) to investigate this
issue (Aissaoui et al., 2007; Li, et al., 2018a, 2018b). When decision makers need to con-
sider resource limitations and allocation in the supplier selection literature, mathematical
programming models are generally preferred over AHP/ANP/TOPSIS methods (Setak et al.,
2012). Generally, these mathematical programming models for joint supplier selection and
order allocation are combined with other techniques to improve the range of application
(Mafakheri et al., 2011). For example, Kannan et al. (2013) applied analytic hierarchy pro-
cess and fuzzy techniques for order preference in the context of green supplier selection. We
summarize the sustainable SSOA models in Table 2.

Through the comparative analysis in Table 2, we find that these models have three lim-
itations, which can not effectively solve SSDPs selection and investment problem. First, a
SSOA problem is divided into two independent problems: sustainable supplier selection and
order allocation. The result of sustainable supplier selection decision will affect the result of
order allocation. Therefore, they may produce a local optimal solution rather than a global
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Table 2 Summary of literature for sustainable supplier selection and order allocation

Authors Objective Supplier selection
method

Order allocation mode Inter-relationships

Kannan
et al.
(2013)

Total value, total cost Fuzzy AHP, Fuzzy
TOPSIS

Multi-objective linear
programming

No

Govindan
and
Sivakumar
(2016)

Cost, material
rejection, late
delivery, recycle
waste, emissions

Fuzzy TOPSIS Multi-objective linear
programming

No

Hamdan and
Cheaitou
(2017)

Green criteria, cost,
delivery time,
quality

AHP, fuzzy TOPSIS Multi-period
bi-objective and
multi-objective
optimization

No

Lo et al.
(2018)

Cost, delivery
performance,
product quality,
total utility

Best–worst method,
TOPSIS

Fuzzy multi-objective
linear programming

No

Gören
(2018)

Total loss scores,
Rating value

DEMATEL,
Taguchi loss
functions

Bi-objective
optimization

No

Vahidi et al.
(2018)

Total sustainability
and resilience
scores, Total
expected cost

SWOT-QFD Bi-objective two-stage
mixed possibilistic-
stochastic
model

No

Ghadimi
et al.
(2018)

Total purchasing
cost, sustainability
performance value

Fuzzy inference
system

Multi-Agent Systems No

Mohammed
et al.
(2019)

Cost, environmental
impact, social
impact, total
purchasing value

Fuzzy AHP, fuzzy
TOPSIS

Multi-objective
optimization model

No

Duan et al.
(2019)

Total cost, total green
value

Z-numbers,
Step-weight
assessment ratio
analysis, alterna-
tive queuing
method

Multi-objective line
programming

No

Feng and
Gong
(2020)

Total cost, carbon
emission,
procurement value

linguistic entropy
weight method

Multi-objective
programming

No

Nasr et al.
(2021)

Total cost, undesired
environmental
effects, employ-
ment, lost sales,
procurement value

Fuzzy best–worst
method

Multi-objective
mixed-integer linear
programming

No

Mohammed
et al.
(2021)

Cost, environmental
impact, resilience
purchasing

AHP and TOPSIS Multi-objective
programming,
TOPSIS

No

Liu et al.
(2022)

Costs, better criteria Modified
best–worst
method

Multi-objective linear
programming model

No
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optimal solution. Second, they all regard suppliers as independent individuals, and there is no
interaction between these suppliers. Third, the most above order allocation models generate
a set of Pareto solutions, but decision maker still needs to select a solution from this set of
solutions. Furthermore, another method is needed to obtain the best Pareto solution.

In this paper we introduce an integrated methodology with DEMATEL, NK model and
MOLP model to account for various constraints such as total investment, minimum and
maximum investment desired, in addressing the selection and resource allocation issues for
SSDPs.

2.4 Contributions of this research

The SSOA problem has received considerable attention in the literature, but few papers
focus on and integrate multiple goals for the related SSDPs selection and resource allocation
decision. A major shortcoming in the literature is the absence of interplay amongst various
SSDPs. For example, let us say SSDP A enhances the effectiveness of SSDP B but adversely
affects SSDP C effectiveness. Given this scenario, if SSDP B is selected then SSDPA should
also be selected because the total positive impact of these two SSDPs together is synergistic,
that is the benefit to both is greater than the sum of the benefits if both are separately funded
at different times. The opposite will be true if SSDP C is selected with SSDP A. This
phenomenon is common and well understood by practitioners.

Organization managers involved in making these decisions were interviewed concerning
this situation. They had no difficulty in gauging these effects. However, it is difficult to
describe the interdependency of SSDPs and quantifies it using only the traditional models
in SSOA. Our paper considers the complex interdependency of SSDPs and quantifies it for
an operational environment using DEMATEL, NK model method and MOLP model. First,
DEMATEL method can be used to quantify the interdependency of SSDPs considered in
decision making process, which supplements the NK and MOLP models. The managers can
express their opinions about the interdependency relationships among SSDPs with higher
efficiency. The interplay and interdependency information can serve as inputs to the NK
and MOLP models. Second, NK and MOLP models integrate each other as a whole, and
constantly seek the best performance investment strategy with the limited amount of capital.
TheNKmodel is used to select the set of SSDPs andMOLP is adopted tomaximize economic
and environmental objectives through optimally allocates investment resources among the
selected SSDPs. The NK and MOLP models then can generate a fitness landscape which
represents performance results corresponding to each combination of SSDPs. They use search
strategies to navigate the fitness landscape to find the most suitable location, in this case the
best performance strategy. Therefore, our augmented NK and MOLP models can obtain a
global optimum solutionwithout the need for complex computing processes. In summary, this
study proposes a novel methodology that integrates DEMATEL and NK and MOLP models.
This methodology can evaluate the interdependency between the SSDPs and simultaneously
maximize economic and environmental objectives within constraints and optimizes resource
(investment) allocation amongst the chosen SSDPs. An additional feature of this approach
is that it allows for variation in the number of SSDPs that are considered. This variance will
depend on the strength of interdependency.
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3 The NKmodel and Dematel

3.1 The NKmodel

The NK model was initially developed for modelling biological evolution resulting from
gene mutations and to describe how some gene mutations are more fit for long term survival
(Kauffman, 1993). Let the N SSDPs of the sustainable supplier development system be
represented by c = {c1, . . . , cN }. Each ci can take the value 1 indicating implementation of
SSDP i, or 0 otherwise. The index set Ii , contains indices of the SSDPs that influence ci . If K
= 3, then there are other 3 SSDPs that impact, for example, the effectiveness of c2. If those
SSDPs are c4,c8, and c9 then I2 = {4, 8, 9}. The effectiveness or performance of SSDP i is
indicated by fi (ci , {c j : j ∈ Ii }). This notation states that the effectiveness of ci depends on
itself and on other SSDPs in its index set Ii . The average total effectiveness of all N SSDPs
is given by:

F =
∑N

i=1 fi (ci , {c j : j ∈ Ii }
N

(1)

There are 65,536 different values that F can take, not all of them are necessarily distinct.
In this problem context, the values of F create a hypersurface in N + 1 dimensions (since
there are N variables in a configuration). The surface is called a fitness landscape, relating to
the “survival of the fittest” notion. For each configuration, there is one value of F. Higher F
values represent better species fitness. This fitness landscape consists of peaks and valleys.
Species who reach the peaks from the valleys, due to beneficial mutation of genes, have
a better chance of survival. Higher values of K create more and steeper peaks. The value
of K varies from 0 to N−1; K = 0 indicates a system which has completely independent
components, while K = N−1means each component of the system affects every other in the
system.

We will take another look at complexity created by higher K values. The number of
distinct values of fi (ci , {c j : j ∈ Ii }) is given by 2K+1 since there are K + 1 variables in the
function and each variable is binary. This indicates that as K gets larger the function takes
more different values, which creates greater differences in vertex values. Vertex values that
differ significantly from each other create more peaks and valleys on the hypersurface.

3.2 DEMATEL

The Battelle Memorial Institute introduced DEMATELmethod through its Geneva Research
Centre (Gabus and Fontela, 1976). DEMATEL is used for identifying and analyzing indis-
cernible, causal relationships amongst a set of attributes using matrices or digraphs. The
attributes can be criteria, objectives, or characteristics of an entity or a system. DEMATEL is
simple to formulate, easy to understand, and useful in clarifying interrelationships amongst
the components of a complex system. It has been successfully utilized in many practical
problems and research areas including business process management, sustainable supplier
selection, sustainable procurement (Kannan, 2021), and sustainable supply chain manage-
ment (Govindan, 2023; Bai and Sarkis, 2013; Lin, 2013; Govindan and Arampatzis, 2023).
This paper refines the version introduced by Fontela and Gabus (1976).

In this study DEMATEL is used to identify SSDPs interdependency. We want to know
whether an SSDP’s implementation affects other SSDPs, how and to what extent. We use this
information from DEMATEL to determine a set of K SSDPs that are influential in enhancing
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A set of SSDPs

Identify SSDPs interdependency 

by DEMATEL

Estimate the effectiveness of 

each SSDP

Select randomly a set of 

SSDPs

Compute fitness 

landscapes by NK

Allocate the investment by 

MOLP

Optimal solution 

Fig. 1 Flow chart of the calculation process

or diminishing the effectiveness of a given SSDP. In this case an SSDP that is diminishing
effectiveness would be one that can be replaced by an SSDP with greater effectiveness. This
information is used as input to the NK and MOLP models.

To construct an SSDPs selection and investment allocation decision methodology from
empirical data, DEMATEL method and NK fitness landscapes model and the MOLP are
integrated, and the calculation process is shown in Fig. 1. We have collected data from a
case company and its SSDPs for this study. In the next section, we provide information about
how we collected data for evaluating the information on SSDPs interdependency by the
DEMATEL method and for estimating the SSDPs effectiveness and investment constraints.
In the Sect. 5, the NK model and dynamic MOLP model are adopted to select different
combinations of 16 SSDPs and allocate the investment among the selected SSDPs.

4 Data collection

4.1 Sample case company characteristics

Over the past thirty years, China has gone through extraordinary rapid economic growth to
become the second largest economy in the world. Along with benefits of rapid economic
expansion came significant environmental and social degradation and its associated costs
(Bai et al., 2015). In response to these concerns, and recognizing the importance and need
for long-term, environmentally sustainable development, Chinese regulatory authorities have
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implemented a variety of policies to encourage sustainable modes of operations. These poli-
cies include, for example, the Circular Economy policies and incentives for a low-carbon
economy.

Due largely to pressures from governments, customers, competitors, and various other
stakeholders, many companies have adopted sustainability practices in their supply chains
(Lu and Abeysekera, 2014). During the last decade, China’s corporations and academia have
shown great interest in environmental sustainability (Bai et al., 2015). The company from
which we collected the data on its supply chain system and policies is in industrialized
northeast China. For this case investigation the case company reported some improved per-
formance on economic and environmental dimensions after implementation of SSDPs. In
order to comprehensively analyze this SSDPs implementation and performance, the study
purposively targeted and selected a large-scale equipment manufacturing organizations in
China. It may be viewed as a representative example of a manufacturer in China.

The company, a joint venture, is one of the largest home-appliancemanufacturers in China.
It, founded in 2003, is a state-level high-tech firm with a registered capital of 100 million
yuan (Chinese currency unit) and more than 5000 employees. It covers an area of 20,000
M2, the plant area is 10000 M2. The company is a high-tech firm specialized in R&D and
manufacturing of substation equipment and electrical equipment. The company has passed
the ISO9000 quality management system certification, health certification, environmental
certification, and obtained a number of national patent certificates.

Some of its suppliers are globally recognized companies. The company has cooperated
and help these suppliers to develop environmentally sound technologies and products. This
manufacturer is also interested in improving the environmental performance of the whole-
life cycle of products it makes. Towards that end, it has helped and coached its suppliers to
become sustainability since 2000.

To obtain the data presented in the Tables 3 and 5 and some additional information about
SSDPs investment, we spoke with four company managers situated in a local division who
were responsible for operations, finance, purchasing and environmental matters. First, the
managers were informed about the study purpose, a brief overview of each method was
presented and an introduction to the variables involved. In each session, managers were
informed about the necessity for each variable to be measured. The managers discussed the
issues involved before providing us with an individual perspective or a consensus as the
situation warranted.

The first step in data collection was presenting a detailed list of possible SSDPs to the four
managers for their local division operations. The four major categories include: involvement
in SPD, SKE, ESG, TR. Table 1 lists the four SSDPs chosen under each of those categories.
There is no significance in selecting exactly four SSDPs in each of themajor supplier develop-
ment areas. However, we wanted to make sure that the list was detailed enough to encompass
the company’s activities and simultaneously not too long to overburden the managers with
too much detail. Since this list forms the foundation of managerial responses to comparisons
and judgements, we made sure that the managers had opportunities to discuss and obtain
clear understanding of the SSDPs related to their operations.

4.2 Effectiveness of SSDPs

The effectiveness of an SSDP i, fi (ci , {c j : j ∈ Ii }) depends on itself as well as other
SSDPs implemented by the company. The other SSDPs could act to enhance or diminish the
effectiveness of that SSDP. It depends upon the interdependency relationships. When NK
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model is used in practice, it is very rare to be able to obtain the effectiveness, or fitness,
values for components of the system. This fact makes it difficult to study the hypersurfaces
and determine optima (McCarthy & Tan, 2000). In such situations, the researchers often are
limited to Monte Carlo simulation where the fitness values are assigned randomly, generally
over the range from zero to one using uniform probability distribution. Such simulations can
provide some general information about upper and lower bounds on system fitness or its
performance with different values of N and K . Unfortunately, without specific effectiveness
values for different system component states no specific system characteristics can be studied
(Kaul, 2005; Wang et al., 2016).

We have the same quandary, it is difficult to determine the value of a SSDP’s effectiveness
without knowing which SSDPs affect its performance and how to measure it. That is, how is
the value of fi (ci , {c j : j ∈ Ii }) determined? To overcome this problem, we propose a novel
use of DEMATEL in conjunction with the NK model. The DEMATEL is described below in
the context of SSDPs.

4.3 Data for DEMATEL

To obtain the information on SSDPs interdependency, the four managers were asked to rate
the impact SSDP i on SSDP j on a five-gradation, Likert type scale described as from no
influence (value 0) to very high influence (value 4). Each manager made an independent
pairwise comparison of the impact of SSDP i on SSDP j. The four managerial values for
a given SSDP relationship were averaged; the result is shown in the Table 3. The average
influence numbers range from zero to 3.75.

DEMATEL helps extract and highlight the latent and intricate interdependency of com-
ponents of complex systems with the total relationship matrix. However, in this study we
are interested in a different aspect of the matrix. To achieve that, we first compute the mean
value, θ , of the elements in the matrix T then subtract θ from each element that matrix. The
resulting interdependency matrix I N F = {ti j − θ} has the same information as the matrix T
except the elements now indicate variations from the mean. Table 4 shows the INF matrix.
We use the matrix to identify top K SSDPs that will affect a given SSDP.

Let us define an index set S whose elements are the indices of the currently implemented
SSDPs. For example, if SSDP 2, 5, 6, 10, 12, 13, and 16 were implemented then S =
{2,5,6,10,12,13,16}. Note that each S set will correspond to and identify a vertex of the
hypercube. Now if we want to find out, for example, the top 3 SSDPs out of the implemented
ones that impact SSDP10 most then we examine column 10 of INF matrix for the impact
values. Column 10 values are for SSDP 02 = − 0.029 or in f2,10 = −0.029. Similarly, we
can find other interdependency values of interest as in f5,10 = +0.023, in f6,10 = +0.007,
in f12,10 = −0.034, in f13,10 = +0.062, in f16,10 = +0.066.Tofind the top3SSDPs affecting
SSDP 10, the SSDPs are ranked using the absolute values since we want to consider both
positive and negative effect on effectiveness of SSDP 10. Those three SSDPs are 16, 13, 12,
notation I10 = {12, 13, 16}.

4.4 Data on SSDP effectiveness

As described earlier, many NK models do not progress beyond general analysis stage due
to difficulty in obtaining the values of components effectiveness of a system. Let this direct
effectiveness of SSDP i be indicated by gi B(ci ) and gi E (ci ) where the subscript B indicates
business and E environmental effectiveness. To obtain the impact of interdependency on the
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effectiveness, we use information from DEMATEL’s INF matrix as follows:

fi B(ci , {c j : j ∈ Ii })=
∑

j�Ii

gi B(ci ) × I N Fji fi E (ci , {c j : j ∈ Ii })=
∑

j�Ii

gi E (ci ) × I N Fji

(2)

To obtain gi B(ci ) values for each SSDP, we asked the four managers to evaluate the
effectiveness of SSDP i by itself on overall supply chain economic and environmental per-
formance. The evaluation scale ranged from 0, which was not effective, to 1, which was
pegged as highly effective. Economic or business effectiveness of a SSDP i, gi B(ci ), refers
mainly to business measures including cost, quantity, time and quality performance, whereas
environmental effectiveness, gi E (ci ) considers greenness of a supplier’s pollutant emissions,
energy consumption and the recycling and reuse level of the products. Table 5 shows the
evaluation of each SSDP by four managers on business and environmental effectiveness. We
use the averages of the four values. We also asked the managers to estimate the minimum
and maximum amounts, in percent terms, that should be spent on a given SSDP out of total
budget, 100%, without considering any interactions among the SSDPs.

5 NKmodel and dynamic MOLPmodel

The NK model is used to select different combinations of 16 SSDPs and determine their
effectiveness using DEMATEL. Allocation of investment among the selected SSDPs is car-
ried out using the dynamic MOLP model, which considers the effectiveness of the SSDPs
based on their interdependency, and constraints on the investment. The objective function
of dynamic MOLP includes a set of goals that should be satisfied while looking for pareto-
optimal solution among the most efficient points (Chan & Lee, 2018; Mohebalizadehgashti
et al., 2020).

5.1 The objective function

The objective function of the proposed MOLP model includes economic and environmental
effectiveness. First, the economic and then the environmental component is considered; both
have similar mathematical expressions.

Maximize:

FB =
∑

i∈S

⎡

⎣gi B(ci ) · xi + ω ·
∑

j∈Ii
x j · xi · fi B

(
ci , {c j : j ∈ Ii }

)
⎤

⎦ (3)

where xi is investment amount in SSDP i. Thefirst term in expression (3) is the effectiveness of
SSDP i investmentwithout any interdependent impacts fromother selected SSDPs. The index
set S, it may be recalled, consists of all SSDPs currently implemented. The membership in
set S changes as the search for an optimal SSDP set progresses. The second term provides the
additional benefit or loss in investment effectiveness due to interdependency relationships
of SSDP i and other SSDPs in the set Ii . Note we include the investments xi and x j to
include magnitude of investment in an SSDP j (from the set Ii ) to account properly for its
interdependency impact. The term ω is used to normalize the second term; it is the average
investment in an SSDP. If T is the amount of total investment then ω = T / number of SSDPs
implemented. The environmental part of the objective function (expression 4), follows the
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same logical reasoning as FB .

FE =
∑

i∈S

⎡

⎣gi E (ci ) · xi + ω ·
∑

j∈Ii
x j · xi · fi E

(
ci , {c j : j ∈ Ii }

)
⎤

⎦ (4)

The above dynamic MOLPmodel can be converted into a single objective model by using
aweighted additive function as proposed by (Amid et al., 2006). Theweighted additivemodel
is widely used in vector-objective optimization problems. The basic concept is to use a single
utility function to express the overall preference of decision makers to draw out the relative
importance of criteria (Lai and Hawang, 1994). The following single objective programming
is equivalent to the above MOLP model:

Maximize: F = λFB + (1 − λ)FE (5)

where 0 ≤ λ ≤ 1 is the weighting coefficients that represent the relative importance given
to economic performance.

5.2 Constraints

Budget/Investment Constraint: the capital budget limit is denoted by T . We set T = 100
instead of an actual budgeted amount.

∑

i∈S
xi ≤ T (6)

Limits on individual SSDP investment: some SSDPs may require some minimum invest-
ment to become operational. Some may also have an upper limit that indicates maximum
amount that could be spent on it.

min
i

≤ xi ≤ max
i

∀i ∈ S (7)

Investment is made in the selected SSDPs only:

xi = 0 ∀i /∈ S;
xi ≥ 0 ∀i ∈ S

(8)

5.3 The application

The complete procedure including the search algorithm is summarized in Fig. 2. The first
four steps focus on data collection. Step 5 is the algorithm search initialization. The set S
represents SSDPs implemented by the company. The membership of this set changes as
the algorithm searches for other SSDPs that may provide better effectiveness. The different
concurrent stages of this set are indicated by subscripts current and prior. We also use the
subscripts for the objective function F.

In step 6, the interdependency index set Ii is determined for each currently implemented
SSDPs (Scurrent). DEMATEL is used to identify the top K interacting SSDPs for a given
SSDP. The interacting values are from the INF matrix in Table 4. The direct impact values
for business and environmental effectiveness gi B(Ci ) and gi E (Ci ) are obtained from Table
5. The fi B(Ci ) and fi E (ci ), which represent the change in the effectiveness SSDP i due to
interactions with other SSDPs are computed from Eq. 2.
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Fig. 2 Flowchart of the search algorithm
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Step 7 solves the MOLP problem. The objective function is obtained based on values
computed in step 6 by using Eqs. 3, 4, and 5. The value λ determines the relative importance
attached to business and environmental objectives. As described in a later section, it is varied
during the sensitivity analysis to obtain understanding of the impact of selection of SSDPs
under these often-conflicting goals. At the end of this step, the objective function valueFcurrent

is determined for one of the vertexes of the hypercube represented by indices in Scurrent .
In step 8, we check to see if we have made an improvement from the previous value of

the objective function Fprior , which corresponds to vertex Sprior . We keep the better of the
two effectiveness values and search for a higher effectiveness value amongst its neighboring
vertexes. These neighboring vertexes are identified by selecting a random SSDP from 16
available. If it is already implemented we decommission it, on the other hand if the randomly
selected vertex is not in the set, we implement it. Thus, a new set S is obtained, which now
becomes the Scurrent . At this point we go back to step 6, re-compute all needed values so that
a new objective function value can be computed and restart the search process for the best
effectiveness value. The search process is iterated 100 times. The ending of the iterations is
taken as the best value and corresponding values of xi are the most effective investments in
SSDPs. The authors have developed a system of MATLAB software for the algorithm.

Basedon the case data collected (Table 3 and5)withK =3 andλ=0.5, the optimal objective
function results is: F = 91.0. This the total effectiveness of investment in the selected SSDPs.
The economic part of the objective function is valued at 91.9 and the environmental part at
90.1, which are equally weighted. Four SSDPs were recommended for investment and with
amounts of SSDP 13 = 20%, SSDP 14 = 30%, SSDP 15 = 23.6%, SSDP 16 = 26.4%. As
mentioned before, the percentage values result from setting total investment, T , at 100%.

6 Sensitivity analysis

6.1 Coefficient � variations

The results of this sensitivity analysis, with λ changed in increments of 0.1, are shown in
Table 6 and Fig. 3.

When λ=0, the MOLP model becomes a single objective model focusing on the maxi-
mum environmental effectiveness. Same reason, the MOLPmodel become a single objective
programming that get the maxim economic performance when λ=1. It is interesting to note
that SSDPs 13 to 16 are in the selected set over the entire range of λ. As may be seen from
Table 1, these SSDPs are in the trust relationship group. This occurrence highlights the fact
that it is important for the company to spend funds and effort building trust and confidence
with its suppliers, maintain transparent and achievable goals, and be cognizant of suppliers’
interest in business relationship. Such a supply chain environment, it appears from our data,
will provide economic and environmental benefits to the company.

The model allocates 20% and 30% to SSDP 13 and 14 respectively. The constant invest-
ment in these two SSDP across the entire range of λ highlights the importance of SSDP 13
and 14 from both economic and environmental perspectives. These two SSDPs emphasize
consistent, competent, and effective sustainable goals and controls.

When SSDP 15 and 16 are considered, it appears that SSDP 15 becomes more important
in terms of investment as more weight is given to business performance. SSDP 15 asks the
company to be honest in business practices about sustainability. Investment direction in SSDP
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Table 6 The SSDPs investment allocation results for different value λ (K set at 3)

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SSDP01 0 0 0 0 0 0 0 0 0 0 0

SSDP02 0 0 0 0 0 0 0 0 0 0 0

SSDP03 0 0 0 0 0 0 0 0 0 0 0

SSDP04 0 0 0 0 0 0 0 0 0 0 0

SSDP05 0 0 0 0 0 0 0 0 0 0 0

SSDP06 0 0 0 0 0 0 0 0 0 0 0

SSDP07 0 0 0 0 0 0 0 0 0 0 0

SSDP08 0 0 0 0 0 0 0 0 0 0 0

SSDP09 0 0 0 0 0 0 0 0 0 0 0

SSDP10 0 0 0 0 0 0 0 0 0 0 0

SSDP11 0 0 0 0 0 0 0 0 0 0 0

SSDP12 0 0 0 0 0 0 0 0 0 0 0

SSDP13 20 20 20 20 20 20 20 20 20 20 20

SSDP14 30 30 30 30 30 30 30 30 30 30 30

SSDP15 21.7 22.1 22.5 22.9 23.2 23.6 24.0 24.4 24.8 25.2 25.6

SSDP16 28.3 27.9 27.5 27.1 26.7 26.4 26.0 25.6 25.2 24.8 24.4

Performance 90.1 90.3 90.5 90.8 90.8 91.0 91.2 91.5 91.6 91.7 91.9
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Fig. 3 The SSDPs investment allocation and results for different value λ (K set at 3).

16 is exactly opposite. As environmental factors increase in importance, more investment is
allocated to SSDP 16, which requires the company to act in a partners’ best interest.
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6.2 Interdependency parameter K variations

We select a K range from 0 to 5, in increments of 1. The results of this analysis are shown in
Table 7 and Fig. 4.

Table 7 The SSDPs investment allocation results for different value K (λ set at 0.5)

K 0 1 2 3 4 5

SSDP01 20 12.8 0 0 0 0

SSDP02 20 14.5 0 0 0 0

SSDP03 0 7.4 0 0 0 0

SSDP04 60 15.2 0 0 0 0

SSDP05 0 0 0 0 0 0

SSDP06 0 0 0 0 0 0

SSDP07 0 0 0 0 0 0

SSDP08 0 0 0 0 0 0

SSDP09 0 0 0 0 0 0

SSDP10 0 0 0 0 0 0

SSDP11 0 0 0 0 0 0

SSDP12 0 0 0 0 0 0

SSDP13 0 20 20 20 20 20

SSDP14 0 30 30 30 30 30

SSDP15 0 0 0 23.6 23.6 23.6

SSDP16 0 0 50 26.4 26.4 26.4

Performance 90.4 87.6 89.9 91.0 91.0 91.0
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Fig. 4 The SSDPs investment allocation results for different value K (λ set at 0.5)

123



Annals of Operations Research

A low K value (e.g.,K = 0) leads to a smoother hyperspace where the global optimum (or
the highest peak) is easily searchable. With K=0, the model does not consider the interde-
pendency relationship amongst the SSDPs. It only looks at the performance of the individual
SSDPs, that is, the effectiveness of each SSDP is exactly as given in Table 5. It can be seen
from that table that effectiveness level of SSDP 04, 01 and 02 are the top three, 0.9050,
0.9025 and 0.9025, respectively. The investment allocation to SSDP04 is at the upper limit
60 (Table 8). SSDP 01 and 02 have the same effectiveness hence the remaining 40 are dis-
tributed equally. When K > 0, the interdependency relationships displayed in Table 4 come
into play. The effectiveness depends on both direct effectiveness values (Table 5), and on
interaction between selected SSDPs (using Eq. 2).

Usually as K increases, the hyperspace becomes more uneven, displaying many peaks
and valleys. In our example, however, that phenomenon is not evident. In Table 7, the results
for all K>2 are the same. This is due to the investment constraint in the MOLP model. The
interdependency amongst the SSDPs 13 to 16 is so strong (see SSDPs 13 to 16, and their
columns and rows in Table 4) that most effective allocation of investment takes place when
maximum investment is made into them. If there are no funds left then other SSDPs receive
no investment, their xi values are 0. Examination of Eqs. 3 and 4 makes it clear that other
interactions do not play a role. Therefore, for any value K > 2, the investment allocation will
be the same and the effectiveness of the SSDPs will be the same.

7 Results

7.1 Policy and theoretical implications

The implications for China are discussed first. China is facing domestic and international
pressures to improve its environmental and sustainability performance and create awareness
of social responsibility amongst its public and private organizatrions. First, in light of this
situation, organizations should make investments in them suppliers to improve their sus-
tainability performance (Bai et al., 2016). Therefore, the country should formulate relevant
policies to not only encourage organizations to improve their sustainable performance, but
also encourage them to improve the sustainable performance of their suppliers through SSD.
Second, an organization may not be able to invest in all the SSDPs simultaneously; it may
have to judiciously choose among the strategies and maximize the environmental and eco-
nomic performance with limited resources and other restrictions arising out of operational
considerations. Hence, it would be helpful to decision makers to identify how investment
strategies affect the performance, which is strongly influenced by the SSDPs interdepen-
dency. The country can give more policy guidance and better play to the synergy of these
SSDPs, so as to help organizations play a maximum role in SSD with limited capital.

The implications for theoretical research are also discussed. The SSDPs framework pro-
posed in this study provides researchers and practitioners with some theoretical insights. First
of all, in view of the increasing importance of collaborative advantage, the focus of com-
petition has increasingly shifted from an inner-organization to strategic cooperation among
supply chain partners. Therefore, investment in SSDPs must be based on the relational view
to generate collaborative advantage by a dyad of buyer and its suppliers. Therefore, buyer
and its suppliers can work together through SSDPs to greater common interests than acting
alone. Second, it contains 4 key aspects: ISPD, SKE, ESG, and TR. These four aspects are
the key aspects of establishing strategic cooperation and collaborative advantages. Based on
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4 aspects of the relational view, this framework lets both researchers and practitioners think
deeply and categorize various issues in SSDPs. Third, it includes 16 specific practices, which
can be used as an initial list for practitioners to refer to and guide their specific practical
activities. Through establishing a systematic framework to evaluate and select SSDPs, it may
help buyer and its suppliers improve their sustainability through the SSDPs investment. This
framework can also be used to evaluate the performance level of existing SSDPs investment
or make decision analysis for future SSDPs investment. From this point of view, this study
might help managers to obtain more efficient investment plans in sustainable development
considering capital limitation.

7.2 Managerial implications

The methodology and its real-world application provided can provide insights for companies
and suppliers alike. Professional and industrial organizations, and the government, can also
benefit since the methodology developed in the paper will help them identify most effective
sustainable and green environmental practices. In China, the implementation of sustainable
supply chain management is still in the early stages of development; a methodology such as
this can help organizations begin to determine best directions for adopting SSDPs. Analysis
of the results in Tables 6 and 7 provide some insights into the investment strategies for
sustainable supplier development practitioners and researchers.

7.2.1 The best practices for performance

SSDPs can be ranked according to the effectiveness level based on the results shown in the
Table 5. Evaluating the contributions of each of these SSDPs can help identify which ones
can be prioritized. SSDP01 and 04 are the most important for economic performance when
those SSDPs separate implementation. SSDP02 is the most important for environmental per-
formance when this SSDP separate implementation. This performance rank of these SSDPs
can give an intuitive feeling to the case organization. Organizations can only consider these
best activities if they only implement a single SSDP, but it is not suit for implementing a set
of SSDPs.

7.2.2 The best practices for interdependency

To understand the implications of the interdependency among SSDPs, let’s return to the
DEMATEL results shown in Table 4. Using the final outcomes of DEMATAL, with the
highest score of R + D, we can identify the most important (prominent) practices. SSDP16,
13, 14 and 15 are arranged in the first four. Organizations may gain a deeper understanding
of investment practices. In our illustrative example, it was found that all trust relationship
practices (SSDP 13—16) play a useful role in identifying good sustainable performance.

7.2.3 The investment allocation decision

For the illustrative example, the investment allocation result provides some insights and
managerial implications into various sustainable supplier development investment and the
performance outcomes. The model here mainly focuses on the estimated SSDP effectiveness
values. It does not calculate the optimal total amount of investment that ought to be made
in selected SSDPs. It prioritizes SSDPs for investment and indicates the proportion of the
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amount available that should be allocated to the selected SSDPs. SSDP 13–16, which are
always selected for investment allocation for the entire range of λ are all practices of trust
relationship. Not only that, but SSDPs 13 and 14, which refer to consistent sustainable goals
and competent and effective in interactions, are always allocated the maximum proportion
of the investment. For the company in our example, the trust relationship efforts will lead to
greater performance improvements than other efforts. These managers feel that the company
is still in the preliminary stages of supplier development and should first establish sound
trust relationships with the suppliers. The matter of trust and support in business situations
is very important in China. In many situations, however, trust may already be present, as
the Guanxi relationship plays a large role (Tsang, 1998). It is felt that given these existing
cooperative networks, building of trusting relationship with the suppliers would be easiest. In
this scenario, although the performance level of the SSDP 01, 02 and 04 is the best, nothing
is investment from them because of the low level relatiaonship of them lead to the not better
effectiveness outcome. Although we set the parameter ω of the relationship to a very small
number 0.01, the interdependency among SSDPs still plays a very important role. It also
proves that the SSDPs selection and investment allocation problem must be considered in
inter-relationship to each other.

7.3 Methodology implications

An important contribution made by the methodology proposed in this paper can be high-
lighted by considering Table 5, which shows the effectiveness of each SSDP measured on
an individual basis. Simply examining the table, one may draw the conclusion that SSDPs
01, 02, and 04 are the best suited for investment since they deliver higher performance. Our
methodology, however, takes into account not only the individual performance, but it also
considers and the interdependency among the SSDPs and finds the combined net effective
impact. When such an impact is considered, we get entirely different set, SSDPs 13 to 16,
provide the best outcome for investment.

We have proposed some resourceful improvements to the NK model, which may make
the modified method even more useful in many areas of its application. The components of
a system generally assume two discrete states (although the original method allows for more
than 2). In the improvement proposed in the paper we allow each component to assume any
continuous value greater than or equal to 0 by using the xi variable for each componenti as
seen in Eq. 3. The DEMATEL method is used to account for interdependency among the
components. This intermediate step allows for simple estimation of individual effectiveness
of SSDPs without complications of impact of interdependency among them. Lastly, our use
of term ω/xi in Eq. 3, for example, allows the model user additional flexibility in assigning
weights to the performance of the components. All these modifications in the NK method
make it more versatile.

Another important consideration is whether the highest peak among all the peaks on the
hypersurface, that is, whether the optimum reached is indeed the global optimum. We check
for such an optimum by starting at different vertex (in step 5, Fig. 1) and see if we reach the
same optimum point.

Our integrated methodology did not experience the full impact of higher values of K due
to the maximum investment constraints in MOLP. As described earlier, the results are the
same for K > 2 in Table 7. In a pure straightforward application of the NK model, however,
higher values of K would increase the occurrence that a local optimum was reached. All
neighbor vertexes have lower performance values thus further improvement in performance
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(or fitness) is impossible. In these cases, it is possible to use a different vertex selection
strategy and make a neighbors’ neighbor or a two-level jump. In such a jump two SSDPs are
randomly changed instead of just one (steps 9a, 9b in Fig. 2). In our situation, this additional
step was not warranted.

8 Conclusions

SSD has recently received considerable attention in supply chain management literature.
Many organizations consider awell-designed and implemented SSDplan as an important tool
that contributes greatly to overall competitiveness. Selection and allocation of investments
to SSDPs is a complex problem. This is a multi-criteria decision problem that includes both
qualitative and quantitative factors, which are often assessed with imprecise data and require
subjective judgments. Our study examines this problem to provide guidance to organizations
to enable them to effectively evaluate and implement SSDPs; seeking the best, or at least
better, possible results.

This paper presents a comprehensive optimizing model, which integrates the DEMATEL
method, the NK model, and MOLP model, for solving SSDPs selection and investment
allocation decision problem, while considering both the economic and the environmental
performance. The model is applied to a real-world situation and management implications
are explored. Analysis ofmanagerial implications shows that the proposed approach provides
a systematic and effective decision tool for supply chain managers and practitioners. The
result of the sensitivity analysis for varying parameters indicated that there are trade-offs and
conflicts among decision variables and the performance of the system. The data required are
easy to obtain and the methodology is rather straightforward to use making it suitable as
part of a decision support system for practitioners. The framework presented in this paper
can easily be extended to analyze other managerial decision-making problems that present
complex interactions among components of a system.

We used subjective evaluation of SSDPs effectiveness based on the opinions of four
managers in the organization. Although these managers were experienced experts in their
field, some objective data based on historical performance of the suppliers in combination
with expert evaluation would be valuable. This additional data would require an organization
to maintain data bases on many aspects of the suppliers’ operations. We also should discuss
the theory of decision-making process from the perspective of behavior decision, includes
decision-maker behavior characteristics, prospect theory, regret theory, and soon.Application
of fuzzyor greymethodologieswould be another avenue to handle subjectivity of the collected
data.

The frameworkwehave built is based on the practical activities of both parties and lacks the
relevant advanced technologies. Under the fourth industrial revolution, blockchain, artificial
intelligence, the Internet of Things and other new generation of information technologies
have attracted more and more attention. In future research, these disruptive technologies and
related capabilities should be included in this framework, which extend the relational view.
It will be interesting to see to what extent those concerns are similar to the concerns in the
fourth industrial revolution. We have provided some directions, which we hope will foster
further research in this important area.

We also believe that the methodology can be applied to a number of other settings where
multiple criteria and complex relationships exist amongst programmatic selections. Investi-
gating various applications of the general methodology can further determine its strengths
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and weaknesses, as well as its flexibility. Given the importance of supply chain sustainability
and some of its complexities, we felt that this would be a good initial application.
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