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Abstract

This work builds up the theory surrounding a recent result of Erlandsson, Leininger, and

Sadanand: the Current Support Theorem. This theorem states precisely when a hyperbolic

cone metric on a surface is determined by the support of its Liouville current. To provide

background for this theorem, we will cover hyperbolic geometry and hyperbolic surfaces more

generally, cone surfaces, covering spaces of surfaces, the notion of an orbifold, and geodesic

currents. A corollary to this theorem found in the original paper is discussed which asserts

that a surface with more than 32(g−1) cone points must be rigid. We extend this result to the

case that there are more than 3(g−1) cone points. An infinite family of cone surfaces which are

not rigid and which have precisely 3(g − 1) cone points is also provided, hence demonstrating

tightness.
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Chapter 1

Introduction

1.1 Inverse Problems in Geometry

Inverse problems, in the case of geometry, ask whether one can reconstruct the geometry or

’metric’ of some object, given a certain geometric data set. Among the originating examples of

such problems is Kac’s famous question, "Can you hear the shape of a drum?" In that case,

the geometric data set under consideration was the spectrum of the Laplace operator on a

plane region, and one wished to use this to reconstruct the geometry or ’shape’ of the region

itself.

Another example, more closely tied to the subject of this thesis, is Otal’s ground-breaking

work on marked length spectra. If one has a surface with a hyperbolic metric, it turns out

that every free homotopy class of loops on this surface has a unique geodesic representative.

The length of this closed geodesic can then be taken as the length of the homotopy class itself,

and so we obtain a function ℓ : π1(S) → R+. Otal (1990) proved that in fact this function is

sufficient to determine the metric on S (up to isotopy)[1].

A corollary to this fact is that the Liouville current, a certain measure on the space of

geodesics of S, also determines the hyperbolic metric on S up to isotopy. This is because the

Liouville current is itself determined by the lengths of the homotopy classes of closed loops via

a geometric construct known as the "geometric intersection number." However, if S possesses

a certain kind of singular point known as a "cone point," then this Liouville current no longer

has full support. That is, there are some open sets of geodesics that will have measure 0

when measured by the Liouville current. One can then ask whether knowing this support is

sufficient to determine S up to isotopy.

A recent result of Erlandsson, Leininger, and Sadanand [2] answers this in the affirmative

for all hyperbolic cone surfaces, minus a measure zero subset of exceptions. Moreover, those
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surfaces for which the metric is not determined by the support of the Liouville current are

fully characterized. Those metrics which are not determined by the support of their Liouville

current they refer to as ’flexible,’ while those which are they refer to as ’rigid.’ In particular,

their theorem states that

Theorem 1.1.1 (Current Support Theorem). If φ1 and φ2 are hyperbolic cone metrics on a

closed, orientable surface S with supp(Lφ1 ) = supp(Lφ2 ), then either φ1 = φ2, or there exist locally

isometric orbifold branch coverings p1 : (S, φ1) → O and p2 : (S, φ2) → O such that each cone point

of S is mapped via p1 and p2 to an orbifold point with even order. Moreover, if such an orbifold

covering exists for (S, φ), then the set of all hyperbolic cone metrics on S which share the same

support of their Liouville currents with φ is parameterized by the Teichmüller space of O.

With this theorem in hand, Erlandsson et al. were able to apply it to a problem in sym-

bolic dynamics, which asked if one gives the edges of a hyperbolic polygon a cyclic labeling,

whether the set of all possible bi-infinite sequences of edge labels that can be obtained from a

billiard ball bouncing from edge to edge (the "Bounce Spectrum") was sufficient to determine

the polygon up to isometry. Mirroring the result of their Current Support Theorem (CST), they

were able to prove that all hyperbolic polygons (excluding a measure zero subset) can be deter-

mined up to isometry by their bounce spectra, and moreover fully characterize all exceptional

polygons via a single geometric description.

In addition, they developed a corollary which makes the theorem somewhat easier to apply.

This corollary asserts that if a hyperbolic cone surface has more than 32(g − 1) cone points,

where g is the genus of the surface, then the metric on S must be rigid. Thus in such cases,

one does not need to directly prove no requisite orbifold covering exists in order to prove that

the metric is rigid. This result is what will be improved upon in this thesis. In particular, we

will prove that if the number of cone points exceeds 3(g − 1), then the metric must be rigid.

Moreover, we will supply an infinite family of cone surfaces which are flexible, and which have

precisely 3(g − 1) cone points.

1.2 An Outline of the Sequel

Before coming to the main result of this thesis, we will endeavor to develop the theory sur-

rounding the CST. In particular, in what follows we will first develop an understanding of

hyperbolic geometry in general. We will look at two models of it, define the metrics on these

models, and categorize the isometries of hyperbolic space. There will also be a discussion of

the boundary at infinity of the hyperbolic plane, and see how the isometries of the plane act
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on it. Finally, we will develop the definition of hyperbolic area, which will play an important

role in the proof of our result.

Another piece of understanding we will need is that of covering spaces. We will give ex-

amples and a definition for this concept, as well as describe how, under ideal circumstances,

the covering spaces of a manifold are in one-to-one correspondence with conjugacy classes of

subgroups of its fundamental group. We will next endeavor to detail an explicit construction

of the universal cover of a manifold, which corresponds to the trivial subgroup of the funda-

mental group. Finally, we will finish this chapter by describing a more powerful classification

of covering spaces of a given manifold, found in the ’permutation representation.’ This clas-

sification is more powerful as it will allow us to describe disconnected coverings as well as

connected coverings.

Combining these two sections together, we next explore hyperbolic surfaces. Properties of

hyperbolic surfaces blend information from both geometry and topology in interesting ways,

and we will see how this interaction provides a nice parameterization of the space of all hy-

perbolic metrics on a surface, i.e. its "Teichmüller space." We than expand on this discussion

and generalize to surfaces with cone points, as well as generalize the previous discussion of

hyperbolic area to the ’Gauss-Bonnet Theorem,’ which gives an easy way to compute the area

of a hyperbolic surface.

In chapter 5, we give an outline of the theory of orbifolds, offering examples and elaborating

on how they generalize concepts from ordinary manifolds such as coverings, fundamental

groups, and Euler characteristics.

Chapter 6 is the last chapter to develop the background theory, and it will focus on Geodesic

currents. Beginning with a notion of a space of geodesics on a surface S which is purely

topological and divorced from any specific metric. It is on this purely topological construction

that we can then define certain measures, and from there build up to the Liouville current.

Chapters 7 and 8 then recap the theory developed in the previous chapters and use them

to both explore the CST in more detail, providing examples and applications, as well apply

these ideas to the proof that a metric with more than 3(g − 1) cone points must be rigid.
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Chapter 2

Hyperbolic Geometry

2.1 Hyperbolic Geometry and its Models

Hyoerbolic geometry is one of 3 varieties of nice geometry, distinguished by their constant

curvature at every point. The first of these is spherical geometry, which possesses a positive

curvature at every point. The curvature in this case is inversely proportional to the radius

of the sphere. The next is flat geometry, modeled by the Euclidean plane R2 and having zero

curvature at every point. Then finally there is hyperbolic geometry, which has a constant

negative curvature at every point. Unlike the sphere and the plane, the hyperbolic plane

unfortunately possesses no isometric embedding inside of our space R3. Thus we have to turn

to inaccurate but sufficient models to try and understand this geometry. Luckily there are a

variety of these, and we discuss 3 here and how they are related.

The first we will discuss is the hyperboloid model. One advantage of this model is that the

way its metric is defined bares the most resemblance to familiar euclidean geometry. In R3, the

distance between any two vectors v⃗ and u⃗ is defined to be
√
(v⃗ − u⃗) · (v⃗ − u⃗). The measurement

of distance is defined in terms of the dot product, which is an example of a quadratic form on

Rn. In general, any quadratic form can be written in terms of a matrix A as

QA(u⃗, v⃗) = u⃗TAv⃗ = u⃗ ·Av⃗.

Thus this is a generalization of the dot product. For standard Euclidean geometry, the

matrix A is simply the identity matrix. In order to define a model for hyperbolic geometry, we

will simply change one of the 1’s in the identity matrix to a −1, giving us the quadratic form
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[3]

Q(u⃗, v⃗) =

(
u1 u2 u3

)
1 0 0

0 1 0

0 0 −1



v1

v2

v3

 = u1v1 + u2v2 − u3v3.

From this formula, we can observe that it is actually impossible to form a metric on R3 in

the same way we did in the euclidean plane, i.e by defining d(u⃗, v⃗) =
√
Q(u⃗− v⃗, u⃗− v⃗), since

the value of this quadratic form is sometimes negative depending on the inputs. What we will

do instead is restrict attention to the locus of vectors v⃗ such that Q(v⃗, v⃗) = −1. We can use the

formula for this quadratic form and solve this equation to get the relation

v3 = ±
√

1 + v21 + v22 ,

which is the defining equation for a 2-sheeted hyperboloid in R3. in order to get a connected

subspace, we will restrict attention further to the positive sheet, i.e. where v3 > 0. This

restricted space has the important property that every tangent vector v⃗ to this surface satisfies

Q(v⃗, v⃗) > 0 (see appendix, section 1). What this means is that we can take any curve on this

surface with parameterization γ(t), t ∈ [0, 1], and define its length analogously to the way we

normally do for Euclidean curves, namely

len(γ) =

1∫
0

√
Q(γ′(t), γ′(t))dt.

We can then define the distance between two points on this surface, u⃗ and v⃗, to be the infimum

over the lengths of all possible curves along the surface which join u⃗ to v⃗. When this is done,

the formula for the distance turns out to be [3]

cosh−1(−Q(u⃗, v⃗)).

It turns out that the infimum of the lengths of these curves is always achievable by a unique

geodesic, and this geodesic turns out to be the curve joining u⃗ to v⃗ which is contained in the

plane spanned by u⃗ and v⃗. To get an equation for this line, we pick a vector w⃗ in this plane

such that Q(w⃗, w⃗) = 1 (so it will be off the hyperboloid) and such that it is orthogonal to v⃗

with respect to this quadratic form, i.e. Q(w⃗, v⃗) = 0. Then one can check, by substituting into

the formula for the hyperboloid, that the equation of the curve contained in this plane and
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passing through u⃗ and v⃗ is

γ(t) = sinh(t)w⃗ + cosh(t)v⃗.

The hyperboloid model is nice in that the way it is defined is most closely aligned with what

we would expect given the constructions of spherical and Euclidean geometry. However, as

a tool for visualization or analyzing isometries, it is less ideal. We therefore next turn to the

Poincaré disk model. This model can be obtained from the hyperboloid model by joining a

point on the hyperboloid to the point (0, 0,−1) with a straight line, and mapping it to the point

where this line intersects the xy-plane. Doing this for every point on the hyperboloid will fill

out the unit disk centered at the origin in the xy-plane:

Fig. 2.1.1: Projection onto Poincaré Disk (Image created in GeoGebra)

This projection map is a nice choice because it is conformal, i.e. it preserves angles between

intersecting geodesics [4]. It also maps hyperbolic circles in the hyperboloid to Euclidean

circles in the plane, though the center of the image circle will likely not coincide with the

image of the original hyperbolic circle. A geodesic on the hyperboloid will project to either a

circular arc which meets the boundary of the disk at right angles, or to a diameter of the disk

if the geodesic lies in a plane containing (0, 0,−1). Thus these will be the geodesics or straight

lines of the Poincaré disk. We can illustrate a few of these below. Observe that the black

geodesics shown intersect to form a hyperbolic triangle. We will demonstrate this in more

detail later, but one can already see that the angles at each vertex appear smaller compared

to what we’d expect in the Euclidean plane. Indeed, it will be the case that the sum of the

angles of any triangle in the hyperbolic plane is strictly less than π radians. This is one of the

important qualitative differences between hyperbolic and Euclidean geometry.
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Another important qualitative difference is to do with Parallel lines, or lines which never

meet one another. In the Euclidean plane, parallelism defines an equivalence relation on lines.

If line A is parallel to line B, and B is parallel to C, then line A must also be parallel to C.

This is not so in the hyperbolic plane. For instance, in the picture above the right edge of the

triangle and the purple geodesic are both parallel to the green geodesic, yet these two lines

intersect and so are not parallel to one another. In fact, one can imagine taking one of these

geodesics and swiveling it about the point of intersection away from the green geodesic, and

so obtain a whole 1-parameter family of geodesics which are parallel to the green geodesic yet

not parallel with each other.

The primary advantage of the Poincaré disk model is in its ease of visualization. One can

see the whole plane at once, since it is being represented on a bounded subset of the Euclidean

plane. For this reason it will be the model of the hyperbolic plane we will use for the remainder

of this work, following this chapter. The fact that it is represented in the Euclidean plane also

means we can think of it, in particular, as a subset of the complex plane C. This gives it both

an algebraic structure and a coordinate scheme which we can take advantage of. For one

thing, any point in the Poincaré disk can be defined by its coordinates (x, y) in the plane. To

obtain a metric on this disk, let p and q be points on it. We can first undo the projection and

map these points back to the hyperboloid,then measure the distance between them there, and

then assign this value to be the distance between p and q in the poincaré disk. In other words,

we are defining our metric on the disk such that the projection map from the hyperboloid to

the disk is an isometry. Doing this yields the metric [5]

d(p, q) = cosh−1

(
1 + 2

|p− q|2

(1− |p|2)(1− |q|2)

)
,

where |x| refers to the Euclidean distance between the point x and the center of the disk,

and so |p − q| is the Euclidean distance between points p and q. There is also a simpler
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formula for the differential of arclength in this model. In the hyperboloid model, this was

ds2 = dx2+dy2−dz2, given by the quadratic form. One can then integrate a curve with respect

to ds to get its length, and by change of coordinate this is equivalent to the integral definition

of arclength in the hyperboloid model given above. In the Poincaré disk model, the differential

of arclength and the associated arclength integral for a parameterized curve γ(t) = (x(t), y(t)),

t ∈ [0, 1], are instead [4]

ds2 = 4
dx2 + dy2

(1− x2 − y2)2
, len(γ) =

1∫
0

2
√
x′(t)2 + y′(t)2

1− (x(t)2 + y(t)2)
dt.

This formula is a bit simpler than the one given above for the actual metric function. Be-

cause the distance between any two points is defined to be the infimum of the arclength of

the curves which connect those two points, if an isometry preserves the arclength of curves

it must also preserve the distance between points and so be an isometry. Since the formula

for the differential of arclength tends to be simpler, we will take advantage of this method in

the next section to show that certain transformations of the hyperbolic plane are isometries.

Before this though, we will look at one more model of the hyperbolic plane.

The upper half-plane model of the hyperbolic plane consists of the points in the plane

which lie strictly above the x-axis, or viewing it as a subset of the complex plane, it is the

set of points with positive imaginary part. We can map from the Poincaré disk model to the

upper-half plane model via a Möbius transformation. This is a function on the complex plane

of the form f(z) =
az + b

cz + d
where a, b, c, d are complex numbers such that ad− bc ̸= 0, in order to

avoid it being a constant map. These transformations are nice since they are conformal, thus

we can be sure that angles are accurately represented in the upper half-plane model as well.

Moreover, a Möbius transformation is determined by where it sends 3 points. In our case, we

can observe that we need to map the boundary of the Poincaré disk to the boundary of the

upper-half plane, which is the real axis. Convenient choices of points which will guarantee

this are f(1) = 1, f(−1) = −1, and f(−i) = 0. The first two equations can be used to deducae

that a+ b = c+ d and b− a = c− d. Adding and subtracting these equations respectively yields

b = c and a = d. Moreover, for the final equation to be true we need −ai + b = 0, or b = ai.

Putting all this together, we conclude that

f(z) =
az + ai

aiz + a
=

z + i

iz + 1
.

We can then use this function to map the Poincaré disk into the upper half-plane. Just

as before, the act of asserting this map to be an isometry between the models forces us into
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a certain metric. Here we will only give the differential of arc length for this metric and the

associated arclength integral, since that is all that we will need for the next section [4]:

2.2 Isometries of the Hyperbolic Plane

In this section, we will see what the isometries of the hyperbolic plane look like algebraically,

and also discuss their classification based on the number of points they fix. However, we

will focus our attention on orientation-preserving isometries, which do not reflect through a

line and so excludes reflections and glide reflections. This is simply because they will not be

relevant to what we do later on.

To motivate the description of the orientation-preserving isometries of the hyperbolic plane,

we will first make some observations. Firstly, because the upper half-plane model was ob-

tained from the hyperboloid model by a composition of conformal maps, angles are preserved

in the upper-half plane model. For a map to be an isometry, we therefore need it to be a confor-

mal map of the complex plane as well so that it does not change angles. Moreover, Euclidean

circles in the Poincaré disk model were also hyperbolic circles. And since Möbius transforma-

tions like that used to map from the disk to the upper half-plane preserve Euclidean circles

(so long as they do not pass through the pre-image of infinity), we conclude that Euclidean

circles in the upper half-plane model are also hyperbolic circles since no circle inside the disk

can pass through the preimage of infinity, which is i. For an isometry to preserve hyperbolic

circles, it must therefore also preserve Euclidean circles. The only orientation-preserving

maps from the complex plane to itself which are both conformal and circle-preserving are the

Möbius transformations. These Möbius transformations in our case must also preserve the

boundary of the plane which is the real line, and so the parameters a, b, c, and d must be real

themselves.

Finally, we can also compute the imaginary part of the output of one of these Möbius

transformations fairly easily:

Im

(
az + b

cz + d

)
= Im

(
(az + b)(cz + d

||cz + d||2

)
=

1

||cz + d||2
Im
(
ac||z||2 + adz + bcz + bd

)
=

1

||cz + d||2
(adIm (z) + bcIm(z))

=
ad− bc

||cz + d||2
Im(z).
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If a map is to be an isometry of the upper half-plane, it most certainly send the upper half-

plane to itself. Therefore we need this imaginary part to be positive. We know by assumption

that Im(z) > 0, and also of course ||cz+d||2 > 0. Thus for any isometry of the upper half-plane,

we must require that ad− bc > 0. Having wittled down the candidates for isometries so much,

we may wonder if what we have now are in fact all isometries of the plane. In fact they are. In

particular, we have the proposition

Proposition 2.2.1. If f(z) =
az + b

cz + d
with a, b, c, d ∈ R and ad − bc > 0, then f is an isometry of

the upper half plane model.

A nice property of Möbius transformations is that they correspond to matrix multiplication.

That is, the map ψ which sends the matrix

a b

c d

 to
az + b

cz + d
is a homomorphism from the

group of real linear transformations of R2 under matrix multiplication to the group of Möbius

transformations under function composition. The kernel of this homomorphism is the matri-

ces of the form λI, for λ ∈ R − {0}. Thus the first isomorphism theorem from group theory

tells us that, if this proposition is correct, the group of isometries of the hyperbolic plane is

isomorphic to PSL(2,R). Let us now prove the above proposition.

Proof. Let f(z) =
az + b

cz + d
be as stated in the proposition. Using the formula for the arclength of

a curve in the upper half-plane model we saw in the previous section, we can calculate that

for any path (x(t), y(t) = γ(t), for t ∈ [0, 1], we have

len(f(γ)) =

1∫
0

|| ddt
aγ(t)+b
cγ(t)+d ||

Im
(
aγ(t)+b
cγ(t)+d

)dt
=

1∫
0

||aγ
′(t)(cγ(t)+d)−(aγ(t)+b)·cγ′(t)

(cz+d)2 ||
ad−bc

||cγ(t)+d||2 Im(γ(t))
dt

=

1∫
0

||adγ′(t)− bcγ′(t)||
(ad− bc)Im(γ(t))

dt

=

1∫
0

||γ′(t)||
Im(γ(t))

dt = len(γ).

Thus the arclength of any curve in the upper half-plane is preserved by such a transformation,

from which it follows that the distance between any two distinct points must be preserved as

well, as this distance is defined as the infimum of the arclengths of the curves joining the two

points.

Having a better understanding of hyperbolic isometries now, we can begin to classify them

further. In particular, recall that a Möbius transformation is determined uniquely by where it
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sends three points. As the identity map is a Möbius transformation, we can conclude that if

a Möbius transformation fixes 3 points, it must be the identity map. Any hyperbolic isometry

which is not the identity then must fix either 1 or 2 points of the hyperbolic plane or of

the boundary. It cannot fix zero points of the plane or boundary, since we know that the

corresponding isometry of the Poincaré disk model maps the disk to itself, and so by the

Brouwer fixed point theorem must have a fixed point somewhere inside the disk.

It seems there are therefore 5 camps of isometries: 2 fixed points on the boundary, 1 fixed

point on the boundary and 1 in the interior, 2 fixed points in the interior, 1 fixed point on

the boundary, and 1 fixed point in the interior. However, we can rule out the second and

third possibilities, since an isometry which which fixes two points must also fix the geodesic

joining them (between a point in the plane and a point on the boundary there is also a unique

geodesic, as we will see in the next section). Distances between points along this geodesic

and one of the fixed points must also be preserved by the isometry, and so these will be fixed

points as well. Thus this isometry would in fact be the identity as it has more than 2 fixed

points.

The remaining cases supply us with 3 classes of isometries. There are translations, which

possess 2 fixed points on the boundary which lie are the endpoints of the geodesic we translate

along. There are rotations which have just one fixed point in the interior. And there are so-

called "parabolic" isometries which have 1 fixed point on the boundary. These are unique to

hyperbolic geometry. We can picture these isometries below:

2.3 The Boundary at Infinity

The Poincaré disk model and upperhalf-plane model we saw in section 1 of this chapter have

a natural boundary associated to them, namely the boundary of the disk itself in the case of

the Poincaré disk and the real axis in the case of the upper half-plane. These points are not

part of the plane itself, as they lie at an infinite distance away from any point in the plane.
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These boundary points instead represent sequences of points in the plane which head off to

infinity in some precise sense.

Of course, not just any divergent sequence of points will be valid, for instance a sequence

of points that spirals outward toward infinite would not seem to approach any particular

boundary point. One way to specify which divergent sequences of points are valid is simply to

take a sequence of points in the Poincaré disk model of the hyperbolic plane, re-interpret them

as points inside the Euclidean complex plane, and check if their limit in that more familiar

metric space is a point on the unit circle.

If we wish to define these points strictly in terms of the hyperbolic metric though, we

can instead consider geodesic rays that stay bounded distance apart. That is, if we have

two hyperbolic rays and supply them with unit-speed parameterizations γ1(t) and γ2(t) for

t ∈ [0,∞), then these two rays will share an endpoint at infinity if and only if there exists a

constant C > 0 for which d(γ1(t), γ2(t)) < C for all t. If we relate two hyperbolic geodesics if

they’re unit speed parameterizations stay bounded distance apart, then this in fact defines an

equivalence relation on the set of hyperbolic rays. It is obviously reflexive and symmetric by the

uniqueness of unit-speed parameterizations and the symmetry of the metric, and moreover

the triangle inequality gives us transitivity. We can then define the points on the boundary

of the hyperbolic plane as equivalence classes of geodesic rays that stay a bounded distance

apart.

This space of boundary points is typically denoted ∂H2. It is homeomorphic to the circle

S1, as we intuitively expect from looking at the Poincaré disk model. Moreover, we can also

see that between any two distinct boundary point there is exactly one geodesic arc. Reasoning

within the Poincaré disk model, we know that any geodesic is either a diameter or the arc of

another circle which meets the boundary of the disk at right angles. Given two points on the

boundary, we can draw the tangent lines to the boundary at these points. If these tangent

lines meet at a point, then reflectional symmetry through the midpoint of the chord joining

our two boundary points tells us that this intersection point must be the same distance from

both boundary points, and so they lie on a circular arc centered at that intersection. Since the

tangents meet the boundary at right angles, so will the circular arc joining the two boundary

points which is perpendicular to the tangents. This settles existence. For uniqueness, simply

observe that intersection points of lines must be unique. And otherwise if the tangents do not

intersect, then they must be parallel and so bound a diameter of the circle which is a geodesic

in this model. Thus every pair of distinct boundary points has a unique geodesic joining them.

This fact will be useful later when we want to define the space of geodesics of the hyperbolic

plane and of hyperbolic surfaces.
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To finish off this section, we will note an important property of the isometries of the hy-

perbolic plane, which is that they act transitively on the set of triples of distinct points on the

boundary. That is, given three distinct points (x, y, z) as inputs and 3 distinct points (x′, y′, z′)

as outputs, there exists a unique isometry which maps the corresponding inputs to the corre-

sponding outputs. Note that we can talk meaningfully about hyperbolic isometries acting on

the boundary despite it not being apart of the hyperbolic plane proper, since these isometries

are Möbius transformations of the whole complex plane and so extend to a continuous action

on the unit circle in particular. This result will be useful in the next section where we derive

certain properties of hyperbolic triangles.

2.4 Hyperbolic Areas and Triangles

At this point, we have developed the notions of hyperbolic lengths, isometries, and angles.

The final geometric notion we will need from hyperbolic geometry is that of hyperbolic area.

In order to find a good definition of hyperbolic area, we will employ an axiomatic approach. A

few reasonable conditions that any useful notion of area should satisfy are

(i) The area of any region A ⊆ H2 is non-negative.

(ii) If A,B ⊆ H2 are disjoint regions, then Area(A ∪B) = Area(A) + Area(B).

(iii) If γ is an isometry of H2 and A ⊆ H2, then Area(γ ·A) = Area(A).

(iv) The area of any point or line is zero.

For our purposes in this document, a "region" will more precisely be any (not necessarily

bounded) polygonal region. And as every finite-sided polygon has a finite triangulation, con-

dition (ii) allows us to restrict even further to just finding areas of triangular regions. It is then

a somewhat remarkable fact that these axioms are sufficient to determine the area function

for triangles up to a scalar multiple. In particular, we will prove the following theorem:

Proposition 2.4.1. If T ⊆ H2 is a triangle with vertex angles α, β, and γ, then we have Area(T ) =

k (π − (α+ β + γ)), for some constant k which is independent of T .

Proof. Let A, B, and C be points on the boundary of the hyperbolic plane, ∂H2. If we connect

these points at infinity pair-wise with geodesics, we form a region of the plane known as the

ideal triangle:
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We learned in section 3 of this chapter that the isometries of H2 act transitively on the set of

triples of points on the boundary, meaning we can take any ideal triangle to any other. So it

is justified to refer to this shape as “the" ideal triangle of H2. Let us simply define the area

of this triangle to be M . We will now show how the area of any other triangle is completely

determined after this choice. To begin, let us first consider the next simplest case of a triangle

which has two vertices at infinity and one point in the interior of H2. If we have two such

triangles, one with a vertex angle of α and another with a vertex angle of β, we can translate

one of the triangles so that the two are joined at a side:

Let the area of such a triangle with vertex angle θ be f(θ). We can observe that in the picture

above the triangle OAC is a triangle with exactly one non-infinite vertex having a vertex angle

of α+ β, so its area will be f(α+ β). On the other hand, we can also obtain its area by adding

the two triangle OAB and OBC that cover it, and subtracting of the area of the ideal triangle

ABC. Thus we have

f(α+ β) = f(α) + f(β)−M.
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In other words, if we are willing to believe the function is continuous, then this functional

equation implies f(θ) is an affine function, f(θ) = cθ+ d. It is easy to see that d must be equal

to M , given the above functional equation. To determine c we note that as we let θ approach π

our triangle approaches a geodesic:

Thus we should have f(π) = cπ +M = 0. In other words, c = −M
π

.

Now let us consider a general triangle in H2, say ABC. We can form the rays
−−→
AB,

−−→
BC and

−→
CA and denote their respective endpoints at infinity as X, Y , and Z. By connecting these

endpoints at infinity with geodesics, we create the following picture:

Note that the vertex angles at A, B, and C are α, β, and γ respectively. So we see that the

triangle AXZ has a vertex angle of π − α, meaning its area is −M
π
(π − α) +M =

M

π
α. We can

similarly conclude that triangle BXY has area
M

π
β and CZY has area

M

π
γ. Triangle XY Z by
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definition has area M , so it follows that

Area(ABC) = Area(XY Z)− (Area(AXZ) + Area(BXY ) + Area(CZY ))

=M −
(
M

π
α+

M

π
β +

M

π
γ

)
.

If we then rename M as kπ, we have

Area(ABC) = kπ − (kα+ kβ + kγ) = k(π − (α+ β + γ)),

which proves the proposition.

It follows from this proposition that any hyperbolic triangle must have angles which sum to

strictly less than π radians, so that its area will be positive. This observation will allow us to

conclude something rather strong about hyperbolic triangles: the vertex angles of a triangle

determine the triangle up to isometry. A similar statement is true in spherical geometry as well

in fact, and really it is Euclidean geometry which is special in that it allows for similar trian-

gles. But since any dilation map would need to change the curvature of our hyperbolic space,

and we are fixing the curvature of our space at −1, it is not so surprising that we do not have

similar triangles and so a triangle is determined by its angles. Let us see why this is rigorously.

Suppose triangles ABC and XY Z both have vertex angles α, β, and γ, but are not isometric.

We can translate Z to C and rotate the triangles so that the edges adjacent to the angle γ in

each triangle are coincident. After doing this, there are four possibilities for what our triangles

could look like:
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In the first case, we notice that the quadrilateral ABYX has vertex angles of α, β, π−α, and

π − β, which sum to 2π. Thus, by triangulating this quadrilateral and applying our formula

for the area, we see that this quadrilateral should have area 0, which implies X and Y must

lie on top of A and B respectively. This is also true in the second case, since the vertex angles

are the same but just in a different order.

The third case is similar and more direct, since if we label the intersection point of AB and

XY as J , then triangle AJX has vertex angles of α and π − α which sum to π and imply this

triangle has non-positive area. Similarly for triangle BJY . So we will again require that X lies

on top of A and Y on top of B.

For the fourth and final case, consider what would happen to the line segment XY if we

reflect over the angle bisector of γ. This reflection will necessarily swap the lines ℓ and m

which form the angle γ, and so will map Y somewhere onto ℓ and X somewhere onto m. Since

the reflection will preserve the angles at these points as well, we see that we will always end

up back in either case 1 or case 3, where again conclude that X must lie on top of A and Y

on top of B.

Thus, in every case we found and isometry that maps the vertices of XY Z onto the vertices

of ABC, which means that these two triangles differ only up to isometry, as desired.
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Chapter 3

Covering Spaces

3.1 Concept and Preliminary Examples

Before broadening our study of hyperbolic geometry from the hyperbolic plane to more gen-

eral hyperbolic surfaces, we will take a quick detour to consider basic covering space theory.

This will be necessary both for seeing how hyperbolic surfaces can be constructed from the

hyperbolic plane, and to derive properties of hyperbolic surfaces from known properties of the

hyperbolic plane.

The notion of a covering space is of central importance to topology. When studying topolog-

ical spaces, it is often useful to form larger spaces by taking copies of your space and "stitching

them together" by some means. These larger spaces share certain topological features with

the smaller spaces they are formed from, but can also be simpler in other ways such as having

trivial fundamental groups in some cases. In general, this stitching process can be thought

of in terms of taking an open cover of your space, making n copies of each open set for some

chosen value of n and identifying these copies together in an appropriate fashion to form some

larger space. The process is illustrated below for a couple examples of coverings of the circle,

one by two copies of the circle, and another by a single copy of the circle which "wraps around

itself" twice:
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Another, more explicit example comes from the projective plane RP 2. It is well-known that

this space is non-orientable, and cannot be represented in 3D euclidean space. Hence, we

must devise other means of forming pictures of it. One such way this can be done is by

recalling the fact that RP 2 is a quotient of the 2-sphere S2 by the Z2-action which swaps

antipodal points (equivalently, multiplies each point on the sphere by −1). Therefore, a point

of the projective plane can be visualized as a pair of antipodal points on the sphere.

Around any two antipodal points of the sphere, we can find open sets containing each

which quotient to the same open set of the projective plane. Moreover, this quotient map is a

homeomorphism when restricted to either open set. Choosing such open sets for each pair of

antipodal points on the sphere produces an open cover of the sphere for which each open set

is one of a pair of open sets copied from RP 2, and which of course "stitch together" to form the

sphere S2. So this example does indeed appear to satisfy the informal idea of covering space

which we are developing.

Now we must make this idea of a covering space rigorous by providing an unambiguous

definition (cf. [6]):

Definition 3.1.1 (Covering). A covering of a topological space B is a pair (E, p), where E is a

topological space and p : E → B is an n-to-1, continuous function such that for any b ∈ B there

exists an open neighborhood U of b for which p−1(U) consists of n disjoint open sets which map

homeomorphically via p to U .

Some additional terminology can be introduced in light of this definition. We call B the

“base space" of the covering, and E the “covering space" of B. Meanwhile p is the “covering

map". The “degree" of this covering map is the value n referenced in the definition, and

this degree can be infinite. The components of p−1(b) which map homeomorphically to U are

referred to as “sheets" of the covering over b, and we say that b is “evenly covered." We often

describe a covering as an “n-sheeted covering" if it has degree n. Note that a covering is

automatically surjective by this definition since each point b ∈ B needs to be mapped to by

n ≥ 1 sheets.

This chapter will adapt most of its results and proofs from [6].

3.2 Path Lifting Property

An important property of covering spaces is the "lifting property" of paths:

Proposition 3.2.1 (Path Lifting Property). Let γ : [0, 1] → B be a continuous path in B with

γ(0) := b, p : E → B an n-sheeted cover, and b̃ a preimage of b, i.e. b̃ ∈ p(b). Then there exists a

unique path γ̃ : [0, 1] → E such that p ◦ γ̃ = γ and γ̃(0) = b̃.
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For instance, if we consider the 3-sheeted cover of the circle by itself, any path in the base

space will have 3 "lifts" to the covering space:

Proof. To prove this we need to demonstrate separately that a path with these properties exists,

and also that this path is unique. To show existence, we will leverage the compactness of the

interval [0, 1]. Recall that a space is compact if any open cover of the space (a distinct notion

from a covering) has a finite subcover. To construct a useful open cover of [0, 1], we will take

each point t ∈ [0, 1] and an open neighborhood Ut of γ(t) such that its preimage under p consists

of disjoint sheets that map homeomorphically to it. Since γ is a continuous map, it follows that

the preimages γ−1(Ut) must each be open in [0, 1] as well. Let Vt be the connected component

of Ut containing t. Note that the Vt’s form an open cover of [0, 1]. The compactness of [0, 1]

then gives us a finite subcover, say Vt1 , . . . , Vtk . We can then choose a sequence of values

0 = s0 < s1 < . . . < sk−1 < sk = 1 such that [si−1, si] ⊆ Vti for all 1 ≤ i ≤ k:

To construct γ̃, we will note that since we have chosen b̃ ∈ p−1(b) we know that γ̃(0) must

be equal to b̃. Thus we have constructed γ̃ on [0, s0]. Now by way of induction, suppose we

have constructed γ̃ on [0, si]. We know that [si, si+1] is contained in Vti by construction, and

p−1(γ(Vti)) consists of n disjoint sheets homeomorphic to γ(vti). Only one of these sheets can

contain γ̃(si), say Ṽti . We can then define γ̃(t) = (p|Ṽti
)−1(γ(t)) for t ∈ [si, si+1]. This definition

agrees with the value of γ̃(si) we already have constructed, and so gives us a continuous

extension of γ̃(t) to [0, si+1]. We can continue in this fashion until we have define γ̃ on [0, sk] =
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[0, 1]. By our construction, it is also clear that p ◦ γ̃ = γ, so this is our desired lift.

Finally for uniqueness, suppose that p ◦ γ̃1 = p ◦ γ̃2 = γ and that γ̃1(0) = γ̃2(0). Then in E

these two lifts may look like:

We therefore define t0 = sup{t ∈ [0, 1] | γ̃1(s) = γ̃2(s) ∀ s ≤ t}. This supremum is well-defined

since the set contains 0 by our assumption on γ̃1 and γ̃2, and is upper bounded by 1. If t0 = 1

then we are done since γ̃1 = γ̃2. Otherwise, let Ut0 be an open neighborhood of γ(t0) whose

preimages under p are homeomorphic sheets. Then the sheet Ũt0 containing γ̃1(t0) = γ̃2(t0)

must also contain γ̃1(t0 + ε) and γ̃2(t0 + ε) for sufficiently small ε by the continuity of these

paths, and moreover we can take a sufficiently small ε such that γ̃1(t0 + ε) ̸= γ̃2(t0 + ε) by the

fact that t0 is a supremum. However, since we must have p(γ̃1(t0+ ε)) = γ(t0+ ε) = p(γ̃2(t0+ ε)),

this contradicts the fact that p is a homeomorphism (and thus is injective) on Ũt0 . So we

cannot have t0 < 1, and the lifts must in fact be the same.

As a small note, what we have proven here is generalized by the "homotopy lifting property."

This states that if F : Y × [0, 1] → X is a homotopy and p : X̃ → X is a covering, then there is

a unique lift F̃ of F for any specified initialization of F̃ on Y × {0} [6]. In the case of the path

lifting property we simply take Y to be the space consisting of just one point. We will only

be needing the path lifting property for the rest of this document though, so we will content

ourselves with proving just this special case.

3.3 Universal Cover Construction and Deck Transformations

Recall the connected example of a covering space of the circle we saw in the first section. It

was a circle which we ‘unwound’ twice. Or more explicitly, if we identify the circle with the

set of complax values eit for t ∈ R, then we obtain a double cover of the circle from the map

eit 7→ e2it, which wraps the circle around itself twice over. We can get an n-sheeted covering

from this idea as well, by intsead employing the map eit 7→ enit. We can imagine unwinding
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the circle more and more to get larger and larger covering spaces, and we can even unwind

completely to obtain the real line R. Indeed, R is an infinite-sheeted covering space for S1

using the map t 7→ eit. Visually, one can imagine deforming the real line to form an infinite

helical shape in R3, then projecting it down onto the circle centered on its axis of symmetry.

A covering space which is obtained by “unwinding completely" the base space is what we

call the universal cover. To see what we mean more precisely by “unwind completely," call the

generator for the fundamental group of the covering space S̃1 say λ, and the generator for the

base space S1 say γ. Then λ is sent by the covering map to the loop γn. So, if we identify π1(S1)

with Z, then we obtain a natural identification of π1(S̃1) with nZ (keep this example in mind

for the next section where we discuss the subgroup correspondence of coverings). That is, we

can think of the fundamental group of the covering space as being obtained by throwing away

elements of fundamental group of the base space which do not lift to loops in the covering

space (in particular, the fundamental group of the covering space can be identified with a

subgroup of the fundamental group of the base space, as we shall see later). By throwing

away all elements possible, i.e. everything except the identity, we will obtain a space which is

as unraveled as possible. Formally, this means we want the fundamental group of the covering

space to be trivial. This leads us to the following definition

Definition 3.3.1 (Universal Cover). If p : B̃ → B is a covering such that π1(B̃) is trivial, then B̃

is the universal cover of B.

We have already seen how the universal cover of S1 is R. This extends to the example of

the torus, which has as its universal cover the plane R2 with associated covering map given

by (t, s) 7→ (eit, eis) ∈ S1 × S1. Since the 2-sphere is simply connected, we can also see that the

universal cover of the projective plane is S2. We call this space the universal cover because as

we shall see later, any other connected covering space of B is itself covered by B̃.

This universal cover exists only for sufficiently nice spaces. In particular, we have the

following theorem:

Proposition 3.3.1 (Existence of Universal Covers). If B is a path connected, locally path con-

nected, and semi-locally simply connected space, then B has a universal cover B̃.

We will discuss the definition and relevance of the terms locally path connected and semi-

locally simply connected once they become relevant for the construction. Before we begin

the construction of the universal cover though, we can at least discuss the path connected

condition. Recall that the space B is path connected if between any two points b1, b2 ∈ B there

is a path connecting them, i.e. a continuous function γ : [0, 1] → B such that γ(0) = b1 and

γ(1) = b2. The notion of a fundamental group is not well-defined on spaces which are not path
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connected, so since we are assuming B̃ is simply connected, in particular we are assuming it

has a fundamental group at all and so it must be path connected. Any covering map p : B̃ → B

would be a surjective continuous map, and these can only map path connected spaces to path

connected spaces, meaning B needs to be path connected as well.

Proof. Let us now begin constructing the space B̃. Choose a basepoint b ∈ B. If we consider a

(not nullhomotopic) loop in B based at b, we would like for this loop to lift to a path in B̃ which

is not a loop, since otherwise B̃ would not be simply connected. A consequence of this is that

every element [γ] ∈ π1(B) must have a different endpoint when lifted to the universal cover B̃:

In fact, this is enough to guarantee that every point in B̃ must correspond to a homotopy class

of paths (not necessarily loops though) [γ] based at b. To see this, let b̃ be a chosen lift of the

base point b, and x̃ be any other point in B̃. Then there is a path γ̃ going from b̃ to x̃. Since B̃ is

simply connected, there is only one choice of this path γ̃ up to homotopy. This path must then

project by the covering map to a path γ in B going from b to x = p(x̃). Suppose λ is another

path in B joining b to x, and the lift λ̃ of this path also joins b̃ to x̃. Then by traversing ˜gamma

and following this by traversing λ̃ backwards, we obtain a loop in B̃ based at b̃ which must be

nullhomotopic since B̃ is simply connected. Thus λ̃ and γ̃ are homotopic to one another in B̃,

and this homotopy must project down via the covering map to a homotopy between λ and γ in

B. Thus x̃ corresponds uniquely to the homotopy class of paths [γ].

This discussion is meant to motivate the following construction of the space B̃ :

B̃ = {[γ] | γ : [0, 1] → B, γ(0) = n}.

That is, we can identify B̃ with the set of all homotopy classes of paths in B. To obtain

a topology on B̃, it suffices to define a basis for it, i.e. a collection of open sets U such that

any other open set is a union of sets in U . For instance, a basis for the topology on R2 is the
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collection of all open balls. If a collection of open sets forms an open cover of B̃, and has the

property that V ⊂ U ∈ U implies V ∈ U for any open set V , then this collection automatically

forms a basis. This is because any open set of B̃ will possess an open cover by elements of

U and we can express it as the union of its intersections with these open sets in U , each of

which must also be in U be the closure property.

In our case, let U be the collection of open sets in B for which any U ∈ U is path connected

and any loop in U is nullhomotopic in B (not necessarily in U , though). The fact that this

collection U forms an open cover of B amounts to the statement that for any point x ∈ B, there

exists an open neighborhood U around it which is path connected and such that any loop in U

is null-homotopic inB. These properties are respectively referred to as "locally path connected"

and "semi-locally simply connected." Since we assumed these as part of the proposition, we

may safely conclude that U is an open cover of B. Moreover, if V ⊆ U ∈ U is path connected and

open, then any loop in it will also be a loop in U and so will be nullhomotopic in B, meaning

V ∈ U . So U forms a basis for B (to be sure, our reasoning for why such an open cover is a basis

can be modified by representating an arbitrary open set as the union of the path-connected

components of the intersections of it with the elements of U ).

We can extend this basis to a basis Ũ for the topology of B̃. Let Ũ[γ] ∈ Ũ if there exists a

U ∈ U and a path γ joining b to some point x ∈ U such that [6]

Ũ[γ] = {[γ · η] | η : [0, 1] → U, η(0) = γ(1)}.

Note that the set Ũ[γ] is actually independent of the point x, and once this point is fixed

only depends on the homotopy class of γ. Since there is at least one such open set containing

each point [γ] ∈ B̃ this collection is an open cover, and by construction it will also share the

closure property discussed above (restricted to path-connected open subsets of elements of

Ũ ). The topology on B̃ is then generated by taking unions of elements of Ũ .

Now that we have the covering space, we next need to define the covering map p. When

motivating the construction of this space, we identified a point in the universal cover with the

path joining it to b̃ and projected down to B. Therefore, it follows that we should define p by

[γ] 7→ γ(1), i.e. we map each homotopy class of paths based at b to their common endpoint.

We first observe that each point in B is evenly covered by this map, since two paths will share

it as an endpoint if and only if they differ by an element of π1(B). Thus the preimage of any

point has the same size, namely |π1(B)|.

Next, we need to confirm that any point x ∈ B has an open neighborhood U whose preimage

consists of disjoint open sets, each of which map homeomorphically via p to U . In particular,
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simply take this neighborhood to be in U . Then for any path γ joining b to x we can define the

open set Ũ[γ] as above. By construction, Ũ[γ] maps surjectively to U by p. To see that this map

is injective on Ũ[γ], suppose that p([γ · η1]) = p([γ · η2]), i.e. γ · η1(1) = γ · γ · η2(1). Then it follows

that η1(1) = η2(1), and moreover we know that η1(0) = η2(0) = γ(1). Thus η2 · η1 is a loop based

at x = γ(1) which is contained in U , and thus is nullhomotopic. It follows that [η1] = [η2] and

so [γ · η1] = [γ · η2].

To see that p is a homeomorphism on Ũ[γ] we can finally note that p gives a bijection between

a basis for the topology on Ũ[γ] and the basis for the topology on U . That is, each Ṽ[γ′] ∈ Ũ

contained in Ũ[γ] corresponds to a unique V ∈ U contained in U by setting V = p(V[γ′]), and

conversely each V ∈ U contained in U corresponds to a unique Ṽ[γ′] ∈ Ũ contained in Ũ[γ] given

by Ṽ[γ′] = Ũ[γ′] ∩ p−1(V ) = Ũ[γ] ∩ p−1(V ). This bijective correspondence between the bases then

extends to a bijective correspondence between the whole topologies, which with the fact that

p is a bijection on Ũ[γ] tells us that it is in fact a homeomorphism on this open set.

The fact that the open sets Ũ[γ] for the various homotopy classes of paths joining b to x are

pairwise disjoint follows from the observation that if [γ1 · η1] = [γ2 · η2] with [γ1] ̸= [γ2] then in B̃

the path η1 ·η2 must connect two different pre-images of x (see figure below). It therefore must

project by p to a loop based at x which is not null-homotopic. Simultaneously though, this

path is contained in U , and every path contained in U must be nullhomotopic, so we reach a

contradiction. Thus Ũ[γ1] must be disjoint from Ũ[γ2] for any [γ1] ̸= [γ2].

Finally, the continuity of p follows from the fact that any open set W ⊆ B can be expressed

as a union of open sets in U , say W = ∪i∈IUi. The preimage of W is then the union of the

preimages p−1(Ui), which we have already seen are all open in B̃. That is, for any open set W

in B, the preimage p−1(W ) is open in B̃. This allows us to conclude that p is indeed a covering

map.

At this point we have our covering space and the covering map. To finish this construction

all that is left is to show that B̃ is indeed simply connected. Firstly, it is path-connected since

the point [b] ∈ B̃ corresponding to the constant path at b can be connected to any other path

[γ] via the map t→ [γt], where γt is the path defined by γt(s) = γ(s) for s < t and γt(s) = γ(t) for

s ≥ t. Moreover, we know that any loop in B̃ is the lift of some loop in B. If this loop in B is γ,

then the lift of this loop is t 7→ [γt] as described above. The fact that this lifted path is a loop

in B̃ means that [γ1] = [b], i.e. [γ] = [b]. In other words, there is a homotopy between γ and the

trivial loop at b. This then lifts to a homotopy between the lift of γ and the constant loop at

[b] ∈ B. In other words, every loop in B̃ is null-homotopic and so B̃ is simply connected. This
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completes the construction, and proves that every space B which satisfies the given conditions

possesses a universal cover.

The condition that a space be path connected, locally path connected, and semi-locally

simply connected are rather technical, and for our purposes in this document are a little

overkill. This is because we will pretty much only ever be working with manifolds as our

topological spaces, and these satisfy the requirements automatically on account of the fact

that they are everywhere locally homeomorphic to Rn.

To end this section, we will briefly discuss an additional connection between the fundamen-

tal group π1(B, b) and the universal cover (B̃, p). The space B̃ actually possesses symmetries

which are encoded in π1(B, b). These are the symmetries which respect the covering map p,

that is they are homeomorphisms f : B̃ → B̃ such that p◦f = p. We call such a homemorphism

f a deck transformation of the space B̃. For example, we know that R2 covers the torus T ,

and specifically this covering is achieved by quotienting by the translational action of Z2 on the

plane. Therefore, if we pre-compose our quotienting map (which is also our covering map) by

one of these translations, it will not affect where any point is mapped to, so the group of deck

transformations in this case is precisely Z2. It is also no coincidence that π1(T ) ∼= Z2. This is

true in general, in fact. The group of deck transformations of a universal cover B̃ is isomorphic

to the fundamental group π1(B) (see [6], prop. 1.39). This characterization of the fundamental

group will come in handy later when we discuss orbifolds and orbifold fundamental groups.

3.4 The Subgroup Correspondence

For coverings of a given space B, it turns out that there is a purely algebraic way to classify

and characterize them. This is known as the "Galois correspondence" or "subgroup corre-

spondence" of coverings. It relates the coverings of a space B with the conjugacy classes of

subgroups of the fundamental group π1(B, b), for some chosen base point b ∈ B. In particular,

given a covering p : E → B let b̃ be the base point of E with p(b̃) = b. We can then construct

the homomorphism p∗ : π1(E, b̃) → π1(B, b) defined by p∗([γ̃]) = [p ◦ γ̃]. We will take it as given

that this is indeed a homomorphism. What we want to show is that the image of this ho-

momorphism determines the covering (E, p), up to an appropriate notion of equivalence of

coverings.

We begin with the following proposition [6]:

Proposition 3.4.1. Let B be a path connected, locally path connected, and semi-locally simply

connected space. Then for any subgroup H ≤ π1(B, b), there exists a covering p : E → B and a
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basepoint b̃ ∈ E such that p∗(π1(E, b̃)) = H.

Note that we are saying that these two groups are equal, not simply isomorphic. In other

words we are thinking of them as sets of particular homotopy classes as well as algebraic

structures. In fact, the isomorphism between their algebraic structures will follow from their

equivalence as sets, so this is what we aim to prove. What follows is adapted from [6].

Proof. Since B has the requisite properties for possessing a universal cover, we will let B̃ be

that universal cover. Define an equivalence relation on the points of B̃ by [γ] ∼ [γ′] if and

only if γ(1) = γ′(1) and [γ′ · γ] ∈ H. Note that γ′ · γ is a loop based at b. This condition is an

equivalence relation since G is a subgroup of π1(B, b). That is, it is reflexive since for any [γ]

we have γ(1) = γ(1) and [γ · γ] is homotopic to the constant path [b] which is in H since it is the

identity. It is symmetric since [γ′ · γ] ∈ H implies that its inverse [γ · γ′] ∈ H as well. And finally

it is transitive since for any [γ′ · γ] ∈ H and [γ′′ · γ′] ∈ H we have [γ′′ · γ′] · [γ′ · γ] = [γ′′ · γ′ · γ′ · γ]

homotopic to [γ′′ · γ] must be in H as well since H is closed under concatenation of paths.

Let E be the space obtained from quotienting B̃ by this equivalence relation, and b̃ ∈ E be

the equivalence class containing the constant path [b]. We can define p : E → B by p([γ]) = γ(1)

just as we did for the universal cover. This function is well-defined since all representatives of

any equivalence class are required to share the same endpoint. Moreover, if γ(1) = γ′(1) then

for any path η we also have γ · η(1) = γ′ · η(1), and also [(γ · η) · (γ′ · η)] = [γ · η · η · γ′] is homotopic

to [γ · γ′]. Thus if [γ] ∼ [γ′], then for any path η we also have [γ · η] ∼ [γ′ · η]. In particular, if

one point of an open neighborhood Ũ[γ] is identified with a point of Ũ[γ′] by this equivalence

relation, then the whole neighborhoods are identified.

It follows then that the topology on E is generated by the basis formed by quotienting the

basis Ũ for B̃ we saw in the previous section. So just as before, p will be a continuous map

from E to B such that each point in B has an open neighborhood whose preimage consists of

disjoint open sets that map homeomorphically by p onto it.

To confirm that p evenly covers every point ofB, pick a point x ∈ B and recall that [γ] ∈ p−1(x)

if and only if γ(1) = x. Fix [γ] ∈ p−1(x), and consider another equivalence class represented

by [γ′]p−1(x). We know that [γ′ · γ] is in π1(B, b) since these paths share an endpoint, and in

particular we will say it lies in the coset Hg for some g ∈ π1(B, b). We can then observe that

[γ′′ · g] ∈ Hg as well if and only if [γ′′] ∼ [γ′]. The ‘if’ direction is easy since [γ′′] ∼ [γ′] means

that [γ′′ · γ′] ∈ H, so [γ′ · γ] ∈ Hg implies [γ′′ · γ′] cdot[γ′ · γ] = [γ′′ · γ] ∈ Hg as well. For the ‘only if’

direction note that [γ′′ · γ], [γ′ · γ] ∈ Hg implies that

[γ′′ · γ] · [γ′ · γ] = [γ′′ · γ · γ · γ′] = [γ′′ · γ′] ∈ H,
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i.e. [γ′′] ∼ [γ′]. We can thus conclude that the elements of p−1(x) are in bijection with the

cosets of h in π1(B, b). In other words, |p−1(x)| = [π1(B, b) : H], and as this is true of every point

x ∈ B we can conclude that these points are evenly covered. the map p is therefore a covering

map.

All that is left to do is to confirm that p∗(π1(E, b̃)) = H. For this, note that [γ] ∈ p∗(π1(E, b̃))

if and only if its lift γ̃ is in π1(E, b̃). The endpoint of this lift will be the equivalence class

represented by the point [γ]. However, for this lift to be a loop in E we also require that its

endpoint be b̃, which recall was chosen to be represented by [b], the constant path at b. We

therefore can conclude that [γ] ∈ p∗(π1(E, b̃)) if and only if [γ] ∼ [b], which can only occur if

γ ∈ H. The result follows.

This result tells us that the correspondence which associates a covering p : E → B with

the subgroup p∗(π1(E, b̃)) ≤ π1(B, b) is a surjective correspondence. Every such subgroup has

some covering which is associated to it. To confirm that this is a bijective correspondence,

we just need injectivity. Things will not work out so well such that two coverings correspond

to the same subgroup only if they are equal ‘on the nose’, but up to a reasonable notion of

equivalence this is indeed true.

The notion of equivalence we are looking for is provided by isomorhism of coverings. An

isomorphism between two coverings p1 : E1 → B and p2 : E2 → B is simply a homeomorphism

f : E1 → E2 such that p1 = p2 ◦ f . Thus the two coverings have the same structure to them,

even if they don’t necessarily map the exact same points to the same outputs. With this in

hand, we introduce the next proposition which will complete our classification [6]:

Proposition 3.4.2. If B is path-connected and locally path-connected, then two path-connected

coverings (E1, p1) and (E2, p2) are isomorphic by a homeomorphism f : E1,→ E2 that maps the

base point b̃1 ∈ p−1
1 (b) to the base point b̃2 ∈ p−1

2 (b) if and only if p1∗(π1(E1, b̃1)) = p2∗(π1(E2, b̃2)).

Proof. First assume such an isomorphism exists. Then the fact that p1 = p2 ◦ f implies that

p1∗(π1(E1, b̃1)) = (p2 ◦ f)∗(π1(E1, b̃1)) = p2∗ ◦ f∗(π1(E1, b̃1)). Since f is a homeomorphism from

E1 to E2 mapping b̃1 to b̃2, it gives a bijection between the homotopy classes of loops based at

b̃1 and those based at b̃2, and moreover induces an isomorphism between their fundamental

groups. Thus we have p2∗ ◦ f∗(π1(E1, b̃1)) = p2∗(π1(E2, b̃2)), which tells us that p1∗(π1(E1, b̃1)) =

p2∗(π1(E2, b̃2)).

For the converse, we will need a lemma known as the “lifting criterion" which we will not

prove here [6]:

Lemma 3.4.1 (Lifting Criterion). Let p : E → B be a covering and f : Y → B a continuous map
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with Y path-connected and locally-path connected. Then there is a lift f̃ : Y → E (i.e. such that

f = p ◦ f̃ ) if and only if f∗(π1(Y, y0)) ⊆ p∗(π1(E, b̃)).

In our case, we can take p to be p2 and f to be p1. Since we assumed E1 was path-connected

in the theorem and as a covering it inherits local path connectedness from B, this space satis-

fies the assumptions of the theorem. We also are assuming that p1∗(π1(E1, b̃1)) = p2∗(π1(E2, b̃2)),

which in particular tells us that these two groups are subsets of each other. Our lemma thus

gives us a lift of p1 to p̃1 : E1 → E2, and we similarly have a lift p̃2 : E2 → E1. Now consider the

compositions p̃2 ◦ p̃1 and p̃1 ◦ p̃2. For the first we have that p1 ◦ p̃2 ◦ p̃1 = p2 ◦ p̃1 = p1, meaning

that p̃2 ◦ p̃1 is a lift of p1 via p1 itself. Moreover, we can note that p̃2 ◦ p̃1(b̃1) = p̃2(b̃2) = b̃1. By

the uniqueness of lifts, the fact that the base point is fixed allows us to conclude that in fact

p̃2 ◦ p̃1 is the identity on E1. By similar reasoning we also have p̃1 ◦ p̃2 is the identity on E2, so

p̃1 and p̃2 are inverses of one another. The map p̃1 is then the desired isomorphism.

In summary, with this result we have shown that for any path-connected, locally path-

connected, semi-locally simply connected space B (in particular, say, the manifolds we will be

studying in this work), the collection of isomorphism classes of coverings p : E → B which

preserve the base points are in bijection with the subgroups of π1(B, b).

The connection between coverings and subgroups of the base space’s fundamental group

does not stop merely with this classification result. For example, recall in the proof of propo-

sition 3.4.1 we found that for the particular covering we defined, its degree was equal to the

index of the subgroup H = p∗(π1(E, b̃)) in π1(B, b). However, because we now know the sub-

group H actually determines the covering up to isomorphism, we actually have the following

corollary:

Corollary 3.4.1. If p : E → B is a covering with B path connected, locally path connected, and

semi-locally simply connected, then the degree of p is equal to [π1(B, b) : p∗(π1(E, b̃))].

To finish this discussion, recall that for all of what we have done so far in this section, we

have been restricting ourselves to coverings such that a particular b̃ ∈ p−1(b) is mapped to b

(specifically, b̃ corresponding to the constant path at b). However, if we relax this restriction

and ignore which base point we use in E, then the coverings of B are instead classified by

conjugacy classes of subgroups of π1(B, b).

To see this, let p : E → B be a covering and b̃1 and b̃2 be two different possible base points

in p−1(b). We wish to show that p∗(π1(E, b̃1)) is conjugate to p∗(π1(E, b̃2)) in π1(B, b). Since E is

path connected, we can choose a path γ̃ going from b̃1 to b̃2. Since both endpoints are in p−1(b),

we know that γ = p(γ̃) will be a loop in B based at b, so [γ] ∈ π1(B, b). Let H1 = p∗(π1(E, b̃1))

and H2 = p∗(π1(E, b̃2)). Then any element of [γ]H2[γ] will lift to a loop based at b̃1 in E, since
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we follow ˜gamma from b̃1 to b̃2, then some element of π1(E, b̃2 from this point back to itself,

then finally we follow γ̃ from b̃2 to b̃1. When we project this loop down to B via p, it will thus

land inside of H1. We therefore conclude that [γ]H2[γ] ⊆ H1. By symmetric reasoning, we can

conclude that [γ]H1[γ] ⊆ H2. This two inclusions allow us to conclude that in fact H1 and H2

are conjugate to each other, by some element [γ] ∈ π1(B, b).

3.5 Permutation Representation

At this point, we have seen how the (conjugacy classes of) subgroups π1(B), for a manifold

B, correspond exactly with the coverings of B. However, each such covering was necessarily

connected. One may wonder then if there exists a similar correspondence for disconnected

coverings, such as the one for S1 we saw in Fig. 3.1.1. Though it may seem that there should

be too many of these to ever hope for such a classification, there is somewhat miraculously

just such a way to do so!

To see this, we will adapt the exposition from Hatcher [6]. A first step is that we want

a disconnected version of the universal cover. For now, we will restrict our attention to the

task of classifying the n-sheeted covers of a topological space B, and assume that B has a

connected universal cover B̃. Note that if p : E → B is an n-sheeted cover, then E can have

at most n connected components, since restricting p to any connected component should still

give a covering map and so each connected component contributes at least 1 sheet to the cover

of each point of B. We will thus consider the most general disconnected cover of B with at

most n components, which will simply be B̃ × {1, . . . , n}. If we have a covering map p : E → B

and choose a base point b ∈ B, we can in fact identify this discrete set {1, . . . , n} with p−1(b).

It should seem quite plausible that any such n-sheeted covering E of B can itself be covered

by B̃ × p−1(b). Indeed this is the case, and to see this we will define a natural covering map

h : B̃ × p−1(b) → E. For this, recall that B̃ can be constructed as the space of all homotopy

classes of paths which start at the chosen base point b. Thus each point in B̃ × p−1(b) looks

like ([γ], b̃i) where γ is a path based at b and b̃i is a lift of b to E. We then define h([γ], b̃i) = γ̃(1),

where γ̃ is the unique lift of γ to E starting at b̃i:
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To confirm that h is indeed a covering map, we need to show it is a surjective local homeo-

morphism. It is surjective since every point e ∈ E must be in the same connected component

as some b̃i, and so there will be a path α connecting b̃i to e. This path can be projected down

to B as p ◦ α, and so we will have h([p ◦ α], b̃i) = e.

To show that h is a local homeomorphism, let ([γ], b̃i) be a point in B̃ × p−1(b) and let qi :

B̃ × {b̃i} → B be the usual universal covering map which takes this point to γ(1). We have

already seen that there exists a neighborhood U iγ = {([η · γ], b̃i)} of ([γ], B̃i) ∈ B̃ which maps

homeomorphically to its image qi(U iγ) in B. Now take a neighborhood V around γ(1) which is

homeomorphic to each of its sheets in E, and define V ′ = qi(U
i
γ) ∩ V . Then for any choice of

sheet Ṽ ′ in p−1(V ′), we obtain a well-defined map p−1 ◦ q from q−1(V ′) to Ṽ ′, and moreover this

map is a homeomorphism. If we choose our sheet in E to be the one containing h([γ], b̃1), then

we can observe that

p−1 ◦ q([η · γ], b̃i) = p−1(η · γ(1)) = η̃ · γ̃(1),

where η̃ · γ̃ is the lift of η · γ to E starting at b̃i. This is precisely the definition of the

map h. Thus we have shown that any point in B̃ × p−1(b) has a neighborhood which maps

homeomorphically via h onto its image in E, i.e. h is a local homeomorphism.

However, the map h is even better than this, as it is in fact a quotient map of B̃×p−1(b) by a

certain group action. To see this, suppose that we have h([γ1], b̃1) = h([γ2], b̃2). Then we would

have γ̃1(1) = γ̃2(1), with these paths lifted to b̃1 and b̃2 respectively:
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It follows that γ̃2·γ̃1 projects to a loop inB based at b, which will be in some homotopy class in

π1(B), say [λ]. We then have [γ1] = [γ2] · [λ], and so these homotopy classes of paths differ by an

action of π1(B). Likewise, we can define a right-action of π1(B) on p−1(b) by defining b̃i·[λ] = λ̃(1),

where λ̃ is the lift of λ to E starting at b̃i. In particular for our case, we can observe that

b̃1 = b̃2 · [λ]. We can then conclude that h([γ1], b̃1) = h([γ2], b̃2) if and only if ([γ1], b̃1) = ([γ2], b̃2) · [λ]

for some [λ] ∈ π1(B).

Note that the only action of [λ] which depended on the covering map p was the action on

p−1(b), since this required lifting λ to E via p. We call this action the permutartion representation

of π1(B), since it permutes the elements of p−1(b). Let us refer to this action by ψ, so that

ψ : π1(B) → perm(p−1(b)) is a homomorphism. Then we will call the space we obtain from

quotienting B̃ × p−1(b) by this action Eψ. By construction, we also have h quotienting to a

well-defined map h′ : Eψ → E, and since this is a bijective local homeomorphism, this is

simply a homeomorphism of spaces. Thus something miraculous has happened: we have

reconstructed the space E purely from the action of π1(B) on the fiber of b, which if we’d like

can be thought of as simply an abstract n-element set as opposed to specifically p−1(b) as a

subset of E.

Even more than this, we also have a natural covering map p′ : Eψ → B given by p′
(
[γ], b̃i

)
=

γ(1), and this covering map is isomorphic to p. That is, we have not only recovered the covering

space E, but also the covering map p as well! We now have two claims to prove: that p′ is a

covering, and that it is isomorphic to p. For the first of these, note that surjectivity of p′ follows

from the connectedness of B, just as it did when we defined a similar map on the universal

cover. To show that p′ is a local homeomorphism, take an arbitrary point ([γ], b̃i) ∈ Eψ, and

pick a lift of it to B̃ × p−1(b) (which we will also write as ([γ], b̃i)). Let h : B̃ × p−1(b) → Eψ be

the quotienting map, and q : B̃ × p−1(b) → B be the usual covering map. Then there is a

neighborhood U of ([γ], b̃i) ∈ B̃ × p−1(b) which maps homeomorphically via q to its image in B,

and a neighborhood V which maps homeomorphically via h to its image in Eψ. Then define

W = U ∩ V , so that we have restricted homeomorphisms h : W → h(W ) and q : W → q(W ).

In particular, with these restrictions in place we can see that q ◦ h−1 : h(W ) → q(W ) is a
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homeomorphism. It is at this point that we note that p′ ◦ h = q, so that after appropriate

restrictions we can also say that p′ = q ◦ h−1 on h(W ). Thus we have found a neighborhood

of ([γ], b̃i) ∈ Eψ which maps homeomorphically via p′ to its image in B, menaing p′ is a local

homeomorphism.

Having now confirmed that p′ is indeed a covering, we will show that it is isomorphic to the

covering map p : E → B. This follows by the observation that h : Eψ → E maps the equivalence

class of ([γ], b̃i) to γ̃(1), which p in turn maps to γ(1) = p′([γ], b̃i). Thus p ◦ h = p′, and since h is

a homeomorphism this confirms that p and p′ are isomorphic coverings.

In summary then, we have shown that any covering p : E → B induces a representation

of π1(B) in the permutation group of p−1(b), called the permutation representation of p. We

can then construct a covering space Eψ purely from this representation ψ, and the covering

we obtain will be isomorphic to p. Thus, the (isomorphism classes of) representations of π1(B)

into permutation groups classify all coverings of B (again, up to isomorphism), both connected

and disconnected. This is the power of the permutation representation.

To finish off, let us look at an illustrative example of how the permutation representation

can determine a covering, whether connected or not. Consider the space below which is the

wedge product of two circles:

Note that above we have labeled the two circles a and b, and also gien them orientations.

Thus, if we likewise label edges of a covering space with either a or b and provide orientations,

then these will determine a covering map to the base space, since we simply map the a edges

to a in the base space, b edges to b in the base space, and do so in such a way as to respect

orientations. With this in mind, let’s say we wish to construct a 3-sheeted cover of this space.

We can first take an open neighborhood of the point of intersection and make 3 copies of it:
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Consider the a segment of the point (1) which is oriented pointing out from the intersection

(its ’out’ edge). We have to extend this segment to an edge by joining it to another a segment in

this figure, and moreover we have to do this in a way which respects orientations, so we must

connect it to a segment which is pointing in toward the intersection (its ’in’ edge). Suppose

we join it to the intersection (2). We now must make the same choice for the ’out’ a edge of

(2). We cannot join it to itself, since its ’in’ edge has been used already. We must therefore

join it to either (1) or (3). Let us say we join it to (3). Then the ‘out’ a edge of (3) is forced to

join the ‘in’ a edge of (1). Because we could only join the ‘out’ a edge of any point to the ‘in’ a

edge of exactly one other, and vice versa, the end result is essentially gives a permutation of

the points (1), (2), and (3) with (1) moving along a to (2), then (2) moving along a to (3), then

finally (3) moving along a to (1). Thus we map the edge a to the permutation (123). If we map

b to the permutation (12), then the covering space we obtain looks like:

Note that the fundamental group of the base space is the free group F2, with generators

given by the loop going around a and the loop going around b. Thus if we select where the

generators go, this extends to a homomorphism from F2 to S3, and so this homomorphism

does indeed determine the covering.

With this example its also not hard to see how we can determine disconnected coverings

as well. For an n-sheeted cover simply partition {1, 2, . . . , n} into some number of subsets

A1, . . . , Ak and map a and b each to elements in the subgroup SA1SA2 · · ·SAk
. This will cor-

respond to a cover with k connected components. For example, partitioning {1, 2, 3, 4, 5} into

{1, 2, 3} and {4, 5} and then mapping a to (123)(45) and b to (132) yields the covering space:
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Chapter 4

Hyperbolic Surfaces

4.1 Definition and Constructions

It is not only the disk that possesses a notion of hyperbolic metric. Other topological surfaces

can be endowed with constant negative curvature metrics as well. A first example of this is

the double torus. A well-known construction from topology is that the torus can be realized

as the quotient of R2 by a translational action of Z2. Equivalently one can take a square

fundamental domain of this action and identify its opposite sides, respecting orientations.

Similarly, the double torus can be thought of topologically as an octagon with opposite pairs

of sides identified. Unlike the torus however, this representation of the double torus is not a

fundamental domain for some group of translations in the euclidean plane.

The hyperbolic plane, however, does possess groups of translations which have octagonal

fundamental domains:

The central octagon above is in fact isometric to each of the eight octagons adjacent to

it, and can reach any of them via an appropriate translation. Thus, if we call this group of
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translations which preserve the octagonal tiling Γ, then we can realize our genus 2 surface

as the quotient space H2/Γ. A similar construction works for any genus g surface as well, the

relevant property of H2 that allows this being the fact that vertex angles are smaller on average

in the hyperbolic plane. Thus we can have convex polygons with arbitrarily many sides but

with vertex angles that sum to 2π, thus allowing them to tile the plane together.

Notice that constructing a surface S in this way embellishes it with a hyperbolic metric

inherited from H2. This can either be understood as meaning that every point of our surface

has constant curvature −1 at every point, or equivalently as meaning that every point has a

neighborhood which is isometric to an open subset of H2. To be precise, this hyperbolic metric

is defined in the following fashion: consider the pre-images of two points x, y ∈ S in H2:

Then to obtain the metric on S we define

dS(x, y) = inf
x̃,ỹ

{dhyp(x̃, ỹ)}.

In words, it is the minimum distance between any two pre-images of x and y. As this minimum

will be realized for some pair x̃, and ỹ, then we can join these points in H2 by a unique geodesic

which will then project onto a geodesic in S. Thus, any two points x, y ∈ S can be joined by a

unique geodesic whose length is the distance between x and y, meaning S is a geodesic space.

With this class of examples now in mind, let us endeavor to codify a definition of "hyperbolic

surface." Let S be some closed surface, and let’s see how we can most generically construct

a hyperbolic metric for S. We can start by noticing that if U ⊆ S is an open disk, it is easy

to give it a hyperbolic metric. Simply choose some open disk V ⊆ H2 and a homeomorphism

ϕ : U → V . Then U can be given a hyperbolic metric dU by simply pulling back the hyperbolic

metric on V via ϕ. That is, by setting dU (x, y) := dhyp(ϕ(x), ϕ(y)). If we have an open covering

{Ui}i∈I of S by open disks, then we can choose homeomorphisms ϕi : Ui → Vi ⊆ H2 as above

and give each Ui a hyperbolic metric. Each pair (Ui, ϕi) is called a chart and the collection
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of all these pairs, {(Ui, ϕi)}i∈I , is called an atlas of charts for S. This is what will allow us to

endow S with a hyperbolic metric.

Additional care must be taken, however, in the cases where Ui and Uj have non-empty

intersection. Of course, if we have ϕi and ϕj being equal on Ui ∩ Uj for all such intersections,

then the ϕi’s can be combined into a single homeomorphism from S to a subset of H2, which

is not possible for general surfaces. Thus there must be some intersections Ui ∩ Uj on which

ϕi and ϕj act differently. Keep in mind though that ϕi and ϕj must still pullback to the same

metric on Ui∩Uj. This is equivalent to ϕi◦ϕ−1
j being an isometry between the images ϕi(Ui∩Uj)

and ϕj(Ui ∩ Uj). To see this, note that for all x, y ∈ Ui ∩ Uj we must have

dhyp(ϕi(x), ϕi(y)) = dUi∩Uj (x, y) = dhyp(ϕj(x), ϕj(y)),

relabeling ϕj(x) as z and ϕj(y) as w, this can be rewritten as

dhyp(ϕi ◦ ϕ−1
j (z), ϕi ◦ ϕ−1

j (w)) = dhyp(z, w),

which will be true for all z, w ∈ ϕj(Ui ∩ Uj). So ϕi ◦ ϕ−1
j must be an isometry between the

images of the intersection.

The preceding considerations can actually be thought of as the definition of a hyperbolic

surface [7]:

Definition 4.1.1 (Hyperbolic Surface). A hyperbolic surface S is a collection of pairs {(Ui, ρi)}i∈I

such that {Ui}i∈I is an open cover of S, ρi : Ui → H2 is a homeomorphism onto its image, and for

any Ui and Uj with non-empty intersection ρi ◦ ρ−1
j : ρj(Ui ∩ Uj) → ρi(Ui ∩ Uj) is an isometry.

The metric on such a surface S is obtained by pulling back the metric of H2 to each open

set Ui, and the final condition that the transition maps ρi ◦ρ−1
j be isometries is there to ensure

that these local pullback metrics form a consistent metric across S.

One might wonder, in light of the generality of this definition, whether there may be other

examples of hyperbolic surfaces other than those provided above via quotients of H2 by Fuch-

sian groups. An amazing fact is that there are no other hyperbolic surfaces. That is, if S

is a closed, orientable surface which is hyperbolic in the sense of the above definition, then

there must exist a Fuchsian group Γ ≤ Isom+(H2) such that S is isometric to H2/Γ. This a

consequence of the "Uniformization Theorem," one statement of which is that [5]

Theorem 4.1.1 (Uniformization Theorem). If D ⊆ H2 is an open set, S a hyperbolic surface

and ρ : D → S an isometry onto its image, then ρ can be extended to a surjective local isometry

ρ̂ : H2 → S.
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A local isometry between metric spaces X and Y is any map ϕ : X → Y for which every point

x ∈ X has an open neighborhood U such that ϕ restricted to U is an isometry onto its image.

In our case, letting x range over the pre-images of a point x′ ∈ S, we can obtain a collection of

disjoint open sets in H2 each of which map homeomorphically onto an open set of x′. Thus, ρ̂

is in fact a covering map. Notice also that H2 is simply connected, meaning it is the universal

cover of S. Thus the covering map takes the form of a quotient of H2 by some group of deck

transformations. This group of deck transformations must be a group of isometries in order

that the covering map is a local isometry, and it must also be isomorphic to the fundamental

group π1(S) ∼= ⟨a1, . . . , a2g | a1a2 · · · a2g = a2g · · · a2a1⟩.

This group has no elements of finite order, so the isometries in this group must either be

translations or horocycles. Horocyclic isometries can be ruled out by the fact that our surface

is compact and hence has a complete metric, so we cannot have sequences of points which

converge to a point at infinity. Thus our group of isometries consists of 2g axes of translations,

the fundamental domain for which will be a 4g-gon with opposite sides identified by one of

these 2g translations. In other words, our surface emerges as a 4g-gon in H2 with opposite

sides identified by translation. So all hyperbolic surfaces can be obtained by the construction

described at the start of this section.

4.2 Geodesics on Hyperbolic Surfaces

A crucial feature of hyperbolic geometries on surfaces, is that every free homotopy class of

closed curves on the surface has a unique geodesic representative. This provides a link be-

tween a surface’s hyperbolic geometry and its topology, and is a direct consquence of the fact

that any hyperbolic surface can be locally isometrically covered by H2. To see why this is the

case, consider an essential closed curve γ on S. Then [γ] ∈ π1(S) acts on H2 by some isometry,

and so generates a cyclic subgroup ⟨[γ]⟩. Quotienting H2 by this cyclic action thus forms what

is topologically a cylinder.

Let us consider what this cylinder could look like. We first of all know that this cyclic

subgroup is not finite, since π1(S) contains no elements of finite order. This means [γ] either

acts by a parabolic action, or by a proper translation. If [γ] corresponds to a parabolic action,

then the cylinder will have a cusp at infinity where the fixed point of the action was:
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Let us lift γ to the cylinder and freely homotope it to this cusp. We can then observe that the

length of these homotoped copies of γ approach 0 as γ approaches the cusp. However, essential

closed loops on S cannot have arbitrarily small length. To see this, consider that every point

s ∈ S has what is known as an injectivity radius, i.e. the supremum of all possible radii disks

containing s such that they are still simply connected. This injectivity radius is a continuous

function from S to R≥0, and as S is compact some point must achieve the minimum of this

function. This minimum must be non-zero, as every point s must have some neighborhood

around it homeomorphic to a disk. Finally, observe that the length of any essential closed

loop on S must be at least twice the injectivity radius of any point along it. Thus our γ cannot

be homotoped to loops of arbitrarily small length.

Thus, the only possibility is that the action we are quotienting by is a hyperbolic translation.

This action must have a unique geodesic axis which remains fixed under it, and so this axis

will quotient to an essential closed geodesic on our cylinder. This unique geodesic is also in

the same free homotopy class as γ. We can complete the picture by quotienting our cylinder

by the rest of π1(S), and so conclude that the free homotopy class of γ has a unique geodesic

representative on S. The coordinatization of all hyperbolic metrics on a surface S will depend

on this fact.

4.3 Teichmüller Space of a Surface

As was pointed out above, all hyperbolic metrics of a surface S come from a quotient of H2

by a Fuchsian group Γ ∼= π1(S). Since for a genus g surface the fundamental domain for

this translational action will be a 4g-gon, this suggests it should be possible to find a finite

number of parameters that uniquely determine a hyperbolic metric on a surface S, since a

hyperbolic polygon is determined up to isometry by a finite number of parameters. Namely

the side lengths and vertex angles, for example.

It will not be convenient to work with the 4g-gon representation to find these parameters,
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however. Instead, we will decompose our surface S into a collection of pants, i.e. spheres with

three open disks removed. This is known as the pants decomposition of S. Any such surface

will have a collection of closed curves that, when we cut along them, divide the surface into

sub-manifolds of this type, as illustrated below:

In general, for a surface of genus g ≥ 2 a total of 3(g − 1) such curves will be necessary to

divide the surface into pants sub-manifolds. As shown in the previous section, each of these

closed curves has a unique geodesic representative, so we may choose to cut along these

geodesics in particular. Each such pants surface is then a hyperbolic surface with geodesic

boundary. The three boundary circles can then in turn be connected by unique shortest

geodesic paths:

Note that this shortest geodesic will have to meet the geodesic boundaries at right angles.

Otherwise near the boundary we could locally re-route the path away from the geodesic and

form a shorter path, which is a contradiction:

We have thus divided our surface into a collection of pants, each of which is itself isometric

to two hyperbolic hexagons identified together along three non-adjacent edges. In particular,
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every vertex angle of these hexagons as a right angle. It is a theorem from hyperbolic geometry

(see appendix, section 2) that such a hexagon is determined up to isometry by the lengths of

three non-adjacent sides. We could take these three sides to be the sides that the top and

bottom hexagons are identified along. Then since these identifications are done isometrically,

we can conclude that the top and bottom hexagons are isometric. If instead we now take

the three non-adjacent sides to lie along the boundary of the pants surface, then the top

and bottom hexagon contribute equal length to each boundary component because they are

isometric. This means that the length of the boundary components uniquely determines the

hyperbolic metric of the pants surface. So the collective 3(g − 1) geodesics we cut along each

provide a parameter for determining the metric on S.

But there is another consideration. When we identify the boundaries of these pairs of pants

to form the surface S, there is some freedom in how this is done. In particular, given a point p

on the boundary of one hexagon, we can choose which point on the corresponding identified

point to join it with:

After this choice is made, the other points are determined by the fact that this mapping

must be an isometry and that our surface must be orientable. Thus each curve we cut along

gives an additional "twisting" parameter, which corresponds to a point in the space S1. Once

all length and twisting parameters of our pants decomposition are specified, the metric on S

will be completely determined. Thus, the space of all hyperbolic metrics on S is parameterized

by R3(g−1)
>0 × (S1)3(g−1), which is a 6g − 6 dimensional space.

In general, the space of all constant curvature metrics on a surface S (up to isotopy, as will

be elaborated on shortly) is referred to as the "Teichmüller space" of S, or T (S). However, there

is a subtlety in this construction of the Tiechmüller space. Note that we have implicitly given

the closed geodesics we cut along an order by taking the cartesian product of the spaces R>0.

A surface S where the length of the first geodesic was 1 while the length of the second was 2,

would be considered distinct from a hyperbolic surface where the lengths were instead 2 and

1, respectively:
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in order to distinguish between these two metrics then, we will need a standardized way

of labeling our free homotopy classes. To do this, we will fix some purely topological repre-

sentative of our surface S. Then for each hyperbolic metrization of S, say (Σ, φ), we supply a

homeomorphism H : Σ → S. Then we can identify the homotopy classes of Σ with those of S,

and do so in a consistent way across all hyperbolic metrics on S:

However, there are many choices for what this homeomorphism H could be, and we would

not wish for two triples (Σ1, φ1, H1) and (Σ2, φ2, H2) to be different merely because they possess

different homeomorphisms to S. So we must develop a notion of equivalence between these

triples.

For this, note that if we have H1 : Σ1 → S and H2 : Σ2 → S, then we can also create the

function H−1
2 ◦H1 : Σ1 → Σ2. This is a homeomorphism between our hyperbolic surfaces, and

importantly we know that it identifies their free homotopy classes in a consistent way. That

is, if we label one homotopy class on S as a and another class as b, then H1 allows us to say

which homotopy class of Σ1 we should label as a and which we should label as b, and likewise

for Σ2 via H2. Then what we label as a on Σ1 will be sent by H−1
2 ◦H1 to what we labeled as a

on Σ2, and similarly for b. We can now check if the length of a on Σ1 is the same as the length

of a on Σ2, for instance. If this is the case for all free homotopy classes, then we can say that

Σ1 and Σ2 are the same hyperbolic surface, in a precise sense.

Thus, even though H−1
2 ◦H1 is almost certainly not itself an isometry, in order for Σ1 and

Σ2 to be equivalent we need it to map a closed geodesic on Σ1 to a closed loop on Σ2 which is
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homotopic to a closed geodesic of the same length. That is, we require that H−1
2 ◦H1 be isotopic

to an isometry. With this in mind, we can state the formal definition of the Teichmüller space

of a surface S:

Definition 4.3.1 (Teichmüller Space). For a closed, orientable surface S, its Teichmüller

space T (S) is the set of all equivalence classes of triples (Σ, φ,H), where Σ is a surface, φ

is a hyperbolic metric on Σ, H : Σ → S is a homeomorphism, and two triples (Σ1, φ1, H1) and

(Σ2, φ2, H2) are considered equivalent if H−1
2 ◦H1 is isotopic to an isometry.

This definition seems more restrictive than is necessary, since it differentiates between sur-

faces that one would normally think of as being isometric and thus the same. Such as two

surfaces that differ only by a rotation or a reflection. But in fact the Teichmüller space turns

out to be much more convenient to parameterize, as we saw above with the pants decompo-

sition method [8]. And for that reason we will use Teichmüller space to talk about the "space

of hyperbolic metrics on S."

4.4 Cone Surfaces

Cone surfaces are slight generalizations of the metrized surfaces we have seen thus far, in

that they allow a finite collection of their points to have local angles which are not 2π. These

are called the "cone points" of the surface. Intuitively, one could imagine a space where you

stand in one place and start to turn around, but before you have done a full 2π rotation your

line of sight is already back to where it began. Or it may take turning more than 2π radians

for your line of sight to return to the start.

A good example of this phenomenon to start with is provided by polyhedra. If one considers

a vertex of a cube, say, then the three right angles adjacent to it can be seen to add up to
3π

2

radians, which is less than 2π:

The presence of these cone points is, in fact, what allows for the existence of these polyhe-

dra. As we will see in the next section on the Gauss-Bonnet theorem, the average curvature
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over a surface is a topological invariant, namely it is proportional to the Euler characteristic.

This result seems to be in contradiction with the existence of such polyhedra though, since

the sphere has an average curvature of 1, but a polyhedron like the cube seems to have an

average curvature of 0 since each of its faces are flat. And if each point of our polyhedron did

have a full angle of 2π around it, this would indeed be impossible. So it is helpful to think of

cone points as possessing a sort of "combinatorial curvature" all their own, so that all of the

positive curvature one would expect a topological sphere to have is contained at these points.

We define this combinatorial curvature in terms of the angle deficit at the cone point. That is,

if the cone angle at a cone point p is θ, then we define its combinatorial curvature as

κ(p) = 2π − θ.

The presence of cone points is also important for how they affect the geodesics of our

surface. In particular, for cone points with cone angles which are less than 2π there is no

way to continue a geodesic which passes through them. To see this, consider the local region

around such a cone point, which can be envisioned as an open disk with a wedge removed

and with its bounding edges identified:

Where we cut out this wedge and make our identifications is arbitrary though. Thus for

any two points near our cone point we may always choose our cut so that one of the points

lies on it. There are then two apparent straight line paths from the first point to the two

representatives of the second point, but the triangle inequality tells us that the path which

does not pass through the cone point will always be shorter:

47



Thus the shortest path between any two points near the cone point never passes through the

cone point itself. If we had a geodesic which passed through the cone point, there would have

to be a neighborhood around the cone point for which this geodesic path was the shortest

path connecting any two points on it in that neighborhood. As we have just shown this is

impossible, we conclude that no geodesic path passes through this cone point, i.e. contains

it in its interior.

The opposite phenomenon occurs if the cone point has cone angle which is greater than

2π. Namely, any geodesic passing through a cone point can be extended in multiple ways. To

see this, we will similarly model a small neighborhood around our cone point via open disks

with wedges removed, but now we will use two disks appropriately identified to create an angle

larger than 2π:

Now if we have 2 points on this surface which we want to find the geodesic between, there

are two cases. We will again choose our cuts so that one of them passes through one of our

cone points. Then there will be a region of angle 2π, highlighted in green below, where indeed

there is a unique geodesic connecting our chosen points and which does not pass through the

cone point:
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And by the same reasoning as above, any path connecting these points which passes

through the cone point will always be longer. However, for any other point outside this re-

gion, the shortest path which joins the two points must pass through the central cone point:

So if we connect a point on this surface via a geodesic to a cone point with excess angle,

there will be an infinitude of geodesic paths which extend this initial geodesic. This obser-

vation will be important later when we discuss geodesic currents and the Liouville current

in particular, and why the support of this current should contain any information about the

metric on our surface.

4.5 The Gauss-Bonnet Theorem

A nice property of the hyperbolic plane is that the area of any triangle is easy to calculate, and

thus so too is the area of any polygon as these can be decomposed into triangles. This extends

to surfaces as well, where the Gauss-Bonnet theorem provides an easy way to compute their

area. In the simplest case, let S be a closed Riemannian surface without boundary and with

cone points Vcone = {p1, . . . , pn}. Then the Gauss-Bonnet theorem states

n∑
j=1

(2π − θj) +

∫
S

KdA = 2πχ(S),

where θj is the cone angle at pj and K is the Gaussian curvature at each regular point of

S (the "Riemannian" adjective above is there to ensure this curvature is defined). Notice that
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if K is constant and −1, then the integral above will simply evaluate to −Area(φ), where φ is

the hyperbolic metric on S. Though the general proof of the Gauss-Bonnet theorem will not

be presented here, in the special case where our surface has constant negative curvature it is

not too hard to prove.

All that needs to be done is to choose a triangulation T of our surface which has each cone

point of S as a vertex. Let T have V vertices, E edges, and F faces. The total area of S is the

sum of the areas of its triangular faces, each of which takes the form π − α − β − γ, where α,

β, and γ are the vertex angles of the triangular face. If we denote the k-th vertex angle of the

i-th vertex in T by αik, then it follows that

Area(φ) = πF −
V∑
i=1

ni∑
k=1

αki ,

where ni is the number of vertex angles which meet the i-th vertex. The sum of these vertex

angles must be 2π for every non-cone point vertex of our triangulation, and must sum to θj at

the corresponding cone point vertex. The summation thus simplifies to

πF −
V∑
i=1

ni∑
k=1

αki = πF −
∑

vi /∈Vcone

2π −
∑

vi=pj∈Vcone

θj

= πF −
∑
v∈V

2π +
∑

pj∈Vcone

(2π − θj)

= πF − 2πV +
∑

pj∈Vcone

(2π − θj).

At this point, note that since every face in this triangulation is adjacent to precisely 3 edges,

it follows that 2E = 3F , or equivalently 2E − 2F = F . We may substitute this into our formula

for the area to find that

Area(φ) = 2πE − 2πF − 2πV +
∑

pj∈Vcone

(2π − θj)

= −2πχ(S) +

n∑
j=1

(2π − θj)

which is equivalent to the statement of the Gauss-Bonnet theorem for cone surfaces of con-

stant negative curvature. This fact will be essential for proving the main result of this thesis

in chapter 8.
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Chapter 5

Orbifolds

5.1 Preliminary Examples

As we saw in the chapters on covering spaces and on hyperbolic surfaces, a general way to

construct a manifold is to take a "simpler" space like R2 or H2 and quotient it by some group of

homeomorphisms. These group actions needed to be chosen carefully, though. In particular

they needed to act freely and properly discontinuously on our space. However, a space like R2

can have many sorts of symmetric tilings, and the groups which act on the space to preserve

these tilings do not always act freely. It will therefore be advantageous to develop a more

general theory of quotient spaces which come from groups that do not act freely on a space.

This is the theory of orbifolds, which we develop here.

Let us begin with some examples. A very basic example is to take R2 and quotient it by Z3,

acting via rotation about the origin:

We see that the "wedge" of the plane that results has its two bounding rays identified

with one another. One can thus imagine stretching this wedge back around the origin until

the two rays meet up again. We therefore have a homeomorphism from our wedge to the
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whole plane. However, it seems rash to write these two surfaces off as the same. They are

indeed homeomorphic, but we would like a way to record the fact that the above "wedge" space

was obtained from a certain group quotient, whereas the original plane R2 was not. We can

accomplish this by marking the fixed point of our group action with its stabilizer (which in

this case is the whole group):

We will develop a more precise notion of this later in the next section. Another way we can act

on the plane is by reflections, for example:

This picture shows the plane being acted on by the infinite dihedral group D∞, and the result-

ing quotient strip with marked edges that can be though of as reflectors, or mirrors. Note that

these edges are only marked with the group Z2, since this is their stabilizer subgroup. This

structure we have created, consisting of the underlying space of the strip as well as the mark-

ings on the fixed edges which carry information about the group action, is called an Orbifold.

Orbifolds can thus be thought of as manifolds with an added structure, or if one prefers, as a

generalization of manifolds. That is, if the motto of a manifold is that it is locally modeled on

Rn, then the motto of an orbifold is that it is locally modeled on a group quotient of Rn.

Let us look at another, more interesting example before looking at the formal definition of

an orbifold. We can tile the plane by isosceles squares as shown in the image below (ignore

the diagonal lines for now):
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Fig. 5.1.1: Fundamental domains for a rotational action on R2

One group of symmetries for this pattern is, of course, the translational action by Z2.

However, we could also act on this tiling by the group which is generated by degree 4 clockwise

rotations at every other vertex of the grid (the green points in the picture above). Call the group

generated by these rotations R. Note that the green vertices are not the only fixed points of the

action of R on the plane. If one rotates around a green vertex and then rotates around another

green vertex diagonally opposite it, then this action will be equivalent to rotating around a red

point by π radians.

If we focus on a particular fundamental domain of this action, say the blue highlighted

square above, then we may observe that by rotating around one green point we map the top

edge to the left edge, or the right edge to the bottom edge, depending on which vertex we

rotate around. Therefore when we form the quotient space R2/R, we must identify these edges

together, and in so doing form what is topologically a sphere:

Thus we mark the two green points on our quotient with their stabilizer subgroup, which will

be the group Z4 acting rotationally, and the red point by its stabilizer which is likewise Z2. At

each of these marked orbifold points, we are locally quotienting by a rotation about that point,

just like we did in the first example we saw of an orbifold. And just as in that example, we can

observe that this local quotient by a rotation will create a cone point at the center. Thus the

green vertices each have an angle of only
π

2
around them, and the red vertex has an angle of π
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around it. And in general, the cone angle at each orbifold point α is
2π

|Γ(α)|
, where Γ(α) is the

stabilizer of α. This occurs whenever our group acts via isometries on our metric space.

5.2 Definition

Here we present the formal definition of an orbifold, following that presented by Thurston [9]:

Definition 5.2.1 (Orbifolds). An orbifold O is a Hausdorff, second-countable topological space

XO together with a collection of 4-tuples {Ui, Ũi,Γi, ϕi}i∈I . The Ui’s form an open covering of XO

which is closed under finite intersections, each Ũi is a connected open subset of Rn, Γi is a finite

group acting faithfully on Ũi, and ϕi is a homeomorphism ϕi : Ui → Ũi/Γi.

Additionally, whenever Ui ⊂ Uj there should exist an injective homomorphism fij : Γi → Γj

and an inclusion map eij : Ũi → Ũj such that for all γ ∈ Γi we have eij(γ · x) = fij(γ) · eij(x) (i.e.

eij is equivariant with respect to fij ), and for which the following diagram commutes:

Ũi Ũj

Ũi/Γi Ũj/fij(Γi)

Ũj/Γj

Ui Uj

eij

qi q′j

eij/Γi

q′′j

ϕi

ϕj

Where qi, q′j , and q′′j are quotienting maps.

Upon careful reading of this definition, one first observes that it is very arduous. So let us

unpack it and see what justifies each of its components. To begin, the space XO is referred to

as the "underlying space" of O. In the last example of the previous section, for instance, this

space would be the sphere. We require XO to be Hausdorff and second-countable purely to

rule out pathological examples of spaces which we are uninterested in such as the "long line,"

much in the same way that we require these properties of manifolds to ensure they are not

pathological either. The remainder of the conditions in the first paragraph simply spell out in

detail what we mean when we say an orbifold is "locally modelled on a group quotient of Rn."

The atlas of charts {Ui}i∈I provides a sense of "locality" on XO, while Ũi, Γi, and ϕi are used

to endow Ui with the structure of a quotient of Rn.

The primary difficulty of the definition lies in the commutative diagram. The top rectangle

of the diagram is simply capturing the equivariance of eij. The bottom rectangle meanwhile is

ensuring that the action of Γj on Ũj is simply a refinement of the action of Γi on Ũi. Meaning
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that quotienting Ũj by Γj can be broken down into first a quotient of Ũj by Γi ∼= fij(Γi), and

then a quotient by the equivalence relation that identifies two orbits in Ũj/fij(Γi) if they are

orbits of the same point.

Note that this definition is actually slightly more general than what our examples from

before would suggest. We only need that our orbifold is locally equivalent to a group quotient

of Rn, but this does not mean that the whole orbifold must come from a single group quotient

of some manifold. For instance, consider an orbifold which consists of a sphere with one point

marked by a cyclic group acting rotationally:

It turns out that this ’teardrop’ orbifold does not come from a group quotient of any man-

ifold, as we shall see later after developing a better understanding of orbifold coverings and

orbifold fundamental groups. Nonetheless, one can observe that this orbifold does satisfy the

formal definition given above.

5.3 Equivalence of Orbifolds

Now that we have introduced a new kind of mathematical object, the orbifold, it is first nec-

essary to discuss precisely when two orbifolds are equivalent. As orbifolds contain both topo-

logical information as well as information about group actions, one would want such a notion

of equivalence to take the form of a map which preserves both. That is, it should be a homeo-

morphism of the underlying spaces which maps each orbifold point to an orbifold point which

is a quotient by an isomorphic group action. Formalizing this into a definition, we have

Definition 5.3.1 (Orbifold Equivalence). Two orbifolds O and O′ are equivalent if there exists

a homeomorphism f : XO → XO′ such that every point x ∈ XO, x and f(x) have neighborhoods

U ∼= Ũ/Γ and V ∼= Ṽ /Γ respectively such that the following diagram commutes for all γ ∈ Γ:

Ũ Ṽ

Ũ Ṽ

f̃

γ ϕ(γ)

f̃

where f̃ is a lift of f : Ũ/Γ → Ṽ /Γ and ϕ : Γ → Γ is an isomorphism.
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This simply sets in stone what we already intuitively understood from the examples and

definition of the previous section: that an orbifold is completely determined by its underly-

ing topology and the group information it is endowed with. Because the underlying space of

most orbifolds, or at least those which we will study here, is simply a closed orientable sur-

face, and because we are typically quotienting by groups of isometries which only come in so

many "flavors" (reflections, rotations, translations, etc.), it becomes possible to collate all of

the topological and group information of such an orbifold into a single convenient notation:

the orbifold signature. Following Thurston’s conventions [9], the orbifold signature will, in

general, look like (g; r1, r2, . . . , rn; d1, d2, . . . , dm), where g is the genus of our underlying space,

the ri’s are the orders of the cyclic groups acting on orbifold points by rotation, and the dj ’s

are the orders of the dihedral groups acting on orbifold points by rotations and reflections.

The above definition is sufficiently general to work for all orbifolds, but for our purposes in

this work it will be convenient to use a slightly more restrained definition. In particular, we

will assume our orbifolds emerge as a properly discontinuous group quotient of some simply-

connected manifold. This manifold will thus be the universal cover of our orbifold O. If we refer

to this universal cover as Õ, then we obtain the following alternative definition of equivalence

Definition 5.3.2. Two orbifolds O1
∼= Õ1/Γ1 and O2

∼= Õ2/Γ2 are equivalent if there exists a map

f : O1 → O2, a homeomorphism f̃ : Õ1 → Õ2 between there universal covers, and an isomorphism

ϕ : Γ1 → Γ2 such that the following diagram commutes:

Õ1 Õ2

Õ1 Õ2

O1 O2

f̃

γ ϕ(γ)

f̃

q1 q2

f

where q1 and q2 are the quotienting maps.

The top rectangle of this definition simply ensures that f̃ is equivariant with respect to the

group action we are quotienting by, and the bottom rectangle ensures that f̃ is the lift of some

map between the base orbifolds. So in fact, this alternative definition is simply a convenient

way to form an equivalence map as described in the first definition, via a homeomorphism of

the universal covers.

To see an example of this, consider the square grid we saw in 5.1. We can apply a home-

omorphism to this grid which stretches out the rectangular regions in one direction. This

doesn’t change the nature of our group action however, and so when we quotient by this

"elongated" action we should obtain an equivalent orbifold:
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5.4 Orbifold Coverings

Orbifolds are not merely generalizations of manifolds in terms of their local structure. There

also exist generalizations to orbifolds of certain concepts meant to study manifolds.

A first example of this is the notion of a covering. The examples shown in the first section

were directly inspired from ordinary coverings of manifolds. So it is very natural to extend the

notion of a "covering" to orbifolds, such that the examples listed above are instances of such

orbifold coverings. Another example is provided by the "teardrop" orbifold discussed in the

last section:

Here we have quotiented by the action on the covering orbifold which rotates it by π radians

around the axis through the single orbifold point. We already mentioned that this teardrop

orbifold does not come from a group quotient of any manifold. In fact, it does not come from

a quotient of any other orbifold either. In this sense it is akin to the universal covers we saw

in the chapter on covering spaces.

In normal coverings we want each point in the pre-image of a chosen point of the base space

to have a neighborhood which maps homeomorphically via the covering map to a neighborhood

of our chosen point. Likewise for orbifold coverings, we want each point in the pre-image of

a chosen point of the base orbifold to have a neighborhood which maps by some local group
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quotient to a neighborhood of our chosen point. Thus, following Thurston [9], we can define

an orbifold covering in the following way:

Definition 5.4.1 (Orbifold Covering). An orbifold covering of an orbifold O by another orbifold

Õ is a map p : XÕ → XO such that

(i) For all x̃ ∈ XÕ, there exists a neighborhood Ũ/Γ containing x̃ for which p restricted to Ũ/Γ

is isomorphic to a quotienting map p : Ũ/Γ → Ũ/Γ′, with Γ ≤ Γ′.

(ii) For every x ∈ XO there exists an open neighborhood Ṽ /Γ containing x such that each

component Ui of its preimage p−1(Ṽ /Γ) is isomorphic to Ṽ /Γi for some Γi ≤ Γ.

Note that an orbifold covering is not necessarily a covering map for the underlying spaces.

5.5 Orbifold Fundamental Groups

Having a notion of orbifold coverings and of universal covers also allows us to define a natural

notion of an orbifold fundamental group. Consider the last example of the first section, which

was a sphere with three orbifold points. The fundamental group of this underlying space is

trivial, but simply defining the fundamental group of the orbifold to be trivial as a result would

needlessly ignore the symmetry information we have so carefully stored in its structure. Thus,

to generalize the notion of the fundamental group to orbifolds we will recall what we know of

covering spaces, namely that the fundamental group of a manifold is isomorphic to the group

of deck transformations of its universal cover.

Now, it is a theorem of Thurston’s [9] that every orbifold has a universal cover, i.e. a covering

orbifold which also covers every other covering orbifold of the given orbifold. This means

every orbifold has a fundamental group, since we can define its group of deck transformations

analogously to how we defined it in the manifold case. In particular, a deck transformation of

a covering orbifold Õ for the orbifold O is an orbifold equivalence f : Õ → Õ for which p ◦ f = p,

with p : Õ → O the orbifold covering map.

Just as with fundamental groups of manifolds, there exist tools for computing orbifold

fundamental groups. Chief among these is a generalization of Seifert-Van Kampen to Orbifold

[10]:

Theorem 5.5.1 (Van Kampen for Orbifolds). For a connected orbifold O and open setsU, V ⊆ XO

for which XO = U ∪ V and W = U ∩ V is connected, we have

π1(O) ∼= π1(U) ∗π1(W ) π1(V ).
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The expression in this definition for π1(O) is the "amalgamated free product" of π1(U) and

π1(V ). That is, it is the quotient of the free product π1(U) ∗ π1(V ) by the smallest normal

subgroup containing {i∗U (γ)i∗V (γ)−1 | γ ∈ π1(W )}, where i∗U and i∗V are the induced homomor-

phisms on the fundamental groups induced by the continuous inclusion maps iU :W → U and

iV :W → V . This amalgamation is done to avoid double counting of loops in our fundamental

group, since any loop contained in W would of course be equivalent to itself, but would be

counted as formally different when considered as an element of π1(U) and π1(V ) when we take

the free product. We must therefore specify that i∗U (γ) = i∗V (γ) for any such loop γ, and this is

accomplished by the specified group quotient.

An example of an orbifold fundamental group is that for the quotient of the plane by a

rotational action, as described in the first section of this chapter. In this case, the universal

cover for this orbifold is of course the plane, and deck transformations for this covering take

the form of the rotational actions. Thus, just by the definition of the fundamental group it is

not hard to see that the fundamental group for such an orbifold is simply Zn, where n is the

degree of the rotation.

This observation then allows us to compute the fundamental groups of more complicatd

orbifolds thanks to Van Kampen’s theorem. Take for instance an orbifold which is a sphere with

two orbifold points, each being locally quotients by some rotation group Zn and Zm respectively:

We can split it into the open subsets U and V as shown in the picture above, in which

case U ∩ V will be a cylinder with no orbifold points and so will have Z as its fundamental

group. Moreover, each of U and V can be considered as quotients of the plane by Zn and Zm

respectively, so we thus have

π1(U) ∼= Zn ∼= ⟨a | an⟩,

π1(V ) ∼= Zm ∼= ⟨b | bm⟩,

π1(U ∩ V ) ∼= Z ∼= ⟨c⟩.
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The induced homomorphisms i∗U and i∗V are specified by i∗U (c) = a and i∗V (c) = b, meaning we

will be quotienting the free product of π1(U) ∗ π1(V ) by the relation ab−1, i.e. we are specifying

that a = b. The group presentation for our fundamental group is then

π1(O) ∼= ⟨a, b | an, bm, ab−1⟩ ∼= ⟨a | an, am⟩ ∼= ⟨a | agcd(m,n)⟩.

In particular, this means that if n and m are coprime, then the resulting orbifold will have

trivial fundamental group and hence will be its own universal cover. The fundamental group

for orbifolds which take the form of spheres possessing orbifold points that are locally quotients

by Zn can then be calculated inductively by this same process, for any number of orbifold

points.

5.6 Orbifold Euler Characteristic

Later on, it will be useful for us to have a notion of an orbifold Euler characteristic at our

disposal. This is because, as we shall see later, hyperbolic orbifolds abide by the Gauss-

Bonnet formula just as regular hyperbolic surfaces do, for an appropriate notion of Euler

characteristic. To define this Euler characteristic, we take inspiration from an important

property of Euler characteristics of regular manifolds.

Suppose p : S̃ → S is a covering map of degree d for a compact surface S. Then it follows

that

χ(S̃) = d · χ(S).

To see why this is true, recall that p being a covering map means that each x ∈ S has an open

neighborhood Ux ⊆ S for which p−1(Ux) consists of d disjoint sheets each being homeomorphic

to Ux. The set of all such open neighborhoods {Ux}x∈S forms an open covering of S, and as S is

compact we can select a finite subcover {Uxi
}i≤n. Now construct a triangulation T of S which

is sufficiently fine so that each triangular face, each edge, and each vertex is contained in one

of these open sets Uxi
. The pre-image of T is a triangulation of S̃, and in order to calculate

χ(S̃) we will want to know how many faces, edges, and vertices are contained in p−1(T ).

Let F be the number of faces of T . Then as each face is contained in some open set Uxi , and

p−1(Uxi
) consists of d homeomorphic disjoint sheets, any given face of T will have d pre-images

in S̃. So the number of faces of p−1(T ) will be d · F . A similar line of reasoning for edges and

vertices tells us that there are d · E edges and d · V vertices in p−1(T ), where E and V are the
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number of edges and the number of vertices in T , respectively. We can then compute that

χ(S̃) = d · F − d · E + d · V = d · (F − E + V ) = d · χ(S).

We can now motivate a definition for orbifold Euler characteristic by asserting that if an

orbifold covering q : Õ → O has degree d, then

χ(Õ) = dχ(O)

An issue arises though since our reasoning above required that each vertex and edge of

our triangulation had precisely d pre-images. But this is not necessarily true of an orbifold

covering, which recall is not necessarily a covering map of the underlying spaces. To remedy

this, we will first make a small simplifying assumption that our orbifold arises from a group

quotient of a manifold by some action on the manifold by a finite group G. Then the degree

of this covering map will be |G| at any point of the manifold on which G acts freely. At any

fixed points α of the action though, the degree of the map will be
|G|

|Γ(α)|
by the orbit-stabilizer

theorem, where Γ(α) is the stabilizer subgroup of α. Therefore, in order to ensure that the Euler

characteristic of the manifold is |G| times the Euler characteristic of the orbifold it covers,

we will need this fixed point α to have a "weight" of
1

|Γ(α)|
in our calculation of the Euler

characteristic above.

We will let this observation inspire us now to define the Euler characteristic more generally.

That is, in general even if our orbifold covering does not arise from a finite group quotient of

some manifold, the definition of orbifold coverings tells us that it should locally look something

like:

We will give the vertex/edge α the weight
1

|Γ(α)|
as described above, and similarly for each

pre-image of α. We therefore need the sum of the weights of the pre-images of α to be precisely
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d times the weight of α itself, where d is the degree of the covering map. In symbols,

∑
ai∈p−1(α)

1

|Γi(ai)|
=

d

|Γ(α)|

⇕∑
ai∈p−1(α)

|Γ(α)|
|Γi(ai)|

= d.

From here, we would like to say that
|Γ(α)|
|Γi(ai)|

= |Γ′
i(ai)|. Then, because the total number of

sheets of our covering over α, i.e. its degree, is given by the sum of the sizes of these groups

Γ′
i(ai), we obtain what we want. To see why this is the case, recall that by quotienting Ũ by

Γi(ai), we take a point x an equivocate it with every other point in its orbit under Γi(ai). If

we choose x so that Γi(ai) acts freely on it, then the size of this orbit will be precisely |Γi(ai)|.

We then quotient Ũ/Γi(ai) by the group Γ′
i(ai). By the same reasoning, if we choose a point

of Ũ/Γi(ai) on which Γ′
i(ai) acts freely, then we are equivocating it with |Γ′

i(ai)| points. In total

then, we have taken the point x ∈ Ũ and equivocated it with |Γi(ai)||Γ′
i(ai)| points. But by the

definition of orbifold coverings, the resulting space must be isomorphic to Ũ/Γ(α). Mapping to

this quotient space equivocates x with |Γ(α)| points. Thus we must have |Γi(ai)||Γ′
i(ai)| = |Γ(α)|,

from which the result follows.

Now we can use these weightings for our vertices and edges to calculate the Euler charac-

teristic of our orbifold. We will choose our triangulation T so that each edge e and each vertex

v of T has its own stabilizer subgroup Γ(e) and Γ(v), respectively. Moreover, we will let T2 be

the set of 2-cells or faces of our triangulation, T1 be the set of all 1-cells or edges, and T0 be

the set of all 0-cells or vertices. Then following from the reasoning above, we define the Euler

characteristic of our orbifold to be

χ(O) :=
∑
f∈T2

1−
∑
e∈T1

1

Γ(e)
+
∑
v∈T0

1

Γ(v)
.

As one final simplification to this expression, we can add and subtract 1 for every face,

edge, and vertex of our triangulation, giving:

χ(O) = |T2| − |T1|+ |T0|+
∑
e∈T1

(1− 1

Γ(e)
)−

∑
v∈T0

(1− 1

Γ(v)
)

= χ(XO) +
∑
e∈T1

(1− 1

Γ(e)
)−

∑
v∈T0

(1− 1

Γ(v)
).

So we can view the Euler characteristic of O as simply a "correction" to the Euler charac-

teristic of its underlying space in order to account for the symmetry structure.
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As additional confirmation that this is a good definition for the Euler characteristic of an

orbifold, we note that this satisfies the Gauss-Bonnet theorem derived in chapter 4. If we

suppose our orbifold has no edges with non-trivial local group, and we endow our orbifold

with a constant negative curvature metric such that each local group acts via isometries,

then as we have pointed out before each of the orbifold points becomes a cone point of our

surface with cone angle
2π

|Γ(α)|
. The Gauss-Bonnet theorem for cone surfaces then tells us

that

Area(O) = −2πχ(XO) +
∑
v∈T0

(2π − 2π

|Γ(v)|
)

= −2π

(
χ(XO)−

∑
v∈T0

(1− 1

|Γ(v)|
)

)

= −2πχ(O).
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Chapter 6

Geodesic Currents

6.1 The Space of Geodesics (via Topology)

Consider a topological surface S of genus g ≥ 2. We know that the universal cover of this sur-

face is homeomorphic to the unit disk D2, and we can give this disk a hyperbolic metric to form

H2. We saw in section 3 of chapter 2 how this metric leads to a natural definition of a boundary

for H2. That is, each point Ω of the boundary is identified with an equivalence class of geodesic

rays in H2 which remain a bounded distance apart when given a unit-speed parameterization.

This could then be used to define immediately a notion of the space of geodesics on S, denoted

G(S). However, it will be valuable to instead develop a purely topological definition for this

space.

To do this, let us initially be agnostic about the metric on S, and simply refer to it as d. So to

be clear, d need not even be a hyperbolic metric. However, regardless of the metric we place on

S, its compactness will ensure that any two such metrics d1 and d2 will be "quasi-isometric,"

that is there will exist a map f : (S, d1) → (S, d2) such that, for some constants A ≥ 1, B ≥ 0,

and C ≥ 0,

(i) For all x, y ∈ S, we have
1

A
d1(x, y)−B ≤ d2(f(x), f(y)) ≤ Ad1(x, y) +B, and

(ii) For all z ∈ S there exists x ∈ S such that d2(z, f(x)) ≤ C.

In other words, the metric d2 must only differ from the metric on d1 by a constant multiple,

and by some constant difference. Note that we are assuming that d1 and d2 generate the same

topology on S, so d1 and d2 are not allowed to be arbitrarily erratic metrics.

It is still the case that π1(S) acts on the universal cover S̃ by the covering space theory

developed in chapter 3. And it will act by isometries if we lift a given metric d on S to the
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universal cover S̃. This will allow us to employ a powerful fact geometric group theory known

as the Milnor-Schwarz lemma. Firstly, pick a point p ∈ S̃ and consider its orbit under π1(S):

Then the Milnor-Schwarz lemma states the following [11]:

Proposition 6.1.1 (Milnor-Schwarz). If a group of isometries G acts properly discontinuously

on a (proper, geodesic) metric space X such that the quotient space X/G is compact, then G is

finitely generated with generating set T and for any point p ∈ X the map

f : (G, dT ) → (X, dX), g 7→ g · p

is a quasi-isometry,

where dT is the word metric on G. That is, dT (g1, g2) is the minimal number of generators

in T needed to get from g1 to g2, or equivalently the minimum number of generators needed to

form g1g
−1
2 . Condition (ii) from the definition of quasi-isometry is what will be most important

for us here. Consider a geodesic ray which approaches some boundary point Ω ∈ S̃, and

choose a sequence of points {xi} on this geodesic which approach this point on the boundary:
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For each point xi, choose an element of the orbit of p, say gi · p, which is within a distance

of C of xi. Then the sequence of points {gi ·p} stays within a bounded distance of this geodesic

ray, and so approaches the same point on the boundary. This allows us to associate the

boundary point Ω with the sequence {gi}. And moreover, as any two metrics which generate

the topology on S are quasi-isometric with each other, this sequence of group elements is not

dependent on the choice of metric on S, only on its topology. We also obtain a natural action

of π1(S) on the boundary of S̃ thought of in this topological light, given by left-multiplication

by an element h ∈ π1(S), i.e. h · {gi} = {hgi}. We refer to this space of boundary points as S1
∞.

The importance of this discussion is to emphasize the fact that S1
∞ is a purely topological

object, and independent of the metric we place on S. However, when we do place a hyperbolic

metric on S, then S1
∞ can also be thought of as the space of equivalence classes of geodesic

rays that stay bounded distance apart. As before in chapter 2, we can form the space of

geodesics G(H2) by constructing the set of unordered pairs of distinct boundary points, (S1
∞ ×

S1
∞ −∆)/(x, y) ∼ (y, x) (Note that since S1

∞ is topologically a circle, this space of geodesics will

be topologically a Möbius strip). Now though, we have an action of π1(S) on this space given

by simply extending the action on S1
∞ discussed above. Quotienting by this action yields the

space of geodesics on S, which we denote as G(S).

6.2 Geodesic Currents and Intersection Numbers

A Geodesic Current on a surface S is any π1(S)-invariant Radon measure on G(H2). A Radon

measure being any measure for which the measure of any open set U is the supremum of the

measures of the compact subsets of U , and for which every point x ∈ G(S) is contained in an

open set of finite measure. A measure µ being π1(S)-invariant means that µ(g · A) = µ(A) for

any g ∈ π1(S) and measurable A ⊆ G(H2).

A basic example of such a measure is the dirac measure associated to a simple closed

geodesic curve γ on S [12]. This measure, which we will denote as δγ, assigns to any subset of

G(H2) a measure equal to the number of lifts of γ it contains. Since the lifts of γ are invariant

under the action of π1(S), this measure will also be π1(S)-invariant. It also happens to be a

Radon measure, since any lift of γ will only be contained in an open set U if it is contained in

some compact subset of U (remember, G(S) is topologically just a Möbius strip, so our usual

intuitions apply here). Moreover each point of G(H2)2 either has a neighborhood containing no

lifts of γ or is itself a lift of γ, so every point has a local neighborhood whose measure is either

0 or 1 and so is finite. We can also define a measure for any non-simple closed loop which is
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a multiple of γ by simply setting δγn = nδγ.

More than just being a simple first example, the dirac measures δγ turn out to be a useful

tool for characterizing all other geodesic currents of S. For one thing, it is a theorem of Bona-

hon that the collection of real linear combinations of these dirac measures is dense within the

space of all geodesic currents of S, typically denoted C(S) [12]. In other words, for any geodesic

current µ, there exists a sequence of multiples of dirac functions {ciδγi} whose partial sums

converge to µ, in the sense that for any (integrable) real-valued function f on G(H2) its integral

with respect to the partial sums of dirac measures converges to its integral with respect to µ

(this is known as the weak∗ topology on C(S)).

More than this though, there is a more precise, geometric connection between arbitrary

geodesic currents and the simple dirac measures. This is provided by the notion of the "in-

tersection number" of two geodesic currents. To explain this we begin with the notion of the

geometric intersection number of curves. For any two simple closed curves α and β on a sur-

face S, we define their geometric intersection number I(α, β) to be the minimum number of

intersection points possible among all representatives of α and β in their respective homotopy

classes. For example, in the picture below the curves α and β have a geometric intersection

number of 1, while β and γ have a geometric intersection number of 2

We can reformulate this concept into the language of geodesic currents. Consider the space

of pairs of geodesics in H2, G(H2)×G(H2) = G(H2)2. It turns out that the action of π1(S) on this

space is free and properly discontinuous, meaning that the quotient map to G(S)2 is actually

a covering map. In this case, it is possible to directly define a measure on G(S)2 in terms of a

π1(S)-invariant measure on G(H2)2. Let µ be a π1(S) invariant measure on G(H)2. Consider an

open set U ⊆ G(S)2 for which its pre-image in G(H2)2 consists of disjoint sheets and let Ũ be

one of those sheets. Then we define the measure µ∗ on G(S)2 by µ∗(U) = µ(Ũ). Since the open

sets U of this form generate the topology on G(S)2, we can use µ∗ to measure any open subset

of G(S)2. This is the "local push-forward" of the measure µ on G(H2 to G(S)2 [12].

Now construct the subset DG(H2) ⊆ G(H2)2 which consists of all pairs of geodesics which

intersect, and let DG(S) be the image of DG(H2) under the quotienting map. For two closed

loops on S, α and β, we can construct the product measure δα× δβ by defining δα× δβ(A×B) =

δα(A)δβ(B) for any measurable subsetsA,B ⊆ G(H2)2. We can now observe that if we take δα×δ∗β
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to be the local-pushforward measure on G(S)2, then δα × δ∗β(DG(S)) recovers the geometric

intersection number I(α, β). For instance, when lifted to a fundamental domain in H2 the

above curves may look like:

Note that an equivalent way of characterizing the space DG(S) is as the collection of all pairs

of geodesics which intersect in some chosen fundamental domain of H2 representing S.

From this perspective, it is clear how we can generalize the concept of an intersection

number to any geodesic currents. Let µ and ν be π1(S)-invariant measures on G(H2)2, then

define their intersection number i(µ, ν) = µ×ν∗(DG(S)). It is a theorem of Bonahon’s [13] that

this function is a continuous, bi-linear form on C(S). Importantly, this construction provides

a way to characterize any geodesic current via a finite set of data. Namely, the values of i(δγ , µ)

over all closed curves γ in S completely determines the measure µ [1]. This will be relevant for

seeing the naturalness of the Liouville current in the next section.

6.3 Liouville Currents

Let us first describe the Liouville current explicitly as a measure on G(H2). The simplest defi-

nition for it is likely via its cross-ratio definition [14]. For this, consider two disjoint intervals

[A,B] and [C,D] in S1
∞ and choose sequences of points {ai}, {bi}, {ci}, and {di} in H2 which

converge to A, B, C, and D respectively. For each term in these sequences we can construct

the geodesic segments aidi, aici, bidi, and bi, ci:
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We then define the cross ratio of the boundary points A, B, C, and D as

C(A,B,C,D) =
1

2
lim
i→∞

(|aici| − |aidi|+ |bidi| − |bici|) .

Using this, we define the Liouville current L on H2 by setting L([A,B]×[C,D]) = |C(A,B,C,D)|.

Note that this measure is invariant under any isometry of H2. As it stands, this particular

measure on G(H2) is not at all dependent on any hyperbolic metric φ on our surface S. To

get a proper geodesic current from this, consider some open set of geodesics on S, say U . Re-

call that there is a purely topological notion for these geodesics, as we discussed in the first

section of this chapter. So if we have two hyperbolic surfaces (S1, φ1) and (S2, φ2) which are

homeomorphic to S then as a set this collection of geodesics on S1 is the same as that on S2.

However, because π1(S1) and π1(S2) act by different groups of translations on H2, the lifts of

these geodesics to the universal covers S̃1 and S̃2 will look different:

As S̃1 and S̃2 are isometric to H2, we can map these collections of geodesics into H2 and evaluate
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their measure with respect to the Liouville current here. We will then find that Lφ1
(U) ̸=

Lφ2
(U), where Lφ1

and Lφ2
represent the value of the Liouville metric for the different lifts of

our set of geodesics. Thus, Lφ is what we call the Liouville current for (S, φ) and it is indeed

dependent on the metric φ, unlike the Liouville current L on H2.

The Louiville current actually has a much stronger relationship with the geometry on S than

even the above explicit definition would suggest. It is the case that for any closed loop α on S,

the intersection number i(δα, Lφ) equals the length of α with respect to φ, ℓφ(α) [12]. In other

words, the Liouville current determines the marked length spectrum of S, and vice versa.

We saw in the introduction that Otal’s theorem assures that the marked length spectrum

determines the metric φ, and so it follows that in fact Lφ must determine the metric φ as well.

This is the fact that the CST seeks to generalize to, and indeed strengthen for hyperbolic cone

surfaces.

We can define the Liouville current for hyperbolic cone surfaces using the same definition

as above, however a fundamental change occurs to the Liouville current in that it loses some of

its support. That is, there will now be open sets of geodesics which have measure 0 according

to the Liouville current. To see this, we first recall that geodesic segments cannot be uniquely

continued through cone points of excess cone angle. Rather, if one connects a regular point

x to a cone point p then there will be a whole range of geodesic continuations, corresponding

to a range of boundary points at infinity that these geodesics will tend toward [14]:

So consider a geodesic which passes through a cone point p such that its endpoints lie

within two such intervals on the boundary, i.e. it turns by an angle greater than π at p (such a

geodesic is referred to as ‘singular’). Choose two points x1 and x2 on this geodesic which lie on

opposite sides of p. Let [A,B] be the interval of endpoints for the possible continuations of the

segment x2p and [C,D] the interval of endpoints for the possible continuations of x1p. Then
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every geodesic connecting an endpoint in [A,B] to an endpoint in [C,D] has to pass through

p. In particular, choose points ai, bi, ci, and di such that their distances to p are all ℓi and

they lie along the geodesic rays connecting p to A, B, C, and D respectively. Once can then

compute the cross ratio in this case and see that it evaluates to 0. Thus we conclude that

L([A,B]× [C,D]) = 0. In other words, given a singular geodesic we have found a neighborhood

of it which has measure 0. Thus, the support of the Liouville current Lφ consists only of the

non-singular geodesics of S.

As in the case of surfaces without cone points, the geodesic current Lφ determines the

hyperbolic cone metric φ. However, the CST states something even stronger. One doesn’t need

to know the Liouville current explicitly, in almost all case they only need to know its support,

i.e. the space of non-singular geodesics, to determine φ.
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Chapter 7

An Application to Hyperbolic

Billiards

Having now reviewed the mathematical theory surrounding the CST, we are in a good position

to use it in solving other problems. In particular, the original paper by Leininger et al. provides

an application of their theorem to symbolic dynamics of hyperbolic polygons. In particular,

they prove a result they refer to as the "Hyperbolic Bounce Theorem," which we will introduce

below.

7.1 The Problem

Let P be a polygon in the hyperbolic plane, i.e. a simply connected, bounded subset of H2,

whose boundary is piece-wise geodesic. We can label its sides cyclically, by say A, B, C, etc.

Now imagine we have a billiards ball bouncing around inside this polygon, which we may

imagine as our “billiards table." That is, it travels along a geodesic segment while it is in the

interior of P , but once it contacts an edge of the polygon, its direction of travel is changed such

that the angle of incidence with the edge is equal to the angle of reflection. The path that this

point traces out we then refer to as a billiards trajectory.

For a billiards trajectory in this polygon, we can record the sequence of sides that it hits

(both going forward and backward in time), e.g.:

...ABACDBABABCDADBCBDA...

This is a “bounce sequence" of P . The collection of all possible bounce sequences within a

polygon we will call its “bounce spectrum", denoted B(P ). The question of interest to us is
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then whether the bounce spectrum of a polygon determines its shape up to isometry.

7.2 Unfolding Polygons

To tackle this problem using the CST, we will first need to form a cone surface from our

polygon P . One immediate way to do this is to make a copy of our polygon and identify the

corresponding edges of the polygons:

We refer to this surface as the double of the polygon P , or more briefly, DP . It is topologically

a sphere, possessing a constant negative curvature hyperbolic metric everywhere, except at

the vertices of the polygon which here have become cone points.

Notice that having our billiards trajectory reflect off an edge of the polygon is equivalent to

letting it pass through the edge in a straight line and into the copy of the polygon. Therefore

billiards trajectories in our polygon become geodesic paths on its double. Another word for

the double of our polygon is then an unfolding, since whenever our billards ball hits an edge

we may imagine unfolding our polygon along this edge to allow it to pass through. Though,

we will need to perform more unfoldings than this to be able to apply the CST.

The only remaining deficiency of this surface is that some of its cone angles will be less

than 2π. To remedy this, we will first remove the cone points from our doubled polygon to

form DP o. Now we have a non-simply connected surface, and we can consider coverings of it.

In particular, if our polygon P has n vertices, then π1(DP
o) ∼= Fn−1, the free group on n − 1

generators. For convenience however, we will grant Fn−1 the n generators a1, . . . , an and simply

add in the relation an = a1a2 · · · an−1. Thus ai corresponds to a loop going around the i-th

puncture of DP o.

If we wish to “unravel" our surface around the i-th puncture k times, such a covering will

turn out to correspond to the subgroup

Hi = ⟨a1, a2, . . . , âi . . . , an, aia1a−1
i , . . . , a1ana

−1
1 , . . . , ak−1

i ana
1−k
i , aki | an = a1a2 . . . an−1⟩,

where âi denotes the absence of ai as a generator in this subgroup. If we suppose that
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k · θi > 2π, where θi is the cone angle of the cone point we removed from DP o to form the i-th

puncture, then when we add our cone point back into the surface it will have a cone angle

which is greater than 2π. Moreover, since Hi has index k within Fn−1, the covering space which

it corresponds to will be a k-sheeted cover.

To perform this unraveling at every puncture of our surface, we simply take the intersection

of these subgroups: H :=
n⋂
i=1

Hi. Since each Hi has finite index, their intersection will have

finite index as well (see Appendix A, section 3), thus the covering corresponding to H is finite-

sheeted. Call this covering spaceXo. Of course, Xo still contains many copies of the punctures

on DP o, so to fill these in we will simply take the metric completion of Xo, which we will call

X. The spaces we have constructed thus far can then be organized into the following diagram:

Xo X

DP o DP

P

ı

q q̂

ı

π

7.3 Partial Proof of the Hyperbolic Bounce Theorem

To write the hyperbolic bounce theorem (HBT) down formally, we require the notion of a pair

homeomorphism. That is, given spaces X and Y , and subspaces A ⊆ X and B ⊆ Y , we say

f : X → Y is a pair homeomorphism if f is a homeomorphism and f restricted to A is a

homeomorphism from A to B. We then write f : (X,A) → (Y,B). We can now formally state

the HBT:

Theorem 7.3.1 (Hyperbolic Bounce Theorem). Let P1 and P2 be two polygons in H2. Then

B(P1) = B(P2) if and only if P1 and P2 are isometric, or there exists a pair homeomorphism

f : (P1, T1) → (P2, T2) where Ti is the skeleton of a tiling of Pi such that adjacent tiles differ by

reflection and each vertex angle of Pi is subdivided into angles of the form
π

2k
by the tiles in Ti.

The proof can be broken into two cases. If Xi is rigid, which will occur e.g. if any of

the angles of Pi are irrational, then we will only have equivalence of bounce spectra if the two

polygons are isoometric. Otherwise if the Xi’s are flexible, then the CST may be used to obtain

the description of the exceptional polygons in terms of tilings.

Here we focus on the proof in the case that the Xi’s are rigid. To begin, suppose we have

polygons P1 and P2 such that B(P1) = B(P2), and construct branched covers X1 and X2 as

described above. We will first note that the bounce spectrum of a polygon determines its

number of sides. Therefore P1 and P2 have the same number of sides and vertices, and so

the fundamental group for both of their punctured double covers will be Fn−1. X1 and X2
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both correspond to subgroups of Fn−1, and so we may take the covering correspondings to the

intersection of these subgroups to be our Xi’s. In this way, we guarantee that X1 and X2 are

homeomomorphic.

If we view P1 and P2 as being topologically just disks with different metrics attached to

them, then there is an identity map h between them which is a homeomorphism and which

preserves edge labelings, but which is not an isometry. This homeomorphism then lifts to a

homeomorphism h̃ between the universal covers X̃1 and X̃2. Because we chose our covering

spaces X1 and X2 to have negative curvature at their cone points (i.e. all cone angles are

greater than 2π), these universal covers will be hyperbolic planes with cone points of their

own. Let Gi be the space of non-singular geodesics (i.e. don’t pass through cone points) of X̃i

as described in chapter 6.

Every non-singular geodesic in X̃1 (colored in blue below) maps by a composition of the

covering and folding maps to a billiard’s trajectory in the Polygon P1. If B(P1) = B(P2), then

for any billiards trajectory in P1 there is a corresponding billiards trajectory in P2 (colored in

pink below) which hits the identically labeled edges. When we lift this path to the universal

cover X2, we choose the lift so that it passes through at least one edge of the universal cover

that the blue geodesic also passes through. It follows that from then on, the blue and pink

paths will pass through the same edges in the universal cover of X1. As the universal cover

is tiled by copies of P2, and since the blue and pink paths pass through the same sequence

of edges in both directions, it follows that they will always pass through the same tiles and so

remain a bounded distance apart.

Now, this means the blue geodesic in the above picture corresponds to some element of
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G1, say (x, y). h̃ then maps (x, y) to precisely itself. Moreover, since the pink path stays a

bounded distance away from the blue path, it must also correspond to the pair of boundary

points (x, y). That is, every element of G1 is an element of G2, and by reasoning the other

way we also have that every element of G2 is an element of G1 as well. We then conclude that

G1 = G2. However, we assumed that X1 and X2 were rigid cone surfaces, so since the space of

non-singular geodesics (i.e. the supports of the liouville currents) are equivalent, we conclude

that in fact X1 and X2 are isometric. It then follows that P1 and P2 must have been isometric

as well, completing the proof.

7.4 Exceptions to the HBT

While we will not prove the full characterization of exceptional polygons here, we will demon-

strate how the flexibility of X1 and X2 allows for such exceptions to occur.

Suppose P1 and P2 are not isometric polygons. However their homeomorphic branch covers

X1 and X2 are flexible, and cover equivalent orbifolds O1
∼= O2. We will further assume that

only the cone points are mapped to the orbifold points of these orbifolds, and moreover the

stabilizer of each even-ordered orbifold point is Z2n acting by rotation. Finally, since X1 and

X2 cover these orbifolds, their universal covers will also cover O1 and O2. We collect this

information in the following commutative diagram:

X1 X2

O1 O2

Õ1 Õ2

H

q1 q2

f

q̃1

f̃

q̃2

where qi and q̃i are the respective covering maps, H is a homeomorphism from X1 to X2,

f is an orbifold equivalence, and f̃ is a lift of this equivalence to the universal covers. Any

geodesic in X1 which passes through a cone point will map to a geodesic in O1 since q1 is local

isometry. This in turn will lift to a geodesic in the universal cover of our orbifold, Õ1. Because

the fundamental group of O1 acts by even-order rotation on the orbifold point that our cone

point maps to, it will also act on the lift of this point due to the equivariant property of f̃ . If

this subgroup is generated by g of order 2n, then gn is a rotation of Õ1 by π radians around

the pre-image of the orbifold point, and so must map this lifted geodesic to itself. Importantly,

the endpoints of this geodesic are preserved, and so they are still contained in Gcφ1
, as they

bound a singular geodesic.
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At this point, our situation is summarized in the left-hand side of the following diagram:

We now consider the image of the blue geodesic above under the topological identity map

which changes the metric of our spaces. In the space X2, the image of the blue geodesic is

within some free homotopy class of paths, and as we know from section 4 each homotopy class

of paths on a hyperbolic surface contains exactly one geodesic. This is the pink curve sketched

above. Note that since X2 is compact, the blue curve remains a bounded distance away from

the pink curve. And this will remain true when we lift to the universal cover (represented by

the dashed arrow). Thus they have the same endpoints as each other. In order to conclude

Gcφ1
= Gcφ1

, we thus need to show that the pink geodesic is singular as well.

To finish this argument, note that as the group element gn swaps the endpoints of the pink

geodesic, its corresponding group element in π1(O2) must do the same to the pink geodesic.

However, a continuous map from a line to itself cannot swap the endpoints without having at

least one fixed point. This fixed point thus has a group of order 2 acting on it, and thus must

cover an even-order orbifold point. However, the pink geodesic in O2 can only pass through an

even-order orbifold point if it passed through a cone point in X2, by our assumptions. Thus

the pink geodesic must pass through a cone point and so is singular, completing the proof.

For an explicit example of the exceptional situation described in the HBT, consider 3

squares glued together in an L-shape, each square having an angle of π
2n at each vertex, for

n > 1 (n = 2 illustrated below):
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As with any other polygon, we can form its double then unfold it to some hyperbolic surface.

But here, we can also go further and form an orbifold covering by first covering the double

of a square tile by the double of our polygon P , then quotienting this by reflection to form an

orbifold out of our square tile:

However, for any square in the hyperbolic plane, there exists an infinite family of other

quadrilaterals which have different side lengths but the same angle at each vertex:

If we use any one of these quadrilaterals in place of the regular quadrilateral we began

with, we obtain “stretched" versions of our original orbifold and doubled polygon. They will

possess the same angular and combinatorial information. Moreover, only the cone points
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of the covering surface for this stratched polygon will map to the even-order orbifold points

(i.e. any of the orbifold points in this case). Therefore these polygons satisfy the abstract

conditions we laid out above, and so even though they are not isometric they will possess the

same bounce spectra.
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Chapter 8

Surface Genus and Cone Point

Count

8.1 A Preliminary Bound

We begin this section by laying out Leininger, et al.’s result that a genus g hyperbolic surface

with more than 32(g− 1) cone points must be rigid. Recall that the Gauss-Bonnet theorem for

cone surfaces assures us that for a surface S and a hyperbolic cone metric φ on it,

Area(S) = 2π

(
2(g − 1) +

∑
i

1− θi
2π

)
,

where θi is the cone angle of the i-th cone point. If we suppose that φ is flexible, then the

CST tells us there must exist a locally isometric covering q : S → O to an orbifold O which sends

cone points to even-order orbifold points. As this covering is locally isometric, in particular it

locally preserves areas and so its degree d must satisfy

d =
Area(S)

Area(O)
=

2π

(
2(g − 1) +

∑
i

1− θi
2π

)
Area(O)

.

Since θi > 2π for all i, the sum present in the numerator will be strictly negative. We may

therefore obtain an upper bound on d by omitting it:

d <
2π(2(g − 1))

Area(O)
=

4π

Area(O)
(g − 1).
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Now let n be the number of cone points for the metric φ, and r be the number of even-order

orbifold points on O. We know that each of the n cone points must map to an even-order

orbifold point. Moreover if the i-th cone point pi maps to an orbifold point of order bj, then its

cone angle θi must be given by
2π

bj
(the angle at q(pi)) times the number of sheets that the pi

contributes to the covering of q(pi). As θi > 2π, it follows that this number of sheets must be

greater than or equal to bj +1, which in turn must be greater than or equal to 3. We can then

reason that the number of cone points which map to a given orbifold point cannot exceed
d

3
,

since each cone point contributes at least 3 sheets to the covering. Repeating this reasoning

for all r even-order orbifold points, we conclude that

n ≤ r

3
d <

4πr

3Area(O)
(g − 1).

In order to get a bound on n which will work for any orbifold O, we will need to optimize the

right-hand side over all possible orbifolds O. This involves some light case work, based on the

value of r and the genus of the orbifold O. But once this is accomplished, one finds that the

value of
4πr

3Area(O)
is maximized at 32, which gives the desired conclusion.

8.2 Cone points do not Exceed 3(g − 1)

We are now ready to prove our extension of this result, namely

Theorem 8.2.1. A hyperbolic cone surface S of genus g having more than 3(g − 1) cone points

must be rigid. Moreover, this is the optimal such bound of the form c(g − 1).

We postpone showing optimality until the next section. Here, we will simply prove the

bound on the cone points. So, let S be a genus g flexible hyperbolic cone surface with n

cone points. By the CST, S must cover a hyperbolic orbifold O such that each cone point

is mapped to an even-ordered orbifold point. For what follows, we will say O has signature

(go; b1, b2, . . . , br, c1, c2, . . . , cs), where the bi’s are even and ordered so that b1 ≤ b2 ≤ · · · ≤ br, and

the cj ’s are all odd. Note that we are allowing multiplicities among the bi’s, and among the cj ’s.

Because of this we will slightly abuse notation and refer to the orbifold points and their orders

interchangeably. Also, for convenient notation later on, we will define p̂ to be the restriction of

the covering map to the set of cone points on S.

Since O is hyperbolic, it must have a negative euler characteristic. Recalling the formula

for the euler characteristic of an orbifold, we therefore have
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|χ(O)| = 2(go − 1) +

r∑
i=1

bi − 1

bi
+

s∑
j=1

cj − 1

cj
. (8.1)

Let us abbreviate the above value as χ. We first observe that if the genus go is greater

than or equal to 1, then χ is at least
1

2
r, assuming all orbifold points have order 2. Therefore

following the argument of the original paper, we can bound the number of cone points in this

case by

n ≤ r

3
d ≤ r

3
· 2(g − 1)

1
2r

=
4

3
(g − 1),

where d is the degree of our covering map and n is the number of cone points on S. Since

this bound is less than 3(g − 1), our claim is proven in the case that go ≥ 1. For what follows,

we will therefore assume go = 0.

We continue by choosing an appropriately small value a so that n ≥ a(g − 1). We will then

work toward finding an inequality that a must satisfy, and in so doing we will bound n. To

obtain this inequality on a, consider the degree d of our covering map which is given by

d =

2(g − 1) +
n∑
k=1

1− θk
2π

χ
, (8.2)

where each θk is the cone angle of the k-th cone point on S. These cone angles must each

be strictly greater than 2π, so the sum in the numerator is strictly negative. We may therefore

get an upper bound on d by omitting this sum:

d ≤ 2

χ
(g − 1).

Now let us generalize and suppose that we have an upper bound on d of the form d ≤ q(g−1).

The above argument is only useful for establishing that such a q does indeed exist, but the

exact form that q takes is irrelevant. If d satisfies such a bound, then the number of cone

points that map to an orbifold point bi, |p̂−1(bi)|, must be bounded above by q
bi+1 (g − 1). This

is because each such cone point, having cone angle greater than 2π, must contribute at least

bi + 1 sheets in order to cover an orbifold point with cone angle 2π
bi

in a locally isometric way.

As the total number of sheets over any point is d, the bound on |p̂−1(bi)| follows.

We can use this information to update the bound on d. Note that to get an upper bound

on d, we would like to minimize the cone angles θk as much as possible. If the k-th cone

point maps to the orbifold point bi, then θk must be a multiple of 2π
bi

. The smallest such

multiple which is strictly greater than 2π is bi+1
bi

·2π. Thus, this cone point adds, at maximum,
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1 − (bi+1)·2π
bi

· 1
2π = − 1

bi
to the numerator of d. Repeating this logic for every cone point on S

yields the bound

d ≤ 1

χ

2(g − 1) +
∑
i

∑
p̂−1(bi)

− 1

bi


=

2

χ
(g − 1) +

1

χ

((
− 1

b1

)(
n−

∑
i>1

|p̂−1(bi)|

)
+
∑
i>1

(
− 1

bi

)
|p̂−1(bi)|

)

=
2

χ
(g − 1) +

1

χ

∑
i>1

(
1

b1
− 1

bi

)
|p̂−1(bi)| −

n

b1χ

≤ 2

χ
(g − 1) +

1

χ

∑
i>1

(
bi − b1
b1bi

)
q

bi + 1
(g − 1)− a(g − 1)

b1χ

=

(
2

χ
− a

b1χ
+ q

∑
i>1

(
bi − b1

b1bi(bi + 1)χ

))
(g − 1)

=

(
2

χ
− a

b1χ
+ q

∑
i

(
bi − b1

b1bi(bi + 1)χ

))
(g − 1).

In summary then, by assuming a bound for d with a coefficient on (g− 1) of q, we obtained

a new bound for d with a coefficient which is an affine function of q. We may then iterate this

logic as many times as we wish to get a sequence of bounds for d. If the affine function of q

has its slope in the range (−1, 1), then by the contraction mapping theorem any sequence of

iterations will converge to the unique fixed point of this function. Denoting this fixed point as

q∗, we will then have

d ≤ q∗(g − 1). (8.3)

Before solving for q∗, we will show that the slope is in the required range. Indeed, each

term in the sum will be non-negative since b1, bi, and χ are all positive, and bi ≥ b1. Thus this

slope is certainly non-negative, and so it will suffice to show that

∑
i

bi − b1
b1bi(bi + 1)χ

< 1,

or equivalently,

∑
i

bi − b1
b1bi(bi + 1)

< χ.

Recall the definition of χ from equation (1), and the fact that go = 0:

χ = −2 +
∑
i

bi − 1

bi
+
∑
j

cj − 1

cj
= r − 2−

∑
i

1

bi
+
∑
j

cj − 1

cj
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The desired inequality therefore becomes

∑
i

bi − b1
b1bi(bi + 1)

< r − 2−
∑
i

1

bi
+
∑
j

cj − 1

cj
,

Or equivalently,

∑
i

bi − b1
b1bi(bi + 1)

+
∑
i

1

bi
< r − 2 +

∑
j

cj − 1

cj
. (8.4)

The left-hand side can be simplified as follows:

∑
i

bi − b1
b1bi(bi + 1)

+
∑
i

1

bi
=
∑
i

bi − b1
b1bi(bi + 1)

+
∑
i

b1(bi + 1)

b1bi(bi + 1)

=
∑
i

(bi − b1) + (b1bi + b1)

b1bi(bi + 1)

=
1

b1

∑
i

b1 + 1

bi + 1

≤ 3

2

∑
i

1

bi + 1

A lemma we shall prove later on in this proof is that for hyperbolic, flexible orbifolds like

those we are considering here,

5

3

∑
i

1

bi + 1
≤ r − 2 +

∑
j

cj − 1

cj
.

And as
5

3
>

3

2
, this gives the desired bound and we can conclude that our affine function

of q has slope less than 1. We may thus bound d by its fixed point q∗, which is given by

q∗ =
2

χ
− a

b1χ
+ q∗

∑
i

bi − b1
b1bi(bi + 1)χ

⇒

(
1−

∑
i

bi − b1
b1bi(bi + 1)χ

)
q∗ =

2b1 − a

b1χ

⇒

(
b1χ−

∑
i

bi − b1
bi(bi + 1)

)
q∗ = 2b1 − a

⇒ q∗ =
2b1 − a

b1χ−
∑
i

bi−b1
bi(bi+1)

.

So we have

d ≤ 2b1 − a

b1χ−
∑
i

bi−b1
bi(bi+1)

(g − 1).
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However, this bound on the degree also implies an upper bound on the number of cone

points. This is because

n =
∑
i

|p̂−1(bi)| ≤
∑
i

d

bi + 1
= d

∑
i

1

bi + 1
.

Substituting in our bound on d, we get

n ≤
(2b1 − a)

∑
i

1
bi+1

b1χ−
∑
i

bi−b1
bi(bi+1)

(g − 1)

Recall however that we also chose a so that n ≥ a(g − 1). It follows that a must satisfy

a ≤
(2b1 − a)

∑
i

1
bi+1

b1χ−
∑
i

bi−b1
bi(bi+1)

.

Then by isolating a we get

a ≤
2b1
∑
i

1
bi+1

b1χ−
∑
i

bi−b1
bi(bi+1) +

∑
i

1
bi+1

=

2b1
∑
i

1
bi+1

b1χ+
∑
i

b1
bi(bi+1)

=

2
∑
i

1
bi+1

χ+
∑
i

1
bi(bi+1)

We can also re-write the denominator further by substituting in the formula for χ:

χ+
∑
i

1

bi(bi + 1)
= −2 +

∑
i

bi − 1

bi
+
∑
j

cj − 1

cj
+
∑
i

1

bi(bi + 1)

= r − 2 +
∑
j

cj − 1

cj
+
∑
i

(
1

bi(bi + 1)
− 1

bi

)
= r − 2 +

∑
j

cj − 1

cj
−
∑
i

1

bi + 1
.

Therefore we have

a ≤
2
∑
i

1
bi+1

r − 2 +
∑
j

cj−1
cj

−
∑
i

1
bi+1

Our goal now is to find an upper bound on the right-hand side over all possible values of
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r, cj ’s, and bi’s, and in particular to show that this bound is 3. By re-arranging, we see how

the claim that this right-hand expression is bounded by 3 is equivalent to

5

3

∑
i

1

bi + 1
≤ r − 2 +

∑
j

cj − 1

cj
. (8.5)

To prove this inequality, we will break into cases over r. First suppose that r > 4. Then

the left-hand side will be maximized when all bi’s equal 2, and so it will be at most
5

9
r. The

right-hand side is minimized by assuming no odd-order orbifold points exist, giving simply

r − 2. As
5

9
r < r − 2 for all r > 4, the result follows in this case.

Now suppose r = 4. We cannot simultaneously have bi = 2 for all i, and also have no odd-

order orbifold points, since then χ would be 0 and our orbifold would not be hyperbolic. If

there are no odd-order orbifold points, at least one bi must equal 4, so the left-hand side of

(8.5) is maximized at

5

3

(
1

2 + 1
+

1

2 + 1
+

1

2 + 1
+

1

4 + 1

)
= 2.

As the right-hand of (8.5) side will evaluate to r− 2 = 4− 2 = 2, the inequality holds in this

case. Otherwise, we assume that bi = 2 for all i and there is at least one odd order orbifold

point cj = 3. The left hand side is then
5

3
· 4
3
=

20

9
, while the right-hand side will be 4−2+

2

3
=

8

3
.

As
20

9
<

8

3
, the inequality holds here as well.

Now assume r = 3. Note that our orbifold must itself be flexible in order for it to be locally

isometrically covered by a flexible metric of S. An orbifold with 3 orbifold points however

is identical to two isometric hyperbolic triangles glued together. As a hyperbolic triangle is

determined up to isometry by its vertex angles, there can only be one metric on an orbifold

with three given orbifold points (which will determine the vertex angles of the triangles). Thus

an orbifold with three orbifold points cannot be flexible. We may thus conclude that our

orbifold has at least 4 orbifold points in total. So if r = 3, at least 1 orbifold point must be odd.

The left-hand side of (8.5) is then maximized at
5

3
· 3
3
=

5

3
. The right-hand side meanwhile

will be at minimum 3−2+
2

3
=

5

3
. So the inequality is true for r = 3 also (It will be important for

the next section to note that we have actually achieved equality in the case of the (0; 2, 2, 2, 3)

orbifold).

Now each time we decrease r by 1, the maximum of the left-hand side of (8.5) is decreased

by
5

3
· 1
3
=

5

9
, while the minimum of the right-hand side of (8.5) will be decreased by 1− 2

3
=

1

3
.

As
1

3
<

5

9
, we see that the inequality is preserved in the r = 1 and r = 2 cases as well. This

then completes the proof of the bound.
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We can thus conclude that for all genus 0 orbifolds, we must have a ≤ 3. Since this

inequality is true for any a which satisfies n ≥ a(g − 1), we finally obtain

n ≤ 3(g − 1),

for any flexible hyperbolic cone metric φ on S. Equivalently, if a hyperbolic cone metric has

more than 3(g − 1) cone points, it must be rigid.

87



8.3 Achieving the Bound

In order to demonstrate that the bound above is actually the best we can do, we will construct

an infinite family of cone surfaces which achieve the bound. Before this though, we will

consider a simple example with a genus 2 surface due to a fellow student, Katherine Chui.

Arrange your genus 2 surface so that it has order 3 rotational symmetry:

The axis of this order 3 rotation has 4 fixed points, and so when we quotient by its action

we will obtain a genus 0 orbifold with 4 orbifold points. We can make 3 of the above fixed

points be cone points with cone angle 3π and the other a regular point, so that they cover a

(0; 2, 2, 2, 3) orbifold:

Note that (0; 2, 2, 2, 3) was one of the two orbifold signatures for which it was theoretically

possible to achieve the 3(g−1) bound. Since the number of cone points is 3 = 3(2−1) = 3(g−1),

our bound is reached by this example. To see how to obtain more examples like this, imagine

taking the surface above and collapsing it to a graph, like so:

Then our order 3 symmetry for the original surface corresponds to an automorphism of

this graph which fixes a desired vertex. This suggests that we can devise examples by first
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considering graphs that have appropriate symmetries, and then inflating them into surfaces

with the same symmetries. To understand what kind of graphs we would like, we will first

look at the (0; 2, 2, 2, 3) orbifold. We can represent it like a cannoli:

Just as it did in the example above, each copy of this orbifold making up the surface S

can be likened to an edge of a graph. Each cone point on S must map to an order 2 orb-

ifold point, and the optimal way to do this is with each cone point mapping to it with a local

degree of 3. This means that each end of the orbifold above must be copied 3 times around

the orbifold points to form part of our surface S. In terms of our graph though, this means

that each vertex should have valence 3, or in other words that our graph is 3-regular. Our

graph should also be symmetric with respect to cycling around the three neighbors of any

vertex while keeping that vertex fixed, which corresponds to rotating our surface around 2

of these cone points. This action should also be edge transitive so that a single edge forms

a fundamental domain for it, which corresponds to our surface covering the given orbifold.

Finally, note that the set of vertices can partitioned into two sets: those that will contain 2

cone points when inflated into a surface, and those that will contain 1. And an edge cannot

connect two vertices of like-nature, since each copy of our orbifold comprising the surface S

has exactly 3 cone points. So to facilitate this we will also require that our graphs be bipartite.

An example that satisfies these properties is the graph of a cube:

Each vertex has valence 3 and degree 3 rotational symmetry. Moreover the action generated

by these rotations is edge-transitive. It is also a bipartite graph. One can then check that the

surface resulting from inflating this graph covers the orbifold. Moreover, it will have genus 5
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and contain 2 · 4 + 1 · 4 = 3 · (5− 1) = 3(g − 1) cone points, as desired.

Another example is that of the graph K3,3. As a surface, it can be represented as a collection

of 3-punctured spheres with boundary components identified according to edge relations of

the graph,

where cone points with cone angle 3π have been marked with filled circles, and regular

fixed points are marked with open circles. Note though that the picture above is lying slightly,

as each pair of pants containing two cone points actually has area 0 by the Gauss-Bonnet

formula. Thus the above picture is purely topological, and the boundary components are not

actually geodesics.

Nevertheless, this picture should make clearer how the symmetries of the graph can be

realized as hyperbolic isometries of the surface. By representing each vertex as a thrice-

punctured sphere and identifying boundary components according to edge relations of the

graph, we essentially form a pants decomposition of the surface S. Each pair of pants (of

positive area) can then be given a hyperbolic metric, with the symmetries from our graph

acting on each pair of pants either by rotation if it is a fixed point, or translation if it is moved

to another pair of pants. It follows then that for these examples, vertices in the same orbit

must correspond to isometric pairs of pants in the original surface.

The previous example can also be generalized to an infinite family of surfaces which achieve

the bound. To construct these, consider the graph which forms a hexagonal grid in the plane:
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Other than the fact that it is infinite, this graph possesses all the properties we desire: degree

3 rotational symmetry about each vertex, edge-transitivity with respect to this action, and

bipartiteness. To transform this graph into a finite one, we can isolate a hexagonal domain

and perform a quotient. The smallest example of this looks like:

This is in fact just the K3,3 example already mentioned. But now we can go further. The next

smallest example of this construction is:

which has 24 vertices. In general, the k-th smallest example will have 6k2 vertices. When

these vertices are inflated to form the surface, each will represent a pair of pants. A genus g
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surface can be decomposed into 2(g−1) pairs of pants, so 6k2 = 2(g−1) implies that the genus

of the surfaces formed by this construction are of the form 3k2+1. So this construction yields

surfaces of genus 4, 13, 28, 49, etc.

We should be certain to confirm that these graphs have the desired symmetry, though.

As a cautionary example, the cubic graph from before can be realized as a quotient of the

hexagonal grid as well, in its case by a rectangular region:

However, one can check that quotients by larger rectangular regions do not yield graphs with

the desired automorphisms.

To be sure that the graphs we have constructed actually work, we will need to check that

the rotations that generate the group of automorphisms respect the quotient by the hexagonal

domain. Let H be the larger hexagonal grid (not the hexagonal graph we are interested in),

and let T be the group of translations which preserve H. Then the group T we are quotienting

by can be identified with the additive group of eisenstein integers in the complex plane. These

are complex numbers of the form a+ bω with a and b being integers and ω = e
2π
3 i. Two points

of the plane, envisioned as complex numbers z and w, are equivalent if and only if z − w is

one of these eisenstein integers. Moreover, a degree 3 rotation about a point z0 can be written

algebraically as r(z) = ω(z − z0) + z0. Confirming that the rotations of our graph respect the

quotient is then simply a matter of checking that z ∼ w if and only if r(z) ∼ r(w). We first note

that

r(z)− r(w) = ω(z − z0) + z0 − [ω(w − z0) + z0] = ω(z − w).

Since the eisenstein integers Z[ω] are preserved under multiplication by ω, this implies what

we want.

So we now have in our hands an infinite family of cone surfaces which achieve our proven

bound. This is certainly sufficient to demonstrate tightness, but only in a weak sense. The

geni that we have examples for at this point are only quadratically distributed, and it is not
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clear that in the gaps between the actually bound won’t dip even lower.

This is not likely to be the case though, since there is another somewhat well-studied family

of examples. These are given by the bipartite symmetric cubic graphs, which are bipartite

graphs such that each vertex has three neighbors, and such that the group of automorphisms

acts transitively on the ordered pairs of adjacent vertices in the graph. We then clearly have

bipartiteness, 3-regularity, and edge transitivity satisfied by these examples. To ensure that

rotations around vertices are valid automorphisms of such a graph, we appeal to a theorem of

Tutte’s which asserts that the stabilizer subgroup of any vertex v in a symmetric cubic graph

is isomorphic to one of C3, S3, S3 × C2, S4, or S4 × C2 [15]. Each of these groups contains at

least one order 3 element, which must permute the three neighbors of v. The only way this

can be done is if these neighbors are permuted cyclically.

So we can see that each such bipartite symmetric cubic graph will provide a valid cone

surface which achieves our bound. Moreover, Marston Conder has computed all symmetric

cubic (though not necessarily bipartite) graphs with up to 10,000 vertices [16]. Below, we will

list the geni that we obtain examples for from this family of graphs, up to genus 100:

4, 5, 8, 9, 10, 11, 13, 14, 16, 17, 20, 21,

22, 25, 26, 28, 29, 32, 33, 37, 38, 40, 41,

44, 46, 49, 50, 53, 56, 57, 58, 61, 62, 64,

65, 68, 73, 74, 76, 77, 80, 82, 85, 92, 94,

97, 98

In total, we found based on this data that roughly 30% of all geni up to g = 5, 000 achieve

the bound.
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Chapter 9

Conclusion

Let us take stock of all that we have seen during the course of this discussion. We have met

hyperbolic geometry and its many guises, and analyzed its many non-intuitive properties.

Covering spaces were next, revealing deep connections between topological spaces and the

algebraic objects we associate to them, namely the fundamental group. Quite beautifully,

these two realms of topology and non-euclidean geometry conspired seamlessly to allow us to

construct and even parameterize all non-euclidean surfaces. Then, seeking a generalization of

the group actions we associated with covering spaces, we introduced ourselves to the notion

of orbifolds, which play a prominent role in the CST and in topology/geometry more broadly.

We finally learned of geodesic currents, which offer a tidy way of packaging subtle geometric

properties of surfaces inside the language of measures and analysis.

At every turn, we have seen deep and unexpected connections between disparate areas of

study, from geometry, to topology, to algebra, to analysis. The fact that the CST and other the-

orems of its kind stand at the nexus of so many insights and nearly two centuries of hard work

makes them worthy of study all by itself. Of course, more than just showcasing a wonderful

edifice of mathematical theory, theorems like the CST represent significant contributions to it

and are testaments to the unexpected rigidity of these hyperbolic objects that geometers have

come to study.

The task now is to continue probing this rigidity, shedding light on where it is strong and

where it is weak, and in what ways it might present itself. Whether that be in the finite-

dimensionality of the Teichmüller space or the support of the Liouville current. For our own

part, we have been able to contribute a small piece to this vast puzzle and demonstrate that

far fewer cone points than originally shown are sufficient to ensure rigidity of metrics in the

sense of the CST.
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9.1 Further Directions

Though it took quite a bit of work, our success in reducing the bound on the number of cone

points and proving a somewhat weak notion of tightness is still only a small component of the

larger project of probing the limits and rigidity of hyperbolic metrics. For those who wish to

carry on this task in the future, we highlight here some questions that have been brought up

in, but gone unanswered by the present work.

Question 9.1.1. Are there infinite families of graphs which yield cone surfaces that achieve the

bound found herein, such that the geni of these surfaces are linearly distributed?

Question 9.1.2. D examples of cone surfaces exist which cover the (0; 2, 2, 2, 4) orbifold and

achieve the bound on cone point count? And if so, do these examples fill in the gaps in geni left

by the examples found here covering the (0; 2, 2, 2, 3) orbifold?

Question 9.1.3. The CST states that the deformation space of a flexible hyperbolic cone surface

(S, φ) is parameterized by the Teichmüller space of the orbifold it covers. One can then ask

if there are generalizations of the result presented here. Such as whether there exists some

constant a ∈ R for which a surface with more than a(g − 1) cone points can have at most a 1-

dimensional deformation space? Or more generally, given n ∈ N, does there exist a constant an

such that (S, φ) possessing more than an(g − 1) cone points implies its deformation space is at

most n-dimensional? Do these constants approach 0 as n grows large?

Question 9.1.4. Is there a reason that the 3(g− 1) bound on the number of cone points is equal

to the number of closed loops needed to separate the surface into pairs of pants?
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Appendix A

Supplementary Proofs

A.1 Tangents to Hyperboloid Have Positive Quadratic Form

Any tangent to the hyperboloid will in particular be a tangent to a curve that runs along it.

We will choose this curve to be a geodesic path whose formula will be sinh(t)w⃗+cosh(t)v⃗, where

Q(v⃗, v⃗) = −1, Q(w⃗, w⃗) = 1, and Q(v⃗, w⃗) = 0. A tangent vector to this curve will be given by

cosh(t)w⃗ + sinh(t)v⃗, and so we can compute its quadratic form to be.

Q(cosh(t)w⃗ + sinh(t)v⃗, cosh(t)w⃗ + sinh(t)v⃗)

= cosh(t)2Q(w⃗, w⃗) + 2 cosh(t) sinh(t)Q(v⃗, w⃗) + sinh(t)2Q(v⃗, v⃗)

= cosh(t)2 − sinh(t)2 = 1

Which is positive. If we scale this tangent vector by λ, then its quadratic form will scale by

λ2 and so will still be positive. This proves the result.

A.2 3 Non-Adjacent Sides Determine a Right-Angled Hyper-

bolic Hexagon

For this proof, we refer to lecture notes written by Bram Petri [17]. We would like to show that

given a triple of positive real values (a, b, c), there exists a unique (up to orientation-preserving

isometry) right-angled hyperbolic hexagon such that three non-adjacent sides have length a,

b, and c respectively:
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Since we are only considering this hexagon up to isometry, we are allowed to choose one

of our vertices (e.g. the marked red vertex above) to be the center of the hyperbolic disk. The

two sides adjacent to this vertex can then be extended to geodesic rays. Furthermore, we

know that a side adjacent to this vertex has length a, so we may also draw the geodesic ray

which is at distance a from our chosen vertex and which intersects the corresponding side at

right-angles. Call this curve α. Our picture so far thus looks like:

We next consider the side of length c. We know this side will be at right angles with the

vertical geodesic we have drawn above, but where it meets this vertical geodesic we do not yet

know. So we will simply draw the curve of all points at distance c from the vertical geodesic.

Call this curve B:
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Fig. A.1.1: B is the curve of points a distance c from the vertical geodesic.

Let p be the point where our segment of length c meets B. Note that as we vary the point

p on B, the geodesic which lies at right angles to it can be arbitrarily close or far from the

geodesic α:

The red geodesic above, for instance, is at distance 0 from α, the blue geodesic is at some

greater distance, and the green geodesic is at a greater distance still. Because this distance

increases monotonically and continuously as we move along B, there must be some point at

which this distance is precisely b. Let γ be the geodesic perpendicular at p which achieves this

distance. Then the picture we have produced is:
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Thus from our triple of real numbers a, b, and c, we have constructed a right-angled hexagon

having these as the lengths of 3 non-adjacent sides. This deals with the existence part of our

claim.

For uniqueness, note that up to isometry the picture in fig. A.1.1 above is completely deter-

mined by the values of a and c. And since the distance between γ and α increases continuously

and strictly monotonically as we move along B, there is exacty one such geodesics γ that can

achieve a distance of b from α. Hence, all of the geodesics forming the sides of our hexagon

are determined up to isometry by a, b, and c, which gives uniqueness.

A.3 Intersection of Finite Index Subgroups has Finite Index

Suppose that H and K are finite index subgroups of G. Let I = H∩K. We will first consider the

index of I in H, [H : I]. If this index were infinite, then there would be infinitely many cosets of

I in H, say {h1I, h2I, . . .}. If we then consider the (a priori, not distinct) cosets {h1K,h2K . . .},

we can note that h1K ∩ h2K ̸= ∅ implies that there exists k1, k2 ∈ K such that h1k1 = h2k2. Or

equivalently, h−1
2 h1 = k2k

−1
1 which must then be in I = H ∩K. Thus it follows that h1 ∈ h2I,

which contradicts the fact that the hi’s were chosen so that they were each in different cosets

of I. We are then forced to conclude that each coset hiK is disjoint from the rest. But this

means there are infinitely many cosets of K in G, which contradicts with the fact it has finite

index.

Therefore I has finite index in H. It follows that if the cosets of I in H are {h1I, . . . , hnI} and
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the cosets ofH inG are {g1H, . . . , gmH}, then the cosets of I inG are {g1h1I, g1h2I, . . . , gmhn−1I, gmhnI}.

That is, [G : I] = nm which is finite, as desired.
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