
Bowdoin College Bowdoin College 

Bowdoin Digital Commons Bowdoin Digital Commons 

Chemistry Faculty Publications Faculty Scholarship and Creative Work 

7-14-2017 

Quantitative estimation of localization errors of 3 d transition Quantitative estimation of localization errors of 3 d transition 

metal pseudopotentials in diffusion Monte Carlo metal pseudopotentials in diffusion Monte Carlo 

Allison L. Dzubak 
Oak Ridge National Laboratory 

Jaron T. Krogel 
Oak Ridge National Laboratory 

Fernando A. Reboredo 
Oak Ridge National Laboratory 

Follow this and additional works at: https://digitalcommons.bowdoin.edu/chemistry-faculty-publications 

Recommended Citation Recommended Citation 
Dzubak, Allison L.; Krogel, Jaron T.; and Reboredo, Fernando A., "Quantitative estimation of localization 
errors of 3 d transition metal pseudopotentials in diffusion Monte Carlo" (2017). Chemistry Faculty 
Publications. 18. 
https://digitalcommons.bowdoin.edu/chemistry-faculty-publications/18 

This Article is brought to you for free and open access by the Faculty Scholarship and Creative Work at Bowdoin 
Digital Commons. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized 
administrator of Bowdoin Digital Commons. For more information, please contact mdoyle@bowdoin.edu, 
a.sauer@bowdoin.edu. 

https://digitalcommons.bowdoin.edu/
https://digitalcommons.bowdoin.edu/chemistry-faculty-publications
https://digitalcommons.bowdoin.edu/chemistry-faculty
https://digitalcommons.bowdoin.edu/chemistry-faculty-publications?utm_source=digitalcommons.bowdoin.edu%2Fchemistry-faculty-publications%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/chemistry-faculty-publications/18?utm_source=digitalcommons.bowdoin.edu%2Fchemistry-faculty-publications%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu



View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  JULY 10 2017

Quantitative estimation of localization errors of 3d transition
metal pseudopotentials in diffusion Monte Carlo 
Allison L. Dzubak; Jaron T. Krogel; Fernando A. Reboredo

J. Chem. Phys. 147, 024102 (2017)
https://doi.org/10.1063/1.4991414

 CHORUS

Articles You May Be Interested In

Excited states of methylene from quantum Monte Carlo

J. Chem. Phys. (September 2009)

Variational and diffusion Monte Carlo study of post- d group 13–17 elements

J. Chem. Phys. (August 2008)

Basis set construction for molecular electronic structure theory: Natural orbital and Gauss–Slater basis for
smooth pseudopotentials

J. Chem. Phys. (February 2011)

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4991414/13977006/024102_1_online.pdf

https://pubs.aip.org/aip/jcp/article/147/2/024102/988618/Quantitative-estimation-of-localization-errors-of
https://pubs.aip.org/aip/jcp/article/147/2/024102/988618/Quantitative-estimation-of-localization-errors-of?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/147/2/024102/988618/Quantitative-estimation-of-localization-errors-of?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/1.4991414
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4991414/13977007/024102_1_accepted_manuscript.pdf
https://pubs.aip.org/aip/jcp/article/131/12/124103/895792/Excited-states-of-methylene-from-quantum-Monte
https://pubs.aip.org/aip/jcp/article/129/6/064316/953431/Variational-and-diffusion-Monte-Carlo-study-of
https://pubs.aip.org/aip/jcp/article/134/6/064104/645773/Basis-set-construction-for-molecular-electronic
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2071764&setID=592934&channelID=0&CID=757751&banID=521007411&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1684354867337408&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F1.4991414%2F13977006%2F024102_1_online.pdf&hc=bfea39076187c3edb51e23cf8e9dd7785bfae1e9&location=


THE JOURNAL OF CHEMICAL PHYSICS 147, 024102 (2017)

Quantitative estimation of localization errors of 3d transition metal
pseudopotentials in diffusion Monte Carlo

Allison L. Dzubak, Jaron T. Krogel, and Fernando A. Reboredoa)

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 31 March 2017; accepted 20 June 2017; published online 10 July 2017)

The necessarily approximate evaluation of non-local pseudopotentials in diffusion Monte Carlo
(DMC) introduces localization errors. We estimate these errors for two families of non-local pseu-
dopotentials for the first-row transition metal atoms Sc–Zn using an extrapolation scheme and
multideterminant wavefunctions. Sensitivities of the error in the DMC energies to the Jastrow factor
are used to estimate the quality of two sets of pseudopotentials with respect to locality error reduction.
The locality approximation and T-moves scheme are also compared for accuracy of total energies.
After estimating the removal of the locality and T-moves errors, we present the range of fixed-node
energies between a single determinant description and a full valence multideterminant complete active
space expansion. The results for these pseudopotentials agree with previous findings that the locality
approximation is less sensitive to changes in the Jastrow than T-moves yielding more accurate total
energies, however not necessarily more accurate energy differences. For both the locality approx-
imation and T-moves, we find decreasing Jastrow sensitivity moving left to right across the series
Sc–Zn. The recently generated pseudopotentials of Krogel et al. [Phys. Rev. B 93, 075143 (2016)]
reduce the magnitude of the locality error compared with the pseudopotentials of Burkatzki et al.
[J. Chem. Phys. 129, 164115 (2008)] by an average estimated 40% using the locality approximation.
The estimated locality error is equivalent for both sets of pseudopotentials when T-moves is used. For
the Sc–Zn atomic series with these pseudopotentials, and using up to three-body Jastrow factors, our
results suggest that the fixed-node error is dominant over the locality error when a single determinant
is used. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4991414]

I. INTRODUCTION

Due to the advantageous scaling of the computational
cost with respect to the number of electrons, diffusion Monte
Carlo (DMC)1,2 is an ab initio many-body method that can
be applied from molecules to solids where there may be large
electron correlation effects.3 DMC in practice involves two
main approximations: the fixed-node approximation2,4 and
the pseudopotential approximation. Pseudopotentials, which
are unavoidable for most solid systems, introduce two types
of errors: (1) the pseudopotential itself might not be accu-
rate enough and (2) the evaluation of the pseudopotential
often involves localization errors. As the number of applica-
tions of DMC to solid systems increases,5–19 many studies
have focused on understanding and reducing the fixed-node
error.20–24 More accurate pseudopotentials for DMC have been
developed,25–28 but localization errors have received less atten-
tion in comparison.29,30 The magnitude of all these errors is
generally unknown, and they are difficult to disentangle. It
is also relatively unexplored how these errors are reduced
with multideterminant wavefunctions, which may be neces-
sary to accurately describe properties of many transition metal
species.

Most pseudopotentials used to model realistic sys-
tems have a non-local part to influence the different

a)Electronic mail: reboredofa@ornl.gov

angular-momentum components of the wavefunction, which is
necessary to improve the pseudopotential transferability. Typ-
ically, pseudopotentials in open boundary molecular systems
are combined with Gaussian basis sets for the orbitals. In sys-
tems with periodic boundary conditions, plane-wave basis sets
are often used. Pseudopotentials from the studies of Burkatzki
et al.25 (denoted “BFD” in this work) and Krogel et al.26

(denoted “OPT” in this work) have been generated for the
3d transition metal series specifically for use in QMC calcu-
lations. The BFD pseudopotentials are energy-consistent and
have been parameterized to reproduce all-electron Hartree-
Fock calculations with Gaussians, while the OPT pseudopo-
tentials are norm-conserving and have been parameterized
to reproduce all-electron local density approximation (LDA)
calculations (while the cutoff and other parameters were cho-
sen to better reproduce atomic and dimer properties). When a
non-local operator is present in DMC, it is “localized” either
fully as in the locality approximation (denoted “LA”)31,32

or partially as in the T-moves scheme (denoted “TM”).29,33

The magnitude of the errors incurred by these localization
approximations is largely unknown, since they coexist with the
fixed-node error and they are both dependent on the quality of
the trial wavefunction.

The fixed-node approximation is used to control the
fermion sign problem. This approximation enforces the nodes
of the wavefunction projected in the DMC approach to remain
the same as the nodes of the trial wavefunction (ψT ). The
fixed-node constraint can be represented formally by adding a

0021-9606/2017/147(2)/024102/7/$30.00 147, 024102-1 Published by AIP Publishing.

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4991414/13977006/024102_1_online.pdf

http://dx.doi.org/10.1063/1.4991414
http://dx.doi.org/10.1063/1.4991414
http://dx.doi.org/10.1063/1.4991414
mailto:reboredofa@ornl.gov
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4991414&domain=pdf&date_stamp=2017-07-10


024102-2 Dzubak, Krogel, and Reboredo J. Chem. Phys. 147, 024102 (2017)

potential term to the original Hamiltonian. We refer to the
resulting operator as the “fixed-node Hamiltonian” [Eq. (1)],
where the other nodal pocket is obtained from flipping the
inequality,

HFN = H + VFN , (1)

VFN(R) =



0 whenψT > 0,

∞ otherwise.

The fixed-node energy is variational with respect to the exact
ground state energy and can be lowered by improving the nodes
of the trial wavefunction. It has been generally assumed that the
fixed-node approximation is the dominant contribution to the
error in QMC calculations, although recent examples30,34,35

have shown a large error due to the localization approximation.
Extrapolation schemes29,30 based on the Jastrow factor36 dis-
entangle the locality error from the fixed-node error, allowing
for examination of their magnitudes separately.

In this work, we use the extrapolation variant from
Krogel and Kent30 to quantify the magnitude of localization
errors for the locality approximation and T-moves. We then
compare the quality of the two sets of pseudopotentials with
respect to locality error reduction. For the BFD pseudopoten-
tials, we additionally compare the magnitude of locality errors
for single determinant and multideterminant wavefunctions.
We compare the locality-error-corrected fixed-node energies
to present a lower bound for the Hartree-Fock fixed-node error.
We then compare the magnitude of the fixed-node errors to
the magnitude of the locality errors for the 3d transition metal
atomic series.

The rest of the paper is organized as follows: Sec. II
describes localization errors and the extrapolation to the error-
corrected limit, Sec. III outlines details of the calculations
performed, Sec. IV presents our results and discussion, and
Sec. V summarizes the major findings of this study.

II. LOCALIZATION ERRORS

Diffusion Monte Carlo (DMC) belongs to a class of pro-
jector methods in which the ground state is obtained by pro-
jecting the evolution operator in imaginary time. When applied
to an arbitrary linear combination of eigenstates, the relative
contribution of the lowest-eigenvalue eigenstate increases as
follows:

ψ0 = lim
t→∞

e−t(H−E0)ψT . (2)

The DMC method takes advantage of the fact that the kinetic
energy contribution of the Schrödinger equation turns into a
diffusion propagator in imaginary time. Since the ground state
of most many-body Hamiltonians is the bosonic solution, often
a boundary condition is added to force the projected wave-
function to remain fermionic (antisymmetric with respect to
the exchange of electronic coordinates). In the case of DMC,
the projected wavefunction is constrained to share the same
nodes2,4 (or phase)37 of a trial wavefunction. The trial wave-
function is often written as a product of a symmetric func-
tion denoted as a Jastrow factor and a linear combination of
determinants,

ψT(R) = e−J(R)
∑

n

CnD↑n
(
R↑

)
D↓n

(
R↓

)
. (3)

In practice, the expansion over determinants fixes the nodes
and the phase of the trial wavefunction. For local potentials,
the DMC ground state energy is entirely determined by the
nodes (or phase) of the trial wavefunction. In this context, the
Jastrow factor is often added to accelerate the convergence of
the DMC algorithm, since the required statistics depend on
how close the trial wavefunction is to the fixed-node ground
state. The Jastrow factor and the coefficients of the multideter-
minant expansion are optimized variationally within the Monte
Carlo approach (VMC) either by minimizing the variance of
the energy, the energy itself, or a combination of the two. The
fixed-node approximation in DMC results in a positive shift in
the total energy above the true ground state.

When non-local pseudopotentials are used, an additional
error is introduced during the pseudopotential evaluation.
In the locality approximation (LA),32,33 the non-local pseu-
dopotential contribution is estimated by its “localized” form,
ψ−1

T VnlψT , which is diagonal in position space. The error intro-
duced in the total energy by the locality approximation can
have any sign. Within the T-moves approximation (TM),29,33

the transition paths that change sign are localized using the
trial wavefunction as before. The remaining paths are instead
sampled with a nonlocal electron move. It has been shown
that the partial localization employed in the T-moves approach
restores the variational upper bound property in the energy and
stabilizes the DMC run.29,33 More recent implementations also
reformulate the original algorithm to make it size-consistent.38

The ground state of the fixed-node Hamiltonian [Eq. (1)]
can be expressed as a Jastrow factor times the fermionic part
of the trial wavefunction.39 In the limit where the trial wave-
function is the ground state of the fixed-node Hamiltonian, the
results obtained within the locality and T-moves approxima-
tions are equivalent and are also identical to the trial wavefunc-
tion energy evaluated within VMC. Therefore, as the Jastrow
factor is improved, we approach the triple equality,

EVMC(ψFN ) = ELA
DMC(ψFN ) = ETM

DMC(ψFN ) . (4)

Here, EVMC(ψFN ) is the fixed-node VMC energy, ELA
DMC(ψFN ) is

the fixed-node DMC energy using the locality approximation
(LA), and ETM

DMC(ψFN ) is the fixed-node DMC energy using T-
moves (TM). For a complete discussion, the reader is referred
to Ref. 30.

A useful quantity that we use to assess the quality of the
pseudopotentials is the Jastrow sensitivity,30

SJ = ∆EDMC/∆EVMC , (5)

which is defined as the slope extracted from a linear fit of
DMC energies to VMC energies arising from different Jas-
trow factors. The set includes no Jastrow factor (J0), a two-
body Jastrow factor (J2), and a three-body Jastrow factor (J3).
The Jastrow sensitivity is meaningful for results that do not
deviate significantly from linear behavior. In the absence of
locality error, SJ = 0, i.e., the energy for DMC is indepen-
dent of the Jastrow factor. A pseudopotential that aims to
reduce localization error should therefore aim to reduce the
values of SJ . In Ref. 30, it has been argued that an extrapo-
lation of the DMC energies as a function of the VMC energy
can be used to estimate the fixed-node energy in the absence
of localization errors by making use of Eq. (4). A similar
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FIG. 1. Linear extrapolation of QMC energies toward the locality-error-corrected limit EVMC(ψFN ) =ELA
DMC(ψFN ) = ETM

DMC(ψFN ) for the Ni pseudo-atom using
the (a) BFD pseudopotential and (b) OPT pseudopotential. The dashed lines show EVMC = EDMC and solid lines are the linear least squares fits. Data shown
are DMC and VMC energies using trial wavefunctions from either UHF, CAS, or PBE0, employing either the locality approximation or T-moves scheme in
DMC. Shown here are energies using a UHF trial wavefunction with T-moves (green), UHF trial wavefunction with locality approximation (orange), CAS trial
wavefunction with T-moves (red), CAS trial wavefunction with locality approximation (blue), PBE0 trial wavefunction with T-moves (gray), and PBE0 trial
wavefunction with locality approximation (purple). Triangles are for J0, squares are for J2, diamonds are for J3, and circles are the extrapolated values.

extrapolation was used in the original studies introducing the T-
moves approach.29,33 In this contribution, we make use of this
extrapolation approach to compare two full sets of transition
metal pseudopotentials.

III. CALCULATION DETAILS

Diffusion Monte Carlo calculations of Sc–Zn were per-
formed for the neutral atoms in their ground states. Neon
core semilocal pseudopotentials from the studies of Burkatzki
et al.25 (BFD) and Krogel et al.26 (OPT) were compared.
Using the OPT pseudopotentials, single particle orbitals were
obtained from Quantum Espresso40 with the PBE041 func-
tional in a 15 Å box. Planewaves were used with an energy
cutoff of 400 Ry. The Kleinman-Bylander representation of
the OPT pseudopotential was used in density functional the-
ory (DFT), which contributes a secondary and small error to
the fixed-node DMC results via the DFT orbitals. Using the
BFD pseudopotentials, single particle orbitals were obtained
from GAMESS42 with either unrestricted Hartree-Fock (UHF)
or complete active space self-consistent field (CASSCF).43

Gaussian basis sets that were constructed for the BFD pseu-
dopotentials at the pVTZ level (5s5p4d2f 1g) were used. The
CASSCF wavefunctions were obtained by first optimizing
the transition metal cation (stripped of all valence electrons)
using RHF and then constructing CAS(N,M) active spaces,
where N is the number of valence electrons and M = 9
orbitals (3d, 4s, 4p). For the CASSCF wavefunctions, the deter-
minants with coefficients Cn ≥ |0.01| were used in QMC
(where

∑
C2

n = 1). For Sc, Ti, V, and Fe, VMC energies
with no Jastrow factor (J0) are equivalent to the complete
active space (CAS) energies to within VMC error bars of
order 0.003 eV. For Cr, Mn, Ni, Cu, and Zn, VMC J0 ener-
gies differ from the CAS energies within the range of 0.03–
0.1 eV. The largest effect from dropping determinants with this
coefficient threshold is observed for Co, with ∆E(VMC J0 −

CAS) of 0.4 eV.

QMCPACK44 was used for all DMC calculations. The
two- and three-body Jastrow factors were optimized using
VMC with the linear method45 by variance minimization
followed by energy minimization. DMC calculations were per-
formed with 2000 walkers and a time step of 0.0025 Ha�1. For
the OPT pseudopotentials, p was used as the local channel to
avoid ghost states in DFT; d was used as the local channel
for the BFD pseudopotentials, consistent with their construc-
tion.25 The nonlocal T-moves (TM) scheme29,33 was compared
with the locality approximation (LA).32,33 Nexus46 was used
to facilitate the simulation workflow.

IV. RESULTS AND DISCUSSION

A representative example of this extrapolation to
the locality-error-corrected limit EVMC(ψFN ) =ELA

DMC(ψFN )

TABLE I. Jastrow sensitivities SJ = ∆EDMC/∆EVMC for the BFD and OPT
pseudopotentials with the locality approximation (LA) and T-moves (TM)
using trial wavefunctions obtained from UHF, CAS, and PBE0. Mean sensi-
tivities 〈SJ 〉 and mean absolute sensitivities 〈|SJ |〉 across the series Sc–Zn are
given; the localization error free case corresponds to SJ = 0.

BFD BFD OPT

UHF LA UHF TM CAS LA CAS TM PBE0 LA PBE0 TM

Sc 0.15 0.17 0.17 0.20 0.13 0.18
Ti 0.12 0.16 0.15 0.18 0.09 0.16
V 0.08 0.11 0.12 0.17 0.07 0.13
Cr 0.09 0.14 0.09 0.14 0.04 0.11
Mn 0.07 0.12 0.09 0.15 0.02 0.12
Fe 0.05 0.11 0.07 0.13 0.00 0.10
Co 0.04 0.10 0.06 0.13 −0.01 0.09
Ni 0.03 0.10 0.04 0.11 −0.02 0.09
Cu 0.02 0.09 0.03 0.10 −0.03 0.08
Zn 0.02 0.09 0.02 0.10 −0.04 0.09

〈SJ 〉 0.07 0.12 0.08 0.14 0.02 0.12
〈|SJ |〉 0.07 0.12 0.08 0.14 0.05 0.12

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4991414/13977006/024102_1_online.pdf



024102-4 Dzubak, Krogel, and Reboredo J. Chem. Phys. 147, 024102 (2017)

FIG. 2. Estimated DMC locality errors (eV) for the Jastrow set J0 (blue), J2 (green), and J3 (gray) of the series Sc–Zn. The errors are quantified as ∆EJx
= EJx − EFN , where Jx is either J0 (no Jastrow), J2 (two-body Jastrow), or J3 (three-body Jastrow). The locality-error-corrected fixed-node energy EFN is
estimated as the mean of the extrapolation points EVMC(ψFN ) = ELA

DMC(ψFN ) and EVMC(ψFN ) = ETM
DMC(ψFN ). The locality approximation (left) and T-moves

(right) are compared for the BFD pseudopotentials [(a)-(d)] and the OPT pseudopotentials [(e) and (f)]. UHF trial wavefunctions were used for [(a) and (b)],
CAS trial wavefunctions were used for [(c) and (d)], and PBE0 trial wavefunctions were used for [(e) and (f)].

= ETM
DMC(ψFN ) is shown for the Ni pseudo-atom in Fig. 1.

Each set of points with no Jastrow, a two-body Jastrow, and
a three-body Jastrow is extrapolated to the locality error-
corrected fixed-node energy. We obtain fixed-node energies
EVMC(ψFN ) =ELA

DMC(ψFN ) for the locality approximation and
EVMC(ψFN ) =ETM

DMC(ψFN ) for T-moves. We use the mean of
these two fixed-node energies as our locality-error-corrected
reference energies.

There is a slight difference in the variability of the
extrapolated locality-error-corrected fixed-node energies for
the OPT pseudopotentials compared with the BFD pseudopo-
tentials, i.e., the difference between EVMC(ψFN ) =ELA

DMC(ψFN )
and EVMC(ψFN ) =ETM

DMC(ψFN ). The difference between these
two fixed-node energies across the transition metal series
ranges from 0.01 to 0.09 eV for the BFD pseudopo-
tentials and ranges from 0.02 to 0.16 eV for the OPT
pseudopotentials.

What we refer to as the Jastrow sensitivity SJ =∆EDMC/
∆EVMC is the slope of the linear fit to the energies obtained
with each Jastrow set shown in Fig. 1. A smaller absolute
value of SJ indicates that currently available Jastrow fac-
tors and optimization techniques are more likely to reduce
locality errors below an acceptable level. It also indicates
the range where the energies of different systems involv-
ing the same pseudopotentials can be compared with con-
fidence. Jastrow sensitivities are given in Table I for all 3d
pseudo-atoms.

Figure 1(a) illustrates the difference between a single
determinant UHF trial wavefunction and a multideterminant
CAS trial wavefunction for the Ni BFD pseudopotential. For
both trial wavefunctions, we see that LA and TM approach
the error-corrected energy limit from above, with TM having
a larger Jastrow sensitivity compared with LA. This is true for
all BFD pseudo-atoms of the first-row transition metal series.

We see a shift lowering the energy going from DMC-UHF to
DMC-CAS, which is expected given that the fixed-node energy
is variational. This energy shift is seen for all BFD pseudo-
atoms, with the exception of the Cu pseudo-atom. What is
surprising, however, is that the DMC-CAS Jastrow sensitivity
is always equal to or larger than the DMC-UHF Jastrow sen-
sitivity (as shown in Table I). One might intuitively expect the
DMC-CAS locality error to be smaller than the DMC-UHF
locality error; however, these results suggest that although the
fixed-node energy is lowered, the locality error is not decreased
for DMC-CAS compared to DMC-UHF.

For the OPT pseudopotentials shown in Fig. 1(b), the
TM scheme still approaches the error-corrected limit from
above, but the LA may approach the error-corrected limit
either from above or from below. The LA approaches the
limit from below for all the later-row transition metals, as
reflected by the change in sign of the Jastrow sensitivity from
Fe through Zn shown in Table I. This has implications with
respect to accuracy of energy differences (rather than accu-
racy of total energies), which is discussed in more detail
below.

As shown in Table I, we observe decreasing Jastrow sen-
sitivities moving left to right from Sc to Zn for both sets of
pseudopotentials, for both LA and TM, using either single
determinants (OPT and BFD) or multideterminant expansions
(BFD only). Mean (and mean absolute) Jastrow sensitivities
are given at the bottom of Table I to compare against the ideal
case without localization error (SJ = 0). DMC-UHF TM and
DMC-PBE0 TM perform very similarly. It is interesting that
DMC-CAS has higher sensitivities than DMC-UHF. This is
due to the larger error in J0 for DMC-CAS compared with
DMC-UHF, noting that DMC-CAS has lower errors for J2

and J3 compared with DMC-UHF (see Fig. 2, Table II, and
discussion below).
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TABLE II. Mean localization errors 〈∆EJx 〉 and mean absolute localization
errors 〈 |∆EJx |〉 (eV) for each Jastrow factor across the series Sc–Zn for the
BFD and OPT pseudopotentials using trial wavefunctions obtained from UHF,
CAS, and PBE0.

BFD BFD OPT

UHF LA UHF TM CAS LA CAS TM PBE0 LA PBE0 TM

〈∆EJ0 〉 1.13 2.26 1.25 2.34 0.13 2.00
〈∆EJ2 〉 0.15 0.30 0.15 0.28 −0.10 0.28
〈∆EJ3 〉 0.08 0.17 0.07 0.15 0.04 0.28

〈 |∆EJ0 |〉 1.13 2.26 1.25 2.34 0.68 2.00
〈 |∆EJ2 |〉 0.15 0.30 0.15 0.28 0.21 0.28
〈 |∆EJ3|〉 0.08 0.17 0.07 0.15 0.04 0.28

Estimated locality errors are shown in Fig. 2. The errors
are quantified as ∆EJx = EJx − EFN , where Jx is either
J0 (no Jastrow), J2 (two-body Jastrow), or J3 (three-body
Jastrow). The locality-error-corrected fixed-node energy EFN

is estimated as the mean of the extrapolation points EVMC(ψFN )
= ELA

DMC(ψFN ) and EVMC(ψFN ) = ETM
DMC(ψFN ).

The error obtained using the locality approximation
(Fig. 2, left) decreases moving left to right across the Sc–
Zn series; the error obtained using T-moves remains roughly
consistent across the Sc–Zn series (Fig. 2, right). With the
locality approximation, we see the largest locality error for the
Sc atom, consistent with previous studies showing that the Sc
atom yields the largest errors in DMC total energies.29,47

The change in sign of the Jastrow sensitivity is evident
in Fig. 2(e) for the late-row pseudo-atoms where the local-
ity approximation approaches the limit from below. This has
important implications when assessing the accuracy of energy
differences rather than the accuracy of total energies (which is
the focus of the current study). Although we see in Fig. 2 and
Table II that the LA consistently has smaller locality errors than
TM for total energies, the results of this study cannot allow us to
determine whether LA or TM has better error cancellation for
energy differences. When examining energy difference prop-
erties, e.g., ionization potentials, it has been recently shown
that TM has better error cancellation for the 4th ionization
potential of the Ce pseudo-atom.30

For the BFD pseudopotentials, we observe comparable
locality errors for single-determinants [Figs. 2(a) and 2(b)] and
multi-determinants [Figs. 2(c) and 2(d)]. The locality errors
are larger for DMC-CAS wavefunctions with no Jastrow (J0),
which is also reflected in the slightly larger Jastrow sensi-
tivity for DMC-CAS compared with DMC-UHF. The mean
deviation for DMC based on CAS and UHF trial wavefunc-
tions is comparable at the J2 and J3 levels, with the local-
ization error for DMC-CAS calculations slightly smaller than
DMC-UHF.

It is interesting to note that J3 has larger errors than J2

for the heavier elements using the OPT pseudopotentials with
TM [Fig. 2(f)]. For the corresponding OPT/PBE0 VMC ener-
gies ∆E = EVMC − EFN , improvements in the Jastrow factor
(J0, J2, J3) consistently lead to lower energies. This suggests
that Jastrow optimization via VMC energy minimization is not
always ideal for TM and an alternative—and as yet unknown—
optimization target might be preferential. It may also suggest

FIG. 3. Absolute value of the ratio of the nonlocal energy to the local energy
for the BFD pseudopotentials (green) and the OPT pseudopotentials (orange).

that there is something missing in our numerical parameteri-
zation of the Jastrow factor for the heavier elements which is
more pronounced for TM than for LA.

In all cases, the magnitude of the DMC localization errors
using the locality approximation is smaller than the errors
using T-moves, although we again reiterate that this is only
for total energies. We observe the smallest errors with LA
for the OPT pseudopotentials using PBE0. A possible expla-
nation for the small error is that the ratio of nonlocal/local
energy is smaller for the OPT pseudopotentials compared
with the BFD pseudopotentials (Fig. 3). The trends going
from Sc to Zn in Fig. 3 are rationalized since the local chan-
nel is p for the OPT pseudopotentials and d for the BFD
pseudopotentials.

As illustrated in Fig. 1(a), once the locality error has been
removed via extrapolation, we can compare the DMC fixed-
node energies between a single determinant (UHF) description
and a multi-determinant description (CAS). Given the small
size of the CAS space employed here, these values serve
as a lower bound for the fixed-node error of DMC-UHF.
Table III lists the differences in energies ∆

(
EUHF

FN − ECAS
FN

)
after extrapolation. Since we imposed the constraint that only
CI coefficients larger than 0.01 were included in the QMC
simulations, the number of Slater determinants (SDs) is quite
small.

We can compare our valence CAS DMC energies for
the Ti atom with those reported in the work of Burkatzki
et al.25 The CAS optimized VMC energy reported in Ref. 25
is �58.1650(8) Hartree, compared with �58.168 57(9) Hartree
computed in this work. The corresponding DMC energy
with the locality approximation from Ref. 25 is �58.1975(7)
Hartree, compared with �58.1991(4) Hartree computed in this
work. The CAS (N,M) space for Ti in Ref. 25 was CAS(4,6),
where M = 6 is composed of 3d and 4s orbitals. The CAS (N,M)
space used in this work was comparable with CAS(4,9), where
here we also include the 4p orbitals.

Even with the constraint on the number of Slater
determinants via the 0.01 coefficient threshold, we observe
energy differences between DMC-CAS and DMC-UHF
of up to 3.76 eV, which is larger in magnitude than
any estimated locality error. At the three-body Jastrow
level with the locality approximation, locality errors are
smaller in magnitude than the DMC-UHF fixed-node errors
(Table III).
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TABLE III. Three-body Jastrow locality errors∆
(
EJ3 − EFN

)
for DMC-UHF

with the BFD pseudopotentials using the locality approximation (LA) or
T-moves (TM). The locality-error-corrected fixed-node energy EFN is esti-
mated as the mean of the extrapolation points EVMC(ψFN ) = ELA

DMC(ψFN ) and

EVMC(ψFN ) = ETM
DMC(ψFN ). Estimated lower bounds to the DMC-UHF fixed-

node errors ∆
(
EUHF

FN − ECAS
FN

)
are also given. All energies are in eV. The final

column gives the number of Slater determinants used from the CAS expansion.

∆(EUHF
J3

− EFN ) ∆(EUHF
J3

− EFN )

LA TM ∆(EUHF
FN − ECAS

FN ) # CAS SDs

Sc 0.07 0.16 0.15 20
Ti 0.08 0.16 3.76 21
V 0.06 0.17 2.89 16
Cr 0.07 0.12 0.00 4
Mn 0.07 0.18 2.59 12
Fe 0.09 0.19 1.50 15
Co 0.10 0.19 2.18 15
Ni 0.09 0.20 0.39 12
Cu 0.05 0.18 −1.39 18
Zn 0.07 0.19 0.23 14

V. SUMMARY

In this contribution, we have evaluated the Jastrow sensi-
tivities for two families of non-local pseudopotentials in DMC
due to localization errors. For the first-row transition metal
atoms (Sc–Zn), we used an extrapolation scheme to estimate
the localization errors and to estimate the fixed-node errors by
comparing to multideterminant wavefunctions. We argue that
Jastrow sensitivities are a parameter that should be considered
to assess the quality of pseudopotentials. To our knowledge,
this has not been a consideration or constraint applied in any
pseudopotential construction thus far. In particular, when total
energies of different solids are compared, both localization
errors and fixed-node errors can be expected to change since
the optimal Jastrow factors and the Slater part of the trial wave-
function change (thus pseudopotentials with small sensitivities
are key). Methods such as Auxiliary-Field Quantum Monte
Carlo (AFQMC)48 do not suffer from locality errors; however,
we find here that the locality errors are not the dominant source
of error in DMC as compared to fixed-node errors. For the
atoms tested in this set, we also compared the locality approx-
imation and T-moves scheme for accuracy of total energies.
The results presented here corroborate previous findings that
the locality approximation is less sensitive to changes in the
Jastrow than T-moves yielding more accurate total energies,
however not always more accurate energy differences. For both
the locality approximation and T-moves, we find decreasing
Jastrow sensitivity moving left to right across the series Sc–
Zn. The recently generated pseudopotentials of Krogel et al.26

reduce the magnitude of the locality error by an estimated 40%
with the locality approximation compared with the pseudopo-
tentials of Burkatzki et al.25 Errors using T-moves are the same
for both sets of pseudopotentials. Assuming that locality and
T-moves errors can be removed by an extrapolation scheme,
we present lower bounds for DMC-UHF fixed-node errors as
the difference from DMC with full valence multideterminant
CAS expansions. For the Sc–Zn atomic series with these pseu-
dopotentials, and using up to three-body Jastrow, our results

suggest that the fixed-node error is dominant over the locality
error.
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