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This study addresses the role of sonic hedgehog (shh) in increasing oral–pharyngeal constructive traits (jaws
and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye
primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified
jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic
effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was
compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms
of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral–
pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and
overexpression experiments indicate that Shh signaling has an important role in oral and taste bud
development. Conditional overexpression of an injected shh transgene at specific times in development
showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the
same early developmental period, although taste buds are not formed until much later. Genetic crosses
between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud
number, supporting a link between oral–pharyngeal constructive traits and eye degeneration. The results
suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of
eyes. Therefore, selection for constructive oral–pharyngeal traits may be responsible for eye loss during
cavefish evolution via pleiotropic function of the Shh signaling pathway.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Cave animals have evolved novel morphological, developmental,
physiological, and behavioral phenotypes during the relatively short
time since they diverged from surface-dwelling ancestors (Culver,
1982). The Mexican tetra Astyanax mexicanus, which consists of a
sighted surface-dwelling form (surface fish) and a series of blind cave-
dwelling forms (cavefish), is an emerging model system for studying
development and evolution of cave-adapted phenotypes (Jeffery,
2008). Like many other cave-adapted animals, Astyanax cavefish have
lost their eyes and pigmentation during evolution in perpetual
darkness. In concert with regressive evolution, constructive traits
have also evolved, including additional gustatory organs (taste buds)
and changes in feeding behavior (Schemmel, 1967, 1980; Hüppop,
1987; Jeffery, 2001), which are probably adaptive and subject to
enhancement by natural selection in the cave environment. It has
been postulated that non-visual sensory systems were improved to

compensate for loss of vision during cavefish evolution (Voneida and
Fish, 1984; Teyke, 1990; Jeffery et al., 2000; Jeffery, 2001) but the
responsiblemolecular causes have not been identified. Genetic studies
have revealed overlapping quantitative trait loci (QTL) governing eye
size and increased gustatory organs (taste buds), which could be
explained by pleiotropic tradeoffs (Protas et al., 2008). Here we
address the possible pleiotropic function of sonic hedgehog (shh) in
linking the gain of oral and gustatory constructive traits to the loss of
eyes in blind cavefish embryos.

Despite the absence of functional eyes in adults, small eye
primordia with a lens and optic cup are initially formed in cavefish
embryos but subsequently arrest in development, degenerate, and
sink into the orbits, where they are covered by connective tissue and
epidermis (Cahn, 1958; Langecker et al., 1993; Jeffery and Martasian,
1998). As a first step in eye degeneration, the cavefish lens undergoes
apoptosis (Jeffery and Martasian, 1998; Yamamoto and Jeffery, 2000).
Later in cavefish development, the dysfunctional lens fails to induce
the anterior eye chamber, iris, and cornea, although a normally layered
retina initially develops from the optic cup. Photoreceptor cells are
formed in the layered retina but subsequently degenerate (Langecker
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et al., 1993; Yamamoto and Jeffery, 2000). The surface fish lens can
restore eye development, including the cornea, iris, and retina with
photoreceptor cells, after transplantation into the cavefish optic cup
(Yamamoto and Jeffery, 2000), indicating that the lens has a
fundamental role in sustaining eye development (Strickler et al.,
2007a). Several factors have been discovered that may induce
apoptosis in the cavefish lens. Two of these are the antiapoptotic
factor αA-crystallin, which is downregulated in the cavefish lens
(Strickler et al., 2007b) and maps near an Astyanax eye loss QTL (Gross
et al., 2008), and the putative proapoptotic factor Hsp90α, which is
upregulated during cavefish lens development (Hooven et al. 2005). A
third is shh, which probably induces lens apoptosis indirectly following
its overexpression in surface fish embryos (Yamamoto et al., 2004).

To investigate the molecular basis of eye degeneration, we
previously compared the expression of eye regulatory genes in
cavefish and surface fish embryos (Strickler et al., 2001; Yamamoto
et al., 2004; Jeffery, 2005). These studies pointed toward genes in the
Shh midline-signaling system as regulators of cavefish eye regression.
First, we observed that the bilateral eye domains of pax6 expression in
the cavefish neural plate are reduced and separated by a larger gap
along the dorsal anterior midline. Second, we showed that shhA and
shhB (formerly tiggy winkle hedgehog) expression is increased along
the anterior midline (prechordal plate) in early cavefish embryos.
Third, we found that expression of downstream genes in the Sonic
Hedgehog (Shh) signaling pathway, such as the receptor patched,
nkx2.1a in the neural plate, and pax2a and vax1 expression in the optic
vesicles, is also amplified, implying Shh hyperactivity along the
cavefish anterior midline. Vertebrate optic vesicles are patterned by
reciprocal transcriptional repression between pax6 and pax2/vax1
(Schwarz et al., 2000; Take-uchi et al., 2003), and upregulation of the
latter by Shh signals is partially responsible for the small cavefish eye.
Together with effects on the lens, shh mediated changes in gene
expression in the optic cup suggest that the Shh signaling pathway
negatively controls cavefish eye development.

Because shh is a pleiotropic gene with both positive and negative
roles in development (Ingham and McMahon, 2001), in addition to
negative effects on eye development, Shh hyperactivity could be
related to the evolution of constructive traits, such as taste buds. Taste
buds are more numerous in adult cavefish than in surface fish
(Schemmel, 1967; Boudriot, and Reutter, 2001; Schemmel, 1980), and
this expanded gustatory sense may be beneficial for cave life.
Overexpression of shh has been previously detected in Shh signaling
domains in the developing cavefish brain (Menuet et al., 2007) but
oral–pharyngeal structures have not been investigated. Here, we have
followed shh expression during oral–pharyngeal development to
identify features that may be under positive control of pleiotropic Hh
signaling. We found that shh expression is expanded in the oral–
pharyngeal region and is later expressed in taste buds. The results of
functional experiments suggest that shh amplification is required for
increasing taste bud number during the same developmental interval
as it inhibits eye development. In addition, genetic crosses revealed an
antagonistic relationship between eye size and taste bud number in
Astyanax. The results support the possibility that increased oral and
gustatory development may have occurred at the expense of eyes
during cavefish evolution via pleiotropic effects of the Shh signaling
pathway.

Materials and methods

Animals and embryos

Laboratory colonies of Astyanax mexicanus were derived from
surface fish collected at Balmorhea Spring State Park, Texas and
cavefish collected at Cueva de El Pachón, Tamaulipas, Mexico. Embryos
were obtained by temperature induced spawning and reared at 25 °C
(Jeffery and Martasian, 1998; Jeffery et al., 2000).

In situ hybridization

RNA probes were generated from surface fish shh (AY661431),
nkx2.1a (AY661435), and pax2a (AY661436) cDNA sequences as
described previously (Yamamoto et al., 2004). Embryos or larvae
were fixed in 4% paraformaldehyde–PBS (pH 7.2; PFA). In situ
hybridization was done using digoxygenin-labeled RNA probes as
described previously (Strickler et al., 2001; Yamamoto et al., 2004).
Following in situ hybridization the specimens were post-fixed in PFA,
dehydrated through an ethanol series, embedded in polyester wax,
and sectioned at 10 μm. In situ hybridized specimens were viewed as
whole mounts or sections and photographed.

Quantitative real time RT-PCR

Total RNA was extracted from 3-day post-fertilization (dpf)
larvae with Ribopure kit (Ambion, Austin, TX) according to the
manufacturer's protocol. Extracted RNA was quantified and its
integrity verified using the UV absorbance (260/280) bioanalyzer
(Agilent Technologies, Palo Alto, CA). Superscript III reverse
transcriptase (Invitrogen, Carlsbad, CA) was used to create cDNA
from 1 μg of RNA according to the Invitrogen protocol using an
oligo (DT) primer (5′-CGGAATTCTTTTTTTTTTTTTTTTTTTTV-3′,
Sigma Genosys, The Woodlands, TX). Blank cDNA was also created
with total RNA as described, but with no reverse transcriptase, to
serve as a negative control for genomic contamination. mRNA
levels were measured by quantitative real time RT-PCR (RT-qPCR)
using 2 μl of diluted cDNA (1:100) in a 20 μl qPCR reaction with
SYBR Green ER qPCR SuperMix using an iCycler (Invitrogen,
Carlsbad, CA) and analyzed according to the manufacturer's protocol
with the iCycler iQ Real-Time PCR Detection System (Bio-Rad,
Hercules, CA).

Primers were designed using Primer Express (v 2.0, Applied
Biosystems) and either a known A. mexicanus sequence (see below) or
the homologous region between zebrafish and Tetraodon nigroviridis
cDNAs (for β-actin). The qPCR products were verified for the
appropriate size by dissociation curve analysis and gel electrophoresis.
Primers were 18–30 nucleotides in length with a melting temperature
between 58–64 °C. The primer sequences were as follows: shh
(AY661431) forward primer, 5′-AGCGCTTCAAGGAGCTCATC-3′ and
reverse primer, 5′-CGTGTTCTCCTCGTCCTTAAAGA-3′; vax1
(AY661437) forward primer, 5′-TCTACAGGCTGGAGATGGAGTTC-3′
and reverse primer, 5′ TTGAGTTGGCGTGCAAGCT-3′; pax2a
(AY661436) forward primer, 5′-GCACGACTTCTCCACCCGTAT-3′ and
reverse primer, 5′-GATGCCGTTGATGGAGTAGGA-3′; pax6 (AY651762)
forward primer, 5′-TGGCTGCCAGCAATCAGATG-3′ and reverse primer,
5′-CTTCTGAGTCCTCCCCATTTGAG-3′; α-actin (Strickler and Jeffery,
unpublished) forward primer, 5′-CACGGCATCATCACCAACTG-3′ and
reverse primer, 5′-CCACACGGAGCTCGTTGTAGA-3′, and β-actin
forward primer, 5′-CACACMGTGCCCATCTAYGA-3′ and reverse primer,
5′-CRGCARATCCAGACGCAGRAT-3′. The qPCR output provided a Ct
value for the threshold cycle, which is representative of fluorescence
derived from binding of SYBR green to the double-stranded PCR
product. Data were transformed to a ΔCt value by subtracting the
sample Ct value from the sample with the highest expression level in
order to control for amplification efficiency. The ΔΔCt value was then
calculated by normalizing gene expression to α- and β-actin using
the geNorm software and methods (GeNorm v3.4, Vandesompele
et al., 2002).

All levels of gene expression were compared using a one-way
ANOVA with cavefish and surface fish as the independent variables,
and relative mRNA levels as the dependent variable. Values are
reported as means±SE, and pb0.05 was required for significance.
Statistica v.6.1 (StatSoft, Inc., Tulsa, OK) was used for data analysis and
Graphpad was used to construct graphs (Graphpad Prism Version 4.0,
Graphpad Software, Inc.).
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Shh inhibition

Shh activity was inhibited in two ways. First, Shh translation was
inhibited by morpholinos. A shh MO (5′-GCCGTGGCGGAGCCGTGCGT-
AAAA-3′) was designed by Gene Tools Inc. (Summerton, OR) against
part of the 5′ UTR of surface fish shh cDNA, a region in which cavefish
and surface fish cDNAs do not differ in sequence. Embryos were
injected with 1 or 2 ng shh or control (5′-CCTCTTACCTCAGTTACAATT-
TATA-3′) MOs at the 2–4 cell stage. To test for Shh inhibition, MO
injected embryos were subjected to in situ hybridization with probes
for nkx2.1a and pax2a. In rescue experiments, embryos were injected
with 2 ng shhMO and 10 pg zebrafish shhmRNA (see below). Second,
embryos were treated with 20 μM, 100 μM, or 200 μM cyclopamine
(Sigma, St. Louis, MO) beginning at 10 and ending at 20 h post-
fertilization (hpf) as described by Menuet et al., (2007), then washed
into water and allowed to develop until 5 dpf. Controls were treated
with 0.1% ethanol (which was used to prepare the cyclopamine stock
solution) for the same time interval.

Shh overexpression

Shh activity was increased in two ways. First, 20–800 pg Astyanax
or zebrafish shh mRNA was injected into 2–4 cell embryos. Synthetic
mRNAs were prepared and injected as described previously
(Yamamoto et al., 2004). Control embryos were injected with Green
Fluorescent Protein (GFP) mRNA. Second, to determine the effect of
shh overexpression at different times in development, embryos were
injected with the DNA expression construct hsp70:shh:GFP. This DNA
construct consists of the hsp70 promoter, the coding sequence of
zebrafish shh, the coding sequence of GFP (fused to the C-terminus of
shh), and the SV40 polyadenylation signal, all flanked by ISceI
meganuclease sites. An intermediate backbone for this vector was
constructed by replacing the PstI–XbaI fragment from the vector
described in Pyati et al. (2005) with a short sequence containing a
BamHI restriction site. The zebrafish shh coding sequence was then
amplified by PCR (Expand High Fidelity, Roche) from total zebrafish
cDNA using the primers aGGATCCagccaccatgcggcttttgacgaga and
aTCTAGAgcttgagtttactgacatccccaa and ligated into the BamHI/XbaI
sites of the intermediate vector. The DNA construct was prepared for
injection by digesting 600 ng of plasmid DNA with 10 U of I-Sce I
meganuclease (New England Bio Labs) in the buffer supplied by the
manufacturer for 1 h at room temperature and then stored at −20C.
We injected 30 pg of hsp70:shh:GFP DNA into 2–4 cell embryos and
overexpressed shh by applying 36 C heat shocks for 1 h at various
times in development. The effects of heat shocks on shh over-
expression were monitored by following GFP expression.

Cartilage staining and jaw width measurements

Jaw cartilages were stained with Alcian Blue at 5–6 dpf as
described by Yamamoto et al. (2003). Jaw width was measured
across the hinge region in whole mounts of fixed larvae. Statistical
analysis of jaw measurements was performed by Student's unpaired
(independent) t test.

Taste bud detection and quantification

For taste bud detection, embryos were raised to 6 dpf and fixed in
two changes of fresh PFA for 2 h at room temperature. After washing in
PBS, embryos were stained with calretinin antibody (1:1000 dilution;
Swiss Antibodies, Bellinzona, Switzerland) and antigen-antibody
complexes were detected using a biotinylated goat anti-rabbit
secondary antibody (1:500 dilution) and the Vectastrain ABC
Peroxidase kit (Vector Laboratories, Burlingame, CA), as described
by Jeffery et al. (2000). The immunostained specimens were viewed
as whole mounts and photographed.

Taste buds were counted on the upper and lower lips of calretinin-
stained specimens viewed under a stereoscope or compound micro-
scope. The rosette-like shape of taste buds distinguished them from
much smaller solitary mechanoreceptor cells on the lips, which also
stain positively for calretinin. Statistical analysis was carried out as
described above for jaw width.

Mating experiments to produce small- and large-eyed hybrids

Cavefish were crossed with surface fish to produce an F1
generation. The F1 hybrids were interbred to produce an F2
generation, and the F2 hybrids were interbred to produce an F3
generation. The eye size of F3 hybrids was measured in living
specimens at 6 dpf viewed under a compound microscope. Small-
eyed F3 hybrids showed eye diameters lower than 268 μm
(range=192–268 μm). Large-eyed F3 hybrids showed eye diameters
higher than 290 μm (range=290–330 μm). After calretinin staining,
jaw spans and taste bud numbers of small- and large-eyed F3 hybrids
were determined and subjected to statistical analysis using unpaired
Student's t tests as described above.

Results

Shh overexpression in the cavefish oral–pharyngeal region

Previous studies showed that shh expression is expanded along the
anterior midline during early cavefish development (Yamamoto et al.,
2004) and later in Shh signaling centers in the forebrain (Menuet et
al., 2007). During zebrafish (Miller et al., 2000; Eberhart et al., 2006),
chick (Marcucio et al., 2005; Haworth et al., 2007), and mouse
(Yamagishi et al., 2006) development, shh expression is also
prominent in the oral ectoderm and pharyngeal endoderm (oral–
pharyngeal region). Accordingly, we asked if shh expression is also
overexpressed in the cavefish oral–pharyngeal region at later stages of
development.

In situ hybridization showed expanded shh expression along the
cavefish anterior midline at 1 dpf (Figs. 1A, B). At 2 dpf a larger shh
expression domain was observed in the oral–pharyngeal region
(Figs. 1C–F), outlining a wider mouth in cavefish relative to surface
fish (Figs. 1E–F). The expanded expression domain encompassed oral
ectoderm and pharyngeal endoderm. By 3 dpf shh expression in the
oral area was attenuated to tooth germs (Stock et al., 2006) and taste
buds (Jeffery et al., 2000) (Figs. 1G–L). Taste buds can be
distinguished from tooth germs by their positioning in single file
along the lips, ring-like shh expression pattern (Figs. 1I, J), and
staining by calretinin antibody (Fig. 1M; Jeffery et al., 2000). Sections
through the oral area showed shh expression confined to the
marginal (or basal) cells in each taste bud rosette (Fig. 1N). The
marginal cells may be stem/precursor cells for taste receptor cells
(Miura et al., 2006). No differences were apparent in the cellular
organization of shh-expressing taste buds on the surface fish and
cavefish lips. The results show that shh expression is amplified in the
oral–pharyngeal region in cavefish relative to surface fish embryos,
including both the oral ectoderm and pharyngeal endoderm, and
later expressed in taste buds, one of the morphological features that
is increased during cavefish evolution.

We quantified shh expression by qPCR at 3 dpf. As shown in Fig. 1O,
about 3 fold higher shh RNA levels were detected in cavefish relative
to surface fish embryos, which would include the sum of expression in
the oral–pharyngeal region, the brain, and possibility other embryonic
regions. Furthermore, vax1 and pax2a mRNA levels, which are
positively controlled in eyes by Shh signaling (Ekker et al., 1995;
Take-uchi et al., 2003), are increased, whereas pax6 mRNA, which is
negatively controlled in eyes by Shh signaling (Macdonald et al.,
1995), is decreased in cavefish embryos (Fig. 1O). The results suggest a
general elevation of Shh signaling in 3 dpf cavefish embryos.
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Oral–pharyngeal features are enhanced in cavefish

Wenext askedwhether any differences in cavefish oral–pharyngeal
and taste bud development correlate with increased shh expression.
We observed that the expanded cavefish oral area,which is outlined by
shh expression at 2 dpf (Figs. 1E, F), presages larger jaws later in
development (Figs. 2A–D, G; Table 1). It has been reported that
cavefish adults exhibit more taste buds than surface fish, particularly
on the external surface of the lower jaw (Schemmel, 1967; Bensouilah
and Denizot, 1991; Boudriot, and Reutter, 2001). Therefore, we also
compared the number of taste buds in embryos of the two forms of
Astyanax. Previous studies showed that Astyanax embryos begin to
form calretinin-positive taste buds at 3–4 dpf (Jeffery et al., 2000). To
determine whether surface fish and cavefish differ in the number of
embryonic taste buds, we stained 5–6 dpf embryos with calretinin
antibody. Calretinin-stained taste budswere seen throughout the oral–
pharyngeal region, including the upper and lower lips (Figs. 2E, F). In
contrast to adults, however, only a few taste budswere detected on the
ventral surface of the lower jaw, and their number did not differ in
cavefish and surface fish embryos. Calretinin antibody also stained

solitary mechanoreceptor cells on the lips and head and cranial nerve
fibers (Figs. 2C, D), as reported in another teleost (Diaz-Regueira et al.,
2005), but calretinin-stained taste buds were clearly distinguishable
by their large size and rosette-like morphology (see Fig. 1M). We
focused on the lips, where taste buds are organized in single file. We
observed significant elevations in taste bud number on the upper
and lower lips in cavefish relative to surface fish (Figs. 2H, I; Table 1).
The increased numbers of taste buds did not appear to be a
consequence of higher density on cavefish lips. Instead, additional
taste buds were present laterally in larger upper and lower jaws
(Figs. 2E, F). Thus, cavefish appear to increase the size of lip epithelial
surface devoted to taste bud formation rather than the foci of taste
bud specification within the lip epithelium. We conclude that
cavefish embryos have larger jaws with more taste buds than their
surface fish counterparts.

Shh downregulation reduces oral–pharyngeal development

The possibility that jawwidth and taste bud number are controlled
by Shh signaling was investigated by determining the effects of

Fig. 1. Amplified shh expression in the cavefish oral–pharyngeal region. (A, B) Dorsal anterior views of 1 dpf surface fish and cavefish (B) embryos showing expanded shh expression
in the cavefish anterior midline (A, B arrowheads). (C–F) Lateral (C, D) and rostral (E, F) views of 2 dpf surface fish (C, E) and cavefish (D, F) embryos showing expanded shh
expression in the cavefish oral epithelium (o). O: oral area. OC-P: Oral–pharyngeal cavity. (G–J) Ventral views of 3 dpf surface fish (G, I) and cavefish (H, J) embryos showing shh
expression in taste buds (upward pointing arrowheads in I) and primary tooth germs (oblique pointing arrowheads in I) on the lips. I, J are two-fold magnifications of G, H showing
the ring-like shh expression pattern in taste buds. (K–N) Sections through 3 dpf surface fish (K) and cavefish (L–N) comparing the patterns of shh expression (K, L, N) and calretinin
staining (M) in taste buds. MC: marginal cells. Scale bars: A (100 μm), E (50 μm), K (20 μm); M (4 μm); magnification is the same in A–D, E–H, I and J, K and L, M and N. O.
Quantification by qRT-PCR showing increased levels of shh, vax1, and pax2a mRNA and decreased levels of pax6 mRNA relative to β-actin and α-actin mRNA in 3 dpf cavefish larvae.
Asterisks: pb0.05 in one-way ANOVAs comparing cave and surface fish mRNA levels (n=4).
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manipulating shh expression levels. Shh activity was downregulated
by shh morpholino injection and cyclopamine treatment (Fig. 3;
Table 1). First, we injected translation-blocking shh MOs into early

surface fish and cavefish embryos. The effects of shh inhibition in the
MO injected embryos was evaluated by monitoring the expression of
nkx2.1a and pax2.1a genes in the neural plate (Figs. 3A, B). We found
that shh but not control MOs blocked nkx2.1a expression, which is
positively regulated by Hh signaling (Pabst et al., 2000), but had less
effect on pax2.1a expression, which is independent of shh at the
midbrain–hindbrain boundary, suggesting that Shh activity was
downregulated. The effects of shh MOs were dose dependent and
inhibits oral–pharyngeal development in both surface fish (data not
shown) and cavefish (Figs. 3C–I), shifting the mouth opening
posteriorly along the longitudinal body axis (Figs. 3E, F). In surface
fish, shh MOs also induced cyclopia at the highest concentration used
in this investigation (data not shown), as described previously in
zebrafish (Nasevicius and Ekker, 2000). However, cyclopia was not
seen in cavefish injected with the same amount of shh MO (Figs. 3C,
D), probably due to increased levels of shh expression (Fig. 1O).
Morphants subsequently showed significant decreases in jaw width
and taste bud number on their upper and lower lips (Figs. 3C, D, G, H, I;
Table 1). Similar results were obtained with another MO directed
against a splice site in the second shh intron (data not shown).
Simultaneous injection of zebrafish shh mRNA with shh translation-
blocking MOs partially alleviated the effects on lower jaws and taste
buds (Fig. 3I; Table 1). Second, Shh activity was downregulated by
cyclopamine treatment (Menuet et al., 2007). In these experiments,
embryos were treated with 20, 100, or 200 μm cyclopamine beginning
at 15 hpf, then at 1 dpf the treated embryos were washed into water
lacking the inhibitor, and at 5 dpf the effects on oral–pharyngeal
features were determined. Embryos treated with 20 μm cyclopamine
showed similar taste bud numbers to controls, 100 μM treated
embryos showed fewer taste buds, whereas embryos treated with
200 μm cyclopamine had very small mouths with no detectable taste
buds (Table 1). The results show that Shh inhibition reduces the
extent of oral and taste bud development.

Shh upregulation amplifies oral–pharyngeal development

The effects of Shh overexpression were determined by shh mRNA
injection (Fig. 4). First, 20 pg of shh mRNA, a concentration known to
promote eye degeneration (Yamamoto et al., 2004), was injected into
surface fish embryos and the effects on jaw and taste bud develop-
ment were determined. Embryos injected with shh mRNA showed
lateral expansion of nkx2.1a in the neural plate (Figs. 4A, B), consistent
with effective Shh overexpression, and eye degeneration at 6 dpf
(Fig. 4E). The injected surface fish embryos showed significant
increases in jaw width and taste bud numbers with respect to
controls (Figs. 4C–F; Table 1). Second, a large excess of shh mRNA
(800 pg) was injected into cavefish embryos. When the latter were
examined at 6 dpf, most of them showed large mouths with increased
lip surface containing 2–3 foldmore taste buds than controls (Figs. 4G,
H, I; Table 1). The results indicate that shh overexpression increases
jaw size and taste bud number.

Conditional shh overexpression positively affects taste buds and
negatively affects eyes during the same early developmental period

To determine the developmental interval in which taste buds and
eyes are sensitive to shh upregulation, surface fish embryos were
injected with the hsp70:shh:GFP transgene and subsequently heat
shocked at various stages of development (Fig. 5). Similar to the
results obtained when shh mRNA was injected into 2–4 cell embryos
(Figs. 4 C–F), heat shocks at the tailbud (8 hpf) or one-somite (10 hpf)
stages increased taste bud numbers on the upper and lower lips to
levels resembling cavefish (Table 1). Similarly, heat shocks at the
tailbud and one-somite stages also induced eye degeneration (Figs.
5A, C). The increases in jaw width at these stages were not
significantly different from normal surface fish (Table 1), but visual

Fig. 2. Constructive oral–pharyngeal features in cavefish. (A–F) Dorsal (A, B) and
ventral (C–F) views of 6 dpf surface fish (A, C, E) and cavefish (B, D, F) showing wider
jaw span (A, B; double-headed arrows), larger Alcian Blue-stained mandibles (C, D),
more calretinin-stained taste buds (E, F; upward pointing arrowheads), and wider oral
palates (E, F; double-headed arrows) in cavefish. Scale bar in A is 100 μm;magnification
is the same in A–D and E, F. (G–I) Surface fish (top frames) and cavefish (bottom
frames) showdifferences in jawwidth (G, red bars) and taste bud numbers on the upper
(H, blue bars) and lower (I, black bars) lips. Jawwidth is indicated in units of 20 μmwith
unit 1 as 371–390 μm, unit 2 as 391–410 μm, and so forth.
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inspection indicated that many embryos showed a larger oral–
pharyngeal region relative to controls (Fig. 5B). In contrast, condi-
tional shh overexpression at 1, 2, 2.5, or 3 dpf resulted in taste bud
numbers and levels of eye development resembling those of normal
surface fish (Figs. 5C, D; Table 1). The differences observed between
shh overexpression before and after 1 dpf were significant (Table 1).
The results show that positive effects on taste bud development and
negative effects on eye development can be induced in the same
surface fish by conditional shh overexpression prior to 1 dpf, although
taste buds are first apparent morphologically 2–3 days later (Jeffery
et al., 2000).

Inverse relationship between oral–pharyngeal traits and
eye development

The results described above opened the possibility that oral and
taste bud development may be linked with eye development
through the positive and negative effects of expanded Shh signaling.
To test this hypothesis independently, we measured oral–pharyngeal
traits in small- and large-eyed surface fish×cavefish hybrids. To
create these hybrids, the F1 progeny of surface fish×cavefish crosses
were mated to produce an F2 generation, and the latter were then
interbred to produce an F3 generation. Cavefish eye regression is a
multigenic trait (Wilkens, 1988). Accordingly, F3 hybrids showed a
broad distribution of eye sizes, including large normal eyes
resembling those of surface fish and small degenerating and
sometimes de-pigmented eyes, resembling those of cavefish (Figs.
6A, B). The small-eyed and large-eyed F3 progeny were fixed at
6 dpf, and jaw sizes and taste buds measured as described above.
The results showed that small-eyed hybrids have significantly larger
jaws and more jaw taste buds than large-eyed hybrids (Figs. 6C–E;
Table 1). Thus, these experiments revealed an inverse relationship
between eye size (e. g. extent of eye regression) and oral/taste bud
development: hybrids with small degenerating eyes have the
cavefish taste bud phenotype, whereas hybrids with large normal
eyes show the surface fish taste bud phenotype.

Discussion

The present investigation has revealed a link between constructive
oral–pharyngeal development and eye regression via the pleiotropic
Shh signaling pathway in the blind cavefish Astyanax mexicanus. The
results support the following general conclusions. First, the expansion
of shh expression, previously reported along the embryonic anterior
midline (prechordal plate) in early cavefish embryos (Yamamoto
et al., 2004), continues in the oral–pharyngeal region and taste buds
later in cavefish development. Second, jaw size and oral taste bud
numbers are increased in cavefish embryos and these constructive
traits can be manipulated by Shh inhibition or overexpression. Third,
eye degeneration and increased taste buds show similar shh sensitive
periods during early development, although taste buds do not appear
until much later. Finally, genetic crosses have revealed an inverse
relationship between jaw size/taste bud number and eye size in F3
hybrid embryos. The results suggest that hyperactive Shh signaling is
responsible for increased oral–pharyngeal traits in cavefish embryos,
supporting an evolutionary model in which natural selection for
larger jaws and more taste buds occurs at the expense of eyes via
pleiotropic Shh signaling.

Shh expression in the oral–pharyngeal region and taste buds

The domain of shh expression is wider along the embryonic
midline in tailbud stage cavefish embryos compared to their surface
fish counterparts (Yamamoto et al., 2004), as well as in classical Shh
signaling centers in the forebrain later in development (Menuet et al.,
2007). We have demonstrated here that shh expression is also
expanded in the cavefish oral–pharyngeal region. Quantification by
qRT-PCR showed an approximate 3-fold increase in shh transcripts in
cavefish relative to surface fish at 3 dpf, which at least in part reflects
the oral–pharyngeal increase.

The expanded shh expression domain in the oral–pharyngeal
region consists of two parts: the pharyngeal region, which is probably
a continuation of the original expanded shh expression domain

Table 1
Quantification of jaw width and taste bud number.

Manipulation type Form N Stage Mean JW
(μm)+/−SD

Mean taste bud number+/−SD Significance (p)

UJ LJ JW UJ LJ

None SF 17 6 dpf 415+/−21 11.6+/−1.8 13.3+/−2.0
None CF 22 6 dpf 524+/−32 14.1+/−2.8 16.2+/−1.7 a0.004 0.000 0.000
Control MO injection CF 29 6 dpf 512+/−52 11.4+/−2.9 13.4+/−3.3
shh MO injection CF 7 6 dpf 49+/−47 0.9+/−1.2 2.4+/−2.0 b0.000 0.000 0.000
shh MO +shh mRNA injection CF 16 6 dpf 174+/−126 2.1+/−4.2 9.2+/−6.8 c0.400 0.850 0.018
Cyclopamine (control) CF 11 5 dpf Not measured 13.6+/−2.5 13.1+/−1.3
Cyclopamine (20 μM) CF 14 5 dpf Not measured 11.9+/−2.3 14.2+/−1.6
Cyclopamine (100 μM) CF 6 5 dpf Not measured 10.9+/−3.0 10.2+/−3.0
Cyclopamine (200 μM) CF 10 5 dpf Not measured 0 0
GFP mRNA injection SF 38 6 dpf 411+/−54 11.1+/−2.7 13.2+/−2.9
shh mRNA+ injection SF 16 6 dpf 506+/−75 16.1+/−4.1 19.2+/−5.8 d0.000 0.000 0.000
shh mRNA++ injection CF 27 6 dpf Not measured 21.5+/−17.6 35.2+/−11.5
shh heat shock SF 28 TB 408+/−51 12.9+/−2.7 16.5+/−3.3 e0.369 0.010 0.019
shh heat shock SF 23 1 somite 405+/−32 13.0+/−2.1 16.0+/−2.7 e0.399 0.007 0.039
shh heat shock SF 27 1 dpf 391+/−75 11.1+/−2.5 14.6+/−3.0
shh heat shock SF 28 2 dpf 391+/−61 11.0+/−2.7 14.7+/−4.0
shh heat shock SF 36 2.5 dpf 376+/−90 10.2+/−2.4 13.4+/−3.5
shh heat shock SF 31 3 dpf 376+/−64 10.1+/−3.8 13.6+/−4.3
Small eye F3 30 6 dpf 465+/−73 15.5+/−2.4 14.4+/−1.6 f0.004 0.000 0.003
Large eye F3 34 6 dpf 405+/−27 11.4+/−2.0 12.0+/−2.2

N sample number. JW: jawwidth. UJ: upper jaw. LJ: lower jaw. SD: Standard Deviation. SF: Surface fish. CF: Cavefish. F3: F3 hybrid progeny of SF×CF cross. +20 pg shhmRNA injected.
++800 pg shh mRNA injected. Statistical comparisons:

a CF versus SF.
b shhMO versus control MO injection.
c shhMO versus shhMO+shh mRNA injection.
d shh mRNA versus GFP injection.
e Heat shock at the tailbud stage or 1-somite stage versus heat shock at 1 dpf.
f Small-eyed- versus large-eyed hybrids.
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present at earlier stages in the prechordal plate (Yamamoto et al.,
2004), and the oral ectoderm, in which shh expression was not
observed at earlier stages. Shh signaling has been implicated in
regulating oral and pharyngeal development in other vertebrates
(Moore-Scott and Manley, 2005). In zebrafish, shh is also expressed in
the pharyngeal endoderm where it controls the condensation of
skeletal elements in the developing pharyngeal arches and cranium,
and in the oral ectoderm, where it promotes the formation of jaw
cartilage (Miller et al., 2000; Wada et al., 2005; Eberhart et al., 2006).
Furthermore, it has been proposed that shh expression in the oral
ectoderm is induced by earlier Shh signals in the forebrain (Eberhart
et al., 2006). Our data in Astyanax are consistent with what has been
discovered in zebrafish. In the chick, shh is also expressed in
pharyngeal endoderm, which regulates the formation of the first
pharyngeal arch via fgf8 (Haworth et al., 2007). The early role for
pharyngeal Shh in chick jaw development is mediated by its
promotion of cranial neural crest cell survival (Brito et al., 2006).
Accordingly, an additional set of lower jaws develop when an extra
source of Shh is provided to the region around the first branchial arch,
suggesting that the oral epithelium is an organizing center for the
lower jaw (Brito et al., 2008). Finally, in the mouse, Shh emanating
from the prechordal plate also functions through Fgf8 to promote
development of the first pharyngeal arch and other craniofacial
features (Yamagishi et al., 2006; Aoto et al., 2009). Thus, we propose
that early expression of shh expression in the cavefish prechordal
plate (Yamamoto et al., 2004) induces shh overexpression in the

forebrain (Menuet et al., 2007; Rétaux et al., 2008), which in turn
promotes overexpression in the oral epithelium, and this results in
enhanced jaw and taste bud development. This possibility is also
consistent with the changes in craniofacial development previously
observed in cavefish relative to surface fish (Yamamoto et al., 2003).

As development proceeds shh expression is downregulated in
most of the oral–pharyngeal epithelium except for strong foci in the
tooth germs and the marginal cells of taste buds. Taste buds are under
continuous renewal in vertebrates, and the marginal cells may be
stem/precursor cells involved in their replenishment (Miura et al.,
2001, 2006). The precise role of Shh in taste bud development is
unclear, however, and may differ among various vertebrate species. In
axolotl, taste buds are specified and appear early in the pharyngeal
epithelium (Barlow, 2001), as they do in Astyanax (Jeffery et al., 2000)
and zebrafish (Hansen et al., 2002). In contrast to our results in
Astyanax, however, neither shh mRNA or Shh protein have been
detected in the axolotl pharyngeal epithelium during taste bud
formation (Parker et al., 2004). The situation is different in mammals,
in which taste bud formation is preceded by the development of taste
papillae on the emerging tongue. Expression of shh is initially uniform
in the mammalian oral–pharyngeal and prelingual areas, then
becomes progressively restricted to the tongue, the taste papillae,
and finally to the taste buds (Hall et al., 1999; Jung et al., 1999; Miura
et al., 2001, 2003; Liu et al., 2004). The mammalian situation is
temporally similar to that in Astyanax embryos, although the latter
form taste buds directly from the oral–pharyngeal epithelium.

Fig. 3. Effect of MO-mediated shh inhibition on oral and taste bud development. (A–H) Cavefish were injected with control (A, C, E, G) or shh (B, D, F, H) MOs (2 ng) and analyzed at
the tailbud stage (A, B) or 6 dpf (C–H). (A, B) In situ hybridization showing downregulation of nkx2.1a but not pax2a (asterisks) expression in shhMO injected embryos at the neural
plate stage. (C–F) Reduced jaw span (C, D; double-headed arrows) and oral–pharyngeal region (F, arrowhead) in shh MO injected larvae at 6 dpf. C, D: Ventral views. E, F: Lateral
views. (G, H) Reduced numbers of calretinin-stained taste buds are formed in 6 dpf cavefish larvae injected with shh MO. G: Ventral view. H. Anterior view. Downward and upward
pointing arrowheads indicate upper and lower jaws respectively. Scale bars: A (250 μm), C, E, and G (200 μm); same magnification in A and B, C and D, E and F, G and H. (I) Reduced
jaw span (μm; red bars) and taste bud numbers on the upper (blue bars) and lower (black bars) lips in 6 dpf cavefish injected with 1 or 2 ng shh MO compared to control MO.
Injection of a mixture of 10 pg zebrafish shhmRNA and 2 ng shhMO decreases the effects on jawwidth and taste bud number. JW: jaw width. UJ: Upper jaw. LJ: Lower jaw. Error bars
indicate SE of the mean.
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Oral and taste bud development in cavefish embryos

Taste buds begin to develop in Astyanax embryos between 3 and
4 dpf (Jeffery et al., 2000), and shh expression is detected in taste bud
primordia as soon as they protrude above the oral and pharyngeal
epithelia. The timing of taste bud development is similar in Astyanax
and zebrafish embryos (Hansen et al., 2002). We have demonstrated
that cavefish embryos have a larger number of taste buds on both their
upper and lower lips than their surface fish counterparts. The mouth,
and later the jaws, are also increased in cavefish. The larger jaws are
not related to increased head space created by degenerate eyes,
however, as shown by experiments in which no changes in jaw size
were observed after creating a larger eye in cavefish by embryonic lens
transplantation or a smaller eye in surface fish by embryonic lens

extirpation (Yamamoto et al., 2003; unpublished). The constructive
changes in oral development remodel the cavefish mouth into a
shovel-like structure that is effective for sampling sediment from the
bottom of cave ponds and therefore is likely to be under strong
positive selection in the cave environment.

It is important to note that taste bud numbers increase in cavefish
compared to surface fish without a detectable elevation in their
density, at least along the lips, the only place in the oral–pharyngeal
region that we can accurately determine their distribution. Thus, it is
unlikely that enhanced numbers of taste buds are due to a change in
the mechanisms that control taste bud specification within the oral–
pharyngeal epithelium. It is probable that increased taste budnumbers
reflect an enhancement in the global patterning mechanisms that are
responsible for constructing a larger oral–pharyngeal area in cavefish.

Fig. 4. Effect of shh overexpression on oral and taste bud development. (A–H) Surface fish (A–F) or cavefish (G, H) embryos were injected with shh (B, E, F–H) or GFP control (A, C, D)
mRNAs and analyzed at the tailbud stage (A, B) or 6 dpf (C–H). (A, B) In situ hybridization showing expansion of nkx2.1a but not pax2a expression in the neural plate of cavefish
embryos injectedwith shhMO (B). (C–H) Increase in the oral–pharyngeal region and calretinin-stained oral taste bud numbers (arrowheads) in shhmRNA injected surface fish (E–F)
and cavefish (G, H) embryos. Lateral (C, E, G), ventral (D, F), and anterior (H) views at 6 dpf. (A–F). 20 pg shh mRNA. (G, H). 800 pg shh mRNA (E, F). DE: pigmented remnant of
degenerate eye. Arrowheads: calretinin-stained taste buds. Doubled headed arrows:mouth opening. Scale bars: A (250 μm), C (200 μm);magnification is the same in A and B, C–F. (I)
Increased jaw span (red bars) and taste bud numbers on the upper (blue bars) and lower (black bars) lips in 6 dpf larvae that developed from embryos injected with 20 pg shhmRNA
(middle) or 800 pg shh mRNA (right) relative to controls injected with 20 pg GFP mRNA (left). Error bars indicate SE of the mean. JW: jaw width. UJ: Upper jaw. LJ: Lower jaw.
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The increase in taste buds observed in cavefish embryos is more
modest than the 5- to 7-fold elevation reported in cavefish adults
(Schemmel, 1967). Aside from the obvious reason of increased overall
body size, there are several possible explanations for differences
between our results in larvae and those that were obtained in adults.
First, calretinin antibody could recognize only a sub-set of larval taste
buds in Astyanax, as appears to be the case in amphibians (Barlow
et al., 1996). We think that this explanation is unlikely, however,
because all structures distinguishable as taste buds by their typical
rosette-shaped morphology stained positively with calretinin anti-
body. Further, calretinin-stained taste buds are closely packed on the
lips, leaving little or no room for additional taste buds between them.
Second, some the structures originally described as taste buds by
electron microscopy in adults (Schemmel, 1967) might actually be
other types of sensory organs, such as solitary mechanosensory cells.
If so, the difference in taste bud numbers between adult cavefish and
surface fish would be inflated when assayed by electron microscopy.
Third, external taste buds, which probably represent a large part of the
difference between the two forms of Astyanax, may appear later
during cavefish development and thus would not be detected in our
analysis. We observed very few taste buds on the external surface fish
or the jaws of surface fish or cavefish at 5–6 dpf. Furthermore, external
taste buds appear much later in zebrafish and catfish development
than larval oral–pharyngeal taste buds (Hansen et al., 2002; North-
cutt, 2005). Thus, taste buds probably appear in two stages during

Astyanax development. During early larval development, oral–phar-
yngeal taste buds are formed, and as shown here these are already
more numerous in cavefish than in surface fish. Subsequently, taste
budsmay develop in the skin of the lower jaw, and these external taste
buds are more prevalent in cavefish.

Role of Shh signaling in jaw and taste bud development

The results of overexpression experiments suggest that shh is
sufficient to promote the differences in oral and taste bud develop-
ment we have seen between cavefish and surface fish embryos. Two
key points are emphasized concerning these results. First shh mRNA
injection in surface fish embryos can increase the number of taste
buds to levels typical of cavefish embryos while also inducing
defective eye development. Previous results showed that shh over-
expression in surface fish promotes eye degeneration by inducing lens
apoptosis (Yamamoto et al., 2004), which occurs naturally in cavefish
embryos (Jeffery and Martasian, 1998). Second, upregulation of shh at
specific times during surface fish development by conditional
activation of the hsp70:shh:GFP DNA construct showed that the
sensitive periods for eye degeneration and increased taste bud
number occur simultaneously prior to 1 dpf, although taste buds do
not appear morphologically until 2–3 days later. The results suggest a
tradeoff between eye and taste bud development that may be
regulated by Shh signaling along the cavefish anterior midline.

Fig. 5. The effects of conditional shh overexpression on oral–pharyngeal development and eye degeneration. Surface fish embryoswere injectedwith the hsp70:shh:GFP transgene and
heat shocked at various stages of development. (A, B) A transgene injected embryo (6 dpf) heat shocked at the tailbud (TB) stage showing a gapingmouth, enlarged forebrain (FB), and
small degenerate eyes. (C, D) A transgene injected embryo (6 dpf) heat shocked at 1 dpf showing a normal mouth and eye. A and C: dorsal views B and D: lateral views. Scale bar in D is
200 μm; magnification is the same in A–D. (E) The shh sensitivity periods for increased taste bud development and eye degeneration in transgene injected surface fish embryos
determined by heat shocking at different developmental stages. Red bars. oral width (μm). Blue bars: taste bud number on upper lips. Black bars: taste bud number on lower lips. Error
bars indicate SE of the mean. Blue dots: percentage of embryos with normal eye development. Error bars indicate SE of the mean. JW: jaw width. UJ: Upper jaw. LJ: Lower jaw.
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The results also suggest that shh expression is necessary as well as
sufficient for jaw and taste bud development. Although Shh inhibition
with MOs did not completely suppress taste bud development, and
co-injection of shh mRNA did not entirely rescue the effects of shh
MOs, complete inhibition of taste bud development did occur after
cyclopamine treatment. Teleosts contain two paralogous shh genes,
shhA, the gene we have focused on in these studies, and shhB
(formerly tiggy winkle hedgehog) (Ekker et al., 1995). Both shh genes
are expanded along the cavefish anterior midline (Yamamoto et al.,
2004), and it is possible that they are functionally redundant,
requiring a double knockdown to completely affect taste bud
formation. However, cyclopamine can inhibit the function of both
genes because it acts downstream of ShhA/B by binding to the Smo
protein (Chen et al., 2002). There also may be functional redundancy
between Shh and other signaling ligands and transcription factors
involved in taste bud development. For example, Notch, Bmp, Fgf,
Prox1, Mash1, Nkx2.2, and NeuroD (Jung et al., 1999; Seta et al., 2003;
Jeffery et al., 2000, Suzuki et al., 2002; Miura et al., 2003) are
expressed in vertebrate taste buds. Except for shh, which is required
for taste bud development in the mouse (Mistretta et al., 2003; Liu
et al., 2004), little is known about the roles of these molecules and
how they may interact during taste bud development.

Modularity of sense organs, pleiotropic tradeoffs, and evolution of eye
degeneration

It has been proposed that sensory organs are organized as
developmental modules in Astyanax and that natural selection can
affect developmental interactions between them, resulting in trade-
offs (Franz-Odendaal and Hall, 2006). Further, regulatory genes could
guide a sensory module into a specific type of differentiation, and if
these genes are pleiotropic, there can be concerted negative
consequences on development of other sensory modules. Accordingly,

our results suggest that the Astyanax eye module may be linked to the
oral taste bud module by pleiotropic effects of Shh signaling. A
summary of the known pleiotropic activities of Hh signaling along the
cavefish midline based on current knowledge of genes involved in
oral/taste bud development and eye regression is shown in Fig. 7.

The negative effects of Shh on eye development (Ekker et al., 1995;
Yamamoto et al., 2004) and the corresponding positive effects on oral
and taste bud development shown here suggest a developmental
tradeoff between eyes and feeding organs. Three different lines of
evidence support this possibility. First, the sensitive periods for eye
degeneration and taste bud enhancement occur simultaneously
during early development, prior to the appearance of taste buds.
Second, independently of the shh results, genetic crosses show an
inverse relationship between eye size and the extent of oral and taste
bud development. An inverse relationship between these traits is
consistent with offsetting positive and negative effects of shh over-
expression in the concerted evolution of these two sensory modules.
Third, genetic linkage studies have revealed overlapping quantitative
trait loci (QTL) governing eye size and increase in taste buds (Protas
et al., 2008). One way of explaining this overlap would be to postulate
a single pleiotropic gene within the OTL that controls both traits.
Although shh appears to have role in eye degeneration and enhance-
ment of constructive traits, it is not the gene that is mutated to give
rise to these phenotypes in cavefish. Genetic analysis has shown that
none of the multiple QTL underlying cavefish eye regression are
located near a known hedgehog gene locus (Protas et al., 2007).
Furthermore, the expression domains of upstream regulators of the
Shh midline pathway, such as nodal and goosecoid, are also expanded
in cavefish (Yamamoto unpublished). Thus, further progress in
understanding the amplification of Shh-dependent phenotypes in
cavefish will require identification of the upstream genes that have
been mutated to cause hyperactivity of shh midline-signaling system.

Cavefish have evolved a specialized bottom feeding behavior that
is more efficient than that of surface fish (Hüppop, 1987), which
normally feed in the water column using visual cues (Schemmel,
1980). Efficient bottom feeding requires posture at an angle in which
the mouth can sample substrate in cave pools. Thus, increase in jaw
size and taste bud number could have evolved as an adaptation to the
challenges of searching for and sampling the quality of food in the cave
environment (Schemmel, 1967; Hüppop, 1987).

Fig. 7. The relationship between Shh signaling, oral–pharyngeal constructive traits, and
eye degeneration in Astyanax surface fish (A) and cavefish (B) indicating the effects of
Shh signaling on oral–pharyngeal, lens, and optic cup development. Letter size indicates
relative increase or decrease in cavefish compared to surface fish. See text for other
details.

Fig. 6. The relationship between eye size and oral–pharyngeal development in F3
hybrid progeny of a surface fish×cavefish cross. (A) Examples of small- (A) and large-
(B) eyed hybrids. The eye(s) of small-eyed hybrids are sunken into the orbit and
sometimes de-pigmented, resembling those of cavefish, whereas the eyes of large-eyed
hybrids are exposed and pigmented, resembling those of surface fish. (C–E) Differences
in jaw width (red bars) and taste bud numbers on the upper (blue bars) and lower
(gray bars) lips of small- and large-eyed F3 hybrids. Jaw width is indicated in units of
20 μm with unit 1 as 331–350 μm, unit 2 as 351–370 μm, and so forth.
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Whereas mechanical feeding efficiency may be one of the traits
driving eye regression through shh overexpression, it is not the only
example of a potentially adaptive phenotype produced by excess Shh
signaling. In addition, cavefish also have an enlarged ventral forebrain
controlled by an expanded Hh signaling center in the floor plate,
which may lead to the production of more olfactory inter-neurons
(Menuet et al., 2007). Together, dual Shh signals from the floor plate
(Rétaux et al., 2008) and the prechordal plate (Yamamoto et al., 2004)
may result in the development of multiple beneficial traits that syner-
gistically drive rapid evolution of eye degeneration in blind cavefish.
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