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Neuropeptide modulation of pattern-generating
systems in crustaceans: comparative studies and
approaches
Patsy S Dickinson1, Xuan Qu2 and Meredith E Stanhope2

Central pattern generators are subject to modulation by

peptides, allowing for flexibility in patterned output. Current

techniques used to characterize peptides include mass

spectrometry and transcriptomics. In recent years, hundreds of

neuropeptides have been sequenced from crustaceans; mass

spectrometry has been used to identify peptides and to

determine their levels and locations, setting the stage for

comparative studies investigating the physiological roles of

peptides. Such studies suggest that there is some evolutionary

conservation of function, but also divergence of function even

within a species. With current baseline data, it should be

possible to begin using comparative approaches to ask

fundamental questions about why peptides are encoded the

way that they are and how this affects nervous system function.
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Introduction
Pattern-generating networks in crustaceans are exten-

sively modulated by amines and neuropeptides, with

the number of identified neuropeptides in many species

nearing or exceeding 100 (e.g. [1�,2–5]). While the func-

tions of many neuropeptides remain unknown, some

peptides are able to modulate pattern-generating net-

works; these modulatory inputs enable the circuits to

produce a plethora of different motor patterns. However,

the comparative studies that would enable us to under-

stand the relationships between the effects of different

peptides within a species as well as the extent to which

those effects are conserved across species are limited.

Physiological studies of modulation in the crustaceans

have focused almost exclusively on two networks in the

decapods: the stomatogastric nervous system, which con-

trols the rhythmic movements of the foregut, and the

cardiac ganglion (CG), which controls rhythmic contrac-

tions of the neurogenic heart. For wont of truly compara-

tive and evolutionary studies, we can only begin to answer

important questions regarding the evolution of peptider-

gic modulation of pattern generators in the Crustacea,

including why so many modulatory neuropeptides exist in

these relatively simple systems, and whether there are

fundamental differences between highly conserved pep-

tides and those that are much more evolutionarily vari-

able. This review will thus first address the evolutionary

dispersion of peptides and the extent to which they are

conserved, as well as what is currently known about

neuropeptide receptors. We then review recent function-

al studies of peptide modulation in a comparative light.

Identity and distribution of neuropeptides
across species and tissues
Complete characterization of the first several invertebrate

neuropeptides to be identified, such as red pigment

concentrating hormone (RPCH) [6] and proctolin [7],

required large pools of tissue and multiple biochemical

techniques. In recent years, two newer techniques have

replaced extensive biochemical sequencing to identify

peptides in crustaceans: mass spectrometry and transcrip-

tomics.

Mass spectrometry

Multiple types of mass spectrometry are used to identify

neuropeptides. Matrix-assisted laser desorption/ioniza-

tion (MALDI) instruments are commonly coupled with

time-of-flight (TOF) or Fourier transform (FT) mass

analyzers and electrospray ionization (ESI) instruments

are often coupled with quadrupole (Q)-TOF hybrid mass

spectrometers. Tandem mass spectrometry (MS/MS) is

used to determine amino acid sequences and to identify

post-translational modifications. More recently, multi-

faceted mass spectrometric approaches have allowed

researchers to identify peptides spanning a wider mass

range, as well as to apply this technology in innovative

ways. Thus, recent research has not only generated new

peptidomes or enlarged known peptidomes, but has also

begun to detect spatial and temporal distributions of

peptides [8,9,10�,11] and to detect peptides in hemo-

lymph (e.g. [8,9,10�,11,12]).
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Ye et al. [13�] pioneered the use of multiple mass spec-

trometry platforms to identify and map the distribution of

peptides within individual ganglia; they localized five

different peptides within the brain of Panulirus
interruptus. Although peptides related to those they local-

ized are known to modulate pattern-generating networks

in decapod species, Ye et al. did not examine tissues in

which identified pattern generating networks are local-

ized. Members of the same laboratory adapted other mass

spectral techniques to examine the distribution of pep-

tides [14,15] within the stomatogastric ganglion in Calli-
nectes sapidus. Before the development of mass

spectrometric mapping techniques, distribution of pep-

tides was determined primarily using immunohistochem-

istry (e.g. [16–18]). Immunohistochemistry still provides

far better spatial resolution than mass spectrometry, but

most antibodies are not able to distinguish between

different peptide isoforms. Thus, the availability of mul-

tiple techniques to map the distribution of neuropeptides

within the nervous system using mass spectrometry, or

combining mass spectrometry and immunohistochemis-

try, should facilitate comparative studies that will allow us

to determine the relative distributions of individual mem-

bers of the same peptide family. Since key questions in

understanding the evolutionary and functional signifi-

cance of peptide diversification are the extent to which

members of a given peptide family are localized and

released together and the extent to which they exert

common effects, these techniques could be important

in enabling them to be addressed.

Analysis of peptidomes using transcriptomics

Within the last few years, transcriptomics has emerged as

a powerful tool for understanding gene expression in

organisms, such as crustaceans, that do not have a fully

sequenced genome. Translated mRNA sequences can be

assessed for biological markers and homology to known

peptide sequences from related species. This technique

is particularly useful when it is impossible to gather the

large quantities of tissue needed for biochemical techni-

ques, such as when proteins are expressed exclusively in

one small tissue type. Like mass spectrometry, however,

transcriptomics may not have complete coverage of the

proteins produced in the tissue, leaving some transcripts

partial or missing, particularly those transcribed in low

abundance. Moreover, errors in sequences can be artifacts

of the transcriptome assembly process, and post-transla-

tional modifications are merely predictions. Some studies

counter this dilemma by combining transcriptomics and

mass spectrometry approaches to confirm some of the

mined sequences [19,20�,21]. Studies such as these, al-

though interesting in their own right, are largely lacking

significant physiological relevance.

Nevertheless, transcriptomics is an important methodol-

ogy in the study of crustacean nervous systems. Many

such studies have analyzed transcriptomes for the sole

purpose of elucidating entire peptidomes of species, and

have predicted numerous neuropeptides in a wide range

of crustacean species (e.g. [22–29]).

Conservation of peptides: highly conserved peptides

versus extensive peptide families

Studies that have focused on single species as well as

those that have compared the structure and/or distribu-

tion of single peptides across species (e.g. [30]) indicate

that the extent to which peptides are conserved varies

widely between peptide families. Some peptides, such

as proctolin, crustacean cardio-active peptide (CCAP),

and red pigment concentrating hormone (RPCH), ap-

pear to be highly conserved, with a single sequence

conserved across virtually all crustaceans. Others show

minor differences (e.g. one amino acid) between spe-

cies; such peptides include SIFamide [13�,30–32],

tachykinin-related peptides [31,33], and myosuppressin

(pQDLDHVFLRFamide [30]), a member of the larger

RFamide family that is found on its own transcript [1�].
Interestingly, three isoforms of the peptide allatostatin-

C were recently identified from a Carcinus transcrip-

tome. One of the three is highly conserved across

arthropod species (mostly insects); the others are some-

what less conserved, but have not yet been examined in

other decapods [34]. Other peptides, such as the A-type

allatostatins, the pyrokinins, and the other RFamides,

including the FLRFamides, are much more variable,

and often have multiple isoforms even within a single

precursor transcript [1�,35].

Together, these studies raise important, but still unan-

swered questions. Why are some peptides so highly

conserved while others are extraordinarily variable, both

within and across species? Do different isoforms have

different functions? Do they bind to the same receptors?

Are they perhaps differentially susceptible to peptidases?

Does the level of conservation of a peptide correlate with

its functions in modulating the output of neuronal net-

works? Understanding the answers to these questions will

be important in understanding the role peptidergic sig-

naling plays in modulating patterned behavior. Unfortu-

nately, as of the present time, no large-scale comparative

physiological studies have been conducted, and relatively

few smaller studies have been published.

Identity and distribution of neuropeptide
receptors
To understand the roles played by neuromodulators, it is

critical not only to know the identity and distribution of

the modulators themselves, but also to understand the

distributions of receptors and the interactions of peptides

with their receptors. However, relatively little is known

about peptide receptors and their distributions in crusta-

ceans, particularly with respect to pattern generators. One

recent study [1�] identified 41 transcripts encoding puta-

tive neuropeptide receptors in a Homarus americanus

150 Microcircuit computation and evolution
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neural transcriptome that included the stomatogastric and

cardiac ganglia. However, the distributions of these

receptors within the nervous system are not known. In

a study in the spiny lobster Sagmariasus verreauxi, Buckley

et al. [36�] identified 85 G-protein coupled receptors

(GPCRs). Although the transcriptomes used in this study

were not nervous system specific, they were able to

identify sequences for many expected neuropeptide

receptors. Both of these studies, however, identified

transcripts solely on the basis of homology to known

receptors from other species; studies examining binding

specificity and affinities of peptides to the receptors

identified in crustaceans are badly needed.

One recent study has begun to tie receptor distribution and

function together. In the crab Cancer borealis, Garcia et al.
[37��] identified a putative CCAP receptor. CCAP mod-

ulates both the gastric mill and pyloric patterns in this

species, activating an identified current, IMI, in many, but

not all, stomatogastric neurons. Garcia et al. [37��] showed

that the distribution of CCAP receptors paralleled the

distribution of electrophysiological responses to CCAP.

In the one neuron type that expressed CCAP receptor

transcripts but did not respond to CCAP by activating IMI,

they found that CCAP instead modulated synaptic cur-

rents. Moreover, expression levels of CCAP receptors

(CCAPr) varied not only between animals, but also be-

tween neurons (Figure 1a). Intriguingly, in a comparison of

two pyloric neurons, higher receptor expression correlated

with a larger IMI response and greater sensitivity to CCAP

(Figure 1b). Additionally, Garcia et al. [37��] elegantly

showed that there are differences in the proportions of

IMI channels that are activated by CCAP between two

neuron types with different levels of CCAPr expression.

The implications of this study for modulation of pattern

generators, particularly in the presence of more than one

modulator, whether as a result of co-transmission, the

release of multiple hormones, or the interactions of hor-

monal and local modulation, are profound: depending on

receptor distribution, different neurons may respond more

or less strongly to the addition of an additional modulator

[37��]. Similar studies of other receptors and species are

badly needed.

Comparative physiological studies of
modulators affecting crustacean pattern
generators
The pattern generators of the stomatogastric nervous

system and CG have been studied physiologically in a

number of species, including clawed lobsters and crayfish

(Homarus americanus, Homarus gammarus, Procambarus
clarkii), several crab species (Cancer species, Carcinus mae-
nas), and spiny lobsters (primarily Panulirus interruptus).
However, although these species span several infraorders,

most studies have targeted a single species. Nonetheless,

one comparative study found that peptidergic modulation

of the pyloric pattern in the kelp crab, Pugettia producta,

whose diet is largely limited to kelp, is considerably

reduced compared to that recorded in other crustacean

species studied (e.g. Cancer crabs); of four peptides exam-

ined in Pugettia [proctolin, RPCH, tachykinin-related

Comparative neuromodulation in crustacean CPGs Dickinson, Qu and Stanhope 151
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(a) Levels of expression of CCAPr in individual pyloric neurons in the crab Cancer borealis, determined using quantitative PCR, not only vary

among individuals (circles), but also differ among pyloric neurons. The expression in the lateral pyloric (LP) neuron, for example, is much higher

than that in the inferior cardiac (IC) neuron. Other neurons do not express this receptor at all. Squares indicate mean; error bars denote SEM. (b)

Correlated with the differences in CCAPr expression, the magnitude of the IMI current activated by CCAP is higher in the LP neuron than in the IC

neuron. Error bars denote SEM: *, p < 0.05. Modified from [37��].
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peptide, and crustacean cardioactive peptide (CCAP)],

only proctolin regularly activated the pyloric pattern [38].

Additionally, several studies have compared the effects of

related peptides on a single pattern generator or the

effects of the same peptides on multiple pattern gen-

erators within a species. Others [39–41] have examined

this question at a single current level, finding that multi-

ple modulators can activate the same current (IMI).

Members of a single peptide family can exert similar

effects on pattern generators across species

As early as 1988, comparisons of red pigment concen-

trating hormone (RPCH) and a number of structurally

related adipokinetic hormones (AKHs) suggested that

structurally similar peptides can exert similar effects on

crustacean pattern generators [42]. While the native

peptide RPCH had a somewhat lower threshold for

its effects on the pyloric pattern in Cancer borealis, the

effects of RPCH were very similar to those of three

different AKH isoforms, all of which were originally

identified in insects. All resulted in an increase in the

pyloric cycle frequency and in the relative burst dura-

tion and number of spikes in the lateral pyloric (LP)

neuron when applied at concentrations of 10�7 M. In-

terestingly, although a number of isoforms of AKH have

been identified in the insects, all of the decapod crus-

taceans that have been examined appear to express

authentic RPCH [35,43]. Another early study found that

two FMRFamide-related peptides, TNRNFLRFamide

and SDRNFLRFamide, exerted effects similar to one

another on both the pyloric and gastric mill patterns in

the crab (Cancer borealis) [44]). A more recent study

found that two sulfakinins (pEFDEY(SO3H)GHMRFa-

mide and GGGEY(SO3H)DDY(SO3H)GHLRFamide)

identified as native to the lobster (H. americanus) exerted

similar effects on the cardiac neuromuscular system,

although the effects of the longer isoform were more

pronounced [45]).

Effects of FMRFamide-like peptides (FLPs) on the cardiac

neuromuscular system

One of the larger crustacean neuropeptide families is the

FLPs, whose effects on the cardiac system have been

examined across species. In the crab Callinectes sapidus,
the effects of three FLPs, including a native FLP

(GYNRSFLRFamide), were examined in whole and

semi-intact heart preparations, in the isolated CG, and

in a stimulated muscle preparation [46]. More recently,

the effects of two native FLPs (GYSNRNYLRFamide

and SGRNFLRFamide) in the lobster H. americanus were

compared using similar preparations [47��]. Interestingly,

all three native peptides increased contraction frequency

and amplitude when perfused through the whole heart at

low concentrations (�10�9 M); they also increased the

amplitude of contractions at the level of the muscle or

neuromuscular junction. However, none of the peptides

increased cycle frequency in the isolated CG, suggesting

that the increased frequency in the whole heart was

indirect, mediated through the stretch feedback system

[47��,48]. Qualitative differences between the effects of

GYSNRNYLRFamide and SGRNFLRFamide suggest

that the peptides do not all act identically on the multiple

sites affected. Based on the range of effects of the

FMRFamide-like peptides and their different thresholds,

Dickinson et al. [47��] suggested that, in addition to

effects on the CG and the muscle/neuromuscular junc-

tion, they might alter the balance of positive (stretch) and

negative (nitric oxide [49]) feedback systems that are

known to exist within the cardiac neuromuscular system.

When the whole heart is stretched in either the longitu-

dinal or transverse direction, contraction amplitude

increases; the extent of this increase is enhanced by

the FLPs [50]. Interestingly, this effect is anisotropic;

that is, GYSNRNYLRFamide enhanced amplitude only

to transverse stretch, while SGRNFLRFamide increased

the effects of longitudinal stretch. These results suggest

that neuropeptides in this family interact with the length-

tension characteristics of the heart to create a more

flexible rhythmic heart contraction.

Finally, while it is clear that many of the effects of FLPs

are shared across peptides and species, it is also clear that

there are differences in the effects of peptides within the

family in each species. What is not clear is whether these

differences are due to different binding affinities for the

peptides on the same receptor or whether the peptides

activate different receptors. Thus far, only one (Homarus
[1�]) or two (Sagmariasus verreauxi [36�]) FMRFamide-

like receptors have been predicted by transcriptomic

studies.

Pyrokinin family peptides

As is the case with the FLPs acting on the cardiac system,

members of the pyrokinin peptide family appear to exert

similar effects on stomatogastric pattern generators in two

crustacean species, C. borealis and H. americanus. In par-

ticular, pyrokinin peptides native to crab, shrimp and

cockroach all have equivalent actions in the stomatogas-

tric ganglion in crabs, where they excite the gastric mill,

but not the pyloric, pattern [51]. Likewise, the conserved

pyrokinin fragment FSPRamide [1�,5], and four other

crustacean pyrokinins similarly excited only the gastric

mill pattern in Homarus (Figure 2a) [52��].

The mechanisms underlying pyrokinin modulation have

not yet been examined, but the similarity of effects of

multiple peptides in two species suggests a highly con-

servative modulatory function of the peptides in this

family. Interestingly, in the crustacean species that have

been examined, there appear to be at least two pyrokinin

isoforms. Transcriptome analysis suggests, for example,

that there are seven pyrokinins in Homarus [1�]. However,

152 Microcircuit computation and evolution
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The effects of crustacean pyrokinins are similar when activating patterns in the stomatogastric ganglion, but differ from one another when

activating the cardiac neuromuscular system in the same species. (a) Five different crustacean pyrokinins, including the fragment FSPRLamide,

which had been previously identified from the lobster, activate the gastric mill rhythm, leading to patterns that do not differ from one another when

superfused over the stomatogastric ganglion at a concentration of 10�6 M. The left column shows patterns recorded in saline just before the

application of each peptide; all recordings are from the same individual. The higher frequency bursts recorded on the mvn are from the ventricular

dilator (VD) neuron, which is active in the pyloric pattern, and is not altered by any of these peptides. mvn: medial ventricular nerve; dgn: dorsal

gastric nerve; dlvn: dorsal lateral ventricular nerve. (b) When the same 5 pyrokinins were applied to the cardiac system of the lobster, only one,

PevPK2, had any significant effect. It increased both contraction amplitude and frequency when applied at a concentration of 10�6 M, mimicking

local release. Pyrokinins are one of the relatively few peptides that have been localized to the cardiac ganglion. Modified from [52��] and [53��].
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at present, no physiological experiments have examined

any of these native peptides. Interestingly, these peptides

are encoded on two different transcripts, suggesting that

at least some of them can be differentially released [1�].

Related peptides can exert divergent effects on different

pattern generators in a single species

In contrast to the similar effects of multiple pyrokinins on

stomatogastric pattern generators across species, the

effects of different pyrokinins on the cardiac system of

the lobster are strikingly different from one another.

Notably, only one of the peptides tested, PevPK2, had

any effect on the heart; it increased both the frequency

and amplitude of heart contractions (Figure 2b) [53��].
The mechanisms that underlie the differential responses

of the stomatogastric and cardiac systems to pyrokinins

are not yet known. PevPK2 is not highly similar to any of

the native pyrokinins thus far identified in Homarus
(Table 1), suggesting the possibility that it is acting on

an unrelated receptor.

Alternatively, its secondary structure may enable it to

bind to a pyrokinin receptor. If so, one possibility is the

CPG-specific distribution of multiple pyrokinin receptors

with differential sensitivities. Other possibilities include

differences in the second messenger systems activated by

the different peptides in the two ganglia [54]. Follow-up

studies examining the responses of both the cardiac and

stomatogastric systems to the seven native Homarus pyr-

okinins could shed light on the extent to which the

differential responses of these two networks reflect evo-

lutionary and physiologically important differences.

Convergent effects of modulators can result in divergent

modulatory outcomes

Previous studies [41] in the crab stomatogastric system

have shown that a number of peptide modulators con-

verge to activate the same ionic current, IMI. Moreover,

by activating these currents in different neurons, these

peptides can alter CPG output in distinct ways [41]. It was

also postulated [39] that activation of the current on the

same neuron could lead to different output patterns when

the timing of peptide release differs. Recently, mathe-

matical modeling showed that convergent targeting of IMI

by hormonally released CCAP and the rhythmic synaptic

release of CabTRPIa would differentially alter opposing

phases of the gastric mill pattern [55�]. Thus, evolutionary

changes in CPG modulation could increase plasticity and

robustness of a network by acting on either the distribu-

tion of receptors on neurons within the CPG or the timing

of release of modulators that target a single current, rather

than adding new modulated currents. However, although

it seems likely that similar currents are activated in other

species, these networks have not yet been studied at the

same level as those in the crab.

Additionally, it is likely that the different peptides that

activate the same receptor are differentially susceptible to

the proteases present in the ganglion, with the conse-

quence that the peptides will reach the receptors at

different concentrations, and will persist in the ganglion

for different periods of time, thereby resulting in diver-

gence of their effects even when activating the same

currents. Indeed, Wood and Nusbaum [56] found that

an aminopeptidase present in the STG [57] is partly

responsible for the differential effects of a single peptide

(proctolin) released from different projection neurons in

the crab.

Conclusions
Although a number of recent studies have examined the

effects of the same or related peptides on more than one

species, on the comparative roles of the same peptide

family in two systems within the same species, or on

the function of convergent neuromodulators on the same

system, relatively few studies have approached modulation

154 Microcircuit computation and evolution

Table 1

Sequences of pyrokinins tested on the Homarus americanus cardiac system, together with the more recently identified native Homarus

pyrokinin sequences. None of the native sequences have the FNPRLamide C-terminus that characterizes PevPK2, the only pyrokinin that

enhanced cardiac activity. It is not currently known whether these native peptides exert modulatory effects on the cardiac system.

Peptide acronym Peptide sequence Species Reference

CabPK1 TNFAFSPRLamide Cancer borealis Ma et al., 2010

CabPK2 SGGFAFSPRLamide Cancer borealis Ma et al., 2010

Conserved

fragment

FSPRLamide Homarus americanus Ma et al., 2008

PevPK1 DFAFSPRLamide Litopenaeus vannemei Torfs et al., 2001

PevPK2 ADFAFNPRLamide Litopenaeus vannemei Torfs et al., 2001

HoaPK1 GDDITNEELAY(SO3H)DDNLATSEYLRDDNNDYLPEEL-

TEDVTEMSSPEMLSESAAALVGKNSVSFIPRLamide

Homarus americanus Christie et al., 2015

HoaPK2 DSEDSSVESRNTKTQASIPRPamide Homarus americanus Christie et al., 2015

HoaPK3 GDGFAFSPRLamide Homarus americanus Christie et al., 2015

HoaPK4 GADFAFSPRLamide Homarus americanus Christie et al., 2015

HoaPK5 SDFAFSPRLamide Homarus americanus Christie et al., 2015

HoaPK6 SLFSPRLamide Homarus americanus Christie et al., 2015

HoaPK7 AYFSPRLamide Homarus americanus Christie et al., 2015

Current Opinion in Neurobiology 2016, 41:149–157 www.sciencedirect.com



from a truly comparative perspective. Thus, many ques-

tions remain. Little is known about the timing and control

of peptide release. This is particularly important for mod-

ulators that target the same current in a given neuron, and

should have profound effects on the interactions of mod-

ulators. Additionally, comparative studies [52��,53��] of the

different effects of pyrokinins on the cardiac and the

stomatogastric systems in a single species suggest both

different mechanisms and functions in these two pattern

generators, but the mechanism that underlies such a

differential response remains unknown. Future studies

using a molecular approach to determine both the recep-

tors and second messenger pathways used by these pep-

tides may shed light on this finding. More comparisons of

this nature will help to determine whether this is an

unusual arrangement or if it is shared by other peptides.

One of the biggest evolutionary questions remaining

derives from the observation that some peptides are

highly conserved, with only one member identified,

and only one isoform in the peptide transcript, whereas

others exist in multiple isoforms. Some of these are on the

same transcript, so are likely released together, while

others are on separate transcripts, so could be differen-

tially released. We still do not know whether there are

qualitative differences in the roles or modes of release of

highly conserved versus highly variable peptides. More-

over, some peptides are highly conserved functionally

across species, while others may produce multiple effects

and target several pattern generators within a species.

Additional questions to be answered focus on more inte-

grated and comparative aspects of modulation: what are

the interactions among neuromodulators when present at

the same time? How are they regulated? Why do systems

respond differently to the same neuromodulators? And

how do these components collectively contribute to the

flexibility as well as the stability and robustness of the

systems?
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