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Purpose: In this paper, a location-routing-allocation problem in a multi-
objective blood supply chain network was designed to reduce the total cost 
of the supply chain network, the maximum unmet demand from distribution 
of goods, and decline greenhouse gas emissions due to the transport of goods 
among different levels of the network. The network levels considered for 
modeling include blood donation clusters, permanent and temporary blood 
transfusion centers, major laboratory centers and blood supply points. Other 
objectives included determining the optimal number and location of potential 
facilities, optimal allocation of the flow of goods between the selected 
facilities and determining the most suitable transport route to distribute the 
goods to customer areas in uncertainty conditions. 
Methodology: Given that the model was NP-hard, the NSGA II and 
MOPSO algorithms were used to solve the model with a priority-based 
solution. 
Findings: The results of the design of the experiments showed the high 
efficiency of the NSGA II algorithm in comparison with the MOPSO 
algorithm in finding efficient solutions. 
Originality/Value: This study addresses the issue of blood perishability 
from blood sampling to distribution to customer demand areas. 
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1. Introduction 

Supply Chain is a set of organizations which are linked together by material, information, and financial 

flows. Such organizations include enterprises that produce raw materials and components of products 

and provide services such as distribution, storage, wholesale, and retail. In this set, final customers are 

considered the last level of the chain and one of the members of these organizations. In general, supply 

chain includes facilities such as raw material suppliers, manufacturing centers, warehouses, wholesalers 

and retailers, distribution centers, and customers in which material and information flows exist within 

and between them [1, 2]. In other words, supply chain consists of various components involved in a 

network that begins with the production of the raw material, and ends with its transport to warehouses, 

distribution centers, and customer satisfaction [3]. 

In the meantime, one of the most important types of supply chain network is blood supply chain. Blood 

supply chain has been the focus of attention in recent years due to the importance of this vital and rare 

product in health systems. Healthy and adequate blood supply as well as its management are of 

particular concern to the human race. Hence, the collection and management of blood distribution which 

is raised in the form of blood supply chain management, requires comprehensive and accurate 

management and planning because blood supply chain has complexities that differentiate it from the 

supply chain of ordinary goods. Blood is one of the most critical perishable substances in nature, which 

is closely related to the lives of humans. One of the most significant reasons for the importance of blood 

and blood products is its human origin and that it cannot be artificially produced. In addition, blood 

products such as red blood cells, platelets and plasma have a different life span and require special 

storage conditions. On the other hand, blood supply chain, which involves processes for collecting, 

producing, storing and distributing blood and blood products from donors to blood recipients, is 

associated with uncertainty. This uncertainty is obvious in both supply and demand because blood 

supply from donors is relatively unplanned and uncertain, and demand for this product does not enjoy 

a constant rate. Therefore, matching supply and demand in blood supply chain requires designing a 

proper supply chain network to supply blood and blood derivatives [4]. Therefore, since blood is one 

of the most important needs of each patient in various critical situations and that one of the concerns of 

health centers is the phenomenon of deficiency or bloody perishability, blood supply chain management 

attempts to bridge the gap between blood suppliers and consumers, resulting in a lack of exposure to 

lacking and minimizing the risk of blood products perishability and reducing costs [5, 6]. Therefore, in 

this paper, a three-objective model of blood supply chain network is proposed with the aim of reducing 

the total cost of the system, reducing maximum unmet demands and declining the amount of the 

emissions of greenhouse gases that simultaneously optimizes the number and location of potential 

facilities, optimizes the flow of blood bags between selected centers and optimizes the appropriate 

routing of transport and distribution of blood bags to demand centers. 

 

2. Literature Review 

The design of a blood supply chain network requires a number of strategic and operational decisions, 

including decisions on the location of blood collection centers and how blood donors are allocated to 

blood collection centers, the number and location of donation points, and so on. Because the demand 

for blood after a quake is different in different periods (in the first 24 hours of the earthquake, demand 

is much higher), the design of a blood supply chain is part of a dynamic network design [4]. Research 

on the management of the supply chain of perishable products, and in particular on blood products, 



34 

 

began specifically by Van Zyl [7]. Sampson et al. [8] examined the problem of relocation of blood 

donation bases in Norfolk, Virginia, and provided conclusions on the timing of information collection 

and blood distribution products. Hinojosa et al. [9] considered location of dynamic facilities with the 

goal of minimizing total network costs. They introduced a mixed integer math model (MIP) for the 

problem in which the capacity of the suppliers was also considered. In one of the earliest studies in the 

field of supply chain design with regard to location and inventory, Daskin et al [10] presented a 

mathematical model for designing a blood supply chain network, taking into account location and 

inventory costs, including variable and fixed costs. They proposed a Mixed Integer Programming (MIP) 

for this purpose and used the Lagrange liberation method to solve them. In fact, they presented a 

mathematical model for the routing-location problem in their paper. In dynamic network design 

problems, location and capacity of facilities can vary in different periods. This in turn reflects the 

importance of using dynamic network design in the design of the supply chain network, since it is very 

important to use a dynamic network design to provide dynamic demand at different rates in each period. 

In 2003, Shen and colleagues put forward a nonlinear model of single-period integral-inventory model 

for the supply chain network. The goal was to find the location of the distribution facility and the amount 

of inventory in each center. Ultimately, they used heuristic methods to solve their model [11]. In 2005, 

Pereira [12] developed a comprehensive mathematical model for designing a blood supply chain 

network. He aimed at answering the questions such as: 1. Where to establish blood centers? 2. 

Allocation of donors to blood centers and 3. Place of construction of blood collection centers. Fahimnia 

et al. [13] presented a two-objective randomized mathematical model for designing an efficient and 

effective blood supply network. In addition to minimizing the total cost of the chain, including the costs 

of moving temporary blood donation sites, operating costs in blood centers, the cost of transporting and 

keeping inventory, and the costs of temporary blood donations, they also minimized overall transport 

time. They considered a supply chain including blood donors, blood collection centers, local and 

regional blood donation centers and demand points, including hospitals and medical centers. To solve 

the proposed mathematical model, two methods of epsilon constraint and Lagrange coefficient 

liberation were used. Ghasemi et al., [14] strived to consider the problems mentioned by installing 

appropriate and suitable new bases for blood and building backup bases and using available equipment, 

including available mobile bases and buses for receiving blood in the east of Mazandaran province so 

as to minimize these problems to a desirable extent. Therefore, a three-objective mathematic planning 

model was considered based on minimizing deficiencies, costs, and maximizing the timely receipt of 

blood using GAMS software and Pareto solutions. Osorio et al. [15] presented a simulation-

optimization model for production planning in the blood supply chain. They showed that the 

mathematical model provided by them can largely prevent the occurrence of shortages. Ensafian et al. 

[16] considered a randomized multi-period and integer model for collecting, producing, storing and 

distributing platelets sent from the blood collection centers to demand points. In this model, the age of 

platelet and the priority rules for matching ABO-Rh were based on the type of patient in order to 

increase the quality and safety of services. First, a Markov chain process was used to predict the number 

of donors; then, the uncertain demand was examined using a two-stage random programming. One of 

the challenging aspects was the use of random programming in a dynamic environment in which a 

suitable set of discrete scenarios is considered to make it; therefore, an improved approach is presented 

to reduce the scenarios which well shows the random processes for uncertain parameters. Zahiri et al. 

[17] presented a multi-level, bi-objective supply chain network, taking into consideration reducing 

network design costs and reducing the maximum unmet demand. They considered uncertain parameters 

such as demand and transport costs and used a robust planning method to control the parameters. Habibi 
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et al. [18] presented a multi-objective linear programming model for the design of a post-crisis blood 

supply chain. A three-level model consisting of donors, blood collection centers (permanent and 

temporary) and blood centers were considered. Their aim was to determine the number and location of 

facilities, the allocation of blood to various facilities, and minimization of the costs and shortcomings 

that were in conflict with each other. Using the ideal planning method and using the actual data of the 

case study in Ghaemshahr city, they solved the model.  

In previous papers and research, a bulk of studies have been conducted to provide a comprehensive 

mathematical model for designing a blood supply chain network. Whereas in the real world, considering 

the blood perishability, the shelf life of the products is considered throughout the network, because 

corrupted blood products cannot be moved to demand areas. Moreover, there is a dearth of research on 

routing vehicles in the distribution of blood bags from major laboratories to demand areas and taking 

into account three opposing objectives (reducing network costs, reducing the maximum demand, and 

reducing greenhouse gas emissions due to the transfer of products) have not been addressed. 

Accordingly, in this paper, we will work on the development of previous work, taking into account the 

shelf life of products across the network and routing vehicles in the distribution of goods, to fill this 

research gap.  

 

3. Modeling and Definition of the Problem 

In this paper, a location-routing-allocation problem in a multi-level blood supply chain network with 

regard to previous research gaps has been investigated. According to Figure (1), the blood supply chain 

network levels include blood donation levels, the levels of temporary and permanent blood sampling 

centers, the levels of the central laboratory and the levels of blood demand centers. In this network, 

blood donation clusters refer to permanent or temporary blood centers for blood donation. Temporary 

blood transfusion centers also send blood bags to permanent blood transfusion centers after transfusion 

from donation clusters. The central laboratory centers also store part of the blood bags in their temporary 

storage, taking into account the perishability time of blood and the time of blood donation, and send the 

other part to the demand centers according to the customer's request. In this section, each primary 

laboratory center, taking into account the closest demand centers, uses the available vehicles to 

distribute blood bags. In this section, the routing of the vehicle arises. Therefore, the main model of 

blood supply chain network can be modeled according to the following assumptions: 

 The problem is multi-period and its planning horizon is mid-term. 

 The location of the permeant and primary blood transfusion centers and the main potential lab 

centers and the number of them are unknown. 

 The demand parameter and transport costs are considered as uncertain, and triangular fuzzy. 

 The capacity of potential facilities is already known. 

 Shortage is not allowed and all customer demand for all products must be provided. 
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Fig. 1. The proposed blood supply chain network 

According to the assumptions stated, the main objective of this paper is to determine the optimal number 

and location of potential facilities, allocation of the flow of goods between selected locations and 

routing vehicles in the transport of blood bags to demand centers in such a way that: 1- the total cost of 

the supply chain network is reduced and 2. The Maximum unmet demands from the delivery of goods 

to demand centers are minimized, and 3. The greenhouse gas emissions due to the transfer of goods 

between facilities and demand areas are minimized. Therefore, for modeling, the indices, parameters 

and decision variables of the supply chain network problem are defined as follows: 

3.1. Indices 

𝑖 = {1, … , 𝐼} The index of blood donation clusters 

𝑗 = {1, … , 𝐽} The index of temporary blood transfusion centers 

𝑘 = {1, … , 𝐾} The index of permanent blood transfusion centers 

𝑙, 𝑙′ = {1, … , 𝐿} The index of the potential centers of the central laboratory 

𝑚, 𝑐 = {1, … , 𝐶} The index of blood demand centers 
𝑏 = {1, … , 𝐵} The index of type of blood group and blood derivatives 

𝑡 = {1, … , 𝑇} The index of time period  

𝑟 = {1, … , 𝑇} The index of blood transfusion time 

𝑣 = {1, … , 𝑉} The index of vehicle  
 

3.2. Parameters 

𝐺𝑗 The cost of establishing the temporary blood tansfusion center j 

𝐻𝑘 The cost of establishing a permanent blood tansfusion center k 

𝑈𝑙 The cost of establishing the central laboratory center l 

𝐹𝑣 The fixed cost of using the vehicle v  

𝑇𝑖𝑗 Cost per unit for blood donation cluster i and temporary blood tansfusion center j 

𝑇𝑖𝑘 
Cost per unit transport between blood donation cluster i and permanent blood donation 

center k 

𝑇𝑗𝑘 
Cost of transportation per unit between the temporary blood transfusion center j and the 

permanent blood transfusion center k 

𝑇𝑘𝑙 
Cost of transportation per unit between the permanent blood transfusion center k and the 

central laboratory center l  

Blood 

donor 

cluster 
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blood 
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𝑇𝑙𝑙′ The cost of transportation per unit between the central laboratory centers l and 𝑙′ 

𝑇𝑙c 
The cost of transportation between the central laboratory center l and customer c  𝑙, 𝑐 ∈ 𝐿 ∪

𝐶 

ℎ𝑘𝑏 
Maintenance cost per blood bag b in the temporary warehouse of the permanent blood 

transfusion center k 

ℎ𝑙𝑏
′  

Maintenance cost per blood bag b in the temporary warehouse of the central laboratory 

center l  
𝐶𝑙𝑏 Cost of distribution per blood bag b by the central laboratory center l 

𝑡𝑡𝑙𝑐 
The time of transportation of goods by the vehicle between the central laboratory center l 

and customer c       𝑙, 𝑐 ∈ 𝐿 ∪ 𝐶 
𝑇𝑣 Maximum transport time of the vehicle v for the delivery of blood to demand centers 

𝐷𝑐𝑏𝑡 Demand for a blood center c from a blood type b in a time period t 
𝑢𝑏 The time of perishability of a blood bag b 

𝑐𝑎𝑗𝑏 The capacity of the temporary blood transfusion center j from the blood group b 

𝑐𝑎𝑘𝑏 
Temporary storage capacity of the permanent blood transfusion center k from the blood 

group b 
𝑐𝑎𝑙𝑏 Temporary warehouse capacity of the central laboratory center l of the blood group b 
𝑐𝑎𝑣 Vehicle capacity v 

𝑐𝑜2𝑖𝑗
 The amount of 𝑐𝑜2 gas emission per unit of the donation cluster i to the temporary blood 

transfusion center j 

𝑐𝑜2𝑙c
 

The amount of 𝑐𝑜2 gas emission per unit between the the central laboratory centers l and 

the customer c         𝑙, 𝑐 ∈ 𝐿 ∪ 𝐶  

𝑐𝑜2𝑖𝑘
 

The amount of 𝑐𝑜2 gas emission per unit of the donation cluster i to the permanent blood 

transfusion center k 

𝑐𝑜2𝑗𝑘
 The amount of 𝑐𝑜2 gas emission per unit from the temporary blood transfusion center j to 

the permanent blood transfusion center k 

𝑐𝑜2𝑘𝑙
 

The amount of 𝑐𝑜2 gas emission per unit from the permanent blood transfusion center k to 

to the central laboratory center l  
𝑐𝑜2𝑙𝑙′ The amount of 𝑐𝑜2 gas emission per unit between the central laboratory centers l and 𝑙′ 
  

3.3. Decision Variables 

𝑋𝑖𝑘𝑏𝑡 
The amount of blood b transported between the donation cluster i and the permanent blood 

transfusion center k over time period t. 

𝑅𝑖𝑗𝑏𝑡 
The amount of blood b transported between the donation cluster i and the temporary blood 

transfusion center j over time period t. 

𝑌𝑗𝑘𝑏𝑡 
The amount of blood b transported between and the temporary blood transfusion center j 

and the permanent blood transfusion center k over time period t. 

𝑊𝑘𝑙𝑏𝑡 
The amount of blood b transported between the permanent blood transfusion center and the 

central laboratory center l over the time period t 

𝑆𝑙𝑙′𝑏𝑡 
The amount of blood b transported between the central laboratory center l and l’ over the 

time period t 

𝑉′
𝑙𝑏𝑡 

The total amount of blood b transmitted to the central laboratory centers l in the time  period 

t 



38 

 

𝑇𝑘𝑙𝑏𝑡𝑟 
The amount of blood b transfused between the permanent blood transfusion center k and the 

central laboratory center l for a time period t and blooded transfuted over the period r 

𝐴𝑙′𝑙𝑏𝑡𝑟 
The amount of blood b transfused between the central laboratory centers l and 𝑙′in the time 

period t and blood transfuted over the period r 

𝐵𝑙𝑐𝑏𝑡𝑟 
The amount of blood b transfused between the central laboratory center l and blood demand 

center c at the time period t and blood transfuted over the period r 

𝑄𝑘𝑏𝑡𝑟 
The inventory level of blood group 𝑏 in the p warehouse of the permanent blood transfusion 

center k during the time period t and blood donated in the time period r 

𝑄𝑙𝑏𝑡𝑟
′  

Level of inventory of the blood group b in the temporary warehouse of the central laboratory 

center 𝑙 in the time period t and blood transfused at time period r 

𝑍𝑗 If a temporary blood transfusion center j is established, it is 1 and otherwise 0. 

𝑍𝑘 If the Permanent Blood transfusion center k is established, it will be 1 and otherwise 0. 

𝑍𝑙 If the central laboratory center l is established, it will be 1 and otherwise 0. 

𝑍𝑙𝑐𝑡 
If the blood demand center c is allocated to the the central laboratory center c within a time 

period t, it will be 1 and otherwise 0. 

𝑍𝑙𝑐𝑣𝑡 
If the blood center c is visited by the vehicle v after the central laboratory center c, it will be 

1 and otherwise 0.        𝑙, 𝑐 ∈ 𝐿 ∪ 𝐶 

𝑈𝑐𝑣𝑡 Auxiliary variable for the elimination constraint 

𝜎𝑐𝑏𝑡 Percentage of blood demand center c from the blood group b during the time period t  

Regarding the indices, parameters, and decision variables, the locating-routing-allocation problem in a 

blood supply chain network is modeled as a mixed integer linear mathematical programming model as 

follows: 

(1) 

𝑀𝑖𝑛𝜔1 = ∑ 𝐺𝑗𝑍𝑗

𝐽

𝑗=1

+ ∑ 𝐻𝑘𝑍𝑘

𝐾

𝑘=1

+ ∑ 𝑈𝑙𝑍𝐿

𝐿

𝑙=1

+ ∑ ∑ ∑ ∑ ℎ𝑘𝑏𝑄𝑘𝑏𝑡𝑟

𝑡

𝑟=1

𝑇

𝑡=1

𝐵

𝑏=1

𝐾

𝑘=1

+ ∑ ∑ ∑ ∑ ℎ𝑙𝑏
′ 𝑄𝑙𝑏𝑡𝑟

′

𝑡

𝑟=1

𝑇

𝑡=1

𝐵

𝑏=1

𝐿

𝑙=1

+ 

∑ ∑ ∑ ∑ (
𝑇𝑖𝑗(1) + 2𝑇𝑖𝑗(2) + 𝑇𝑖𝑗(3)

4
)

𝑇

𝑡=1

𝑋𝑖𝑗𝑏𝑡

𝐵

𝑏=1

𝐽

𝑗=1

𝐼

𝑖=1

+ ∑ ∑ ∑ ∑ (
𝑇𝑘𝑙(1) + 2𝑇𝑘𝑙(2) + 𝑇𝑘𝑙(3)

4
)

𝑇

𝑡=1

𝑊𝑘𝑙𝑏𝑡

𝐵

𝑏=1

𝐿

𝑙=1

𝐾

𝑘=1

+ 

∑ ∑ ∑ ∑ (
𝑇𝑖𝑘(1) + 2𝑇𝑖𝑘(2) + 𝑇𝑖𝑘(3)

4
)

𝑇

𝑡=1

𝑅𝑖𝑘𝑏𝑡

𝐵

𝑏=1

𝐾

𝑘=1

𝐼

𝑖=1

+ ∑ ∑ ∑ ∑ (
𝑇𝑗𝑘(1) + 2𝑇𝑗𝑘(2) + 𝑇𝑗𝑘(3)

4
) 𝑌𝑗𝑘𝑏𝑡

𝑇

𝑡=1

𝐵

𝑏=1

𝐾

𝑘=1

𝐽

𝑗=1

+ 

∑ ∑ ∑ ∑ (
𝑇𝑙𝑐(1) + 2𝑇𝑙𝑐(2) + 𝑇𝑙𝑐(3)

4
)

𝑇

𝑡=1

𝑍𝑙𝑐𝑣𝑡

𝑉

𝑣=1

𝐿∪𝐶
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𝐿∪𝐶
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𝑇
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+ 
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4
)

𝑇
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𝐵
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𝐿
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(2) 𝑀𝑖𝑛𝜔2 = 𝑚𝑎𝑥𝑐,𝑏,𝑡 ((
(1 − 𝛼)𝐷𝑐𝑏𝑡(2) +

𝛼𝐷𝑐𝑏𝑡(3)
) − ∑ 𝜎𝑐𝑏𝑡𝑍𝑙𝑐𝑡 (
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)

𝐿
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) 

(3) 

𝑀𝑖𝑛𝜔3 = ∑ ∑ ∑ ∑ 𝑐𝑜2𝑖𝑗

𝑇
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 𝑠. 𝑡.: 
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(4) ∑ 𝑋𝑖𝑗𝑏𝑡

𝐼

𝑖=1

= ∑ 𝑌𝑗𝑘𝑏𝑡

𝐾

𝑘=1

, ∀𝑗, 𝑏, 𝑡 

(5) ∑ 𝑄𝑘𝑏𝑡𝑟

𝑡

𝑟=1

= ∑ 𝑌𝑗𝑘𝑏𝑡
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𝑙=1

, ∀𝑘, 𝑏, 𝑡 = 1 < 𝑢𝑏 

(6) ∑ 𝑄𝑘𝑏𝑡𝑟

𝑡

𝑟=1

= ∑ 𝑄𝑘𝑏𝑡−1𝑟

𝑡−1

𝑟=1

+ ∑ 𝑌𝑗𝑘𝑏𝑡

𝐽

𝑗=1

+ ∑ 𝑅𝑖𝑘𝑏𝑡

𝐼

𝑖=1

− ∑ 𝑊𝑘𝑙𝑏𝑡

𝐿

𝑙=1

,      ∀𝑘, 𝑏, 1 < 𝑡 < 𝑢𝑏 

(7) ∑ 𝑄𝑘𝑏𝑡𝑟

𝑡

𝑟=𝑡+1−𝑢𝑏

= ∑ 𝑄𝑘𝑏𝑡−1𝑟

𝑡−1

𝑟=𝑡+1−𝑢𝑏

+ ∑ 𝑌𝑗𝑘𝑏𝑡

𝐽

𝑗=1

+ ∑ 𝑅𝑖𝑘𝑏𝑡

𝐼

𝑖=1

− ∑ 𝑊𝑘𝑙𝑏𝑡

𝐿

𝑙=1

, ∀𝑘, 𝑏, 𝑡 ≥ 𝑢𝑏 

(8) 𝑊𝑘𝑙𝑏𝑡 = ∑ 𝑇𝑘𝑙𝑏𝑡𝑟

𝑡

𝑟=1

,     ∀𝑘, 𝑙, 𝑏, 𝑡 < 𝑢𝑏 

(9) 𝑊𝑘𝑙𝑏𝑡 = ∑ 𝑇𝑘𝑙𝑏𝑡𝑟

𝑡

𝑟=𝑡+1−𝑢𝑏

 , ∀𝑘, 𝑙, 𝑏, 𝑡 ≥ 𝑢𝑏 

(10) 𝑄𝑘𝑏𝑡𝑟 = ∑ 𝑌𝑗𝑘𝑏𝑡

𝐽

𝑗=1

+ ∑ 𝑅𝑖𝑘𝑏𝑡

𝐼

𝑖=1

− ∑ 𝑇𝑘𝑙𝑏𝑡𝑟

𝐿

𝑙=1

,     ∀𝑘, 𝑏, 𝑡 = 𝑟 

(11) 𝑄𝑘𝑏𝑡𝑟 = 𝑄𝑘𝑏𝑡−1𝑟 − ∑ 𝑇𝑘𝑙𝑏𝑡𝑟

𝐿

𝑙=1

,     ∀𝑘, 𝑏, 𝑡 − 𝑟 < 𝑢𝑏 

(12) ∑ 𝑄𝑙𝑏𝑡𝑟
′

𝑡

𝑟=1

= ∑ 𝑊𝑘𝑙𝑏𝑡

𝐾

𝑘=1

− 𝑉′
𝑙𝑏𝑡 + ∑ 𝑆𝑙′𝑙𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

− ∑ 𝑆𝑙𝑙′𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

,     ∀𝑙, 𝑏, 𝑡 = 1 < 𝑢𝑏 

(13) ∑ 𝑄𝑙𝑏𝑡𝑟
′

𝑡

𝑟=1

= ∑ 𝑄𝑙𝑏𝑡−1𝑟
′

𝑡−1

𝑟=1

+ ∑ 𝑊𝑘𝑙𝑏𝑡

𝐾

𝑘=1

− 𝑉′
𝑙𝑏𝑡 + ∑ 𝑆𝑙′𝑙𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

− ∑ 𝑆𝑙𝑙′𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

,     ∀𝑙, 𝑏, 1 < 𝑡 < 𝑢𝑏 

(14) ∑ 𝑄𝑙𝑏𝑡𝑟
′

𝑡

𝑟=𝑡−𝑢𝑏
+1

= ∑ 𝑄𝑙𝑏𝑡−1𝑟
′

𝑡−1

𝑟=𝑡−
𝑢𝑏+1

+ ∑ 𝑊𝑘𝑙𝑏𝑡

𝐾

𝑘=1

− 𝑉′
𝑙𝑏𝑡 + ∑ 𝑆𝑙′𝑙𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

− ∑ 𝑆𝑙𝑙′𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

,     ∀𝑙, 𝑏, 𝑡 ≥ 𝑢𝑏 

(15) 𝑉′
𝑙𝑏𝑡 = ∑ ∑ 𝐵𝑙𝑐𝑏𝑡𝑟

𝐶

𝑐=1

𝑡

𝑟=1

,     ∀𝑙, 𝑐, 𝑏, 𝑡 < 𝑢𝑏 

(16) 𝑉′
𝑙𝑏𝑡 = ∑ ∑ 𝐵𝑙𝑐𝑏𝑡𝑟

𝐶

𝑐=1

𝑡

𝑟=𝑡−𝑢𝑏+1

, ∀𝑙, 𝑐, 𝑏, 𝑡 ≥ 𝑢𝑏 

(17) 𝑆𝑙𝑙′𝑏𝑡 = ∑ 𝐴𝑙′𝑙𝑏𝑡𝑟

𝑡

𝑟=1

,     ∀𝑙, 𝑙′, 𝑏, 𝑡 < 𝑢𝑏 

(18) 𝑆𝑙𝑙′𝑏𝑡 = ∑ 𝐴𝑙′𝑙𝑏𝑡𝑟

𝑡

𝑟=𝑡−𝑢𝑏+1

,     ∀𝑙, 𝑙′, 𝑏, 𝑡 ≥ 𝑢𝑏 

(19) 𝑄𝑙𝑏𝑡𝑟
′ = ∑ 𝑇𝑘𝑙𝑏𝑡𝑟

𝐾

𝑘=1

− ∑ 𝐵𝑙𝑐𝑏𝑡𝑟

𝐶

𝑐=1

+ ∑ 𝐴𝑙′𝑙𝑏𝑡𝑟

𝐿

𝑙′=1
𝑙′≠𝑙

− ∑ 𝐴𝑙𝑙′𝑏𝑡𝑟

𝐿

𝑙′=1
𝑙′≠𝑙

,      ∀𝑙, 𝑏, 𝑡 = 𝑟 

(20) 𝑄𝑙𝑏𝑡𝑟
′ = 𝑄𝑙𝑏𝑡−1𝑟

′ − ∑ 𝐵𝑙𝑐𝑏𝑡𝑟

𝐶

𝑐=1

− ∑ 𝐴𝑙𝑙′𝑏𝑡𝑟

𝐿

𝑙′=1
𝑙′≠𝑙

,     ∀𝑙, 𝑏, 𝑡 − 𝑟 < 𝑢𝑏 
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(21) ∑ 𝑌𝑗𝑘𝑏𝑡

𝐾

𝑘=1

≤ 𝑐𝑎𝑗𝑏𝑍𝑗,     ∀𝑗, 𝑏, 𝑡 

(22) ∑ 𝑊𝑘𝑙𝑏𝑡

𝐾

𝑘=1

+ ∑ 𝑆𝑙′𝑙𝑏𝑡

𝐿

𝑙′=1
𝑙′≠𝑙

≤ 𝑐𝑎𝑙𝑏𝑍𝑙 ,     ∀𝑙, 𝑏, 𝑡 

(23) ∑ 𝑌𝑗𝑘𝑏𝑡

𝐽

𝑗=1

+ ∑ 𝑅𝑖𝑘𝑏𝑡

𝐼

𝑖=1

≤ 𝑐𝑎𝑘𝑏𝑍𝑘,     ∀𝑘, 𝑏, 𝑡 

(24) 𝑉′
𝑙𝑏𝑡 = ∑ 𝜎𝑐𝑏𝑡𝑍𝑙𝑐𝑡 ((1 − 𝛼)𝐷𝑐𝑏𝑡(2) + 𝛼𝐷𝑐𝑏𝑡(3))

𝐶

𝑐=1

,     ∀𝑙, 𝑏, 𝑡 

(25) ∑ ∑ 𝑍𝑙𝑐𝑣𝑡

𝐶∪𝐿

𝑙=1

𝑉

𝑣=1

= 1,     ∀𝑐, 𝑡 

(26) ∑ ∑ ∑ 𝜎𝑐𝑏𝑡𝑍𝑙𝑐𝑣𝑡 ((1 − 𝛼)𝐷𝑐𝑏𝑡(2) + 𝛼𝐷𝑐𝑏𝑡(3))

𝐵

𝑏=1

𝐶∪𝐿

𝑙=1

𝐶

𝑐=1

≤ 𝑐𝑎𝑣,     ∀𝑣, 𝑡 

(27) 𝑈𝑚𝑣𝑡 − 𝑈𝑐𝑣𝑡 + 𝐶𝑍𝑚𝑐𝑣𝑡 ≤ 𝐶 − 1,     ∀𝑚, 𝑐 ∈ 𝐶, 𝑣, 𝑡 

(28) ∑ 𝑍𝑙𝑐𝑣𝑡

𝐶∪𝐿

𝑐=1

= ∑ 𝑍𝑐𝑙𝑣𝑡

𝐶∪𝐿

𝑐=1

,     ∀𝑣, 𝑡, 𝑙 ∈ 𝐶 ∪ 𝐿 

(29) ∑ ∑ 𝑍𝑙𝑐𝑣𝑡

𝐶

𝑐=1

𝐿

𝑙=1

≤ 1,     ∀𝑣, 𝑡 

(30) ∑ 𝑉′
𝑙𝑏𝑡

𝐵

𝑏=1

≤ ∑ 𝑐𝑎𝑙𝑏

𝐵

𝑏=1

𝑍𝑙 ,     ∀𝑙, 𝑡 

(31) −𝑍𝑙𝑐𝑡 + ∑(𝑍𝑙𝑢𝑣𝑡 + 𝑍𝑢𝑐𝑣𝑡)

𝐶∪𝐿

𝑢=1

≤ 1,     ∀𝑙, 𝑐, 𝑣, 𝑡 

(32) ∑ ∑ ((1 − 𝛼)𝑡𝑡𝑙𝑐(1) + 𝛼𝑡𝑡𝑙𝑐(2)) 𝑍𝑙𝑐𝑣𝑡

𝐶∪𝐿

𝑙=1

𝐶∪𝐿

𝑐=1

≤ 𝑇𝑣,     ∀𝑣, 𝑡 

(33) 𝑄𝑘𝑏𝑡𝑟 = 0,     ∀𝑘, 𝑏, 𝑡 < 𝑟 

(34) 𝑄𝑙𝑏𝑡𝑟
′ = 0,     ∀𝑙, 𝑏, 𝑡 < 𝑟 

(35) 𝑋𝑖𝑗𝑏𝑡, 𝑅𝑖𝑘𝑏𝑡 , 𝑌𝑗𝑘𝑏𝑡 , 𝑊𝑘𝑙𝑏𝑡 , 𝑆𝑙′𝑙𝑏𝑡 , 𝑈𝑙𝑣𝑡 , 𝜎𝑐𝑏𝑡 ≥ 0,     ∀𝑖, 𝑗, 𝑘, 𝑐, 𝑙, 𝑙′, 𝑏, 𝑣, 𝑡 

(36) 𝐵𝑙𝑐𝑏𝑡𝑟 , 𝐴𝑙𝑙′𝑏𝑡𝑟, 𝑇𝑘𝑙𝑏𝑡𝑟 , 𝑄𝑙𝑏𝑡𝑟
′ , 𝑄𝑘𝑏𝑡𝑟 ≥ 0,     ∀𝑙, 𝑙′, 𝑐, 𝑘, 𝑏, 𝑡, 𝑟 

(37) 𝑍𝑗 , 𝑍𝑙 , 𝑍𝑘, 𝑍𝑙𝑐𝑡 , 𝑍𝑙𝑐𝑣𝑡 ∈ {0,1},    ∀𝑖, 𝑘, 𝑙, 𝑣, 𝑡, 𝑐, 𝑏 

Equation (1) shows the first objective function and includes minimizing the costs of the entire supply 

chain network (construction costs, maintenance costs, and transport costs of blood bags between 

centers). Equation (2) shows the second objective function including minimizing the maximum unmet 

demand from the distribution of blood bags to demand centers. Equation (3) represents the third 

objective function, and includes minimizing the amount of 𝐶𝑜2 gas emission by the transport of blood 

bags between centers and facilities. Constraint (4) shows the equilibrium relation in the transport of 

blood bags from blood donation clusters to main blood transfusion centers. Constraints (5) to (7) are 

related to the amount of blood bags stored in the temporary stores of the primary blood transfusion 

centers at the time of blood donation, with regard to the time of perishability of each blood bag and at 

any time period. Constraints (8) and (9) show the transport of blood bags from the main blood 

transfusion centers to the central laboratory centers with regard to the perishability of the blood bags. 

Constraints (10) and (11) indicate the level of inventory of each blood group in the temporary storage 

of primary blood donation centers and constraints (12) to (14) reflect the level of inventory of each type 
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of blood group in temporary warehouses of the primary laboratory. Constraints (15) and (16) show the 

amount of the transport of blood bags from the central laboratory centers to all demand points in each 

time period. Constraints (17) and (18) indicate the transfer of blood bags between the central laboratory 

centers according to the demand of the customer centers and the perishability time. Constraints (19) and 

(20) show the equilibrium relationship at the central laboratory centers and ensures that the blood bags 

are transferred to demand points before the period of blood corruptions. Constraints (21) to (23) are 

related to the capacity constraints of the temporary blood transfusion centers, the central laboratory 

centers and permanent blood transfusion centers, and ensure that the center cannot be used until the 

center has been established. Equation (24) shows the total flow of products (demand) in the central 

laboratory centers for transfer to demand centers. Constraint (25) ensures that each central laboratory 

center can only be allocated to a blood supply center. Constraint (26) shows the maximum carrying 

capacity of blood bags by the available vehicle. Constraint (27) is the restriction related to the removal 

of the sub-tour. Constraint (28) ensures that the vehicle can only enter and exit from any demand center 

once. Constraints (29) to (31) ensures that the start and end routing points of vehicle in the distribution 

of blood bags to the demand centers are the central laboratory centers. Constraint (32) shows the time 

limit for the transport of blood bags to customer demand centers. Constraints (33) and (34) show the 

rational relationships in the inventory of blood bags in the temporary warehouses of the primary blood 

transfusion centers and the central laboratory. Constraints (35) to (37) show the type and gender of the 

decision variables. 

 

4. Solution Method 

Multi-objective optimization is one of the most active and highly applied research areas among 

optimization issues. Often, multi-objective optimization is also known as multi-criteria optimization 

and vector optimization. The purpose of multi-objective optimization is to find a set of Pareto answers 

is a problem that creates the right balance between different objectives. So far, several methods have 

been proposed to solve multi-objective optimization problems, among which intelligent optimization 

methods (evolutionary algorithms) have a special place because, unlike the classical methods in applied 

mathematics, they often solve the multi-objective optimization problems as they are, and do not use 

Geometric transformations and the like. Among the evolutionary and intelligent algorithms presented 

for solving multi-objective optimization problems, we continue to examine the NSGA II and MOPSO 

algorithms and generate the initial solution to solve the problem in this paper. 

 

4.1. NSGA II Algorithm 

The genetic algorithm begins by randomly generating a primitive population of chromosomes, while 

satisfying the boundaries or limits of the problem. In other words, chromosomes are strings of the 

proposed values for solution variables of the problem, each representing a probable answer to the 

problem. The chromosomes are deduced from successive repetitions called generations. Throughout 

each generation, these chromosomes are evaluated according to the optimization objective, and 

chromosomes that are considered to be a better response to the problem are more likely to reproduce 

problem solving. It is very important to formulate the chromosome assessment function in order to help 

accelerate the convergence of computations towards the optimal public response. Because in the genetic 
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algorithm, for each chromosome, the amount of the evaluation function must be calculated and since in 

many cases with a significant number of chromosomes, in general, the timing of the calculation of the 

evaluation function can actually make it impossible to use the genetic algorithm on some problems, 

based on the values obtained by the objective function in the population of strings, each string is 

assigned a fitness number. This fitness number will determine the probability of selction for each string. 

Based on this probability, a set of strings is first selected. For generation of the next generation, new 

chromosomes that are called offsprings are created through the transplantation of two chromosomes 

from the current generation using the combinator or by chromosome modification using the mutation 

operator. Then new strings replace strings from the initial population so that the number of strings in 

the repetitive computations is constant. Random mechanisms that act on the selection and removal of 

strings are such that strings that are more agile are more likely to combine and produce new strings and 

are more resistant to the other strings during the replacement phase. In this regard, the population of 

sequences in a competition based on the objective function over different generations is completed and 

increased by the value of the objective function in the population of strings, so that after several years, 

the algorithm converges to the best chromosome, which hopefully represents an optimal or sub-optimal 

solution for the problem. In general, in this algorithm, while in each computational repetition, genetic 

operators search for new points of the search space, the search mechanism explores the search for areas 

of the space whose mean of the statistical function of the target is greater. Usually a new population 

which substitutes the previous one enjoys more fitness than the previous population. This means that it 

will improve from generation to generation. When the search is done, it will be possible to reach the 

maximum possible generation, either the convergence has been achieved or the stop criteria have been 

met, and thus the best chromosome obtained from the last generation is chosen as an estimated optimal 

solution or optimal solution for the problem. 

 

4.2. MOPSO Algorithm 

Kennedy and Eberhart, with the modeling of the movement of birds in the air, and the discovery of a 

logical relationship between the direction and speed of birds, and using the physics knowledge, 

proposed a method called particle mostion. The scientists later realized in their own research of the 

dependence of these movements, and found that the movement of a bird was due to information from 

birds around them. Therefore, they completed the proposed method and called it a swarm motion. In 

general, the particle swarm algorithm has many similarities to algorithms such as ant, or genetics 

algorithms, but there are also serious differences with them, which makes the algorithm more distinct 

and simpler. As an example, this algorithm does not use operators such as intersection and mutation. 

Consequently, this algorithm does not require the use of numeric strings and the decoding step, which 

is much simpler than algorithms such as genetics algorithm. This algorithm divides the solution space 

using a pseudo-probabilistic function to multi-path paths, which are formed by the motion of individual 

particles in space. The movement of a group of particles consists of two main components (definite and 

probable). Each particle is interested in the direction of the best current answer 𝑥∗ or the best answer 

𝑔∗ obtained so far. 
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4.3. Initial Chromosome 

In this paper, due to the high complexities of the proposed model, a new decoding based on priority, 

introduced by Ghahremani et al. [19], has been used. This encoding is based on a permutation of natural 

numbers to the length of the number of nodes in each level. Figure (2) shows the modified priority-

based decoding for one of the network levels with 3 potential donor centers and 4 fixed demand centers. 

In Figure (2), encoding is shown in one of the levels of the supply chain network with three potential 

donor centers and four fixed demand centers. Encoding is based on a permutation of the number of 

nodes, which is shown in Figure (2) as (3-4-7-1-2-5-6) where priorities (1-2-5-6) are related to fixed 

demand centers and priorities (3-4-7) are related to the potential donor center. To decode, the following 

two steps must be taken: 

Step 1: First, the highest priority is selected among the potential selected donation centers (priority 7 

for the third supplier), and if this donor can respond to all customer demand, the priority of the remaining 

donation centers will be reduced to zero. In the example of Figure (2), the capacity of the donation 

center 3 equals to 1,400, whereas the total demand for customer of fixed centers is 1600. In this case, 

the next donation center will be selected with the next highest priority (priority 4 for the second donation 

center). The total capacity of the two donation centers (2900) is larger than the total demand of customer 

centers (1600). In this case, the priority of the first donation center will be reduced to zero. 

Step 2: After determining the number and location of potential donation centers, an optimal allocation 

between the selected donation centers and demand centers takes place. At this step, the highest priority 

(priority 7 for the third supplier center) is selected and the lowest transportation cost per customer is 

identified with the donation center selected from the first step (fourth demand center at a cost of 26) 
and the minimum amount of capacity of the donation center selected and the designated customer as 

the optimal allocation value is determined. After updating the remaining capacity or unsuccessful 

demand, the priority value is reduced to zero. As long as all the priorities are not reduced to zero, the 

second step is repeated. 

Node  Capacity  Demand  

1 1200 400 

2 1500 450 

3 1400 350 

4 - 400 
 

 

Cost-transportation 

Node  1 2 3 4 

1 22 38 34 36 

2 32 28 36 30 

3 30 32 38 26 
 

 

 Node  1 2 3 1 2 3 4 

( )v K J
 

Priority  3 4 7 1 2 5 6 

 

 Node  1 2 3 1 2 3 4 

( )v K J
 

Priority  0 4 7 1 2 5 6 
 

 

Fig. 2. Encoding and decoding based on modified priority [20] 
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5. Computational results 

In this section, in order to solve the sample problems, 15 sample problems according to Table (1) were 

randomly generated in MATLAB software. Because of the lack of access to real data, random data was 

used based on uniform distribution in accordance with Table (2). Also, for better analysis of algorithms, 

from each sample problem, 5 replicates were performed in the same range within the defined data set. 

Finally, the means of each of the indicators were evaluated and compared as the basis for comparison. 

 

Table 1. The size of the designed Sample problems 

Sample problem 𝑖 𝑗 𝑘 𝑙, 𝑙′ 𝑚, 𝑐 𝑏 𝑡 𝑟 𝑣 

1 5 4 4 6 8 2 4 4 4 
2 6 6 4 6 9 3 4 4 4 
3 6 6 4 7 10 3 4 4 4 
4 8 10 5 8 12 3 4 4 5 
5 12 12 10 9 16 3 5 5 5 
6 13 15 12 11 17 4 5 5 6 
7 14 15 14 12 18 4 5 5 6 
8 17 15 15 12 20 5 5 5 6 
9 17 16 16 13 21 5 6 6 7 
10 19 16 16 14 24 5 6 6 7 
11 19 17 16 15 25 5 6 6 7 
12 20 18 17 15 26 7 7 7 7 
13 20 19 17 16 27 7 7 7 8 
14 20 19 17 16 28 7 8 8 8 
15 20 20 20 20 30 8 8 8 8 

 

Table 2. The boundaries of the parameters produced on the basis of uniform distribution 

Deterministic parameter Interval boundaries Deterministic parameter Interval boundaries 

𝐺𝑗 ~U (10000،20000) 𝑐𝑜2𝑖𝑗
 ~U (50،200) 

𝐻𝑘 ~U (20000،30000) 𝑐𝑜2𝑙c
 ~U (50،200) 

𝑈𝑙 ~U (50000،60000) 𝑐𝑜2𝑖𝑘
 ~U (50،200) 

𝐹𝑣 ~U (200،300) 𝑐𝑜2𝑗𝑘
 ~U (50،200) 

ℎ𝑘𝑏 ~U (1،2) 𝑐𝑜2𝑘𝑙
 ~U (50،200) 

ℎ𝑙𝑏
′  ~U (1،2) 𝑐𝑜2𝑙𝑙′ ~U (50،200) 

𝐶𝑙𝑏 ~U (10،20) 𝑐𝑎𝑗𝑏 ~U (300،500) 

𝑇𝑣 ~U (500،1000) 𝑐𝑎𝑘𝑏 ~U (300،500) 

𝑢𝑏 ~U (1،3) 𝑐𝑎𝑙𝑏 ~U (300،400) 

  𝑐𝑎𝑣 ~U (500،800) 

Non-deterministic parameter Interval boundaries 

𝐷𝑐𝑏𝑡 ~U ((150،180)،(120،150)،(120،100)) 

𝑡𝑡𝑙𝑐 ~U ((20،30)،(15،20)،(10،15)) 

𝑇𝑖𝑗 , 𝑇𝑖𝑘, 𝑇𝑗𝑘, 𝑇𝑘𝑙 , 𝑇𝑙𝑙′ , 𝑇𝑙c ~U ((20،30)،(10،20)،(10،5)) 

Before solving sample problems by meta-heuristic algorithms, the initial parameters of each of the 

algorithms must be adjusted to increase their efficiency in finding effective solutions. Therefore, in this 

section, the parameter of meta-heuristic algorithms is first set by Taguchi method. To adjust the 

parameter, response variable is used. This variable is a combination of the five criteria provided and its 

value is calculated using equation (38). Given that the criteria do not have the same importance, the 

weight coefficients used for them are determined according to Table (3). 



45 

 

Table 3. Weight of assessment criteria for calculating the response variable 

CPU Time SI SM MSI NPF Criteria  

1 2 2 2 1 Weights  

 

(38) 𝑅𝑖 =
𝑤1𝑅𝑃𝐷1

̅̅ ̅̅ ̅̅ ̅ + 𝑤2𝑅𝑃𝐷2
̅̅ ̅̅ ̅̅ ̅ + ⋯ + 𝑤𝑛𝑅𝑃𝐷𝑛

̅̅ ̅̅ ̅̅ ̅

𝑤1 + 𝑤2 + ⋯ + 𝑤𝑛
 

The factors and operating levels used for the NSGA-II and MOPSI algorithms are defined according to 

Table (4): 

Table 4. The optimal levels of the factor used for the NSGA-II algorithm 

Level of optimal 

factor 
Level of factor 

3 
Level of factor 

2 
Level of factor 

1 
Parameter Algorithm 

70 100 70 50 nPop 

NSGA II 0.2 0.8 0.5 0.2 pc 

0.2 0.4 0.3 0.2 pm 

100 100 75 50 nParticle 

MOPSO 
70 150 100 70 nRep 

0.7 0.7 0.6 0.5 W 
1 1.5 1.25 1 C1 

1 1.5 1.25 1 C2 

After determining the optimal parameters of the meta-heuristic algorithms and their adjustment, the 

sample problems are solved by the meta-heuristic algorithms and the average results are selected as the 

basis of the comparison. Table (5) and (6) show the average of 5 problems designed for each sample 

problem in different sizes. This table contains the mean of the first, second, and third objective functions 

as well as the mean of multi-objective meta-analysis algorithms (number of effective responses, 

maximum exponent, metric distance index, and computational time). 

Table 5. The mean of objective functions and comparison indices in solving with NSGA II algorithm 

Sample 
problem 

Objective 
function 1 
(Dollar) 

Objective 
function 2 
(Number) 

Objective 
function 3 

(Kg) 
NPF MSI SM CPU time 

1 533806.72 67.21 626021.7 9 270273.91 0.37 36.46 
2 778692.87 70.65 1183581.5 19 585593.25 0.77 108 
3 881581.31 71.63 1254446.7 20 479316.63 0.7 170.3 
4 1033814.6 69.74 1500880.8 14 850298.87 0.57 242.53 
5 1674913.5 73.77 2738382.1 14 1129077.8 0.41 335.5 
6 2369557.6 75.81 3742531.8 22 1508175.5 0.55 434.4 
7 2500890.6 75.05 4255514.3 23 1797128 0.53 545.77 
8 3416474.1 76.62 5820890.5 18 2739770.1 0.57 669.07 
9 4301936 76.63 7502772.8 21 2529228.6 0.4 819.6 
10 4860023.4 75.96 8698211.2 23 3529017.4 0.75 959.67 
11 5040590.1 76.69 8939161 23 3087180.7 0.74 1040.13 
12 8540218.4 77.88 15083483 23 4883033.1 0.69 1326 
13 8887924.2 77.42 15628763 30 3839628.2 0.66 1528.37 
14 10361986 77.46 19331574 21 4564822.6 0.77 1802.27 
15 12608666 78.02 23272981 24 5383709.7 0.87 2640 
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Table 6. The mean of objective functions and comparison indices in solving with MOPSO algorithm 

Sample 
problem 

Objective 
function 1 
(Dollar) 

Objective 
function 2 
(Number) 

Objective 
function 3 (Kg) 

NPF MSI SM CPU time 

1 495858.69 70.1 605637.22 8 109850.13 0.46 34.4 

2 776699.89 68.99 1110774.6 14 329845.53 0.62 39.07 
3 871134.25 68.48 1296974 8 370471.43 0.23 51.66 
4 1046187.5 69.15 1444397 16 463108.57 0.59 95.93 
5 1653146.4 74.62 2780052.9 18 817523.73 0.35 131.2 
6 2353344.2 74.41 3954175.9 23 1526123.7 0.49 280.5 
7 2450251.7 75.41 4339170.4 16 2008648.7 0.55 349.16 
8 3434001.9 76.71 6063469.1 31 2559860.1 0.75 494.7 
9 4334688.4 76.19 7482226 28 3694417.3 0.64 723.16 
10 4817592.1 76.79 8017340.4 19 2215230.1 0.59 980.4 
11 5020566.3 75.34 8757922.6 12 2437807.9 0.76 1328.75 
12 8500502.4 78.06 14956724 25 3887334.5 0.44 1834.56 
13 8759033.2 77.5 15871173 12 3757576.1 0.72 2337.3 
14 10251099 77.66 19121379 12 4593286.9 0.66 2983.04 
15 12554017 77.53 22872852 17 5138916 0.51 3957.9 

Tables (5) and (6) show the average of the results obtained from solving the sample problems with 

meta-heuristic algorithms. According to results, it can be concluded that the MOPSO algorithm has 

better results than the NSGA II algorithm for the sample problems (12) to (15). This shows that in the 

very large dimensions, the efficiency of the MOPSO algorithm will be greater in achieving the results 

of the first objective function. Also, the result illustrates the comparison of the means of the second 

objective function in different sample problems. Therefore, we cannot easily comment on the efficiency 

of the algorithm in obtaining the results of the second objective function. At the end, according to Table 

(5) and (6), the means of the third objective function obtained by the proposed algorithms are close to 

each other in different sample problems. It can only be seen that in sample problems (14) and (15), 

NSGA II algorithm has gained better solutions that the NSGA II algorithm. The NSGA II algorithm is 

expected to have higher efficiency in achieving the results of the third objective function than in the 

MOPSO algorithm. Given Tables (5) and (6), it can be seen that computational time increases 

exponentially with increasing sample size, which is the reason for the NP-Hard problem. However, the 

MOPSO algorithm for medium sized problems is better than the computational time of the NSGA II 

algorithm, but with increasing size, the computational time gained by this algorithm has been greatly 

increased. 

A sample of the Pareto front obtained by solving the sample problem 1 using meta-heuristic algorithms 

NSGA II and MOPSO shown in Figure (3). These efficient solutions of the objective functions are 

presented in pairs alongside each other 
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Fig. 3. Pareto Front obtained from solving the sample problem 1 using NSGA II and MOPSO Algorithms 

According to the results obtained from the t-test on the mean of objective functions and indices, it can 

be concluded that because of the lower value of the P-value test on the objective function than 0.05, 

only between the mean of the first objective function derived from, there is a significant difference in 

the problem solving with the meta-heuristic algorithms NSGA II and MOPSO. Given the P-value of 

other indices, there is no significant difference between their means. Therefore, for determining the 

most efficient algorithm, a multi-criteria decision making method is used as a comprehensive criterion. 

In this way, the means of all indices are determined from all sample problems and the basis for a general 

comparison of algorithms is selected. If the value of objective functions, the metric distance index and 

algorithm computing time is less and the indicator of the metric distance and the number of responses 

are efficient, then the algorithm will be efficient.  

 

6. Conclusions and suggestions 

In this paper, a location-routing-allocation problem in a blood supply chain network was designed and 

modeled in terms of uncertainty and considering the perishability nature of blood. Three opposing 

objective functions considered for this model were to minimize the cost of the entire supply chain 

network, minimize the maximum unmet demand and minimize greenhouse gas emissions. At first, a 

non-deterministic model of the problem was designed and demand parameters, transport costs, and the 

time of blood transport were considered uncertain and a robust optimization model was presented for 

controlling non-deterministic parameters. Then, in order to solve the model, 15 sample problems were 

randomly generated and in order to generate more realistic answers, 5 problems were designed in the 

same size and the means of the objective functions, and the meta-heuristic algorithm comparisons (the 

number of efficient responses, the most exponential index, the metric distance index, and computational 

time) were analyzed as the basis for evaluation and comparison. Firstly, using statistical tests including 

t-test, the significant difference of the indices was evaluated. It was observed that there was only a 

significant difference between the means of the first objective function obtained from solving sample 
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problems using NSGA II and MOPSO algorithms. Then, in order to determine the most efficient 

algorithm, the TOPSIS multi-criteria decision-making method was used and the most efficient 

algorithm was determined. The output result indicated the efficiency of the NSGA II algorithm with a 

weight gain of 0.6905 as opposed to the MOPSO algorithm with a weight of 0.3095. So, in general, 

considering all the indices, the NSGA II algorithm was more efficient than the MOPSO algorithm in 

solving the location-routing-allocation problem in a blood supply chain network. Suggestions for future 

research are listed below: 

1. Using other multi-objective meta-heuristic algorithms such as multi-objective ant lion 

algorithm 

2. Considering more non-deterministic parameters with regard to environment uncertainty 

3. Considering vehicle routing between the other levels of the supply chain network 

4. Implementing the model of blood supply chain network designed in a case study 

5. Using the DEA method to select the optimal solutions among from the efficient solutions  
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