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SUMMARY

Effective drugs for atrial fibrillation (AF) are lacking, resulting in significant morbidity andmortality. This study
demonstrates that network proximity analysis of differentially expressed genes from atrial tissue to drug tar-
gets can help prioritize repurposed drugs for AF. Using enrichment analysis of drug-gene signatures and
functional testing in human inducible pluripotent stem cell (iPSC)-derived atrial-like cardiomyocytes, we
identify metformin as a top repurposed drug candidate for AF. Using the active compactor, a new design
analysis of large-scale longitudinal electronic health record (EHR) data, we determine that metformin use
is significantly associated with a reduced risk of AF (odds ratio = 0.48, 95%, confidence interval [CI] 0.36–
0.64, p < 0.001) compared with standard treatments for diabetes. This study utilizes network medicine meth-
odologies to identify repurposed drugs for AF treatment and identifies metformin as a candidate drug.

INTRODUCTION

Atrial fibrillation (AF), themost prevalent cardiac arrhythmia in the

western world, affects 1%–2% of the general population.1–3 The

incidence in the United States, currently estimated at 5–6 million

individuals, is expected to increase to 12 million by 2030.4

Because AF is silent in 5%–35% of diagnosed patients, its over-

all prevalence is likely higher. Although the early stages of AF are

considered benign,5 persistent and long-standing forms of AF

are associated with a substantial increase in mortality, with a

1.5- and 1.9-fold increase in the odds ratio in men and women,

respectively.6 AF is also associated with a higher risk of stroke,

heart failure, and dementia.7,8 Patients with AF are 30% more

likely to be hospitalized at least once annually, resulting in a sig-

nificant financial burden to them and the healthcare system.9

Clinical management of AF requires improvement. The pri-

mary goals of AF clinical management are controlling heart

rate, restoring and maintaining sinus rhythm, and preventing

thromboembolism. Drugs that control the ventricular rate include

b-adrenergic blockers, calcium channel blockers, and cardiac

glycosides. Rhythm control of AF is limited by side effects of

anti-arrhythmic drugs, which can include risk of life-threatening

proarrhythmia.10–12 AF ablation strategies include pulmonary

vein isolation and/or atrial substrate ablation. These are invasive

procedures with limited success, significant recurrence rates,

and risk of major complications.13,14 Anticoagulants and/or left

atrial appendage closure prevent thromboembolism but carry

bleeding or procedure risks.8

Genome-wide association studies (GWASs) have identified

�100 AF susceptibility loci.15 Despite this progress in under-

standing the genetic risk of AF, predisposition to AF involves a

complex, polygenic, and pleiotropic genetic architecture.

Network medicine exploits the network paradigm that considers

the functional and topological organization of gene products as
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neighborhoods (called ‘‘diseasemodules’’) in the human protein-

protein interactome.16,17 Recent advances in network medicine

methodologies that shed light on the relationship between drugs

(drug targets) and diseases (molecular [protein] determinants in

diseasemodules) can serve as useful tools for efficient screening

of potentially new indications for approved drugs in multiple

complex diseases,18–21 including cardiovascular disease. We

therefore posited that networkmedicine approachesmay enable

identification of candidate drugs with well-established pharma-

cokinetics/pharmacodynamics, safety, and tolerability profiles

for patients with AF by using drug repurposing strategies.19,22–27

Pathways for AF treatment can include multiple targets that

share biological networks. Known drug targets can be mapped

to the human proteome and, subsequently, to disease modules.

This network medicine approach allows discovery of repurpos-

able drug targets and minimizes the risk of toxicity by consid-

ering all drug-protein interactions within a protein-protein

network.28,29 Integrative analyses of genomics, transcriptomics,

and interactomics (protein-protein interactions [PPIs]) have not

been fully exploited for AF drug repurposing. Here we used

network-based approaches to prioritize drug repurposing for

AF by integration of transcriptomics data from human left atrium

(LA) tissue and drug-induced gene signatures from human

inducible pluripotent stem cell-derived atrial-like cardiomyo-

cytes under the protein-protein interactome (Figure 1). We also

validate metformin use for reduced AF risk using large-scale lon-

gitudinal pharmacoepidemiologics analyses.

RESULTS

Network-based drug repurposing framework for AF
To understand the drug-disease relationships and framework for

nominating putative repurposed drugs for AF, we performed the

following: (1) construction of the AF disease module from LA tis-

sue transcriptomics in AF and non-AF controls and reconstruc-

tion of the drug-target network (Figure 1A); (2) calculation of

network proximity of drug targets to the AF disease module

finding and subsequent calculation of the gene set enrichment

scores of screened drugs (Figure 1B); (3) in vitro validation of

nominated drug candidates and performance of mechanistic

studies in human induced pluripotent stem cell (hiPSC)-derived

atrial-like cardiomyocytes (a-iCMs) (Figure 1C); and (4) large-

scale population-based validation to test candidate drug out-

comes with AF (Figure 1D). Our in silico drug repurposing

approach applies additional quality control steps for nominating

drug candidates. We posited that, if a drug significantly reverses

dysregulated gene expression in cell lines, then such a drug has

the potential of reversing gene neighborhoods in AF disease

modules derived from LA tissue transcriptomics profiles. We

harnessed multiple lines of complementary evidence from

a-iCM models and large-scale epidemiology data to ensure the

plausibility of metformin as a repurposed drug for AF.

AF disease network
We generated an integrative network-based approach to identify

molecular networks of AF. We hypothesized that this network

medicine approach would enhance candidate drug prioritization

for treatment of AF. In prior work, we described a human

protein-protein interactome generated from five types of

PPIs.20,24,25,30,31 To depict the human interactome network, we

gathered associated proteins from five levels of evidence: (1) bi-

nary PPIs tested by high-throughput yeast two-hybrid (Y2H)

systems; (2) binary, physical PPIs from protein 3D structures;

(3) kinase-substrate interactions; (4) signaling networks; and (5)

literature-curated PPIs identified by affinity purification followed

by low-throughput mass spectrometry, Y2H, and other experi-

mental approaches. To identify testable AF disease modules un-

der the humanPPI networkmodel, we gathered RNAsequencing

(RNA-seq) data from LA collected from 251 patients who under-

went elective cardiac surgery to treat AF, valve disease, or other

cardiac disorders and 14 nonfailing donor hearts not used for

transplantation (Table S1). We identified 491 DEGs in AF cases

(i.e., hearts in AF at the time of acquisition) compared with

sinus rhythm cases (adjusted p < 0.05). The AF disease module

(defined by the largest connected component in the human inter-

actome) shown in Figure 2 includes 245 unique proteins (nodes)

and 350 PPIs (edges). We identified several AF-specific hub pro-

teins related to cardiac integrity and metabolic fitness, including

LDHB, CDH2, UQCRH, PDLIM5, COPS5, and OXCT1. Gene

Ontology (GO) enrichment analysis identified the following bio-

logical processes significant in AF differentially expressed genes

(DEGs): the endoplasmic reticulum unfolded protein response,

calcium and potassium ion transport, succinyl-coenzyme A

(CoA) metabolism, collagen biosynthesis, membrane repolariza-

tion, and cardiac muscle relaxation (Figure S1A). Similarly, Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrich-

ment analysis identified propanoate metabolism, proteasome,

regulated calcium reabsorption, tricarboxylic acid (TCA) cycle,

and cardiac muscle contraction as pathways significantly en-

riched in AF (Figure S1B).

Network-based drug repurposing for AF
We harnessed drug-target interactions from 2,891 US Food and

Drug Administration (FDA)-approved or clinically investigational

drugs obtained from the Drugbank and Therapeutic Target

(TTD) databases to assemble the drug-target network (Fig-

ure 1A).32 The network proximity of drug targets to the AF disease

module was calculated using the Jaccard index and overlap co-

efficient (STAR Methods). To correct the literature bias of well-

studied proteins in the human interactome, we normalized calcu-

lated values to Z score values and performed 1,000 permutation

tests as described in previous work.20,31 A higher network prox-

imity (quantified by a lower Z score) represents a strong network

relationship. Using a Z score cutoff value of Z < �1, we focused

on 54 drug candidates (Figure 3A). To further narrow our repur-

posed drug list, we used gene expression data of drug-treated

human cell lines from the Connectivity Map database to prioritize

drug candidates.33 Gene set enrichment analysis (GSEA) was

performed, and enrichment scores (ESs) were calculated to

nominate drug candidates using a cutoff of ES > 0 and

p < 0.05. Here we identified 9 potential candidates: phenformin

(Z =�2.475), metformin (Z =�1.97), furosemide (Z =�1.912), in-

dapamide (Z = �1.691), metacycline (Z = �1.674), rofecoxib (Z =

�1.67), dantrolene (Z =�1.193), alclometasone (Z =�1.094), and

streptozocin (Z = �1.048). We found enrichment in the following

pharmacological categories: metabolism, ion transport drugs,
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Figure 1. Study overview

(A) We utilized a systems pharmacology-based network medicine platform to quantify the proximity of interactions between the atrial fibrillation (AF) interactome

nodes and drug targets in the PPI network.

(B) GSEA of known targets are used to validate the in silico approach and nominate candidate drugs.

(C and D) Using human induced pluripotent stem cell-derived atrial-like cardiomyocytes (a-iCMs; C) as well as large-scale pharmacoepidemiologic analysis (D),

we are able to validate metformin as a repurposed drug for AF. Created with BioRender.com.
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ion transport, and anti-inflammatory drugs. To compare our

approach with the traditional disease-associated gene-based

approach, we also tested our drug repurposing pipeline using

34 AF disease-associated genes collected from the Human

Gene Mutation Database (HGMD).34 Using the same perfor-

mance cutoff, Z < �1 and p < 0.05, we identified 282 candidates

of repurposed drugs. Using this approach, neither metformin (Z =

0.037, p = 0.419) nor phenformin (Z = �1.36, p = 0.116) passed

the significance threshold for drug repurposing from 34 AF-asso-

ciated genes. The top drug candidate using the disease genes is

propafenone, a class 1C antiarrhythmic agent. We performed a

Pearson correlation coefficient (PCC) analysis between the drug

Figure 2. The atrial fibrillation interactome

The network highlights the atrial fibrillation (AF) interactome that connects 245 AF enriched genes. Node size is proportional to �log10 p value, and color cor-

responds to log2 fold change (log2FC) in AF compared with sinus rhythm (STARMethods). The AF disease module (defined by the largest connected component

in the human interactome) shown includes 245 unique proteins (nodes) and 350 PPIs (edges). *p < 0.05. See also Figures S1, S5, and S7 and Tables S1 and S8.
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A

D

E

CB

Figure 3. Network medicine applied to AF drug repurposing

(A) A subnetwork is shown to highlight the 54 candidate drugs associated with AF DEGs and their associated targets. Node size is proportional to Z score. Drugs

are colored by their first-level anatomical therapeutic chemical (ATC) classification.

(B–E) Four candidate drugs with gene set enrichment analysis (GSEA) ES > 0 and p < 0.05 and their target genes using our drug-target network analysis.

See also Figures S2 and S5 and Table S7.
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Figure 4. Validation of the AF repurposed drug candidate metformin using a-iCMs

(A) A subnetwork of metformin, drug targets, and PPI neighbors. The node color corresponds to the expected effect of metformin on target expression; green

indicates agonist, and red indicates antagonist.

(B) DE genes of a-iCMs treated with metformin (n = 3) or water (n = 3) for 30 h. Data are expressed as FC, with red designating increased expression and blue

decreased expression. All experimental combinations had 3 replicates.

(legend continued on next page)
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Z scores derived from the network proximity analysis using the

HGMD gene list versus DEGs from LA samples. We found

modest correlation (PCC = 0.375, p < 1.0 3 10�8, coefficient of

determination [R2] = 0.14) (Figure S2). The data suggest high

reproducibility of transcriptomics-derived disease module prox-

imity and traditional gene-based approaches.24,25,35,36 We next

discuss several candidate drug classes.

Anti-hypertension and heart failure drugs

AF and heart failure (HF) share risk factors andmay represent ad-

ditive risks for morbidity and mortality. Consequently, both are

frequently treated simultaneously. A recent GWAS of HF showed

overlapping genetics with AF.37 The top GWAS loci for AF and

HF are on chromosome 4 near PITX2, a gene implicated in for-

mation of the pulmonary veins. Also, AF and HF are associated

with loci near SYNPO2L, which encodes a protein that binds to

actin, and KLHL3, which encodes a protein involved in ubiquiti-

nation of proteins; abnormal proteostasis has been implicated

in AF.37 Our AF network proximity analysis shows a significant

association with indapamide (Z = �1.69, p = 0.038, ES = 0.38)

and furosemide (Z = �1.91, p = 0.031, ES = 0.38) (Figures 3A

and 3C). Furosemide is an FDA-approved diuretic for treating

edema secondary to clinical conditions like HF by targeting so-

dium, potassium, and chloride transporters (SLC12A2 and

SLC12A1). We found that furosemide targets 13 additional AF

module genes (GPR35, HSD11B1, CA1, CA2, CA4, CA5A,

CA5B, CA6, CA7, CA9, CA12, CA14, and ATP1A1) (Figure 3C).

Previous studies have shown that GPR35 contributes to angio-

tensin II-induced hypertension and cardiotoxicity, suggesting

potential use of anti-hypertensive drugs for treatment of AF.38–40

Anti-inflammatory drugs

Prior evidence suggests that inflammation plays a role in the eti-

ology of AF disease.41–43 Comorbidities associated with AF

include those associated with low-grade inflammation and

metabolic dysfunction, like obesity, hypertension, and coronary

artery disease. Structural and electrical remodeling after AF

onset can propagate inflammation. Here we identified the anti-

inflammatory agents rofecoxib (Z = �1.67, p = 0.004, ES =

0.22) and alclometasone (Z =�1.05, p < 0.001, ES = 0.32) as po-

tential AF repurposable drug candidates. Rofecoxib, a COX2 in-

hibitor that is FDA approved to treat osteoarthritis and rheuma-

toid arthritis, has been shown to target five AF module genes

(ALDH1A1, ELN, PTGER2, PTGS1, and PTGS2) (Figure 3E).

Cardiac metabolism drugs

Dysregulation of cardiac metabolism has been well described in

AF.44 AMP-activated protein kinase (AMPK) agonists, including

the drug family members phenformin and metformin, rank at

the top of our AF drug repurposable candidates (Z = �2.475,

p = 0.002, ES = 0.255, and Z =�1.97, p = 0.015, ES = 0, respec-

tively) (Figures 3B and 4A). An association between type 2 dia-

betes and AFwas established over two decades ago.45–47 A pro-

spective case-control analysis of individuals treated with

metformin demonstrated a decrease of 19% in the incidence

of new-onset AF.48 AMPK is considered amaster regulator of en-

ergy status in the heart. Activation of AMPK stimulates pathways

that utilize glucose and fatty acids to generate ATP.49 In addition

to targeting the AMPK subunits PRKAB1 and PRKAA1, phenfor-

min also targets a key regulator of oxidative stress, NFE2L2

(NRF-2), as well as the ATP-sensitive potassium channel pore

subunit KCNJ8, a metabolically sensitive ion channel and regu-

lator of cardiac repolarization (Figure 3B). In addition to PRKAB1,

metformin also targets ACACB, GPD1, ETFDH, and DPP4,

genes that play a role in metabolic pathways. Metformin drug

target neighbors that were significant and DEGs in the AF

network module (Figure 4C) were PTEN, NPPB, GPC2, and

CXCL12 (Figure 4A).

a-iCM validation of metformin
To validate our in silico repurposed drug findings, we generated

a-iCMs for downstream analysis. 30 days from differentiation

onset, the a-iCMs exhibited spontaneous beating and ex-

pressed high troponin levels. Beating cells were pretreated

with metformin or vehicle for 6 h and then paced for 24 h, stim-

ulating cell stress (Figure 1C).

Bulk RNA-seq was used to broadly assess the DEGs associ-

ated with metformin exposure (Figure 4B) using a similar design

as the quantitative real-time PCR study. Following multiple

testing correction (Bonferroni method with 16,895 expressed

genes and family-wise error rate of 0.05), 251 genes

exhibited significant differential expression (marginal DEG

p < 2.96 3 10�6) for metformin versus vehicle water exposure

in the context of 1-Hz pacing stimulation. Several key cardiovas-

cular or drug-relatedmarkers were significantly upregulated with

metformin, such as NMRK2, PSAT1, PCK2, and HMOX1 (Fig-

ure 4B). RT-PCR was performed to validate the expression of

AF PPI neighbors. Other known markers associated with low

expression in AF (CACNA1C, CACNA1D, HSF1, HSF2,

SCN5A, and HSPB1 [HSP27]) increased after metformin treat-

ment (Figure S3; Table S2). Network analysis was performed us-

ing the DEGs to identify gene neighborhoods associated with

metformin exposure and showed several interactions associated

with a decrease in P1K3R3 and an increase in the mitochondri-

ally expressed gene SHMT2 (Figures 4C and S4B). Pathway

enrichment analysis suggests that the top upregulated genes,

including PSAT1, NMRK2, and PCK2, had neighbors enriched

in the AMPK/mitogen-activated protein kinase (MAPK) signaling

pathways, metabolism, inflammation, and mitochondrial func-

tion (Figures 5 and S4B). TGFB1 and TXNIP were significantly

downregulated, indicating enhanced control of redox state and

cellular homeostasis. Specifically, we found a subset of known

PPI neighbors of thioredoxin interacting protein (TXNIP) corre-

sponding to insulin resistance (RELA, SLC2A1, and PTPN11)

(Figure 5). ACSM3, a rate-limiting enzyme involved in fatty

acid metabolism, was significantly downregulated. However,

ACSF2, HADHB, and ZADH2, genes that also play a role in lipid

metabolism, were upregulated (Figure S4B). CS, a marker of

mitochondrial content, and the electron transport chain genes

SDHA2 and COX6A2 were also upregulated, suggesting poten-

tial upregulation of metabolic pathways, which, in the context of

(C) A subnetwork representing the significant differentially expressed genes (DEGs) and their PPI neighbors (gray). The node size is proportional to�log10 p value,

and color corresponds to log2FC in metformin-treated a-iCMs versus the control after 1-Hz pacing stimulation.

See also Figures S3, S4, and S5 and Tables S2 and S9.
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AF, could better enable the atria to meet the energy demand. We

observed decreased expression of an AF network hub, OXCT1,

with metformin treatment, implying a shift in energy utilization.

These functional observations in a-iCMsmechanistically support

the hypothesis that network-predicted metformin is a potential

treatment for AF.

Metformin induced changes of DEGs in AF
We next looked at the overlap between significant genes

(adjusted p < 0.05) in the AF cohort (n = 960) and the metformin

treated a-iCMs (n = 491). We found 30 DEGs significantly over-

lapped between the two datasets (p = 2.23 10�16) (Figure S5A).

Furthermore, we observed that metformin induced directional

changes of six genes upregulated in AF (COL21A1, KRT10,

OXCT1, SGCD, SORBS2, and TMEM214) and two genes down-

regulated in AF (ITGA5 andPPTC7) (Figure S5B). Specifically, we

observed that OXCT1 had several connections within the AF

module. Succinyl-CoA-3-oxaloacid CoA transferase (SCOT)

plays a central role in mitochondrially mediated metabolism.

We observed upregulation of PPTC7, which is responsible for

regulating coenzyme Q10. Together, the data indicate a shift

from starvation to pro-oxidant conditions. Furthermore, the

decrease in expression of COL21A1, SGCD, and SORBS2 indi-

cates improved structural integrity of the cardiomyocytes.

Pharmacoepidemiologic analysis suggests metformin
use with reduced AF risk
We evaluated the relationship in patients on metformin and AF

onset using large-scale patient record data extracted from the

Northwestern Medicine Enterprise Data Warehouse (NMEDW)

between 2011 and 2021. We conducted five drug cohort com-

parison analyses: (1) metformin versus dipeptidyl-peptidase 4

sulfonylurea (DPP4) (n = 1,244), (2) metformin versus thiazolidi-

nedione (TZD, n = 288), (3) metformin versus sulfonylurea (n =

2,352), (4) metformin versus glucagon-like peptide 1 receptor

agonists (GLP1RAS; n = 258), and (5) metformin versus combi-

nation of all four drug cohorts (DPP4, TZD, sulfonylurea, and

GLP1RAs, n = 3,578). Tables 1 and S5 summarizes the data

for each group in our dataset. The comparator drugs did not

pass the threshold for significance in our network proximity pipe-

line (Table S6). We conducted propensity score (PS) matching

for age, gender, race, and comorbidities (including renal disease

and other AF-related comorbidities; Table 1). We found that met-

formin was significantly associated with a 52% reduced likeli-

hood of AF compared with the combined drug cohort (odds ratio

[OR] = 0.48, 95% confidence interval [CI] 0.36–0.64, p < 0.001;

Figure 6A). Metformin usage was significantly associated with

reduced risk of AF compared with sulfonylurea (OR = 0.67,

95% CI 0.48–0.93, p = 0.018; Figure 6C) and TZD (OR = 0.23,

95% CI 0.11–0.49, p < 0.001; Figure 6D). However, metformin

use is not significantly associated with AF risk compared with

GLP1RA (OR = 1.25, 95% CI 0.33–4.73, p = 0.737; Figure S6)

and DPP4 (OR = 1.05, 95% CI 0.68–1.63, p = 0.822; Figure 6B).

We also performed gender- and race-specific subgroup anal-

ysis. Several reports indicate that AF is more common in males

versus females, but the prevalence of risk factors differs.50–53

For example, diabetes has been observed as an AF risk factor

for women but not men.53 We found that male and female met-

formin users were significantly associated with reduced likeli-

hood of AF compared with the combined group by assembling

all figure drug cohorts (female: OR = 0.40, 95% CI 0.25–0.64,

p < 0.001; male: OR = 0.55, 95% CI 0.39–0.78, p < 0.001) and

TZD (female: OR = 0.21, 95% CI 0.04–0.99, p = 0.048; male:

OR= 0.31, 95%CI 0.14–0.68, p = 0.004) but had a stronger effect

size on females (Figures 6A and 6D). Among metformin users

versus sulfonylurea users, we observed that females had a

reduced AF risk (OR = 0.49, 95% CI 0.28–0.86, p = 0.012) but

males did not (OR = 0.77, 95% CI 0.51–1.16, p = 0.209)

(Figure 6C).

Despite the greater burden of AF in White individuals of Euro-

pean ancestry, AF risk factors (i.e., diabetes, hypertension, and

stroke) are more prevalent in Black Americans. The traditional

risk factors only represent a fraction of AF burden in this popula-

tion.54 The burden of disease explained by genetic risk loci re-

mains unclear for Black Americans.55–57 We observed a greater

reduction in AF risk among Black individuals in metformin users

versus the combined group (Black: OR = 0.27, 95% CI 0.07–

0.96, p = 0.044; White: OR = 0.55, 95% CI 0.41–0.73,

p < 0.001) (Figure 6A). When analyzing specific drug classes,

we found that, for Black Americans, metformin users have

reduced disease burden compared with sulfonylurea users

(OR = 0.12, 95% CI 0.02–0.98, p = 0.048) but White individuals

did not (OR = 0.76, 95% CI 0.53–1.07, p = 0.114) (Figure 6C).

However, White Americans taking metformin versus TZD had a

reduced disease burden (OR = 0.35, 95% CI 0.18–0.68, p =

0.002) but Black Americans did not (OR = 2.10, 95% CI 0.18–

24.86, p = 0.558) (Figure 6D). These findings validate our network

proximity drug repurposing analysis and indicate that metformin

is a candidate medicine that may mitigate AF risk. However, the

association between metformin use and decreased incidence of

AF will require a randomized controlled trial with an ethnically

diverse population to establish causality.

DISCUSSION

Pharmacological management of AF is limited by adverse ef-

fects and toxicity rates of anti-arrhythmic drugs and poor

long-term efficacy.12 Here we generated an AF disease

network module and utilized a network-based approach to

prioritize alternative drug options for AF (Figure 1). We showed

that our mechanism-based protein-protein interactome can

identify drug-AF associations. Specifically, we identified met-

formin as a high-confidence candidate for drug repurposing

for AF using network proximity analysis of drug targets to the

AF disease module and validate it using gene expression anal-

ysis of drug treatments in human cell lines and large-scale

pharmacoepidemiologics analysis.

Figure 5. Subnetworks of upregulated and downregulated genes after metformin treatment in a-iCMs

The central node color corresponds to upregulated (green) or downregulated (red) genes after metformin treatment in pacing a-iCMS. Outer node colors

correspond to KEGG pathway classification, and class is listed next to each pathway cluster. See also Table S9.
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Recent advances in network medicine have enabled ap-

proaches for drug repurposing in cardiovascular diseases.25

We highlighted several improvements of our current study

compared with previous network-based approaches.21,58 A

strength of our study is the biorepository of LA tissue cohort of

patients with AF and control individuals used to generate the

AF disease module compared with traditional disease-associ-

ated gene approaches in the literature.36,58

Wealso validate the network proximity-basedpredictions using

drug-gene signature-based enrichments. We posited that, if a

drug significantly reverses dysregulated gene expression in hu-

mancell lines, thensuchadrugcanpotentially reversegeneneigh-

borhood expression in AF disease modules derived from our LA

tissues cohort of patients with AF. Finally, we validated a highly

promisingdrugcandidate (metformin) using large-scaleEHRdata.

We tested whether our transcriptomics-based disease mod-

ule approach outperformed using traditional disease-associated

gene-based approaches. We utilized 34 AF risk genes from the

HGMD34 and identified 282 candidate drugs (Z < �1.0,

p < 0.05). Using this approach, neither metformin (Z = 0.037,

p = 0.419) nor phenformin (Z = �1.36, p = 0.116) passed the sig-

nificance threshold for drug repurposing. The data suggest that

human samples as well additional ES analyses can provide a

higher-quality list of putative repurposed drug candidates for AF.

Several studies have provided strong evidence for the associ-

ation of AF with metabolic syndrome diseases. Metformin is a

first-line FDA-approved medication for type 2 diabetes mellitus

(T2DM). The Framingham study showed a significant risk of

developing AF in individuals with diabetes (OR = 1.4 for men

and 1.6 for women, respectively) after multivariable adjust-

ment.45 Several follow-up studies have strengthened this obser-

vation, showing an increased AF risk with longer disease dura-

tion or worse glycemic control.46,47 This evidence suggests

that managing metabolic and inflammatory pathways in patients

with AF may provide therapeutic benefits.

Metformin targets and activates AMPK, a master regulator of

the metabolic stress response that senses AMP/ATP levels. The

heterodimeric protein is composed of alpha (catalytic) and beta/

gamma (regulatory) subunits encoded by genes such as

PRKAA1, PRKAA2, and PRKAB1. PRKAA1 was present in the

AF subnetwork.59 AMPK regulates glucose metabolism, fatty

acid oxidation, and autophagy via mTORC1.60 AMPK also

Table 1. Patient demographics for pharmacoepidemiologics analysis

Metformin DPP4 GLP1RA Sulfonylurea TZD Combination

N 13522 3,477 678 7,014 919 10,214

Age (mean [SD]) 62.41 (15.59) 70.20 (13.84) 62.35 (12.61) 69.34 (14.53) 69.03 (13.44) 68.95 (14.41)

Gender (male %) 6,923 (51.2) 1,870 (53.8) 333 (49.1) 3,942 (56.2) 563 (61.3) 5,613 (55.0)

Race

White (%) 10,293 (76.1) 2,819 (81.1) 519 (76.5) 5,658 (80.7) 777 (84.5) 8,217 (80.4)

Black (%) 1,452 (10.7) 261 (7.5) 103 (15.2) 543 (7.7) 57 (6.2) 841 (8.2)

Other (%) 1,559 (11.5) 358 (10.3) 41 (6.0) 737 (10.5) 73 (7.9) 1,031 (10.1)

Comorbidity

AMI (%) 540 (4.0) 169 (4.9) 33 (4.9) 193 (2.8) 33 (3.6) 359 (3.5)

CHF (%) 1,375 (10.2) 625 (18.0) 143 (21.1) 778 (11.1) 83 (9.0) 1,352 (13.2)

PVD (%) 1,118 (8.3) 412 (11.8) 102 (15.0) 338 (4.8) 92 (10.0) 789 (7.7)

CEVD (%) 1,552 (11.5) 471 (13.5) 76 (11.2) 599 (8.5) 107 (11.6) 1,049 (10.3)

Dementia (%) 321 (2.4) 114 (3.3) 5 (0.7) 128 (1.8) 29 (3.2) 227 (2.2)

COPD (%) 1,946 (14.4) 577 (16.6) 134 (19.8) 605 (8.6) 127 (13.8) 1,205 (11.8)

RHEUMD (%) 306 (2.3) 99 (2.8) 27 (4.0) 67 (1.0) 15 (1.6) 176 (1.7)

PUD (%) 118 (0.9) 46 (1.3) 10 (1.5) 26 (0.4) 14 (1.5) 71 (0.7)

MLD (%) 594 (4.4) 197 (5.7) 59 (8.7) 133 (1.9) 48 (5.2) 375 (3.7)

DIAB (%) 9,041 (66.9) 2,577 (74.1) 534 (78.8) 3,555 (50.7) 614 (66.8) 6,019 (58.9)

DIABWC (%) 1,621 (12.0) 683 (19.6) 197 (29.1) 586 (8.4) 156 (17.0) 1,320 (12.9)

HP (%) 245 (1.8) 49 (1.4) 17 (2.5) 54 (0.8) 13 (1.4) 109 (1.1)

REND (%) 784 (5.8) 676 (19.4) 150 (22.1) 657 (9.4) 116 (12.6) 1,307 (12.8)

CANC (%) 1,458 (10.8) 440 (12.7) 74 (10.9) 463 (6.6) 110 (12.0) 893 (8.7)

MSLD (%) 70 (0.5) 40 (1.2) 4 (0.6) 24 (0.3) 4 (0.4) 65 (0.6)

METACANC (%) 366 (2.7) 110 (3.2) 17 (2.5) 94 (1.3) 31 (3.4) 204 (2.0)

AIDS (%) 32 (0.2) 7 (0.2) 2 (0.3) 7 (0.1) 3 (0.3) 16 (0.2)

Age is shown as mean (SD). All other characteristics are shown as number of and percentage of cases. Race ‘‘other’’ does not include patients with

unknown races. AMI, acute myocardial infarction; CHF, congestive heart failure; PVD, peripheral vascular disease; CEVD, cerebrovascular disease;

COPD, chronic obstructive pulmonary disease; RHEUMD, rheumatoid disease; PUD, peptic ulcer disease; MLD, mild liver disease; DIAB, diabetes

without complications; DIABWC, diabetes with complications; HP, hemiplegia or paraplegia; REND, renal disease; CANC, cancer (any malignancy);

MSLD, moderate or severe liver disease; METACANC, metastatic solid tumor; AIDS, AIDS/HIV.
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phosphorylates and inactivates acetyl-CoA carboxylase, a gene

(ACACB) our network-based analysis identified as a target ofmet-

formin.61 Additionally, metformin suppresses DRP-1-mediated

mitochondrial fission via an AMPK mechanism, reducing mito-

chondrial fragmentation in mice,62 promoting mitophagy to clear

dysfunctional mitochondria,63 and reducing endoplasmic reticu-

lum (ER) stress, reactive oxygen species production,64 and pro-

tein synthesis, which may reduce proteotoxic stress.65 Isoproter-

enol suppresses AMPK and can lead to cardiomyocyte apoptosis

and ER stress, and metformin protects against this stress.66

Here we found that TGFB1, a significant DEG node in our AF

network module, was downregulated following metformin treat-

ment in a-iCMs. In clinical studies of patients with AF compared

with patients with sinus rhythm, serum concentrations of tumor

necrosis factor alpha (TNF-a) and TGFB1 were increased.67,68

TGFB1 is a well-known pro-fibrotic cytokine that promotes

structural and electrical remodeling of the atria.69 Interstitial

fibrosis promotes slow heterogeneous electrical conduction be-

tween myocytes, contributing to a substrate for reentrant electri-

cal activity. TGFB1 may also affect calcium handling. Reduced

L-type calcium channel currents (ICaL) and reduced expression

of Cav1.2 (CACNA1C) following TGFB1 exposure have been

reported in neonatal rat atrial myocytes but have not yet been

reported in human atrial tissues.70 Figure S7 shows an inverse

relation of mRNA for TGFB1 with CACNA1C in adult human LA

tissues (n = 265, p < 0.001).

A

DC

B

Figure 6. Pharmacoepidemiologic validation of metformin in reducing AF occurrence

(A–D) OR and 95% confidence interval (CI) for metformin versus (A) combination of the four drug groups (all, dipeptidyl-peptidase 4 sulfonylurea [DPP4], thia-

zolidinedione [TZD], sulfonylurea, and glucagon-like peptide 1 receptor agonist [GLP1RA]) (n = 3,578), (B) DPP4 (n = 1,244), (C) sulfonylurea (n = 2,352), and (D)

TZD (n = 288). For each of the four comparisons, the results for comparisons between subgroups (including female, male, Black, and White) are also shown.

Patient groups were matched using PSmatching with the variables age, gender, race, and comorbidities (listed in Table 1) for the overall group comparisons. For

the subgroup of male and female, the matching variables excluded gender, and for the subgroup Black andWhite, the matching variables excluded race. Logistic

regression models were used for statistical inference of the AF ORs. Subgroup analyses were performed in females (orange), males (green), Black Americans

(dark green), and White Americans (blue). *p < 0.05. See also Figure S6 and Tables S3, S4, S5, and S6.
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Furthermore, we found NPPB (brain natriuretic peptide [BNP])

and CXCL12 to be PPI neighbors of the metformin target DPP4

(Figure 4A). BNP can suppress the activity of the renin-aldoste-

rone-angiotensin system (RAAS).71 Overstimulating the RAAS

via angiotensin II has been clinically shown to promote localized

oxidative stress by activating nuclear factor kB (NF-kB) and

increasing production of interleukin-6 (IL-6) and C-reactive pro-

tein (CRP). As noted above, these inflammatory markers are

elevated in patients with AF rhythm. The cytokine CXCL12,

also a PPI neighbor of DPP4, is responsible for recruiting mono-

cytes and lymphocytes. Systemic levels of macrophages and

activated T lymphocytes are elevated in patients with persistent

AF.72,73 These findings strengthen the powerful role of inflamma-

tion in AF disease etiology.

Still, one might wonder whether metformin’s benefit is due to

its effect on metabolic gene expression, the pleiotropic benefits

from long-term weight loss, or amelioration of metabolic syn-

drome.74–77 It improves insulin resistance and inflammation/

oxidative stress response mediated by free fatty acids, leptin,

and other adipokines, which may target the pathophysiological

link between obesity and AF. Using large-scale EHR data, we

associated a significantly reduced risk of AF onset in diabetic pa-

tients taking metformin compared with other diabetic drugs,

such as sulfonylurea and TZD. However, our pharmacoepide-

miologic analysis did not show reduced risk in AF with

GLP1RA or DPP4. There are several possible explanations. First,

other GLP1RAs are a new-generation anti-T2DM medication

with fewer users in our current EHRdatabase comparedwith sul-

fonylurea and TZD (Table 1), whichmay be underpowered during

pharmacoepidemiologic analysis. GLP1RA or DPP4 may have

strong efficacy in reducing blood glucose levels and weight

loss compared with metformin. This suggests that the metabolic

effects ofmetforminmay be associated with the utility against AF

rather than beneficial outcomes of weight loss. Furthermore, we

observed gender- and race-specific AF outcomes. Several re-

ports indicate that AF is more common in males than females,

but the prevalence of risk factors differs.50–53 For example, dia-

betes has been observed as an AF risk factor for women but

not men.53 We found that both male and female metformin users

were significantly associated with reduced likelihood of AF, but

female metformin users had higher protection. This could be ex-

plained by the differences in managing AF risk factors on the ef-

fect of AF disease. However, further work would be required to

validate this. We also observed a greater reduction in AF risk

among Black metformin users versus the combination compar-

ator group. Further work is required to explain whether the

reduced risk is environmental or genetic.

We also found that DPP4 is a metformin target responsible for

regulating insulin secretion by antagonizing GLP1. Metformin

had a more beneficial role than TZD and sulfonylureas, which

are also responsible for regulating insulin secretion. This finding

suggests that the multitarget effects of metformin are more

effective than simply regulating cellular glucose utilization. This

analysis was performed using data primarily from patients with

diabetes because metformin is less prescribed for non-diabetic

patients outside of clinical investigations, although it has been

used for pre-diabetes. Activation of AMPK has been shown to

improve cardiac function and, in turn, protect from AF.78,79 How-

ever, addition of in vitro functional testing on a-iCMs helps to

address the potential for more direct effects of metformin in car-

diomyocytes beyond potential indirect effects on HF, obesity, or

other potential in vivo effects.

In an observational study of 645,710 T2DM subjects over a

13-year follow-up, metformin use was associated with 20%

less AF.48 However, no prospective trials have reported metfor-

min for AF in non-diabetics. Metformin has been proposed

as upstream therapy in patients scheduled for AF ablation

(ClinicalTrials.gov: NCT02931253). An ongoing clinical trial, Up-

stream Targeting for the Prevention of Atrial Fibrillation: Target-

ing Risk Interventions and Metformin for Atrial Fibrillation

(TRIM-AF), is investigating the benefit of metformin and life-

style/risk factor modification interventions in patients with AF

(ClinicalTrials.gov: NCT03603912). Both interventions have

been reported to target AMPK. Two recent studies have utilized

healthy insurance claims data to test AF disease burden with

metformin treatment. Using the International Business Ma-

chines Corporation (IBM) MarketScan Medicare Supplemental

Database, Ostropolets et al.80 have reported that patients on

metformin monotherapy had significantly reduced risk of atrial

arrhythmias compared with monotherapy with DPP4 or TZD

medications. In another study, Tseng81 used Taiwan’s National

Health Insurance database and reported reduced AF-related

hospitalizations in patients with newly diagnosed T2DM who

took metformin versus those who did not. However, residual

confounding may exist in these studies because insurance

claims data are primarily collected for administrative purposes

and do not contain detailed clinical information. Our pharma-

coepidemiologics analysis, relying on very large patient-level

EHR data, has several advantages. First, we use large-scale,

longitudinal EHR data which contain various detailed clinical in-

formation for adjusting various possible confounding factors,

including heart disease, vascular disease, renal disease, and

many others (Table 1). We believe that there will be lower resid-

ual confounding risk in our EHR data analysis compared with

previous health insurance claims databases.80,81

Limitations of the study
We acknowledge several potential limitations of the current

study. The incompleteness of the human protein-protein inter-

actome and drug-target networks may influence model per-

formance. Disease heterogeneities of bulk transcriptomics

data may influence the AF disease network module analysis.

Integration of single-cell transcriptomics may help us to better

understand AF disease heterogeneities and identify cell-type-

specific drug targets and treatment approaches for AF. In

addition, integration of AF genetics findings may help us to

identify more likely risk genes and drug targets to accelerate

effective therapeutic agent discovery for AF. Treatment of

a-iCMs in a monolayer with short-term metformin exposure

may not recapitulate long-term treatment in vivo or in the clin-

ical setting, where patients with AF may have multiple comor-

bidities and exposure to multiple drugs. The TRIM-AF clinical

trial (ClinicalTrials.gov: NCT03603912) includes a sub-study

that will begin to address clinical response to metformin

versus in vitro response in a-iCMs. The association of metfor-

min use and decreased incidence of AF does not establish
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causality, which will require a randomized controlled trial in

the future.

Conclusion
In summary, we have identified AF-specific dysregulated gene

networks enriched in cardiac metabolism, ion transport, and

immune pathways. Notably, we utilized multiple lines of com-

plementary approaches, including LA tissue transcriptomics-

based network module findings, network proximity, and drug-

gene signature-based enrichment analysis to identify nine

candidate drugs that are putative repurposed drugs for AF. Uti-

lizing multiple lines of synergistic evidence, including in silico

prediction from the AF disease module findings, in vitro testing

from a-iCM models, and large-scale EHR data-based pharma-

coepidemiologics analysis, we nominated metformin for func-

tional validation and identified key molecular signals that help

explain metformin’s mechanism of action. We believe that the

network medicine approaches presented here, when broadly

applied, would significantly catalyze effective treatment devel-

opment for AF and other cardiovascular diseases.
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based in silico drug efficacy screening. Nat. Commun. 7, 10331.

https://doi.org/10.1038/ncomms10331.

22. Huang, Y., Fang, J., Lu, W., Wang, Z., Wang, Q., Hou, Y., Jiang, X., Re-

izes, O., Lathia, J., Nussinov, R., et al. (2019). A systems pharmacology

approach uncovers wogonoside as an angiogenesis inhibitor of triple-

negative breast cancer by targeting hedgehog signaling. Cell Chem.

Biol. 26, 1143–1158.e6. https://doi.org/10.1016/j.chembiol.2019.05.004.

23. Fiscon, G., Conte, F., Amadio, S., Volonté, C., and Paci, P. (2021). Drug
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Hedman, Å.K., Wilk, J.B., Morley, M.P., Chaffin, M.D., et al. (2020).

Genome-wide association and Mendelian randomisation analysis pro-

vide insights into the pathogenesis of heart failure. Nat. Commun. 11,

163. https://doi.org/10.1038/s41467-019-13690-5.

38. Diogo, D., Tian, C., Franklin, C.S., Alanne-Kinnunen, M., March, M.,

Spencer, C.C.A., Vangjeli, C., Weale, M.E., Mattsson, H., Kilpeläinen,
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Critical commercial assays
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Mina Chung (chungm@

ccf.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The DEGs reported here are available as supplemental files (see Tables S8 and S9).

d The codes written for and data used for network proximity analysis to reanalyze the data are publicly available from website.

Github:https://github.com/ChengF-Lab/AFnetproximity.

d Any additional information required to reanalyze the data reported in this work is available from the lead author upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Human LA tissues were obtained from 265 patients, including 251 who underwent elective cardiac surgery and 14 from non-failing

unused transplant donors. Prior to 2008 verbal consent was obtained and documented in a process approved by the Cleveland Clinic

Institutional ReviewBoard. After this timewritten informed consent was obtained. Consent to use donor hearts was obtained from the

family. The patient population, tissue processing, RNA isolation and sequencing have been previously reported.82 Briefly, human LA

tissues were obtained from patients undergoing elective surgery to treat AF, valve disease, or other cardiac disorders. Specimens

were snap frozen in liquid nitrogen and stored at�80�C until RNA extraction. LA tissue specimens were also obtained from nonfailing

donor hearts not used for transplant. These hearts were perfused with cardioplegia before explant and processed in the same

manner as hearts used for an organ transplant. As with the surgical specimens, donor tissue samples were snap frozen in liquid ni-

trogen and kept at �80�C until RNA extraction. Donor information was available for age, race, and gender (see Table S1).

Human induced pluripotent stem cell derived atrial cardiomyocytes
The iPSC line used in this experiment was obtained from the American Type Culture Collection (ATCC, ACS-1030). The iPSCs were

reprogrammed from bone marrow derived CD34+ cells obtained from a healthy 31-year-old white female donor using Sendai viral

expression of OCT4, SOX2, KLF4, andMYC. iPSCs are routinely used between passage 20–70. Pluripotency to form atrial-like car-

diomyocytes (a-iCMs) was confirmed routinely by assessment of pluripotency genes (TRA-160, SSEA-4) and ability to differentiate

and create beating cardiomyocytes. iPSCs were grown in E8 media, passaged every 3 days, and incubated at 37�C, 5% CO2, 98%

relative humidity.83 Differentiation of a-iCMs was adapted from the protocol of Burridge et al, with the inclusion of retinoic acid

(1 mmol/L) in the differentiation media from days 4–8 to enhance atrial-like gene expression.83–85 A metabolic selection step (no

glucose, 4 mM lactate) was used from days 12–14 to limit the abundance of non-myocytes in the cultures. The media was returned

to CDM3 from day 16 until day 20, followed by maintenance in CDM3-M media until the cells were used for experiments. Using this

method, beating cells were typically evident by day 10, and beating sheets (electrically synchronized cell sheets covering the entire

dish) by day 20. Oneweek prior to the stimulation experiment, cells were dissociated, combined, and replated at a density of 150,000

per well in 12 well dishes. Experiments began after differentiation for 30 days and were completed in triplicate.

METHOD DETAILS

RNA isolation and sequencing of LA tissue
Fifty to 100 mg of LAA tissue was used to extract RNA. The tissue, in 1 mL of TRIzol (Invitrogen), was homogenized with sterile Omni

Tip Disposable Generator Probes. RNA was isolated from the homogenate after the TRIzol protocol. The RNA pellet was dried and

resuspended in 80 mL of RNase-free water, with concentration determined by OD260 nm and RNA stored at �80�C. Library gener-

ation for RNAseqwas done at the University of Chicago Genomics Facility using standard Illumina protocols (Part No. 15015050, Rev

A). Samples were filtered based on RNA quality as ascertained on an Agilent 2100 Bioanalyzer. Unstranded 100-bp paired-end

sequencing was performed on the Illumina HiSeq 2000 platform and multiplexed to 6 samples across 2 lanes.

RNA isolation and sequencing of a-iCMs
RNA was isolated from the a-iCMs using the RNeasy Micro Kit (Qiagen). Cells from each treatment group were harvested three wells

of a 12 well culture dish by pipetting with appropriate buffer from the kit. A Qiashredder (Qiagen) spin column was used for homog-

enization. Following the kit protocol, gDNA was removed from the sample with a gDNA eliminator spin column. Samples from each
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well were transferred to individual RNEasy spin columns and washed as instructed. RNA from each well was eluted from the column

with 15 ul of RNase-free water. RNA concentrations were determined by OD260 nm and RNA was stored at �80�C.

cDNA preparation and RNA sequencing from a-iCMs
Libraries were constructed using lllumina oligo-dT based stranded kits following the recommended protocol. Approximately 60

million 100-basepair paired ends reads (30 million clusters) were generated for each library on an Illumina NovaSeq 6000 sequencer

with a S1 flowcell. Both library construction and sequencing were done at the University of Chicago Genomics Facility. Tissue pro-

cessing, RNA isolation and sequencing from the human atrial tissues was described in a prior publication.82

Quantitative RT-PCR
Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was performed using BioRad CRX Thermal Cycler as pre-

viously described.86 Briefly, 15 mL of master mix was pipetted into individual wells in a 96-well plate. 10 mL of the diluted cDNA was

added to eachwell. 5 mL of theworkingmixture was pipetted in triplicate to a 384well plate. Thermal cycling was performedwith a hot

start at 95�C for 10 min, followed by 40 cycles of 95�C for 15 s and 60�C for 60 s. Multiplexed Taqman primer/probes were used(Ap-

plied Biosystems/Thermofisher), delta C(t) values for: Heat Shock Factor 1 (HSF1), Heat Shock Factor 2 (HSF2), Heat Shock Protein

27/heat shock protein beta 1 (HSP27/HSBP1), Sodium Voltage-Gated Channel Alpha Subunit 5 (SCN5A), Calcium Voltage-Gated

Channel Subunit Alpha1 C (CACNA1C) and Calcium Voltage-Gated Channel Subunit Alpha1 D (CACNA1D) expression levels

were calculated relative to cardiac troponin T2 (TNNT2) expression. The DDCT method was used to compare expression among

samples yielding log2-based expression values, which were converted to fold-change values when indicated by calculating 2�D-

DCT.86 Each assay was performed on 3 technical replicates from each of three biological replicates per treatment group.

Drug treatment
a-iCMs were pre-treated with 2.5 mM metformin in water for 6 h (n = 3). Cells in the presence of added water (vehicle) were used as

controls (n = 3). All experimental combinations had 3 replicates.

Electrical pacing
Functional changes occurring during AF were assessed with our IonOptix C-Pace system for a-iCMs in monolayers grown in 12-well

tissue culture plates. All wells were beating prior to and following pacing protocol. A-iCMswere paced at 1 Hz for 24 h in the presence

of the drug. All experimental combinations had 3 replicates.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNAseq analysis from human LA tissue
Samples were demultiplexed and aligned to hg19 using TopHat (v2.0.4)87 with the default options. Reads from exactly matched PCR

duplicates were marked using Picard tools (https://broadinstitute.github.io/picard/) and excluded from further analysis. The

sequence reads were mapped to the human genome to derive a digital count of the expression of genes, which were defined using

the Ensembl (version 71) gene catalog. After preprocessing and quality control, transcript-level quantifications per sample were

generated using kallisto with the Gencode version 27 human transcriptome.88 Gene-level quantifications were generated from these

transcript-level estimates using the tximport package89 with the length scaled TPM option; after sample and gene expression level

filtering, 19,816 genesmeasured on 265 RNAseq profiles from (distinct patient) LA tissues were used for DEG analyses. A description

of the corresponding patient cohort was previously reported.82 Linear regression models per gene with empirical Bayes shrinkage90

as implemented in the limma R package were used to estimate and test the contrast between those whose hearts were in atrial fibril-

lation versus sinus rhythm at time of heart tissue acquisition (surgery or donor heart harvesting). The per-gene regression models

included adjustments for gender, age (modeled as a 2 degree of freedom spline), white race, interactions of gender with age and

gender with race, as well as 33 surrogate variables (SV) to help account for unmodeled confounders and heterogeneity. SVs were

estimated using a latent high dimensional confounder approach91 as implemented in the cate R package (see Table S8).

Building the human protein-protein interactome
To build a comprehensive list of human PPI, we assembled data from 18 bioinformatics and systems biology databases compromised

of five experimental assays: (i) binary PPIs tested by high-throughput yeast-two-hybrid (Y2H) systems; (ii) binary, physical PPIs from

protein 3D structures; (iii) kinase-substrate interactions by literature-derived low throughput or high-throughput assays; (iv) signaling

network by literature-derived low-throughput experiments; and (v) literature-curated PPIs identified by affinity purification followed

by mass spectrometry (AP-MS), Y2H, or by literature-derived low-throughput assays. The genes were mapped to their ENTREZ ID

based on the NCBI database92 as well as their official gene symbols on GeneCards (https://www.genecards.org/). The human pro-

tein-protein interactome used in this study includes 351,444 unique PPIs (edges or links) connecting 17,706 proteins (nodes).

Building the atrial fibrillation disease network
We used the DEGs from the human LA RNA-seq data (Table S8). We extracted the PPIs for the DEGs from the human interactome.
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Pathway enrichment analysis
Gene Ontology (GO) and KEGG pathway enrichment analysis were used to identify pathways enriched in the AF disease module and

metformin treated a-iCMs differentially expressed genes using the enrichR R package (version 3.0).93

Building the drug-target network
We collected drug-target interaction information from DrugBank database (accessed April 2021),94 Therapeutic Target Database

(TTD).95 Drug-target interactions meeting the following three criteria were used: (i) binding affinities, including Ki, Kd, IC50, or EC50

each%10mM; (ii) the targetwasmarked as ‘‘reviewed’’ in theUniProt database96; and (iii) the human targetwas represented by a unique

UniProt accession number. The final drug-target network contains 22,527 interactions among 2,939 drugs and 2,882 targets.

Network proximity measure
To quantify the relationship of the AF disease network and metformin treated a-iCMs DEGs, we adopted the closest path-based

network proximity measure as below.

dCT =
1

C+ T

 X
c˛C

mintεTdðc; tÞ +
X
tεT

mincECdðc; tÞ
!
; (Equation 1)

where d(c,t) is the shortest distance between gene c and t in the human protein interactome. The network proximity was normalized to

Z-score based on permutation tests:

ZdCT =
dCT � dr

sr

; (Eqaution 2)

Where dr and sr were themean and standard deviation of the permutation test was repeated 1000 times using two randomly selected

gene lists with similar degree distributions to those of C and T. The p-value was calculated based on the permutation test results.

Z < �1.0 and p < 0.05 were considered significant proximal AF disease associations. The networks were visualized using Gephi

0.9.2 (https://gephi.org/) or Cytoscape 3.8.2 (https://cytoscape.org/).

Gene set enrichment analysis
To further prioritize drugs identified by the drug-gene network analysis, we performed gene set enrichment analysis. Differential ex-

pressed genes from the AF disease module with p < 0.05 were used, as well as differential gene expression in human cell lines treated

with various drugs downloaded from the CMAP database.33 To avoid bias, we queried DEGs of all cell lines (MCF7, PC3, HL60, and

SKMEL5) provided in this version of CMAP. We took the average response of four cell lines for each drug. For each drug that was in

both the CMAP data set and our drug-target network, we calculated an ES based on previously described methods97 as shown below:

ES =

�
ESup � ESdown; sgnðESupÞssgnðESdownÞ
0; else

�
(Equation 3)

ESup and ESdown were calculated for up- and down-regulated genes from the AF disease network signature. We first computed

aup/down and bup/down using the following equations:

a = max
1% j% s

�
j

s
� VðjÞ

r

�
;

b = max
1% j% s

�
VðjÞ
r

� j � 1

s

�
;

Where j = 1, 2, 3.., s corresponds to the genes of the AF disease signature in ascending ranked order. V(j) corresponds to the rank

of gene j, where 1 %VðjÞ% r, with r being the number of genes (12,849) from the drug profile. ES up/down were defined by:

ESup =

�
aup if aup > bup

�bup if bup > aup

�
ESdown =

�
adown if adown > bdown

�bdown if bdown > adown

�
(Equation 4)

Permutation tests were repeated 100 times using a randomgene list with the same up- and down- regulated genes as the AF signa-

ture dataset used tomeasure the significance of the ES scores. Drugswere considered to have potential treatment effect if ES > 0 and

p < 0.05.

RNAseq analysis from a-iCMs
RNAseq results from 6 wells of a-iCMs in the metformin versus water study were quality accessed using the nf-core/rnaseq

pipeline.98 Transcript-level quantifications per sample were generated using kallisto with the Gencode version 31 human transcrip-

tome.88 Transcripts were filtered by expression intensity using the default settings in the sleuth R package (version 0.30). Filtered
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transcript-level differential expression of Metformin versus Control was performed using Wald tests accounting for transcript uncer-

tainty as implemented in the sleuth R package (sleuth_wt function).99 p-values from these transcript-level tests were aggregated

within the corresponding genes using the Lancaster weighted (weighted by transcript relative intensity) combining method to get

gene-level differential expression p-values for Metformin versus Control as implemented in the sleuth R package.100 Q-values101

were calculated from the gene-level p-values to obtain false discovery rate adjusted error values per gene (see Table S9).

Ingenuity Pathway Analysis
Upstream regulators and downstream target molecules were identified using the Ingenuity Pathway Analysis (IPA) software package

(Qiagen). UniProtKB, p value, and log fold change values for DE-Gs with a p % 0.05. Benjamini-Hochberg (BH) tests were used to

determine the p value of association between genes and upstream regulators, where p < 0.05 was considered significant. Genes

encoding proteins localized to the mitochondria and associated mitochondrial pathways were identified using MitoCarta 3.0100.

Pharmacoepidemiologic validation
The data for validation is fromNorthwesternMedicine Enterprise DataWarehouse (NMEDW),100 a data network containingmedical and

clinical data from 11 hospitals located in Illinois (https://www.nm.org/about-us/northwestern-medicine-newsroom/media-relations/

about-our-health-system). We extracted the data from NMEDW between 2011 and 2021 for analysis (see Table 1).

To validate the effect of metformin on AF, besides the target metformin group, we also construct four comparator groups and the

combination of the four groups for further comparison. The four comparator groups are sulfonylureas, TZD, DPP4, and GLP1RA. The

groups including themetformin group and the 4 comparator groups correspond to drug usages in NMEDWdefined by generic names

and brand names (Table S3). For each group, we took three steps to get the final cohort, data extraction, filtering, and matching. In

data extraction, we extracted all the patients who have the drug administered as recorded in NMEDW. The earliest drug administra-

tion date was set as index date. The outcome is the occurrence of AF (Atrial Fibrillation, diagnosis code defined in Table S4) within

180 days after the index date. In the filtering step, we followed the previous studies102 to exclude patients who have been diagnosed

with AF or type I diabetes before the index date, who have been diagnosed with gestational diabetes within 1 year before the index

date, and who have not been diagnosed with type II diabetes mellitus before the index date (diagnosis code defined in Table S4). For

each comparison, to distinguish the effect between the target drug and the comparator drug, we also excluded the patients who have

the comparator drug administered before the index date or within 180 days after the index date for the target drug group and made

similar exclusion for the comparator drug group. Then, in the matching step, we executed a propensity score matching algorithm to

control for potential confounding variables, including age, gender, race, and comorbidities. In propensity score matching, the pro-

pensity score is estimated by fitting a logit model where the outcome variable is a binary variable indicating whether the target drug is

used, and the predictors are the potential confounding variables those are age, gender, race and comorbidities in our studies. By

propensity score matching, each patient in the target group was paired with a patient from the comparator group with similar pro-

pensity score if the comparator group has more patients than the target group, and vice versa. Table S5 shows the total number of

patients, as well as the number of outcome events in each group in each step. Logistic regression models were used to conduct

inference for the odds ratio and the 95% confidence interval of the risk for developing AF when comparing treatment groups.
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