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Abstract: The process kinetics of an anaerobic digestion process for treating recycled paper mill 
effuent (RPME) was investigated. A laboratory-scale modifed anaerobic hybrid baffed reactor 
(MAHB) was operated at hydraulic retention times of 1, 3, 5, and 7 days, and the results were 
analyzed for the kinetic models. A kinetic study was conducted by examining the phase kinetics 
of the anaerobic digestion process, which were divided into three main stages: hydrolysis kinetics, 
acetogenesis kinetics, and methane production kinetics. The study demonstrated that hydrolysis was 
the rate-limiting step. The applied Monod and Contois kinetic models showed satisfactory prediction 
with µmax values of 1.476 and 0.6796 L day−1, respectively. 

Keywords: modifed anaerobic hybrid baffed reactor; phase kinetic; recycled paper mill effuent; 
anaerobic digestion; Contois kinetic model; Monod kinetic model 
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1. Introduction 

The recycled paper industry is a worldwide emergent industry that consumes a 
considerable amount of resources, energy, and raw materials. Many of those involved in 
this industry discharge their insuffciently treated waste into streams and rivers, which 
contributes to serious problems in fora–fauna and aquatic life [1]. Owing to the increasing 
public concern on environmental sustainability, waste disposal, and energy supply, the
conversion of effuent into energy is becoming an economically viable practice. 

The anaerobic digestion process is one of the main biological wastewater treatment 
processes in use today. It became popular as a wastewater treatment option because it is 
energy positive (it produces methane) and it has low sludge production [2]. Hence, anaero-
bic digestion is one of the most remarkable options to treat high-strength organic effuents, 
such as recycled paper mill effuent (RPME). 

Process kinetics is a useful tool for predicting and describing the performance of 
anaerobic digestion systems. A literature survey indicates that Monod kinetic models 
have been extensively used to explain the process kinetics of anaerobic digesters [3,4].
However, some researchers have found diffculties in applying them [5,6], which might 
be because the Monod equation does not consider the reliance of effuent substrate con-
centration on infuent substrate concentration. Hu et al. [7] indicated that the effuent 
substrate concentration depends on the infuent substrate concentration if the growth-
limiting substrate is measured as chemical oxygen demand (COD). Several researchers 
have applied the Monod kinetic model in determining the biokinetic parameters of the 
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aerobic digestion (AD) process. Hu et al. [7] studied the kinetic behavior of AD for treating 
ice cream wastewater by using the Monod kinetic model, which presented a µmax value 
of 0.7844 day−1 and Ks value of 0.4028 g COD L−1. Lokshina et al. [8] used the Monod 
model to evaluate the kinetic coeffcients of low-temperature acetoclastic methanogenesis 
for lake sediments. The result indicated that the inhibition constant K1 and half-saturation 
constant Ks values are 110 and 103 mM, respectively. Chen and Hashimoto [9] suggested 
that the Contois kinetic model was more suitable than the Monod model for describing the 
performance of the anaerobic digestion process in treating dairy wastewater. This sugges-
tion was based on the assumption that in the Contois kinetic model, a direct relationship 
exists between infuent and effuent substrate concentrations. Abu-Reesh [10] ftted the 
experimental data of AD of Labaneh whey to the Contois kinetic model and obtained a 
kinetic constant value of 0.065 day−1 and K_s of 1.27 g L−1 with 1.29 value of error obtained 
from nonlinear curve ftting of the model. Vavilin et al. [11] stated that in treating complex 
solid waste, the Contois kinetic model is preferable when considering the optimal design of 
a two-phase anaerobic digestion system. Veeken and Hamelers [12] used Contois kinetics 
with inhibition of 30 g of volatile fatty acid (VFA) per liter, which yielded an adequate 
result in treating biowaste. Meanwhile, Veeken et al. [13] elucidated the VFA inhibition 
mechanism by designing a set of experiments for treating organic solid waste. The result 
showed that no inhibition by non-ionized VFA or VFA can be measured at pH between 5 
and 7 and that acidic pH was the inhibitor factor. Other researchers have also viewed a 
specifc growth rate assuming Monod kinetics with substrate inhibition. The demanding 
task of determining kinetic data to describe the anaerobic acetate-to-methane conversion 
has restricted the implementation of this model. Variability in obtaining maximum growth 
rates still occurred in experiments involving identical cultures of Methanosarcina barkeri, 
strain 227, and the substrate acetate [14]. This variability might be the reason why few 
studies were performed by implementing Monod kinetics with substrate inhibition. 

To understand the kinetics of AD in treating RPME by using a modifed anaerobic 
hybrid baffed (MAHB) reactor, the kinetic behaviors of successive sequence steps were 
investigated for evaluating the reaction involved in each process. The processes consisted 
of the kinetics of hydrolysis, acetogenesis, and methanogenesis. The experimental results 
were compared with the theoretical data, and whether the experimental results ftted well 
with the theoretical ones was determined. The hydrolysis behavior can be measured via 
kinetic study. Through understanding the effect of operating conditions on hydrolysis 
process, researchers could design and operate anaerobic reactors. Numerous kinetic models 
have been applied for hydrolysis in AD systems. However, most studies have shown 
that experimental data ft well with frst-order kinetic models. Meanwhile, the kinetics of 
acetogenesis can be modeled using a simplifed integral method but with an adjustment 
to the Monod kinetic model via the rate of conversion of VFA. In methanogenic systems, 
methane formation is proportional to COD reduction on the basis of the Michaelis–Menten 
equation. Through understanding the effect of operating conditions on each phase kinetics 
of AD process, researchers could design and operate anaerobic reactors. The novelty of this 
research is that we are able to know the phase kinetics of the anaerobic digestion process 
of RPME by using an MAHB reactor, which is specifcally designed and fabricated for 
this research. 

2. Materials and Methods 
2.1. Equipment 

A laboratory-scale MAHB reactor was used in this study. The MAHB reactor was rect-
angular in shape and consisted of fve compartments. Each compartment was separated by 
a modifed vertical baffe. The reactor had a total active volume of 58 L. Polypropylene ring 
packing materials were used as media for supporting bioflm formation. They were located 
under the surfaces of compartments two and three. Sampling ports were present in the top 
and bottom of each compartment. The MAHB reactor was operated under mesophilic con-
ditions (35 ± 2 ◦C), and the temperature was maintained by circulating hot water through 
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the bioreactor jacket. Samples were collected from each compartment for analysis, together 
with the effuent. The details of the MAHB reactor have been reported previously [15]. 

2.2. Inoculum and Wastewater Preparation 

Seed sludge sources were collected from the anaerobic pond of Malpom Sdn Bhd, 
Penang, Malaysia and kept in a refrigerator at 4 ◦C until used. The wastewater samples 
were collected from the point before going to the equalization tank (i.e., before going to 
the existing effuent treatment plant specifcally designed and operated for the treatment 
of recycled paper wastewater of Muda Paper Mill Bhd, Bandar Tasek Mutiara, Penang, 
Malaysia) and refrigerated at 4 ◦C. Prior to analysis, the samples were warmed to room 
temperature (25 ± 2 ◦C). The collected samples were analyzed for the required parame-
ters, such as pH, total dissolved solids, volatile suspended solids (VSS), total suspended 
solids (TSS), total solids (TS), BOD, COD, heavy metals, VFA, and dissolved oxygen, in 
accordance with the Standard Methods for the Examination of Water and Wastewater [16]. 
The characteristics of the RPME used and the start-up of the MAHB reactor have been 
reported previously [15]. 

2.3. Kinetic Study 

For the kinetic study of anaerobic digestion phases, kinetic data were obtained at 
each steady state condition (<5% variation in effuent COD concentration) that included all 
three main stages: hydrolysis, acetogenesis, and methanogenesis. The kinetic study was 
performed under different conditions, as shown in Table 1. 

Table 1. Parameters for the kinetic study of anaerobic digestion phases. 

Anaerobic Phase Parameters Model Used 

Hydrolysis 
Data Feeding Concentration: 1000, 
2000, 3000 and 4000 mg COD L−1 First order kinetics model 

at HRT of 7 days 

Acetogenesis Feed fow rates: 58, 19.3,11.6 and 
8.29 L day−1 

Monod kinetic and 
integral method 

Methanogenesis 
Feeding Concentration: 1000, 

2000, 3000 and 4000 mg COD L−1 Monod kinetic model 
at HRT in a range of 1–7 days 

The experimental work was conducted by continuously operating the MAHB reactor at 
constant initial sludge inoculum but different feeding wastewater concentrations, feed fow 
rates, and organic loading rates for the hydrolysis, acetogenesis, and methanogenesis stages, 
respectively. To investigate the hydrolysis kinetics, the MAHB reactor was continuously 
fed with feeding wastewater concentrations of 1000, 2000, 3000, and 4000 mg COD L−1 

until reaching steady state at each condition. 
For the acetogenesis kinetics, four experiments at 28 ± 2 ◦C were performed with feed 

fow rates of 58, 19.3, 11.6, and 8.29 L day−1. For the methanogenesis kinetics, four different 
feeding COD concentrations of 1000, 2000, 3000, and 4000 mg COD L−1 at the hydraulic 
retention time (HRT) of 1–7 days were considered. The samples from each operating condi-
tion were collected at constant time interval (every 2 weeks of operation times). The effuent 
from the MAHB reactor was collected and analyzed for COD, solid concentration (i.e., TS, 
total volatile solid (VS), TSS, and VSS), VFA, methane production rate, and pH for every 
two subsequent days. To estimate the reaction kinetics, the experimental data were plotted 
as a relationship between substrate concentration and specifc growth rate. 

For the kinetics of hydrolysis, a frst-order kinetic model was chosen, which was 
given as 

dS 
= −kS (1)

dt 
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where t is the time (days), k is the frst-order rate coeffcient (day−1), and S is the vs. 
concentration. Hence, the conversion coeffcient of vs. into product was denoted as ∝ and 
applied to the kinetic equation to obtain the following equation: 

dP 
= αkS (2)

dt 

Integration of Equation (2) yielded Equation (3), which could be used to determine 
the product concentration during hydrolysis process, as follows: � � 

P = P0 + αSo 1 − e−kt (3) 

where P is the product concentration; and P0 and So are the initial product and substrate 
concentrations, respectively. 

For acetogenesis, the kinetic constant was determined using the Monod kinetic model 
(Equation (4)) and integral method at different feed fow rates by using a constant feeding 
COD concentration of 2000 mg L−1. The biomass concentration inside the reactor was 
assumed constant during the steady-state conditions. Hence, the mass balances of the 
reactor were given as 

dCVFA CVFA = (−kmax,VFA ) XVFA (4)
dt Ks,VFA + CVFA 

where CVFA is the concentration of VFA, kmax,VFA is the specifc maximum VFA degradation 
rate, Ks,VFA is the saturation constant, and XVFA is the concentration of the biomass VFA. 
For CVFA >> than Ks, Equation (4) was reduced to 

dCVFA = (−kmax,VFA )XVFA (5)
dt 

Equation (5) could be integrated to obtain 

CVFA = (−kmax,VFA )XVFAt + CVFA.0 (6) 

where 0 denoted the inlet concentration. Through plotting Equation (6), a straight line was 
obtained, where the slope of the line is kmax,VFA .XVFA. The value of kmax,VFA could be 
calculated given that the concentration of the biomass inside the reactor is known. All the 
above equations are valid at high VFA concentrations. From the literature, the acetogenic 
biomass was assumed to be 5% of the total biomass, and 95% of the anaerobic mixed 
biomass corresponded to acidogenic and methanogenic biomass [16]. For CVFA << than 
Ks , Equation (4) was reduced to Equation (7); through integrating it, Equation (8) could 
be obtained. 

dCVFA (−kmax,VFA )XVFA = CVFA (7)
dt Ks,VFA � � 

CVFA −kmax,VFA XVFA ln = (8)
CVFA.0 Ks,VFA 

Through plotting Equation (8), the value of −kmax,VFA could be calculated from theks,VFA 

slope of the straight line. This condition is valid at low VFA concentration. The kinetic 
constant of the process could be calculated by comparing the experimental data with the 
following equation: � � 

CVFA ks,VFA ln + (CVFA − CVFA.0)CVFA.0t = (9)−kmax,VFA XVFA 
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For comparison, the experimental data were calculated again by using the integral 
method. For the integral method, the kinetic constants were calculated as 

(CVFA.0 − CVFA) t 
= −KS.VFA + kmax.VFAXVFA (10)

ln(CVFA.0/CVFA) ln(CVFA.0/CVFA) 

Plotting Equation (10) gives a straight line, where kmax.VFAXVFA is the slope, and 
KS.VFA is the intersection of the straight line with the y-axis. XVFA (acetogenic biomass) 
is constant, and the slope can be divided by the biomass to obtain kmax.VFA. To indicate 
whether the experimental and measured data have a good agreement, Theil’s inequality 
coeffcient (TIC) was used, as shown as follows: q 

∑i(yi − ym.i)
2 

TIC = 2 (11)
∑i yi

2 + ∑i ym. i 

where y_i represents the experimentally measured value, and ym. i refers to the data from 
solving Equation (9). TIC values are in a range of zero to unity; if the TIC value is closer to 
zero, it shows better model validity (i.e., the model or system is valid for acceptable range); 
if the TIC value is smaller than 0.3, a good agreement (experimental results are signifcantly 
a refection of theoretical results) with measured data can be observed [17]. 

For the methanogenesis process, the production kinetics of methane was determined 
by assuming that the models were proportional to the biodegradable fraction of organic 
matter (COD concentration). Biomass and product (methane) production rates were de-
scribed as 

dX/dt 
YX = (12)−dS/dt 

dP/dt 
YM = (13)−dS/dt 

where YX is the biomass yield, and YM is the methane yield. Through simultaneously 
completing Equations (12) and (13), the following equation could be derived: � � 

dP YM dX 
= (14)

dt Yx dt � � 
YM dX dX Noting that rM = , and µX = dt ; thus, Equation (14) became Yx dt 

YM rM = (µX) (15)
Yx 

where rM is the methane production rate (L CH4 day−1), µ is the specifc microbial 
growth rate (per day), and X is the biomass concentration. Substituting the Monod model 
(Equation (4)) into Equation (15) yielded � � 

YMµm rM = XS (16)
Yx(Ks + S) 

where µm is the maximum specifc microbial growth rate (per day), Ks is the half-velocity 
constant (g COD L−1), and S is the effuent substrate concentration (g COD L−1). Then, as-
suming that the substrate is almost depleted (Ks � S) and X is constant throughout the 
system, Equation (16) became � � 

YMµm rM = XS (17)
YxKs 
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h i 
YMµmIf the apparent reaction rate constant K = X, then Equation (17) became YxKs 

rM = KS (18) 

This equation indicated that methane production was proportional to organic matter. 
The experimental data obtained could then be verifed by plotting the methane production 
rate versus the straight line from the theoretical data line from rM (experimental) versus rM 

(theoretical) line. Methane yield YM represents the performance of the reactor in terms of 
methane production rate related to organic removal rate. Therefore, the rate of methane 
produced QM (L CH4 day−1) could be expressed as 

QM = YMQ(So − S) (19) 

where So is the infuent COD concentration (g COD L−1), S is the effuent COD concentra-
tion, and Q is the volumetric feed fow rate (L day−1). 

2.4. Analytical Method 

Biogas composition was determined using a Shimadzu gas chromatograph–fame 
ionization detector with a propack N column. The carrier gas was helium set at a fow 
rate of 50 mL min−1, a column temperature of 28 ◦C, a detector temperature of 38 ◦C, 
and an injector temperature of 128 ◦C. VFAs were measured using esterifcation methods. 
Triplicate samples were collected for each parameter reading to increase the precision of the 
results, and only the average value was reported throughout this study. VSS was measured 
in accordance with the Standard Methods [18], while COD was measured using Spec-
trophotometer DR-2800 in accordance with the reactor digestion method [19]. The MAHB 
reactor was monitored every 2 days for COD and the biogas produced and weekly for 
VFA. Samples were collected for analysis from each of the fve compartments of the MAHB 
reactor at HRT of 1, 3, 5, and 7 days as the system achieved its steady state. 

3. Results 
3.1. Kinetic Study of Anaerobic Digestion by Using an MAHB Reactor 

AD process was investigated by the kinetics of the three phases of AD process (hydrol-
ysis, acetogenesis, and methanogenesis). In the three-phase kinetics, the kinetic evaluation 
might be important in terms of digestion rate, bacterial varieties, environmental demands, 
digestion process, and digestion products for each phase involved [20]. The AD process 
kinetic study of RPME was investigated using the Monod and Contois equations to develop 
two basic steady-state models. Both models were evaluated with a set of routine analytical 
data obtained. 

3.1.1. Hydrolysis Kinetics 

In this study, hydrolysis kinetics was expressed using frst-order kinetics with respect 
to particulate or biomass degradation. VSS was chosen as a crucial parameter due to the fact 
that VSS contains a high percentage of organic matter and is an easy-to-degrade material. 
VFA was noted as the primary product of RPME hydrolysis, and the frst-order kinetics of 
RPME were calculated using Equation (3). 

Figure 1 shows the frst-order kinetics of RPME at different initial wastewater con-
centrations and HRT of 7 days. The result showed that the frst-order kinetics were well 
ftted with the experimental data with R2 values of 0.9617, 0.9008, 0.9485, and 0.9839 for 
the initial feeding concentrations of 1000, 2000, 3000, and 4000 mg COD L−1, respectively. 
The values of kinetic coeffcient obtained and summarized in Table 2 clearly indicated 
that frst-order rate coeffcients k were highest at low feeding concentrations and that the 
substrate conversion coeffcient (α So) increased as the feeding concentration increased. 
This phenomenon might be due to a high feeding concentration providing substantial sub-
strate particles that collide with the microorganism per unit time, which leads to frequent 
reactions between them. As a result, the substrate conversion coeffcient increased as the 
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feeding concentration increased. The decrease in the frst-order rate coeffcient might be 
due to the excessive available amount of adsorption sites of particulate substrate because 
the hydrolysis rate is controlled by enzyme kinetics [21]. 
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Figure 1. Time profles of the VFA concentration during RPME mesophilic anaerobic degradation at 
different initial wastewater concentrations (in terms of mg VFA L−1). Symbols refer to the experimen-
tal data, and dash lines refer to the predictions by using Equation (2) with k = 0.0356 ± 0.004 day−1 

and α = 0.206 ± 0.0084 g VFA g VSS−1. 

Table 2. Parameters for the kinetic study of anaerobic digestion phases. 

Feeding Concentration, 
(mg COD L−1) 

Substrate Conversions 
Coeffcient, α So (mL) 

First Order Rate Coeffcient, 
k (Day−1) 

1000 8.682 0.1040 
2000 51.564 0.0440 
3000 29.974 0.0578 
4000 24.210 0.0643 

The conversion coeffcient (α) obtained from this work could be predicted from 
Equations (1) and (2), which provided the value of 0.206 g VFA g VSS−1. Previous study 
reported that the conversion coeffcient for a control reactor was 0.13 g COD g VSS−1. 
For enzymatic treatment of solid waste, the conversion coeffcient determined ranged from 
0.23 g COD g VSS−1 to 0.27 g COD g VSS−1. From the result, hydrolysis process was 
the rate-limiting step, which made the assumption possible. The reason was that the rate 
coeffcient values were less than 0.5, which implied that hydrolysis/acidogenesis was the 
rate-limiting step, as previously suggested by Momoh et al. [22]. 

Systems with methane as a fnal product could also be used if the slowest or rate-
limiting reaction was hydrolysis. The product concentration value P in Equation (3) was 
expressed in terms of X for methane volume released in hydrolysis kinetics to yield � � 

X = X0 + αSo 1 − e−kt (20) 

The time profle of methane volume released during anaerobic sludge and RPME 
effuent degradation under mesophilic conditions is shown in Figure 2. From the graph, the 
hydrolysis coeffcient was estimated using Equation (20) to give a value of α So = 7315 mL 
and k = 0.0117 day−1. From the result obtained, the experimental data exhibited a good 
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agreement and ftted reasonably well with the frst-order kinetics, which yielded the 
following substance conversion equation: � � 

−0.0117tX = X0 + 0.85So 1 − e (21) 
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Figure 2. Time profle of the methane volume released during anaerobic sludge and RPME effuent 
degradation under mesophilic conditions (35 ± 2 ◦C). Symbols refer to the experimental data and 
dash lines to the model predictions with k = 0.0356 ± 0.004 day−1 and α So = 327.9 ± 21 mL. 

3.1.2. Kinetics of Acetogenesis 

Acetogenesis process mainly corresponded to VFA concentration and system pH. 
Hence, the kinetics of acetogenesis was determined by observing the VFA degradation 
process at different feed fow rates of 58, 19.3, 11.6, and 8.29 L day−1. Figure 3a,b were 
plotted using Equations (7) and (8), respectively. From the results shown in Figure 3, VFA 
degradation began when the system started, and higher sequences of degradation were 
obtained at higher feed fow rates, followed by other feed fow rates in descending patterns. 
This fnding indicated that once the acetogenic bacteria underwent the acclimatization 
process, VFA degradation started. The kinetics was determined using the Monod kinetic 
model. kmax.VFA and ks.VFA values (from the slope) for VFA were determined using the 
Monod model, as depicted in Figure 3a,b, respectively. 

Figure 4 shows the determination of kmax.VFA and ks.VFA by using the integral method 
(Equation (10)). kmax.VFA could be calculated from the slope of the straight line, while and 
the value of ks.VFA was obtained from the intersection of the y-axis. The values of Kmax,VFA 

and Ks,VFA for VFA degradation by using the Monod model and the integral method are 
summarized in Table 3. 

Table 3. Kinetic constant of the Monod model and the integral method for syntrophic acetogenesis. 

Monod Model Integral Method 
Feed Flow Rate 

(L Day−1) Ks,VFA 
(g VFA L−1) 

Kmax,VFA 
(mg VFA mg−1 

VSS Day−1) 

Ks,VFA 
(g VFA L−1) 

Kmax,VFA 
(mg VFA mg−1 

VSS Day−1) 

58.0 0.29 13.35 0.18 12.66 
19.3 0.15 19.83 0.10 19.17 
11.6 0.15 16.75 0.12 16.18 
8.29 0.10 10.36 0.090 10.43 

The values of kmax.VFA. obtained in this study are close to the previous results of 13 mg 
COD mg−1 VSS day−1 reported by Skiadas et al. [23]. In addition, KS,VFA values are close 
to the value of 0.28 g VFA L−3 recorded by Romli et al. [24] and the value of 0.15 g VFA L−3 
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determined by Vavilin and Lockshina [25]. Comparison of the results obtained from both 
methods indicated that the differences between the methods were less than 10% (5.2%, 3.3%, 
3.4%, and 0.7% for the feed fow rates of 58.0, 19.3, 11.6, and 8.29 L day−1, respectively) for 
constant kmax.VFA. values. This fnding confrmed that the proposed method was suitable 
in determining the specifc maximum degradation rate. For saturation constant Ks,VFA, . 
the difference between the methods was not more than 37.9% at the highest feed fow rate 
of 58 L day−1. 
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This fnding indicated that both models were successful in determining the kinetic 
constant. To verify the kinetic constants obtained from both methods with the experimental 
data, a plot of comparison between both methods with the experimental data is shown in 
Figure 5. It clearly illustrated a similar trend with decreasing values of VFA concentration 
as the feed fow rate decreased over time. From the data obtained, the TIC values could 
be calculated using Equation (11) as previously described. The results are summarized 
in Table 4. 
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Table 4. Theil’s inequality coeffcient (TIC) values for the Monod and integral methods. 

Feed Flow Rate (L Day−1) 
Monod 

TIC 

Integral 

58.0 0.203 0.201 
19.3 0.036 0.035 
11.6 0.059 0.057 
8.29 0.025 0.026 
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The TIC values were equal and lower than 0.203 for all cases studied, which implied 
that the experimental and theoretical data were in good agreement. These values were 
higher than the TIC values obtained from a previous study conducted by Huilinir et al. [17], 
which recorded TIC values lower than 0.11. TIC showed increasing values as the feed fow 
rate increased for both methods. Theoretically, TIC values lower than 0.3 indicated that the 
data were in good agreement with the measured data [26]. 

3.1.3. Kinetics of Methanogenesis 

The rate of methane production was assumed to be proportional to organic matter 
degradation. In this study, graph extrapolation was employed at fnite HRT to estimate 
the COD concentration. The kinetics of methanogenesis was evaluated at different feeding 
concentrations of 1000, 2000, 3000, and 4000 mg L−1 at HRT of 1–7 days. Figure 6 presents 
the plot of effuent COD concentration versus the inverse HRT at each set of data. All data 
showed an R2 value higher than 0.80 for different feeding concentrations. The results 
implied that an increase in feeding COD concentration yielded an increase in effuent 
COD concentration. Given that Figure 6 shows high R2 values, the variation in methane 
production rate (rM) . as the function of effuent COD was then plotted (Figure 7). 
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Figure 7. Variation in methane production rate as a function of effuent biodegradable substrate 
concentration. 

The plotted line indicated that Equation (18) was valid to describe the system. From the 
result, the rate constants (K) were calculated for each data set from the slope of straight 
line (Figure 7) by using Equation (18). The calculated apparent rate constant (K) variation 
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corresponding to infuent COD concentration is shown in Figure 8. The result showed 
that the apparent rate constant was proportional to the infuent COD concentration with 
the highest value of 4.03 L CH4 g−1 COD day−1 at the infuent COD concentration of 
4000 mg L−1. 
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The result was comparable to the result obtained by Zinatizadeh et al. [27], which 
presented the highest K value of 7.4 L CH4 g−1 COD day−1 at a high feeding COD concen-
tration. This phenomenon might be due to the high specifc activity of microorganisms 
inside the reactor. The hybrid system (bioflm or attached microorganism) applied inside 
the MAHB reactor allowed to metabolize the intermediate products, such as VFA. The ap-
parent rate constant (K) was further interrelated with the concentration of microorganisms 
(X) (in terms of VSS), as shown in Figure 9. The experimental data ftted well with an R2 h i 

YM µmvalue of 0.89. However, in contrast with K = X, a nonzero intercept was observed. YsKs 

This condition might be due to the inability to distinguish other suspended organic matter, 
as well as true microorganisms. 
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The experimental methane production rate (rM). was plotted against the theoretical 
methane rate (Figure 10) by using Equation (18), which resulted in a straight line with an 
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R2 value of 0.93. The theoretical data were calculated by multiplying the effuent substrate 
concentration (S) in terms of COD with the apparent rate constant (K). High correlation 
values indicated insignifcant difference between the theoretical and experimental values. 
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Figure 10. Experimental rM. versus theoretical rM. 

The methane production rate (QM). was related to the rate of organic removal. 
Figure 11 shows the plotted methane production rate corresponding to substrate consump-
tion by using Equation (19), which yielded a straight line that indicated a proportional 
effect. From the plotted graph, YM was calculated using Equation (19) to yield a value 
of 0.0645 L CH4 g COD−1. This value was lower than the previous results obtained by 
Belhadj et al. [28] (0.245 L CH4 g COD−1) and Zinatizadeh et al. [27] (0.3251 L CH4 g 
COD−1). The lower value of methane yield coeffcient might be attributed to the differ-
ences in the types of wastewater (RPME) and the lower substrate concentration (below 
4000 mg L−1 COD concentration) compared with those in previous studies, which pre-
sented a high sewage sludge concentration of 50,000 mg L−1 [28] and a palm oil mill effuent 
concentration of 34,000 mg L−1 [27]. However, the present study clearly indicated that 
anaerobic digestion could be a good option for degrading the available feedstock (RPME). 
The kinetic parameters in each step are summarized in Table 5. 
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day−1. For acetogenesis kinetics, Monod and integral show similar 𝐾௦,௏ி஺  and 𝐾௠௔௫,௏ி஺ values with TIC values equal and lower than 0.203 for all cases studied. For 
methanogenesis kinetics, 𝑌ெ obtained is 0.0645 L CH4 g COD−1. 
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Table 5. Summary of kinetic parameters. 

AD Phase Kinetic Parameters 

Hydrolysis α So 

k 
Monod Model 

7315 mL 
0.0117 day−1 

Acetogenesis 

Methanogenesis 

Ks,VFA 
Kmax,VFA 

Integral Method 
Ks,VFA 

Kmax,VFA 
YM 
K 

0.10–0.29 g VFA L−1 

10.36–19.83 mg VFA mg-1 VSS day−1 

0.090–0.18 g VFA L−1 

10.43–19.17 mg VFA mg−1 VSS day−1 

0.0645 L CH4 g COD−1 

4.03 L CH4 g−1 COD day−1 

4. Conclusions 

In AD phase kinetics, the kinetic study might be signifcant in terms of digestion 
process, digestion rate, environmental demands, bacterial varieties, and digestion products 
for each phase involved. In conclusion, the novelty of this research is that we are able to 
know the phase kinetics of the anaerobic digestion process of RPME by using an MAHB 
reactor, which is specifcally designed and fabricated for this research. The result indicates 
that the kinetic study of the subsequent phase of anaerobic digestion shows that hydrolysis 
is the rate-limiting step with hydrolysis coeffcient ∝ So = 7315 mL and k = 0.0117 day−1. 
For acetogenesis kinetics, Monod and integral show similar Ks,VFA and Kmax,VFA values 
with TIC values equal and lower than 0.203 for all cases studied. For methanogenesis 
kinetics, YM obtained is 0.0645 L CH4 g COD−1. 
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