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Extraction of Impervious Surface Areas from
High Spatial Resolution Imagery by Multiple
Agent Segmentation and Classification

[THIS PAPER WAS THE WINNER OF THE 2007 BAE SYSTEMS AWARD
GIVEN AT THE ASPRS 2007 ANNUAL CONFERENCE]

Yuyu Zhou and Y.Q. Wang

Abstract

In recent years impervious surface areas (1sA) have emerged
as a key paradigm to explain and predict ecosystem health
in relationship to watershed development. The 1sA data are
essential for environmental monitoring and management in
coastal State of Rhode Island. However, there is lack of
information on high spatial resolution ISA. In this study, we
developed an algorithm of multiple agent segmentation and
classification (MAsc) that includes submodels of segmenta-
tion, shadow-effect, MANOVA-based classification, and post-
classification. The segmentation sub-model replaced the
spectral difference with heterogeneity change for regions
merging. Shape information was introduced to enhance the
performance of 1sA extraction. The shadow-effect sub-model
used a split-and-merge process to separate shadows and the
objects that cause the shadows. The MANOVA-based classifi-
cation sub-model took into account the relationship between
spectral bands and the variability in the training objects and
the objects to be classified. Existing GIs data were used in
the classification and post-classification process. The MASC
successfully extracted 1SA from high spatial resolution
airborne true-color digital orthophoto and space-borne
QuickBird-2 imagery in the testing areas, and then was
extended for extraction of high spatial resolution IsA in the
State of Rhode Island.

Introduction

Impervious surface areas (1sa) are defined as any impenetra-
ble material that prevents infiltration of water into the

soil. Urban pavements, such as rooftops, roads, sidewalks,
parking lots, driveways, and other manmade concrete
surfaces are among impervious surface types that featured
the urban and suburban landscape. 1sA have been considered
as a key environmental indicator due to its impacts on water
systems and its role in transportation and concentration of
pollutants (Arnold and Gibbons, 1996). Urban runoff, mostly
through impervious surface, is the leading source of pollu-
tion in the Nation’s estuaries, lakes, and rivers (Arnold and
Gibbons, 1996; Booth and Jackson, 1997). A recently pub-
lished watershed-planning model predicts that most stream
quality indicators decline when watershed 1sA exceed 10
percent (Schueler, 2003). 1sA have also been recognized as an
indicator of intensity of urban environment. With advent of
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urban sprawl 1sa have been identified as a key issue in habit
health (Brabec et al., 2002). Quantification of the percentage
of impervious surface in landscape has become increasingly
important with growing concern of its impact on the envi-
ronment (Weng, 2001; Civco et al., 2002; Dougherty et al.,
2004; Wang and Zhang, 2004).

As a result of urban land development, the coastal State
of Rhode Island experiences problems caused by urban runoff.
The most recent significant example occurred in the state was
on 21 August 2003, over one million fish as well as other
marine life in Greenwich Bay were killed due to the lack of
oxygen in the water. The impervious surface is considered as
one of the possible factors that triggered this incident. How-
ever, there is lack of information on high spatial resolution 1sa
in the state. A previous study using Landsat remote sensing
data revealed the increasing urban land-use and land-cover
(Novak and Wang, 2004) but was not able to obtain precise 1sa
coverage with 30-meter pixel size.

Conventionally, manual delineation through aerial
photography has been used to extract 1sa information
(Draper and Rao, 1986). For example, currently available
land-use and land-cover data for the state were developed
based on manual interpretation of 1987 and 1995 aerial
photography data, respectively. However, manual delin-
eation is labor-intensive, prohibitively expensive for large
area, and difficult to keep the interpretation results consis-
tent. In addition, 1SA are not a separate class in general
purpose land-use and land-cover maps. 1SA can be obtained
from classification of remote sensing data. Due to limita-
tions of spectral mixing and spatial resolutions, the accu-
racy of 1sA extraction has always been challenged through
classification process. Therefore, efforts have been made to
extract 1A from a variety of remote sensing data sources
and through modeling. For example, sub-pixel methods
have been developed for urban land classification (Ji and
Jensen, 1999; Lu and Weng, 2004). A spLIT model was
developed (Wang and Zhang, 2004) to obtain 1sA informa-
tion through sub-pixel extraction by integration of Landsat
T™ and high spatial resolution digital multispectral videog-
raphy data. Although this method is capable of extracting
the percentage of 1sa in mixed pixels, it is difficult to
obtain a precise spatial distribution and coverage of 1sA as
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needed. Estimations of 1sA through the relationships
between data from multiple sources have been used by the
U.S. Environmental Protection Agency (EPA) and other
researchers (Sleavin et al., 2000; Yang et al., 2003; Jennings
et al., 2004; Yang, 2006). The difficulty of using these
methods is that the coefficient has to be established and
validated for different study areas. Also the same challenge
of precise coverage and accurate location of 1SA remains.
Therefore, extraction of 1sa from high spatial resolution
remote sensing data in meter or sub-meter level is in
demand particularly by the planning agencies.

Although conventional pixel-based methods that have
long been used for classification of moderate or low spatial
resolution satellite remote sensing data can be used for
classification of high spatial resolution data, the shortcomings
are evident. The most noticeable is that the pixel-based
classification will produce more dramatic salt-and-pepper
effect due to the increased spatial resolution and noise level.
Furthermore, the spatial information such as neighborhood,
proximity and homogeneity can not be used sufficiently in
these methods (Burnett and Blaschke, 2003). To conquer
these problems and make sufficient use of spatial information
from high spatial resolution data object-based classification
has been developed (Baatz and Schépe, 2000; Shackelford
and Davis, 2003). Object-based methods simulate the process
of human image understanding in feature extraction. It is
especially suitable for processing high spatial resolution
images. In addition, other spatial information can be inte-
grated in modeling process. Object-based classification has
been used in classification of high spatial resolution images
and demonstrated the potentials (Blascheke and Strobl, 2001;
Walter, 2004). The commercial software, such as eCoginition®
(Definiens Imaging, Germany), is among the first object-based
systems, and has been used for classification of high spatial
resolution images (Wang et al., 2004). Integration of high
spatial resolution remote sensing and lidar data to extract
impervious surface information has been studied (Hodgson
et al., 2003). Three image-object techniques, i.e., Fractal Net
Evolution Approach, Linear Scale-Space, and Multiscale
Object-Specific Analysis, were compared for analysis of
landscape structure (Hay et al., 2003).

An important step for object-based classification is
to define regions in an image corresponding to objects
in a ground scene. Successful image segmentation is the
most important prerequisite (Baatz and Schépe, 2000).

The application of multi-scale segmentation in landscape
analysis was discussed (Burnett and Blaschke, 2003).
Segmentation algorithms, such as texture segmentation,
watershed transformation and mean shift, have been devel-
oped in the past (Woodcock and Harward, 1992; Li et al.,
1999; Comanicu and Meer, 2002; Hu et al., 2005), and a
recent overview on image segmentation was summarized
(Blaschke et al., 2004). The segmentation results from high-
resolution satellite imagery using several programs including
eCognition® InfoPACK and CAESAR were compared and
evaluated (Meinel and Neubert, 2004). As pointed by Baatz
and Schépe (2000), few of those methods lead to qualita-
tively convincing results that are robust and under opera-
tional setting applicable. Some of the methods are difficult
for practical application because of the computing speed or
the accuracy (Woodcock and Harward, 1992). In segmenta-
tion objects are grouped into larger homogeneous ones
according to clustering cost functions adopted. In many
segmentation algorithms using region growing, the entire
process of image segmentation is completed in a single pass.
These methods may produce large differences between
pixels at opposite ends of a region. Woodcock and Harward
(1992) developed a multiple-pass algorithm to extract forest
information from Landsat T™ data. This algorithm improved
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the segmentation of images from scenes better modeled

as a nested hierarchy and achieved reasonable accuracies
with the consideration of local best fitting and merging
coefficient. The three advantages of this algorithm are as
follows (Woodcock and Harward, 1992). First, it allows slow
and careful growth of regions while inter-region distances
are below a global threshold. Second, a minimum region
size parameter can merge the regions with high variances.
Third, maximum and variable region size parameters limit
the merge of undesirable large regions. This approach can
limit the rate of region growing in order to avoid the deci-
sion errors that arise as region centroids change due to
premature segmentation merges (Woodcock and Harward,
1992). The mutual nearest neighbor principle used in the
multiple-pass technique can produce more accurate region
boundaries. However this algorithm was developed to
process remote sensing data at 30 m spatial resolution.
Further modification is necessary when dealing with high
spatial resolution remote sensing imagery at meter or sub-
meter levels. For example for high spatial resolution imagery,
the shape information is an important measure in image
segmentation and object-based classification, but it was
not considered in the multiple-pass algorithm.

The classifiers used in the pixel-based classification
can still be used in object-based methods. For example
fuzzy logic is commonly used in object-based classification
(Shackelford and Davis, 2003; Baatz et al., 2004; Benz et al.,
2004). In order to use fuzzy logic, a rule-base must be
established first. Subjective factors can be introduced in the
process. Minimum distance and maximum likelihood are
reliable classifiers and often used to make comparisons with
other algorithms (El-Magd and Tanton, 2003; Reguzzoni et al.,
2003; Wang et al., 2004). Minimum distance classifier can be
used to build a rule base in fuzzy logic classification. Maxi-
mum likelihood classifier is a better one and more useful
when prior knowledge is available and statistic criteria are
taken into account. In some pixel-based classifiers, such as
the maximum likelihood, the variability and relationship
between spectral bands of the training pixels are considered.
However, such information would not be available for a
single pixel to be classified in these methods. In most of
the existing object-based methods, such information was
not considered. Therefore, it will be helpful for an object-
based classification to include this type of information.

In this paper we developed a synthetic algorithm of
multiple agent segmentation and classification (Masc) for
extraction of 1sa. The added shape information enhanced the
multiple pass segmentation. The variability and relationship
between spectral bands of the objects improved the classifica-
tion accuracy. With cIs supported post-classification process,
more precise ISA extraction was achieved from high spatial
resolution remote sensing data. MAsC allows us to modernize
and enhance the existing GIs database and add new 1sa data
for the statewide GIs system, and to demonstrate a model that
can be replicated for statistical and graphic comparison of 1sA
data from high spatial resolution remote sensing data.

Methods

Data Sources and Process

The State of Rhode Island is very much interested in
searching for different methodologies and data sources

to extract precise 1sA information for the state, including
using true-color digital orthophoto data and QuickBird-2
satellite imagery. The true color orthophoto dataset used in
this study was acquired in 2003 by the Statewide Planning
Program (spp) through the National Agricultural Imagery
Program (NaIP). This 1-meter ground sample distance
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ortho-rectified imagery dataset has a horizontal accuracy
of within +3 meters of reference digital orthophoto quarter-
quads (D0QQs) from the National Digital Ortho Program
(npDop). The orthophoto images are projected into Rhode
Island State Plane Coordinate System with Zone 3800 in U.S.
Survey feet. The resulting spatial resolution in this coordi-
nate system is 1-meter (3.28 feet). The dataset has red, green
and blue bands and distributed in GeoTIFF format (Plate 1a).
We also used the QuickBird-2 satellite data acquired on
29 April 2005 as the testing data. The QuickBird-2 image data
were acquired for quantifying and identifying landscape
characteristics related to impervious surface in a selected
portion of the state. QuickBird-2 image data possess 0.6-meter
spatial resolution on the panchromatic band and 2.5 m spatial
resolution on the multispectral bands. The image data were
projected to the same map coordinates as ortho-rectified,

—p—

true-color aerial photos. Spatial resolution enhancement was
performed through resolution merge of multispectral bands
and sub-meter panchromatic band of QuickBird-2 imagery.
After resolution merge the new dataset possesses 0.6-meter
spatial resolution with four spectral bands covering the
visible and near IR spectrum (Plate 1b).

Texture information is helpful for the definition of
regions that have different levels of internal variance (Wood-
cock and Harward, 1992). We used a 3 X 3 window to extract
the texture information of variance as one of the features in
the segmentation process. We focused on two categories of
1sA and none-1sA only for the classification process.

We selected a subset area of northern part of Narragansett
in the east coast of Rhode Island (Plate 1c) as a primary testing
area for algorithm development. This is a typical suburban
community with intensive urban development. Residential and

Plate 1. (a) An example of a true color digital orthophoto with 1-meter spatial resolution, (b) An
example of resolution merged QuickBird-2 image with 0.6-meter spatial resolution and displayed as
bands 3, 2, 1 in RGB, (c) The subset of the true color orthophoto for algorithm development, and
(d) The locations of six selected testing sites for algorithm validation.
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commercial areas are the representative landscapes. I1SA are site has different percentage of 1SA cover in the southern

a major concern of this community in terms of watershed coastal areas of the state. The locations of these testing sites
management and environmental monitoring. In addition, we are shown in Plate 1d. The orthophotos and QuickBird-2
selected six testing sites for MAsC algorithm validation. Each images of these testing sites are shown in Plate 2.

Plate 2. Comparisons between true color orthophotos (upper image) and QuickBird-2 images (lower
image) of the six selected testing sites for extraction of isa in suburban environment: (a) Site 1,
(b) Site 2, (c) Site 3, (d) Site 4, (e) Site 5, and (f) Site 6.
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Multiple Agent Segmentation In this study, we used three spectral channels from the
The technical flow of the masc algorithm is illustrated in true color orthophoto as A = 1, 2, 3 (i.e., m = 3, represent-
Figure 1. We modified the multi-pass algorithm to accommo- ing the number of spectral bands) for the heterogeneity
date the use of high spatial resolution digital imageries due measures described in Equation 1. We used the 4™ channel
to the finer pixel size and shadow effect. We developed (A = 4) for the texture component, and the 5™ and 6™
a multiple agent segmentation sub-model (Figure 1a) that channels (A = 5, 6) for the shape components.
included spectral, texture and shape agents in this study For dealing with the multispectral QuickBird-2 data, we
and incorporated the shape information by heterogeneity used four spectral channels as A = 1, 2, 3, 4 (i.e., m = 4)
change in place of spectral difference as the cost function for the heterogeneity measures described in Equation 1. We
for merging the regions. In the original multiple-pass algo- used the 5" channel (A = 5) for the texture component and
rithm, decision to merge two regions is based on the distance the 6% and 7™ channels (A = 6, 7) for the shape compo-
of channels in spectral space. In this study we used change nents.
of heterogeneity, i.e., combination of shape and spectral The multiple pass algorithm can produce segmentations
information to determine the merge of two regions. There with minimal error by allowing merging to occur. In this
are different possibilities to describe the change of hetero- merging process, at least spectral average heterogeneity of all
geneity before and after a merge. A common method for image objects will increase. An image region is merged with
heterogeneity change is as follows. the adjacent image region to produce minimum increase
The overall heterogeneity change hjgnge includes of heterogeneity. As for the adjacent regions, we adopted
spectral, texture and shape agents: a four-way method (Woodcock and Harward, 1992).
In the segmentation sub-model, a merge process starts
m1+2 from single pixel objects and merges the small objects
hehange = 2w (Mopjn * (Mam = Daonn) pairwise into larger ones. The ideal algorithm for a hetero-
A geneity change metric Ah(obj1, obj2) for two regions was
+ Nopp - (Mam = N o)) (1) modified because only one merge per stage was allowed.
The computing time is an important consideration for high
where epange is the overall change of heterogeneity when spatial resolution remote sensing images. The multiple pass
two regions are merged, h, , is a heterogeneity of the algorithm allows multiple merges per pass to minimize both
merged region for the agent A, hy o and hy e, are the the computing time per pass and the overall number of
heterogeneities for two regions being merged for the agent A,  passes and keeps a minimum error of merging at the same
Nopn and N, are the number of pixels in each of the two time. In order to minimize the merging error and to improve
regions being merged, and w, is the weight for each hetero- the merging efficiency, two techniques were introduced,
geneity measure for the agent A (Shackelford and Davis, i.e., local mutual best fitting and merge coefficient (C,,)
2003; Baatz et al., 2004). The agent can be spectral, texture, (Woodcock and Harward, 1992). The merge coefficient is
shape, color or other features. used to calculate a histogram threshold for each pass. If n,,

Segmented
.
Heterogeneity Merging Transportation
Histogram Coefficient fFoyito N GIS Data
= N, Shadow
\ Heterogeneity . Identification
i Flings : i Buffer
: obj,obj) ! _ Process
: MANOVA-
| based
Classification

1 Be grmentation with|
iy [t | )

Spectzal//Texture //Shape/
[ ——

Region Samples
Selection

Quality

Control

IS4 from
Classification

New Segmented
Image

i

i

Pass |
Threshold T B

Process

Region size

constramts
Process Final ISA
Distribution
ISA
Extraction
Segmented Image IS4
(a) (b) (c) (d)

Figure 1. The flowchart of 1sa extraction modeling: (a) segmentation sub-model, (b) shadow-effect
sub-model, (c) classification sub-model, and (d) post-classification sub-model.
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represents the current number of regions, the smallest
heterogeneity changes for all n,,, regions are calculated and
ordered. The new histogram threshold (7}) is the hetero-
geneity change below which C,, X n,, ordered heterogeneity
changes lie. Therefore, there are two thresholds: global
threshold (T,) and T},. The pass threshold (T,) is defined as
the minimum of T, and T, (Woodcock and Harward, 1992).

For orthophoto and QuickBird-2 imageries in this study,
we used 2000 for the T,; 0.95 for the C,. We used 0.8 and
0.2 of w, for spectral and shape components, respectively.
We derived this set of parameters from the experiments on
all of the testing images.

The shadows caused by tall vertical objects such as tree
crowns are unavoidably associated with high spatial resolu-
tion imageries. The multiple pass algorithm had difficulty
to differentiate shadowing areas. For example, tree crowns
and shadows are always connected, overlapped, and hold
insignificant spectral difference among them (Figure 2a). As
the conventional multipass algorithm could not separate the
tree crown and the 1SA covered by the crown for the reason
of spectral similarity (Figure 2b), we developed a split-and-
merge method that is imbedded in the shadow effect sub-
model for dealing with those types of mixed regions. The
procedures of a shadow-effect sub-model are illustrated
in Figure 1b. First, the mixed regions are identified based
on the spectral feature of these regions. The mixed regions
are separated into single pixels, and then the multiple
pass algorithm is applied. A global threshold for this new
segmentation was assigned a small value. The trees crowns
and the shadows were segmented and the separated regions
were identified (Figure 2c). Finally, the process of region
constraint in the multiple pass algorithm was applied in
the segmentation. In this study we used 80 for the T,
in shadow-effect sub-model based on the experiments in
the testing images.

Classification and Post-classification

As a successfully segmented image was obtained after the
initial and additional segmentation processes, the next step
was to assign a class label to each of the regions on seg-
mented image through a classification process. This process
is shown in Figure 1c as the classification sub-model. We
developed a new classifier on the segmented image in which
the relationship between spectral bands and the variability

—p—

in the training objects and those objects to be classified were
taken into account.

This process allowed more information to be exploited
in the single object. For example, in the maximum likeli-
hood classification the variance and co-variance matrices
of the training samples are used. In most of the existing
object-based classification methods, the information of each
spectral band is analyzed separately. If the observations
were uncorrelated, these methods would be powerful.
However, since spectral bands in remote sensing data are
correlated, we developed a MaANOvVA-based algorithm that
used the spectral distance to exploit such correlations. This
would improve the result from univariate analysis which
ignored the correlations among spectral bands and assumed
independence of response variates. We used following
distance equation (Equation 2) in the MANOvA-based
classification algorithm:

nyn _ _ = —
T? = n 1; (Xl_XZ)TSp X — %)
1 2
2
, _ mtn,—p 2 &)
adj —

pln, + n, — 2)

where n, and n, are the numbers of the pixels in the object
to be classified and training object, X, and X, are the mean
spectral vectors of the object to be classified and training
object, S, is the pooled covariance based on two objects, p is
the bands, T2 is the distance between two objects, and T?.4
is the distance with the consideration of the bands and
pixels numbers.

Because of the special characteristics in the remote
sensing data, hypothesis test based on F distribution
in MANOVA is difficult to apply. We used Equation 3
to describe the quality of the classification result:

< Dmin
Q <1§1 D, 1>/n (3)
where D, is the minimum distance for all of the object
classes, n is the number of the training samples, D; is the
distance for each of the object class, and Q is the quality
index. The lower the index, the higher the classification
quality.

AP|SA in Shadowy |

C)

(b) (c)

Figure 2. (a) An example of spectral similarity of tree crowns and the shadow in a true color
orthophoto, (b) the result of image segmentation without considering the shadow effect, in which
shadow covered IsA could not be separated from tree crowns that caused the shadows, and (c) the
result of segmentation using the shadow-effect sub-model.
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With added new training signals, the mean of quality
index of the entire image scene decreased and reached a
low level (Figure 3). We then applied a repeating algorithm
based on the quality index. When the mean of quality index
for the entire image is lower than the previous mean, a new
object signal which has the largest quality index in the
image was added into the training clusters. The classifica-
tion stopped if the mean of quality index with the added
signal was larger than the previous one.

The process was carried out as follows. First, the
training samples for five main categories of 1sa, forest,
grass, soil, and water were established. Each category has
several sub-categories. New sub-categories were added into
the training samples based on the repeating algorithm, and
these new samples were combined into the existing sub-
categories or assigned new classes. After that the obtained
classification result was recoded into 1SA and none-ISA.

We then used the ratio of the border length of the regions
classified as shadow that are adjacent to impervious surface
areas with all the border length to separate shadow-covered
1sA and other land-cover types. This ratio varies with the
sun azimuth and elevation angles. We derived the thresh-
old for this ratio from a series of tests across the testing
areas.

Upon finishing the classification we used the existing
GIs data through a post-classification to extract 1sa (Figure
1d) that were still not be identified through the process.

02

—msite] 4 site? o sited

—s— sited —s—sited —— sitef

el ST
5,
§ < -
008 %

\ %

(a)

Qualty Index
=
)
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\
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0.

Qualty Indsx

0o o e el —
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T2 3 4 5 B 7 8 9 10 M 12 13 14 15
Added Siginals

Figure 3. The quality indices from the
six testing sites in (a) orthophoto, and
(b) QuickBird-2 images responding to the
added signals.
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For example, some of the road segments are completely
covered by tree crowns and are impossible to be separated
on high spatial resolution imagery. We used a rasterized
GIs transportation data as a reference to identify the road
networks and integrated the road data with output from the
classification sub-model to obtain the final 1Sa coverage.
The post-classification warrants that the connected 1sA is
not interrupted and the final result represents the best
information from both high spatial resolution remote
sensing and cGIs data.

Extending the Algorithm to the Entire State

The State of Rhode Island, except the Block Island, is
covered by 113 scenes of digital orthophotos with 1-meter
spatial resolution (Plate 1d). In order to extract the 1sa for
the entire state efficiently and quickly, we developed an
automatic approach based on batch process and applied it
on the segmentation and classification. First, the segmenta-
tion for this dataset was carried out using the same set

of the parameters as the testing areas. With this process,
113 segmentation images were obtained. Second, the
objects of training samples for certain land cover types
were selected from this dataset. We compared and checked
the data according to the covariance matrix of each object,
and used the samples with smaller covariance. With

this process we obtained the objects of training samples
for each land cover type. Finally, an automatic approach
was developed for the classification based on the batch
process, and the results were recoded into 1sa and none-
1sA. The post-classification sub-model was then applied

to obtain the high spatial resolution 1sA covers for the
entire state.

Results

The 15A extracted by different methodologies are illustrated

in Figure 4. Visual comparison of the classification results
reveals the differences between 1sa from pixel-based algorithm
and the MAsc algorithm. Conventional pixel-based classification
shows the salt-and-pepper effect in the testing area (Figure 4a)
and an enlarged subset using the orthophoto (Figure 4b),

as well as using QuickBird-2 image (Figure 4c). The Masc
algorithm treated groups of pixels as the classification targets
and achieved more accurate 1SA coverage. Results in the
testing area from the Masc algorithm is shown in Figure

4d, as well as the results derived from digital orthophoto
(Figure 4e) and the QuickBird-2 image (Figure 4f) in the
enlarged subset.

Because of the differences between object-based and pixel-
based classifications, different accuracy assessments have been
conducted (Herold et al., 2002; Hay et al., 2003; Shackelford
and Davis, 2003). We used the random point sampling
method to evaluate the classification accuracies in comparison
between different classification methods on the orthophoto
and QuickBird-2 data. We selected 200 samples and examined
the classification accuracies for the 1sA and none-isa only.

The confusion matrix indicates that the pixel-based classi-
fication achieved 86.5 percent overall accuracy using the
orthophoto (Table 1). The producer’s and user’s accuracies are
82.1 percent and 78.6 percent for the 1sa, and 88.7 percent
and 90.8 percent for the none-IsA categories, respectively. The
Kappa coefficient is 0.70. The Mmasc algorithm achieved a 92.5
percent overall accuracy using the orthophoto (Table 2). The
producer accuracies are 82.1 percent and 97.7 percent for 1sa
and none-1sA categories. The user accuracies are 94.8 percent
and 91.6 percent, respectively, with a 0.8259 Kappa coefficient.
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The pixel-based classification achieved 87.5 percent overall QuickBird-2 (Table 4). The producer accuracies are 82.4
accuracy using QuickBird-2 (Table 3). The producer accura- percent and 98 percent for 1SA and none-1sA categories. The
cies are 70.6 percent and 93.3 percent for 15a and none-1sa user accuracies are 93.3 percent and 94.2 percent, respectively,
categories. The user accuracies are 78.3 percent and 90.3 with a 0.8357 Kappa coefficient. The results indicate that
percent, respectively, with a 0.66 Kappa coefficient. The Masc ~ the masc algorithm performed better than pixel-based classifi-
algorithm achieved a 94 percent overall accuracy using cation in 1SA extraction from high spatial resolution data.

»
P———— - -

At

0 None ISA

Figure 4. Extraction of isa from the pixel-based method using (a) and (b) the true color orthophoto,
(c) results from the pixel-based method using QuickBird-2 imagery, (d) and (e) results from mMAsc

algorithm using true color Orthophoto and (f) results from the masc algorithm using QuickBird-2
imagery.
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TABLE 3. THE CONFUSION MATRIX BY PIXEL-BASED CLASSIFICATION
UsING QUICKBIRD-2 IMAGERY

Reference Reference

User’s User’s
Algorithm Result 1SA  none-1IsA  Row Total Accuracy %  Algorithm Result 1ISA  none-IsA  Row Total Accuracy %
ISA 55 15 70 78.6 ISA 36 10 46 78.3
none-ISA 12 118 130 90.8 none-ISA 15 139 154 90.3
Column Total 67 133 200 Column Total 51 149 200
Producer’s Accuracy % 82.1 88.7 86.5 Producer’s Accuracy % 70.6 93.3 87.5

Kappa Value = 0.70
Overall Accuracy = 86.5%

TABLE 2. THE CoNnFusiON MATRIX BY MASC ALGORITHM
UsING ORTHOPHOTO

Kappa Value = 0.66
Overall Accuracy = 87.5%

TABLE 4. THE CONFUSION MATRIX BY MASC ALGORITHM USING
QuUICKBIRD-2 IMAGERY

Reference Reference

User’s User’s
Algorithm Result 1ISA  none-iIsA  Row Total Accuracy %  Algorithm Result ISA  none-IsA  Row Total Accuracy %
ISA 55 3 58 94.8 ISA 42 3 45 93.3
none-ISA 12 130 142 91.6 none-ISA 9 146 155 94.2
Column Total 67 133 200 Column Total 51 149 100
Producer’s Accuracy % 82.1 97.7 92.5 Producer’s Accuracy % 82.4 98.0 94

Kappa Value = 0.8259
Overall Accuracy = 92.5%

We also evaluated the 1sA extractions for the six
selected validation areas for both the orthophoto and
QuickBird-2 datasets using the masc algorithm. The com-
parisons of the classification results are illustrated in
Figure 5.

The result of extracted high spatial resolution 1sa for the
entire state is illustrated in Figure 6. As the first set of
precise statewide 1sa data, the map reveals the spatial
distribution of 1sA, in particular along the coastal line.

Conclusion and Discussion
This study developed a Masc algorithm that included sub-
models of segmentation, shadow-effect, MANOvA-based
classification, and post-classification. A nested-hierarchical
model approach was used in the multiple pass algorithm.
The segmentation sub-model replaced the spectral differ-
ence with parameters of heterogeneity change for merging
regions. The shape information was introduced in the
segmentation sub-model to enhance the performance of
1SA extraction. In high spatial resolution images, particular
in suburban settings, it is unavoidable that some of the
1sA are covered by shadows of trees or buildings. The
shadow-effect sub-model used a split-and-merge process
to successfully separate shadows and the objects that
cause the shadows. The classification sub-model used
the MANOVA-based classifier so that the variability within
the object and the relationship between the spectral bands
were taken into account. For those areas that are com-
pletely covered by dense tree crowns Gis-based post-
classification sub-model enabled the improvement of
the 1sA extraction.

Compared with the pixel-based method, the masc
algorithm achieved more precise and accurate information
on 1SA distribution. It eliminated the salt-and-pepper effect

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Kappa Value = 0.8357
Overall Accuracy = 94%

that is observable in the result from pixel-based method. In
the Masc algorithm, spatial information such as neighbor-
hood, proximity and homogeneity can be used effectively in
the classification process. Fewer training samples are needed
for this algorithm since each sample region contains multi-
ple pixels and their spectral variations.

In pixel-based methods, the variability and relationship
between spectral bands of the training samples are taken
into account in some classifiers such as maximum likeli-
hood. There was no such information for a single pixel in
the pixels to be classified in those methods. In most of the
existing object-based methods, the relationships between
different spectral bands were not considered. Because of
the correlations among different spectral bands in remote
sensing data, it is helpful to exploit this relationship infor-
mation in the data process. The MANOVA-based algorithm
exploits the correlations of the spectral bands to explain the
spectral distance between the training objects and those to
be classified. In the MaANOvVA-based classification sub-model,
a quality index was established to measure the classification
quality. With this index and the repeating algorithm, the
appropriate number of classes can be derived to get the best
classification.

The masc algorithm is successful in extraction of 1sa

from the high spatial resolution airborne true color digital
orthophoto, as well as from space-borne multispectral image.
True color orthophoto data are more common among state
agencies and have been widely used by the general public.
The QuickBird-2 data have advantages in multispectral
coverage. The digital orthophoto data and spatially enhanced
QuickBird-2 data possess comparable spatial resolution.
The results from multiple testing areas, as well as from the
entire state with different landscape and 1sA characteristics,
verified that this algorithm is applicable and robust. There-
fore, the masc algorithm can meet the requirements in high
spatial resolution 1sA extraction.
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Figure 5. Comparison of isa extraction for the six selected testing areas from (upper image)
orthophotos and (lower image) QuickBird-2 images: (a) Site 1, (b) Site 2, (¢) Site 3, (d) Site 4,
(e) Site 5, and (f) Site 6.

The achieved 15a data should be the first state-wide also valuable in ecological and hydrological modeling to
high spatial resolution and precise 1A distribution that are determine the impacting effects of land-use patterns on the
available for the environmental impact studies. The data are  coastal environment and watersheds.
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RO

Island.

Figure 6. Results of high spatial resolution 1sa extraction for the State of Rhode
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