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Abstract
This paper introduces a Subpixel Proportional Land cover
Information Transformation (SPLIT) model to extract propor-
tions of impervious surfaces in urban and suburban areas.
High spatial resolution airborne Digital Multispectral Videog-
raphy (DMSV) data provided subpixel information for Landsat
TM data. The SPLIT model employed a Modularized Artificial
Neural Network (MANN) to integrate multi-sensor remote sens-
ing data and to extract proportions of impervious surfaces and
other types of land cover within TM pixels. Through a control
unit, the MANN was able to decompose a complex task into
multiple subtasks by using a group of sub-networks. The SPLIT
model identified spectral relations between TM pixel values
and the corresponding DMSV subpixel patterns. The estab-
lished relationship allows extrapolation of the SPLIT model to
the areas beyond DMSV data coverage. We applied five inter-
vals, i.e., �20 percent, 21 to 40 percent, 41 to 60 percent, 61 to
80 percent, and �81 percent, to map the subpixel proportions
of land cover types. We extrapolated the SPLIT model from
training sites that have both TM and DMSV coverage into the
entire DuPage County with TM data as the input. The extrapo-
lation received 82.9 percent overall accuracy for the extracted
proportions of urban impervious surface.

Introduction
Impervious surface is defined as any impenetrable material
that prevents infiltration of water into the soil. Urban pave-
ments, such as rooftops, roads, sidewalks, parking lots, drive-
ways, and other manmade concrete surfaces, are among im-
pervious surface types that featured the urban and suburban
landscape. Impervious surface has been identified as a key en-
vironmental indicator due to its impacts on water systems and
its role in transportation and concentration of pollutants
(Arnold and Gibbons, 1996). Urban runoff, mostly through im-
pervious surface, is the leading source of pollution in the Na-
tion’s estuaries, lakes, and rivers (Arnold and Gibbons, 1996;
Booth and Jackson, 1997). Quantification of the percentage of
impervious surface in a landscape has become increasingly
important with growing concern over water quality in the U.S.
(Civco et al., 2002). Extraction of impervious surface informa-
tion from remotely sensed data, particularly from Landsat TM
or ETM+ data has been challenging because of mixed spectral
information within the instantaneous-field-of-view (IFOV). In
suburban areas, impervious surfaces are always mixed with
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tree canopies and other types of land cover at TM and ETM+
pixel level. Although 1 to 5 meter high spatial resolution re-
mote sensing data are available, the data is usually expensive,
particularly for large areas. Therefore, modeling approaches
are in demand to integrate high spatial resolution remote
sensing data with TM level data for extraction of subpixel
information.

Subpixel Classification
In remote sensing, the pixel is the minimum sampling unit.
Classification of remotely sensed data assumes that a pixel
represents a homogeneous land cover area. This assumption is
often untenable with the pixels of mixed land cover composi-
tion (Foody, 1996). The mixed pixel problem can be well
observed at the level of TM data in land cover mapping. The
proportion of mixed pixels increases with a coarsening of
spatial resolution of remote sensing systems (Townshend and
Justice, 1981; Crapper, 1984; Irons et al., 1985; Woodcock and
Strahler, 1987). In remote sensing data acquisition, regardless
of the effective resolution of a detector it is likely that the IFOV
will intercept reflected energy from more than one land cover
class since a solid-state detector integrates the intercepted
radiance within the IFOV (Eastman and Laney, 2002). On the
other hand, conventional classification algorithms cannot
disaggregate individual land cover types that exist within
the IFOV of sensor systems. Mixed pixels, restrictions of algo-
rithms, the nature of fuzziness throughout training, and classi-
fication processes all limit the accuracy of information extrac-
tion from remote sensing data.

Numerous approaches have been developed to handle
mixed pixel problems (Shimabukuro and Smith, 1991; Settle
and Drake, 1993; Foody, 1994; Sohn and McCoy, 1997; Mayaux
and Lambin, 1997; Ashton and Schaum, 1998; Grandell et al.,
1998). Considerable studies have been conducted to recover
proportions of individual land cover types within the IFOV
(Li and Strahler, 1985; Adams et al., 1986; Roberts, et al.,
1993). Evaluations of methodologies that can be used to pro-
vide secondary labels at the resolution of polygons in vegeta-
tion mapping have been discussed (Woodcock et al., 1996).

Three major approaches that have been investigated for
subpixel classification include spectral mixture analysis, soft-
classification procedures, and empirical approaches. The
spectral mixture analysis (e.g., Settle and Drake, 1993; Bosdo-
gianni et al., 1997; Faraklioti and Petrou, 2000) determine the
proportion of each constituent class by simulation equations
which express the relationship between pixel reflectance
and the unknown fractions of the land cover classes. This
approach was considered with a limitation that the number
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of mixed classes that can be differentiated depends on the
number of image bands (Eastman and Laney, 2002).

The soft-classification procedures estimate the degree of
membership that each pixel has in each of the end-member
classes. A Bayesian soft-classification applied mixed-cover
training sites in a controlled experiment to estimate the
underlying class signatures through the development of
fuzzy mean reflectance and covariance matrices (Eastman
and Laney, 2002). A maximum-likelihood approach and
expert system rules were developed to estimate subpixel
component of vegetation-impervious surface-soil in an urban
land cover study using Landsat TM data (Hung and Ridd,
2002). The end product was a six-channel image in which
each channel indicates a pre-defined ground component at
the subpixel level.

The empirical approaches use models such as artificial
neural network (ANN) to estimate area proportions. ANN has
been applied in mixed-pixel handling (Foody, 1996; Moody
et al., 1996; Atkinson et al., 1997; Foschi and Smith, 1997;
Carpenter et al., 1999). An empirical comparison between a
modified maximum-likelihood classifier and a feed-forward
backpropagation ANN in mapping continuous distribution of
land cover indicates that the ANN classifier outperformed the
maximum-likelihood classifier (Frizzelle and Moody, 2001).
The ANN output exhibited stronger correspondence to class
proportions for each class individually and for all classes
and test regions combined. Another study suggests that the
reliability of ANN as continuous classifiers might be improved
by either transforming the output values of the ANN or by
including mixed classes in the training data (Warner and
Shank, 1997).

Among neural network applications, the backpropaga-
tion paradigm with a single-network-framed architecture is
mostly adopted. It has been noticed that a single-network
structure and the backpropagation algorithm may not be ade-
quate to differentiate details among features that possess
great spectral similarities (Wang and Civco, 1996), particu-
larly in handling subpixel information from multiple sensors.
It was suggested that certain network structures that were de-
signed to learn analog patterns (Carpenter et al., 1992) may
produce superior results (Frizzelle and Moody, 2001). Neu-
ralWare©, Inc. (1993) implemented a modular neural network
architecture. The modularized architecture is to decompose a
complex task into several subtasks. A modularized artificial
neural network (MANN) consists of a group of local networks
competing to learn different aspects of a problem. Each local
network is an individual backpropagation network. A gating
network controls the competition among subsets and learns
to assign different regions of the data space to different local
networks. MANN has been explored in multisource spatial
data classification with improved accuracy (Wang and Civco,
1996). Software vendors have been developing subpixel pro-
cessing capacity in their products (Flanagan and Civco, 2001).

With recent development in remote sensing data acquisi-
tion, a variety of high spatial resolution data is available for
improved land cover mapping and information extraction
(Lidov, et al., 2000). However, since TM and ETM+ are the most
widely applied data source in land cover mapping, challenges
still remain in effective extraction of subpixel proportions of
impervious surface and other types of land cover within TM
pixels. In this paper, we present the Subpixel Proportional
Land cover Information Transformation (SPLIT) model to dif-
ferentiate proportions of land covers. We choose using MANN
architecture for the SPLIT model with the hope that the MANN
design can differentiate complex mixing scenarios of subpixel
proportions. We focused on urban impervious surface, since it
is among the most demanded information in environmental
study and watershed management.

Method
Data Sources
This study used airborne digital multispectral videography
(DMSV) data as the reference of subpixel information for the
TM data. The DMSV data possesses two meter spatial resolution
and has four spectral bands that are identical to the spectral
coverage of the first four TM bands. The spatial relationship
between DMSV and TM determines that 225 DMSV pixels (15 �
15) cover the same ground area as one TM pixel. The DMSV
data in this study was acquired on 10 October 1997 for four
selected sites in the DuPage County, Illinois (Plate 1a). Locat-
ed in the west suburbs of Chicago, the landscape of the county
is dominated by urban and suburban settings. A Landsat TM
scene (Path 023/Row 031) on the same day of the DMSV data
acquisition was available and purchased from the USGS EROS
Data Center. The almost simultaneous data acquisition and
identical selected spectral bandwidth between the two sensor
systems made the set of DMSV data an ideal source of subpixel
spectral information for the TM data (Plate 1). Since the DMSV
data is available only for four selected sites in the county, ex-
trapolation process is necessary to obtain subpixel informa-
tion for the area beyond DMSV coverage by the SPLIT model.

The digital DMSV images were georeferenced to the state
plane coordinate system and mosaicked. The TM data was geo-
metrically rectified and georeferenced to the same coordinate
system as the mosaicked DMSV imagery. The root mean square
error of registration between the two data sets was 0.0043 TM
pixels, or one DMSV pixel. In order to differentiate subpixel im-
pervious surface from other land cover types, six general cate-
gories were applied which include urban impervious surface,
deciduous trees, coniferous trees, agricultural-land/grassland,
wetland/water, and urban grass. We conducted GPS-guided
ground verification and recorded proportions of different land
cover types in selected sampling sites. The obtained ground
truthing locations served as references for selection of training
data between DMSV and TM pixels.

SPLIT Model
The architecture of SPLIT model includes a MANN and a control
unit. The MANN is a global network that consists of a group of
simple-structured sub-ANNs, or subnets (Figure 1). MANN de-
composes a complex task into multiple subtasks through the
use of subnets. The subnets are assigned to learn different
patterns of land cover proportions through a control unit. The
number of subnets is the same as the number of output pro-
cessing elements (PE). The control unit is designed to perform
multiple functions that include: (1) task assignment; (2) in-
verse simulation of spectral features; and (3) decision and ad-
justment (Figure 1). The control unit includes a gate network
and a supporting library that records all of the neural network
parameters and the training patterns. During network training,
the control unit and the supporting library learn the patterns
of mixed land cover compositions, proportions, and the corre-
sponding spectral features of the mixed pixels from the corre-
sponding TM and DMSV pixel values. Once trained, the control
unit will be able to screen the input data and subpixel pat-
terns within the input, dissects the input, and distributes the
input to the suitable subnet for further process. This design
allows complex cases of subpixel patterns to be decomposed
and effectively handled. For example, it was difficult to differ-
entiate the proportions of land cover types that share certain
similarities in spectral characteristics. A single-network
framed ANN might perform poorly on differentiation of pro-
portions among agricultural/grassland and urban grass. With
MANN, the control unit detects the similarities among confus-
ing categories and assigns the subnets that have been trained
to handle these categories to extract the information.

8 2 2 J u l y  2004 P H OTO G R A M M E T R I C  E N G I N E E R I N G  &  R E M OT E  S E N S I N G

02-103.qxd  6/9/04  10:52 AM  Page 822



Let L be the number of output processing elements (PE) of
the control unit which is the same as the number of subnets,
N as the number of MANN output which represents the level
of proportions of land cover types, yk � (yk1, . . . , ykN) as the
activation vector of kth subnet output layer, y � (y1, . . . , yN) as
the MANN output, and c � (c1, . . . , cN) as the activation vector
of the output of the control unit. The output of lth subnet is
adjusted by cl: 

y � �
L

l�1

clyl. (1)

MANN is trained by updating the weights connecting each of
the PE. The update of the weights is derived by maximizing
the objective function:

J� ln��L

l�1

cle
�0.5(d�yl)

T(d�yl)� (2)

where d � (d1, . . . , dN) is the desired output vector for the
MANN. The quantity of hk is used to describe the learning
equations:

hk � . (3)

Standard backpropagation attempts to minimize a global error
function E by:

��
�
�
E
I� � ��

�
�
E
y� �

�
�
y
I� � (d � y)�

�
�
y
I� (4)

cke
�0.5(d�yk)T(d�yk)

���

�
L

l�1

cle
�0.5(d�yl)

T(d�yl)
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Plate 1. (a) The index map shows counties in the Chicago metropolitan
region and the location of the DuPage County. (b) Landsat TM image of
the DuPage County (band 4,3,2 in RGB) and the locations of four sites
that have DMSV data coverage. (c) The example DMSV data shows the
spectral similarities with TM and the finer spatial resolution. 

Figure 1. The SPLIT model consists of a modularized artificial
neural network and a control unit.
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where Ik � (Ik1, . . . , IkN) represents the pre-activation vector of
kth subnet output layer, and a standard quadratic error func-
tion is assumed. The corresponding values to backpropagation
include (NeuralWare©, 1993):

• Backpropagate error for kth subnet:

��
�
�
I
J
k

� � ��
�
�
y
J
k

� �
�
�
y
Ik

k� � hk (d � yk)�
�
�
y
Ik

k�. (5)

• Backpropagate error for kth output PE of the control unit:

�
�
�
s
J
k
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L

l�1

�
�
�
c
J
l

� �
�
�
s
c

k

l� � �
l�k

���
h
c

1

l
�ckcl� � �

h
ck

k��ck � ck
2�

� �ck�
l�k

hl � hk � ckhk � hk � ck �
L

l�1

hk � hk � ck. (6)

Equations 5 and 6 indicate that the error at each subnet is
weighted by its control unit.

In the training stage, the PE at the input layer accepts
multispectral TM data and the corresponding subpixels of
DMSV from the selected sample sites. Patterns of mixed land
cover compositions, proportions, and corresponding charac-
teristics of spectral features between the two data sets are
recognized. The output layer of the MANN represents propor-
tions of land cover types in TM pixels that are defined by sub-
pixel patterns. In model operation, the input PE accepts TM
data as the input. The control unit evaluates spectral patterns
of the input and determines which subnet or a group of sub-
nets should be assigned to handle the input data. For exam-
ple, if a TM pixel is a mixture of two land cover types, one
subnet that was trained to handle this composition will be
assigned to process the input data. If there are three or more
land cover types mixed in one TM pixel, the subnet that has
been trained to handle the likely composition will be as-
signed to extract land cover proportions of the composition.
Besides, the supporting library recorded spectral relations
and similarities among land cover compositions. Therefore,
closely related and confusing compositions can be better
identified.

A pixel is considered pure if there is a dominant land
cover type that accounts for over 80 percent of the TM pixel
area. A pure pixel subnet (Figure 1) handles the pixels that
have close to homogeneous subpixel spectral features.

The number of subnets depends on the number of consid-
ered compositions of mixed land cover types. Total number of
possible compositions can be calculated by: 

L � �
n

i�2

Cn
i (i � 2, 3, 4, 5). (7)

In Equation 7, n is the total number of land cover categories; i
is the number of mixed land cover types within one TM pixel,
and Cn

i is the number of possible compositions. We observed
that most of the subpixel compositions were among two to
five land cover types. The case of mixture of all six land cover
types within one TM pixel was excluded because this compo-
sition was rarely observed. Since n � 6 and the considered
compositions were among any two to five land cover types,
the calculated L equals 56. Therefore, 56 subnets were imbed-
ded into the MANN architecture. Each subnet was trained to
handle one composition of mixed subpixels. The output of a
subnet represents the proportions of that mixed land cover
composition within the TM pixel. 

Inversion Simulation
After initial extraction of subpixel proportions, the control unit
performs an inverse transformation from proportion domain
to spectral domain. The supporting library imbedded in the

control unit supports the inverse simulation (Figure 1). The in-
verse transformation simulates spectral features of the TM pixel,
i.e., pixel value (DN), based on obtained proportions of given
land cover composition and on spatial aggregation pattern of
subpixels. The purpose of inverse transformation is to examine
the degree of similarity between the original spectral feature of
TM pixel and the simulated spectral feature from proportions
of land cover by DMSV data. The most likely composition and
proportion of land cover types are determined by the root mean
square error (RMSE) derived from inverse transformation:

RMS � �� (8)

where N is the number of output PEs in an inverse subnet. bi is
the spectral value of i th spectral band derived by the inverse
simulation from the extracted proportions and land cover
combinations from DMSV pixels; b̂i is the pixel value observed
from the TM. The RMSE is a measurement of closeness between
simulated spectral features and the spectral value of the TM
pixels. If the RMSE is greater than a threshold, the control unit
will make an adjustment and reassign the job to another sub-
net that is the most relevant land cover composition for a new
round of proportion extraction. Thresholds come from se-
lected training samples in which the proportions of land
cover types are known. The proportion extraction is accepted
if the RMSE is lower than the threshold. If there is no subnet
that can achieve a RMSE lower than the threshold, the output
of the subnet that has the lowest RMSE will be saved.

Training and Testing Sample Selection
We conducted initial classifications on both TM and DMSV data
to help in identification of the patterns of subpixel propor-
tions and to establish relations between DMSV and TM pixels.
We classified the TM and DMSV data into six land cover types.
The locations of initial candidate training samples were se-
lected from classified TM and DMSV data based on their land
cover types. The selected sample locations were further com-
pared with GPS-guided field checking results. This needs to
point out that the initial classifications were to provide a back-
ground for possible sample locations and to facilitate training
data selection. The real training data came from the selected
TM pixels and the corresponding subpixels from DMSV data.
The final selected training samples established the spectral re-
lations between TM pixels and the corresponding DMSV pixels
that act as subpixel information provider. It is the spectral
characteristics of DMSV rather than the classification results
that provide the subpixel pattern within the TM pixels.

We applied a moving window technique to extract sample
of subpixel proportions of land covers from DMSV data. The
window size was designed to represent the size of TM and mul-
tiple DMSV pixels. We selected 250 training samples for each
case of the 56 mixed land cover combinations. Additional
samples were selected by the same procedure and reserved for
accuracy assessment. Figure 2 illustrates the procedures of
training data selection. Plate 2 shows the examples of selected
training sample locations and the comparison of mixed and
pure pixels between the TM and DMSV data from the initial
classifications.

Results
Since 225 DMSV pixels cover the same area as one TM pixel,
the SPLIT model could potentially extract 1/225 of a TM pixel
area as the minimum unit of subpixel proportions. For the
purpose of subpixel proportional land cover mapping, we
applied five generalized proportion intervals, i.e., 0 to 20 per-
cent, 21 to 40 percent, 41 to 60 percent, 61 to 80 percent, and
81 to 100 percent. The trained SPLIT model was first applied to
derive proportions of impervious surface and other types of

�(bi � b̂i)
2

��N
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land covers for the four sites that had DMSV coverage. Compar-
ison between urban areas obtained from conventional classifi-
cation of TM image (Plate 3a) and the subpixel proportions of
urban impervious surface obtained from the SPLIT model
(Plate 3b) shows that the subpixel proportions represent much
more detailed information of impervious surface distribution
than conventional classification of TM pixels. The TM pixels
that cover continuous paved areas were identified at 80 to
100 percent proportions, while the narrow roads and edges
of pavements were identified at lower proportions of urban
impervious surface. Instead of using one fixed label for a clas-
sified TM pixel, the SPLIT model was able to extract subpixel
proportions of land cover types within TM pixels.

With the trained SPLIT model and using TM data as the
input, we extrapolated the extraction of subpixel impervious

surface proportions beyond the DMSV data coverage into the
entire DuPage County. The trained SPLIT model was able to
differentiate the subpixel proportions of urban impervious
surface based on spectral features of the input TM pixels
(Plate 3c).

We conducted two separate accuracy assessments to eval-
uate the performance of the SPLIT model. We first applied an
average dynamic range (ADR) to measure the correctness of
proportion extractions for the areas that had DMSV data cover-
age. We used the reserved samples from GPS-guided ground
truthing as the references to evaluate the correctness of SPLIT
derived subpixel proportions. The ADR is defined as:

ADR � �� (17)

where, n is the total number of testing sites; m is the total
number of land cover categories; pij is the SPLIT-derived value
of proportions of the j th land cover types in the i th pixel; p̂ij is
the value of the observed proportion of the j th category in the
ith pixel in DMSV. The larger the ADR value, the lower the accu-
racy of proportion extraction. The ADR values indicate that
proportions of land cover types can be more accurately simu-
lated when fewer land cover types exist within one TM pixel
(Table 1). Less number of land cover types within a mixed
pixel reduces the complexity of land cover composition so
that the extracted proportion can be more accurate. The SPLIT
model worked most effectively on the combinations of two
land cover types within a TM pixel. The ADR value increased
when there were more land cover types mixed within TM
pixels. The SPLIT model performed well when the proportion
level is between 41 to 60 percent. Higher ADR values were ob-
served at the 21 to 40 percent and 61 to 80 percent proportion
intervals. The reason could be that there was no dominant
proportion of land cover types at the middle ranged mixing
proportions (41 to 60 percent). Therefore, the relationships
between TM pixel values and the mixing patterns of DMSV
subpixels could be more accurately identified and extracted.
When the proportion intervals were off the middle ground,
i.e., at 21 to 40 percent and 61 to 80 percent intervals, the in-
fluence from one dominant land cover type could reduce the
effectiveness of extracting proportions of other land cover
types within the TM pixels. The 81 to 100 percent interval was
considered as a pure pixel and these pixels were handled by
the pure pixel subnet. We evaluate the SPLIT performance on
pure pixel by sample-based accuracy assessment (e.g., Table 2)
rather than by ADRs.

After the extrapolation of SPLIT model to the entire
DuPage County, we conducted an accuracy assessment
through ground verification across the county for the propor-
tions of impervious surface. The result in Table 2 indicates
that the higher the proportions of impervious surface area

�
n

i�1
�
m

j�1

(pij � p̂ij)
2

��n
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Figure 2. Procedures of selecting training samples to de-
termine subpixel proportions of land cover types between
DMSV and TM pixels.

TABLE 1. THE AVERAGE DYNAMIC RANGE (ADR) OF LAND COVER PROPORTIONS IN DIFFERENT INTERVALS

Number of 
Land Cover 
Types in a Number of

ADR in Different Proportion Interval
Overall

Mixed TM Pixel Test Sites 0–20 (%) 21–40 (%) 41–60 (%) 61–80 (%) ADR (%)

2 350 7.85 9.05 5.22 8.22 8.77
3 255 7.89 8.65 5.16 10.67 9.39
4 150 10.12 11.22 8.71 10.98 10.42
5 70 11.25 12.35 8.91 12.82 11.56

02-103.qxd  6/9/04  10:52 AM  Page 825



within a TM pixel, the better the accuracy achieved. The high-
end intervals are either close to or among the pure pixels.
The pure pixels at 80 to 100 percent interval achieved the best
accuracy. The 41 to 60 percent and 61 to 80 percent propor-
tions achieved about the same accuracy in extraction of urban
impervious surface.

We also applied the SPLIT model to extract proportions of
other types of land covers. Plate 3d shows the result of ex-
tracted subpixel proportions on deciduous trees. It demon-
strates that the SPLIT model is capable of extracting different
types of subpixel proportions as long as the training samples
are available.

Discussion
This study explored a modeling approach of using multisen-
sor remote sensing data to extract subpixel proportions of
land cover information. The SPLIT model successfully ex-
tracted the proportions of urban impervious surface in a study
area that has predominately suburban residential and com-
mercial landscape. Instead of using a fixed label of land cover
type for classified TM pixels, subpixel proportions of land
covers provide additional detailed information for the TM
pixel locations. Several factors contributed to the performance
of the SPLIT model.

First, the identical spectral coverage between the DMSV,
and the first four bands of TM is the basic requirement to es-
tablish the relationships between spectral features of TM pix-

els and the DMSV, subpixel spectral patterns. The study shows
that TM and DMSV data are among the reliable data sources to
be integrated in extraction of subpixel land cover proportions.
In addition, the same day and almost simultaneous data ac-
quisition of TM and DMSV data assured the quality of the sub-
pixel information. Otherwise, appropriate image processing
such as histogram matching will have to be conducted to
match coarser resolution sensor data with finer resolution
subpixel information providers.

Secondly, the SPLIT model consists of a modularized arti-
ficial neural network and a control unit. This mechanism was
able to decompose a complex task, such as complex mixing
scenarios of subpixel proportions, into simplified subtasks
with specific targets of land cover compositions and propor-
tions. The subnets are capable of obtaining reliable informa-
tion about proportion compositions.

Thirdly, the inverse simulation reinforced the evaluation
of the closeness of extraction of land cover proportions. This
process assured the accuracy of subpixel information extrac-
tion since it adopted the combination of land cover types and
the proportion intervals that most closely matched the origi-
nal TM pixel values.

Furthermore, the supporting library imbedded within the
control unit recorded the patterns between TM pixel features
and the DMSV subpixel compositions during the training
process. Once trained, the SPLIT model can be extrapolated to
the areas that have no finer spatial resolution data coverage by
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TABLE 2. ACCURACY ASSESSMENT OF SPLIT MODEL DERIVED PROPORTIONS OF IMPERVIOUS SURFACE

SPLIT Model Derived Proportions of Impervious Surface

Reference 0–20% 21–40% 41–60% 61–80% 81–100% Row Total Omission Error Accuracy

0–20 % 154 30 7 1 192 19.79% 80.21%
21–40% 28 182 10 3 1 224 19.91% 81.25%
41–60% 16 7 173 10 2 208 16.83% 83.17%
61–80% 2 24 164 6 196 16.33% 83.67%
81–100% 10 88 98 10.20% 89.79%

Column Total 198 221 214 188 97 918
Commission Error 22.22% 17.67% 19.16% 12.77% 9.28% Overall 82.90%

Plate 2. Locations of training samples and examples of pure and mixed subpixel information within the TM
pixel areas.
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simulation operations. Therefore, the SPLIT model is an effec-
tive way of using limited resources of high spatial resolution
data to obtain extended subpixel proportions for a large area.
The model works well for extraction of impervious surface
information in suburban settings where mixed pavements and
woodland are common in residential areas. This approach can
be applied to integrate data from other multiple sensors for
subpixel information extraction as well.
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