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Full Length Article

Is clinically measured knee range of motion after total knee arthroplasty
‘good enough?’: A feasibility study using wearable inertial measurement
units to compare knee range of motion captured during physical therapy
versus at home

Ryan M. Chapman a,c,*, Wayne E. Moschetti b, Douglas W. Van Citters a

a Dartmouth College, Thayer School of Engineering, 14 Engineering Drive, Hanover, NH, 03755, USA
b Dartmouth Hitchcock Medical Center, Department of Orthopaedics, 1 Medical Center Drive, Lebanon, NH, 03766, USA
c University of Rhode Island, Department of Kinesiology, 25 W Indendence Way, Kingston, RI, 02881, USA
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A B S T R A C T

Total knee arthroplasty is highly successful, in part due to range of motion (RoM) recovery. This is typically
estimated goniometrically/visually by physical therapists (PTs) in the clinic, which is imprecise. Accordingly, a
validated inertial measurement unit (IMU) method for capturing knee RoM was deployed assessing postoperative
RoM both in and outside of the clinical setting. The study's objectives were to evaluate the feasibility of
continuously capturing knee RoM pre-/post-op via IMUs, dividing data into PT/non-PT portions of each day, and
comparing PT/non-PT metrics. We hypothesized IMU-based clinical knee RoM would differ from IMU-based knee
RoM captured outside clinical settings. 10 patients (3 M, 69 � 13 years) completed informed consent documents
following ethics board approval. A validated IMU method captured long duration (8–12 h/day, ~50 days) knee
RoM pre-/post-op. Post-op metrics were subdivided (PT versus non-PT). Clinical RoM and patient reported
outcome measures were also captured. Compliance and clinical disruption were evaluated. ANOVA compared
post-op PT and non-PT means and change scores. Maximum flexion during PT was less than outside PT. PT
stance/swing RoM and activity level were greater than outside PT. No temporal variable differences were found
PT versus non-PT. IMU RoM measurements capture richer information than clinical measures. Maximum PT
flexion was likely less than non-PT due to the exercises completed (i.e. high passive RoM vs. low RoM gait). PT
gait flexion likely exceed non-PT because of ‘white coat effects’ wherein patients are closely monitored clinically.
This implies data captured clinically represents optimum performance whereas data captured non-clinically
represents realistic performance.

1. Introduction

Total knee arthroplasty (TKA) successfully treats end stage knee
osteoarthritis (OA) [1–3], improving pain, quality of life, and clinic
and/or laboratory measured range of motion (RoM) [4–7]. To achieve
improvements post-TKA, care often involves homogenous, broad-based
physical therapy (PT) [8–12]. Clinical flow at our institution attempts
ensuring recovery (Fig. 1A) via homogenous inpatient PT, at-home or

outpatient rehabilitation, and longer-term follow-ups. This homogeneity
likely facilitates wound healing, pain reduction, and recovering RoM
necessary for activities of daily living (ADL; e.g. stair ascent) [1,9,11,
13–15]. Accordingly, establishing RoM recovery is critical for evaluating
healing and TKA/PT efficacy.

Currently, clinicians rely upon static goniometric or visual knee RoM
measures to evaluate recovery [16–18]. Unfortunately, these knee RoM
measurements are limited because they 1) are discrete (singular

Abbreviations: RoM, Range of motion; PT, Physical therapy; PTs, Physical therapists; IMU, Inertial measurement unit; ANOVA, Analysis of variance; TKA, Total knee
arthroplasty; OA, Osteoarthritis; ADL, Activities of daily living; MOCAP, Motion capture; 3D, Three dimension; LPF, Low-pass filter; FFT, Fast Fourier transform; EMR,
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time-points), 2) are conducted in idealized capture locations (routine PT
exams in laboratory/clinic settings), 3) fail to measure motion capabil-
ities through entire dynamic RoM (i.e. only maximum RoM), and 4) are
low-resolution [19–21]. While goniometric/visual maximum knee RoM
are low-cost, quick, and simple, they likely fail to fully encapsulate pa-
tient function. Previous studies highlight these limitations including poor
accuracy/precision [22,23] and maximum knee RoM failing to improve
post-TKA (i.e. cannot evaluate recovery if equal to pre-TKA values) [24].
Additional studies show little connection between goniometric knee RoM
and well-established post-TKA measures of function (e.g. pain, quality of
life) further limiting this measure's value establishing recovery [25,26].

Optical motion capture (MOCAP) and fluoroscopy are additional knee
RoM measurement methods with improved precision/accuracy that
capture more dynamic RoM information [27–30]. However, like goni-
ometry, both are restricted to well-controlled laboratory/clinical set-
tings. Moreover, these methods are costly (>$10 k and >$200 k,
respectively) and require significant technical training to oper-
ate/interpret. As such, improved post-TKA RoM recovery measurement
techniques are necessary. Because clinicians rely on RoM measures
collected during routine PT/clinical exams, it is vital to evaluate RoM
measurement methods deployable both in well-controlled clin-
ical/laboratory settings (i.e. where RoM is evaluated) and in realistic
environments where patient function may differ (e.g. at home).

Inertial measurement units (IMUs) are novel wearable technology
allowing portable knee RoM capture [31–34]. IMUs collect linear ac-
celeration, angular velocity, and magnetic field strength which are
leveraged to quantify the object's orientation to which IMUs are affixed
(e.g. femur, tibia). This has been utilized evaluating outcomes spanning
gross (e.g. activity classification) [35–37] to fine precision (e.g. RoM)
[31,32,38,39]. Accordingly, knee RoM is quantifiable via IMUs in both
clinical settings and more realistic scenarios (e.g. at the patient's home).
However, studies typically only evaluate knee RoM either in

well-controlled laboratory/clinic settings [31,33] or in patients'
self-selected environments [32]. And despite reliance on knee RoM
captured clinically during routine PT visits to establish recovery, no
studies exist demonstrating if clinical RoM is equivalent to knee RoM
outside of well-controlled environments (e.g. patient selected
environments).

Accordingly, objectives of this initial pilot study were utilizing a
previously validated IMU-based knee RoM measurement method to
evaluate feasibility of 1) continuously capturing knee RoM pre-/post-
TKA via IMUs both during (‘PT’) and outside of PT (‘non-PT’), 2) dividing
data into PT and non-PT segments, and 3) comparing PT and non-PT
IMU-based metrics in a typical consecutive caseload of one orthopaedic
surgeon. Because patients are encouraged during PT (verbally, physi-
cally, etc.), we hypothesized all IMU-based metrics will be significantly
different PT versus non-PT. Specifically, we hypothesized IMU 1) kine-
matic measures (i.e. maximum, stance phase, swing phase RoM) are
greater during PT, 2) temporal measures (i.e. stride, stance, swing time)
are less during PT, and 3) activity level is greater during PT. Failing to
reject these hypotheses, this would imply reliance on clinically captured
RoM to establish recovery may be misguided.

2. Materials and methods

2.1. Overview

This study was reviewed/approved by our institution's ethics review
board (The Committee for Protection of Human Subjects, Dartmouth
College). Following ethics board approval, we utilized a previously
validated IMU-based method for capturing continuous, long-duration
knee RoM from patients pre-/post-TKA [32]. This method was vali-
dated across walking speeds/RoMs with error analyses showing agree-
ment with gold-standardMOCAP at midstance, toe-off, andmidswing but

Fig. 1. (A) Postoperative total knee arthroplasty (TKA) physical therapy (PT) clinical flow, (B) Inertial measurement unit (IMU) sensor donning locations, and (C) Data
process flow from 1) raw data input to 2) processed data including low pass filtration, bony segment differentiation, and sensor/anatomy misalignment removal to 3)
daily continuous knee flexion estimate to 4) daily outcome metrics.
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slight heel-strike bias (~5�). Accordingly, we avoided heel-strike RoM
measures, and focused instead on midstance/midswing as well as unbi-
ased temporal and activity level information.

At the highest level, subjects donned temporally synchronized IMUs
(fs ¼ 128 Hz, range: �6 g; Emerald, APDM Inc., Portland, OR, USA) each
day. IMUs were rigidly attached above/below the knee (Fig. 1B; Superior
to lateral femoral epicondyle & Inferomedial to tibial tuberosity) via
silicone-backed elastic straps leveraging 3D acceleration to quantify
relative sagittal segment orientation (i.e. knee flexion). Following receipt
of informed consent, patients were instructed on appropriate sensor use
(i.e. sensor placement, charging, etc.) and given visual/text-based guides
including the same information. Further demonstrations were provided if
questions arose during deployment. 3D acceleration then continuously
recorded to microSD cards 8–12 h/day. At daily terminus, IMUs were
doffed/recharged. This process was repeated daily for the study duration.
Sensors were then returned for analyses.

2.2. Data processing

Knee flexion was continuously calculated each day via relative IMU
motion (Fig. 1C): 1) Raw accelerometer input, 2) Pre-processing: LPF
(5th order Butterworth, fcutoff ¼ 5 Hz), assessing to what segment each
IMU was attached, removing sensor/anatomy misalignment (described
in detail below), 3) Calculate continuous knee flexion, and 4) Output
daily kinematic (maximum, stance/swing phase RoM), temporal (stride,
stance, swing time), and activity level metrics [32,40].

For each day's data, sensor orientation was noted during initial don-
ning via accelerometer values from known positions (i.e. aactual). If ac-
celerations indicated inappropriate sensor positioning (i.e. aactual 6¼
acorrect), actual data were rotated to ‘correct sensor position’ data using
3D rotation matrices in MATLAB (vrrotvec and vrrotvec2mat). A similar

process was employed throughout sensor use to evaluate sensor position
changes during use (e.g. sensors jostled). Unusable data (e.g. sensors
slipped down leg) were removed accordingly. Once sensors were
replaced to correct positions, sensor position was re-evaluated and
rotated similarly using vrrotvec and vrrotvec2mat.

Following, data pre-processing, continuous knee RoM was computed
each day. Kinematic outcome variables were then quantified from daily
continuous knee RoM. Maximum RoM was the greatest knee RoM ach-
ieved daily. Gait was located via fast Fourier transform (FFT) frequency
analysis [41,42] defined as the 1-min epoch with greatest 0.75–2.25 Hz
content magnitude. Within that epoch, individual strides were identified
by locating repeated, characteristic, bimodal knee flexion curves indic-
ative of over-ground ambulation (Fig. 2B). Heel-strike occurred at the
local knee flexion minima before the lesser local knee flexion maxima
(HS, dotted line). Toe-off occurred at the local knee flexion minima
following the lesser local knee flexion maxima and immediately before
the absolute knee flexion maxima of that stride (TO, dot-dash line).
Stance/swing phases were from initial heel-strike to toe-off and from
toe-off to subsequent heel-strike, respectively. Accordingly, stance/swing
time were the duration of stance/swing phases, respectively. Stride time
was the sum of stance and swing times. Similarly, stance/swing RoM
were peak RoM achieved during stance/swing phases, respectively.
Finally, thigh accelerationwas broken into 1-min epochs for activity level
computation. Within each epoch, activity was computed as shown in
Equation (1). Any epoch with A greater than 110 m/s2/min were ‘active’
whereas epochs less than this value were ‘inactive’ [40,43,44]. Final
activity level was quantified as the percent of daily ‘active’ epochs.

A¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2xi þ a2yi þ a2zi

q
(1)

Fig. 2. (A) Study design flow block diagram including patient enrollment, inertial measurement unit (IMU) fitting and instruction, pre-total knee arthroplasty (TKA)
measures lasting 1-week, TKA surgical event, post-TKA measures lasting 6-weeks, and subsequent data bifurcation into data captured during physical therapy (PT) and
non-PT data; (B) Definitions of how gait cycles were defined including heel strike (HS) and toe-off (TO) quantifying stance phase and to subsequent HS defining swing
phase; and (C) An exemplary subject's knee flexion during physical therapy (PT) and outside PT.
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2.3. Study flow (Fig. 2A)

Following obtaining informed consent from each subject, patients
from one surgeon's consecutive caseload were fitted with IMUs and
instructed on use. Inclusion criteria included no contralateral pathology,
no other lower extremity musculoskeletal/neuromuscular pathology, no
terminal illness expected to result in death within one year, and whole
study participation. To minimize clinical disruption and unnecessary
trips to our institution, enrollment occurred at already scheduled routine
one-week pre-TKA clinical appointments. Patients then continuously
wore IMUs during waking hours for one-week pre-TKA on their impacted
leg without clinical interventions (e.g. injections).

All TKAs were performed via the medial parapatellar approach
(implant types in Results). Postop day one, IMUs were replaced on pa-
tients. Again, to minimize clinical disruptions, reduce unnecessary
returns to our institution, and align with previously scheduled post-
operative appointments at six-weeks post-TKA, subjects wore IMUs six
consecutive weeks after surgery. During this period, our institution's
standard, broad-based PT was prescribed (detailed PT in Methods 2.4).
Sensors were then returned to researchers during each patient's post-TKA
follow-up appointment at six-weeks post-op. Daily postoperative time
was bifurcated into PT/non-PT portions by comparing electronic medical
record (EMR) appointment dates/times with IMU sensor timestamps.
Finally, measures calculated during PT portions of the day were
compared to the same measures calculated during non-PT portions of the
day.

2.4. Postoperative rehabilitation

Post-TKA, homogenous rehabilitation was prescribed per our in-
stitution's clinical guidelines [45]. Generically, four phases exist
(Fig. 1A): 1) Acute inpatient to week three, 2) Weeks four-five, 3) Weeks
six-twelve, and 4) Follow-ups. Goals of each phase (Fig. 1A, italicized)
demand specific exercises including passive/active RoM, static stretches,
and non-gait activities (e.g. straight leg raises) during ‘Phase 1’; stairs,
gait progressions (e.g. single limb stance), and aquatic therapy during
‘Phase 2’; and at-home exercises including ADLs, ambulation, stairs, and
closed chain movements (e.g. step-ups) in ‘Phase 3’. ‘Phase 4’ involves
repeated clinic visits to ensure no gross issues (e.g. infection, fracture,
etc.) and satisfaction. Within these goals, PT sessions might have exercise
variability, however the broader rehabilitation approach and exercise
categories were homogenous across subjects.

2.5. Prospective study

Data from a previous study utilizing this method, comparing ‘good’
and ‘poor’ post-TKA RoM were used to estimate subject quantity for the
present investigation [32]. G*Power 3.1.9.4 computed predicted sample
sizes (p < 0.05, power>0.80) using means and standard deviations from
that investigation, assuming 15% loss to follow-up. Sample size was 12
with anticipated final enrollment of 10.

Accordingly, 10 TKA patients (three male, 69 � 13 years) in one
surgeon's consecutive TKA caseload were enrolled. Daily data were
processed as described above and in detail elsewhere [32]. Sagittal knee
RoM was quantified continuously for one-week pre-TKA and six-weeks
post-TKA. Sensor-use compliance was evaluated weekly with in-
dividuals wearing IMUs < six days removed from that week. Daily
pre-TKA IMU knee RoM quantified kinematic (maximum/stance/swing
RoM), temporal (stride/stance/swing time), and activity-level metrics.
Pre-TKA metrics were averaged for each subject across the days within
each week.

Daily post-TKA IMU-based knee RoM was divided into PT (‘PT’) and
all other (‘non-PT’) time as described previously. The same metrics as
before were quantified daily for both PT/non-PT periods. Each subject's
post-TKA PT and non-PT metrics were separately averaged each week.
Although other outcome measure frequencies are possible (e.g. hourly,

daily, etc.), weekly averages were selected for several reasons. Notably,
PT sessions occur once/twice weekly. Thus, measurement frequency less
than weekly is inappropriate for comparing PT to non-PT measures (i.e.
many days do not have PT to compare PT vs. non-PT measures). Addi-
tionally, work from our lab highlighted significant daily variability
within a week, indicating making clinical decisions via daily measures is
likely too frequent. Finally, weekly measures are currently howmany PTs
evaluate patient performance. Accordingly, weekly comparisons are a
convenient and clinically relevant frequency for evaluating these
measures.

Weekly post-TKA average PT and non-PT metrics for each subject
were then directly compared to one another and to pre-TKA values via
change-score analyses, accounting for some intersubject variability
caused by the small sample size. Specifically, pre-TKA average metrics
were subtracted from the same subject's weekly average post-TKA PT
metrics (PT change score) and separately, weekly average post-TKA non-
PT metrics (non-PT change score). Finally, PT and non-PT change scores
were averaged across subjects weekly.

Clinical RoM (goniometric maximum) and patient reported outcome
measures (PROMs) were also captured per standard clinical practice at
clinical appointments one-week pre- and six-week post-TKA. PROMs
included PROM Information System (PROMIS) mental/physical compo-
nent scores (MCS, PCS) [46], Knee injury and Osteoarthritis Outcome
Score (KOOS) [47], and pain. Change scores were also computed by
subtracting subject's pre-TKA values from their post-TKA values, then
averaged across subjects.

Due to the preliminary and small sample size of this investigation,
emphases were placed on evaluating sensor use compliance and clinical
flow disruption. For completeness however, one-way repeated-measures
ANOVA (Minitab 19.2020.1, Minitab, LLC) was completed on IMU
measures using capture location (i.e. PT vs. non-PT), time (i.e. week), and
interaction (i.e. PT/non-PT by week) factors with alpha (α) set to 0.05.
However, small sample size warrants care (as in the discussion) extrap-
olating statistical results to broader TKA populations.

3. Results

3.1. Patients, TKA device selection, & sensor compliance

Two patients (n ¼ 2, two female) underwent revision TKA. The
remainder (n ¼ 8, five female) underwent primary TKA. All subjects
received implants appropriate for their clinical presentation (n ¼ 2
P⋅F⋅C.® Sigma® TC3 Revision Knee System with Mobile Bearing Tray, n
¼ 6 Attune® Knee System, n ¼ 1 Attune® Revision Knee System, n ¼ 1
Sigma® Uncemented Total Knee System; DePuy Synthes, Warsaw, IN).
Subjects were well-healed through post-TKA follow-up. Patients were 69
� 13 years with fewer right knees replaced (four right) (Table 1).

Compliance evaluated via IMU timestamps showed high compliance
pre- (9.7� 1.8 h/day, 6� 1 days) and post-TKA (8.5� 2.3 h/day, 37� 4
days). All patients were compliant for weekly averaging. Patients
received 1.5 � 0.5 P T sessions (median � median absolute deviation
[MAD]) per postoperative week lasting 1.1 � 0.2 h/session.

Fig. 2C shows an example patient's single day knee flexion during PT
and non-PT highlighting qualitative differences. PT knee flexion was
well-ordered and more ‘active’ indicated by increased motion density.
Contrastingly, non-PT flexion showed long duration seated, sedentary
behavior (i.e. flexion�90–100�) separated by short activity bouts.

3.2. Clinical disruption

Sensors deployed herein were unobtrusive (3.65cmx3.61 cm, <50 g)
and worn beneath garments. Therapists were blinded from patient
participation excluding self-disclosure. For unblinded therapists, none
expressed IMU-induced function hindrance during rehabilitation. Ther-
apists remaining blinded expressed no restriction beyond normal post-
TKA expectations. Therapist interaction with IMUs was limited to
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wound-site checks if worn near the incision. No skin disruptions or
wound healing issues were noted.

3.3. IMU-based metrics, evaluation of means, ANOVA

IMU metrics are shown as pre-TKA (dashed line), post-TKA non-PT
(solid bars), and post-TKA PT (striped bars). Pre-TKA maximum flexion
and non-PT maximum flexion means (Fig. 3A) and change scores
(Fig. 3B) always exceeded PT means and change scores. Data capture
location (i.e. non-PT vs. PT) was significant for both means (*; non-PT >

PT; F¼ 9.77, p¼ 0.003) and change scores (*; non-PT> PT; F¼ 10.62, p
¼ 0.002). On average neither improved beyond pre-TKA levels. Time and
interaction were not significant for means (Ftime ¼ 1.73, ptime ¼ 0.14;
Finteraction ¼ 0.48, pinteraction ¼ 0.79) or change scores (Ftime ¼ 0.95, ptime
¼ 0.45; Finteraction ¼ 0.42, pinteraction ¼ 0.83).

Stance (Fig. 4A) and swing (Fig. 4C) flexion means were greater
during PT than non-PT (*; Fstance¼ 22.62, pstance<0.0001; Fswing¼ 52.80,
pswing¼<0.0001). Time was a significant factor for stance and swing
ROM (z; Fstance ¼ 3.85, pstance ¼ 0.003; Fswing ¼ 3.79, pswing ¼ 0.004) but
interaction was not (Fstance ¼ 1.34, pstance ¼ 0.25; Fswing ¼ 0.30, pswing ¼
0.91). PT stance change scores (Fig. 4B) were always positive. Non-PT
stance change scores were only positive post-TKA weeks four through
six. Data capture location was significant for change scores (*; PT> Non-
PT; Fstance ¼ 15.13, pstance<0.0001) as was time (z; Fstance ¼ 2.90, pstance
¼ 0.02). However, interaction was not significant (Fstance ¼ 0.39, pstance
¼ 0.86). Non-PT swing flexion change scores (Fig. 4D) remained nega-
tive, however exceeded zero for PT during post-TKA weeks three through
six. Data capture location was significant (*; PT > Non-PT; Fswing ¼
28.84, pswing<0.0001). Time (Fswing ¼ 1.69, pswing ¼ 0.15) and interac-
tion (Fswing ¼ 0.16, pswing ¼ 0.98) factors were not significant.

Stride time means (Fig. 5A) always exceeded pre-TKA values during

Table 1
Patient demographics (age, sex, surgical/sensor side, pre-
TKA days/hours, total post-TKA days/hours, and post-
TKA non-PT/PT hours) as well as clinical maximum
goniometric RoM, and PROMs (PROMIS PCS, PROMIS
MCS, KOOS, and pain) captured at pre-TKA and 6-weeks
post-TKA. Also displayed are change score comparing
each subject's post-TKA to pre-TKA values.

Age (years) 69 � 13
Sex 3 M, 7 F
Surgical/Sensor Side 4 R, 6 L
Pre Days 6 � 1
Pre Hours per Day 9.7 � 1.8
Post Days 37 � 4
Post Hours per Day 8.5 � 2.2
Post Non-PT Hours 8.0 � 2.4
Post PT Hours 1.1 � 0.2

RoM
(�)

PCS MCS KOOS Pain

Pre-TKA 114 �
12

39.4
� 5.8

51.3
� 7.0

47.6
� 9.9

7 � 1

Post-
TKA

109 �
14

43.5
� 3.8

54.6
� 5.8

61.5
� 6.6

4.5 �
1.5

Change
Score

�4�7 4.1 �
5.2

3.2 �
4.7

13.9
� 6.7

�3�1

TKA: Total knee arthroplasty; M: Male; F: Female; R: Right;
L: Left; RoM: Range of motion; PROM: Patient reported
outcome measures; PROMIS: Patient reported outcomes
measurement information system; PCS: Physical compo-
nent score, MCS: Mental component score, KOOS: Knee
injury and osteoarthritis score, TKA: Total knee arthro-
plasty.
* Significant difference.

Fig. 3. Maximum flexion (A) means measured before surgery (dashed line), after surgery outside of physical therapy (solid bars), and after surgery during PT (striped
bars). Maximum flexion (B) change scores are displayed similarly. Activity level (C) means measured before surgery (dashed line), after surgery outside of physical
therapy (solid bars), and after surgery during PT (striped bars). Activity level (D) change scores are displayed similarly. Asterisks (*) denote significant differences
between postoperative PT and non-PT values. Double bars (z) denote significant differences with respect to time.
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Fig. 4. Stance phase knee flexion (A) means measured before surgery (dashed line), after surgery outside of physical therapy (solid bars), and after surgery during PT
(striped bars). Stance phase knee flexion (B) change scores are displayed similarly. Swing phase knee flexion (C) means and (D) change scores are displayed in a similar
fashion. Asterisks (*) denote significant differences between postoperative PT and non-PT measures. Double bars (z) denote significant differences with respect to time.

Fig. 5. Stride time (A) means measured before surgery (dashed line), after surgery outside of physical therapy (solid bars), and after surgery during PT (striped bars).
Stride time (B) change scores are displayed similarly.
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PT/non-PT. Despite data capture location being significant for kine-
matics, it was not for stride times (F ¼ 1.46, p ¼ 0.23) or change scores
(Fig. 5B; F ¼ 1.69, p ¼ 0.20) indicating non-PT/PT stride times were
equivalent. Further, time and interaction factors were not significant for
means (Ftime ¼ 0.72, ptime ¼ 0.61; Finteraction ¼ 0.16, pinteraction ¼ 0.98) or
change scores means (Ftime ¼ 1.17, ptime ¼ 0.33; Finteraction ¼ 0.62, pin-
teraction ¼ 0.68).

Stance (Fig. 6A) and swing time (Fig. 6C) means were predominantly
greater than pre-TKA levels during PT and non-PT periods (exception:
W6 stance time means). However, neither showed significant differences
between PT and non-PT measures (Fstance-time ¼ 0.22, pstance-time ¼ 0.64;
Fswing-time ¼ 2.03, pswing-time ¼ 0.16). Time (Fstance-time ¼ 0.56, pstance-time
¼ 0.73; Fswing-time ¼ 1.11, pswing-time ¼ 0.36) and interaction factor
(Fstance-time ¼ 0.31, pstance-time ¼ 0.90; Fswing-time ¼ 0.33, pswing-time ¼
0.89) were not significant for either measure. Stance time (Fig. 6B) and
swing time (Fig. 6D) change scores were always positive, and like means,
neither were significantly different PT vs. non-PT (Fstance-change ¼ 0.01,
pstance-change ¼ 0.91; Fswing-change ¼ 2.62, pswing-change ¼ 0.11). Time
(Fstance-change ¼ 0.11, pstance-change ¼ 0.99; Fswing-change ¼ 2.31, pswing-

change ¼ 0.06) and interaction factors (Fstance-change ¼ 0.47, pstance-change ¼
0.80; Fswing-change ¼ 0.77, pswing-change ¼ 0.57) were also not significant.

Patient PT activity level means (Fig. 3C) and change scores (Fig. 3D)
were always greater than non-PT. Like kinematics, data capture location
was significant (*; PT > non-PT: Fmeans ¼ 5.62, pmeans ¼ 0.02; Fchange ¼
6.33, pchange ¼ 0.01). Similarly, time was a significant factor for both
activity means and change scores (z; Fmeans ¼ 3.15, pmeans ¼ 0.01; Fchange
¼ 2.60, pchange ¼ 0.03). However, interaction factor was not significant
for activity means and change scores (Fmeans ¼ 0.33, pmeans ¼ 0.89;
Fchange ¼ 0.23, pchange ¼ 0.95).

3.4. Clinical RoM & PROMs

Clinical RoM/PROMs (Table 1) showed clinical RoM degraded post-

TKA, however variability exceeded average change (σ ¼ 7� vs. μ ¼
�4�). In contrast, PROMIS PCS/MCS scores improved. Yet, like clinical
RoM change, variability exceeded average change (PCS: σ ¼ 5.2 vs. μ ¼
4.1, MCS: σ ¼ 4.7 vs. μ ¼ 3.2). KOOS and pain scores both improved, but
unlike other PROMs, average change exceeded change variability (KOOS:
σ ¼ 6.7 vs. μ ¼ 13.9, Pain: σ ¼ 1 vs. μ ¼ �3).

4. Discussion

4.1. Overview

This preliminary study showed measuring knee RoM in/out of PT is
feasible with high sensor compliance and minimal clinical disruption.
Moreover, the results provide further evidence that IMUs offer richer
information than clinical goniometric RoM. We found IMUs accurately
assess RoM recovery in and out of clinical settings, providing holistic
recovery information. Interestingly, PT metrics differed from outside PT
indicating clinical data likely does not represent how patients perform on
their own. Specifically, significant kinematic/activity level differences
were discovered between the two settings. We believe this is the first
study quantitatively showing RoM measures captured during rehabili-
tation are not equivalent to those outside the clinic. As a result, reliance
on clinically captured RoM to establish recovery is likely misguided.
Instead, we should encourage utilizing novel methods for capturing RoM
outside clinical settings.

4.2. Feasibility: patient compliance

Patient compliance with new wearable technology is a significant
concern [48,49]. As novelty fades, so does compliance. Fortunately, our
subjects were highly compliant. However, we urge caution extrapolating
to broader TKA populations or other pathologies as our cohort may be
anomalous. Notably, study subjects reside in a geography (upper New

Fig. 6. Stance time (A) means measured before surgery (dashed line), after surgery outside of physical therapy (solid bars), and after surgery during PT (striped bars).
Stance time (B) change scores are displayed similarly. Swing time (C) means and (D) change scores are displayed in a similar fashion.
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England) known for increased physical activity and socioeconomic status
[50,51]. Both factors are linked with increased wearable technology
use/compliance [52]. We also believe our deployment approach (i.e.
reduced complexity/patient burden) was critical for compliance. Com-
plex prevention/treatment plans typically increase non-compliance [53].
Thus, a simplified protocol was developed wherein patients only had
three tasks: 1) Remove sensors from charging docks in the morning, 2)
Immediately place one sensor on the proximal-medial shin and one
sensor on the distal-lateral thigh (described in lay language), and 3)
Recharge sensors at night. The remainder of data collection/analysis was
embeddedwithin IMUs (e.g. data storage) or handled computationally by
researchers. Thus, patients did not have complex calibrations, sensor
buttons/interfaces, or routines. Our ‘set it and forget it’ deployment
likely improved compliance.

Despite high compliance as established by duration of weekly sensor-
use, many compliance variables remain uninvestigated. Notably, we did
not evaluate the potential for ‘gamification’ of rehabilitation using
wearables. ‘Gamification’ has been shown to influence compliance [39,
54,55]. It is unknown, however, if that would persist herein. Future
studies should investigate gamification increasing compliance in patients
following TKA (e.g. home rehabilitation compliance, increased daily
activity level, etc.).

Finally, present efforts were retrospective in nature (i.e. analyses
after six-weeks post-TKA). Thus, no feedback was provided to clinicians
or patients. Similar to gamification, providing feedback to clinicians/
patients could potentially influence compliance. We believe patients who
think their clinicians receive postoperative performance information via
wearables (whether feedback is provided or not) will better comply.
However, this remains unknown and should be investigated.

4.3. Feasibility: clinical disruption

At a minimum, wearables should allow therapists to continue seam-
lessly providing high-value PT. Herein, we achieved these aims. Clini-
cians were either unaware of sensor use or indicated no rehabilitation
interruption. More critically, using sensors did not delay healing, restrict
motion, or disrupt the wound. However, this evidence is anecdotal
warranting more thorough analyses of clinical flow disruption.

4.4. IMU kinematics metrics

Non-PT maximum RoM means/change scores were significantly
greater than PT (reject null hypothesis #1, H0-1-Max: PT maximum¼ non-
PT maximum). Interestingly, non-PT maximum flexion was similar to
established healthy controls (Chapman et al.: 128 � 12�; Soucie et al.:
133–138�; Roach et al.: 131 � 11�), indicating non-PT maximum may
better represent global maximum flexion capabilities [32,56,57]. We
believe PT maximum RoM was predominantly controlled by clinician
dictated activities. Thus, if rehabilitation did not require true maximum
RoM, true maximum RoM was never achieved. Contrastingly, patients
naturally completed true maximum RoM outside PT at least once daily as
required by ADLs. Thus, PT maximum RoM was significantly less than
non-PT.

Previous work from our lab suggests stance/swing flexion are better
metrics establishing recovery [32] with both equaling/exceeding pre-
operative levels by post-TKA week three. Results herein agree, however
only during PT. This supports accepting alternative hypothesis #1
(HA-1-Stance/Swing: PT stance/swing > Non-PT stance/swing RoM). We
also noted time was a significant factor for both stance/swing RoM
implying performance proves throughout recovery regardless of mea-
surement location. Interestingly though, despite similar recovery rates
for PT/non-PT (stance: 0.6�, swing: 1.7� improvement per week), starting
postoperative ROMs differed (PT vs Non-PT stance: 15.6� vs. 11.7�; PT vs.
Non-PT swing: 29.4� vs. 22.8�). We attribute this offset to ‘white coat
effects.’ In PT, patients are instructed/closely monitored forcing opti-
mum performance. Outside PT, they freely perform gait as desired (i.e.

more realistic). This reiterates clinically captured RoMmay not faithfully
represent true patient function.

4.5. IMU temporal metrics

Despite kinematic differences, no temporal differences were noted
failing to reject null hypothesis two (H02: PT stride/stance/swing time ¼
Non-PT stride/stance/swing time). This implies temporal and kinematic
gait features may be disconnected. Historically however, temporal vari-
ability and fall risk are linked [58–60], with stride time variability>0.1s
in “fallers” [58]. Herein, stride time variability always exceeded this
threshold, indicating these subjects might have been at increased fall
risk. Thus, clinicians should implement fall prevention measures as
needed in both locations. Additionally, Brach et al. propose “meaningful
change estimates” of gait occurring >0.01s stance/swing time variability
[61]. PT/non-PT stance/swing time variability differences always
exceeded 0.01s implying PT/non-PT gait were “meaningfully different”
though not statistically so. At first, increased PT gait variability was
unexpected. However, during PT patients are relearning optimal gait. At
home, they revert to well-established gait patterns. Future studies should
investigate this “meaningful difference.”

4.6. IMU activity level

Significant activity level differences existed between locations sug-
gesting PT activity is greater/more intense, supporting accepting alter-
native hypothesis three (HA3: PT activity>Non-PT activity). This was not
surprising given clinicians dictate PT activities with little. In contrast,
maintaining high activity levels at home appears less likely and may even
be discouraged (e.g. “Don't overdo it”). Several investigations corrobo-
rate this finding [62,63]. Like stance/swing RoM, time was a significant
factor for activity level indicating activity level increased throughout
recovery regardless of location. While this is a positive finding clinically
(i.e. patients are more active after surgery), the difference between
measurement locations indicates capturing data in both settings is vital
for establishing the entire patient recovery picture.

4.7. Clinical metrics

Similar to previous studies, maximum clinical RoM and PROMIS PCS/
MCS did not improvemarkedly post-TKA [32,64–68], whereas KOOS and
pain scores did [69–71]. Given this matches previous efforts, conclusions
herein potentially extend to broader TKA populations.

4.8. Limitations

A significant limitation of feasibility/pilot studies is small sample size
(n ¼ 10, herein). Ten patients likely do not represent all individuals
undergoing TKA, though this cohort clinically matched previous studies
[32,64–71]. This suggests our resultsmay apply broadly, however future
work should include more subjects. Interestingly, despite the small
sample size, statistically significant kinematic/activity differences high-
light disparity comparing PT versus non-PT, likely resulting from
reducing variability by assessing within subjects (e.g. patient #1 PT vs.
patient #1 non-PT). Accordingly, sample size impacted our final results
less than anticipated, though we caution readers to treat this as a pilot
study.

Another limitation herein is TKA variability (e.g. primary versus
revision) and device type (e.g. make, model) despite known kinematic
differences [72,73]. We attempted reducing surgical variability (i.e.
using one surgeon) and subject variability (i.e. comparing each subject's
PT to their own non-PT). However, caution is urged utilizing the results
to represent broader TKA populations. We believe enough variability
exists between patients to necessitate comparing each patient's perfor-
mance in one setting to their own performance in another, not necessarily
between subjects without normalization (e.g. change scores).
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We also did not perfectly control PT variability. Some patients
experienced longer inpatient stays (more inpatient PT). Others chose
more at-home PT. Moreover, no single therapist was preferred. While this
might have influenced our results, they represent clinical care realities.
Future efforts should establish differences between specific rehabilitation
approaches/providers.

A final limitation are the specific measurements captured and timing
thereof. While metrics captured are critical to monitor post-TKA, others
likely describe recovery (e.g. strength). Additionally, we captured spe-
cific time points. Prior work from our lab highlights post-TKA recovery
continuing at least one-year [32]. Future efforts should include longer
follow-ups (e.g. six months, one/two years post-TKA).

5. Conclusions

Although post-TKA clinical RoM is convenient, low cost, and simple,
IMUs provide more nuanced data. Clinical RoM offers discrete snapshots,
whereas IMUs allow continuous assessment throughout recovery both
in/out of clinic. Further, IMUs illuminate measures captured clinically
are heavily influenced by clinician presence/instruction. Thus, PT mea-
sures likely represent optimal performance whereas non-PT measures
represent more realistic function. Future studies can further define how
specific rehabilitation modalities impact post-TKA performance in/out of
the clinic. We conclude that IMU data can directly impact healthcare
value by more completely illuminating patient performance.
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