
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Computer Science and Statistics Faculty
Publications Computer Science and Statistics

6-17-2022

MEDFORD: A HUMAN AND MACHINE READABLE METADATA MEDFORD: A HUMAN AND MACHINE READABLE METADATA

MARKUP LANGUAGE MARKUP LANGUAGE

Polina Shpilker
Tufts University

John Freeman
Tufts University

Hailey McKelvie
Tufts University

Jill Ashey
University of Rhode Island

Jay-Miguel Fonticella
Tufts University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/cs_facpubs

The University of Rhode Island Faculty have made this article openly available. The University of Rhode Island Faculty have made this article openly available.
Please let us knowPlease let us know how Open Access to this research benefits you. how Open Access to this research benefits you.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access

Policy Articles, as set forth in our Terms of Use.

Citation/Publisher Attribution Citation/Publisher Attribution
Shpilker, Polina, John Freeman, Hailey McKelvie, Jill Ashey, Jay-Miguel Fonticella, Hollie Putnam, Jane
Greenberg, Lenore J. Cowen, Alva Couch, and Noah M. Daniels. "MEDFORD: A HUMAN AND MACHINE
READABLE METADATA MARKUP LANGUAGE." Database 2022, 2022 (2022). doi: 10.1093/database/
baac065.

This Article is brought to you for free and open access by the Computer Science and Statistics at
DigitalCommons@URI. It has been accepted for inclusion in Computer Science and Statistics Faculty Publications
by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-
group@uri.edu.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/cs_facpubs
https://digitalcommons.uri.edu/cs_facpubs
https://digitalcommons.uri.edu/cs
https://digitalcommons.uri.edu/cs_facpubs?utm_source=digitalcommons.uri.edu%2Fcs_facpubs%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://web.uri.edu/library-digital-initiatives/open-access-online-form/
https://digitalcommons.uri.edu/cs_facpubs/oa_policy_terms.html
https://doi.org/10.1093/database/baac065
https://doi.org/10.1093/database/baac065
mailto:digitalcommons-group@uri.edu
mailto:digitalcommons-group@uri.edu

MEDFORD: A HUMAN AND MACHINE READABLE METADATA MARKUP MEDFORD: A HUMAN AND MACHINE READABLE METADATA MARKUP
LANGUAGE LANGUAGE

Authors Authors
Polina Shpilker, John Freeman, Hailey McKelvie, Jill Ashey, Jay-Miguel Fonticella, Hollie Putnam, Jane
Greenberg, Lenore J. Cowen, Alva Couch, and Noah M. Daniels

The University of Rhode Island Faculty have made this article openly available. The University of Rhode Island Faculty have made this article openly available.
Please let us knowPlease let us know how Open Access to this research benefits you. how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy
Articles, as set forth in our Terms of Use.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cs_facpubs/151

http://web.uri.edu/library-digital-initiatives/open-access-online-form/
https://digitalcommons.uri.edu/oa_policy_terms.html
https://digitalcommons.uri.edu/cs_facpubs/151

MEDFORD: A HUMAN AND MACHINE READABLE METADATA
MARKUP LANGUAGE

A PREPRINT

Polina Shpilker
Department of Computer Science

Tufts University
Medford, MA

John Freeman
Department of Computer Science

Tufts University
Medford, MA

Hailey McKelvie
Department of Computer Science

Tufts University
Medford, MA

Jill Ashey
Department of Biological Sciences

University of Rhode Island
Kingston, RI

Jay-Miguel Fonticella
Department of Computer Science

Tufts University
Medford, MA

Hollie Putnam
Department of Biological Sciences

University of Rhode Island
Kingston, RI

Jane Greenberg
College of Computing and Informatics

Drexel University
Philadelphia, PA

Lenore J. Cowen
Department of Computer Science

Tufts University
Medford, MA

cowen@cs.tufts.edu

Alva Couch
Department of Computer Science

Tufts University
Medford, MA

alva.couch@tufts.edu

Noah M. Daniels
Department of Computer Science and Statistics

University of Rhode Island
Kingston, RI

noah daniels@uri.edu

June 17, 2022

ABSTRACT

Reproducibility of research is essential for science. However, in the way modern computational
biology research is done, it is easy to lose track of small, but extremely critical, details. Key details,
such as the specific version of a software used or iteration of a genome can easily be lost in the
shuffle, or perhaps not noted at all. Much work is being done on the database and storage side of
things, ensuring that there exists a space to store experiment-specific details, but current mechanisms
for recording details are cumbersome for scientists to use. We propose a new metadata description
language, named MEDFORD, in which scientists can record all details relevant to their research.
Human-readable, easily-editable, and templatable, MEDFORD serves as a collection point for all
notes that a researcher could find relevant to their research, be it for internal use or for future replica-
tion. MEDFORD has been applied to coral research, documenting research from RNA-seq analyses
to photo collections.

1 Introduction

Corals comprise thousands of different organisms, including the animal host and single celled dinoflagellate algae,
bacteria, viruses, and fungi that coexist as a holobiont, or metaorganism [3]. Thus, corals are like cities, rather than
the individual animals that inhabit or visit them, as corals provide factories, housing, restaurants, nurseries, and more
for an entire ecosystem. Research on coral reefs is ever more pressing, given their local and global contributions to

ar
X

iv
:2

20
4.

09
61

0v
2

 [
cs

.D
L

]
 1

6
Ju

n
20

22

A PREPRINT - JUNE 17, 2022

marine biodiversity, coastal protection, and economics and their sensitivity to climate change [7, 17]. Research in this
area requires integration of interdisciplinary data across multiple environments and a range of data types: ’omic data
such as gene expression data generated using RNA-Seq (RNA transcript sequencing), image and time-lapse video,
and physical and environmental measurements including light and water temperature, to name but a few. The coral
research community has long been committed to sharing and open data formats, and both individual researchers and
large funding agencies have invested heavily in making data available [11, 10, 19, 5] and FAIR (findable, accessible,
interoperable, and reusable) [16].

Effective data sharing for coral research, as in all data-intensive domains, requires metadata, which is essential for
data organization, discovery, access, use, reuse, interoperability, and overall management [9]. The growing amount
of digital data over the last several decades has resulted in a proliferation of metadata standards supporting these
functions [1, 12]. However, the proposed mechanisms to create metadata have been focused primarily on the ease of
machine parsing and have recommended schema that are cumbersome and difficult for humans attempting to create,
edit, or read the metadata. If creating metadata in the appropriate format is difficult, or requires expert curators,
then fewer scientists will be able to comply with metadata recommended standards, leading to scientific data that is
not discoverable, and thus not reusable. Meanwhile, an increasing amount of scientific data in multiple countries
(including in the US and the EU) now falls under mandated data sharing policies that require specification of adequate
metadata for discovery. Thus, there is a need for a format that streamlines the process of providing what is mandated
by law and policy.

For the purposes of maintaining and transferring data itself, there already exists a format known as BagIt [8] that
can handle stable transfer of arbitrary files and their directory structure. BagIt specifies the structure of a zip file
that contains an arbitrary directory structure, a payload manifest, and a remote manifest. This structure upholds the
organization of data folders, ensuring that related files can remain within the same subfolder. The payload manifest
ensures that all data is transferred without error by storing the data’s hash prior to data transfer. The remote manifest
also allows researchers to specify remote files that are relevant to the data in the bag. However, the BagIt structure
has no inherent descriptor of metadata, although it acts as a convenient means of theoretically transferring metadata.
Essenially, BagIt has file-based metadata, but does not proscribe a specific metadata format.

Our research team is building on top of BagIt by developing and implementing the MEtaData Format for Open Reef
Data (MEDFORD). The MEDFORD markup language file format is simultaneously human and machine writable and
readable. In this regard, we are inspired by the specification language for the Protein Data Bank (PDB) [2, 18]. PDB
files are easily machine-parsable, but unlike JSON files or other commonly-used database submission file types, are
also easily human-readable. This human-readability allows for human verification of their contents, although PDB files
are still too complex for manual writing. Unlike the PDB format, MEDFORD is intended to be extensible. MEDFORD
is designed to work in conjunction with BagIt’s filesystem convention, allowing easily accessible and interoperable
bundles of data and metadata to be created and stored. The MEDFORD language is currently implemented as the
medford parser, which is itself written in Python.

MEDFORD is initially targeted at coral holobiont transcriptomics data and coral image collections, with the sub-
sequent goal of supporting metadata for additional research fields. The urgent need for international collaboration
around saving coral reefs, plus the sheer complexity of the types and modalities of data the coral scientific community
generates (from omics data, to image data with geospatial and temporal components, to temperature and color mea-
surements), make corals a good domain choice. This paper provides the rationale for current work and introduces the
MEDFORD (version 1.0) metadata scheme.

MEDFORD will enable interdisciplinary coral reef data to be FAIR [16]. We are currently building the back-end
infrastructure to translate between MEDFORD and make it compatible with other existing databases and systems such
as Resource Description Framework (RDF), ultimately supporting the interoperability and reusability in FAIR as well;
export to RDF is planned for version 1.1 of the medford parser.

This paper reports on our first use case, which focuses on the coral holobiont. Specifically, we focus on coral holo-
biont transcriptomics data (e.g., RNA-Seq, one of the most powerful and common types of omics experiments to
explore the genetic basis of factors that lead to coral resilience or vulnerability to environmental stressors), where
we build the needed complexity to manage spatial-temporal holobiont expression metadata into MEDFORD from the
start. We chose this use case due to difficulty we experienced collecting and organizing metadata about existing coral
transcriptomics datasets. A coral researcher, untrained in programming and not a database expert, will be able to di-
rectly produce and interpret MEDFORD files more easily than working with RDF authoring tools. We have developed
the medford parser to automatically translate MEDFORD files into existing file format standards for depositing in
databases and repositories. MEDFORD will enable transcriptomic data to be findable, accessible, and interoperable.
While MEDFORD is capable of becoming a general-purpose metadata format, we are implementing the specific use

2

A PREPRINT - JUNE 17, 2022

case of coral data to both provide a proof of concept and to aid the coral research community via a set of detailed
metadata constructions specific to coral research. An extended abstract describing MEDFORD appeared as [13].

2 MEDFORD Design Principles

Languages proposed for metadata specification normally consider ease of either human generation and parsing, or
machine generation and parsing. Human-legible formats, such as unstructured text files, are easy to write but difficult
to store in databases or even provide publicly. Meanwhile, highly structured formats such as RDF and JSON are
exceptional for import into databases, but are nearly impossible for a researcher to write on the fly. MEDFORD fills a
previously unmet need by intentionally balancing ease of human and machine generation and parsing simultaneously.

In addition to being designed as both a machine and human readable and writable format, we also decided that MED-
FORD describes the entirety of a project’s metadata within a single file. This allows MEDFORD to be extremely
lightweight, and it can be simply incorporated into a BagIt bag without any modification. This ensures that if a
MEDFORD file is created, it is straightforward to transfer it alongside its related data.

MEDFORD’s design principles are informed by the those underlying highly successful metadata standards, such as
the Dublin Core [15], Ecological Metadata Language (EML) [6], and the Data Document Initiative (DDI) [14], while
addressing additional requirements enabling ease of metadata creation and other aspects. The design requirements for
creating MEDFORD are as follows:

1. A mechanism for use by scientists at the point of data collection.
2. A human-readable and human-understandable format for specifying metadata.
3. A simple and easily understandable syntax for specifying metadata elements.
4. The ability to create and reuse templates for specifying metadata for common data types.
5. Applicability beyond the coral use case, to other research domains.
6. The ability to author metadata in a user’s preferred text editor without a dependency on special-purpose

software.
7. The ability to detect and explain errors in metadata specification via easily understandable error messages

targeted toward scientists.
8. Automatic translation into a number of useful machine-readable formats after initial specification, including

the Resource Description Format (RDF), Extensible Markup Language (XML) and JavaScript Object notation
(JSON), as well as database formats. This could ease some costs currently incurred; for instance, BCO-DMO
removes the responsibility for translating to different formats from the scientist to that of a specialized curator,
at substantive cost.

These requirements are justified by past experience of scientists crafting metadata [12]. Web-based metadata interfaces
can be cumbersome when one is entering metadata for a set of similar data files or publications. The machine-
readable formats XML, RDF, and JSON are difficult to understand and edit for scientists who are not programmers.
Furthermore, error messages for mistakes in XML, RDF, and JSON specifications are cryptic for those same people.
Plain-text specification of metadata, such as the NSF’s BCO-DMO resource [4] is intensive in human labor for those
who must then translate it into a machine-readable form in order for BCO-DMO to ingest such data (currently, BCO-
DMO requires metadata to be submitted in Rich Text Format, and it is then transcribed by a human operator). Thus,
there is a need for an intermediate format that is both machine-readable and human-readable and understandable by
the scientists most qualified to specify the metadata correctly.

MEDFORD aims to solve problems associated with specifying interdisciplinary research metadata, as demonstrated
by our initial use case applied to coral reef ’omics data. Coral researchers study a wide variety of properties of corals
(bioinformatics, growth, bleaching, phylogeny) and for a variety of purposes (ecology, basic biology, biomedicine).
Connecting the work of this diverse group of researchers requires developing sustainable scientific databases so that
researchers can discover each others’ datasets, integrate them into more novel research, and support further scientific
discovery. These databases need to support both accurate analysis of research as well as data discovery and reuse.
In general, however, the principles above apply to any scientific metadata specification problem, and the specific
extensions identified here may be supplemented for other scientific disciplines. Thus MEDFORD can be used as a
tool for metadata creation in any scientific discipline.

The requirements above are realized by MEDFORD by adding design elements that satisfy the above principles:

1. A contextual grammar, devoid of parentheses and the need to close clauses with specific end statements.

3

A PREPRINT - JUNE 17, 2022

2. A simple way to denote kinds of metadata, starting with an @, and containing at most three parts: the major
tag, minor tag, and the metadata itself. A major tag (such as @Contributor) indicates the type of metadata
being described, while a minor tag (such as ORCID in the context of @Contributor-ORCID) indicates the
name of the metadata attribute being described.

3. A two-level hierarchy based on major and minor tags organizes the metadata into categories and subcategories
which provide the relational structure without compromising the simplicity of the metadata description.

4. A simple concept of user-extensible formatting, in which metadata details not covered by the main keywords
can be added via notes.

Consider the following example of a @Contributor clause, where @Contributor is the major tag and ORCID and
Role are the minor tags which associate those metadata with that contributor.

@Contributor Hollie M. Putnam
@Contributor-ORCID 0000-0003-2322-3269
@Contributor-Role Corresponding Author

If we wanted to additionally include this contributor’s email address, we simply add an additional line:

@Contributor Hollie M. Putnam
@Contributor-ORCID 0000-0003-2322-3269
@Contributor-Role Corresponding Author
@Contributor-Email hputnam@uri.edu

2.1 The MEDFORD Language Syntax

In this section we discuss the principles of the design of the syntax of a MEDFORD file format for metadata. MED-
FORD is written in UTF-8 though all reserved tokens and characters fall within the ASCII range, while user-defined
tags may use extended UTF-8 characters. MEDFORD tags are indicated with the @ character. Anything after an @
character, until the next space in the file, is read as a tag by the medford parser. There are two other protected symbols
that have special meanings in the MEDFORD language: these are # which is treated as a comment character: charac-
ters after a # on the same line are ignored and not processed by the medford parser. Finally, the $$ string (two dollar
signs in a row) is used to indicate the beginning and end of a string that should be parsed by LATEXmath mode: this
enables a MEDFORD language parser to either render or pass through special characters from raw MEDFORD files,
in which non-ascii characters are strongly discouraged.

The following design principles are important in MEDFORD file syntax:

• MEDFORD files use the ASCII character set whenever possible. The characters @, #, and $$ (as an enclosing
pair to denote LaTeX source) are reserved and protected.

• MEDFORD tags are referred to as @-tags and always start with the @ character. Particular @-tags are given
meanings, and formatting requirements and rules that are either recommended or required

• If a version of the MEDFORD language parser encounters an @-tag it does not recognize, the parser passes
its associated text through verbatim, treating it identically to how @COMMENT is treated. Thus, scientists are
free to make up new tags that extend what is currently defined in the language.

• MEDFORD is initially being developed for corals data, and so @Date and @time and geospatial coordi-
nate data are common and important. These tags have recommended standardized ASCII formats, and the
medford parser does type checking on these fields. These tags have corresponding *-Unstructured equiv-
alents for flexibility, which are not type checked. For instance, @Date-Unstructured might be used to
denote part of a date, where the precise date is unknown (for instance, “Fall 2021”).

To make MEDFORD files more easily human-readable, considering our analogy to the protein databank, we adopted
a similar approach to the Fasta file format, where each header line is distinguished by an ‘>’ symbol. We chose to
use the ‘@’ character, as it is commonly used for tagging users or keywords in systems like GitHub and Twitter, and
is not found in everyday text except for emails. Therefore, a line headed by an ‘@’ symbol can be assumed to be
a MEDFORD tag in all cases. Meanwhile, later ‘@’ characters have no effect on the medford parser, as only ‘@’
characters at the very beginning of a line matter.

This is best explained by example. Consider the example of specifying a pipeline used for RNA-seq analysis of coral
data (note that the metadata associated with a tag can be arbitrarily long and may span multiple lines):

4

A PREPRINT - JUNE 17, 2022

@Software R
@Software-Version 4.0.4 ("Lost Library Book")
@Software-Notes Packages used include dplyr, stringr,

and genefilter.

@Software DESeq2
@Software-Version 1.28.1
@Software-Notes Used as a package in R.
@Software-Notes Installed through BioCManager.

The Software tag specifies a piece of software involved in the research. In this case, R is being described as a relevant
piece of software, with a Version tag used to specify what version of R was used as this is critical information. An
important feature of this example is the arbitrary difference between the way R packages are described. The author has
determined that DESeq2 is a critical package, so decided to use a separate Software tag to describe it. Meanwhile,
dplyr and stringr were useful in the analysis but not critical, so were left as Notes on the R Software block. This
showcases one of the strengths of the MEDFORD file format; researchers are free to determine whether something is
important enough to warrant having a dedicated Software tag, or if they can be listed as an arbitrary Note on a parent
piece of software.

2.2 MEDFORD Data Provenance

One of the major goals of MEDFORD is to enable the simple association and description of related but possibly
separate data resources. The BagIt filesystem convention [8] provides a convenient way to wrap multiple files into a
consistent directory structure. However, BagIt’s own metadata capabilities are limited to describing the files present
or how to fetch them from a network. By including a MEDFORD file into a bag, we are able to therefore describe
the metadata as well as reference or include the data themselves. MEDFORD does not try to supplant the W3C
data provenance standard (RDF) but rather provide a tangible, simple format that meets users’ need. A MEDFORD
metadata description could be automatically converted into an RDF representation.

All MEDFORD files are defined in reference to a BagIt bag, although the special use-case of an empty bag is common
and acceptable. The BagIt bag binds a set of files to the MEDFORD file according to the BagIt standard, where these
files describe a variety of resources, including source code, scientific papers, or raw data, each represented by a major
tag in the MEDFORD file. The versioning and origins of that file are marked using a secondary major tag, where the
tag can represent that the bag is considered to be the primary and authoritative source for the data or resource. Other
secondary major tags describe the file as either a copy of an existing source, or simply a pointer to a URI where the
resource can be obtained.

@Data Primary @Code Primary @Paper Primary
@Data Copy @Code Copy @Paper Copy
@Data Ref @Code Ref @Paper Ref

MEDFORD’s place in a BagIt directory structure is that the MEDFORD (.mfd) file is placed at the top level of the
bagit directory structure. Any files carried along in the BagIt archive exist as Copy or Original directives (whether
Data, Code, or Paper). The BagIt manifest-sha512.txt manifest refers to these files and their checksums. In
contrast, any files only referred to using Ref directives are not listed in the BagIt manifest and are instead described in
the BagIt’s fetch.txt as remote resources.

@Data Primary and @Data Copy both refer to resources that have been packaged with the MEDFORD metadata file,
and should be available from the bag in a self-contained fashion, without having to visit external sources. From the
point of view of the bag itself, there is no difference between these two tags; the difference is based on user context:
@Data Primary means that the BagIt bag is considered to be the primary and authoritative source for the data or
resource; @Data Copy means that BagIt has placed a copy of the data or resource into the bag, but that it does not
claim the primary role. Finally @Data Ref refers to DOIs, URLs, or other pointers to data or resources that are not
placed in the bag, but rather represent external databases or resources.

Here, we provide two potential use cases as examples.

Example use case: Researchers wish to create an index of all publicly available RNAseq raw data that have been
released on the Internet. They create a MEDFORD file to point to all these data resources, but they will store none of

5

A PREPRINT - JUNE 17, 2022

these themselves; the MEDFORD file will just be an index, and all @Data tags will be of the form @Data Ref. This is
an example MEDFORD file which would be associated with an empty bag.

Example use case: Researchers wish to store all the necessary data and programs necessarily to replicate their RNAseq
analysis. They are the owners/collectors of the raw transcriptomic data, which they do downstream analysis using a
couple of small home-grown scripts to filter bad reads, but then complete their downstream analysis using several pop-
ular software packages, including STAR and DESEQ2. They then used a novel dimension reduction package called
SQUISHSEE from other researchers to visualize their results. They elect to include their transcriptomic data and home-
grown scripts in the bag, and use @Data Primary and @Code Primary tags to reference them. The @Code Primary
tag is not appropriate for STAR, DESEQ2 and SQUISHSEE, since they do not own or maintain these resources; they
need to decide whether to use @Code Copy and place a copy of these resources into the bag or not, in which case they
would use instead the @Code Ref tag. In this case, because STAR and DESEQ2 are well-maintained and supported
standard packages, they elect @Code Ref, and don’t include a copy of the code in the bag. On the other hand SQUISH-
SEE is only used by a handful of researchers, and they worry about its longevity. Thus they also put a copy of the
version of SQUISHSEE they are using in the bag, with a @Code Copy tag. Later, when DESEQ2’s new update uses
a library that is not completely standard, they update the bag and decide to put a copy of the old version of DESEQ2
into the bag, just in case.

A specification document for the MEDFORD language is available at https://github.com/TuftsBCB/
MEDFORD-Spec.

3 Reusability

3.1 Tag Extensibility

MEDFORD has a set of pre-defined major and minor tags that it uses for conversion into various other formats, but if
a user cannot find a tag that they believe suits the metadata that they are storing, they can simply define one of their
own without any additional overhead. All the user must do is use it as if it were already defined, and the data and its
structure will be read by the MEDFORD parser. Any novel tags defined this way will be treated as *-Unstructured
tags, and not validated, though they will persist across copies of the MEDFORD file. This provides a dynamic aspect
whereby any model created or adjusted to include the new user-defined tag could be output to any secondary formats
without any changes in MEDFORD structure.

3.2 MEDFORD Templates

Due to the simple plaintext structure of a MEDFORD file, it is easy to create templates. A MEDFORD file can be
partially filled out, saved, copied, and then re-used. For example, a lab may template out a list of contributors and
funding sources and when an individual needs to create a MEDFORD file they simply create a copy of this MEDFORD
file and change contributor roles as necessary before filling out the rest of the file. MEDFORD files describing similar
data may also be re-used like this.

For example, consider a researcher who commonly works on one species of coral, such as Pocillopora damicornis.
The researcher could use a MEDFORD template with the commonly-used tags filled in, shown below:

@Species Pocillopora damicornis
@Species-Loc Sabago Isthmus, Panama
@Species-ReefCollection 06/12/20
@Species-Cultured University of Miami Coral Resource

Facility
@Species-CultureCollection 06/21/20

For further reuse, the researcher may also include MEDFORD’s “invalid value” token, which can be used to force
users of a template to fill it out with complete information. The medford parser would require the user to fill in the
specific placeholders ([..]) prior to validation. This eliminates the possibility that a researcher could accidentally
leave a value for an older version of the template, further error-proofing MEDFORD templates. The same template,
but using these reserved template tokens, is shown below:

@Species Pocillopora damicornis
@Species-Loc Sabago Isthmus, Panama
@Species-ReefCollection [..]

6

https://github.com/TuftsBCB/MEDFORD-Spec
https://github.com/TuftsBCB/MEDFORD-Spec

A PREPRINT - JUNE 17, 2022

@Species-Cultured University of Miami Coral Resource
Facility

@Species-CultureCollection [..]

In future work, we plan to include a ‘#include directive which allows the contents of one file to be imported into and
validated in the context of another MEDFORD file.

3.3 MEDFORD Macros

To further alleviate the workload placed on researchers to document their work, MEDFORD includes the concept of a
macro. Similar to a variable defined in BASH, a macro is a string name that is directly replaced with another, longer
string. In MEDFORD, a macro is defined by specifying a backtick (‘), @, a one-word name, and the macro body
(which can contain multiple lines, ending at the next reserved word, which could begin another macro definition or
could be a regular tag). For example, in lieu of typing their institute five times to document each of their collaborators
at the same institution, they can define a macro as follows: ‘@myinstitute 100 Institute Drive, State, Zip

Everywhere ‘@myinstitute is used, it will automatically be replaced by 100 Institute Drive, State, Zip.

3.4 Backend Extensibility

Many other formats are simple to add to the MEDFORD parser. For example, one may wish to submit their data
to a database such as BCO-DMO [4], which requires an RTF (rich text format) file structure with unique content
requirements. For example, for a data submission, BCO-DMO requires at least some form of identification for which
@Expedition the samples were collected on. This identification, may be either some combination of ShipName or
CruiseID, etc. In defining a backend translation to BCO-DMO for MEDFORD, the MEDFORD parser can ensure
this is upheld. This ability to act as an intermediary allows for a lab to write a single MEDFORD file to describe their
research and export it to a multitude of different formats.

Similarly to BCO-DMO, other formats can be added to the MEDFORD parser easily; tutorials will be available in
the github repository. It is worth noting that metadata associated with user-defined tags will not be parsed but simply
passed along verbatim. For instance, the @Image-Coverage tag in the coral image data example below does not
specify any units; if this tag were expected by some destination format, units might be assumed by convention, but
would otherwise be left to the user (the user could also specify units in plain text in the metadata, e.g. “6.2 degrees”).

4 Example Medford Files

4.1 MEDFORD File for RNA-Seq data

@Method Illumina HiSeq2500
@Method-Type Sequencing
@Method-Company Dovetail Genomics, Santa Cruz, CA,

USA
@Method-Sample Healthy
@Method-Note Chicago libraries, more sensitive to

DNA size

@Code_Ref HiRise
@Code_Ref-Type Assembly of genome scaffolds

@Code_Ref BLAST
@Code_Ref-Type Identify and remove scaffolds of

non-coral origin
@Code_Ref-Note Searched against databases from

Symbiodiniaceae, Bacteria, and viruses

4.2 MEDFORD File for coral image data

@Image 05-01-19_Image3
@Image-Date 2019-05-01T19:20:30.45
@Image-Site LTER 4

7

A PREPRINT - JUNE 17, 2022

@Image-Habitat Outer 10m
@Image-Pole 3-4
@Image-Quadrant 4
@Image-Coral Acropora
@Image-Coverage 6.2

...

@Taxonomy Cnidaria
@Taxonomy-Type Phylum

@Taxonomy Anthozoa
@Taxonomy-Type Class
@Taxonomy-Parent Cnidaria

...

@Region LTER 1 polygon including
LTER 0 on north shore

@Region-NorthernCoord -17.47
@Region-SouthernCoord -17.49

5 MEDFORD Implementation

5.1 MEDFORD Parser

The MEDFORD parser, known as medford, essentially has two roles. First, it validates the syntax and structure of a
provided MEDFORD file as described earlier. Additionally, the parser validates the content of a provided MEDFORD
file, such as ensuring date fields are in the correct datetime format. In the future, we plan to support further validation
of specific metadata, such as ORCID, geographic coordinates, and grant numbers from various funding agencies. The
purpose of validation is to ensure that the file is written in correct MEDFORD format, including major and minor tags,
and that each tag is being applied to some data. For example, a user cannot describe an ORCID without having some
Contributor name with which to associate it. We note that the current MEDFORD specification is silent as to whether
or not to preserve the ordering of tags (for example @Contributor does not specify an author order and relies on
@Contributor-Role to indicate significance). However, the medford implementation will preserve order of tags in
a future version.

The second role of the medford parser is to optionally compile an input MEDFORD file into some destination format.
The current medford parser specializes in translating a MEDFORD file into a Bag; the medford parser can gather all
the files referenced in a given MEDFORD file, and creates a Bag following all BagIt specifications. This Bag can then
be used to transfer all of the metadata and data of a research effort. The current plans include to add additional output
types in the future, such as RDF.

The medford parser is written in Python (3.8), relying on the Pydantic parsing module to validate the MEDFORD
syntax and structure.

Due to the amount of control a compiler has to have over the input, creating a parser normally causes the vocabulary
to become extremely defined and controlled. The medford parser, however, was developed specifically to avoid
restricting the acceptable vocabulary. While the parser can only validate major and minor tags it is aware of, it will
not break on novel inputs.

As an example, consider the following @Code Ref block, which references code from an external source that was
referenced in a study. The OS and Language minor tags are novel, and MEDFORD will not perform any validation on
them.

@Code_Ref MEDFORD Source Repo
@Code_Ref-Version 1.0
@Code_Ref-URI https://github.com/TuftsBCB/medford
@Code_Ref-Type GitHub
@Code_Ref-Language Python
@Code_Ref-OS Linux MacOS

8

A PREPRINT - JUNE 17, 2022

Importantly, the medford parser is specifically developed such that the syntactical parsing logic is entirely separate
from the vocabulary definition. Given a desire to begin validating the contents of a novel tag, a user can easily add
their own validation without having to interact with the parsing logic. All vocabulary validation definitions are stored
entirely independently of the parsing logic, and can be edited with minimal consequences. In this @Code Ref example,
a user could implement the validation for the OS minor tag to ensure it is some combination of of Windows, MacOS,
and Linux.

Given that the medford parser is open-source, a research group may add validation to their local copy of the MED-
FORD parser without needing to interact with other groups, though we will be welcoming any and all pull requests to
add validation that users feel is missing.

5.2 Error Handling

MEDFORD errors come in three major forms:

• Syntax Errors: errors in the MEDFORD formatting in the provided file, such as multiple uses of the same
macro name.

• Validation Errors: errors in the content or format of metadata provided for known major-minor tag combi-
nations. For instance, a @Date field that does not contain a valid datetime string, or a @Contributor-ORCID
field whose ORCID is not valid would both constitute validation errors.

• Missing Data Errors: Required fields are missing, such as @Date major tag without a corresponding
@Date-Note minor tag.

All three types of errors are errors that a standard user is expected to encounter during use, especially during first-time
use or novel data type description. Special care has been invested in ensuring these errors will be as human-legible as
possible.

For all expected errors, medford provides an error text to the user that contains the following information: the line
number where the error was encountered, the major-minor tags involved at that line, and an error text description.

Two examples of medford’s error messages and their improvements are shown below.

First, a standard Pydantic error contains information that is highly specific to the backend implementation of medford
parser and irrelevant for standard use.

Contributor -> 0 -> 1 -> __root__
Corresponding Authors must have a provided validated email
(type=value_error.incomplete_data_error)

This has been improved with the addition of the line number in which the error appeared in the MEDFORD file, and
removal of the implementation-specific array indices.

Line 1 : @Contributor has incomplete information:
Corresponding Authors must have a provided validated email.

Secondly, some major and minor token combinations may have multiple valid formats, and Pydantic’s standard error
handling will throw a unique error for each failed format validation. For example, a @Date may currently either be in
a Date or DateTime format, as specified by Python:

Date -> 0 -> 1 -> desc -> 0 -> 1
invalid date format (type=value_error.date)

Date -> 0 -> 1 -> desc -> 0 -> 1
invalid datetime format (type=value_error.datetime)

The medford parser automatically consolidates these errors into a singular error for legibility:

Line 7 : @Date-desc is of the wrong type:
invalid date format.

9

A PREPRINT - JUNE 17, 2022

6 Availability of medford and the Coral RNAseq collection

The medford parser is open-source and available under the MIT license at: https://github.com/TuftsBCB/
medford as well as via PyPi as the package medford, so it can be installed by invoking pip install medford. A
specification for the MEDFORD language is available at https://github.com/TuftsBCB/MEDFORD-Spec.

Some example files are provided in the parser directory, however, a separate repository is also in development for a
larger collection of example MEDFORD files. This repository is available on GitHub at: https://github.com/
TuftsBCB/MEDFORD-examples. This repository is a collection of primarily Coral RNA-Seq experiments. This
repository also contains partial MEDFORD files for use as templates.

7 Discussion and Future Work

This manuscript presents MEDFORD, a lightweight metadata format initially targeted at coral reef research data,
intended to be easy for researchers without programming expertise to create and maintain. Initially supporting the
FAIR principles [16] of interoperability and reuse, MEDFORD aims to support all FAIR principles.

Currently, MEDFORD relies on editing ASCII or UTF-8 text, but will soon be able to extract text content from
Microsoft Word files.

One possible critique of MEDFORD is the variety of possible tags. For instance, it may be challenging for
a user to remember whether the needed tag is @Contributor-Association, @Contributor-Institution, or
@Contributor-Location. A rich template library can mitigate this, by providing examples that a user can simply
fill in. A searchable template library portal (similar to LATEX’s CTAN) would enable users to find applicable templates
as the template ecosystem grows. In the future, support for the Language Server Protocol will allow a user of any
compatible text editor to get intelligent suggestions and autocompletions for common tags. This will also mitigate the
likelihood of minor typographical errors in tags causing them to be unrecognized. To further mitigate the likelihood
of typographical errors, the medford implementation will reject a minor token without an accompanying major token.
Further user testing and feedback will result in further enhancements to the MEDFORD language and the medford
parser implementation.

As a consequence of the MEDFORD parser’s compilation use, MEDFORD files have a lifecycle. There are raw, un-
validated MEDFORD files, there are validated MEDFORD files, and finally there are MEDFORD files that have been
compiled (such as in the case of a BagIt compilation). The difference between these is a critical. A researcher needs
to know whether or not a MEDFORD file has been validated before they try to submit it to a database.

A major future goal will be output of RDF and support for linked open data. We hope to add the ability to translate a
MEDFORD file (and created bag, if applicable) into an RDF, as well as the data-1 compliance this involves.

An unsolved problem is how to handle multiple authors, and conflicting claims of ownership. While there is nothing
preventing a MEDFORD file from being passed between collaborators, keeping track of changes is a challenge. How
can one researcher be certain that they are editting the most recent version of a MEDFORD file? Perhaps even two
researchers are editing their own copies of the same MEDFORD file. Technically both are the most up-to-date in their
own facet: one researcher added the coral sample metadata while another added the sequencing pipeline metadata.
There exist some solutions to this in external tools such as GitHub, but is it viable to ask MEDFORD adopters to use
these tools?

One solution we are in the process of considering for a future version of MEDFORD is to implement the concept of
the include directive. Rather than restricting a MEDFORD file to a single file, include directives will enable users
to work in separate, smaller files that will automatically be combined by the MEDFORD parser. This allows each
MEDFORD file to be dedicated to a specific portion of the research project, such as one file for coral sample metadata
and another for sequencing pipeline metadata. This partially solves the multiple authorship problem, as each author
can be held responsible ensuring all collaborators have the most up-to-date version of the metadata they are authoring.

The “R” in MEDFORD currently represents “reef” as our initial application domain has been coral reef data. However
it stands to reason that the “R” might represent “research” in the future.

8 Author contributions statement

P.S., J.F., L.C., A.C. and N.D. came up with the initial design for MEDFORD; P.S., J.F., H.M., J-M.F, J.A., and H.P.
tested and implemented initial MEDFORD examples; P.S., A.C. and N.D. worked on the back end medford parser;
P.S., J.G., L.C, A.C., and N.D. helped write and review the manuscript.

10

https://github.com/TuftsBCB/medford
https://github.com/TuftsBCB/medford
https://github.com/TuftsBCB/MEDFORD-Spec
https://github.com/TuftsBCB/MEDFORD-examples
https://github.com/TuftsBCB/MEDFORD-examples

A PREPRINT - JUNE 17, 2022

9 Acknowledgments

This work is supported in part by funds from the National Science Foundation under NSF grants OAC-1939263.
OAC-1939795 and HDR-BIO NSF-OAC #1940233.

10 Competing interests

The authors declare NO Competing Interest.

References

[1] Alex Ball, Jane Greenberg, Keith Jeffery, and Rebecca Koskela. RDA metadata standards directory working
group. 2016.

[2] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig, Ilya N. Shindyalov,
and Philip E. Bourne. The Protein Data Bank. Nucleic Acids Research, 28(1):235–242, 01 2000.

[3] Thomas CG Bosch and Margaret J McFall-Ngai. Metaorganisms as the new frontier. Zoology, 114(4):185–190,
2011.

[4] C. L. Chandler, R. C. Groman, D. Kinkade, et al. BCO-DMO: Stewardship of marine research data from proposal
to preservation. American Geophysical Union, 2016:OD24B–2457, 2016.

[5] Simon D Donner, Gregory JM Rickbeil, and Scott F Heron. A new, high-resolution global mass coral bleaching
database. PLoS One, 12(4):e0175490, 2017.

[6] Eric H Fegraus, Sandy Andelman, Matthew B Jones, and Mark Schildhauer. Maximizing the value of ecolog-
ical data with structured metadata: an introduction to ecological metadata language (EML) and principles for
metadata creation. Bulletin of the Ecological Society of America, 86(3):158–168, 2005.

[7] Terry P Hughes, Michele L Barnes, David R Bellwood, Joshua E Cinner, Graeme S Cumming, Jeremy BC
Jackson, Joanie Kleypas, Ingrid A Van De Leemput, Janice M Lough, Tiffany H Morrison, et al. Coral reefs in
the anthropocene. Nature, 546(7656):82–90, 2017.

[8] John Kunze, Justin Littman, Elizabeth Madden, John Scancella, and Chris Adams. The bagit file packaging
format (v1. 0). Technical report, 2018.

[9] Jeremy Leipzig, Daniel Nüst, Charles Tapley Hoyt, Stian Soiland-Reyes, Karthik Ram, and Jane Greenberg. The
role of metadata in reproducible computational research. CoRR, abs/2006.08589, 2020.

[10] Y. J. Liew, M. Aranda, and C. R. Voolstra. Reefgenomics.Org - a repository for marine genomics data. Database,
2016, 12 2016. baw152.

[11] Joshua S Madin, Mia O Hoogenboom, Sean R Connolly, Emily S Darling, Daniel S Falster, Danwei Huang,
Sally A Keith, Toni Mizerek, John M Pandolfi, Hollie M Putnam, et al. A trait-based approach to advance coral
reef science. Trends in Ecology & Evolution, 31(6):419–428, 2016.

[12] Jian Qin, Alex Ball, and Jane Greenberg. Functional and architectural requirements for metadata: Support-
ing discovery and management of scientific data. In International Conference on Dublin Core and Metadata
Applications, pages 62–71, 2012.

[13] Polina Shpilker, John Freeman, Hailey McKelvie, Jill Ashey, Jay-Miguel Fonticella, Hollie Putnam, Jane Green-
berg, Lenore Cowen, Alva Couch, and Noah M. Daniels. Metadata format for open reef data (medford). In
Emmanouel Garoufallou, Marı́a-Antonia Ovalle-Perandones, and Andreas Vlachidis, editors, Metadata and Se-
mantic Research, pages 206–211, Cham, 2022. Springer International Publishing.

[14] Mary Vardigan. The DDI matures: 1997 to the present. IASSIST Quarterly, 37(1-4):45–45, 2014.

[15] Stuart L Weibel and Traugott Koch. The Dublin core metadata initiative. D-lib magazine, 6(12):1082–9873,
2000.

[16] M. D. Wilkinson, M. Dumontier, et al. The FAIR guiding principles for scientific data management and steward-
ship. Scientific data, 3(1):1–9, 2016.

[17] Anna J Woodhead, Christina C Hicks, Albert V Norström, Gareth J Williams, and Nicholas AJ Graham. Coral
reef ecosystem services in the anthropocene. Functional Ecology, 33(6):1023–1034, 2019.

11

A PREPRINT - JUNE 17, 2022

[18] Jasmine Y Young, John D Westbrook, Zukang Feng, Ezra Peisach, Irina Persikova, Raul Sala, Sanchayita Sen,
John M Berrisford, G Jawahar Swaminathan, Thomas J Oldfield, et al. Worldwide protein data bank biocuration
supporting open access to high-quality 3D structural biology data. Database, 2018, 2018.

[19] L. Yu, T. Li, L. Li, et al. SAGER: a database of Symbiodiniaceae and Algal Genomic Resource. Database, 2020,
07 2020. baaa051.

12

	MEDFORD: A HUMAN AND MACHINE READABLE METADATA MARKUP LANGUAGE
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use
	Citation/Publisher Attribution

	MEDFORD: A HUMAN AND MACHINE READABLE METADATA MARKUP LANGUAGE
	Authors
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use

	1 Introduction
	2 MEDFORD Design Principles
	2.1 The MEDFORD Language Syntax
	2.2 MEDFORD Data Provenance

	3 Reusability
	3.1 Tag Extensibility
	3.2 MEDFORD Templates
	3.3 MEDFORD Macros
	3.4 Backend Extensibility

	4 Example Medford Files
	4.1 MEDFORD File for RNA-Seq data
	4.2 MEDFORD File for coral image data

	5 MEDFORD Implementation
	5.1 MEDFORD Parser
	5.2 Error Handling

	6 Availability of medford and the Coral RNAseq collection
	7 Discussion and Future Work
	8 Author contributions statement
	9 Acknowledgments
	10 Competing interests

