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Abstract 

Switching to electric vehicles (EVs) has increased rapidly over recent years. This paradigm 

change provides an important pillar in the United States transport sector to reach 

sustainability goals. EVs rely on a network of charging locations to operate. This study 

analyses the spatial distribution, accessibility and usage patterns of the public EV 

infrastructure in the US. First, using a negative binomial regression model, the influence of 

socio-economic and other factors on the abundance of EV charging locations in a state is 

investigated. Second, analysis of the network’s use and of service areas generated around 

charging locations provides insight into the accessibility of these stations to populations living 

in urban and rural areas. Third, the study compares publicly available datasets on the EV 

charging infrastructure provided by different companies in the Miami urbanized area, and 

lastly, it analyses real-time data from the SemaConnect charging network. Results indicate 

increased access of residents to the EV charging infrastructure over the years. Economic 

activity, highway density and political preference were statistically associated with the 

number of charging stations. Charging behaviour was found to follow the patterns of a 

regular workday, indicating that EV owners rely primarily on the public infrastructure as 

opposed to charging their vehicles only at home. 

Keywords: 

Mobility, electric vehicle, EV, charger, network analysis, sustainability 

1 Introduction and Motivation  

Electric cars are an important part of meeting global goals on climate change (Helmers et al., 

2017; Pero et al., 2018). Just as cars with an internal combustion engine rely on gas stations, 

EVs rely on a network of charging locations to recharge batteries. While home charging is one 

of the most convenient ways to keep EVs running, charging at workplaces or in public places 

is also a crucial component of transport infrastructure (Hardman et al., 2018; Tal et al., 2020). 

Not having access to public charging has been identified as one of the barriers to adopting 

EVs for people without the means to charge at home, as in high-density urban areas (Ajanovic 
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& Haas, 2016). As a result, public locations such as carparks were favoured by EV users 

(Morrissey et al., 2016).  

In 2021, the Biden-Harris Administration released the Electric Vehicle Charging Action Plan 

to outline steps that federal agencies are taking to support the installation of chargers in 

communities in the US (White House, 2021). In addition, the Bipartisan Infrastructure Law 

(2022) includes $5 billion in funding, with the goal of building a national network of 500,000 

electric vehicle chargers (Osborne, 2022). Since the number of development projects aiming 

to increase EV charging capabilities is likely to increase, it is important that decision makers 

have access to reliable information about the current state of the infrastructure. Limited 

evidence suggests that there are inequalities based on race and income in the distribution of 

the public charging network (Hsu & Fingerman, 2021). A detailed analysis in New York City 

showed that the availability of charging locations is heavily skewed against low-income, black-

identifying and disadvantaged neighbourhoods (Khan et al., 2022). Likewise, economic 

incentives (e.g., tax rebates) are distributed predominantly to rich neighbourhoods (Guo & 

Kontou, 2021).  

To achieve the widespread adoption of EVs, marginalized communities must be included in 

the revolution. This study aims to increase our understanding of the current state of the public 

EV charging infrastructure, including its spatial distribution and accessibility. While multiple 

data sources about charging stations are available in the US, differences in their spatial 

distribution are unknown. To address some of these limitations in the literature and the 

challenges, this study set four aims: 

● Aim 1: Use regression to identify factors associated with the relative abundance or 

paucity of charging locations in the contiguous US. 

● Aim 2: Conduct a network analysis to assess the US population’s level of access to the 

public EV charging infrastructure and its evolution over time. 

● Aim 3: Compare the spatial distribution of charging locations in three publicly 

available EV charger datasets for the Miami urbanized area (UA). 

● Aim 4: Describe spatial and temporal patterns of EV charging locations. 

The remainder of this paper is structured as follows. Section 2 describes the study area and 

data used. Section 3 provides a detailed overview of analysis methods for each of the four 

aims. Section 4 reports analysis results for each aim. Section 5 summarizes and discusses major 

outcomes and provides directions for future research. 

2 Study Setup 

2.1 Study area 

The study area comprises the contiguous US for the analysis of the spatial distribution of 

charging stations, and the Miami UA for comparison of EV charging location datasets and 
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analysing charging behaviour. While the locations of charging stations were available for the 

entire US, charging behaviour has been tracked for the Miami UA only. Figure 1 shows the 

location of 49,817 public EV charging stations with Level 2 or DC Fast chargers installed in 

the contiguous US (as at 15 January 2023). Data were obtained from the US Department of 

Energy (DoE). Highway geometries are based on US Census Bureau TIGER/Line Primary 

Roads national file data. 

 

Figure 1: Locations of public EV charging stations 

The Miami UA spans approximately 3,300 km2 in southeast Florida (grey area in Figure 2a). 

476 hexagons with sides of approximately 2 km were superimposed on the area and used as 

the unit of spatial aggregation. The spatial distributions of different EV charger datasets 

analysed are shown in Figures 2b–2e. 
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Figure 2: (a) Analysis grid (hexagons) superimposed on the spatial distribution in the Miami UA of EV 

charger point datasets for: (b) PlugShare, (c) ChargePoint, (d) DoE, (e) SemaConnect 

2.2 Data collection and preparation 

EV charging station data to be used in various analyses were obtained as a csv file from the 

DoE Alternative Fuels Data Center website. The data come with a wide range of attributes, 

including geographic coordinates, geocode status, last update, owner type, date the station 

became operational, connector type, facility type, and pricing. Census data for regression 

analysis (race, income, voting behaviour) was obtained from the US Census Bureau and the 

Federal Election Commission. US-wide population grid data, as well as road and urban area 

geometries, were used for network analysis to measure the access of the US population to EV 

charging stations over the years.  
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We extracted other charger location datasets in addition to DoE data in order to allow 

comparison of datasets related to the public EV charging infrastructure. Both PlugShare 

(https://www.plugshare.com/) and ChargePoint (https://driver.chargepoint.com/stations/) 

have implemented crowdsourcing to enable users to add missing charger locations. These 

companies offer freely available web map interfaces that allow filtering based on various 

criteria (e.g., plug type, power, nearby amenities). Although both companies provide 

commercial APIs and data products, these resources are not available for academic research. 

We therefore extracted the underlying JSON data used by the web browser to reproduce the 

maps on these websites. These point locations were then inserted into a spatially enabled 

PostgreSQL database. For the point pattern analysis comparing the PlugShare (Figure 2b), 

ChargePoint (Figure 2c) and DoE (Figure 2d) datasets in southeast Florida, only a unique 

location ID and the point geometry of charger locations were retained. 

The SemaConnect network (https://network.semaconnect.com) provides both mobile and 

web applications that display the real-time availability of charger ports at each location. To 

obtain data, all charging locations were first extracted (Figure 2e). Next, a custom Python script 

queried and saved the real-time status of each charger location every 5 minutes from 1 June 

2022 to 31 August 2022. 

The types of data used for the different analyses are listed in Table 1. 

Table 1: Data used in the different analyses and their sources 

Content Variable description Data source Analysis 

Census    

Population 
30 arc-second population 
grid 

Global Human Settlement 
Layer (GHSL) 2015 

A 

Race 
% African American 
population 

US Census Bureau – 2020 
Census at state level 

R 

Income Median household income 

US Census Bureau – 
American Community Survey 
(ACS) – 5-year estimates 
(2017–2021) at state 
level 

R 

Voting 
behaviour 

Number of wins for 
Republican party candidate 
in a given state in the 2016 
and 2020 presidential 
elections 

Federal Election 
Commission 

R 

Urban Areas 
Urban Areas with > 50,000 
people and urban clusters 
with > 2,500 people 

US Census Bureau 
TIGER/Line 2022 

A 

    

https://www.plugshare.com/
https://driver.chargepoint.com/stations/
https://network.semaconnect.com/
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Transportation    

Highways 
Divided (dual-carriageway), 
limited-access primary road 

US Census Bureau 
TIGER/Line 2022 

R 

All roads 
Primary, secondary and 
lower-order roads 

A 

    

EV charging 
stations 

   

DoE 
Location and first day of 
operation of Level 2/DC Fast 
charging stations 

US Department of Energy A, R, C 

PlugShare 
Location and number of 
available ports of Level2/DC 
Fast charging stations 

PlugShare C 

ChargeHub 
Location and number of 
available ports of Level2/DC 
Fast charging stations 

ChargeHub C 

Sema 

Location and number of 
available ports of charging 
stations; charger usage 
statistics 

SemaConnect charging 
network 

U 

A: accessibility analysis; R: negative binomial regression; C: point pattern comparison; 

U: charger usage analysis 

3  Analysis methods 

3.1  Spatial distribution of EV station locations 

Using aggregated EV charging station counts in the 48 conterminous states and the District 

of Columbia as predicted variable, the influence of socio-economic, road infrastructure and 

political preference on the abundance of EV charging stations was determined using 

regression. The Poisson model can be applied to the counts occurring within a specific area if 

mean and variance of the count data are equal. However, the given station data was over-

dispersed (mean = 1,014.7, variance = 4,030,563). Therefore, a negative binomial model was 

developed instead. To express the left-hand side of the equation as a rate of events per areal 

unit exposure, an offset variable was introduced to the right side of the equation and set to the 

natural logarithm of the state area in km2. The regression model was developed in a manual 

stepwise approach by adding and removing variables in an exploratory manner to improve 

model fit, as measured by the Akaike information criterion (AIC). As part of data preparation, 

Spearman’s rho correlation coefficient was computed between all candidate explanatory 

variables. Since population density and highway density were highly correlated (Pearson’s r = 
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0.94), and highway density provided a consistently better model fit in the different models 

tested than population density, the latter was excluded as a predictor candidate. The mean of 

state median household incomes decreased with the number of Republican wins at state level 

as follows: 0 wins: M = $77,565 (SD = 10,258); 1 win: M = $65,762 (SD = 1,745); 2 wins: M 

= $61,002 (SD = 6,675). A one-way ANOVA (unequal variance assumed) suggested a link 

between the number of Republican wins at state level and household income (F(2, 28.3) = 

18.88, p < 0.0001). Therefore, Republican wins and median household income were not used 

together as predictors in the same regression model. Residuals were tested for spatial 

autocorrelation, since ignoring spatial dependence in spatial data can lead to coefficient 

estimation bias and biased standard errors (Anselin, 1988). 

3.2 Accessibility of charging stations 

The use of EVs requires a dense network of public EV charging stations, especially for 

residents who own an EV but have no charging station at home. For the analysis of 

accessibility to EV charging stations, a network dataset, based on US TIGER/Line road data, 

was built using vertex connectivity in ArcGIS Pro Network Analyst. Road data were 

downloaded in 3,233 folders with shapefiles from the TIGER/Line ftp archive, appended in 

ArcGIS Pro 3.0, and clipped to the contiguous US, which resulted in a road feature class with 

over 18 million edges. This was used to build a network dataset with distance as the cost 

variable. In addition, population 30 arc-second (~ 900 m) GHSL grid points were aggregated 

to 3 arc-minute grid points, converted to polygons, and intersected with the US Census Bureau 

TIGER/Line Urban Area feature layer to enhance each population polygon with a binary 

urban/rural attribute that describes whether the grid cell is within an urban or a rural area. 

The distance threshold, assuming a two-way trip from home to the charging station and back, 

is half the driving range of the EV. Using an average distance of 250 miles on one charge 

(Kempton, 2016), the maximum feasible distance between home and station is therefore 125 

miles (200 km). To estimate the population that lives more than this distance from an EV 

charging station, 200-km service areas were constructed around EV charging stations for a 

given year on the US-wide road network dataset. Next, the population numbers for US 

population grid polygons that do not intersect with these areas (representing areas without 

charging points) are summed up for each year; a distinction between urban and rural 

populations is made.  

As an example, Figure 3 illustrates the service areas around EV charging stations for the years 

2010 and 2014. Comparison shows that 2014 provides a higher service coverage, which leads 

to a reduction in the under-served population with regards to EV charging (2010: 145.5 

million; 2014: 1.8 million).  
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Figure 3: 125-mile (200-km) service areas around EV charging stations: (a) 2010, (b) 2014. 

3.3 Localized station analysis 

To compare the spatial distribution of EV charger locations on a more refined scale, point 
datasets of DoE, PlugShare and ChargeHub were aggregated into a hexagon grid 
superimposed on the Miami UA (Figure 3a). The total point counts were recorded for each 
hexagon. To identify where each dataset clusters spatially, the Gi* local statistic (de Smith et 
al., 2018) was calculated for each hexagon feature in each point dataset. The Gi* statistic allows 
the extraction of hotspots and indicates where charger locations cluster spatially. Clusters at 
the 0.01 and 0.05 levels of significance were retained for visualization.  

To measure the similarity of point datasets, a similarity metric based on hexagon grids was 
used (Juhász & Hochmair, 2018; Lenormand et al., 2014). First, raw count values were 
normalized by dividing them by the total number of EV charger locations in the Miami UA, 
for each point dataset separately. Then, pairwise Pearson-correlation coefficients for all pairs 
of variables were calculated. A higher correlation for a variable pair indicates that EV charger 
locations from those sources are located primarily within the same hexagon grids. 
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To assess the influence of the modifiable areal unit problem (Wong 2004) on the results, the 
approaches described above were conducted on three sets of hexagon grids with hexagon side-
lengths of 1, 2 and 3 km. Results did not change significantly. We therefore retained a hexagon 
grid with 2km-long sides. This balances computational efficiency and spatial resolution, still 
making it possible to distinguish between urban forms (e.g., downtown and suburban areas). 

3.4 EV Charging patterns 

Figure 2e shows the EV charger locations of the SemaConnect network, for which we 
collected the availability in 5-minute intervals. Each row in the dataset denotes a charger 
location at a specific point in time. Data points contain the number of available charger ports 
at the location at that point in time. The total number of available ports in the location is also 

known. Charger availability was expressed as a percentage and calculated as 𝑈𝑙,ℎ =
𝑇−𝑀

𝑇
𝑥100, 

where Ul, h is the average use during a one-hour time slot h (e.g. 12:00–13:00) on a specific day 
at location l; T is the total number of charging ports at location l, and M is the geometric mean 
of available charging ports (i.e., ports not in use) recorded during that hour. Note that the 
calculation of Ul,h is independent of the number of times our data collector software was able 
to extract availability information during an hour. This fault tolerance is useful to avoid issues 
introduced by network timeout and other errors. This metric was used for describing individual 
charging patterns. Charger use was also aggregated by the day of the week (Monday, Tuesday, 
etc.) so that general weekly patterns during the study period (1 June 2023 to 31 August 2023) 
could be explored.  

Charger locations were aggregated to the hexagon grid described in Section 2.1. A similar use 
metric was calculated for each individual cell, which combines the total number of ports across 
all charger locations in a cell and their availability. This step allowed us to compare charging 
behaviour in different parts of the Miami UA (i.e., downtown vs. other areas). 

4 Analysis results 

4.1 Spatial distribution of EV stations 

Table 2 presents the results of the two best-fitting negative binomial regression models for the 
prediction of the number of EV charging stations in 49 states. The two models have a similar 
model fit and comparable AIC values. One model focuses on household income, the other on 
election results. The generalized variance inflation factor was below 2 for all predictors in both 
models, which indicates that multicollinearity did not pose a problem. The low Moran’s I 
coefficients and p-values above 0.05, based on Queen contiguity, indicate absence of spatial 
autocorrelation in residuals. Both models show that a denser highway network comes with 
more EV charging stations, indicating that highways are important corridors for such services. 
These findings are also in line with what has been found when investigating EV charging access 
at zip-code level in New York City (Khan et al., 2022). Model 1 shows that states with a higher 
household income tend to provide more charging stations. This points to mobility-related 
social exclusion for states with lower incomes (i.e. access to relevant transportation 
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infrastructure), as has been shown, for example, when analysing access to public transport for 
disadvantaged sociodemographic groups (Hochmair et al., 2022). Lastly, results show that the 
dominant political presence in a state (Democratic or Republican), with all this implies about 
beliefs, values and governance, also plays a role. In Model 2, the majority for the Democratic 
candidate in the presidential elections of 2016 and 2020 is the base category of that predictor.  

Table 2: EV charging station negative binomial model results; ln (area in km2) used as offset 

 Model 1 Model 2 

Facility type Coeff. z  Coeff. z  

Intercept -9.55 -11.92 * -4.88 -22.66 * 

Median household income (US $) 6.01E-5 4.92 * – –  

Highway density (km/km2) 7.75 6.78 * 9.46 9.39 * 

Factor (Republican 2016/2020) 1 – –  -0.76 -1.90  

Factor (Republican 2016/2020) 2 – –  -1.30 -5.13 * 

Moran’s I (p value) 0.06(.09)   -0.08 (.84)   

Null log likelihood -387.6   -387.6   

Full log likelihood -368.64   -367.2   

AIC 745.28   744.44   

Adjusted McFadden’s pseudo R2 0.044   0.045   

N 49   49   

*p<.001 

States where the Republican candidate won most votes in both elections provide fewer EV 
charging stations. This suggests that these states tend to support policies which foster the use 
of traditional cars rather than EVs more strongly than Democratic states. Figure 4 shows the 
spatial distribution of the election variable, where a value of 1 indicates a state where the party 
of the winning candidate changed between 2016 and 2020. Value 0 indicates a Democratic win 
in both elections (blue states), and value 2 a Republican win in both elections (red states). This 
is overlaid with the location of EV charging stations, shown as grey dots. While regression 
results hint at the differing roles of Republican/Democratic states as well as of household 
income in EV charging station distribution, further investigation is necessary to determine 
whether one or other of the two variables can be considered the more dominant factor.  
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Figure 4: Number of wins of Republican candidate in 2016 and 2020 presidential elections combined 

The DoE EV charging station table demonstrates a wide range of fee models for EV-charging. 
We simplified these to two classes, namely free (i.e., no parking or EV charging fees 
mentioned), and payment required. Pricing information is available for 14,154 EV charging 
stations in the contiguous US. For frequently mentioned types of facilities, Table 3 lists the 
percentage of free stations. Car dealers, hotels and hospitals are among those with the highest 
proportion of free charging stations. As opposed to this, gas stations and convenience/grocery 
stores most often require payment for EV charging. A chi-square test of independence showed 
that the relation between facility type and fee level  is significant: X2 (26, N = 8580) = 2414.8, 
p < 0.0001, and that therefore the facility type does play a role in the provision of free (or 
paying) charging services.  

Table 3: Facility types and associated fee levels for EV charging stationsan hour 

Facility type Total % Free Facility type Total % Free 

Hotel 2310 94.7 Park 168 88.7 

Car dealer 1141 98.4 Gas station 163 6.7 

Shopping center 694 61.1 Entertainment 134 86.6 

Pay garage 363 80.7 Convenience store 132 12.1 

Municipal government 362 88.7 Utility 129 89.1 

Inn 340 95.6 Sports facility 99 87.9 

Grocery 295 52.9 Library 85 87.1 

Restaurant 277 57.0 Bed and breakfast 80 78.8 

Shopping mall 276 79.7 Hospital 79 100.0 

Parking lot 269 56.5 Airport 69 82.6 

College campus 267 75.3 Travel center 65 23.1 

Brewery/winery 234 67.1 Museum 63 85.7 

Parking garage 229 99.1 School 55 69.1 

Office building 202 84.7    
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4.2  Accessibility of EV charging stations 

Figure 5 shows two curves, for the years 2010 to 2022. The green curve shows the number of 
EV charging stations available in a given year, which demonstrates a particularly rapid growth 
since 2019. The decreasing curves with a log scale on the ordinate indicate the population 
(urban and rural) in millions that lives more than 125 miles (~ 200 km) from the nearest EV 
charging station in a given year. Assuming a 250-mile radius per battery charge and reliance on 
public EV charging stations, about 121 million urban and 24 million rural residents could not 
rely solely on battery-driven cars in 2010. A steep drop in the curves for the first few years 
shows that strategically adding EV charging stations to the infrastructure significantly 
improved EV station accessibility across the country. From about 2018 onwards, accessibility 
is complete, except for a few remote locations, such as on islands. Any further stations will 
therefore facilitate access to charging locations for EVs with smaller battery capacities in 
particular.  

 

Figure 5: Population, in urban and rural environments, in the contiguous US, living more than 200 km from 

the nearest public EV charging station 

4.3 Localized station analysis 

Table 4 provides information about the different EV charger datasets in the Miami UA. 
PlugShare and ChargeHub reveal similar station numbers; the DoE dataset provides 
approximately 27% and 34% more stations than PlugShare and ChargeHub, respectively. The 
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spatial distributions of all three dataset shows similar patterns (Figures 2b–2d). All datasets 
have their highest number of charging locations per hexagon grid within the same cell, in and 
near Downtown Miami. This neighbourhood consists of many commercial and residential 
high-rise buildings. Another indication of the similar distribution of EV charging stations 
provided by the different companies (PlugShare etc.) is the small variation between the number 
of hexagon cells without any charger locations (Table 4). 

Table 4: Number of EV charging locations in the Miami UA in different datasets 

Dataset 
Total no. of 
locations 

Max no. of locations in a 
hexagon 

Hexagons without charger 
locations 

PlugShare 807 36 280 

ChargePoint 763 35 271 

DoE 1,022 47 273 

To confirm the spatial similarity of EV charging datasets statistically, Gi* statistic were 
calculated. Figure 6 shows the identified hotspots for the three datasets, which are located in 
the same areas. Hotspots correspond well to major cities in the UA. With the exception of 
Homestead, all highlighted areas in Figure 2a show up as significant clusters. So, too, does 
Sunny Isles Beach, which has the second highest skyline in Florida and the fourteenth highest 
in the US (The Skyscraper Center, 2023) and therefore provides a high density of EV charging 
stations.  

 

Figure 6: Hotspots of EV charging locations on the 99% (red) and 95% (orange) confidence levels 
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Figure 7 shows the results of the calculation for the hexagon cell-based pairwise Pearson 
correlation coefficient, which quantifies similarity between point datasets. The high correlation 
coefficients of r > 0.91 (p < 0.001) for all analysed pairs indicate that most EV chargers are 
located in the same areas. The lower half of Figure 7 shows scatterplots of normalized cell-
based count values. The main diagonal elements in Figure 7 show the frequency histogram of 
charger raw count values using the same axis scales for all datasets. The histograms show long-
tailed distributions, with only a few cells having high count values. This confirms the strong 
spatial clustering previously shown by the Gi* statistic. 

 

Figure 7: Spatial similarity of EV charger point datasets demonstrated through scatterplots, Pearson 

correlation coefficients, and frequency histograms of raw charger count values in hexagon grids. 

Figure 8 provides another visual overview of charger locations in the Miami UA for the same 
three charger platforms. It suggests that urban centres provide the best availability of chargers, 
whereas rural and agricultural areas, as around Homestead, lack EV charging stations.  

4.4 EV charging patterns 

The SemaConnect network is the only data source to allow the retrieval of temporal usage 
information. It consists of 161 charger locations in the Miami UA (Figure 2e). 19 chargers 
were excluded from further analysis as they had an offline status during the study period (1 
June 2022 to 31 August 2022). All but one location were used at least once during this period. 
13 locations (9%) had an average hourly use value of over 70%, meaning that on average at 
any point in time (including at night) at least 70% of their available ports were being used. 
These locations are scattered throughout the Miami UA, but none of them are located in 
downtown areas. At the lower usage end, 85 locations (60%) were used, on average, to less 
than 30% of their capacity (Figure 9a). 
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Figure 8: Spatial distribution of publicly available EV chargers in the Miami UA in three different datasets. 

Hexagons are extruded based on raw count values. 

Figure 9b plots the average hourly use (percentage of their capacity) for all days of the week, 
averaged from the entire study period, and separated into downtown and other areas. 
Downtown areas consist of charger locations in Downtown Miami, Brickell (slightly south of 
Miami), and Downtown Fort Lauderdale. The time-series suggests that charging usage exhibits 
the same pattern regardless of location. There is a clear distinction between weekday and 
weekend patterns. During weekdays, charging patterns demonstrate daily local maximum 
peaks in the early afternoon and lowest charger usage around 8–9am. This closely follows the 
pattern of a standard working day, suggesting that EV owners use the public EV charger 
infrastructure during their daily activities. In contrast, weekend usage shows no distinct peaks, 
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and demand at publicly available sites appears to be more steady. Charging patterns follow 
similar patterns in downtown areas and elsewhere (Pearson’s r = 0.92, p < 0.001).  

However, some differences can be observed. For example, despite almost identical charging 
peaks especially on weekdays, low-demand times at night are more pronounced in downtown 
areas. This can be explained by the high number of chargers located in workplaces that are 
empty after regular working hours.  

 

Figure 9: (a) Histogram and (b) time-series plot for charging behaviour 

5  Summary and Conclusions 

This research demonstrated the evolution of the public EV charging infrastructure and access 
to it along the urban–rural spectrum. It also showed that at the US state level, social, economic, 
transport- and politics-related variables influence the numbers of charging locations. Our 
findings are in line with the limited evidence suggested by the current literature on EV charging 
accessibility. Whether use of the chargers was free or not was found to be dependent on the 
facility type (supermarket, carpark etc.) where they are installed. Using the Miami UA as an 
example, the spatial distribution of different providers’ EV charging stations was seen to be 
similar, with a focus on downtown areas. Exploration of temporal usage patterns of EV 
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charging stations in Miami revealed daytime peaks on workdays, which can be ascribed to 
people charging their EVs during their working hours. In contrast, weekend peaks are 
considerably less pronounced.  

In summary, spatial and temporal analysis of EV charging locations and usage provides 
informative insights for planning the future of the public charging infrastructure – for example, 
providing free charging facilities to facilitate access in low-income areas. More research is 
needed to identify areas that currently lack EV charging resources, a lack which could prevent 
other populations from joining the EV revolution. Future research will consider a more refined 
set of socio-economic variables, as well as finer spatial scales of aggregation, such as counties 
and US Census tracts to explore social equity in terms of access to EV charging locations. 
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