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ABSTRACT OF THE DISSERTATION 

IN SILICO IDENTIFICATION OF VACCINE CANDIDATES AGAINST  

VIRAL INFECTIONS 

by 

Prabin Baral 

Florida International University, 2022 

Miami, Florida 

Professor Bernard S. Gerstman, Co-Major Professor 

Professor Prem P. Chapagain, Co-Major Professor 

There are many viral diseases without effective treatments or vaccines. A 

critical step in the immune system’s fight against viruses involves an 

immunological protein molecule binding to a viral protein molecule. I investigate 

the atomic and molecular details of binding site recognition and binding 

interactions and dynamics for three important viruses. 

Antigens are molecules, such as viral proteins, that are foreign to the human 

body and can generate an immune response such as the production of antibody 

proteins to attack the antigen. An epitope is the part of an antigen molecule that is 

the site for antibody binding. They are categorized as T-cell or B-cell epitopes 

based upon which type of immunological cell can bind to the epitope. The 

identification of epitopes is an essential step for the discovery and development of 

epitope-based vaccines. Experimental identification of epitopes involves 
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expensive and time-consuming steps and therefore in silico identification is a 

powerful tool to facilitate the identification of potential epitope candidates and can 

decrease the time and expense spent on validation experiments.  

I employed several epitope computational prediction methods that are 

based upon the antigen protein’s amino acid sequence and conformation for the 

glycoprotein of the Lassa virus as well as for different proteins of the Marburg virus. 

The predicted epitopes are further filtered based on a consensus approach that 

resulted in the identification of new epitopes that have not yet been tested 

experimentally. I performed molecular dynamics computational simulations on the 

most promising epitopes to determine atomic-level details of the epitope’s 

interactions and dynamics. 

 In addition, I performed MD simulations to investigate the dynamics and 

antibody evasion behavior by the B.1.617.2 (delta) variant of SARS-CoV-2. I found 

that the receptor-binding β-loop-β motif in the spike protein adopts an altered 

conformation that causes binding difficulty for some of the neutralizing antibodies 

that were generated against the original coronavirus strain. This study reflects the 

possible mechanism for the immune evasion exhibited by the delta variant.  
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1. INTRODUCTION 

1.1 Viral Infections  

There are many viral diseases without effective treatments or vaccines. These 

viruses can cause catastrophic epidemics such as the Lassa, Ebola, and Marburg 

viruses. Similarly, the recent coronavirus pandemic is of great concern as new 

variants are continuously emerging with decreased susceptibility to antibodies and 

vaccines that were developed for earlier strains. A critical step in the immune 

system fight against viruses involves an immunological protein molecule binding 

to a viral protein molecule. I investigate the atomic and molecular details of binding 

site recognition and binding interactions and dynamics for three important viruses. 

Viruses are infectious agents that typically consist of genetic material (DNA or 

RNA) encapsulated in a protein coat. Viruses are able to multiply by using the 

machinery within the living cells of a host1. A person is susceptible to different 

viruses which can enter or transmit through various routes such as the mouth, 

nose, eyes, genitals, as well as wounds. Once Inside a cell, the viral DNA or RNA 

starts replicating and can make millions of copies of its genetic material and protein 

shell. These copies leave the infected host cell and then migrate to uninfected cells 

to repeat the process. The process of replication can lead to pathogenesis if the 

immune system fails to control the virus2.  

Viruses are dangerous for a variety of reasons. Unlike bacteria, fungi, and 

parasites3, viruses are too small to be visible under a standard optical microscope. 

Viruses have different modes of transmission that could range from contaminated 
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surfaces, airborne, or contaminated body fluid. Worldwide, different viruses have 

caused a substantial amount of disease and death. Examples include respiratory 

viruses such as influenza virus, rhinovirus, adenovirus, coronavirus, etc., as well 

as the bodily fluid and blood-borne viruses such as Lassa, Ebola, Marburg, 

hepatitis virus and Human immunodeficiency virus (HIV)4. Currently, there is a lack 

of effective treatment methods against most of these infections. Thus, the 

identification of effective methods to contain such viruses is of extreme importance. 

The development and deployment of therapeutic and vaccine candidates against 

such viral infections is of significant urgency as the twenty-first century has 

witnessed the emergence of different viruses that have already caused several 

epidemics or pandemic5 including the ongoing COVID-19 pandemic. Vaccines are 

made by using different processes in which they might contain attenuated live 

viruses (eg. MMR vaccines, Varicella, Influenza, Rotavirus vaccines, etc), 

inactivated viruses as in Polio and Hepatitis A, inactivated toxins against bacterial 

diseases such as Diptheria, Tetanus, etc. Other vaccines against viruses such as 

Hepatitis B, Influenza, Pneumococcal, Meningococcal are developed by utilizing 

segments of pathogens which include subunits as well as conjugate vaccines6,7 

that pair a weak virus with a strong virus.  

1.2 Epitopes 

To create a vaccine, I focus on epitopes, which are parts of an antigen. Antigens 

are molecules, such as viral proteins, that are foreign to the human body and can 

generate an immune response such as the production of antibody proteins to 
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attack the antigen. An epitope is the part of an antigen molecule that is the site for 

antibody binding. They are categorized as T-cell or B-cell epitopes based upon 

which type of immunological cell can bind to the epitope. The B cell epitopes are 

surface segments of the antigen protein that are recognized by the immunological 

B-cells, whereas T-cell epitopes are peptides derived from antigens and 

recognized by immunological T-cells when the epitope is bound to a major 

histocompatibility complex molecule. A vaccine can contain either a weakened 

virus or an antigen molecule from the virus. It is the few amino acids of the antigen 

in the form of epitopes that interact with the immune system8.  

Recently, on the basis of computational approaches that utilize advanced 

algorithms and epitope databases, many new epitope-based vaccine candidates 

have been proposed9,10. These epitopes are classified into two types based on the 

immunological cells (lymphocytes) that the body generates to attack the antigen. 

The lymphocytes that mature in the thymus are called T-cell lymphocytes, and 

epitopes recognized by them are referred to as T-cell epitopes. The lymphocytes 

that mature in the bone marrow are B lymphocytes and the epitopes that they 

recognize are called B-cell epitopes11. There is further classification into two 

categories: linear and conformational epitopes. Linear epitopes are a contiguous 

segment of amino acids on an antigen, while conformational epitopes are amino 

acids on the antigen that are not contiguous in the primary peptide sequence but 

are brought together by the structural arrangement in a folded protein12,13. T-cells 

contain proteins, CD4 or CD8, that can bind to proteins on other cells. CD4 

receptors bind to a cell’s major histocompatibility complex molecule (MHC-II 
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molecule) and help in the activation of CD8 cells and B-cells, while CD8 receptors 

bind to MHC-I molecules, which then acts in the removal of infected cells and 

pathogens14,15.  

Since an epitope is only a small but unique segment of an antigen, an epitope-

based vaccine has fewer side effects compared to conventional vaccines. For the 

immune system to be effective, the cell’s MHC molecules must bind to an epitope 

on the antigen. Since MHC molecules are polymorphic with a range of 

conformations and amino acid variations, the efficacy of a vaccine will increase if 

we can identify epitopes that can bind to several different types of MHC molecules 

(promiscuous epitopes). Experimental identification of promiscuous epitopes 

involves many expensive and time-consuming steps, including the production of 

antibodies to map antigenic regions on a target protein, animal models, and 

determination of the crystal structure of antigen-antibody complexes using X-ray 

crystallography. To narrow down the set of possible epitopes, computational 

identification of epitopes is employed as a powerful and fast approach to facilitate 

the identification of potential epitope candidates that can decrease the number of 

validation experiments16,17. In addition to decreasing the experimental cost of 

searching for epitopes, computational investigations also provide molecular and 

atomic level details of the interactions and dynamics of epitope candidates that are 

not accessible with experimental methods. These computational investigations 

have accelerated epitope-based vaccine development for several viral infections 

and cancer18,19.  
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1.3 Investigating epitopes of Lassa virus, Marburg virus, and Coronavirus 

My work focuses on the discovery and investigation of T and B cell epitopes for 

the Lassa virus, Marburg virus epitopes, as well as the molecular and atomic 

dynamics that allow antibody evasion by the SARS-CoV-2 spike protein antigen. 

Biophysical and biochemical databases are used to identify potential viral protein 

epitopes. The interaction of identified epitopes with the different versions (alleles) 

of MHC proteins is then investigated by molecular docking as well as Molecular 

Dynamics (MD) simulations studies to determine the epitope promiscuity. The 

calculations from MD simulations study the relative stability of epitope-allele 

complexes as well as the identification of novel epitopes. In addition to the Lassa 

virus, I also study the dynamics of the SARS-CoV-2 spike protein by using MD 

simulations. The dynamics and flexibility of the spike protein receptor binding 

domain (RBD) of different variants are explored and binding of antibodies to the 

spike protein are also studied. This study reveal that mutations in an amino acid 

loop in the spike RBD is responsible for the immune escape mechanism of the 

delta variant and thereby increasing the number of COVID-19 cases20. 
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2. VIRAL SYSTEMS INVESTIGATED 

I investigated the molecular details of proteins encoded by three different viruses, 

Lassa, Marburg, and the B.1.617.2 delta variant of SARS-CoV-2. These three 

systems were chosen because they have caused current or recent epidemics, and 

the crystallographic structure of the proteins are known. 

2.1 Lassa Virus Disease 

Lassa virus (LASV), a member of the Arenaviridae21, is an ambisense RNA virus 

that causes a severe hemorrhagic Lassa fever in humans. LASV is endemic, 

particularly in the West African countries of Sierra Leone, The Republic of Guinea, 

Nigeria, and Liberia22,23. The transmission of LASV to humans occurs through the 

urine or feces of infected Mastomys rats and the virus spreads human-to-human 

through direct contact with the blood, urine, feces, or other bodily secretions of an 

infected person. LASV can be fatal and no approved effective therapeutics are 

currently available. The development of therapeutics such as antibodies and 

vaccines for the treatment of LASV is therefore of significant urgency24,25,26. 

Of the four proteins that are encoded by the two RNA segments of the LASV 

genome, the glycoprotein (GP) is the only protein on the viral surface.  GP results 

from the cleavage of  a 75 kDa precursor polypeptide, GPC by signal peptidase 

and then further glycosylated and processed into GP1 and GP227. GP1 is the 

receptor-binding subunit, and GP2 is the membrane-spanning fusion 

subunit28,29,30. The virion envelope protein spikes are composed of three 

heterotrimers, with each heterotrimer containing signal peptide, GP1, and 
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GP231,32,  shown in Figure 2.1. A chalice-like GP trimer interacts with receptors on 

the cell surface, for example matriglycan, which mediates the entry of the virus into 

the host cell. In addition, the GP also interact with ERGIC-53 in the exocytic 

pathway, which helps to form infectious virions33. GP is considered to be a key 

factor for LASV growth, cell tropism, host range and pathogenicity, and as it is the 

only protein situated on the LASV virion surface, GP becomes a primary target for 

vaccine design24. 

 

 

Figure 2.1  Structure of the LASV GP trimer consisting of the three GPs (GP-A, 
GP-B, GP-C). Each GP has a GP1 subunit and a GP2 subunit (zoomed view). 
Each monomer is colored differently in the GP trimer. In the zoomed view, the GP2 
subunit is lightly shaded to differentiate from the GP1 subunit, and some of the 
antibody binding sites are highlighted (figure generated from the crystal structure 
of the LASV GP in the Protein Data Bank34, PDB ID: 5VK224). 

The crystal structure of the trimeric LASV GP in complex with the 37.7H 

neutralizing antibody from a human survivor (PDB ID: 5VK2, Figure 2.1) has been 

determined, thereby providing insight into the structural basis for antibody design. 
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Analysis of the GP-37.7H antibody complex shows that the antibody 

simultaneously binds to two GP monomers at the base of the GP trimer. The 

binding involves four discontinuous regions of LASV GP: two in site A and two in 

site B. Site A contains residues 62 and 63 of the N-terminal loop of GP1 and 

residues 387 to 408 in the T-loop (residues 365-384) and HR2 (residues 400-412) 

regions of GP2. Site B contains residues 269 to 275 of the fusion peptide and 

residues 324 to 325 of HR1 (residues 311-355) of GP224,35. Although the antibody 

predominantly binds to GP2, GP1 is required to maintain the proper prefusion 

conformation of GP2 for antibody binding24.  

2.2 Marburg Virus Disease 

Filovirus infections in humans can cause severe hemorrhagic fever in humans with 

other symptoms such as vomiting, cough, diarrhea, jaundice, and result in high 

fatalities36,37.  Of the different genera of Filovirus family, Marburgvirus (MARV) is 

the deadliest infectious agent and has reemerged a multiple times since its 

discovery in 196738. Bat is considered the primary source of this disease and it is 

transmitted to humans through direct contact, droplets of body fluids from infected 

persons, or contact with equipment and other objects contaminated with infectious 

blood or tissues. However, currently there are currently no approved vaccines or 

post exposure treatment methods available36,37. Filoviruses are enveloped virions 

(Figure 2.2a), which express glycoprotein (GP), nucleoprotein (NP), VP35, VP40, 

VP30, VP24, and large polymerase protein (L).  The GP is situated on the virions’ 

surface and helps enter into the target cells, and is therefore considered a primary 
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target for antibodies and vaccines design36,37,39. A 3.6 Aº resolution crystal 

structure of trimeric MARV surface glycoprotein complexed with human antibody 

MR78 (PDB ID: 5UQY, Figure 2.2 b) has been determined40. The GP1 has the 

receptor-binding site (RBS) that is responsible for the host receptor binding41,42. 

The GP2 anchors the membrane and catalyzes membrane fusion and viral entry43. 

Nucleoprotein (NP) binds directly to the viral genome and plays an important role 

in the replication of the genome and nucleocapsid formation44,45. It is considered 

as a suitable target for vaccine development because of its abundance in Filovirus 

infected cells and its strong antigenicity46,47. The crystal structures of MARV NP in 

both apo and VP35-chaperoned form have been reported (PDB ID: 5F5M48, Figure 

2.2c).  The NP apo form exists as hexamers while the VP35 chaperoned NP 

remains in monomeric state losing affinity to single stranded RNA48. VP35 is a 

multifunctional protein  and participates in the assembly of nucleocapsid49. 

Similarly, VP40 is the most abundant matrix protein in the Filovirus and provides a 

link between the nucleocapsid structure and membrane50 (Figure 2.2a). The VP40 

interacts with negatively charged phospholipids within lipid bilayers to promote 

virus assembly and budding49,51,52. VP24 is a minor matrix protein and plays a key 

role in viral packaging and immune response inhibition. It is also involved in viral 

uncoating, formation of ribonucleoprotein complex together with NP and VP35 for 

nucleocapsid transport and genome packaging52-55. VP30 binds with NP and 

facilitate the formation of virus like particles (VLP’s), which is essential for viral 

RNA synthesis49. The protein L is thought to play a role in the catalytic functions 

required for the viral transcription and replication56. These proteins could be 
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possible target for the discovery and development of vaccine candidates as they 

involve in various human immune systems57,58. 

 

 

Figure 2.2 Filamentous Filovirus structure showing a) the organization of different 
proteins in the viral particle (made from BioRender). Crystal structures of the 
monomers of (b) the MARV GP in complex with human survivor antibody MR78 
(PDB ID: 5UQY) and (c) the MARV NP (PDB ID: 5F5M). The N and C terminals in 
b-c are highlighted with blue and red spheres respectively. 

2.3 SARS-CoV-2 Spike Protein 

The highly contagious severe acute respiratory syndrome coronavirus-2 (SARS-

CoV-2) is a form of severe acute respiratory syndrome coronavirus (SARS) that 

had an outbreak in China in 2003 and causes the COVID-19 disease in a number 
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of animal species including humans59-61. The first case of SARS-CoV-2 was 

detected in December 2019 in Wuhan, China, and a pandemic was declared in 

March 2020 due to its worldwide transmission. A person contracting this disease 

can have symptoms including fever, dry cough, headache, breathing difficulties, 

and pneumonia60-62. Several vaccines  against the SARS-CoV-2 infections have 

been developed63, with other vaccine candidates are in clinical trials64. The 

vaccines authorized for emergency use have been highly effective in reducing the 

number of cases and deaths63,65. In addition, therapeutic measures are also being 

pursued in parallel. These include identification of therapeutic small molecules, 

convalescent plasma, decoy receptors, and neutralizing antibodies66-76. Several 

studies have considered neutralizing antibodies (Abs) that can bind to the virus’ 

receptor binding domain (RBD)77-82 and have advantageous pharmacokinetics and 

the ability to be produced on a large scale83. The primary target for the vaccines 

or Abs is the receptor binding domain (RBD) of the spike protein, which is 

responsible for binding of the virus to the human ACE2 receptor on the host cell 

and facilitating viral entry into the human cells75,84,85. The spike protein in complex 

with ACE2 receptor is shown in Figure 2.3.  
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Figure 2.3 SARS-CoV-2 spike trimer in complex with ACE2 receptor. Each 
monomer in the spike protein is labelled as Chain A, Chain B and Chain C. 

While vaccination efforts are ongoing worldwide, new genetic variants are 

emerging and spreading. Notably, the viruses that emerged in the United Kingdom 

(B.1.1.7 lineage, also known as alpha variant), in South Africa (B.1.351 lineage, 

also known as beta variant) and in India (B.1.617.2 lineage, also known as the 

delta variant) that are reported to be critical among several other variants by 

increasing the transmission of the virus and host immune evasion86,87. Although, 
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the current vaccines appear to be effective against many variants of concern88,89, 

the lack of vaccination coverage worldwide has allowed the virus to spread and 

continue to evolve, decreasing the chances of quickly getting rid of this viral 

infection. In the spike protein alone, the B.1.1.7 variant has amino acid deletions 

at H69, V70, and Y144 and mutations N501Y, A570D, P681H, T716I, S982A, and 

D1118H, the South African variant has mutations L18F, D80A, D215G, R246I, 

K417N, E484K, N501Y, and A701V 90, while the B.1.617.2 variant has mutations 

T19R, G142D, Δ156-157, R158G, L452R, T478K, D614G, P681R, and D950N91.  
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3. METHODS 

3.1 Retrieval of the viral proteins  

The amino acid sequences of the viral proteins for different strains investigated 

were obtained from the NIAID Virus Pathogen Database and Analysis Resource 

(ViPR) website92. ViPR often provides multiple sequences for the same protein in 

each viral strain. To choose the sequence to perform investigations, I used the 

Clustal Omega program93 to align the different sequences and determine which 

sequence is the most highly conserved for a single strain. I used UniprotKB94 to 

obtain information about the 3D structure of each strain sequence for each protein. 

The most conserved sequences were used as the principal sequence for epitope 

predictions.  

3.2 Prediction of T-cell epitopes and their antigenicity and allergenicity  

Sequence-based MHC-I T-cell epitope predictions for the selected proteins were 

carried out using three different servers, ProPred-I95, CTLPred96 and NetCTL1.297. 

Sequence-based MHC-II T-cell epitope predictions were made by using three 

independent servers: ProPred98, NetMHCII2.399 and EpiTop100 separately. 

ProPred uses a quantitative matrix98 approach and NetMHCII2.3 uses ANN99, 

while EpiTOP 3.0 uses Quantitative Structure–Activity Relationship models 

(QSAR)101 to predict the MHC-II T-cell epitopes. 
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3.3 Prediction of B-cell epitopes  

Servers such as BepiPred2.0102, BCPREDSs103 and BcePred104 are implemented 

for the sequence-based B-cell epitope predictions. These servers predict epitopes 

based on physico-chemical properties of amino acids, and these servers accept 

the primary sequence as an input. The BepiPred predicts the epitopes based on a 

random forest algorithm trained on epitopes annotated from antibody-antigen 

structures. BCPREDS predicts epitopes by using SVM combined with a different 

kernel method, including string kernels, radial basis kernels, and subsequence 

kernels. The BcePred locates B-cell epitopes using four physicochemical 

properties like hydrophilicity, polarity, exposed surface and beta-turns104. Similarly, 

the structure-based B-cell epitope prediction were carried out using different 

independent servers: ElliPro105, Epitopia106 and DiscoTope107. These servers 

predict epitope regions based on the geometrical and solvent surface-accessibility 

of a protein structure, and these servers accept the 3D structure of a protein as an 

input. ElliPro predicts linear and conformational epitopes by incorporating the 

antigenicity, solvent accessibility, and flexibility of protein structures105. Epitopia 

uses a machine learning algorithm to analyze the antigenic features on protein 

structure and predicts the probable conformational epitope regions106. DiscoTope 

uses amino acid statistics, spatial information, and surface accessibility on the 

protein 3D structure to predict residue-by- residue conformational epitopes107. The 

consensus epitopes from both sequence and structure-based predictions were 

selected as potential epitopes for novelty analysis.  
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The antigenicity scores of all the predicted epitopes were predicted by VaxiJen 

2.0108 while the allergenicity assessment was made by using AllerTOP V.2 

server109. 

3.4 Docking-based virtual screening  

For the MHC-I epitopes, the IEDB provided 27 viable MHC protein variants (alleles) 

that appear most frequently in the global human population110. The structures of 

all 27 alleles were minimized and MD simulations were performed for 100 ns for 

each allele. The MD simulations were performed using the conditions described 

later. 100 different conformations, separated by an interval of 1 ns were 

generated from the MD trajectories of each allele, resulting in 2,700 structures 

for the 27 alleles.  The MHC-I epitopes that have antigenicity greater than a 

threshold value of 0.5 and IC50 values less than 500 nM were selected for further 

investigations of their binding affinities to alleles. The structure of each epitope 

and all 2700 allele structures were prepared for docking using AutodockTools 

version 1.5.6111. Autodock Vina 1.1.2112 was used for epitope-allele docking with 

a grid space that covered the entire allele and each epitope was docked with all 

2,700 allele structures generated from the earlier MD simulations. This allowed 

us to determine the strongest binding affinity for each epitope to any of the 2,700 

allele structures. 
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3.5 All Atom Molecular Dynamics (AAMD) Computational Simulations 

I used molecular dynamics (MD) computer simulations in most of my Ph.D. 

projects. MD simulations investigates the evolution of system and its 

conformational changes concerning the structural transformations. The first MD 

simulation of protein dates back to the late 1970s113 and by now, it is used in 

various fields including the drug discovery114. In this process, the atoms in the 

biomolecules are treated as a system of classical particles and the energy function 

is used to characterize the interaction between them. The overall energy of the 

system is calculated from the force field and the equation representing the overall 

energy of the system is given in equation (3.5.1). 

(3.5.1) 

The different interaction parameters are represented in Figure 3.1. A virtual spring 

is used as a model to represent the bonds between adjacent atoms. The bonds, 

angles and the dihedrals represent the bonded interactions while the Van der 

Waal’s energy defined by Lenard Jones 6-12 potential and the pairwise 

electrostatic interactions given by Coulomb’s law are non-bonded interactions. A 

cutoff distance is chosen by the user to reduce the computational time by applying 

the switching function to smoothly cut off the non-bonded interactions. The MD 

simulations uses a general cutoff distance of 12-14 Å. 
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Figure 3.1 Illustration of bonded interactions of a molecule. 

 

In MD simulations protocol, the initial setting of a biomolecule is assigned from the 

positions of atoms obtained from the three-dimensional crystallography, NMR, 

cryo-EM, or homology modeling of the structure. A certain temperature is assigned 

to these particles which then sets their initial velocity by using Maxwell Boltzmann 

distribution of velocities. The position and velocities of the atoms are then updated 

and saved after a user defined short time step. As such, the position and velocity 

of particles at every time steps are saved as time evolution data which forms the 

MD trajectory. This MD trajectory is utilized to investigate the thermodynamic and 

kinetic properties of complex biomolecules by using various methods and tools of 

statistical physics. Thus obtained results can be then validated with the 

experimental observations.  
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The large-scale structural changes occur in the biomolecules in the timescales that 

ranges from milliseconds, seconds or hours. However, the MD time steps are of 

the order of a femtosecond. As such, it is impossible to observe the significant 

conformational changes by using conventional MD. These days, the advancement 

in Graphical Processing Units (GPUs) have significantly enhanced the 

computational power and a few research groups have been able to mark 

millisecond scale of simulation with their most advanced computational facilities. 

The current study employed MD to understand the dynamics as well as protein-

protein interactions. 

All atom MD simulations were performed in High Performance Computing (HPC) 

and GPU resources by using the GPU version of NAMD 2.14115 employing the 

Charmm36m force field116,117 in explicit solvent. All systems were solvated in 

TIP3P water molecules in 0.15 M salt concentration using CHARMM-GUI118,119. All 

the structures were equilibrated for at least 1 ns with a timestep of 2 fs after a short 

minimization for 10,000 steps. The production runs were performed under constant 

pressure of 1 atm, controlled by a Nose−Hoover Langevin piston120 with a piston 

period of 50 fs and a decay of 25 fs to control the pressure. All simulations were 

performed at a temperature of 303 K and controlled by Langevin temperature 

coupling with a damping coefficient of 1/ps. The Particle Mesh Ewald (PME)121 

method was used for long-range electrostatic interactions with periodic boundary 

conditions and all covalent bonds with hydrogen atoms were constrained by Shake 

algorithm122. The hydrogen bonds were calculated with the cutoff distance and 
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angle of 3.5 Å and 300 respectively. Visualization and analysis of the trajectories 

were done with Visual Molecular Dynamics (VMD)123.  
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4. IN-SILICO IDENTIFICATION OF THE VACCINE CANDIDATE EPITOPES 

AGAINST THE LASSA VIRUS HEMORRHAGIC FEVER 

This chapter was published in 2020: P. Baral, E. Pavadai, B.S. Gerstman, and P.P. 

Chapagain, In silico identification of the vaccine candidate epitopes against the 

Lassa virus hemorrhagic fever, Sci Rep 10, 7667 (2020).  

In this study, I have identified and characterized T and B-cell epitopes for the LASV 

GP using different sequence and structure-based computational epitope prediction 

methods. I then selected potential B and T-cell epitopes for the LASV GP based 

on a consensus approach, and the novelty of the epitopes was examined with the 

Immune Epitope Database (IEDB) tools. Subsequently, I identified strongly binding 

alleles to the MHC-I T-cell epitopes and modeled the allele structures and 

performed docking to understand the interaction between alleles and epitopes. I 

further investigated the stability and dynamics of the epitope-allele complexes 

using molecular dynamics simulations. Analyses of root-mean square deviations, 

hydrogen bond, interaction energy, and solvent accessibility showed that epitope-

allele complexes are stable, indicating that the epitopes strongly bind to the alleles. 

The identified B and T-cell epitopes of LASV GP in the study can be useful for the 

development of effective vaccines against Lassa hemorrhagic fever. 
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4.1 Prediction of T-cell Epitopes 

4.1.1 MHC-I T-cell Epitopes 

MHC-I T-cell epitope prediction with the LASV GP sequence was performed using 

three different methods separately: ProPred-1, CTLPred, and NetCTL1.2, and the 

results are shown in Table 4.1.1.  

Table 4.1.1 MHC class I epitopes prediction. 

Propred-1 CTLPred NetCTL 1.2 
IEEVMNIVLI TFFQEVPHV TTSLYKGVY 
VMNIVLIALSVLAVLKGL EVPHVIEEV CTKNNSHHY 
VMNIVLIAL VPHVIEEVM ITEMLQKEY 
NIVLIALSV VIEEVMNIV VLAVLKGLY 
IALSVLAVL LIALSVLAV LSIPNFNQY 
SVLAVLKGL AVLKGLYNF NTSIINHKF 
FATCGLVGLVTFL FATCGLVGL MTSYQYLII 
FATCGLVGL VYELQTLEL LSQRTRDIY 
GLVGLVTFL KNNSHHYIM NWDCIMTSY 
NETGLELTL IINHKFCNL FSRPSPIGY 
IINHKFCNL ALMSIISTF IMCIPYCNY 
LSDAHKKNL MSIISTFHL LRDIMCIPY 
SRPSPIGYL QYNLSHSYA QADNMITEM 
RRGTFTWTL GVLQTFMRM GRSCTTSLY 
LIEAELKCF MAWGGSYIA MRMAWGGSY  

AWGGSYIAL YCNYSKYWY  
FSRPSPIGY NMETLNMTM  
SQRTRDIYI VQYNLSHSY  
RTRDIYISR 

 
 

RRGTFTWTL 
 

 
RWMLIEAEL 

 
 

ELKCFGNTA 
 

 
MLRLFDFNK 
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FNKQAIQRL 

 
 

NALINDQLI 
 

  IPYCNYSKY   
 

The epitopes listed by at least two of the methods are listed in Table 4.1.2 along 

with their binding affinity (IC50), antigenicity, and allele. Among these four 

consensus epitopes, the nanomer E1 epitope FATCGLVGL shows the lowest 

average IC50 value of 34 nM against the A1 allele as predicted by the IEDB, and it 

has also a reasonable antigenicity score of 1.65. This was followed by the E3 

epitope FSRPSPIGY, which has an average IC50 value of 88 nM against the A3 

allele, and also has a better antigenicity score of 2.50 compared to the 

FATCGLVGL epitope. Interestingly, the E4 epitope RRGTFTWTL is predicted by 

all three methods though its IC50 and antigenicity scores are not as good as the 

other epitopes (Table 4.1.2). All four of these consensus epitopes were docked to 

the alleles and I performed the MD simulations to investigate the stability and 

dynamics of the allele-epitope complex as discussed later. 

Table 4.1.2. Consensus prediction of the MHC-I T-cell epitopes. 

Epit
ope Sequence Interval 

Prediction method 
Antige-
nicity 

IC50 (nM) 
Allele 

ProPred-1 CTLPr
ed 

NetCTL ANN SMM 

E1 FATCGLVGL 38-46 ✓ ✓ ✕ 1.65 11.91 55.79 HLA-A*02:06 (A1) 

E2 IINHKFCNL 112-120 ✓ ✓ ✕ 1.23 101.6 214.8 HLA-A*02:03 (A2) 

E3 FSRPSPIGY 233-241 ✕ ✓ ✓ 2.50 81.63 94.1 HLA-B*35:01 (A3) 

E4 RRGTFTWTL 258-266 ✓ ✓ ✓ 1.04 109.6 727.7 HLA-A*32:01(A4) 

The epitope predicted by all three methods is highlighted in boldface. 
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4.1.2 MHC-II T-cell Epitopes 

MHC-II T-cell epitope prediction with the LASV GP sequence was performed using 

three different methods separately: ProPred, NetMHCII 2.3, and EpiTOP 3.0, and 

the results are shown in Table 4.1.3. ProPred uses a quantitative matrix98 

approach and NetMHCII2.3 uses ANN99, while EpiTOP 3.0 uses Quantitative 

Structure–Activity Relationship models (QSAR)101 to predict the MHC-II T-cell 

epitopes.  

Table 4.1.3 MHC class II epitopes prediction (The core epitopes predicted by 

NetMHCII2.3 are highlighted in bold). 

ProPred NetMHCII2.3 EpiTOP3.0 
MGQIVTFFQ IALSVLAVLKGLYNF MGQIVTFFQ 
FFQEVPHVI ALSVLAVLKGLYNFA FQEVPHVIE 
VMNIVLIALSVL LSVLAVLKGLYNFAT IEEVMNIVL 
MNIVLIALSVLAV SVLAVLKGLYNFATC VLIALSVLA 
IVLIALSVL VLAVLKGLYNFATCG LIALSVLAV 
LKGLYNFATCG LAVLKGLYNFATCGL LSVLAVLKG 
LVGLVTFLLLCGRSC DCIMTSYQYLIIQNT LAVLKGLYN 
VYELQTLEL CIMTSYQYLIIQNTT LKGLYNFAT 
LNMTMPLSC  IMTSYQYLIIQNTTW FATCGLVGL 
LELTLTNTSII TSYQYLIIQNTTWED LCGRSCTTS 
INHKFCNLS RPSPIGYLGLLSQRT LYKGVYELQ 
MSIISTFHLSI PSPIGYLGLLSQRTR YKGVYELQT 
MSIISTFHL SPIGYLGLLSQRTRD VYELQTLEL 
FNQYEAMSC PIGYLGLLSQRTRDI YELQTLELN 
VQYNLSHSY IGYLGLLSQRTRDIY LQTLELNME 
ISVQYNLSH GYLGLLSQRTRDIYI LELNMETLN 
YNLSHSYAG MSIISTFHLSIPNFN LNMETLNMT 
YAGDAANHC SIISTFHLSIPNFNQ LNMTMPLSC 
MRMAWGGSY IISTFHLSIPNFNQY IMVGNETGL 
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ProPred NetMHCII2.3 EpiTOP3.0 
LQTFMRMAW ISTFHLSIPNFNQYE MVGNETGLE 
MTSYQYLII STFHLSIPNFNQYEA VGNETGLEL 
YQYLIIQNT TFHLSIPNFNQYEAM LELTLTNTS 
LIIQNTTWE GVLQTFMRMAWGGSY LTNTSIINH 
IGYLGLLSQ VLQTFMRMAWGGSYI IINHKFCNL 
LLSQRTRDI LQTFMRMAWGGSYIA INHKFCNLS 
IYISRRRRG QTFMRMAWGGSYIAL LSDAHKKNL 
WMLIEAELK TFMRMAWGGSYIALD LYDHALMSI 
LKCFGNTAV FMRMAWGGSYIALDS LMSIISTFH 
LRLFDFNKQ LSVLAVLKGLYNFAT MSIISTFHL 
IQRLKAPAQ SVLAVLKGLYNFATC IISTFHLSI 
IQLINKAVN VLAVLKGLYNFATCG FHLSIPNFN 
LINDQLIMK LAVLKGLYNFATCGL FNQYEAMSC 
LIMKNHLRDIM AVLKGLYNFATCGLV MSCDFNGGK 
LRDIMCIPY VLKGLYNFATCGLVG FNGGKISVQ 
YCNYSKYWY VGLVTFLLLCGRSCT ISVQYNLSH 
WYLNHTTTGR GLVTFLLLCGRSCTT LSHSYAGDA 
LVSNGSYLN LVTFLLLCGRSCTTS VLQTFMRMA  

VTFLLLCGRSCTTSL FMRMAWGGS  
NNSHHYIMVGNETGL MRMAWGGSY  
NSHHYIMVGNETGLE WGGSYIALD  
SHHYIMVGNETGLEL LDSGCGNWD  
HHYIMVGNETGLELT WDCIMTSYQ  
HKKNLYDHALMSIIS LIIQNTTWE  
KKNLYDHALMSIIST WEDHCQFSR  
KNLYDHALMSIISTF FSRPSPIGY  
NLYDHALMSIISTFH IGYLGLLSQ  
LYDHALMSIISTFHL LLSQRTRDI  
GVLQTFMRMAWGGSY LSQRTRDIY  
VLQTFMRMAWGGSYI YISRRRRGT  
LQTFMRMAWGGSYIA ISRRRRGTF  
QTFMRMAWGGSYIAL WMLIEAELK  
TFMRMAWGGSYIALD MLIEAELKC 
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ProPred NetMHCII2.3 EpiTOP3.0  
AQTSIQLINKAVNAL LIEAELKCF  
QTSIQLINKAVNALI IEAELKCFG  
TSIQLINKAVNALIN FGNTAVAKC  
QTSIQLINKAVNALI FCDMLRLFD  
TSIQLINKAVNALIN FDFNKQAIQ  
SIQLINKAVNALIND FNKQAIQRL  
IQLINKAVNALINDQ LKAPAQTSI  
QLINKAVNALINDQL IQLINKAVN  
SQRTRDIYISRRRRG LINKAVNAL  
QRTRDIYISRRRRGT LINDQLIMK  
RTRDIYISRRRRGTF LIMKNHLRD  
TRDIYISRRRRGTFT IMKNHLRDI  
RDIYISRRRRGTFTW LRDIMCIPY  
DIYISRRRRGTFTWT WYLNHTTTG  
IYISRRRRGTFTWTL LNHTTTGRT  
NLYDHALMSIISTFH WLVSNGSYL  
LYDHALMSIISTFHL LVSNGSYLN  
YDHALMSIISTFHLS FSDDIEQQA  
DHALMSIISTFHLSI ITEMLQKEY 

  HALMSIISTFHLSIP MLQKEYMER  
MTSYQYLIIQNTTWE  
TSYQYLIIQNTTWED  
SYQYLIIQNTTWEDH  
YQYLIIQNTTWEDHC  
QYLIIQNTTWEDHCQ  
LIALSVLAVLKGLYN  
IALSVLAVLKGLYNF  
ALSVLAVLKGLYNFA  
LSVLAVLKGLYNFAT  
 VANGVLQTFMRMAWG  
ANGVLQTFMRMAWGG  
NGVLQTFMRMAWGGS  
GVLQTFMRMAWGGSY 
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ProPred NetMHCII2.3 EpiTOP3.0  
VLQTFMRMAWGGSYI  
DFNGGKISVQYNLSH  
FNGGKISVQYNLSHS  
NGGKISVQYNLSHSY  
GGKISVQYNLSHSYA  
GKISVQYNLSHSYAG  
NETGLELTLTNTSII  
ETGLELTLTNTSIIN  
TGLELTLTNTSIINH  
GLELTLTNTSIINHK  
LELTLTNTSIINHKF  
 LYDHALMSIISTFHL  
YDHALMSIISTFHLS  
DHALMSIISTFHLSI  
HALMSIISTFHLSIP 

 
 

ALMSIISTFHLSIPN 
 

 

LMSIISTFHLSIPNF 
 

 

The epitopes that were predicted by at least two methods are listed in Table 4.1.4. 

Among these consensus MHC-II T-cell epitope predictions, the E9 and E13 

epitopes were predicted by all three methods and have a reasonable antigenicity 

score of 0.7, indicating that these two epitopes can be potential candidates for the 

design of MHC-II T-cell based vaccines. ProPred and EpiTOP 3.0 predict most 

epitopes as nanomers whereas NetMHCII 2.3 predicts varying lengths of epitopes 

(Table 4.1.4). Interestingly, the 15-mer epitopes predicted by NetMHCII have the 

consensus core nanomer epitopes, suggesting that the  core region is responsible 

for strong binding of the epitope into the MHC-II binding site124,125,126. 
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Table 4.1.4 Prediction of the MHC-II T-cell epitopes. 

Epitope Sequence Interval Prediction Method Antigenicity 

ProPred NetMHCII 

2.3 

EpiTOP 

3.0 E5 MGQIVTFFQ 1-9 ✓ ✕ ✓ -0.1820 

E6 VYELQTLEL 65-73 ✓ ✕ ✓ 0.8600 

E7 LNMTMPLSC 78-86 ✓ ✕ ✓ 0.9390 

E8 INHKFCNLS 113-121 ✓ ✕ ✓ 1.5060 

E9 MSIISTFHL 134-142 ✓ ✓ ✓ 0.7080  
LYDHALMSIISTFHL 128-142 ✕ ✓ ✕ 0.2896  

YDHALMSIISTFHLS 129-143 ✕ ✓ ✕ 0.4907  

DHALMSIISTFHLSI 130-144 ✕ ✓ ✕ 0.4809  

HALMSIISTFHLSIP 131-145 ✕ ✓ ✕ 0.1949  

ALMSIISTFHLSIPN 132-146 ✕ ✓ ✕ 0.2066  

LMSIISTFHLSIPNF 133-147 ✕ ✓ ✕ 0.2428 

E10 FNQYEAMSC 147-155 ✓ ✕ ✓ 0.5520 

E11 ISVQYNLSH 162-170 ✓ ✕ ✓ 1.1310 

E12 LQTFMRMAW 188-196 ✓ ✓ ✕ 0.2620  

VANGVLQTFMRMAWG 183-197 ✕ ✓ ✕ 0.1328  

ANGVLQTFMRMAWGG 184-198 ✕ ✓ ✕ 0.1683  

NGVLQTFMRMAWGGS 185-199 ✕ ✓ ✕ 0.0579  

GVLQTFMRMAWGGSY 186-200 ✕ ✓ ✕ 0.1572  

VLQTFMRMAWGGSYI 187-201 ✕ ✓ ✕ 0.1895 

E13 MRMAWGGSY 192-200 ✓ ✓ ✓ 0.7630  
GVLQTFMRMAWGGSY 186-200 ✕ ✓ ✕ 0.1572  

VLQTFMRMAWGGSYI 187-201 ✕ ✓ ✕ 0.1895  

LQTFMRMAWGGSYIA 188-202 ✕ ✓ ✕ 0.1902  

QTFMRMAWGGSYIAL 189-203 ✕ ✓ ✕ 0.3470  

TFMRMAWGGSYIALD 190-204 ✕ ✓ ✕ 0.4434  

FMRMAWGGSYIALDS 191-205 ✕ ✓ ✕ 0.3543 

E14 YQYLIIQNT 217-225 ✓ ✓ ✕ 0.4720  

DCIMTSYQYLIIQNT 211-225 ✕ ✓ ✕ 0.6600  

CIMTSYQYLIIQNTT 212-226 ✕ ✓ ✕ 0.7075  

IMTSYQYLIIQNTTW 213-227 ✕ ✓ ✕ 0.6029  

TSYQYLIIQNTTWED 215-229 ✕ ✓ ✕ 0.6874 



 

 29 

Epitope Sequence Interval Prediction Method Antigenicity 

ProPred NetMHCII 

2.3 

EpiTOP 

3.0 
E15 LIIQNTTWE 220-228 ✓ ✕ ✓ 0.9100 

E16 IGYLGLLSQ 239-247 ✓ ✕ ✓ 1.5300 

E17 LLSQRTRDI 244-252 ✓ ✕ ✓ 1.7310 

E18 IYISRRRRG 252-260 ✓ ✓ ✕ 1.5560  

SQRTRDIYISRRRRG 246-260 ✕ ✓ ✕ 1.6434  

QRTRDIYISRRRRGT 247-261 ✕ ✓ ✕ 1.5276  

RTRDIYISRRRRGTF 248-262 ✕ ✓ ✕ 1.7213  

TRDIYISRRRRGTFT 249-263 ✕ ✓ ✕ 1.4112  

RDIYISRRRRGTFTW 250-264 ✕ ✓ ✕ 1.5207  

DIYISRRRRGTFTWT 251-265 ✕ ✓ ✕ 1.4261  

IYISRRRRGTFTWTL 252-266 ✕ ✓ ✕ 1.2680 

E19 WMLIEAELK 283-291 ✓ ✕ ✓ 1.3250 

E20 IQLINKAVN 334-342 ✓ ✕ ✓ 0.7710 

E21 LINDQLIMK 344-352 ✓ ✕ ✓ -0.0481 

E22 LRDIMCIPY 355-363 ✓ ✕ ✓ 1.0590 

E23 LVSNGSYLN 387-395 ✓ ✕ ✓ 0.3450 

The epitopes predicted by all three methods are highlighted in boldface with Italic 
font. The consensus core regions highlighted in boldface are in the epitopes 
predicted by NetMHCII 2.3. 
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4.2 Prediction of B-cell epitopes 

4.2.1 Sequence based epitopes 

In addition to the T-cell epitope predictions, I also predicted the linear B-cell 

epitopes for the LASV GP using sequence-based methods BepiPred 2.0102, 

BCPREDS103, and BcePred104. The BepiPred predicts the epitopes based on a 

random forest algorithm trained on epitopes annotated from antibody-antigen 

structures. BCPREDS predicts epitopes by using SVM combined with a different 

kernel method, including string kernels, radial basis kernels, and subsequence 

kernels. The BcePred locates B-cell epitopes using four physicochemical 

properties like hydrophilicity, polarity, exposed surface and beta-turns104. The 

epitope E30 containing 10 residues was predicted by all three of these sequence 

methods (Table 4.2.1) but with a negative antigenicity score.  

4.2.2 Structure based epitopes 

I also performed structure-based B-cell epitope prediction using three 

representative structural and geometrical properties-based methods: ElliPro, 

Epitopia and DiscoTope. For this, the experimental 3D structure LASV GP (PDB 

ID: 5VK2) with the modeled missing residues was used. ElliPro predicts linear and 

conformational epitopes by incorporating the antigenicity, solvent accessibility, and 

flexibility of protein structures105. Epitopia uses a machine learning algorithm to 

analyze the antigenic features on protein structure and predicts the probable 

conformational epitope regions106. DiscoTope uses amino acid statistics, spatial 
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information, and surface accessibility on the protein 3D structure to predict residue-

by- residue conformational epitopes107. The E24, E29, E32 and E33 structure-

based epitopes in Table 4.2.1 are especially interesting as potential candidates as 

they were predicted by all three methods. In Table 4.2.1, I also ranked each epitope 

based upon how many of the sequence and structure-based methods predicted 

each epitope, which do not always correlate with the highest antigenicity scores of 

E24, E26, E28, E29 and E31.
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Table 4.2.1 Prediction of the B-cell epitopes. The epitopes predicted by either all three sequence- or structure-based 

methods are highlighted by boldface. Conformational epitopes chosen by all three structure-based methods are 

indicated in italics. 

Epitope   Sequence based Structure based  

Rank 

 

Antigenicity 
        

Sequence Interval BepiPre

d 

BCPRED

S 

BcePred ElliPro Epitopia DiscoTop

e E24 LSDAHKKNLYD 120-130 ✓ ✕ ✓ ✓ ✓ ✓ 5/6 0.74 

E25 PNFNQYEA 145-152 ✓ ✕ ✓ ✓ ✓ ✕ 4/6 0.46 

E26 DFNGGKI 156-162 ✕ ✓ ✕ ✓ ✓ ✕ 3/6 0.73 

E27 LSHSYAGDAANH

CGT 

168-182 ✓ ✕ ✕ ✓ ✓ ✕ 3/6 0.08 

E28 LDSGCGNWDCIM

TSYQY 

203-219 ✕ ✓ ✕ ✓ ✓ ✕ 3/6 1.08 

E29 ISRRRRGT 254-261 ✕ ✕ ✓ ✓ ✓ ✓ 4/6 1.25 

E30 SDSEGKDTPG 267-276 ✓ ✓ ✓ ✓ ✓ ✕ 5/6 -0.07 

E31 NHTTTGRT 373-380 ✕ ✓ ✓ ✓ ✓ ✕ 4/6 0.99 

E32 ETHFSDDIE 396-404 ✓ ✕ ✓ ✓ ✓ ✓ 5/6 0.50 

E33 MLQKEYMERQ 414-423 ✕ ✓ ✓ ✓ ✓ ✓ 5/6 -0.14 
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Robinson et al.35 have recently reported the cloning of many human monoclonal 

antibodies derived from memory B cells of Lassa fever survivors in West Africa. 

These antibodies specifically bind to both GP1 and GP2 epitopes of LASV. The 

comparison of our predicted B-cell epitopes with those epitopes shows that there 

are five consensus epitopes that share similarity with Robinson et al. (Table 4.2.2), 

and another five epitopes that do not share similarity, indicating that our consensus 

epitope prediction strategy has identified new epitopes. 

Table 4.2.2 Comparison of B-cell epitopes (this work) with the Robinson et al.’s35 

B-cell epitopes. The common sequence between these two epitopes is highlighted 

in red color. Here, LASV-I, LASV-II and LASV-III represent different lineages from 

Nigeria while LASV-IV represents those from Sierra Leone35. The blue colors 

represent the amino acids differing in lineages. 

Epitope Sequence Interval 

This-work 

(Robinson) 

Sequence (ref. Robinson) 
E24 LSDAHKKNLYD  

120-130 (119-134) 

NLSDAHKKNLYDHALM (LASV-I, II, IV) 

   NLSDAHKKNLYDHTLM (LASV-III) 

E30 SDSEGKDTPG 267-276 (270-278) EGKDTPGGY (LASV IV) 

   EGNETPGGY (LASV I-III) 

E31 NHTTTGRT 373-380 (369-373) YWYLN (LASV I-IV) 

E32 ETHFSDDIE 396-404 (401-415) DDIEQQADNMITEML (LASV I, III, IV) 

   DDIEQQADNMITELL (LASV II) 

E33 MLQKEYMERQ  

414-423 (401-415) 

DDIEQQADNMITEML (LASV I, III, IV) 

   DDIEQQADNMITELL (LASV II) 

 

4.3 Epitope surface mapping 

For efficacy of vaccines, the epitopes should be located on an accessible region 

of the protein so that the epitope will be able to bind with antibodies127. This is 
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especially important for the six epitopes that I list in the Tables above that do not 

share any part of their sequence with known epitopes: E1, E4, E18, E22, E27, E29. 

In Figure 4.1, I highlight the positions of these epitopes on LASV GP. I also 

highlight the positions of E2 and E3 because the four MHC-I T-cell epitopes have 

IC50 information readily available. Figure 4.1 shows that the E1, E2, E3, E4, E18, 

E22 and E27 epitopes are well located on the exposed regions and thus can 

interact well with the alleles.  

 

 

Figure 4.1 Mapping of some representative epitopes are highlighted on the LASV 
GP. Mapping of: (a) secondary structural elements, (b) surface accessibility. The 
location of the epitopes on the GP suggests that they are on the solvent exposed 
region, indicating promiscuity as they have easy access to alleles.  
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4.4 MHC-I T-cell Allele and epitope modeling and docking 

Swiss-Model identified the 1.61 Å resolution crystal structure of the HLA class I 

antigen (PDB ID: 6EI2) as the best template for constructing models. The 

sequence identity between A4 and the template was 92%. The best model was 

then selected based on multiple validation methods, including GMQE (Global 

Model Quality Estimation) and QMEAN. The GMQE and QMEAN values128,129 of 

the model are 0.75, and 0.6, respectively. In addition to these analyses, 

Ramachandran plots and ERRAT were also used for the model 

validation. Analysis of Ramachandran plots130 of the model shows 99.6% of 

residues are either in favored or in allowed regions (Figure 4.2), indicating that 

backbone torsion angles of these models are acceptable. The ERRAT overall 

quality factor131 score was computed as 99, which is greater than the normally 

accepted score range for a high quality model of 50. These analyses show that the 

model is within a high-quality range and can be used for further analysis. 
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Figure 4.2 Ramachandran plot of the A4 model. 

Docking of the four consensus MHC-I epitopes (Table 4.1.2) was performed using 

Autodock Vina, which enabled the docking of epitopes obtained from the 

sequence-based MHC-1 T-cell prediction into the promising allele structures. The 

Autodock Vina docking protocol has been previously demonstrated to successfully 

dock epitopes into allele structures112. However, I validated the capability of the 

docking protocol before docking the epitopes by redocking the epitopes into 

the allele crystal structure (PDB ID:3OX8) to see whether the crystal bound 
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conformation of the peptide could be reproduced or not. The docked allele-epitope 

complex showed the same residue-epitope interactions observed in the epitope 

bound crystal structure, indicating that the Autodock Vina docking protocol was 

capable of reproducing the experimentally observed binding mode of the epitope. 

I applied Autodock Vina to each of the four MHC-I allele-epitope complexes. 

Autodock Vina found that the highest ranked docking structure had the following 

binding affinities: -5.5 kcal/mol for A1::E1 -5.0 kcal/mol for A2::E2, -6.8 kcal/mol 

for A3::E3, and -6.0 for A4::E4. These epitopes-alleles docking complexes are 

shown in Figure 4.3. 
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Figure 4.3 Snapshots of allele-epitope complexes. (a) A1::E1, (b) A2::E2, (c) 
A3::E3, and (d) A4::E4  at the beginning and end of the MD simulations: t=0 
(minimized structure), t=200 ns. Allele is gold and epitope is green. 
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4.5 Dynamics of the allele-epitope complex 

4.5.1 Root mean square deviation of allele, epitope and allele-epitope complex 

In order to investigate the dynamics and stability of the four MHC-I allele-epitope 

complexes, I performed 200 ns all-atom, explicit solvent MD simulations. To 

quantitatively understand the stability of the allele-epitope complex, I calculated 

the root mean square deviations (RMSD) of the backbone atoms of the allele-

epitope complexes as a function of simulation time as shown in Figure 4.4. Figure 

4.4 also includes curves of the RMSD of the backbone atoms of just the allele, and 

separately, just the backbone atoms of the epitope. All alleles have an RMSD 

compared to their initial structures of approximately 2 Å, whereas the allele-epitope 

complexes have a bit higher RMSD of approximately 2.5 Å, indicating that the 

epitopes make the complexes more flexible. Interestingly, in the case of A3::E3, 

the allele and the complex show almost the same RMSD, suggesting that the 

complex is especially stable. To pinpoint why the complexes, show a higher 

RMSD, I further computed the RMSD of only the backbone atoms of the epitope 

in each the complex. Figure 4 shows that the initial configuration of epitopes E1 

and E4 is compact, and that both of these epitopes rearrange their configuration 

in the binding site and elongate during the 200 ns MD simulation. This elongated 

configuration is consistent with the investigations of Antunes et al.132 on MHC-I 

epitopes. 
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Figure 4.4 Root-mean-squared deviations (RMSD) calculated for the backbone 
atoms of allele (A), epitope (E) and complex (A+E) from MD simulations of MHC-I 
allele-epitope complexes. 

4.5.2 Hydrogen bonds and interaction energy 

Since the interactions between protein and epitope peptide are mostly influenced 

by non-covalent interactions, I computed the number of hydrogen bonds and the 

interaction energy between the allele and epitope as a function of the MD 

simulation time. The hydrogen bond was calculated between the protein interface 

atoms with a distance cut-off of 3.5 Å and angle cut-off of 30o between the donor 

and acceptor heavy atoms. As shown in Figure 4.5, the number of H-bonds 

fluctuates during the MD simulations for all the complexes. The A4 complex has 
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the largest number of H-bonds. Table 4.5.1 shows that during the last 50 ns of the 

MD simulation trajectory, the A4 complex averages 2.5 H-bonds.  

 

 

Figure 4.5 (a) The number of allele-epitope intermolecular hydrogen bonds as a 
function of MD simulation time. (b) Interaction energy calculated between allele 
and epitopes as a function of simulation time. 

Figure 4.5 shows the interaction energy (electrostatic interaction + van der Waals 

contacts) throughout the entire MD simulation and Table 4.5.1 lists the average 

over the last 50 ns. The A3::E3 and A4::E4 display relatively stronger interaction 

energies than the A1:E1 and A2::E2 complexes. The comparison of RMSD, 



 

 42 

hydrogen bond, and interaction energy information indicates that the E3 epitope is 

an especially promising epitope candidate.   

Table 4.5.1 Allele–epitope interaction parameters calculated by averaging over the 

last 50 ns of the MD simulation trajectory. The best interaction is highlighted in 

bold. 

Complex 
 

Interaction 

Energy (kcal/mol) 

No. of H-bonds 

A1::E1 -53.53 ± 7.40 0.64 ± 0.54 
A2::E2 -64.54 ± 10.88 1.49 ± 0.63 
A3::E3 -74.85 ± 14.94 2.48 ± 0.50 
A4::E4 -73.23 ± 27.07 1.51 ± 0.67 

 

4.6 Novelty analysis 

The novelty of the four MHC I T-cell epitopes in Table 4.1.2, the nineteen MHC II 

T-cell epitopes in Table 4.1.4, and the ten B-cell epitopes in Table 4.2.1 identified 

in this study were analyzed using IEDB110. The IEDB database contains the 

epitopes that are annotated based on scientific literature. The IEDB showed that 

the E1, E4, E18, E22, E27, E29 epitopes, which bind to solvent exposed regions 

on the protein (Figure 4.1), have not been previously reported as LASV epitopes 

or vaccine candidates). In addition, this analysis further indicates that 24 other 

epitopes (E2, E3, E5, E6, E7, E8, E10, E11, E12, E14, E15, E16, E17, E19, E20, 

E23, E24, E25, E26, E28, E30, E31, E32, E33) have partial segments of their 

sequence reported as subsets of other epitopes, whereas E9, E13, E21 are exact 

match to previously reported sequences. For these epitopes, a comparison 
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showing the overlap between the predicted epitopes in this study and previously 

known epitopes documented in IEDB is given in Table 4.6.1. Therefore, the novelty 

results confirm that thirty epitopes have not been previously reported as LASV 

epitopes, suggesting that their therapeutic potentials in designing vaccines against 

LASV can be further explored.  

Table 4.6.1 New Epitopes and the peptides in which they were reported in IEDB. 

The common sequences are highlighted in red. 

Epitope Sequence (this work) IEDB Reported peptides References 

E2 IINHKFCNL SIINHKFCNL 110,133   

SIINHKFCNLSDAHK 110   

TLTNTSIINHKFCNL 110 
E3 FSRPSPIGY CQFSRPSPIGYLGLL 110 
E5 MGQIVTFFQ MGQIVTFFQEVPHVI 110 
E6 VYELQTLEL LYKGVYELQTLELNM 110 
E7 LNMTMPLSC ETLNMTMPLSCTKNN 110 
E8 INHKFCNLS SIINHKFCNLSDAHK 110 

 E9 MSIISTFHL LMSIISTFHL                                110,134                                                
  MSIISTFHL 110 
  HALMSIISTFHLSIP 110 
E10 FNQYEAMSC HLSIPNFNQYEAMSC 110   

NFNQYEAMSCDFNGG  
E11 ISVQYNLSH DFNGGKISVQYNLSH 110   

KISVQYNLSHSYAVD    
KISVQYNLSH  

E12 LQTFMRMAW GVLQTFMRMAWGGSY 110 
E13 MRMAWGGSY MRMAWGGSY                           110,135   

FMRMAWGGSY                         110,135   

FMRMAWGGSYIALDS              134   

GVLQTFMRMAWGGSY            134 
E14 YQYLIIQNT MRMAWGGSYI                          110,135 

DCIMTSYQYLIIQNT                     110 
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Epitope Sequence (this work) IEDB Reported peptides References 
  

SYQYLIIQNTTWEDH 

 

 
E15 LIIQNTTWE SYQYLIIQNTTWEDH 110 
E16 IGYLGLLSQ PSPIGYLGLLSQRTR 110,136 
E17 LLSQRTRDI YLGLLSQRTRDIYIS 110,136 
E19 WMLIEAELK RWMLIEAELKCFG 110,137   

TRWMLIEAELKCFGN 110   
PGGYCLTRWMLIEAELKCF

G 

110   

RWMLIEAELKCFGNTAVAKC 110,137 
E20 IQLINKAVN QMSIQLINKAVNALI 110 
E21 LINDQLIMK LINDQLIMK 110 
  VNALINDQLIMKNHL  
E23 LVSNGSYLN SLPKCWLVSNGSYLN 110   

WLVSNGSYLNETHFS  
E24 LSDAHKKNLYD KFCNLSDAHKKNLYD 110   

SDAHKKNLY  
E25 PNFNQYEA HLSIPNFNQYEAMSC 110 
E26 DFNGGKI DFNGGKISVQYNLSH 110   

EAMSCDFNGGKISVQ  
E28 LDSGCGNWDCIMT

SYQY 

DCIMTSYQY 110 
E32 ETHFSDDIE LNETHFSDDIEQQ 110,137   

ETHFSDDIEQQADNM 110   
GSYLNETHFSDDIEQ 

LVSNGSYLNETHFSDDIEQQ           

LNETHFSDDIEQQADNMITE 

 

110 

110,137 

110,137        

E33 MLQKEYMERQ MLQKEYMER 110   

ITEMLQKEYMERQGK  
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5. IN SILICO SCREENING AND MOLECULAR DYNAMICS INVESTIGATIONS 

OF MARBURGVIRUS EPITOPE-ALLELE COMPLEXES 

In this study, I have used a consensus computational approach that provides 

higher confidence in the selection of epitopes as discussed in our recent work138, 

to identify and characterize T- and B- cell epitopes for the MARV genome. I 

performed epitope prediction analyses for a complete MARV virion and then 

performed additional studies for the GP and NP epitopes as they are primary 

targets for MARV vaccine design. I first predicted and then selected the potential 

T- and B-cell epitopes based on their antigenic properties using the consensus 

approach. The novelty of the selected consensus epitopes was further examined 

with the Immune Epitope Database (IEDB) tools and literature. Several of the 

epitopes that I identified are novel. Variations in the predicted epitopes among the 

Lake Victoria, Angola, Musoke, and Ravn strains were analyzed. I screened 

epitope-allele complexes based upon the pharmaceutically important IC50 values. 

The MHC-I epitope-allele complexes for GP and NP with favorably low IC50 values 

were investigated using molecular dynamics computations to determine molecular 

details of the epitope-allele complex. To determine the strength of binding affinity 

to alleles, predicted GP and NP MHC-I T-cell epitopes with low IC50 were 

computationally docked to multiple conformations of a large array of MHC-I alleles. 

This study provides guidance for further experimental investigations and validation 

of potential epitopes for the design and development of MARV vaccine candidates. 
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The GP and NP epitope predictions given below (E1-E68) are provided in the 

following order: MHC-I T-cell, MHC-II T-cell, B-cell. For epitope comparison, the 

GP sequences of Lake Victoria MARV (UniprotKB ID: Q71VM1), Angola 

(UniprotKB ID: Q1PD50, strain Angola/2005), Musoke (UniprotKB ID: P35253, 

strain Kenya/Musoke/1980), and Ravn-1987 (UniprotKB ID: Q1PDC7, strain 

Kenya/Ravn/1987) were obtained from the UniprotKB94 database. The multiple 

sequence alignment of MARV GP amino acid sequences resulted in the Lake 

Victoria being identified as a highly conserved strain, and I selected this as the 

principal strain for epitope predictions. The 3D structure of the Lake Victoria, 

Musoke and Angola MARV GP and NP proteins were not available in the PDB. I 

modeled these structures, as well as the missing residues of Ravn MARV (PDB: 

6BP2 for GP and 5F5M for NP) with the use of Modeler.  

Sequence alignment of MARV NP sequences showed that the Lake Victoria 

and Angola strains (UniprotKB ID: Q1PD53) had identical amino acid sequences 

that were highly conserved. This was selected as the principal sequence for 

epitope predictions for NP. The NP sequences from Musoke (UniprotKB ID: 

P27588, strain Kenya/Musoke/1980) and Ravn-1987 (UniprotKB ID: Q1PDD0, 

strain Kenya/Ravn/1987) were also considered for sequence-based epitope 

predictions.  

I also performed sequence alignment using UniprotKB to determine highly 

conserved sequences for the other MARV proteins for epitope predictions. The 

highest conserved sequence for each protein are:  VP35 (UniProtKB: Q1PD52), 
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VP40 (UniProtKB: Q1PD51), VP30 (UniProtKB: Q1PD56), VP24 (UniProtKB: 

Q1PD48) and L (UniProtKB: Q1PD54).  

5.1 Prediction of MHC-I T-cell epitopes and epitope-allele complexes for MARV 

GP and NP 

MHC-I T-cell epitope predictions for the dominant strains of the MARV GP and NP 

were performed by using two independent servers separately: ProPred1 and 

CTLPred. I then examined the same region in the other strains to determine if there 

were variations in the epitope amino acid sequence. GP and NP epitopes predicted 

by either method that have at least one strain with antigenicity value greater than 

0.5 and IC50 values less than 500 nM are listed in Table 5.1.1 along with their IC50, 

allele, antigenicity, strongest binding affinity to any allele, and allergenicity. Among 

the 11 GP epitopes, six are allergenic, three are non-allergenic, and two epitopes 

have both allergenic and non-allergenic strains.  As shown in Table 5.1.1, the E11 

GP epitope, HAIDFLLTR, has the lowest IC50 value of 5.54 nM (IC50 value of 6.37 

nM for HAIDFLLAR, Angola strain) and has a reasonably high value of antigenicity 

of 1.031 (0.8133 for Angola). The allergenicity assessment shows that both of 

these E11 epitope strains are allergenic in nature. The non-allergenic epitopes E5, 

E6 (Ravn), and E8 have relatively low IC50 values. As listed in Table 5.1.1, E20, 

E21 and E22 are three NP epitopes with the lowest IC50 (less than 11 nM) and, 

they have non-allergenic nature, indicating that they could be good epitope 

candidates. Table 5.1.1 also shows that the Ravn strains of GP epitopes E1 and 



 

 48 

E6 have a greatly reduced IC50 compared to the Lake Victoria strain while 

maintaining the non-allergenic nature of the epitope.  

5.1.1 Virtual screening to identify GP and NP MHC-I epitope-allele complexes   

In order to identify the alleles that strongly bind to the selected MHC-I MARV GP 

and NP epitopes, I performed a docking-based virtual screening of all the GP and 

NP epitopes listed in Table 5.1.1 against a total of 27 MHC-I alleles that have been 

frequently found in humans110. For each of the 27 alleles, I ran a 100 ns MD 

simulation. For each allele, I obtained the conformation at 1 ns interval to obtain 

100 different conformations. This provided a multiconformer allele database 

consisting of 2,700 unique conformations of the 27 alleles. The generation of 

multiple conformations of alleles by the use of MD simulations takes advantage of 

protein flexibility to help obtain reliable binding complexes of epitope and allele. 

Docking-based virtual screening was performed using the Autodock-Vina method, 

which enabled the docking of the selected GP and NP MHC-I epitopes to each of 

the 2,700 allele conformations.  The reliability of the Autodock-Vina docking 

protocol was validated prior to docking the epitopes as mentioned in our previous 

work138.  
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Table 5.1.1.Prediction of MHC-I T-cell epitopes and allele complexes for GP (GP1 and GP2) and NP proteins. The Lake 

Victoria (L) strain is usually the most conserved sequence and therefore used as the principal sequence for each epitope. 

Many epitopes have identical predicted sequences in the four Marburg strains. For epitopes that have slightly different 

predicted sequences in different Marburg strains, I provide the different sequences with strains abbreviated as 

Angola(A), Musoke(M), Ravn(R). In addition, the epitopes that were further investigated with epitope-allele MD 

simulations are underlined. 

Protein Epitope Sequence Interval Antigenicity Allergenic Affinity 

kcal/mol 

IC50 (nM) Allele 

GP1 E1 QGIKTLPIL(L) 14-22 0.659 N -7.9 5240 HLA-A*30:01 
  

QGVKTLPIL(A) 

 

0.667 N -7.6 6601 HLA-A*30:01 
  

QGTKNLPIL(M) 

 

0.585 A -7.8 9502 HLA-B*08:01 
  

QSIKTLPVL(R) 

 

0.546 N -7.9 318 HLA-B*58:01 

  E2 KVADSPLEA 58-66 0.583 A -9.8 101 HLA-A*02:03 

  E3 LEASKRWAF 64-72 0.839 A -10 118 HLA-B*44:02 

  E4 GQNPHAQGI 127-135 0.552 A -9.9 342 HLA-A*02:06 
 

E5 NIAAMIVNK 164-172 0.626 N -8.8 18 HLA-A*68:01 
 

E6 TTAPNMTNG(L) 404-412 0.772 N -8.1 754 HLA-A*68:02 
  

TTAPNTTNE(M) 

 

0.633 N -8.4 956 HLA-A*68:02 
  

TTVPNTTNK(A) 

 

0.73 A -9.3 18 HLA-A*68:01 
  

MTTSDITSK(R) 

 

1.185 N -7.6 19 HLA-A*68:01 
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GP2 E7 REGDMFPFL(L,A,M) 440-448 1.215 A -9.8 26 HLA-B*40:01 
  

KEGDIFPFL(R)  

 

0.985 A -9.8 24 HLA-B*40:01 
 

E8 QEDDLAAGL 522-530 1.218 N -9.4 14 HLA-B*40:01 
 

E9 AAGLSWIPF 527-535 1.474 N -10.9 266 HLA-A*23:01 
 

E10 NLVCRLRRL 554-562 0.863 A -9.1 115 HLA-A*02:03 
 

E11 HAIDFLLTR(L,M,R) 589-597 1.031 A -9.9 5.54 HLA-A*68:01 
  

HAIDFLLAR(A) 

 

0.813 A -10.5 6.37 HLA-A*68:01 
         

NP E12 MDLHSLLEL 1-9 0.553 A -8 476.8 HLA-A*02:06 
 

E13 TAPHVRNKK 14-22 1.708 A -8.2 131 HLA-A*68:01 
 

E14 HVRNKKVIL 17-25 1.082 N -7.6 34 HLA-A*30:01 
 

E15 YLRDAGYEF 80-88 0.532 N -8.9 30.84 HLA-B*15:01 
 

E16 EPHYSPLIL 106-114 1.385 N -8.9 213 HLA-B*53:01 
 

E17 VLIHQGVNL 195-203 0.503 A -8.3 122.4 HLA-A*02:03 
 

E18 LIHQGVNLV 196-204 0.638 N -8.1 151.4 HLA-A*02:03 
 

E19 LEHGLYPQL 290-298 0.641 A -9.7 17.7 HLA-B*40:01 
 

E20 GLYPQLSAI 293-301 0.951 N -8.4 3 HLA-A*02:03 
 

E21 YPQLSAIAL 295-303 1.23 N -8.7 10 HLA-B*35:01 
 

E22 TEITHSQTL 366-374 0.671 N -8.1 10.23 HLA-B*40:01 
 

E23 TVQARPINR(L,A) 422-430 1.262 A -7.7 33.5 HLA-A*31:01 
  

TVQARSINR(R) 422-430 0.969 A -7.7 28.15 HLA-A*31:01 
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TVQARPMNR(M) 422-430 1.417 N -7.7 35.75 HLA-A*31:01 

  E24 SFVDLNDPF 455-463 0.824 A -9 161.3 HLA-A*23:01 
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For each epitope in Table 5.1.1, I list the allele that had the lowest IC50. I also list 

the strongest binding energy to any allele for each epitope. These range from −7.6 

to −10.9 kcal/mol. Interestingly, most epitopes bind to a similar binding site of the 

alleles (discussed later). Multiple epitopes prefer to bind to the same allele, for 

example E2, E10, E17, E18 and E20 epitopes share binding to the HLA-A*02:03 

allele, and E7 E8, E19 and E22 epitopes share binding to the HLA-B*40:01 allele 

(Table 5.1.1)139,140. However, some epitopes prefer to bind to a specific allele that 

does not bind to other epitopes. For example, E3 binds to HLA-B*44:02, E6 binds 

to HLA-A*68:02, E15 binds to HLA-B*15:01, E16 binds to HLA-B*53:01. (Table 

5.1.1). 

5.1.2 Promising GP and NP MHC-I epitope-allele complexes   

 Of the listed GP epitopes, E9 shows the strongest allele binding affinity of -

10.9 kcal/mol and has a non-allergenic nature (Table 5.1.1). Of the NP epitopes, 

E19 has the strongest allele binding affinity of -9.7 kcal/mol but has an allergenic 

nature (Table 5.1.1). The non-allergenic NP epitopes E15 and E16 both have a 

reasonably strong allele binding affinity of -8.9 kcal/mol with antigenicity of 0.5322 

and 1.3854 respectively. The IC50 comparison of E15 and E16 shows that E15 

could be a better candidate (IC50 value 30.84) compared to E16 (IC50 value 213). 

This result indicates that the E9 and E15 epitopes can be promising candidates 

against MARV.  
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Pharmaceutically, the most interesting epitopes are non-allergenic with low IC50. 

To provide more molecular details, I chose the four GP epitope-allele complexes 

and the four NP complexes with the best combination of non-allergenicity and 

lowest IC50 values for all-atom MD investigations. For GP, these are: E5:HLA-

A*68:01, E6: HLA-A*68:01 (Ravn), E8:HLA-B*40:01 and E9:HLA-A*23:01 

complexes, and for NP: E15:HLA-B*15:01, E20:HLA-A*02:03, E21:HLA-B*35:01 

and E22:HLA-B*40:01 complexes. The MD results are discussed in detail in 

section 5.5. 

5.2 Prediction of MHC-II T-cell epitopes for MARV GP and NP 

MHC-II T-cell epitope prediction with the MARV GP and NP sequences were 

carried out using three different independent methods: EpiTOP 3.0, NetMHCII 2.3, 

and ProPred. ProPred uses a quantitative matrix approach98, NetMHCII2.3 uses 

an artificial neural network (ANN) machine learning99 algorithm, while EpiTOP 3.0 

uses proteochemometrics such as Quantitative Structure–Activity Relationship 

models (QSAR)100 to predict the MHC-II T-cell epitopes. The consensus epitopes 

predicted by all three methods are listed in Table 5.2.1.  

Among these consensus MHC-II T-cell epitope predictions that are non-allergenic, 

the E32 and E33 for GP, and E39 for NP have the highest antigenicity score and 

are good candidates for experimental validation and design of MHC-II T-cell based 

vaccines. Intriguingly for the E32 and E33 GP consensus epitopes listed in Table 

5.2.1, the closely related MARV strains (Lake Victoria, Angola, Musoke, Ravn) 

have comparable antigenicity and allergenicity properties.  
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Table 5.2.1. Prediction of consensus MHC-II T-cell epitopes for GP and NP. The 

Lake Victoria (L) strain is usually the most conserved sequence and therefore used 

as the principal sequence for each epitope. Many epitopes have identical predicted 

sequences in the four Marburg strains. For epitopes that have slightly different 

predicted sequences in different Marburg strains, I provide the different sequences 

with strains abbreviated as Angola(A), Musoke(M), Ravn(R). 

Protein  Epitopes Sequence Interval Antigenicity Allergenicity 

GP  

     

  E25 LILIQGIKT(L) 10-18 0.4537 A 

  

 

LILIQGVKT(A) 

 

0.6736 A 

  

 

LILIQGTKN(M) 

 

0.8576 A 

  

 

LILIQSIKT(R) 

 

0.5091 N 

  E26 LIQGIKTLP(L) 12-20 0.2459 N 

  

 

LIQGVKTLP(A)  

 

0.3951 N 

  

 

LIQGTKNLP(M)  

 

0.3715 N 

  

 

LIQSIKTLP(R) 

 

0.2351 N 

  E27 LLLDPPTNI(L,A,M) 105-113 -0.5339 N 

  

 

LLLDPPSNI(R)  

 

-0.4772 N 

  E28 FLYDRIAST(L,A,M) 144-152 0.2317 N 

  

 

FLYDRVAST(R)  

 

0.3004 N 

  E29 MIVNKTVHK(L,A,M) 168-176 -0.0092 A 

  

 

MIVNKTVHR(R)  

 

-0.0067 A 

  E30 IVNKTVHKM(L,A,M) 169-177 -0.051 A 

  

 

IVNKTVHRM(R)  

 

-0.0598 A 

  E31 YRHMNLTST 186-194 1.8501 A 

  E32 VYFRKKRSI(L) 429-437 1.3083 N 

  

 

VYFRRKRNI(A) 

 

1.5966 N 

  

 

VYFRRKRSI(M) 

 

1.4115 N 

  

 

IYFRKKRSI(R) 

 

1.526 N 

  E33 FRKKRSILW(L) 431-439 1.2182 N 

  

 

FRRKRNILW(A) 

 

1.6415 N 
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Protein  Epitopes Sequence Interval Antigenicity Allergenicity 

  

 

FRRKRSILW(M) 

 

1.2783 N 

  

 

FRKKRSIFW(R) 

 

1.4661 N 

  E34 LVCRLRRLA 555-563 0.72 A 

NP  

     

  E35 ILALKTLES 113-121 0.7663 A 

  E36 IGLFLSFCS 129-137 -0.0675 N 

  E37 FILQKTDSG 235-243 0.7589 A 

  E38 FKQALSNLA 262-270 -0.3282 N 

  E39 FARVLNLSG 278-286 0.0884 N 

   E40 ITHSQTLAV 368-376 0.5329 A 

 

5.3 Prediction of B-cell Epitopes 

In addition to the MHC-I and MHC-II T-cell epitope predictions, I performed the 

sequence and structure-based B-cell epitope predictions for GP and NP of different 

MARV strains. BepiPred 2.0 and BcePred servers were separately employed to 

predict sequence-based B-cell epitopes. The BepiPred uses a random forest 

algorithm that is trained on epitopes’ annotated antibody-antigen structures, while 

BcePred predicts the B-cell epitopes using four physicochemical properties: 

hydrophilicity, polarity, exposed surface, and beta turns. Table 5.3.1 lists all GP 

and NP epitopes predicted by either server. The E44-E51 GP epitopes and the 

E55-E68 NP epitopes were predicted by both servers. As with T-cell epitopes, the 

Lake Victoria strain of the B-cell epitopes had the most conserved sequence and 

is listed as the principal sequence for each epitope. 

 The structure-based B-cell epitope predictions were performed using 

structural properties-based servers, Ellipro and DiscoTope. For this, 3D models for 
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the GP and NP of the Lake Victoria, Angola, Musoke and Ravn strains were 

modelled using the structures available in the PDB (GP: ID 6BP2, NP: ID 5F5M) 

as templates. The Ellipro algorithm predicts epitopes by incorporating the 

antigenicity, solvent accessibility, and flexibility of protein structures141, while 

DiscoTope predicts residue-by-residue conformational epitopes by using amino 

acid statistics, spatial information, and surface accessibility142. The GP epitopes 

E42, E43, E48, E49, E51, E54 and the NP epitope E55 (Table 5.3.1) were 

predicted by both structure-based methods.  

 Table 5.3.1 shows that the B-cell epitopes E48, E49, E51, E55 were 

predicted by all of the sequence and structure-based prediction methods and thus 

were top ranked compared to other epitopes. This indicates that these can be 

promising epitope candidates for experimental validation and design of B-cell 

epitopes for MARV. Unlike the T-cell GP epitopes, none of the B-cell GP epitopes 

had identical sequences for all four strains except for E53.
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Table 5.3.1 Prediction of consensus B-cell epitopes for GP and NP. The Lake Victoria (L) strain is usually the most 

conserved sequence and therefore used as the principal sequence for each epitope. For epitopes that have slightly 

different predicted sequences in different Marburg strains, I provide the different sequences with strains abbreviated as 

Angola(A), Musoke(M), Ravn(R). Boldface entries are epitopes that were predicted by all four methods. 

Protein Epitopes Sequence Interval Length Sequence-based Structure-based Rank Antigenicity Allergenicity 

BepiPre

d 

BcePre

d 

Ellipro Discotop

e GP 
     

    

    

 

E41 TGVPPKNVEYTEGEEAKTCY(L,M,R) 74-93 20 ✕ ✓ ✓ ✕ 2/4 1.0498 N   

AGVPPKNVEYTEGEEAKTCY(A) 

   

    

  

1.0603 N  

E42 TNIRDYPK(L,A,M) 111-

118 

8 ✕ ✓ ✓ ✓ 3/4 0.819 A   

SNIRDYPK(R) 

   

    

  

0.6469 A  

E43 PKCKTIHHIQGQNPHAQGIA(L,A,M) 117-

136 

20 ✕ ✓ ✓ ✓ 3/4 0.6897 N   

PKCKTVHHIQGQNPHAQGIA(R) 

   

    

  

0.6843 N  

E44 STPQQEGNNTDHSQG(L) 303-

317 

15 ✓ ✓ ✕ ✕ 2/4 0.6339 A   

STPQQGGNNTNHSQG(A) 

   

    

  

0.4733 A   

STPQQGGNNTNHSQD(M) 

   

    

  

0.5236 A   

STSQHEQNSTNPSRH(R) 

   

    

  

0.6862 A  

E45 AQPSMPPHNTTAISTNNTSK(L) 329-

348 

20 ✓ ✓ ✕ ✕ 2/4 0.5846 A   

AQPSMPPHNTTTISTNNTSK(A,M) 

   

    

  

0.5562 A   

TQPATLLNNTNTTPTYNTLK(R) 

   

    

  

0.5 N 
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E46 TTTAPNMTNGHLTSPSPTPN(L) 403-

422 

20 ✓ ✓ ✕ ✕ 2/4 0.6614 N   

TTTVPNTTNKYSTSPSPTPN(A) 

   

    

  

0.5967 N   

ATTAPNTTNEHFTSPPPTPS(M) 

   

    

  

0.5568 N   

IMTTSDITSKHPTNSSPDSS(R) 

   

    

  

0.6895 A  

E47 NMTNGHLTSPSPTPNPT (L) 408-

424 

17 ✓ ✓ ✕ ✕ 2/4 0.6929 N   

NTTNKYSTSPSPTPNST (A) 

   

    

  

0.5847 N   

NTTNEHFTSPPPTPSST (M) 

   

    

  

0.5348 N   

DITSKHPTNSSPDSSPT(R) 

   

    

  

0.8631 N  

E48 TIFDESSSSGASAEEDQHASP(L,A,M) 466-

486 

21 ✓ ✓ ✓ ✓ 4/4 0.4934 N   

TIFDESPSFNTSTNEEQHTPP(R) 

   

    

  

0.3299 A  

E49 FDESSSSGASAEEDQHASPN(L,A,M) 468-

487 

20 ✓ ✓ ✓ ✓ 4/4 0.5673 N   

FDESPSFNTSTNEEQHTPPN(R) 

   

    

  

0.1712 N  

E50 PNINENTAYSGENENDCDAE(L,M) 496-

515 

20 ✓ ✓ ✓ ✕ 3/4 0.4469 N   

PKVNENTAHSGENENDCDAE(A) 

   

    

  

0.3503 A   

PDKNGDTAYSGENENDCDAE(R) 

   

    

  

0.4963 N  

E51 TAYSGENENDC(L,M,R) 502-

512 

11 ✓ ✓ ✓ ✓ 4/4 0.7604 N   

TAHSGENENDC(A) 

   

    

  

0.695 N  

E52 GPGIEGLYTAGLIKNQNNLV(L,A,R) 537-

556 

20 ✕ ✕ ✓ ✕ 1/4 0.5119 N   

GPGIEGLYTAVLIKNQNNLV(M) 

   

    

  

0.6288 N  

E53 CKVLGPDCCIG 602-

612 

11 ✕ ✓ ✓ ✕ 2/4 0.1338 A  

E54 QIDQIKKDEQKEGTGWGLGG(L,A,M) 623-

642 

20 ✕ ✓ ✓ ✓ 3/4 0.1721 N   

QIDKIRKDEQKEETGWGLGG(R) 

   

  

   

0.2547 N 
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NP E55 MDLHSLLELGTKPTAPHV 1-18 18 ✓ ✓ ✓ ✓ 4/4 0.8425 N  
E56 KNADATRFLDVIPNEPHYSPL(A,M) 92-112 21 ✓ ✓ ✓ ✕ 3/4 0.5486 N   

KNPDATRFLEVIPNEPHYSPL(R) 

   

  

   

0.3473 N  

E57 KTLESTESQRG 117-

127 

11 ✓ ✓ ✓ ✕ 3/4 0.8644 A  

E58 DSGVTLHPLVRTSKVKNEVAS(A,M) 241-

261 

21 ✓ ✓ ✕ ✓ 3/4 0.4838 A   

DSGVALHPLVRTSKVKNEVAS(R) 

   

  

   

0.4448 A  

E59 VLSQKREKLARL 376-

387 

12 ✓ ✓ ✕ ✓ 3/4 0.5416 A  

E60 IENNIVEDQGFKQSQNR (A,M) 391-

407 

17 ✓ ✓ ✓ ✕ 3/4 -0.2684 N   

IENNIAEDQGFKQSQNQ (R) 

   

  

   

-0.1168 N  

E61 QSQDIDNSQGKQEDESTNLIKKP(A) 496-

518 

23 ✓ ✓ ✓ ✕ 3/4 0.4557 N   

QSQDLNNSQGKQEDESTNPIKKQ(M) 

   

  

   

0.6731 A   

QTQDLDISQKKQGNESTDPARKQ(R) 

   

  

   

1.1635 A  

E62 ESIDQPGSDNEQGVDLPPPPL(A,M) 542-

562 

21 ✓ ✓ ✓ ✕ 3/4 0.2922 N   

ESDDQPGSDNEQGVDLPPPPL(R) 

   

  

   

0.6641 N  

E63 PPLYAQEKRQDPIQHP 560-

575 

16 ✓ ✓ ✓ ✕ 3/4 0.822 A  

E64 DPIQHPAVSSQDPFGSIGDVNGDILEPI(A) 570-

597 

28 ✓ ✓ ✓ ✕ 3/4 0.1342 A   

DPIQHPAANPQDPFGSIGDVNGDILEPI(M) 

   

  

   

-0.0206 N   

DPIQHPAVSSQDPFGSIGDVDGDILEPI(R) 

   

  

   

0.1103 A  

E65 RSPSSPSAPQ 598-

607 

10 ✓ ✓ ✓ ✕ 3/4 0.1853 N  

E66 EDTRAREAYELSPDFTN (A) 608-

624 

17 ✓ ✓ ✓ ✕ 3/4 0.9784 N   

EDTRMREAYELSPDFTN (M) 

   

  

   

0.9384 A 
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EDTRMGEAYELSPDFTS (R) 

   

  

   

1.1065 N  

E67 YEDNQQNWPQR(A,R) 625-

635 

11 ✓ ✓ ✓ ✕ 3/4 0.2003 N   

DEDNQQNWPQR(M) 

   

  

   

0.1383 N 

  E68 VVTKKGRTFLYPNDLL 636-

651 

16 ✓ ✓ ✓ ✕ 3/4 0.6377 A 
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5.4 GP and NP epitope surface mapping 

The ability of antibodies to access epitopes is a crucial property for vaccine 

candidates143. For Figure 5.1, I used VMD to display some of the four GP and four 

NP epitopes that I chose for MD simulations, as described in the Methods section. 

I display the most visually clear structures in the PDB: GP PDB 5UQY, and NP 

PDB:5F5M.  In addition, Figure 5.1 also displays other epitopes that I found to be 

novel, as described later.  

 

 

 

Figure 5.1: Surface mapping of some non-allergenic and good antigenicity 
epitopes chosen for MD simulations as well as some novel epitopes, for a) GP and 
b) NP structures.  

In Table 5.4.1, for each epitope displayed in Figure 5.1 I list the solvent 

accessible surface area per amino acid (SASA/AA) in the epitope.  E14 is a novel 

epitope and is especially interesting as a potential epitope candidate because it 

has the largest SASA per amino acid, is non-allergenic (Table 5.1.1), has low IC50 

and mid-range values of antigenicity and binding affinity. 

E41
E43

E52

E5
E8
E9

a) GP

E14

E15

E18

E22

E55

E56
E20

b) NP
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Table 5.4.1. For each epitope displayed in Figure 5.1, I list the solvent accessible 

surface area per amino acid (SASA/AA) in the epitope.   

Epitope Residues SASA(Å2) SASA(Å2) per 
amino acid 

E5 164-172 1340.85 148.98 

E8 522-530 1131.28 125.70 

E9 527-535 1083.39 120.38 

E14 17-25   1554.14 172.68 

E15 80-88   1154.02 128.22 

E18 196-204 1136.49 126.28 

E20 293-301 1095.62 121.74 

E22 366-374 1388.71 154.30 

E41 74-93 2716.32 135.82 

E43 117-136 2744.47 137.22 

E52 537-556 2227.43 111.37 

E55 1-18 2417.74 134.32 

E56 92-112  2397.96 114.19 

 

5.5 Dynamics of the MHC-I allele-epitope complex 

In order to investigate the dynamics and stability of the selected consensus non-

allergenic epitopes that have low IC50 values with specific alleles, I performed 200 

ns all atom, explicit solvent MD simulations for four GP and four NP MHC-I T-cell 

epitope-allele complexes with the lowest IC50 and non-allergenic epitopes. These 

are GP epitope-allele complexes: E5-HLA-A*68:01(A8), E6-HLA-A*68:01(A8), E8-

HLA-B*40:01(A26), E9-HLA-A*23:01(A18), and NP epitope-allele complexes: 

E15-HLA-B*15:01(A11), E20-HLA-A*02:03(A3), E21-HLA-B*35:01(A12), E22- 
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HLA-B*40:01(A26). A list of alleles and their PDB codes is provided in Table 5.5.1. 

The epitope-allele docking complexes are shown in Figure 5.2. 

Table 5.5.1: List of the 27 alleles associated with the MHC-I T-cell epitopes. The 

PDB code is given for the first 17 alleles. For the last 10 alleles, M indicates that 

the allele structure was modelled using Swiss-Model. 

No. Alleles PDB ID No. Alleles PDB ID 
A1 HLA-A*0101 3BO8 A15 HLA-B*5101 1E27 
A2 HLA-A*0201 5ENW A16 HLA-B*5701 5T6W 
A3 HLA-A*0203 3OX8 A17 HLA-B*5801 5IM7 
A4 HLA-A*0206 3OXR A18 HLA-A*2301 M 
A5 HLA-A*0301 3RL1 A19 HLA-A*2601 M 
A6 HLA-A*1101 1X7Q A20 HLA-A*3001 M 
A7 HLA-A*2402 3VXN A21 HLA-A*3002 M 
A8 HLA-A*6801 4HWZ A22 HLA-A*3101 M 
A9 HLA-B*0702 5EO0 A23 HLA-A*3201 M 

A10 HLA-B*0801 3X14 A24 HLA-A*3301 M 
A11 HLA-B*1501 1XR8 A25 HLA-A*6802 M 
A12 HLA-B*3501 2CIK A26 HLA-B*4001 M 
A13 HLA-B*4402 1M6O A27 HLA-B*5301 M 
A14 HLA-B*4403 1N2R       
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Figure 5.2: Snapshots of allele(pink)-epitope(green) complexes at the beginning 0 
ns (initial minimized structure) and end (200 ns) of the MD simulations. GP: (a) 
A8::E5, (b) A8::E6, (c) A26::E8, (d) and A18::E9, and NP: e) A11::E15, f) A3::E20, 
g) A12::E21 and h) A26::E22.  
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5.5.1 RMSD of allele, epitope and complex 

In Figure 5.3, I display the RMSD of the epitope-allele complexes during the 200 

ns MD simulations. The RMSD is calculated with respect to the initial structures 

obtained from the docking servers. The noticeable size of the RMSD in Figure 5.3 

shows that in order to investigate molecular level details of the epitope-allele 

binding, MD simulations are crucial for obtaining the precise structural 

arrangement. 
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Figure 5.3. RMSD of backbone atoms from 200 ns MD simulations of selected 
epitope-allele complexes showing movement from the initial structure obtained 
from docking. As expected, the majority of the epitope-allele relative motion is 
performed by the epitope, which is smaller than the allele. 

 

 0

 1

 2

 3

 4

 5

 6

50 100 150 200

RM
SD

 (Å
)

Time (ns)
 0

 2

 4

 6

 8

 10

 12

 14

50 100 150 200

R
M

SD
 (Å

)

Time (ns)

 0

 1

 2

 3

 4

 5

 6

 7

 8

50 100 150 200

RM
SD

 (Å
)

Time (ns)
 0

 1

 2

 3

 4

 5

 6

50 100 150 200
RM

SD
 (Å

)
Time (ns)

a) b)

c) d)

e)

g)

f)

h)

E

A

A+E

 1

 2

 3

 4

 5

 6

 7

 8

0 50 100 150 200

RM
SD

 (Å
)

Time (ns)
 1

 2

 3

 4

 5

 6

 7

 8

0 50 100 150 200

RM
SD

 (Å
)

Time (ns)

 0

 2

 4

 6

 8

 10

 12

0 50 100 150 200

RM
SD

 (Å
)

Time (ns)
 0

 1

 2

 3

 4

 5

 6

50 100 150 200

RM
SD

 (Å
)

Time (ns)

GP A8::E5 GP A8::E6

GP A26::E8 GP A18::E9

NP A11::E15 NP A3::E20

NP A12::E21 NP A26::E22



 

 67 

5.5.2 Hydrogen bonds and interaction energy 

The RMSD analysis shows that the MHC-I T-cell epitope-allele complexes have 

stabilized by the end of our 200 ns MD simulations. To understand which molecular 

interactions are responsible for tight binding, I calculated the number of hydrogen 

bonds (H-bond) between the epitope and allele. The hydrogen bonds were 

calculated between the protein interface atoms within a cut-off distance of 3.5 Aº 

and a cut-off angle of 30º between the donor and acceptor heavy atoms. The 

number of H-bonds as a function of time are shown in Figure 5.4a for the GP 

complexes and Figure 5.4c for the NP complexes. In addition to the H-bonds, I 

calculated the interaction energy (electrostatic and van der Waals) between the 

allele and epitope in allele-epitope complexes. Figure 5.4 shows the interaction 

energy as a function of the MD simulation time. The interaction energy fluctuates 

similarly to the number of H-bonds. The strongest interaction energy for GP is for 

complex A8::E5 and for NP it is for complex A11::E15. 
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Figure 5.4. Epitope-allele H-bond number and interaction energy as a function of 
MD simulation time. GP complexes: (a) and (b); NP complexes: (c) and (d). As 
explained earlier, the MHC-I T-cell epitope prediction servers focus on epitopes 
that are nanomers for both GP and NP. 

5.5.3 Surface Accessible Surface Area 

I also calculated solvent-accessible surface area (SASA) at the epitope-allele 

interface to characterize the water excluded region and hydrophobic interactions. 

I used a 1.4 Å water radius. I probed the epitope region that is within 10 Å of any 

allele amino acid, and likewise probed the allele region that is within 10 Å of any 

epitope amino acid. The results are shown in Figure 5.5. 
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Figure 5.5. SASA calculated for epitope-allele interfaces as a function of 
simulations time for a) GP and b) NP.  

Interestingly, the GP A18::E9 complex has the lowest SASA, implying a tight 

interface, even though Figure 5.4 shows it has the lowest number of H-bonds and 

weakest interaction energy among the GP complexes. Similarly, for NP, the two 

complexes with the fewest number of H-bonds and weakest interaction energy 

(A3::E20 and A12::E21) have the smallest SASA value. Thus, the weakest bound 

complexes have the tightest epitope-allele interface with respect to excluding 

water. To explain this seeming paradox, I counted the number of hydrophobic 

amino acids in all eight nanomer epitopes examined in Figure 5.4 and Figure 5.5.  

 

Table 5.5.2 shows that the epitope-allele complexes with the lowest interface 

SASA have the highest number of hydrophobic residues. Thus, the interactions 

between epitopes and alleles depend not only on enthalpic interactions such as H-

bonds, but also on entropically driven effects such as hydrophobic interactions.  
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Table 5.5.2. Number of hydrophobic residues in each epitope investigated in 

Figure 5.4 and Figure 5.5. All epitopes are nanomers. Hydrophobic residues are 

underlined. 

GP NP 

Epitope 
No. of 

hydrophobic 
residues 

Epitope 
No. of 

hydrophobic 
residues 

E5 NIAAMIVNK 6 E15 YLRDAGYEF 4 
E6 MTTSDITSK 2 E20 GLYPQLSAI 6 
E8 QEDDLAAGL 5 E21 YPQLSAIAL 6 
E9 AAGLSWIPF 8 E22 TEITHSQTL 2 

 

5.6 T- and B-cell epitope prediction for MARV VP35, VP40, VP30, VP24 and L 

proteins 

In addition to the prediction and detailed analysis of GP and NP epitopes above, I 

performed epitope prediction for the remaining MARV Proteins which includes 

proteins VP35, VP40, VP30, VP24 and L using the above-mentioned MHC-I and -

II and B-cell epitope prediction servers on the Lake Victoria strain. The prediction 

results are listed in Table 5.6.1. After determining the epitopes for the Lake Victoria 

strain, I inspected the same sequence in the other strains. The Angola strain 

proteins always had the same sequence as the Lake Victoria strain. For some 

epitopes, the Musoke strain or Ravn strain had slightly different sequences, which 

are listed in Table 5.6.1. The antigenicity and allergenicity of consensus epitopes 

predicted by three or more methods for VP35, VP40, VP30, VP24 and L proteins 

are listed in Table 5.6.2. 
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The consensus, antigenicity and allergenicity analyses show that VP35 E78 

epitope has the best antigenic value of 0.911 and is a non-allergic epitope, while 

VP40 E85 and E86 have antigenicity values of 1.093 and 1.112, respectively, and 

both are non-allergic epitopes, indicating that they could be promising epitope 

candidates among VP35 and VP40 epitopes. In addition, of the predicted VP30 

and VP24 epitopes, E93 and E97 (Ravn) have high antigenicity of 1.1239 and 

1.6259, respectively, and both are non-allergic. Among the predicted epitopes 

listed in Table T9 that are non-allergenic, the L protein’s E202 has an especially 

high antigenicity of close to 2.0. These analyses clearly suggest that VP35, VP40, 

VP30, VP24 and L proteins contain promising epitopes. 

Table 5.6.1: Epitope predictions for VP35, VP40, VP30, VP24 and L proteins using 

MHC-I, MHC-II and B cell prediction methods for the Lake Victoria strain. Predicted 

epitope sequences were identical in all four strains except where noted by R 

(Ravn) or M (Musoke).  

    MHC-I T cell MHC-II T cell B-cell 
Proteins  Sequence Pro 

Pred-1 
CTL- 
Pred 

Epi- 
TOP 

NetMHCII-
2.3 

Bepi-
pred 

Bce- 
Pred 

VP35 YMQQVSEGL ✓ ✕ ✓ ✕ ✓ ✕  
LEKLYKRRK ✕ ✕ ✕ ✓ ✓ ✓  
LYKRRKPKG ✕ ✕ ✓ ✓ ✓ ✓  
YKRRKPKGT ✕ ✕ ✓ ✓ ✓ ✓  
KRRKPKGTV ✕ ✓ ✕ ✕ ✓ ✓  
KMGRTLE ✕ ✕ ✓ ✓ ✕ ✓  
KMGKTLE(R) 

      

 
MSKVLELSE ✕ ✕ ✓ ✕ ✓ ✓  
LELSEETFS ✕ ✕ ✓ ✕ ✓ ✓  
LSEETFSKP ✕ ✕ ✓ ✕ ✓ ✓ 
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    MHC-I T cell MHC-II T cell B-cell 
Proteins  Sequence Pro 

Pred-1 
CTL- 
Pred 

Epi- 
TOP 

NetMHCII-
2.3 

Bepi-
pred 

Bce- 
Pred 

 
FSKPNLSAK ✕ ✕ ✓ ✕ ✓ ✓  
FQTVPRPCQ ✕ ✕ ✓ ✓ ✓ ✓  
VPRPCQKSL ✓ ✕ ✕ ✕ ✓ ✓         

VP40 NYNTYMQYL ✕ ✓ ✕ ✕ ✓ ✓  
YNTYMQYLN ✕ ✕ ✓ ✕ ✓ ✓  
YMQYLNPPP ✕ ✕ ✕ ✓ ✓ ✓  
MQYLNPPPY ✓ ✕ ✕ ✓ ✓ ✓  
QYLNPPPYA ✕ ✕ ✕ ✓ ✓ ✓  
YVGDLNLDD ✕ ✕ ✓ ✓ ✓ ✕  
SNFEYPL ✓ ✕ ✓ ✕ ✓ ✕  
FIQNMVIPR ✕ ✕ ✓ ✓ ✓ ✕  
FVQNMVIPR(R)  

      

 
FSTNQFTYN ✕ ✕ ✓ ✓ ✕ ✓  
HPNLPPIVL ✓ ✓ ✕ ✕ ✕ ✓  
YRQHKNPNN ✕ ✕ ✕ ✓ ✓ ✓  
LRVEKVPEK ✕ ✓ ✕ ✕ ✓ ✓         

VP30 GKLDETS ✓ ✕ ✓ ✕ ✕ ✓  
IHLDKGGQF ✕ ✕ ✓ ✓ ✓ 

 

 
DKGGQFE ✕ ✕ ✓ ✕ ✓ ✓         

VP24 LSTRYNLPV ✕ ✕ ✓ ✕ ✓ ✓  
LSTRYNLPA(M) 

      

 
LSTRYNLPT(R)  

      

 
NVTEKSINL ✓ ✓ ✕ ✕ ✓ ✓  
NVTENSINL(M)  

      

 
NITEKSINL(R)  

      

 
VTEKSINLD ✕ ✕ ✓ ✕ ✓ ✓  
VTENSINLD(M) 

      

 
ITEKSINLD(R)  
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    MHC-I T cell MHC-II T cell B-cell 
Proteins  Sequence Pro 

Pred-1 
CTL- 
Pred 

Epi- 
TOP 

NetMHCII-
2.3 

Bepi-
pred 

Bce- 
Pred 

 
INLDLNSTA ✕ ✕ ✓ ✓ ✕ ✓  
LLHHLKSNF ✕ ✕ ✓ ✓ ✕ ✓  
LKSNFVVPE ✕ ✕ ✓ ✕ ✓ ✓  
DQELQQS ✓ ✕ ✓ ✕ ✓ ✓  
HISPNLLG ✕ ✕ ✓ ✓ ✓ 

 

 
FLVEVRRID ✕ ✕ ✓ ✓ ✕ ✓  
EPCCGETVL ✓ ✕ ✕ ✕ ✓ ✓  
LSESVVFGL ✓ ✕ ✓ ✕ 

 
✓  

MEKGQPLNL ✕ ✕ ✓ ✕ ✓ ✓  
IERGQPLNL(R)  

      

 
LNLTQYMNS ✕ ✕ ✓ ✕ ✓ ✓         

L HYSHNPKLR ✕ ✓ ✕ ✕ ✓ ✓  
YSHNPKLRN ✕ ✕ ✓ ✕ ✓ ✓  
SHNPKLRNC ✕ ✓ ✕ ✕ ✓ ✓  
NPKLRNCRI ✕ ✓ ✕ ✕ ✓ ✓  
RNCRIPHHI ✕ ✓ ✕ ✓ ✓ ✓  
RNCRIPYHI(R) 

      

 
RIPHHIYRL ✕ ✕ ✕ ✓ ✓ ✓  
RIPYHIYRL(R) 

      

 
IPHHIYRLR ✕ ✕ ✓ ✕ ✓ ✓  
IPYHIYRLR(R) 

      

 
PHHIYRLRN ✕ ✕ ✕ ✓ ✓ ✓  
PYHIYRLRN(R) 

      

 
HIYRLRNST ✕ ✕ ✕ ✓ ✓ ✓  
IYRLRNSTA ✕ ✕ ✕ ✓ ✓ ✓  
YRLRNSTAL ✕ ✕ ✓ ✕ ✓ ✓  
RLRNSTALK ✕ ✕ ✕ ✓ ✓ ✓  
LRNSTALKT ✕ ✕ ✓ ✓ ✓ 

 

 
NHVDDFKY ✕ ✕ ✓ ✕ ✓ ✓  
NHINDFKY(R) 
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    MHC-I T cell MHC-II T cell B-cell 
Proteins  Sequence Pro 

Pred-1 
CTL- 
Pred 

Epi- 
TOP 

NetMHCII-
2.3 

Bepi-
pred 

Bce- 
Pred 

 
HVDDFKYLL ✓ ✓ ✕ ✕ ✓ ✕  
HINDFKYLL(R) 

      

 
FKYLLPSEL ✕ ✕ ✓ ✓ ✓ ✕  
LARRIKGQR ✕ ✕ ✓ ✓ ✕ ✓  
IKGQRGSLR ✕ ✕ ✓ ✕ ✓ ✓  
IIRNAVSLQ ✕ ✕ ✓ ✓ ✓ ✕  
IIRNATSLQ(R) 

      

 
IRNAVSLQA ✕ ✕ ✓ ✓ ✓ ✕  
IRNATSLQA(R) 

      

 
FKLIKHLEP ✕ ✕ ✓ ✓ ✕ ✓  
LIKHLEPLC ✕ ✕ ✓ ✓ ✕ ✓  
IKHLEPLCV ✕ ✕ ✓ ✓ ✕ ✓  
FSLQKHWGH ✕ ✕ ✓ ✓ ✕ ✓  
YHSQGSWYK ✕ ✕ ✓ ✕ ✓ ✓  
WYKTTHDLH ✕ ✕ ✓ ✕ ✓ ✓  
IISDLSIFI ✓ ✕ ✓ ✓ ✕ ✕  
WDSVFDRSV ✕ ✓ ✓ ✕ ✓ ✕  
LGYNPPVRF ✕ ✕ ✓ ✓ ✓ ✕  
SLKEKELNI ✕ ✓ ✕ ✕ ✓ ✓  
YRVRNVQTL ✓ ✓ ✓ ✕ ✕ ✕  
VTEREQKEA ✕ ✕ ✓ ✕ ✓ ✓  
LLHQASWHH ✕ ✕ ✓ ✕ ✓ ✓  
YNLAFRYEF ✕ ✓ ✓ ✕ ✕ ✓  
LKTKLKLKS ✕ ✕ ✓ ✓ ✕ ✓  
YQENEAELN ✓ ✕ ✓ ✕ ✕ ✓  
WIASFHSML ✓ ✕ ✓ ✓ ✕ ✕  
WIAAFHSML(R) 

      

 
FHSMLAINL ✓ ✕ ✓ ✓ ✕ ✕  
FHSMLAVNL(R) 

      

 
LIALITPQV ✓ ✕ ✓ ✓ ✕ ✕  
LFQLKNALE ✓ ✕ ✓ ✓ ✕ ✕ 
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    MHC-I T cell MHC-II T cell B-cell 
Proteins  Sequence Pro 

Pred-1 
CTL- 
Pred 

Epi- 
TOP 

NetMHCII-
2.3 

Bepi-
pred 

Bce- 
Pred 

 
LFQLRNALE(R) 

      

 
LEFLEKEEL ✓ ✕ ✓ ✕ ✕ ✓  
LEFLRKEEL(R) 

      

 
ILIAKKPGL ✓ ✕ ✓ ✓ ✕ ✕  
ILISKKPGL(M) 

      

 
LRQTVRENI ✕ ✕ ✓ ✓ ✕ ✓  
LEDQRVCEW ✕ ✓ ✓ ✕ ✓ ✕  
FSRTPSGKR ✕ ✕ ✓ ✓ 

 
✓  

LTTEGTMLM ✕ ✕ ✓ ✓ ✓ ✕  
MLMKLRELT ✕ ✕ ✓ ✓ ✕ ✓  
MLMRLRELT(R) 

      

 
LMKLRELTR ✕ ✕ ✓ ✓ ✕ ✓  
LMRLRELTK(R) 

      

 
MKLRELTRN ✕ ✕ ✓ ✓ ✕ ✓  
MRLRELTKS(R) 

      

 
LDDDLSESL ✕ ✕ ✓ ✕ ✓ ✓  
LSESLEKFT ✓ ✕ ✓ ✕ ✓ ✓  
LSESLEKFI(R) 

      

 
WSDVLKG ✕ ✕ ✓ ✕ ✓ ✓  
LSEDLREQF ✕ ✕ ✓ ✕ ✓ ✓  
LSEDLKEQF(R) 

      

 
LREQFNLSS ✕ ✕ ✓ ✓ ✓ ✕  
LKEQFKLSS(R) 

      

 
FLPYDCKEL ✓ ✕ ✓ ✕ ✓ ✕  
LLPYDCKEL(M) 

      

 
LLQYDCNGL(R) 

      

 
YDCKELRLG ✕ ✕ ✓ ✕ ✓ ✓  
YDCKELRLE(M) 

      

 
YDCNGLHSK(R) 

      

 
VVQKHPSVN ✕ ✕ ✓ ✕ ✓ ✓  
IVQKHPSDN(R) 
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    MHC-I T cell MHC-II T cell B-cell 
Proteins  Sequence Pro 

Pred-1 
CTL- 
Pred 

Epi- 
TOP 

NetMHCII-
2.3 

Bepi-
pred 

Bce- 
Pred 

 
VQKHPSVNR ✕ ✓ ✓ ✕ ✓ ✓  
VQKHPSDNR(R) 

      

 
KIGYPPLRV ✕ ✓ ✕ ✕ ✓ ✓  
IGYPPLRVN ✕ ✕ ✓ ✕ ✓ ✓  
FQNTINLGV ✓ ✕ ✓ ✓ ✕ ✕  
LFFDKPLDV ✕ ✕ ✓ ✓ ✓ ✕  
LYFDKPLDV(M) 

      

 
LDVDLNKYM ✕ ✕ ✓ ✕ ✓ ✓  
LNKYMDNEL ✕ ✕ ✓ ✕ ✓ ✓  
LCSGIKGRL ✓ ✕ ✓ ✕ ✓ ✓  
IKGRLGRVS ✕ ✕ ✓ ✕ ✓ ✓  
SRSTLSLSL ✓ ✕ ✕ ✓ ✓ ✕  
SRSTLTLSL(M) 

      

 
IFYAFGANL ✓ ✕ ✓ ✓ ✕ ✕  
IRNLSHRSL ✓ ✓ ✓ ✓ ✕ ✓  
NLSHRSLRI ✕ ✓ ✕ ✓ ✕ ✓  
LSHRSLRIL ✕ ✓ ✓ ✓ ✕ ✓  
LRILQSTFR ✕ ✕ ✓ ✓ ✕ ✓  
LQSTFRHEL ✕ ✕ ✓ ✓ ✕ ✓  
RHELVLTRL ✓ ✕ 

 
✓ ✕ ✓  

LVLTRLAHH ✕ ✕ ✓ ✓ ✕ ✓  
VLTRLAHHI ✕ ✕ ✓ ✓ ✕ ✓  
GGSAGEKS ✕ ✕ ✓ ✕ ✓ ✓  
LIKKGQSS ✕ ✕ ✓ ✕ ✓ ✓  
LMKKGQSS(M) 

      

 
LMRKNQSP(R) 

      

 
DKVQKRKIL ✓ ✕ ✕ ✕ ✓ ✓  
DKIQKRKIL(M) 

      

 
KKVQNHRPV(R) 

      

 
VQKRKILAD ✕ ✕ ✓ ✕ ✓ ✓  
IQKRKILAD(M) 
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    MHC-I T cell MHC-II T cell B-cell 
Proteins  Sequence Pro 

Pred-1 
CTL- 
Pred 

Epi- 
TOP 

NetMHCII-
2.3 

Bepi-
pred 

Bce- 
Pred 

 
VQNHRPVAD(R) 

      

 
ILADTCYPV ✕ ✕ ✓ ✓ ✓ ✕  
ILADTCCPI(M) 

      

 
PVADTCFLT(R) 

      

 
YYASLNYWR ✕ ✕ ✓ ✓ ✕ ✓  
YASLNYWRD ✕ ✓ ✕ ✓ ✕ ✓  
LMNYGSTTL ✓ ✕ ✓ ✕ ✓ ✕  
LINYGSTAL(M) 

      

 
STNHEPTAL(R) 

      

 
LSEQNLVEN ✕ ✕ ✓ ✕ ✓ ✓  
YSEQDPAKS(R) 

      

 
LVENCRPSK ✕ ✕ ✓ ✕ ✓ ✓  
LVENCRPSE(M) 

      

 
PAKSYLLLE(R) 

      

 
IRCKDNQKI ✕ ✕ ✓ ✕ ✓ ✓  
IRFKDNQKI(M) 

      

 
TRFRDDQKI(R) 

      

 
IIKHDQRYG ✕ ✕ ✓ ✕ ✓ ✓  
ITKHDQRCE(M) 

      

 
ILRHDQKAE(R) 

      

 
MLPKDNMQT ✕ ✕ ✓ ✕ ✓ ✓  
MFPEDNMQT(M) 

      

 
VSSRGCLQA(R) 

      

 
IIKSLDVHE ✕ ✕ ✓ ✓ ✓ ✕  
LIKSLDAHE(M) 

      

 
TTEPLSMLR(R) 

      

 
FLTTLTGTE ✓ ✕ ✓ ✕ ✓ ✕  
LLTTPTRTE(M) 

      

 
SLKTPMRIE(R) 

      

 
LQPSRYSST ✕ ✕ ✓ ✕ ✓ ✓  
LQSSRYSST(M) 
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    MHC-I T cell MHC-II T cell B-cell 
Proteins  Sequence Pro 

Pred-1 
CTL- 
Pred 

Epi- 
TOP 

NetMHCII-
2.3 

Bepi-
pred 

Bce- 
Pred 

 
LQPSECLST(R) 

      

 
LSREQASYL ✕ ✕ ✓ ✓ ✕ ✓  
ISLDPGFRN ✕ ✕ ✓ ✓ ✓ ✕  
ISLDPGFRS(M) 

      

 
ISLDSGFRN(R) 

      

 
FCRFTGVVS ✕ ✕ ✓ ✓ ✕ ✓  
FTGVVSSMH ✕ ✕ ✓ ✓ ✕ ✓  
YDLLPPGEL ✕ ✕ ✓ ✕ ✓ ✓  
YDLLPPGKL(M) 

      

 
YDLLPAGKL(R) 

      

 
LSGRVIPRM ✕ ✕ ✓ ✓ ✓ ✕  
MLYNIDKLS ✕ ✕ ✓ ✓ ✓ ✕  
MLYNIDRLS(M) 

      

 
LYNIDKLSV ✕ ✕ ✓ ✓ ✓ ✕  
LYNIDRLSA(M) 

      

 
IDKLSVLLE ✕ ✕ ✓ ✓ ✓ ✕  
IDRLSALLE(M) 

      

 
LWLDSVIQY ✕ ✕ ✓ ✓ ✓ ✕  
RTSPNI ✕ ✓ ✓ ✕ ✓ ✓  
IQYYGQVQL ✕ ✓ ✓ ✓ ✕ ✓  
VQLKKPYSS 

  
✓ 

 
✓ ✓  

AMSRQRQAI ✕ ✓ ✕ ✓ ✕ ✓  
KNYPAS ✕ ✕ ✓ ✓ ✓ ✓  
YVRQGKQHL ✕ ✕ ✓ ✓ ✕ ✓  
YVRQGRQHL(R) 

      

 
LRGKITKYY ✕ ✕ ✓ ✓ ✕ ✓  
YNDILKLNL ✓ ✕ ✓ ✓ ✕ ✕  
FIRNTKIAE ✕ ✕ ✓ ✓ ✕ ✓ 

  FVRNTKIAE(R)             
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Table 5.6.2. Antigenicity and allergenicity of VP35, VP40, VP30, VP24 and L 

protein consensus epitopes predicted by three or more methods (Rank) in Table 

5.6.1.   

Proteins  Epitopes Sequence Interval Rank Antigenicity Allergeni

city 

VP35  E69 YMQQVSEGL 6-14 3 0.5049 A 

  E70 LEKLYKRRK 30-38 3 -0.1292 N 

  E71 LYKRRKPKG 33-41 4 0.5383 N 

  E72 YKRRKPKGT 34-42 4 0.5099 A 

  E73 KRRKPKGTV 35-43 3 0.3384 A 

  E74 KMGRTLE 112-118 3 0.4695 N 

  
 

KMGKTLE(R) 
  

0.4892 N 

  E75 MSKVLELSE 192-200 3 0.6089 N 

  E76 LELSEETFS 196-204 3 0.6478 A 

  E77 LSEETFSKP 198-206 3 -0.5029 N 

  E78 FSKPNLSAK 203-211 3 0.911 N 

  E79 FQTVPRPCQ 289-297 4 0.1446 A 

  E80 VPRPCQKSL 292-300 3 -0.0486 A 

  
      

VP40  E81 NYNTYMQYL 6-14 3 0.1981 A 

  E82 YNTYMQYLN 7-15 3 0.382 A 

  E83 YMQYLNPPP 10-18 3 0.9681 N 

  E84 MQYLNPPPY 11-19 4 1.1548 A 

  E85 QYLNPPPYA 12-20 3 1.0931 N 

  E86 YVGDLNLDD 43-51 3 1.112 N 

  E87 SNFEYPL 90-96 3 0.269 N 

  E88 FIQNMVIPR 145-153 3 -0.5711 N 

  
 

FVQNMVIPR(R) 
  

-0.5135 N 

  E89 FSTNQFTYN 155-163 3 -0.2792 N 

  E90 HPNLPPIVL 198-206 3 1.3067 A 

  E91 YRQHKNPNN 214-222 3 0.775 N 

  E92 LRVEKVPEK 235-243 3 0.7323 N 
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Proteins  Epitopes Sequence Interval Rank Antigenicity Allergeni

city 

VP30  E93 GKLDETS 167-173 3 1.1239 N 

  E94 IHLDKGGQF 221-229 3 0.5053 A 

  E95 DKGGQFE 224-230 3 0.7489 N 

  
      

VP24  E96 LSTRYNLPV 4-12 3 0.7188 A 

  
 

LSTRYNLPA(M) 
  

0.8147 A 

  
 

LSTRYNLPT(R) 
  

0.2484 A 

  E97 NVTEKSINL 13-21 4 1.4052 N 

  
 

NVTENSINL(M) 
  

0.7172 N 

  
 

NITEKSINL(R) 
  

1.6259 N 

  E98 VTEKSINLD 14-22 3 1.3665 A 

  
 

VTENSINLD(M) 
  

0.6296 N 

  
 

ITEKSINLD(R) 
  

1.5109 A 

  E99 INLDLNSTA 19-27 3 1.0645 N 

  E100 LLHHLKSNF 56-64 3 0.2882 A 

  E101 LKSNFVVPE 60-68 3 0.3223 A 

  E102 DQELQQS 104-110 4 0.5253 N 

  E103 HISPNLLG 135-142 3 1.153 N 

  E104 FLVEVRRID 197-205 3 1.4757 A 

  E105 EPCCGETVL 207-215 3 0.0058 N 

  E106 LSESVVFGL 215-223 3 0.7713 N 

  E107 MEKGQPLNL 235-243 3 1.1714 N 

  
 

IERGQPLNL(R) 
  

1.1941 A 

  E108 LNLTQYMNS 241-249 3 0.5211 N 

  
      

L  E109 HYSHNPKLR 33-41 3 0.6254 N 

  E110 YSHNPKLRN 34-42 3 0.5835 A 

  E111 SHNPKLRNC 35-42 3 -0.2883 A 

  E112 NPKLRNCRI 37-45 3 -0.2517 N 

  E113 RNCRIPHHI 41-49 4 0.611 N 

  
 

RNCRIPYHI(R) 
  

0.6674 N 

  E114 RIPHHIYRL 44-52 3 -0.5708 A 

  
 

RIPYHIYRL(R) 
  

-0.2678 N 
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Proteins  Epitopes Sequence Interval Rank Antigenicity Allergeni

city 

  E115 IPHHIYRLR 45-53 3 -0.1482 N 

  
 

IPYHIYRLR(R) 
  

0.2546 N 

  E116 PHHIYRLRN 46-54 3 0.3827 A 

  
 

PYHIYRLRN(R) 
  

0.6255 N 

  E117 HIYRLRNST 48-56 3 -0.1264 A 

  E118 IYRLRNSTA 49-57 3 0.0614 A 

  E119 YRLRNSTAL 50-58 3 0.6006 N 

  E120 RLRNSTALK 51-59 3 0.3758 N 

  E121 LRNSTALKT 52-60 3 0.1505 N 

  E122 NHVDDFKY 89-96 3 0.2997 N 

  
 

NHINDFKY(R) 
  

0.4078 A 

  E123 HVDDFKYLL 90-98 3 -0.1657 N 

  
 

HINDFKYLL(R) 
  

0.1446 N 

  E124 FKYLLPSEL 94-102 3 0.1635 N 

  E125 LARRIKGQR 158-166 3 -0.9381 N 

  E126 IKGQRGSLR 162-170 3 0.5061 N 

  E127 IIRNAVSLQ 198-206 3 -0.1146 A 

  
 

IIRNATSLQ(R) 
  

-0.1076 N 

  E128 IRNAVSLQA 199-207 3 0.3678 A 

  
 

IRNATSLQA(R) 
  

0.3531 A 

  E129 FKLIKHLEP 295-303 3 0.2525 N 

  E130 LIKHLEPLC 297-305 3 1.1063 A 

  E131 IKHLEPLCV 298-306 3 2.0584 A 

  E132 FSLQKHWGH 372-380 3 0.2425 A 

  E133 YHSQGSWYK 423-431 3 0.0589 A 

  E134 WYKTTHDLH 429-437 3 0.4746 A 

  E135 IISDLSIFI 477-485 3 -0.1933 N 

  E136 WDSVFDRSV 497-505 3 -0.2104 N 

  E137 LGYNPPVRF 506-514 3 0.389 A 

  E138 SLKEKELNI 554-562 3 2.1217 A 

  E139 YRVRNVQTL 571-579 3 0.8591 N 

  E140 VTEREQKEA 599-607 3 1.3117 N 

  E141 LLHQASWHH 608-616 3 0.3526 A 
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Proteins  Epitopes Sequence Interval Rank Antigenicity Allergeni

city 

  E142 YNLAFRYEF 639-647 3 1.4719 N 

  E143 LKTKLKLKS 732-740 3 1.7743 N 

  E144 YQENEAELN 763-771 3 0.628 N 

  E145 WIASFHSML 862-870 3 -0.5153 A 

  
 

WIAAFHSML(R) 
  

-0.4685 A 

  E146 FHSMLAINL 866-874 3 0.758 N 

  
 

FHSMLAVNL(R) 
  

0.5972 N 

  E147 LIALITPQV 903-911 3 0.3176 N 

  E148 LFQLKNALE 936-944 3 0.5234 A 

  
 

LFQLRNALE(R) 
  

0.5332 A 

  E149 LEFLEKEEL 943-951 3 1.2825 A 

  
 

LEFLRKEEL(R) 
  

1.1677 A 

  E150 ILIAKKPGL 954-962 3 0.906 A 

  
 

ILISKKPGL(M) 
  

1.1551 A 

  E151 LRQTVRENI 987-995 3 -0.0895 N 

  E152 LEDQRVCEW 1014-

1022 

3 1.002 A 

  E153 FSRTPSGKR 1038-

1046 

3 -0.6935 N 

  E154 LTTEGTMLM 1067-

1075 

3 0.4855 N 

  E155 MLMKLRELT 1073-

1081 

3 0.9029 A 

  
 

MLMRLRELT(R) 
  

0.8888 N 

  E156 LMKLRELTR 1074-

1082 

3 0.3875 A 

  
 

LMRLRELTK(R) 
  

0.3298 N 

  E157 MKLRELTRN 1075-

1083 

3 0.5569 A 

  
 

MRLRELTKS(R) 
  

0.8635 N 

  E158 LDDDLSESL 1095-

1103 

3 -0.1793 A 

  E159 LSESLEKFT 1099-

1107 

4 -0.581 N 

  
 

LSESLEKFI(R) 
  

-1.065 A 

  E160 WSDVLKG 1121-

1127 

3 0.0364 N 

  E161 LSEDLREQF 1149-

1157 

3 0.2338 N 

  
 

LSEDLKEQF(R) 
  

0.1637 A 

  E162 LREQFNLSS 1153-

1161 

3 0.9138 N 

  
 

LKEQFKLSS(R) 
  

0.9195 N 

  E163 FLPYDCKEL 1169-

1177 

3 0.9262 A 
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Proteins  Epitopes Sequence Interval Rank Antigenicity Allergeni

city 

  
 

LLPYDCKEL(M) 
  

0.833 A 

  
 

LLQYDCNGL(R) 
  

0.1975 A 

  E164 YDCKELRLG 1172-

1180 

3 2.1862 A 

  
 

YDCKELRLE(M) 
  

1.3367 N 

  
 

YDCNGLHSK(R) 
  

0.821 A 

  E165 VVQKHPSVN 1198-

1206 

3 0.3595 N 

  
 

IVQKHPSDN(R) 
  

0.061 A 

  E166 VQKHPSVNR 1199-

1207 

4 -0.4402 A 

  
 

VQKHPSDNR(R) 
  

-0.1778 A 

  E167 KIGYPPLRV 1226-

1234 

3 1.8042 A 

  E168 IGYPPLRVN 1227-

1235 

3 1.4882 A 

  E169 FQNTINLGV 1341-

1349 

3 0.7179 A 

  E170 LFFDKPLDV 1386-

1394 

3 -0.1492 A 

  
 

LYFDKPLDV(M) 
  

-0.1914 A 

  E171 LDVDLNKYM 1392-

1400 

3 -0.4207 N 

  E172 LNKYMDNEL 1396-

1404 

3 -0.4571 A 

  E173 LCSGIKGRL 1411-

1419 

4 0.715 N 

  E174 IKGRLGRVS 1415-

1423 

3 0.6917 N 

  E175 SRSTLSLSL 1423-

1431 

3 0.8438 N 

  
 

SRSTLTLSL(M) 
  

0.7127 N 

  E176 IFYAFGANL 1489-

1497 

3 -0.0163 N 

  E177 IRNLSHRSL 1524-

1532 

5 0.1208 N 

  E178 NLSHRSLRI 1526-

1534 

3 1.5845 A 

  E179 LSHRSLRIL 1527-

1535 

4 1.194 N 

  E180 LRILQSTFR 1532-

1540 

3 -0.0861 A 

  E181 LQSTFRHEL 1535-

1543 

3 0.3704 N 

  E182 RHELVLTRL 1540-

1548 

3 0.4249 A 

  E183 LVLTRLAHH 1543-

1551 

3 0.5564 N 

  E184 VLTRLAHHI 1544-

1552 

3 0.0366 N 

  E185 GGSAGEKS 1560-

1567 

3 1.5382 A 

  E186 LIKKGQSS 1590-

1597 

3 0.6216 A 

  
 

LMKKGQSS(M) 
  

0.6309 N 

  
 

LMRKNQSP(R) 
  

1.1302 A 
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Proteins  Epitopes Sequence Interval Rank Antigenicity Allergeni

city 

  E187 DKVQKRKIL 1628-

1636 

3 -0.4933 N 

  
 

DKIQKRKIL(M) 
  

-0.5909 N 

  
 

KKVQNHRPV(R) 
  

-0.087 A 

  E188 VQKRKILAD 1630-

1638 

3 0.1502 N 

  
 

IQKRKILAD(M) 
  

0.1857 N 

  
 

VQNHRPVAD(R) 
  

0.2615 N 

  E189 ILADTCYPV 1635-

1643 

3 -0.1008 A 

  
 

ILADTCCPI(M) 
  

-0.1206 A 

  
 

PVADTCFLT(R) 
  

0.0751 A 

  E190 YYASLNYWR 1659-

1667 

3 -0.0632 N 

  E191 YASLNYWRD 1660-

1668 

3 -0.0853 A 

  E192 LMNYGSTTL 1723-

1731 

3 0.6583 A 

  
 

LINYGSTAL(M) 
  

0.9146 N 

  
 

STNHEPTAL(R) 
  

0.97 N 

  E193 LSEQNLVEN 1740-

1748 

3 0.1488 N 

  
 

YSEQDPAKS(R) 
  

0.3537 N 

  E194 LVENCRPSK 1745-

1753 

3 -0.0456 A 

  
 

LVENCRPSE(M) 
  

0.3709 A 

  
 

PAKSYLLLE(R) 
  

0.1367 A 

  E195 IRCKDNQKI 1755-

1763 

3 1.6386 A 

  
 

IRFKDNQKI(M) 
  

1.447 N 

  
 

TRFRDDQKI(R) 
  

0.3472 A 

  E196 IIKHDQRYG 1763-

1771 

3 0.8441 A 

  
 

ITKHDQRCE(M) 
  

1.5254 N 

  
 

ILRHDQKAE(R) 
  

0.5727 N 

  E197 MLPKDNMQT 1780-

1788 

3 -0.1419 N 

  
 

MFPEDNMQT(M

) 

  
-0.1272 A 

  
 

VSSRGCLQA(R) 
  

0.5021 N 

  E198 IIKSLDVHE 1801-

1809 

3 0.1808 A 

  
 

LIKSLDAHE(M) 
  

-0.0162 A 

  
 

TTEPLSMLR(R) 
  

0.5715 A 

  E199 FLTTLTGTE 1836-

1844 

3 0.4921 A 

  
 

LLTTPTRTE(M) 
  

0.6984 N 
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Proteins  Epitopes Sequence Interval Rank Antigenicity Allergeni

city 

  
 

SLKTPMRIE(R) 
  

0.6735 A 

  E200 LQPSRYSST 1851-

1859 

3 0.9356 A 

  
 

LQSSRYSST(M) 
  

0.6506 A 

  
 

LQPSECLST(R) 
  

0.0135 A 

  E201 LSREQASYL 1866-

1874 

3 0.3382 A 

  E202 ISLDPGFRN 1884-

1892 

3 1.8819 A 

  
 

ISLDPGFRS(M) 
  

2.0084 N 

  
 

ISLDSGFRN(R) 
  

0.7252 A 

  E203 FCRFTGVVS 1919-

1927 

3 0.4115 A 

  E204 FTGVVSSMH 1922-

1930 

3 0.5127 A 

  E205 YDLLPPGEL 1934-

1942 

3 0.76 N 

  
 

YDLLPPGKL(M) 
  

0.9062 N 

  
 

YDLLPAGKL(R) 
  

1.0864 A 

  E206 LSGRVIPRM 1984-

1992 

3 0.7647 A 

  E207 MLYNIDKLS 1992-

2000 

3 0.0446 N 

  
 

MLYNIDRLS(M) 
  

0.0892 N 

  E208 LYNIDKLSV 1993-

2001 

3 0.2364 A 

  
 

LYNIDRLSA(M) 
  

0.2175 N 

  E209 IDKLSVLLE 1996-

2004 

3 0.1114 A 

  
 

IDRLSALLE(M) 
  

0.0732 N 

  E210 LWLDSVIQY 2024-

2032 

3 -0.2598 N 

  E211 RTSPNI 2065-

2070 

4 1.4815 N 

  E212 IQYYGQVQL 2094-

2102 

4 0.4979 A 

  E213 VQLKKPYSS 2100-

2108 

3 -0.0975 N 

  E214 AMSRQRQAI 2143-

2151 

3 0.8871 N 

  E215 KNYPAS 2160-

2165 

4 0.7669 A 

  E216 YVRQGKQHL 2203-

2211 

3 0.7262 A 

  
 

YVRQGRQHL(R) 
  

0.786 N 

  E217 LRGKITKYY 2235-

2243 

3 -0.336 A 

  E218 YNDILKLNL 2243-

2251 

3 -0.1403 N 

  E219 FIRNTKIAE 2297-

2305 

3 0.8862 N 

  
 

FVRNTKIAE(R) 
  

0.9244 N 
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5.7 Novelty analysis 

The novelty of the MARV epitopes identified in this study was analyzed by using 

IEDB. The IEDB database contains the epitopes that are annotated based on the 

scientific literature. Analyses of the eleven GP and thirteen NP MHC-I T-cell 

epitopes with IEDB showed that the GP epitopes E5, E6, E10 and E11 were listed 

as a partial sequence, while the E1 was listed with the same sequence in the 

database. I found that the epitopes E2, E4, E8 and E9 investigated in this study 

were never reported previously in IEDB. Similarly, the exact sequences of NP E19, 

E20, E21 and E23 epitopes are in the IEDB database, while the epitopes E12, 

E13, E14, E15, E17, E18, E22 and E24 are not in the IEDB.  

The GP MHC-II T-cell epitopes, E27 and E28 match exactly with epitopes in the 

IEDB, while the epitopes E29-E34 partially overlap. The epitopes E25 and E26 are 

not in the IEDB database. The NP MHC-II epitope E38 has partial overlap with an 

IEDB sequence, while E35, E36, E37, E39 and E40 have no overlaps with the 

sequences in the IEDB database. In addition to these MHC-I and MHC-II T-cell 

epitopes, the search of the predicted B-cell epitopes with the IEDB database 

showed that the GP E53 and the NP E68 epitopes have partial overlap, while GP 

epitopes E41-E52, E54 and NP epitopes E55-E67, do not have any overlaps and 

therefore are novel.  

In addition to GP and NP epitopes, the VP35 epitopes E69 and E80, VP40 epitope 

E84, and the L protein epitopes E112, E133, E135, E139, E211 and E215 in Table 

5.6.2 were previously determined experimentally and are available in the IEDB 
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database. The other epitopes that I found for VP35, VP40, L, and for VP24 and 

VP30 were not listed in the IEDB. 

In addition to the cross-referencing of epitopes with IEDB, I also compared the 

predicted epitopes with previously predicted epitopes reported in the literature. The 

predicted GP epitopes E3, E7, E8, E9, E25 (Musoke), E26 (Musoke), E27, E48, 

E49, E50, E51, E53 were previously reported144-148. Similarly, the predicted NP 

epitope145,147 E16, VP40 epitopes146 E86, E87, E90, E91, and L protein 

epitope149,150 E119, E120, E139 were reported in the literature. 

Taken together, the GP epitopes E2, E4, E41, E42, E43, E44, E45, E46, E47, E52, 

and E54, and the NP epitopes E12, E13, E14, E15, E17, E18, E22, E24, E35, E36, 

E37, E39, E40, E55-E67 identified in this study have not been previously reported 

either in the IEDB database or in the literature. Therefore, these 11 GP epitopes 

and 26 NP epitopes, as well as 135 other epitopes in the VP35, VP40, VP30, VP24 

and L proteins in Table T9 are novel and they remain to be verified experimentally. 
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6. MUTATION-INDUCED CHANGES IN THE RECEPTOR-BINDING 

INTERFACE OF THE SARS-COV-2 DELTA VARIANT B.1.617.2 AND 

IMPLICATIONS FOR IMMUNE EVASION 

This chapter was published in 2021: P. Baral, N. Bhattarai, Md Hossen, V. 

Stebliankin, B.S. Gerstman, G. Narasimhan and P.P. Chapagain, Mutation-

induced Changes in the Receptor-binding Interface of the SARS-CoV-2 Delta 

Variant B.1.617.2 and Implications for Immune Evasion, Biochemical and 

Biophysical Research Communications, Volume 574, 2021, Pages 14-19, ISSN 

0006-291X 

I investigate the effects of mutations in the Delta variant on the structure of the 

receptor-binding interface of RBD as well as the RBD-ACE2 interactions and RBD-

neutralizing Abs interactions. I examine the SARS-CoV-2 Ab-RBD complexes 

available in the protein data bank (PDB) and compare the differences in the RBD-

Ab interactions due to the mutations in the Delta variant. Our results suggest that 

the Delta variant features a stable but slightly reorganized receptor-binding 

interface that can lead to weakened interactions with some neutralizing Abs 

resulting in immune evasion. 

6.1 Structural changes due to mutation in Delta variant 

To investigate the RBD dynamics and the structural changes due to mutations, I 

performed MD simulations of the RBD of the Delta variant B.1.617.2 and compared 

the results with the WT, B.1.1.7, and B.1.351 variants. Both of the mutations, 

L452R and T478K, in the Delta RBD are in the receptor-binding interface 

comprised of a motif spanning residues 438 to 508. The same interface is a target 
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for many neutralizing antibodies. Therefore, any changes in the receptor-binding 

interface can affect both the receptor binding to the host ACE2 as well as Ab-

binding. To assess the structural changes in this interface, I analyzed different 

regions of the interface as shown in Figure 6.1.  

 

 

 

Figure 6.1 a) RBD complexed with ACE2. The locations of the mutations in the 
RBD of Delta variant are highlighted in VDW representation b) The loop segments 
consisting of residues 438-447 and 499-508 (Region 1) are highlighted in orange, 
the b-sheet region consisting of residues 448-455 and 491-498 (Region 2) are 
highlighted in yellow and the receptor-binding loop consisting of residues 472−490 
(Region 3) in purple. The disulfide bond in the loop as well as the mutations in the 
Delta variant are shown as sticks. 

I calculated the root mean square fluctuations (RMSF) of the RBD and plotted the 

results in Figure 6.2, which shows that the amino acid residues in the b-loop-b 

motif (Region 3, residues 472-490) have the largest flexibility for all variants. The 

T478K

ACE2

RBD

L452R

a) b)

Region 2
Region 3

Region 1
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loop segments in Region 1 are not found to change significantly compared to WT, 

and therefore I focused on the b-sheet in Region 2 and the b-loop-b motif of Region 

3. 

 

Figure 6.2 Root Mean Square Fluctuations (RMSF) of amino acids calculated from 
the last 300 ns of 600 ns MD simulations. The flexible b-loop-b region at the RBM 
interface is indicated with a dotted ellipse. 

6.2 Structural rearrangements in the interfacial beta sheet region 

Figure 6.3a shows the b-sheet region of the receptor-binding motif (RBM) interface 

(Region 2 comprised of residues 448-455, 491-498) containing a hydrogen-bond 

network (Fig. 2b) that creates a stable interface. In the WT, residues in each 

segment have b-secondary structure (b5: 452-455 and b6: 491-495)151 with 

backbone hydrogen-bonds, whereas the additional residues in each segment 
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(448-451 and 496-498) are mostly unstructured. Figure 6.3b shows the hydrogen-

bonding in the RBM in the WT and the Delta B.1.617.2 variant at the end of 600 

ns MD simulations.  The hydrogen-bond analysis of Region 2 of the interface 

(Figure 6.3c) shows that WT and B.1.1.7 have similar H-bond interaction patterns, 

whereas B.1.351 and B.1.617.2 have noticeably different H-bond patterns.  

 

 

Figure 6.3 a) RBM showing the antiparallel b-strands. Residues R454 and D467 
participating in ionic interactions in the Delta variant are shown as sticks. b) 
Hydrogen-bond network in the b-sheet region of the RBM for the WT and the Delta 
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variant. c) % hydrogen bond occupancy obtained from the last 300 ns for the 
interactions in WT, B.1.1.7, B.1.351, and B.1.617.2. The sidechain interactions are 
denoted as SC. 

Interestingly, the analysis of Figure 6.3 shows that a slight reorientation of residue 

G496 in the Delta variant results in much stronger hydrogen bonding between the 

β-strands. Most notably for the Delta variant, 1) a more stable network of backbone 

hydrogen bonds is established, with a new hydrogen bond N448(N)-F497(O) 

formed, and 2) a significantly enhanced salt-bridge interaction between the R454 

side chain and D467 side chain is observed. These two changes appear to be due 

to the mutation L452R which gives a slightly enhanced b-structural 

propensity152,153 in b5. It has recently been shown that the L452R mutation in 

another variant of concern, B.1.427/B.1.429, caused reduction in nearly half of the 

tested monoclonal Abs.154, highlighting the dangerous consequences of this 

mutation. I analyzed 300 ns re-runs for each of these variants and compared in 

Figure 6.4. Although the R454-D467 backbone hydrogen bond has not switched 

to a side chain interaction by 300 ns in the re-run of the Delta variant, the presence 

of the N448(N)-F497(O) hydrogen-bonding between the b-strands is consistent 

(Figure 6.4). 
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Figure 6.4 Hydrogen bonding network in beta sheet at the interface for 600 ns MD 
simulations (run 1) and rerun for 300 ns (run2). The backbone hydrogen bonding 
between the b-strands for the Delta variant is consistent in both run 1 and run 2. 

As seen in Figure 6.3b-c, the interactions in the antiparallel b-strands are 

enhanced in Delta B.1.617.2, thereby stabilizing the receptor-binding interface. 

This may directly affect how the RBD binds with ACE2 and with neutralizing 

antibodies. I note that the recently solved crystal structure of the L452R variant 

B.1.617.1 (PDB ID 7orb) does not show these hydrogen bonds, suggesting that 

the changes observed here are perhaps a result of a dynamic reorganization. 

Similarly, almost all RBD structures show that R454 side chain makes hydrogen 

bonds with backbones of D467 and/or S469 but some structures do show possible 

side chain interactions with D467 (e.g. PDB ID 7n1q155, 7kdj156), suggesting an 

agile network of hydrogen-bonding in this region. 

Donor Acceptor WT Alpha Beta Delta
N448-N  F497-O 46% - 50% 76%
F497-N  N448-O - - - 43%
Y495-N  Y451-O 31% 66% 78% 89%
Y453-N  Q493-O 79% 87% 78% 81%
Q493-N  Y453-O 81% 84% 87% 87%
L455-N  P491-O 84% 52% 71% 66%
S494 (SC)  Y451-O 43% - - -
S494 (SC)  N450-O - 14% - -
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Donor Acceptor WT Alpha Beta Delta
N448-N  F497-O 46% 29% - 85%
F497-N  N448-O - - - 61%
N450-N  N448 (SC) 75% 77% 50% 72%
S494 (SC)  N448-O - - 43% -
Y495-N  Y451-O 81% 86% 90% 84%
Y453-N  Q493-O 80% 75% 68% 82%
Q493-N  Y453-O 88% 88% 79% 87%
L455-N  P491-O 63% 62% 81% 80%
G496-N  S494 (SC) 12% 9% 52% 39%
R454 (SC) D467 (SC) - - 87% 164%
R454 (SC) D467-O 61% 61% - -
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6.3 Structural rearrangements in the b-loop-b motif 

The flexible b-loop-b motif (Figure 6.1, Region 3, residues 472-490) contains a 

disulfide bond between resides C480-C488, and the mutation T478K in the Delta 

variant also lies in this loop. I explored the mutation-induced changes in the 

flexibility of this region, and rearrangements in the hydrogen bonding for the 

different variants (WT, B.1.1.7, B.1.351, B.1.617.2). I find that the Delta variant 

features a significantly different loop structure. While all variants have a flexible 

loop in this region157, the Delta variant shows a reduced flexibility (Figure 6.2) as it 

adopts a more stable yet different conformation compared to other variants. The 

difference in the conformational change in the loop can be seen from the changes 

in the disulfide bond dihedral angle C-Ca-Cb-SG for C480 as displayed in Figure 

6.5a. Compared to the WT, the dihedral angle as a function of time for the Delta 

variant shows a quick flip early and then remains stable in a new orientation.  
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Figure 6.5 a) Reorientation of the disulfide bond. Right: changes in the dihedral 
angles for WT and the Delta variant. b) Distance between the center-of-mass 
between the two b-sheets (shown as the dotted line on the left). 

The combination of the changes in the b-sheet region (Figure 6.1b, Region 2) and 

the b-loop-b motif (Figure 6.1b, Region 3) appears to result in an overall change in 

the receptor-binding interface. In the Delta variant, Regions 2 and 3 are farther 

apart. This is shown by the separation distance (dotted lines in Figure 6.5b) 

between the center-of-mass (COM) of the two  b-strands in Region 2 (Figure 6.1b: 

β-strands 452-455 and 492-495) versus the COM of the two β-strands in Region 3 

(Figure 6.1b: 472-475 and 487-490). The distance plot in Figure 6.5b (right) shows 

a stable but slightly extended Region 2 – Region 3 receptor-binding interface for 
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the Delta variant (black curve) with a 1.5 Å increase in the COM separation 

distance. Overall, these structural changes and differences in loop flexibility can 

impact the ACE2 and Ab-binding. The reduced fluctuations in the Delta RBD with 

an altered receptor-binding interface could result in weaker interactions with 

neutralizing antibodies leading to immune evasion. 

6.4 Antibody binding to the Delta RBM and possible mechanism of immune 

evasion 

A recent study illustrated the mechanism of immune evasion by a variant of 

concern B.1.427/B.1.429154. Specifically, the same mutation found in the Delta 

variant, L452R, was responsible for reduced neutralizing activities in many of the 

monoclonal Abs tested, whereas re-grouping of a disulfide bond in a different RBD 

site caused the loss of activities for all Abs tested. To assess the impact on the Ab 

binding due to the changes in the receptor-binding interface caused by the 

mutations in the Delta RBD, I first examined the interfacial interactions in the Ab-

RBD complexes available in the protein data bank (PDB) in the WT. Of the 118 

RBD-Ab complexes with Ab bound in the receptor-binding interface retrieved from 

the Protein Data Bank, 47 non-repeating complexes were considered for further 

analysis. The Ab-RBD complexes (pdb IDs) are listed in Table 6.4.1. I identified 

the RBD residues involved in ionic or hydrogen bond interactions in each complex 

and plotted in Figure 6.6 the frequency of occurrences of the important residues in 

all complexes. While this distribution may be inherently biased due to the available 

pdb structures of the complexes, it provides a general idea of the preferred 



 

 97 

interfacial RBD binding epitope sites for a sample of Abs. From Figure 6.6, I see 

that most of the Abs have interactions with the b-loop-b residues Y473, A475, 

N487, E484, among others.  

Table 6.4.1 List of the Ab-RBD complexes obtained from the Protein Data Bank. 

The representative structures from each of the non-repeating groups considered 

for structural analysis are highlighted in boldface. The structures from the same 

family of complexes are underlined. 

6xc2, 6xc3, 6xc4, 6xc7, 6xdg, 6xe1, 6xey, 6xkp, 7b3o, 7beh, 7bei, 7bej, 7bek, 

7bel, 7bem, 7ben, 7beo, 7bep, 7bwj, 7bz5, 7c01, 7cdi, 7cdj, 7ch4, 7ch5, 7chb, 

7chc, 7che, 7chf, 7chh, 7cho, 7chp, 7chs, 7cjf, 7cm4, 7cwl, 7cwm, 7cwn, 7cwo, 

7cwu, 7czp, 7czq, 7czr, 7czs, 7czt, 7czu, 7czv, 7czw, 7czx, 7czy, 7czz, 7d00, 

7d03, 7deo, 7deu, 7dk4, 7dk5, 7dk6, 7dk7, 7e23, 7jmo, 7jmp, 7k43, 7k45, 7k4n, 

7k8m, 7k8s, 7k8t, 7k8x, 7k90, 7k9z, 7kfv, 7kfw, 7kfx, 7kfy, 7klg, 7klh, 7kmg, 

7kmh, 7kmi, 7kmk, 7kml, 7kn6, 7kn7, 7ks9, 7kxj, 7kxk, 7kzb, 7l3n, 7l56, 7l57, 

7l58, 7l5b, 7laa, 7ljr, 7lop, 7m6d, 7m6f, 7m6h, 7m6i, 7mf1, 7mjj, 7mjk, 7mjl, 

7nd4, 7nd5, 7nd6, 7nd7, 7nd8, 7nd9, 7nda, 7ndb, 7neg, 7neh, 7nx6, 7nx7, 7nx8, 

7nx9. 
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Figure 6.6 Frequency of occurrences of the RBD residues involved in hydrogen-
bonding with Ab in 47 complexes from the Protein Data Bank. 

Inspection of the Ab-RBD complexes for the WT shows that many of the Abs 

anchor at multiple sites. For example, in many Ab-RBD complexes, including 6xe1, 

7b3o, 7cdi, and 7cjf Abs bind at A475/G485 at one site (site A in Figure 6.6) and 

R457/K458 (site F in Figure 6.6) at another site, as shown in the figure. I grouped 

different sites and color-coded as shown in Figure 6.6. To examine how the 

changes in these sites may affect the Ab binding, I plotted the Ca distance between 

the residues K458 and A475 belonging to two Ab-binding sites in Figure 6.7 for 

both the WT and the Delta variant. As shown in Figure 6.7b, the distance between 

these residues (458-475) mostly remains at ~9 Å for the WT.  However, the same 

(458-475) distance for the Delta variant in Figure 6.7c increases to ~14 Å by 150 

ns and remains stable at that distance. This 4-5 Å increase in the Ab-binding sites 

suggests that the Ab-binding will be severely affected, and the Ab becomes 

insensitive to Delta RBD binding. While ACE2 binds at the site of 475/487 (site A 
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in Figure 6.6), it does not bind at the site of 457/458 (site F) and therefore the 

increase in the K458-A475 distance does not affect the ACE2 binding. Instead, 

ACE2 binds at 475/487 and Q493 (in the middle of b6). Therefore, I also plotted 

the distance between the residues N487 and Q493. Interestingly, despite the 

structural changes, this distance in both the WT and the Delta variant remains 

nearly the same (16-17 Å) as seen in Figure 6.7b-c. This suggests that the 

structural changes have not affected the ACE2 binding sites but significantly 

affected the Ab-binding sites, suggesting a possible immune evasion by the Ab 

while maintaining the ability of receptor binding. 

 

 

Figure 6.7 a) Amino acid residues involved in Ab-binding or ACE2-binding. b) The 
Ca-Ca distances between the residue pairs K458-A475 and N487-Q493 in WT. c) 
The Ca-Ca distances in the Delta variant. 
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6.5 ACE2 binding vs. antibody binding in the Delta variant 

With the observation of the increase in the distance between the two sites in the 

Delta RBM, I investigated how the changes affect ACE2 and Ab binding. If the 

ACE2 binding is maintained or enhanced but the Ab binding is weakened, at least 

for a set of neutralizing Abs, that would mean that the virus is less sensitive to the 

Abs thereby making it more effective at infecting and spreading.  To explore this, I 

performed simulations of the RBD-ACE2 complex and Ab-RBD complexes for the 

Delta variant and compared with the complexes of the WT.  Since the complexes 

for the Delta variant were modeled from the RBD obtained from the 600 ns 

simulation, the interactions are expected to evolve, whereas those in the WT 

remain steady. The hydrogen bond interactions in the RBD-ACE2 as well as the 

Ab-RBD complexes are shown in Figure 6.8. In the WT RBD-ACE2 complex, the 

RBD residues that primarily participate in hydrogen-bond interactions include 

K417, Y489, G502, E484, T500 and N487. The RBD residue K417 forms a strong 

salt-bridge with D30 of ACE2 in WT and B.1.1.7 but not in B.1.351 due to the K417 

mutation157. These WT interactions are still present in the complex with the Delta 

RBD, though the % occupancy are reduced (Table 6.5.1). With some of the major 

interactions, including the K417-D30 salt-bridge, still present in the complex, ACE2 

binding seems tolerate the structural changes in the Delta RBD.  
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Figure 6.8 a) Structures of the ACE2-RBD complexes for WT and the Delta variant 
at the end of the 100 ns simulations. b) Ab-RBD complex for WT and the Delta 
variant, with CV30-Fab neutralizing Ab (PDB 6xe1) complexed with RBD. The 
interacting sites are highlighted in surface representation for the RBD and sticks 
for the ACE2 or Ab. 

Table 6.5.1 Hydrogen bond details analysis of RBD-ACE2 for WT and B.1.617.2. 
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I next compared the Ab binding in the WT and the Delta RBD. I considered two 

examples of the Ab-Delta RBD complexes modeled from the WT RBD complexed 

with the neutralizing Ab CV30 Fab (pdb ID 6xe1)158 and complexed with the Ab 

BD-236 Fab (pdb ID 7chb)159. The 100 ns simulation of the CV30-Delta RBD model 

shows a less stable complex with significantly reduced interactions. As shown in 

Figure 6.8b, Ab in the WT has interactions with residues in three clusters that are 

intact during the simulation. However, in the Delta RBD, the Ab is only able to bind 

at site A or F but not both. This is consistent with the argument made based on 

Figure 6.7. The major hydrogen bonds, including those with Y473, Y421, L455, 

RBD-ACE2 0-10 ns 90-100 ns 0-10 ns 90-100 ns
K417-D30 80% 84% 80% 67%
K417-H34 28.70%
Y449-D38 31% 26%
Y453-H34 36%
E484-K31 44% 12% 48%
N487-Y83 24% 44%
N487-Q24 14%
Y489-T27 77% 14%
L492-K31 12%

Q493-K31 51% 40%
Q493-E35  32% 63%
Q498-K353 31%
Q498-Q42 25% 10%

T500-D355  62% 49%
T500-Y41 19% 26% 52%
T500-R357 11%
T500-N330 10%
G502-K353 86% 52% 13% 61%
Y505-E37 45% 35% 19%

WT B.1.617.2
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A475, R457, R403, K417, and Y505 in WT are broken or weakened in the Delta 

variant. The Ab-RBD complex modeled from 7chb (complex with BD-236 Fab) also 

shows reduction in the number and strength of the hydrogen bonding. Some of the 

major hydrogen bonds withY453, G502, D420, and K417 in the WT BD-236 

complex are still present in the Delta variant during the 100 ns simulation (Table 

6.5.2). Figure 6.8b displays the final conformations of the Ab-RBD complexes for 

the CV30 Ab, with the RBD residues colored according to the grouping in Figure 

6.6. The % hydrogen bonding occupancies are given in Table 6.5.2.  

Table 6.5.2 Hydrogen bond details for the RBD complexed with a) CV30 Fab 

antibody (PDB 6xe1) and b) BD-236 Fab antibody (PDB 7chb) for WT and 

B.1.617.2. 

 

 

 

a) b)
RBD-6XE1 AB 0-10 ns 90-100 ns 0-10 ns 90-100 ns
R403-G92  75% 104%
K417-D97 73% 67% 73%
D420-S56  90% 92% 88%
Y421-G54 53% 71%
Y421-S56 76%

L455-Y33  51% 80%
R457-S53 94% 94%
Y473-S31 94% 82%
A475-I28 69% 51%

A475-N32  49% 57%
N487-R94  82% 96%
N487-I28 34%
N487-G26 28%
Y489-Y33 31%
P499-S29 32%
Y505-S29 43% 64%

WT B.1.617.2
RBD-7CHB AB 0-10 ns 90-100 ns 0-10 ns 90-100 ns

R403-N92 50%
E406-N92  
E406-Y94 68%
T415-S56 72%

K417-E101 67% 72% 72% 66%
D420-S56 82%
D420-Y33 49%

Y421-G54  75%
Y453- E101 90% 90% 73% 82%
L455-Y33 84% 84%
R457-S53 106%
N460-S56 49%
Y473- S31 88% 84%
A475-T28 80% 66%
A475-N32 69% 52%

N487-R97  86% 82%
Y489-L99 55%
G502-G28 66%
G502-Q27 80%
Y505-S30 52%

WT B.1.617.2
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7. CONCLUSIONS 

I investigated the molecular details of proteins encoded by three different viruses, 

Lassa, Marburg, and the B.1.617.2 delta variant of SARS-CoV-2. These three 

systems were chosen because they have caused current or recent epidemics, and 

the crystallographic structure of the proteins are known. 

LASV hemorrhagic fever is endemic in West Africa, and no approved effective 

therapeutics are currently available. Therefore, there is an urgent need for the 

discovery and development of potential antiviral therapeutics. The LASV GP 

(glycoprotein) spike is a promising selective target for the development of novel 

vaccines as it plays an essential role in the virus-host interaction. Several in silico 

studies134,135,160-163 were performed to predict LASV GP epitopes with the use of a 

single prediction tool for each type of epitope. I have identified new T and B-cell 

epitopes using a variety of computational approaches, including twelve epitope 

prediction methods, protein-peptide docking, and MD simulations. The MHC I and 

II T-cell epitopes were separately predicted with the LASV GP sequence using 

well-known databases and prediction methods.  

The predicted MHC I T-cell epitopes then were prioritized based on the consensus 

score, binding affinity, and antigenicity, while MHC II T and B-cell epitopes were 

prioritized based on the consensus score. Novelty analysis of the consensus-

selected 33 epitopes showed that thirty of these predicted epitopes have either no 

overlap or only a partial overlap to previously reported sequences. Within this list 

of new epitopes, six sequences have no overlap with any known experimentally 
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tested epitopes in the IEDB. In addition, docking and MD simulations were 

performed to further validate the MHC I T-cell epitopes. The simulation results 

show that the allele-MHC-I epitope complexes are stable, with favorable hydrogen-

bond and interaction energy. Of these, the epitope 233FSRPSPIGY241 segment was 

found to be especially stable. This study demonstrates that the consensus epitope 

prediction strategy is valuable for in silico investigations of known epitopes and the 

identification of new epitopes. Experimental validation of these epitopes may lead 

to the design and development of effective LASV vaccines. 

In addition to LASV, endemic MARV has resulted in many deaths since its initial 

outbreak in 1967. The lack of approved and effective therapeutics and treatment 

measures has underscored the need for the discovery and development of vaccine 

and therapeutic measures to mitigate Marburgvirus infections. Identification of 

potential vaccine candidate epitopes is the first step towards designing effective 

vaccines against the infection. In this work, I employed a total of nine different 

epitope prediction methods that predicted 35 GP, 33 NP, 12 VP35, 12 VP40, 3 

VP30, 13 VP24 and 111 L protein epitopes. Among these, 11 GP, 26 NP, 10 VP35, 

7 VP40, 3 VP30, 13 VP24, and 102 L protein predicted epitopes are novel. Most 

of these epitopes are conserved among all four strains: Lake Victoria, Angola, 

Musoke and Ravn-87. The non-allergenic epitopes with high value of antigenicity 

and binding affinity are considered as potential candidates for further studies. From 

the virtual screening of MHC-I epitopes, the non-allergenic GP epitope E9 and the 

NP epitope E15 are obtained to have the strongest binding scores (-10.9 kcal/mol 

and -8.9 kcal/mol respectively).  
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Sufficient information was available to allow us to perform MD simulations on 

highly ranked MHC-I T-cell epitopes to determine molecular details of the epitope-

allele interface. The MD simulations of the epitope-allele complexes show that the 

GP epitope 164NIAAMIVNK172 and the NP epitope 80YLRDAGYEF88 have 

especially stable interactions with the alleles and a high number of hydrogen 

bonds. Both of these epitopes are also conserved among MARV strains, 

suggesting that these are promising candidate epitopes for vaccine development. 

I also found that hydrophobic amino acids in epitopes can create a tight, water 

excluding epitope-allele interface. This study demonstrates the value of the use of 

consensus methods and in silico MD screening for identification of novel MARV 

epitopes. Further exploration with experimental validation of these epitopes may 

lead to the design and development of effective MARV vaccines. 

In addition to the identification of novel epitopes as possibly promising vaccine 

candidates, studies of antibody binding to viral proteins are important. A spike in 

the number of cases and deaths due to the coronavirus pandemic occurred due to 

the B.1.617.2 delta variant of SARS-CoV-2, implying the possibility of viral evasion 

of the antibodies created in response to earlier viral strains. In this work, I 

performed molecular dynamics simulations of the Delta variant’s spike protein RBD 

with the mutations L452R/T478K and investigated the resulting structural changes 

in the receptor- and Ab-binding interfaces. I find that the Delta variant presents a 

noticeably different receptor-binding interface compared to the WT, B.1.1.7, and 

B.1.351. Specifically, the receptor-binding b-loop-b motif adopts an altered 

conformation which appears to cause shifts in the Ab-binding epitope regions that 
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can reduce the binding affinities for some neutralizing Abs.  I investigated this by 

performing all-atom MD simulations of two Ab-RBD complexes and found that one 

of the complexes shows significantly reduced interactions between the Ab and the 

RBD, suggesting a possible mechanism of the immune escape by the Delta 

variant. Even though the Ab-resistant conformations obtained in these simulations 

may represent only a subset of the conformational ensemble, they can still 

contribute considerably to the reduced sensitivity of the Abs. Future work with a 

full mapping of the conformational space of the receptor-binding interface may 

shed further light on the nature of the interactions with the common anti-RBD Abs, 

providing useful information on vaccine efficacies. Understanding how the 

structural changes alter the RBD’s ability to present itself in the up conformation in 

the spike trimer or its ACE2 binding affinity can also inform us about the variant’s 

transmissibility.   
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