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ABSTRACT OF THE THESIS 

EVALUATING CHANGES IN VISIBLE TO SHORT-WAVE INFRARED SPECTRAL 

REFLECTANCE OF ARCTIC MOSSES IN RESPONSE TO EXPERIMENTAL 

DRYING TO FIND THE BEST PREDICTORS OF MOISTURE CONTENT 

by 

Steven L. Unger 

Florida International University, 2021 

Miami, Florida 

Professor Steven Oberbauer, Major Professor 

Mosses are a dominant understory component in the Arctic and because of sparse 

canopy cover, contribute to spectral signals used in remote sensing. Unlike vascular 

plants, mosses cannot actively regulate moisture content and are highly susceptible to 

desiccation.  Previous research has shown that moss reflectance is sensitive to tissue 

moisture content.  Here, a lab-controlled drying experiment was conducted to identify the 

best spectral predictors of moisture content of moss as well as distinguishing 

characteristics of their spectral profile. Significant changes in the entire spectrum were 

observed in response to desiccation. All moisture indices were able to predict moisture 

content with a reasonable certainty. Derivative spectra can be used to distinguish between 

moss and vascular plant spectra (slope/inflection point). Lastly, a pilot experiment 

showed that moisture content of moss can significantly drive community-level spectra in 

situ. These results demonstrate the need to incorporate mosses (w/moisture effects) into 

spectrally derived models.   
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I. Introduction 

I.1 – Arctic Vegetation Characteristics  

Mosses present unique challenges for the study of arctic vegetation using remote 

sensing approaches. As a result of permafrost laden soils, frigid long and dark winters, 

short, intense summer growing seasons, arctic vegetation is largely treeless and is instead 

dominated by evergreen and deciduous shrubs, graminoids, bryophytes, lichens, and in 

some areas bare ground [1]. Vegetation is typically less than a meter tall and forms a 

sparse canopy of vascular plants with mosses and lichens growing on the surface as 

understory or in the open [1].  Surface reflectance signals used in remote sensing studies 

of vegetation in the Arctic are a combination of those from vascular plants, nonvascular 

plants (bryophytes), and lichens, [2, 3], all of which have different tissue optical 

properties [4].  Many common moss species found throughout much of the Arctic are 

known to change spectral reflectance properties in response to short-term environmental 

stressors, such as drought or heat stress [5-8]. As the Arctic rapidly warms, these 

environmental stressors are becoming more frequent [9, 10]. 

 

I.2 – Moisture Content of Non-vascular Plants and Remote Sensing 

Unlike vascular plants, which can absorb water into their tissues via root systems, 

mosses (poikilohydric bryophytes) cannot actively regulate internal moisture content and 

are thus more susceptible to moisture fluctuations. However, most mosses are more 

resilient to tissue damage caused by short-term drought [11, 12]. As a result, mosses may 

become desiccated well before vascular plants show signs of water stress. Even after 
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rainfall, under warm windy conditions, mosses can dry out very quickly at the tops of 

hummocks (S. Unger, personal observation). Some moss species that undergo temporary 

desiccation exhibit dramatic spectral changes with drying, which can be quantified using 

spectrometers and derived remotely-sensed spectral indices [13]. Some studies have 

shown that these changes in reflectance (some apparent as color changes) are also 

associated with changes in photosynthetic potential [8, 14-16]. Despite the importance of 

mosses to the structure and function of arctic ecosystems (soil temperature regulation and 

moisture retention [17]) and their contributions to ecosystem gross primary productivity 

(GPP)[18], only a few studies have addressed the issue of the potential effects of mosses 

on remotely-sensed vegetation indices [3, 13, 16]. This aspect is of particular importance 

because many of these indices have been primarily developed from and for vascular 

plants [19-22]. We know that moss reflectance changes significantly as a function of 

moisture content [8, 13, 16], but the question remains: in what way is the spectra 

changing and to what extent is it driving satellite spectra signals?  

I.3 – Remote Sensing Indices  

In arctic regions where remoteness and scale of study area are serious limitations 

to ground-based measurements, remote sensing methods are being rapidly adopted to 

monitor ecosystem responses to environmental change. Scientists have developed 

vegetation-derived relationships between absorption and reflectance of biologically 

significant wavelengths that can be used to estimate vegetation cover and productivity. 

Spectral relationships (indices), such as the Normalized Difference Vegetation Index 

(NDVI) and the Photochemical Reflective Index (PRI) can provide details about 
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phenology, estimates of biomass, and the status of vegetation photosynthetic efficiency, 

with the ultimate aim of predicting ecosystem GPP [3, 23, 24]. One of the most 

commonly employed indices is NDVI because of its strong relationship with green 

biomass, that results from the strong absorbance of red wavelengths and strong 

reflectance of near infrared (NIR) wavelengths by plant leaves [25]. By correlating these 

reflectance behaviors with environmental variables, such as temperature and precipitation 

to form spectral-ecological relationships, NDVI can be used as a proxy to estimate 

productivity, track phenological events, leaf area index (LAI) to detect vegetation 

community shifts, monitor drought and water stressed vegetation, and land 

degradation/rehabilitation [24, 26-35]. However, these relationships rely on ground-based 

measurements that may inadequately represented for larger regions. Unlike temperate and 

tropical regions where most of the relationships have been derived, the generally sparse 

canopies of arctic vegetation are comprised of significant amounts of moss and lichen 

along with vascular plants [2, 3]. While NDVI has been somewhat supplanted by more 

robust indices, it is still used ubiquitously, and now comes as a basic product from many 

satellite imagery products and can be of great value when accounting for its limitations 

such as saturation at high LAI [36].   

I.4 – Important Remote Sensing Terminology 

 Resolution is used in four ways in remote sensing: spatial, temporal, spectral, and 

radiometric. Spatial resolution is simply the size of the pixel which is collected [37]. With 

very high resolution you may have pixels of 2x2m while low resolution may provide 

more than 300x300m pixels. Temporal resolution refers to the frequency of measurement 
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at the same location, essentially what the revisitation time of the satellite is (i.e. every 14 

days vs daily) [37]. Spectral resolution refers to the number and dimensions of bands or 

channels that a sensor is sensitive to [37]. With high spectral resolution, the number of 

bands increases and their width decreases indicating and vice-versa. Radiometric 

resolution refers to the sensitivity of light intensity perceived by the sensor, thus high 

radiometric resolution implies ability to distinguish between various levels of brightness, 

whereas low resolution means that differences in levels of brightness are harder to detect 

[37].  

With advances in sensor technology, hyperspectral reflectance measurements 

(sensor dividing the spectrum into many continuous spectral bands) have become more 

widely available.  For instance, a multispectral sensor platform such as Landsat 8 has 11 

spectral bands (fewer and broader bands) and can be utilized to map a forest, whereas a 

hyperspectral sensor platform such as AVIRIS-NG has 425 contiguous spectral bands 

and can be used to map different tree species in that forest. Various tradeoffs exist 

between Ground-based sensors and satellite or ariel sensor platforms and between the 

four types of resolution, which ultimately determines which sensor platform a researcher 

chooses to use based on their scientific objectives. For example, giving up spatial 

resolution for better temporal resolution may be suited to arctic studies given the 

condensed growing season (~ 3 months), so more frequent repeat imagery (1-5 days) can 

provide more meaningful details about ecosystem processes such as phenology compared 

with higher spatial resolution, but low temporal resolution (16+ day revisitation). My 

research focuses on ground-based sensors (in the lab and field) with high spectral and 



5 

 

temporal resolution with the hope of eventually scaling up our findings to both 

multispectral and hyperspectral satellite platforms. 

I.5 – Background and Prior Research 

A prior experiment conducted by our group demonstrated that moss reflectance 

metrics, specifically the commonly used spectral index NDVI, changes significantly in 

response to large short-term  moisture fluctuations, which does not necessarily correlate 

to observed changes in photosynthetic activity [16]. These changes were largely driven 

by increases of red reflectance [16].  We found a strong correlation between a decrease in 

moisture content and subsequent decrease in NDVI and photosynthetic function of four 

dominant arctic moss species that were isolated from vascular plants under controlled 

conditions. Moreover, subsequent rehydration rapidly restores initial NDVI values (in a 

matter of minutes), however photosynthetic function takes far longer to recover (several 

hours to days) [16]. This physiological lag introduces uncertainty when evaluating 

satellite-derived estimates of productivity. While reflectance may have rebounded 

quickly, moss photosynthesis did not. Furthermore, if spectrally-driven ecosystem flux 

models [3, 38] assume that the moss-driven decrease in NDVI reflects decrease in 

vascular plant biomass, even larger errors would be introduced. The result is that 

erroneous estimation of GPP or LAI can occur and are dependent on the amount of moss 

within the pixels and what moisture content they are at when imagery was collected. If 

community-level spectra are significantly driven by mosses (and their moisture content), 

then vegetation classes which are not reflected in the look-up tables for the interpretation 

of NDVI need to be adjusted to incorporate mosses. Thus, to decompose the signal, we 
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need better understanding of two principles; 1. The effects of moisture content on moss 

endmember spectra and 2. Features of the moss spectral signature that is unique to 

mosses for classification purposes.  

Our prior study was limited to the VIS-NIR region of the spectrum (350-1,050 

nm) by the spectrometer available (Unispec-SC, PP Systems, Haverhill MA).  The short-

wave infrared region (SWIR: 1,100-2500 nm) is known to be sensitive to water 

absorption features [13].  Various moisture indices have been developed using both 

ranges to assess the moisture content of vegetation and soils based on the attenuation of 

light by water molecules (Table 1).  

 

  Table 1. Moisture-related reflectance indices  

Spectral Reflectance 

Index 

Abr Formula  Ref 

Water Band Index WBI R900/R970     [39] 

Moisture Stress Index MSI R1600/ R817  [40] 

Normalized Difference 

Water Index 

NDWI (R860-R1240)/(860+1240)  [41] 

Normalized Difference 

Infrared Index 

NDII (R819-R1649)/(R819+1649)  [42] 

 

Similar changes in reflectance of isolated Sphagnum mosses under controlled 

conditions have been reported from other habitats including north temperate and boreal 

forests [15]. Van Gaalen (2005) found that reflectance spectra and photosynthetic yield of 
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Sphagnum changed in response to desiccation and that the Water Band Index (WBI) was 

significantly correlated with moisture content, but did not explore other moisture indices 

beyond 1000 nm. Vogelmann and Moss (1993) found that Sphagnum mosses exhibited, 

very pronounced water-related ab sorption features between 1000 and 1200 nm, that were 

not found in vascular plant reflectance, though the atmospheric window is partially 

closed in that region. The atmospheric window is a portion of the spectrum which does 

not get absorbed by atmospheric gasses/particles in the atmosphere allowing light to be 

reflected back to the sensor [37]. They also reported that the moss was generally less 

reflective than their reference vascular plant (white pine), however, on the basis of 

figures in the paper, once the moss was dried, it was more reflective than the reference 

vascular plant. This finding implies that in a spectrally mixed pixel, the intensity of 

mosses reflectance is contingent on their moisture content which influences the overall 

mixed pixel.   

I.6 –Tissue Effects on Spectral Reflectance  

Because of the unique morphology of mosses, the ability to differentiate them in 

high resolution spectra will likely be a result of differences between vascular and 

nonvascular plant tissues and how moisture interacts with leaf components to affect 

absorption and reflection in the NIR/SWIR region. Sphagnum moss leaves lack other 

vascular plant components such as xylem/phloem [43].  In addition, moss leaves are 

typically only one cell thick, and generally do not have stomata which facilitate gas 

exchange and function to control moisture loss [43]. Sphagnum mosses have specialized 

cells that transport water called hyaline cells, that function to retain water but are dead at 
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maturity, and chlorophyllose cells which contain chlorophyll for photosynthesis [44]. 

Water-saturated moss leaves strongly absorb radiation in the SWIR. In contrast, the large 

amount of cellulose/lignin in the intercellular mesophyll of vascular plant leaves 

influences how reflectance in the moisture bands differs from moss because of the 

structural obstacles in the light path that influence how light is reflected (returns to the 

sensor) [45-47].   

I.7 – The Red Edge Region  

A spectral region of particular interest in remote sensing of plants is known as the 

Red Edge (RE), the transition zone between red and NIR regions where rapid decline in 

absorption in the red progresses to reflectance in the NIR. The RE is useful for unique 

identifying characteristics of mosses compared to vascular plants. Bubier et al (1997) 

showed that several species of boreal wetland, temperate and forest mosses (Sphagnum, 

“brown”, and feather mosses) exhibited a different spectral shape and RE position (less 

abrupt red edge, more absorption in the green, less in the red, and pronounced water 

absorption features in the NIR) compared to vascular plants [45] (Figure 7). Various 

other studies of moss spectra produced similar results [8, 13-15, 45, 48]. Pigment 

absorption, leaf cell structure, and vitality all affect the RE region, and the RE parameters 

such as inflection point via first derivative are frequently used in the estimation of 

chlorophyll content [49-51]. The RE regions is thus a good potential region for 

classification purposes as they are distinct from vascular plants. 
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I.8 – Classification and Derivative Spectroscopy in Remote Sensing 

Classification of mosses will be imperative to endmember unmixing. In my thesis 

research, analysis of endmember spectra is two-fold: mosses compared to vascular plants, 

and dry moss compared to saturated moss. Interpretation of imagery is contingent upon 

first determining the mixture of the signal (mosses, vascular plants, lichens, etc) and then 

the convolution of moisture content of mosses. Detection and identification of samples by 

investigating the collected spectra and comparing it to reference library spectra is a basic 

method of interpretation in spectroscopy. The principle of spectroscopy -a field originally 

developed in analytical and physical chemistry, but now applied to remote sensing of the 

environment- is founded on each type of material having a distinctive way of reflecting, 

absorbing, or emitting electromagnetic radiation [52]. Despite the differences in data 

acquisition between the controlled laboratory environment (homogenous samples, control 

of viewing angle, intensity and spectral distribution of light) and the challenges facing 

remote sensing (passive sensors using natural illumination, limited viewing angle, 

heterogenous mixtures of targets, spectral resolution, etc), derivative spectra can be used 

to reduce or eliminate background signals and resolve overlapping features [52-55].  

Thus, matching between unidentified observed spectra and reference library spectra is 

possible since the spectral shape can be characterized by spectral derivatives (note that 

the derivative is only sensitive to shape, not magnitude), though controlled lab reference 

spectra are not always a great match to field collected spectra[52, 53, 56].  

Nevertheless, derivative spectra has been used succesfully for classification 

purposes as Bahrami and Mobasheri (2020) demonstrated ~90% accuracy in 
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identification of unknown spectra using a Coding Based on Selected Threshold (CBSeT) 

method with Spectral Angle Mapper (SAM) and showed that the shape of spectra among 

species in the same family had the lowest spectral vector angles indicative of high 

similarity to within family species [57]. As the derivate spectra increases, spectral vector 

angles increase, implying an increase in capability for distinction among species [57]. In 

addition to classification techniques, spectral derivative approaches have also been 

employed in biophysical estimation methods, such as pigment analysis to determine 

chemical composition of leaves to track physiological changes in plant canopies, showing 

that indices using derivative spectra were more robust than broadband spectral indices 

(even in aquatic systems, where chlorophyll content is harder to estimate) [51, 53, 58]. 

Further, derivative spectra have been used to reduce atmospheric effects and spectral 

distortions due to variable sunlight which demonstrates the broad utility of derivative 

spectra [56, 59]. To better understand how moss influences arctic vegetation spectral 

signals, it is important to first establish endmember spectra and explore differences that 

can be extrapolated.  

I.9 – Summary of Background Information and Significance 

Understanding how mosses influence satellite derived indices in the Arctic will be 

a major advance to projecting and interpreting change in the future arctic.  We know that 

moss reflectance changes depending on moisture content, but the question is how it is 

changing and to what extent it is driving spectral signatures in satellite imagery? More 

research is needed to elucidate how mosses influence satellite imagery and how that may 

impact NDVI (productivity) driven models. The results of this study will be particularly 
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timely as warming trends across the globe are exacerbated in arctic systems, because of 

their inherent geographical and surface properties [69]. The Arctic is currently warming 

at twice the rate of the global average, rapidly changing the tundra biome in diverse 

ways, where habitat shifts are complex and are heavily dependent on permafrost thaw and 

topography, among other physical and chemical characteristics [70-72].  

As a result of widely varying environmental characteristics such as precipitation 

(rain and snow), vegetation community composition, permafrost, and warming trends 

across the tundra biome, understanding the ecological response to climate change 

projections is challenging [73-76]. Despite models that predict overall increasing 

precipitation in the Arctic, most of the increases are expected to fall as snow in winter 

and fall, as opposed to rain during the growing season, which can significantly hinder the 

available moisture to tundra plants and mosses [77]. Decreased growing season 

precipitation rates coupled with changes in precipitation patterns, increased 

evapotranspiration, thawing permafrost and subsequent lower water tables have the 

potential to seriously alter available moisture to mosses and tundra plants in the future 

Arctic [78-81]. Ecosystem models of how tundra will respond to these climate changes 

that use inputs from remote sensing will need accurate interpretation of those inputs for 

the best possible projections. 

I.10 – Statement of Research Objectives and Hypotheses  

The purpose of my thesis research is to evaluate the spectral changes that occur in 

mosses as a function of moisture content and find the best predictors for moisture 

content. For this research to be useful to real-world applications, classification of mosses 
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from mixed pixels will be crucial, thus (while beyond the scope of my thesis) regions for 

potential classification were also explored by comparing against vascular plant spectra. 

To build moss moisture-spectral index relationships, I conducted a lab-controlled drying 

experiment using field grown moss slabs during which spectral reflectance in the range 

from 350-2500 nm and moss moisture content were measured periodically as the moss 

dried down. Additionally, I examined vascular plant spectra in situ and compare them to 

moss spectra to search for unique spectral features for classification potential. Finally, I 

conducted a pilot study examining the effects of a short-term moisture fluctuation of in 

situ small-scale community-level vegetation on hyperspectral reflectance to test whether 

mosses can significantly drive community level spectra. 

 

The following objectives were designed to explore the effects of moisture content 

on moss reflectance and to potentially classify mosses from vascular plants. 

O1: Model the behavior of various spectral indices as a function of moisture 

content to find the best predictors. 

O2: Explore moss and vascular plant spectra to find regions for potential 

distinguishing characteristics which can be used in classification analysis. 

O3: Test whether mosses significantly drive community-level spectra in response 

to short-term moisture fluctuations. 
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II. Methods 

II.1 - Site Description and Sample Collection 

The study was conducted using samples collected at Imnaviat Creek 

(68°36’56.25” N, 149˚18’21.17” W) near Toolik Arctic Field Station on the North Slope 

of Alaska. Tussock tundra, moist/wet acidic tundra, sedge tundra, and shrub tundra are 

just some of the communities present in this region and are representative of the 

vegetation communities across the Low Arctic (detailed vegetation community 

information can be found in Walker et al (2005) [60]). The low arctic has vegetation such 

as woody shrubs and willows that cannot grow in the high arctic where conditions are so 

harsh, that vegetation is typically limited to small flowering plants, grasses, mosses, and 

lichens. The dominant moist acidic tussock tundra community primarily consists of the 

graminoids Eriophorum vaginatum (tussocks) and Carex bigollowii, deciduous shrubs 

(Betula nana and Salix pulchra), evergreen shrubs (Ledum palustre, Vaccinium vitis-

idaea, Cassiope tetragona), forbs (Petasites frigidus, Rubus chamaemorus) and 

bryophytes (mixed pleurocarpous moss spp. and Sphagnum spp.) and lichens (Cladonia 

spp. Dactylina spp.).  The moss species found in mixed pleurocarpous communities 

(primarily Hylocomium splendens and various Aulacomnium spp. and Dicranum spp.) 

have either a cosmopolitan or circumpolar distribution and as a mixed community range 

in color from dull brownish green with hints of red to bright green depending on species 

present. The sphagnum species Sphagnum capillifolium [61] while S. lenense is limited 

primarily to North America/Greenland. Their color can range from green to orange and 

red depending photoprotective pigments present in the leaf tissue [43]. Despite their size, 
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these different moss species can form prominent homogenous patches in the inter-tussock 

spaces and at the tops of hummocks in addition to widespread heterogenous communities 

in the fine matrix of the understory[62].  

Slabs of 12 orange colored sphagnum moss (OS) (n=12) (Sphagnum fuscus or 

lenense), 12 mixed pleurocarpous communities (MP, mostly Hylocomium splendens, with 

various Aulacomnium spp. and Dicranum spp. mixed in), and 14 red-colored sphagnum 

(RS, Sphagnum capillifolium) were harvested from the north side of Imnaviat Creek on a 

moderate slope ~ 920 m.a.s.l in July 2020 near peak season.  The different moss samples 

were selected to be representative of moss communities found in these habitats 

(Toolik.alaska.edu). Reflectance scans (350-1,050nm) of the subset of each moss type (n 

= 5-8) were taken with internal halogen light source at 100% as baseline spectra with a 

UniSpec-SC spectroradiometer (PP Systems, Amesbury Massachusetts, USA) shortly 

after collection.  Moss samples were moistened, wrapped up in cellophane to retain 

moisture, and shipped back to the laboratory at Florida International University (FIU).  

II.2 - Sample Handling and Maintenance  

Upon arrival, samples were placed in environmental growth chambers at ~15°C 

under fluorescent cool white light with 18-hour photoperiod and kept well hydrated using 

deionized (DI) water for several days prior to shipment to the University of El Paso 

Texas (UTEP) where a full solar range spectroradiometer (350-2,500nm) was available 

for our use.  Slabs were prepared for shipment to UTEP by first carefully removing 

vascular plants from the moss and then cutting them to 10 x 10 x 8 cm squares and snugly 

http://toolik.alaska.edu/
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placing them into plastic food containers of the same dimensions. Once samples arrived 

at UTEP (overnight shipping), they were given a 14-day acclimation period prior to the 

start of the experiment and vascular plants that may have re-sprouted were removed. 

During this period, a 1,000 W LED full spectrum grow lamp (Parafacts Works, 

Shenzhen, China) was placed ~1 m above the samples to provide sufficient light to 

maintain moss photosynthesis without damaging the samples. Samples were watered 

daily with DI water. 

II.3 - Instrumentation and Measurements 

II.3a Moss Drying Experiment 

To start the experiment, moss slabs were allowed to saturate with DI water for 2 

hours, then excess moisture was drained off. At each measurement interval taken 

approximately every ~5%-10% of mass loss, mass, high resolution digital photographs, 

reflectance using the full range spectroradiometer, and moisture content were collected. 

Mass was measured using an AccuWeight Digital Scale and a VWR® P-Series Portable 

Balance and averaged. Moisture content was measured using an EC-5 soil moisture probe 

connected to a Decagon ECHO Check EC3528 (Decagon Devices, Pullman WA) and 

was collected in Analog to Digital RAW format to build my own calibration curves. Full 

range spectral reflectance was taken using a HR-1024i VIS-SWIR spectroradiometer 

from Spectra Vista Corporation (Spectra Vista Corporation, New York, USA) with the 

light source on high (spectral resolution: 3.3 nm, 700 nm; ≤ 9.5 nm, 1500 nm; ≤ 6.5 nm, 

2100 nm; noise equivalence radiance: ≤ 0.8 x 10-9 W/cm2/nm/sr @ 700 nm, ≤ 1.2 x 10-
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9 W/cm2/nm/sr @ 1500 nm, ≤ 1.2 x 10-9 W/cm2/nm/sr @ 2100 nm). For each sample, 

four measurements (footprint ~ 4.6 cm2) per slab were taken and averaged to reduce 

variability across each specimen. Once the samples stopped losing any measurable 

weight, they were re-saturated (excess rinsed off) and two more days of the full suite of 

measurements were collected. Finally, samples were oven dried at 55 °C, and final dry 

weight and moisture content (for calibration) was recorded.  

II.3b Vascular Plant Spectra 

Vascular plant spectra were collected in the field at the Imnaviat creek site during 

the summers of 2020 and 2021 using the same HR-1024i VIS-SWIR spectroradiometer 

with the light source on high (for less noisy scans) and the leaf clip attachment engaged. 

Seven common arctic vascular plant species were measured; Betula nana (n=14), Salix 

pulchra (n=15), Petasites frigidus (n=5), Vaccinium vitis-idea (n=10), Arctous alpina (n= 

10), Empetrum nigrum (n=9), Eriophorum vaginatum (n=5) leaves were each measured 

haphazardly during peak season under ambient moisture conditions. The resultant data 

were compiled into a spectral library in the R statistical environment (R Core Team, 

2017, Vienna, Austria) using the ‘hsdar’ package for comparison with the moss sample 

spectra [63].  

 

 

 

https://www.sciencedirect.com/science/article/pii/S0034425718301986#bb0245
https://www.sciencedirect.com/science/article/pii/S0034425718301986#bb0245
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II.3c Community-level Rehydration Experiment 

In this in situ study conducted at Imnaviat Creek in July 2021, three 25 cm 

diameter plots at the tops of hummocks where sphagnum mosses (Sphagnum 

capillifolium, Sphagnum lenense, and Sphagnum angustifolium) had naturally dried out 

were selected. Using the HR-1024i VIS-SWIR spectroradiometer, plot-level, moss-level, 

and leaf-level reflectance measurements were taken before and after the addition of ~ 150 

ml of water per plot to rehydrate the moss. After ~ 30-60 minutes (to allow the water to 

permeate the moss layer), plot-level, moss-level, and leaf-level measurements were 

repeated. Moss-level and leaf-level measurements were collected with light source on 

high and white reference.  

II.4 - Analysis Approach  

II.4a Moss Drying Experiment 

Analyses were performed in the R statistical environment (R Core Team, 2017, 

Vienna, Austria) using the ‘hsdar’ package to analyze the high-resolution spectral data 

[63].  The spectra collected at each drying interval were divided into 10% moisture 

brackets. The four spectral scans for each replicate for each species were averaged before 

creating a spectral library (originally 2,888 scans were averaged to 722 spectral scans, ~ 

240 per species during the drying experiment). The ‘vegindex’ function was used on the 

spectral library to extract an array of spectral indices. These indices were then tied to the 

experimentally collected supplementary data to manipulate the data frame to explore 

moisture-spectral index correlations and relationships.  The indices which were 

https://www.sciencedirect.com/science/article/pii/S0034425718301986#bb0245
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investigated here were: NDVI, WBI, NDWI, NDII, and MSI as described in table 1. It is 

important to note that NDWI refers to one of a minimum of two spectral indices 

concerned with water. One is (Green – NIR)/(Green + NIR) which is useful for indicating 

the amount of water in a water body, and the one used here which is (NIR – SWIR)/(NIR 

+ SWIR) which provides information of moisture in the leaves of vegetation. The 

objective was to first determine that a correlation between moisture content and indices 

existed before determining the shape of the relationship. After determining that the 

relationship between various indices of interest and the moisture content were mostly 

non-linear, a mixed model repeated measures analysis was performed (with random 

effects on the replicates), both for individual moss types separately and all types grouped 

to determine which index performed best using the moisture content by percentage as the 

predictor or explanatory variable and the index as the response variable. Various models 

were tested, such as linear, decay, and sigmoidal functions such as the logistic and 

Gompertz functions. The shape of the relationship between the spectral indices and 

moisture content was generally sigmoidal in nature with some exceptions and the 

Gompertz function best fits the theoretical data distribution of the limits of these bounded 

indices which we expect to be sigmoidal in nature (either symmetric or asymmetric of the 

inflection point, logistic and Gompertz respectively).  

 First, the indices data frame was randomly split into training and testing datasets 

at 70% and 30% respectively. The ‘drc’ package in R, coupled with the ‘aomisc’ package 

(self-starters for nonlinear analysis) were primarily utilized. Models were generated using 

the training data and then validated using the testing data. Plots were created with the 

predicted values and the 95% confidence interval for visual interpretation. A linear 
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regression was performed between the observed and predicted spectral index values, and 

the R2 was recorded. Akaike Information Criterion (AIC) was used to determine which 

model performed best for each species and index.  

II.4b Moss and Vascular Plant Spectral Comparisons 

 Analyses were performed in R statistical environment (R Core Team, 2017, 

Vienna, Austria) using the ‘hsdar’ package with the high-resolution spectral data. Moss 

and vascular plant spectral scans were averaged by species and plant type and the 

resulting data frame was used to create a combined spectral library. To calculate the first 

and second derivative spectra, the ‘derivative.speclib’ function in the ‘hsdar’ package 

was used, and to produce less noisy derivatives, spectra were smoothed with the 

‘Savitzky-Golay-Filter’ first [63]. Visual interpretation was used to identify the positions 

of the derivatives of interest based on the graphical illustration.  Red edge parameters 

were also calculated using the ‘rededge()’ function in the ‘hsdar’ package to compare 

with the derivative spectra [63]. 

II.4c Community-level Rehydration Experiment 

Hypothesis for Objective 3: Moisture content of the moss layer in a community-level plot 

(vascular and non-vascular plants intermixed) significantly drives spectral reflectance and 

influences key metrics such as NDVI, NDWI, and MSI. Vascular plants will not change 

in the short-term, but the community-level reflectance will change significantly in 

response to short-term rehydration, driven by the mosses. 

https://www.sciencedirect.com/science/article/pii/S0034425718301986#bb0245
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The resultant data from the field study were compiled into a spectral library in the 

R statistical environment (R Core Team, 2017, Vienna, Austria) using the ‘hsdar’ 

package to extract indices and for graphical representation [63]. Boxplots were made 

comparing the two different moisture levels (wet and dry) of the three different plant 

groups (moss, vascular, and community-level). To determine whether significant 

difference in spectral indices (NDVI, NDWI, and MSI) between a dry and wet group 

existed, a paired student t-test (after normality was tested) was used between each 

moisture level for each plant group and then repeated for each index.  

III.  Results  

III.1 - Spectral Profile at Varying Moisture Contents  

Both red S. capillifolium (RS) and orange S. lenense (OS) reflectance in the 

visible range, particularly in the red and orange (597nm-740nm), increased from ~4% to 

~15% for RS and ~5% to 18% for OS as the moss dried (Figures 1, 2). Large difference 

Figure 1: S. capillifolium (RS) spectra divided into moisture brackets. 

Note the small, but noticeable, differences in the green and red and 

large differences across the NIR and SWIR. 

https://www.sciencedirect.com/science/article/pii/S0034425718301986#bb0245
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in the NIR/SWIR were observed as all three moss types dried (Figures 1, 2, 3).  For both 

S. capillifolium and S. lenense, reflectance level from ~1,400nm to 2,500nm increases 

from ~ 5% when saturated to between 40%-60% as the moss samples lost moisture. 

Between ~1900nm-2500nm, large changes were observed when percent water is 60% and 

below, and three peaks in the region appear, becoming more pronounced when ~40% and 

below. Very similar prominent absorption peaks are present in the NIR for both 

sphagnum species. These peaks dissipate as the sample approaches complete desiccation. 

 

Figure 2: S. lenense (OS) spectra divided into moisture brackets. Note the 

small, but noticeable, differences in the green and red and large 

differences across the NIR and SWIR. 
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The spectra of the mixed pleurocarpous (MP) community did not exhibit as extreme 

changes in the visible or red edge region of the spectra as were noted in S. capillifolium 

and S. lenense.  However, absorption in the green and red did slightly decrease with 

continued 

drying. 

Following the 

red edge 

transition zone 

into the near 

infrared, 

separation of 

moisture brackets 

was noted from approximately 900nm to 2500nm. The absorption peaks in the NIR and 

SWIR region were similar to those of S. capillifolium and S. lenense, though the 

magnitude of reflectance was not as high (~20% lower reflectance from the NIR to 

SWIR).  

III.2 - Correlation of Moisture Content to Spectral Reflectance Indices 

 All four moisture indices were strongly correlated with moisture content (Table 

2).  Sphagnum capillifolium had the best correlations across all indices. For NDVI, S 

capillifolium had the strongest correlation with S. lenense not far behind, and the mixed 

pleurocarpous moss had moderate correlations (Table 2). As moisture increased, NDVI 

increased most with S capillifolium and S. lenense and only moderately with the mixed 

Figure 3: Mixed pleurocarpous community (MP) spectra divided 

into moisture brackets. Note the much smaller, but noticeable 

differences in the green and red and still large differences across the 

NIR and SWIR (not as large as sphagnum spp.) 
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pleurocarpous community. While the two NIR indices, WBI and NDWI, were strongly 

correlated with moisture for individual species and the combined mosses, the SWIR 

indices, MSI and NDII, were more strongly correlated. 

 

Table 2: Summary of Spearman Rank Correlations of Spectral Indices. Results for each 

moss type (red sphagnum RS, orange sphagnum (OS), mixed pleurocarpous (MP), as 

well as all types grouped (Combined), for each spectral index, along with p-value of the 

Spearman correlation test. 

Spectral  

Index 

Property 

Sensed 
RS OS MP Combined 

Normality 

By Group 

p-

value 

NDVI Greenness 0.83 0.73 0.57 0.65 N,N,Y, N 
2.2E-

16 

WBI Moisture -0.91 -0.77 -0.80 -0.80 N,N,N,N 
2.2E-

16 

NDWI Moisture 0.91 0.80 0.85 0.81 N,N,N,N 
2.2E-

16 

NDII Moisture 0.91 0.83 0.87 0.84 N,N,N,N 
2.2E-

16 

MSI Moisture -0.91 -0.84 -0.87 -0.85 N,N,N,N 
2.2E-

16 

 

III.3 – Nonlinear Modeling of Indices as a Function of Moisture Content 

 The parameters listed in Table 3 correspond to the logistic four parameter 

equation, Y=c + ((d-c))/(1+exp(-b(X-e))) and the Gompertz four parameter equation is 

Y=c+(d−c)exp{−exp[−b(X−e)]} where coefficient 1, 2, 3, and 4 corresponding to b, c, d, 

and e respectively (see table 3 for description of each coefficient, logistic model shown). 

AIC values were compared across the row for each index to determine which function 

best modeled the index behavior (the lower the AIC, the better the model). Given the 

theoretical distribution of the bounded indices being sigmoidal in nature, the logistic and 
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Gompertz models performed best for each index, with the Gompertz model generally 

providing the better model (Table 4). The AIC scores cannot be compared across species 

or spectral indices, only across the same species and index. Based on the regressions 

shown in Figure 4 and 5 using the test data however, it appears that NDWI and NDII 

performed best among indices when predicting the spectral index given the moisture 

content for all individual species as well as for all the mosses combined.  

NDWI has the added benefit of having positive and negative values at the extreme 

ends of moisture content. For example, to generalize for both S. capillifolium and S. 

lenense, NDWI values that are negative correspond with dry moss (<50% moisture 

content) and values which are positive corresponded with wet moss (>50% moisture) 

(Figure 4). This rule can be useful for remote sensing because it can indicate whether 

moss are wet or dry at their surface, and sphagnum species in particular strongly shift 

spectral characteristics once they reach ~50- 60% moisture content, as in III.1 and 

observed by May et al (2018) [16]. All moisture indices were significant in predicting 

moisture content of the mixed pleurocarpous moss, but NDWI again appeared to 

performed best (Figure 5).  

The logistic model for mixed pleurocarpous NDVI did not perform well because 

there was large variation and small changes relative to moisture content, but modeling it 

with a linear model did produce significant results which is in agreement based on 

previous studies [16] (results not shown). However, for S. capillifolium and to a lesser 

extent S. lenense, NDVI did have a significant relationship with moisture content and the 

Gompertz model did best. WBI and MSI performed well at very high moisture contents 
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but had heteroskedastic behavior at low moistures for all moss communities (Figure 4 & 

5) whereas NDWI and NDII performed reasonably well across the whole curve.
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Table 3: Summary of Nonlinear Logistic Models. Results for each moss type S. capillifolium - red sphagnum (RS), S. 

lenense - orange sphagnum (OS), mixed pleurocarpous (MP), as well as all types grouped (mixed moss = MM), for 

each spectral index. **** denotes all parameters were 0.0001 significant, ***(n) signifies that three parameters were 

*** significant, and one was a different level of significance. *** = 0.001, ** = 0.01, * = 0.05, ‘.’ = 0.1. Coefficients 

for the logistic formula are listed and their corresponding species are to the right. Residual Square Error = RSE, Lack-

of-Fit = LoF, Observed vs Predicted = O vs P 

Coefficient 1 Coefficient 2 Coefficient 3 Coefficient 4 

Logistic 4 par equation Slope of inflection pt Lower asymptote Higher asymptote ED50

Parameter p-value **** ***(**) ***(0) ***(**) -10.7637164 0.472049 0.7432493 0.4244433 RS

RSE 0.058 0.097 0.8 0.11 -14.82607 0.333415 0.628463 0.52022 OS

LoF p-value 0.19 0.62 0.97 0.55 -21.4231247 0.4048372 0.5335237 0.599486 MP

AIC -400 -230 -311 -636.3 -10.346728 0.401152 0.652931 0.521862 MM

O vs P adj R^2 0.72 0.52 0.25 0.38

O vs P param p-value **** **** **** ****

O vs P p-value 0 0 0.0001 0

Parameter p-vaue **** **** ***(*) **** 5.483199 0.829819 1.236585 0.415002 RS

RSE 0.058 0.033 0.039 0.0717 14.241342 0.907855 1.176796 0.537161 OS

LoF p-value 0.81 0.04 0.55 0.5 4.724458 0.910096 1.137342 0.774766 MP

AIC -401 -306 -518.9 -1001.7 8.2788696 0.8976756 1.1634439 0.5423116 MM

O vs P adj R^2 0.76 0.83 0.84 0.73

O vs P param p-value ***(**) ***(**) **** ***(0)

O vs P p-value 0 0 0 0

Parameter p-vaue **** **** ***(*) **** -6.829037 -0.200366 0.199978 0.47759 RS

RSE 0.0436 0.0558 0.0294 0.07 -12.385312 -0.200462 0.111059 0.536963 OS

LoF p-value 0.6 0.36 0.25 0.48 -5.4977767 -0.2002599 0.0741198 0.7124077 MP

AIC -481 -372.4 -597.3 -1024 -7.66242 -0.197433 0.129228 0.558243 MM

O vs P adj R^2 0.9 0.86 0.88 0.76

O vs P param p-value  ***(0) ***(*)  ****  **** 

O vs P p-value 0 0 0 0

Spectral Index RS OS MP

NDVI

WBI

NDWI

MM
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Table 3 continued: Summary of Nonlinear Logistic Models. Results for each moss type S. capillifolium - red sphagnum 

RS, S. lenense - orange sphagnum (OS), mixed pleurocarpous (MP), as well as all types grouped (mixed moss = MM), 

for each spectral index. **** denotes all parameters were 0.0001 significant, ***(n) signifies that three parameters were 

*** significant, and one was a different level of significance. *** = 0.001, ** = 0.01, * = 0.05, ‘.’ = 0.1. Coefficients for 

the logistic formula are listed and their corresponding species are to the right. Residual Square rror = RSE, Lack-of-Fit 

= LoF, Observed vs Predicted = O vs P 

Coefficient 1 Coefficient 2 Coefficient 3 Coefficient 4 

Logistic 4 par equation Slope of inflection pt Lower asymptote Higher asymptote ED50

Parameter p-vaue **** **** **** **** -7.905406 -0.253042 0.620332 0.463232 RS

RSE 0.0748 0.0848 0.0602 0.1319 -12.405603 -0.23061 0.55341 0.550445 OS

LoF p-value 0.32 0.34 0.1 0.48 -6.235663 -0.245487 0.419113 0.695122 MP

AIC -327.7 -264.7 -392.2 -496.6 -8.190237 -0.240868 0.528313 0.553465 MM

O vs P adj R^2 0.96 0.94 0.91 0.85

O vs P param p-value ***(0) ***(0) ***(0) ****

O vs P p-value 0 0 0 0

Parameter p-vaue **** **** **** **** 10.574008 0.219046 1.571886 0.386119 RS

RSE 0.1663 0.2045 0.144 0.2258 13.283107 0.244714 1.585135 0.499531 OS

LoF p-value 0.46 0.0345 0.08 0.053 6.916012 0.391178 1.609046 0.586677 MP

AIC -100.5 -37.4 -142.5 -52.2 9.375027 0.292081 1.586862 0.485024 MM

O vs P adj R^2 0.92 0.88 0.9 0.84

O vs P param p-value ***(.) ***(*) ***(**) ****

O vs P p-value 0 0 0 0

MSI

Spectral Index RS OS MP MM

NDII
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Figure 4: Gompertz model predictions on testing dataset for S. capillifolium (red sphagnum) (A) and S lenense 

(orange sphagnum) (B). X axis is moisture content and Y axis corresponds to the values for each respective 

index. Predicted model and C.I 95% in red. 

 

             NDVI     WBI                 NDWI         NDII          MSI 

A 

B B B B B 

A A A A 



29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             NDVI           WBI                 NDWI        NDII   MSI 

Figure 5: Gompertz model predictions on testing dataset for mixed pleurocarpous moss (MP) (A) and mixed moss 

(MM) (B). X axis is moisture content and Y axis corresponds to the values for each respective index. Predicted model 

and C.I 95% in red. 
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 AIC Values 

Indices/Models Linear Decay Logistic Gompertz 

RS 

NDVI -375.6 -380.1 -400.2 -400.2 

WBI -393.7 -396.8 -401.8 -400.4 

NDWI -460.7 -459.6 -485 -487.2 

NDII -267.2 -270 -329.5 -334.7 

MSI -28.9 -54.2 -104.9 -98.4 

OS 

NDVI -219.6 -216.2 -229.7 -229 

WBI -275.6 -271.4 -306.5 -305.8 

NDWI -328.6 -319.4 -372.8 -374.2 

NDII -169.3 -161.6 -266.2 -264.9 

MSI 24 26.8 -37.4 -35.4 

MP 

NDVI -317.3 -313.7 -315.6 -314.1 

WBI -504.5 -500 -518.6 -500.5 

NDWI -546.1 -535.4 -591.1 -592.5 

NDII -311 -301.2 -382.7 -382.7 

MSI -102.5 -98.8 -132.9 -131.4 
 

 

 

 

 

 

 

 

 

Table 4: AIC summary chart for all three species and all five indices. RS = S. 

capillifolium, OS = S. lenense, MP = mixed pleurocarpous community. 
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III.4 - Moss and Vascular Plant Spectral Comparisons 

III.4a – Investigating Derivative Spectra 

Spectra for each species were averaged together (RS: n = 80, RS.D: n = 96, OS: n 

= 62, OS.D: 85, MP: n = 58, MP.D: 85, MM: n = 200, VP: n = 68) and were plotted to 

visualize moss under hydrated (>70% ) and desiccated (<30%) conditions and vascular 

spectra under moist field conditions (Figure 6).  

Given the similarities in the three moss community spectra, spectral reflectance 

scans (n = 200 for wet mosses, n = 266 for dry mosses) of moss samples (all three 

communities combined and vascular samples (n = 68) (all 7 species combined) were 

averaged together, and 95% confidence intervals were calculated and plotted (Figure 7). 

Figure 6: Average spectral signature by group. RS = red sphagnum, RS.D = red 

sphagnum dry, OS = orange sphagnum, OS.D = orange sphagnum dry, MP = 

mixed pleurocarpous, MP.D = mixed pleurocarpous dry, MM = all moss types 

combined, and VP = vascular plants. 
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Upon visual inspection, the red edge leading into the NIR region was selected for further 

analysis because of the obvious difference in slope between the moss and vascular plants.  

The raw, first and second derivative spectra were compiled, and the full range 

spectra were reduced to 600nm to 1000nm and plotted for better visualization (Figure 8). 

The first derivative reaches its peak and the second derivative is equal to zero when the 

blue vertical line (moss) is centered at 697nm and the green vertical line (vascular) is 

centered at 709nm, demonstrating a significant shift in the location of the inflection point 

between the vascular plants and mosses. 
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analysis. 
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Figure 8: Zero derivative spectra (A) and first (B) and second derivative (C) spectra for 

mixed mosses (MM, blue) and Vascular Plants (Vascular, green). In A, the blue and red 

circles are the red edge minima, inflection, and shoulder (as calculated by 

‘hsdar::rededge()’. The red horizontal line is set to y = 0 to visualize where inflection point 

is found. 
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The difference in the shifted red edge inflection point (REIP) of moss and 

vascular plants in this experiment was 12nm. Furthermore, the first derivative of the 

vascular plants remaining at zero corresponds with the plateau in the raw vascular spectra 

after the red edge leading into the NIR. However, the first derivative of the moss remains 

positive from ~ 680nm all the way to ~930nm, corresponding with the increasing slope of 

the zero-derivative spectra of mosses from the red edge to the NIR. Given these two 

separating features to distinguish between endmember spectra of moss and vascular 

plants, differentiation between spectra and identification of unknown spectra is likely.  

 

III.4b – Investigating Red Edge Parameters 

I calculated the red edge 

parameters for all three moss types 

combined and for all vascular plant 

species combined using a different 

method (rededge function in hsdar) for 

comparison. The moss red edge 

shoulder position (RESP) occurred at a 

significantly lower wavelength with 

average RESP ~ 723.5nm, whereas the average vascular plant red edge shoulder position 

was ~ 778.0nm (Figure 9). When the moss types were compared among each other, the 

Figure 9: Boxplot comparing moss and 

vascular plant RESP. 
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RESP of the mixed pleurocarpous community mean was ~ 719.5nm, OS mean was 

~729nm, and RS mean was ~ 727nm (Figure 10). 

The RESP was chosen 

because the difference between 

vascular and moss samples was 

greatest compared to REIP and the 

red edge minima. Interestingly, the 

REIP which was determined via 

derivative spectra as previously 

discussed, and the REIP calculated 

by the ‘rededge()’ function were slightly different, with the automated calculation for 

moss and vascular plants occurring at 701nm and 704 nm respectively, showing a much 

narrower range. This is likely the result of the ‘rededge()’ function being built under 

Figure 10: Boxplot comparing the 

red edge shoulder of MP (n=136), 

RS (n = 151), and OS (n = 141).    
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Figure 11: Boxplot comparing different amounts of high and low moisture content 

between the three different communities. High moisture >50%-100%, low 

moisture <0-50% (left), High moisture >80%-100%low moisture <0-20% (right).    
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spectral assumptions for vascular plants, whereas we can see that moss spectra in this 

range differs significantly (Figure 5). RESP was largely unaffected by moisture status 

(except at extreme differences), which is useful as an identifier of moss regardless of 

hydric status (Figure 11).  

III. 5 – Evaluation of Potential Changes in Moss Spectra in Response to Shipping and 

Handling 

Due to the life altering Covid-19 pandemic, the original planned experiment for 

my thesis was not able to be carried out in the field as intended.  That experiment would 

have been comparable the pilot community rehydration study of 2021. As a result of 

mandatory quarantine procedures from the State of Alaska and Toolik Field Station, my 

2020 field season was shortened to only 11 days instead of 90+ days. The constraints of 

time and unfortunate bad weather in the field during my stay necessitated that another 

experiment be devised that would use lab measurements of field collected samples.  

Those samples, replicate slabs of three moss communities were collected under field 

moisture conditions and scanned for VIS and NIR reflectance spectra prior to shipment to 

the lab at FIU. The samples received no light for several days during shipping while 

being exposed to an unknown range of temperatures. Samples were then placed in growth 

chambers for a few days under simulated field light and temperature conditions to 

recover from shipping. Samples were then exposed to one day of darkness during 

shipping to the UTEP followed by two weeks under grow light spectrum prior to the 

initiation of the drying experiment.   
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III.5a – Spectral Indices Evaluation 

WBI was used to assess the moisture content of pre-shipment samples, collected, 

and scanned under field moisture conditions, and was found to have similar WBI when 

post-shipment mosses were ~ 65-80% saturated (Figure 12a), thus post-shipment samples 

were subset from 65-80% saturation. NDVI was used to assess if there were any spectral 

shifts in greenness associated with shipping and recovery. Comparing NDVI of both 

samples demonstrated that all three moss communities had significantly higher NDVI 

post-shipment (Figure 12b).  

Figure 12: (12a- top row) WBI boxplot comparison of pre and post shipment. 

(12b- bottom row) NDVI boxplot comparison of pre and post shipment. For 

both top and bottom, from left to right is red sphagnum (RS), orange 

sphagnum (OS), and mixed pleurocarps (MP). 
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This was very likely because the samples were collected in the field at slightly 

above freezing temperatures towards the end of the growing season and placed into a 

warmer environment with subdued lighting and ample moisture thus encouraging growth.  

Previous studies have shown that Sphagnum species from the Toolik region are 

photoinhibited under open light conditions [65, 66].  The increased greenness of the 

samples post-shipment likely represents reduction and photoinhibition and loss of 

photoprotective pigments typically found in tundra grown Sphagnum.  As a result, 

caution should be taken when considering the pigmented portion of the spectra (400nm-

700nm), however, the NIR and SWIR portions of the spectra should theoretically not be 

negatively impacted because those portions of the spectra are much more sensitive to the 

attenuation of light of water molecules. Whether the NDVI differences observed are a 

result of sample size is unknown (pre-shipment: n =5-8 vs post-shipment: n = 12-14).  

III.5b – Red edge parameters 

There was a large difference in the RESP between post-shipment (mean ~ 725nm) 

and pre-shipment moss (mean ~ 760nm) (Figure 13). The difference in pre and post 

shipment moss may be the result of shipping/handling and growing conditions as 

described 

in III.5. 

  

Figure 13: Boxplot comparing the pre-shipment moss (n = 50), 

post shipment moss and vascular plants (n=68).  
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III.6 – Community-level Rehydration Experiment 

In situ Community-level, moss-level, and leaf-level spectral reflectance were 

collected for three difference moss species (n=3) and each group of measurements were 

averaged together (moss, vascular, and mixed at both moisture levels) (Figure 14). Both 

moss and vascular spectra were similar to the lab collected spectra, although the mosses 

differed in the VIS more than in the in-situ samples with higher reflectance % at both wet 

and dry conditions. The in situ vascular spectra surprisingly did show that short-term 

moisture changes could be detected in the NIR, but the REIP appeared unchanged. The 

difference between dry and wet Community-level spectra, indicated that mosses were 

significantly driving the community-level spectral signature because the three peaks in 
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the SWIR (1,900nm-2,500nm) appear to large degree in the dry moss and to a lesser 

degree in the dry community-level spectra, while the vascular plants in that region do not 

change. However, when wet, both moss and community-level spectra decrease in 

intensity, and the three peaks present in the SWIR disappear. The community-level 

spectrum appears slightly jagged because it was collected under ambient sunlight 

conditions with troughs likely from atmospheric absorption, whereas the vascular and 

moss spectra were collected with a constant light source. The shape of the moss spectra, 

both wet and dry, may have differed slightly because of the time of year and growing 

conditions in which the spectra were collected in situ vs collected for the lab experiment. 

Indices were derived from the spectra for further analysis. NDVI of the the moss 

samples changed significantly (p-value = 0.006469,  n = 3, mean diff = 0.13) and 

community-level samples changed moderately (p-value = 0.08, mean diff = 0.11) in 

response to rehydration as determined by a paired Student t-test (Figure 15). Both the 

Figure 15: Boxplot showing NDVI differences between wet (W) and dry (D) 

conditions of the three groups (Mix or community, moss, and vascular plants). 

Vascular plants remain unchanged (p > 0.05), but the moss and community-level 

increase significantly (p < 0.05) with the addition of moisture.  
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community and the moss NDVI increased following the addition of water. However, 

NDVI of the vascular plant samples was unaffected by the short-term moisture change 

(p-value = 0.4138, n = 3, mean diff = 0.03). Given that NDVI values in tundra are already 

low, a change in 0.1 can be mistaken for increases in LAI and green biomass used for 

phenological studies when in fact, moisture content of mosses were likely driving the 

change. This result indicates that timing of remote sensing and investigating the moisture 

indices is crucial for acurate interpretation of spectra in arctic regions where mosses may 

drive the spectral signal.   

Likewise, NDWI of the community and the moss samples also increased 

significantly (p-value = 0.03335 and 0.001145 respectively, n = 3, mean diff = 0.12 and 

0.17 respectively) in response to the addition of water as determined by paired student t-

test (Figure 16). However, NDWI of the vascular plants was again unaffected by the 

short-term moisture change (p-value = 0.554, n = 3, mean difference = 0.002).  

 

Figure 16: Boxplot showing NDWI differences between wet (W) and dry (D) 

conditions of the three groups (Mix or community, moss, and vascular plants). 

Vascular plants remain unchanged (p >0.05), but the moss and community-level 

increase significantly (p < 0.05) with the addition of moisture.  
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MSI of the community and moss decreased significantly (p-value = 0.021 and p-

value = 0.001 respectively, n = 3, mean diff = -0.41 and -0.64 respectively) in response to 

rehydration as determined by paired student t-test (Figure 17). However, MSI of the 

vascular plant samples was unaffected by the short-term moisture change (p-value = 

0.5937, n = 3, mean diff = 0.01).   

IIII. Discussion 

IIII.1 –  Spectral Reflectance of Mosses During Drying 

Overall, for the three moss communities, large increases in the NIR and SWIR 

were observed as the mosses dried. Changes in the NIR and SWIR region of moss spectra 

have mainly been attributed to physical changes in the plant canopy and are the result of 

moss hyaline cells releasing large amounts of water [11]. The spectral changes observed 

across the entire spectra compare very well with the work of Harris et al. (2005) [48]. 

These results corroborate results from experiments using different species of sphagnum 

Figure 17: Boxplot showing MSI differences between wet (W) and dry (D) 

conditions of the three groups (Mix or community, moss, and vascular plants). 

Vascular plants remain unchanged (p >0.05), but the moss and community-level 

decrease significantly (p < 0.05) with the addition of moisture.  
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from different habitats, demonstrating that despite small differences in overall spectra, 

Sphagnum spp. as a group show similar spectral changes when drying and are distinct 

from that of vascular plants [8, 13-15, 45, 48]. In comparison, the red edge slope of the 

mixed pleurocarpous community appear to have a change in concavity not seen in Bubier 

et al (1997), though other experiments used homogenous H. splendens whereas mine was 

predominantly H. splendens and a mixture of different species [45, 82]. However, 

overall, the shape of the red edge did not change (the amount of reflectance % did) in 

response to moisture fluctuations which enabled identification of a potential classification 

region. 

IIII.2 – Modeling behavior of spectral indices and moisture content of mosses 

For the Spearman rank correlation, Water Band Index (WBI) and Moisture Stress 

Index (MSI) values were very similar to those in Harris et al (2005), although in Harris 

et. al. (2005) WBI was more strongly correlated and here MSI was more strongly 

correlated, but the sphagnum species in each study differed [48]. This result is in 

agreement with May et al. (2018) who found that NDVI of two Sphagnum species 

significantly decreased in response to moisture loss, while the mixed pleurocarpous 

community decreased, but to a far lesser extent [16]. While the two NIR indices, WBI 

and NDWI, were strongly correlated with moisture for individual species and the 

combined mosses, the SWIR indices, MSI and NDII, were more strongly correlated. 

However, although correlation is high, the model is weak, and a mixed model repeated 

measures approach was used to generate a more robust model. While some individuals 

displayed a decay function, the distribution on average was sigmoidal in nature, with the 
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best model for each index being the Gompertz model (asymmetric about the inflection 

point) which aligns with the theoretical distribution of the bounded indices I investigated.   

 Variation in index response existed within species replicates and among spectral 

indices, but in general all were best modeled using the Gompertz function based on AIC 

scores (comparisons across the row, for each model type). The AIC scores can’t tell 

which index performed best between species, however, based on figure 4 & 5, it appears 

NDWI and NDII both modeled the index behavior as a function of moisture content the 

best for all three moss communities. MSI and NDII are useful because they can be 

extracted from multispectral broadband imagery, whereas Normalized Difference Water 

Index (NDWI) may not because multispectral platforms such as Landsat 8 do not have a 

band centered close to 1200nm ([83]). In these cases, MSI and NDII may be the best 

indices to investigate moss moisture content. WBI and MSI performed well at very high 

moisture contents but had heteroskedastic behavior at low moistures (Figure 4 & 5). To 

generalize for both S. capillifolium and S. lenense, NDWI values that are negative 

correspond with dry moss (<50% moisture content) and values which are positive 

corresponded with wet moss (>50% moisture) (Figure 4). Despite being poor at 

predicting the spectral index between ~ 0-20% and ~80-100%, the moss reflectance 

signature at those moisture brackets look very similar indicating that this observation can 

be useful for remote sensing because it can indicate whether moss are wet or dry at their 

surface, and sphagnum species in particular strongly shift spectral characteristics once 

they reach ~50- 60% moisture content, as in III.1 and observed by May et al (2018) [16]. 

All moisture indices were significant in predicting moisture content of the mixed 

pleurocarpous moss, but NDWI again performed best (Figure 5). The logistic model for 
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mixed pleurocarpous NDVI did not perform well because there was large variation and 

small changes relative to moisture content, but modeling it with a linear model did 

produce significant results which is in agreement based on previous studies [16] (results 

not shown). 

 For the mixed moss, all three species grouped together to generalize remotely-

sensed moisture content of mosses, all indices performed reasonably well, but once more 

NDWI and NDII appear to perform best (Figure 5). Ultimately, my results demonstrated 

that moisture indices derived from the NIR region (IR-A: 750nm -1,400nm) were the 

most strongly associated with moisture content, particularly NDWI, across all groups.  

IIII. 3 – Derivative Spectra for Identifying Region for Classification 

Various methodological approaches for spectral differentiability have been 

developed including the use of derivative spectra (see I.7) [57]. Van Aardt (2000), 

demonstrated that first and second derivative spectra were valuable in the separability of 

pine, poplar, and oak trees, as well as separating species within those groups, using 

stepwise, canonical and normal discriminant analysis generating accuracies ranging from 

62% to 100% [64]. My results demonstrate that enough differences between moss and 

vascular plant spectra exist and can be identified using derivative spectroscopy such that 

using a technique such as Spectral Angle Mapper, classification should be highly 

effective. The shift in REIP between mosses and vascular plants coupled with the 

increasing positive slope from the RE into the NIR for the moss samples (compared to a 

sharp RE and plateau for vascular plants) serve as crucial distinguishing characteristics. 

Though beyond the scope of this thesis, several techniques could be used to test how well 
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vascular and mosses can be separated, but here the objective was to determine which 

regions can be used for such approaches. The REIP for mosses from this study was 

similar to that of Bubier et al (1997) who used various different sphagnum and feather 

moss species (Sphagnum species ranged from 0.682-0.704nm and feather mosses from 

0.682-0.684nm) [45]. Moss sample REIP was only slightly different among species and 

as samples dried (results not shown).  Harris et al (2005), reported small shifts in REIP as 

mosses dried, but the REIP shift was typically less than 4nm which would be hard to 

detect with remote sensing platforms with broad bandwidths [48]. High resolution 

multispectral platforms like Sentinel-2 band 5, 6, 7 (central wavelength =704.1nm, 

740.5nm, 782.8nm respectively with each band having bandwidth of 15nm, 15nm, and 

20nm respectively) can likely detect these differences (moss slope positive from 680nm-

~930nm), but hyperspectral platforms such as AVIRIS-NG which have hundreds of 

contiguous bands would be ideal. However, a satellite platform that lacks bands in the RE 

and NIR would not be able to pick up these subtleties, thus when trying to classify and 

study mosses from a satellite sensor platform, care must be taken in selecting the right 

sensor platform which can pick up the key regions in the RE and NIR. (Figure X). 

IIII.4 – Rehydration Pilot Study 

This pilot study was conducted to test whether reflectance changes in mosses as 

affected by moisture content drives plot-level reflectance. In these inter-tussock spaces 

and atop of hummocks, where moss species dominate the fine matrix of the understory 

and sometimes comprise the canopy, we determined that moss reflectance contributes to 

the overall signal significantly. Ecologically important indices such as NDVI at the moss-
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level and to a slightly lesser extent at the community-level, were driven by short-term 

changes in moisture content. Though p-value of 0.08 for the community-level NDVI was 

only moderately significant, this result was likely due to small sample size. A power 

analysis was performed using the mean difference of NDVI and the standard deviation 

and the appropriate sample size to test for significance was determined to be 14.  

MSI and NDWI were found to be highly correlated with moisture content from 

the drying experiment that was conducted earlier. Both these indices show that the moss 

and community-level moisture content could be remotely sensed and that community-

level NDVI may be contingent on what the moisture status of the moss is since the 

vascular plants did not exhibit any significant change in response to short-term moisture 

fluctuations. Upon closer inspection, S. capillifolium and S. lenense community-level 

NDVI both increased significantly (NDVI diff = ~ 0.14 for each), but S. angustifolium, 

did not increase by as much (NDVI diff = ~ 0.02), possibly because of increased canopy 

cover. Mosses drove the community-level spectral signal. Hall et al. (1995) showed that 

sphagnum groundcover was an important component of remotely sensed imagery even in 

habitats dominated by large black spruce (Picea mariana) [67]. Spectral reflectance of 

arctic regions usually does not exhibit the typical plateau in the NIR common in vascular 

plants, likely because of low vegetation height and green leaf area where less 

backscattering of light occurs, and the understory (composed of mosses and lichens) 

reduces NIR reflectance [49, 68]. This phenomenon is exacerbated in the high arctic 

because of the smaller vegetation height and less abundant green vegetation compared 

with the low arctic.  
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Future studies should investigate the effects of canopy cover on mosses overall 

spectral contribution, but expectations would be that under high canopy cover, mosses 

will not have marked influence on overall spectra. However, under no, low or medium 

canopy cover, mosses are driving the spectral signal, most noticeable particularly when 

they are dry, and their relative reflectance is higher compared to vascular plants. Perhaps 

hyperspectral imagery at the beginning of the season prior to leaf-out can be used to 

gauge the understory inhabitants and their relative effects on those same pixels after leaf-

out. With refined mixed models which incorporate endmember spectra of mosses, it may 

be possible to study the abundance and distribution of mosses and how they change over 

time.  This could be accomplished with the use of repeated flight lines of hyperspectral 

sensors at low elevation like AVIRIS-NG or from multispectral daily satellite imagery 

from a platform like sentinel-2 or future platforms as resolution continues to improve. 

More experiments are needed to test whether this phenomenon scales up, nevertheless, 

satellite imagery is becoming so high resolution (Worldview-3: 30cm x 30cm 

panchromatic, 1.24m multispectral) that these small-scale plot level changes should 

eventually be detected. It is possible that even at the large-scale low-resolution platforms 

such as Landsat 8, this phenomenon may be observed when comparing signals before and 

after rain events.  

V. Conclusion 

Given the manner mosses can drive community-level spectra, particularly in the 

NIR/SWIR, large errors may be introduced into productivity models which rely on 

spectral indices such as NDVI. This study underpins the significance of understanding 
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the effects of moisture content in mosses on spectral reflectance when analyzing satellite 

or ariel imagery because of the drastic variation in the spectral profile under varying 

moisture content. Various moisture indices can be used to reliably predict moisture 

content, particularly those derived from the NIR (IR-A) such as NDWI, thus providing 

the remote-sensing specialist valuable information for interpreting their datasets. 

Conveniently, mosses and vascular plants have different spectral characteristics, 

particularly in the shape of the red edge and position of the REIP, which can be used to 

both classify and discriminate unknown spectra. In the sparse canopy of arctic vegetation, 

mixed pixels will generally contain vascular as well as non-vascular plants. The mixtures 

of moss patch sizes and heterogeneity combined with canopy cover make it challenging 

to separate them spectrally. Nevertheless, ever-increasing computational power, higher 

resolution imagery, and AI algorithm methodologies in derivative analysis techniques 

and spectral unmixing will improve precision in mapping vegetation to the species level 

and estimating ecosystem structure and function. Ultimately, it will be possible to 

estimate proportional presence of the endmembers in the mixed pixels [37]. This        

capability will aid in identifying abundances and distributions remotely at a crucial 

tipping point of arctic systems undergoing immense change.  
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