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ABSTRACT OF THE DISSERTATION
DEEP LEARNING FOR MULTICLASS CLASSIFICATION, PREDICTIVE
MODELING AND SEGMENTATION OF DISEASE PRONE REGIONS IN
ALZHEIMER’S DISEASE
by
Maryamossadat Aghili
Florida International University, 2021
Miami, Florida

Professor Malek Adjouadi, Major Professor

One of the challenges facing accurate diagnosis and prognosis of Alzheimer’s Disease
(AD) is identifying the subtle changes that define the early onset of the disease. This
dissertation investigates three of the main challenges confronted when such subtle
changes are to be identified in the most meaningful way. These are (1) the miss-
ing data challenge, (2) longitudinal modeling of disease progression, and (3) the
segmentation and volumetric calculation of disease-prone brain areas in medical im-
ages. The scarcity of sufficient data compounded by the missing data challenge in
many longitudinal samples exacerbates the problem as we seek statistical meaning-
fulness in multiclass classification and regression analysis. Although there are many
participants in the AD Neuroimaging Initiative (ADNI) study, many of the observa-
tions have a lot of missing features which often lead to the exclusion of potentially
valuable data points that could add significant meaning in many ongoing experi-
ments. Motivated by the necessity of examining all participants, even those with
missing tests or imaging modalities, multiple techniques of handling missing data
in this domain have been explored. Specific attention was drawn to the Gradient
Boosting (GB) algorithm which has an inherent capability of addressing missing

values. Prior to applying state-of-the-art classifiers such as Support Vector Ma-
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chine (SVM) and Random Forest (RF), the impact of imputing data in common
datasets with numerical techniques has been also investigated and compared with
the GB algorithm. Furthermore, to discriminate AD subjects from healthy con-
trol individuals, and Mild Cognitive Impairment (MCI), longitudinal multimodal
heterogeneous data was modeled using recurring neural networks (RNNs). In the
segmentation and volumetric calculation challenge, this dissertation places its focus
on one of the most relevant disease-prone areas in many neurological and neurode-
generative diseases, the hippocampus region. Changes in hippocampus shape and
volume are considered significant biomarkers for AD diagnosis and prognosis. Thus,
a two-stage model based on integrating the Vision Transformer and Convolutional
Neural Network (CNN) is developed to automatically locate, segment, and estimate
the hippocampus volume from the brain 3D MRI. The proposed architecture was
trained and tested on a dataset containing 195 brain MRIs from the 2019 Medical
Segmentation Decathlon Challenge against the manually segmented regions pro-
vided therein and was deployed on 326 MRI from our own data collected through
Mount Sinai Medical Center as part of the 1Florida Alzheimer Disease Research

Center (ADRC).
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CHAPTER 1
INTRODUCTION

1.1 Background

Alzheimer’s Disease (AD) is one of the most prevailing cause of dementia. AD is
a progressive and irreversible neurodegenerative disorder that leads to loss of neu-
ral cells, loss of memory, language impairment, and other cognitive and functional
disabilities.

The National Institute on Aging (NIA) and the Alzheimer’s Association provided
guidelines for AD diagnosis. They have defined three main stages for dementia sub-
jects including pre-clinical AD, mild cognitive impairment (MCI), and Alzheimer’s
disease (AD). While subjects in the pre-clinical AD stage do not show significant
symptoms of cognitive impairment, they have noticeable changes in their brain struc-
ture. Subjects in the MCI stage are divided into early MCI (EMCI) and late MCI
(LMCI). Subjects in this group still can perform their daily tasks, but they exhibit
some degree of cognitive impairment. Even though there is a high convergence rate
from MCI to AD stage, this progress can be halted or even reverted for some subjects
[SAB*11, ADD*11, JJAK*11].

AD accounts for 60 to 80 percent of dementia cases [BY11] and it is one of the
leading causes of death in the United States. It is a very common disorder that
afflicts more than 3 million cases per year in the United States alone. As people
are living longer and aging being the main risk factor, the rate of patients with AD
is growing. In 2020 the Alzheimer’s Association announced that without proper
prevention techniques, the number of AD subjects will rise to more than 100 million
worldwide by 2050. Therefore AD research has gained lots of attention in recent

decades to develop effective ways to diagnose this disease in its earliest stage and



to propose or plan for early treatment and intervention protocols. Accurate AD
diagnosis and prognosis is of critical importance, especially for (1) early disease de-
tection through more precise delineation of the Early Mild Cognitive Impairment
(EMCI) group from the Cognitively Normal (CN) control group, and (2) for dis-
criminating possible converter mild cognitive impaired patients from non-converter

subjects [CGT*11a, PMO0bal.

1.2 Motivation and Problem Statement

Early diagnosis of AD, before reaching an irreversible late stage of the disease, is
highly important. New algorithms should be designed to ensure more accurate clas-
sification and prediction of measures that contribute to the transition phases of
the disease, all in order to plan early for treatment and therapeutic interventions
[PM05a, MPG*15a, IMC*17]. However, regardless of the enormous efforts, delin-
eating the early stage of mild cognitive impairment (EMCI) from cognitively normal
(CN) controls remains an open research endeavor. Furthermore, available data for
AD studies usually experience a high number of missing values due to issues re-
lated to subjects missing out on follow-up visits for several personal and health-care
related reasons. Having incomplete samples in longitudinal medical studies is a com-
mon phenomenon, as many patients may miss some of the tests and imaging modal-
ities at a given time step of the study, miss complete visit(s) within the study’s lifes-
pan or simply withdraw because of unforeseen reasons [[IMC*17, DFAT09, SLS™ 14a].

Many studies reported in the literature simply discard subjects with missing
modalities and related measures, which results in considerable loss of valuable in-
formation, reducing as a consequence the statistical significance of the study with

a lesser number of subjects considered. There is great potential that disease diag-



nosis may be improved if the missing parameters could be estimated correctly from
the rest of the available data or modalities. In addition, resolving the missing data
challenge may lead to a better understanding of the disease and to a more reliable
labeling of subjects as Cognitively Normal (CN), Mild Cognitive Impairment (early
and late MCI), or dementia (i.e., AD) from baseline to every visit thereafter when
new data is collected at each time step. Currently, the majority of the classifica-
tion algorithms make use of cross-sectional data involving baseline measurements
for the diagnosis, without regard to any other time point as a reference to disease
progression evaluation and for a more informed decision-making process. To address
this shortcoming, recent studies moved toward longitudinal data analysis and pro-
posed new methods to leverage valuable temporal data by considering the inherent
correlations of such data [DFAT09, SLS*T14a, LHM*10]. Effective mining of AD
in longitudinal studies is also a challenging task, owing to its heterogeneous mea-
surements coming from various sources and modalities, varying length of samples,
missing modalities and tests, small and imbalanced sample data, to name a few.

Projecting a trajectory to gauge in a meaningful way disease progression has been
constrained for a long time due to a lack of sufficient longitudinal data. In recent
decades, ADNI has released a relatively large dataset of AD subjects in longitudinal
studies that range from 5 to 10 years, an incredible feat which is enabling researchers
to focus on progression modeling of the disease.

Alzheimer’s Disease progression is commonly evaluated using biomarkers includ-
ing structural Magnetic Resonance Imaging (MRI), functional Magnetic Resonance
Imaging (fMRI), 18-Fluoro-DeoxyGlucose (FDG) Positron Emission Tomography
(FDG-PET) imaging, Cerebro-Spinal Fluid (CSF), cognitive examination, and to a
lesser extent electroencephalography (EEG) [JPM18, PDHvdF*13, LCD*18]. There

are a group of studies that focus on a single biomarker change in the course of a



time while others consider multiple modalities and combine the different biomarkers
for diagnosis and prognosis.

With the advent of neuroimaging technologies in the past few decades, several
important structural and functional changes in the brain can now be captured lead-
ing to enhanced diagnosis of the different neurological and neurodegenerative dis-
orders. The most informative ones for AD diagnosis are brain anatomical structure
deformation, deposition of protein outside neurons, and deposition of tau protein
inside nerve cells. Hence structural Magnetic Resonance Imaging (sMRI)!, func-
tional MRI (fMRI), and Positron Emission Tomography (PET) became the three
main neuroimaging modalities used for AD diagnosis.

In this dissertation, among the few disease prone regions that are commonly
studied, of interest is the Hippocampus region viewed here as one of the most in-
formative early diagnostic biomarkers of AD and many other neurological and neu-
rodegenerative disorders. Early detection of hippocampus shape changes and accu-
rate measurement of hippocampus atrophy through volume measurements greatly
support the early detection of MCI subjects. MRI has shown to be a promising non-
invasive modality for AD diagnosis via imaging of brain internal structures including
the hippocampus. This neuroimaging modality assists experts to understand brain
anatomical changes including cortical thinning and brain atrophy related to AD.
However experts are required to delineate the region of interest or extract brain
features manually for a variety of clinical applications that rely on hippocampus
volumetric measurements as means to improve disease diagnosis, estimating dis-
ease progression, and assessing subject’s response to treatment and therapy, etc.

[SAB+19].

ISMRI and MRI are used interchangeably in this dissertation



Considering the importance and effectiveness of the MRI modality in the medi-
cal field plus the difficulty and tediousness of manual medical image segmentation,
automatic segmentation, classification, feature extraction, pattern recognition, and
image processing methods have all experienced incredible theoretical and practical
advances in the realm of medicine. This line of research aims to create a fully auto-
mated pipeline that captures the image, detects and segments the organ of interest,
extracts features, classifies the subject and diagnose the disease.

Without any doubt, deep learning has been the most significant breakthrough
of the last decade in several research areas including artificial intelligence, computer
vision, and natural language processing [CVMG™14a, KSH17, HZRS16, RDS*15].
The fundamental concepts of deep learning such as fully connected layer and back-
propagation which date back to the 1980s have gained popularity lately with the
advent of Graphical Processing Units (GPU) and increased processing power of
computers. The release of several large-scale annotated datasets such as ImageNet
(with over 14 million images designed to advance computer vision research)and
COCO dataset (large-scale object detection, segmentation, and captioning dataset)
was another significant contributor to the development of advanced machine and
deep learning methods.

To address the aforementioned challenges and take advantage of deep learning
models as they apply to neuroimaging, especially for AD biomarkers detection,
diagnosis and prognosis modeling, new techniques for multiclass classification and
regression analysis are developed while contending with the missing data challenge

and the segmentation challenge of disease prone areas like the hippocampus.



1.3 Research Objectives and Contributions

The main objectives when studying a given disease have always been early diagnosis,
regression analysis and disease progression, and the planning of effective treatment
plans with the means to gauge pre and post treatment results. A deep understanding
of Alzheimer’s disease calls for a computing environment that integrates multimodal
imaging for structural and functional brain data, neuropsychological testing, genetics
and demographic factors, all linked to a database with common evaluations and
standardized measures that are amenable for multimodal and multi-site studies and
the merging of data across sites. A first part for this kind of research endeavor
relates to the analysis of neuroimaging data to be consolidated with cognitive scores
and other genetic and demographic variables as we seek optimal classification and
regression analysis. The next step is to design algorithms that are amenable to
both cross-sectional and longitudinal studies that can overcome the missing data
challenge.

The interplay of these diverse measures from existing biomarkers is so complex
and in many cases so subtle that, without the advent of new biomarkers, it is quite
complicated to correctly model Alzheimer’s Disease in its different stages. Com-
plex and diverse forms of disease progression in different patients with different
backgrounds, cultures, and medical history, make this problem even more complex.
Therefore biomarker discovery and relevant feature extraction, accurately determin-
ing the decision boundaries of Cognitively Normal (CN) vs. Early Mild Cognitive
Impairment patients (EMCI) , or EMCI vs. Late Mild Cognitive Impairment pa-
tients (LMCI) in a multiclass classification scenario, and precisely modeling the
progression of the disease are three prospective research areas this dissertation aims

to explore. Large neural networks contain a sizeable number of trainable parameters



that in theory can capture the relationships between input-output pairs. However, it
is worth mentioning that deep learning based-approaches although proven to be very
powerful in several fields, their power is drawn from the availability of a huge amount
of data (in the millions and up), which is not particularly true for Alzheimer’s stud-
ies (currently involving fewer than two thousand individuals). However, when the
most relevant features are extracted, high accuracy can be attained even for smaller
samples.

Along this line of thought, the missing data challenge is thus an important
problem that first part of this dissertation addresses for two very important reasons:
(1) to provide added statistical significance with more samples kept in the analysis,
and (2) gauge the effect and merit in their inclusion through the accuracy of the
results obtained.

On the other research front, while one of the most significant biomarkers for early
detection of this disease is the hippocampus region; correct segmentation and vol-
ume estimation of this region of the brain can be of remarkable importance in disease
diagnosis. Therefore, the second part of this research focuses on hippocampus vol-
ume estimation and segmentation with the application of deep learning techniques.
In this research endeavor, a two-stage model is proposed for localization and seg-
mentation of the hippocampus in 3D MRI. In the localization module, a heuristic
model estimates the location of the hippocampus and crops a cube-like structure
surrounding that region. The second module which is a novel segmentation model
is composed of Vision Transformers and UNET architecture with a tailored loss
function for imbalanced segmentation. By integrating these two stages, a fully au-
tomated diagnostic pipeline is designed with minimal need for expert intervention
and for prior preprocessing. More importantly, as another contribution of this dis-

sertation the proposed algorithm is tested on two different datasets that prove its



easy deployment and the validity of the results obtained which are compared to
manual segmentation and to a popular software suite called FreeSurfer commonly

used for brain segmentation.

1.4 Summary and Roadmap

The rest of this dissertation is structured in the following manner: Chapter 2 is
a literature review that pertains to AD classification and the difficult tasks that
relate to early detection and the potential delineation of early mild cognitive im-
pairment (EMCI) to cognitively normal (CN) subjects in a multiclass classification
scenario. This chapter also delves in to related work on sequential data modeling,
deep learning and brain segmentation.

In chapter 3, the work on the AD classification problem with missing data is stud-
ied, where the problem of drawing boundaries is investigated between four classes
of subjects (AD, LMCI, EMCI, NC). In the same study, multiple imputation tech-
niques are explored to define those algorithms that can best assist the machine
learning model in the presence of missing values. This Chapter outlines the superi-
ority of the Gradient Boosting algorithm in terms of accuracy, precision, and recall
in both cases of missing at random or block-wise missing data.

In chapter 4, the focus is placed on sequential modeling of longitudinal data with
deep learning methods, where different variations of the recurrent neural network
are employed to assist trajectory prediction of the subjects. Different alternatives
at overcoming the missing data challenge are deployed and the results for each are
provided.

Chapter 5 presents an advanced two-stage deep learning-based framework, which

is a combination of Vision Transformer (ViT) and Convolutional Neural Network



(CNN) for hippocampus segmentation. In this chapter, the effectiveness of CNN
models is demonstrated for object localisation and image segmentation. Two types
of experiments are conducted including (1) the Medical Segmentation Decathlon
Challenge of 2019 involving 194 (3D) volumes for training and validation through
cross validation technique and the rest, the 65 (3D) volumes for testing; and (2)
our own Mount Sinai data with the 1Florida Alzheimer’s Disease Research Center
(ADRC) data, consisting of 326 MRI volumes with a comparison made with the
FreeSurfer version 6.0 results

Finally, in chapter 6, we conclude the work of this dissertation and discuss the
future work along this line of research in terms of both imputation techniques and

brain segmentation methods.



CHAPTER 2
LITERATURE REVIEW

2.1 Background

Early diagnosis of AD, given the knowledge that the disease may have started a
decade or so earlier before its first symptoms appear, is critically important in plan-
ning for patient’s treatment and slowing progression of the disease. Many researchers
have conducted experiments to explore and understand the underlying factors of this
disease. Great attention has been devoted to biomarker discovery, feature extraction,
classification and regression analysis using various sources including neuroimaging
modalities such as Magnetic Resonance Imaging (MRI)[DBS*11], Positron Emis-
sion Tomography (PET)[NRKL10], and functional MRI (fMRI)[GSRMO04]. Other
relevant biomarker sources include cerebrospinal fluid (CSF)[DBS*11, NRKLI0,
GSRMO04, ZWZ*11], electroencephalographic (EEG) rhythms [MCL*15a], genetic
tests, demographic information and neuropsychological testing [TYKMO05] includ-
ing Montreal Cognitive Assessment (MoCA), Mini-Mental State Exam (MMSE),
Clinical Dementia Rating (CDR) Scale, and the Alzheimer’s Disease Assessment
Scale—Cognitive Subscale (ADAS-Cog), among the most relevant.

With the advent of machine learning and deep learning in the medical field and
the biosciences in the recent decade, various algorithms and techniques have been
proposed for analyzing different biomarkers and classification of subjects into the
three common groups of Cognitively Normal (CN) controls, Mild Cognitive Impair-
ment (MCI) and Alzheimer Disease (AD). However, the number of studies is limited
when it comes to the subdivision of the MCI subjects into the two subgroups of Early
MCI (EMCI) and Late MCI (LMCI) due to reasons such as limited data from the

targeted groups, complex form of progression in the different subject groups, miss-
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ing biomarkers, non-unified availability of features and modalities from each subject,
challenges of working with neuroimaging data, difficulties of brain anatomical region
segmentation and feature extraction, and most of all lack of extensive longitudinal
studies, which are extremely difficult to collect.

To better understand current state-of-the-art methods and algorithms proposed
in this domain, this chapter provides a brief review and summary of some relevant
research and related articles that address different challenges of AD diagnosis and

prognosis with the help of machine learning and deep learning techniques.

2.2 Related Work on AD Classification

Automated classification of AD subgroups and Cognitively Normal (CN) subjects
with the focus on early detection is one of the first and most known challenges
in the development of classification models. Many algorithms including Support
Vector Machine (SVM), Artificial Neural Network (ANN), Multi-Layer Perceptron,
Decision Tree, Random Forest, Bagging and Boosting, etc. have been explored
for classification modeling of AD and its prodromal stages . These algorithms were
incorporated with a variety of feature selections and dimensionality reduction meth-
ods to accurately draw a boundary between the different groups of subjects. While
some studies focus on a single modality of biomarkers, there have been others that
combine several recording modalities and model the high dimensional feature space.

Some of the classification algorithms for the AD diagnosis are discussed below.

2.2.1 Alzheimer Disease vs Cognitively Normal

SVM is one of the techniques that have been widely studied in this domain by

multiple researchers due to its power on the correct modeling of multi-dimensional
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spaces. Vemuri et al. have combined the sMRI features with demographic and
genetic scans of each subject and applied SVM model to draw a boundary between
AD and CN subjects [VGST08]. Magnin et al. applied a feature selection method
followed by an SVM model trained on the features of whole brain anatomical MRI
to classify subjects into two main groups [MMKT'09]. Gaussian Mixture Models
(GMM) have been used to reduce the number of features extracted from functional
MRI, after that the SVM model has been trained on the selected feature set to model
the subjects’ space [SGRT10]. Sparse Inverse Covariance Estimation (SICE) method
combined with SVM have been utilized to discriminate subjects by using their PET
and structural MRI features in [OMAIT15]. Bi et al, have trained multiple SVM
models on random sub-samples of features, captured from resting-state functional
MRI modalities. They have ensembled the SVM predictions to generate the label for
every sample. While they have improved the classification accuracy with this model,
they have not exploited the other modalities’ contribution in the classification of the
subjects [BXL*18].

One of the other widely employed techniques for AD subject classification is
Artificial Neural Network (ANN). Several researchers have combined different fea-
ture selection techniques from various modalities and trained different ANN models
using different classification tasks. Principle component analysis has been applied
to voxel-based morphometry (VBM) biomarkers to select the most informative fea-
tures. Afterward, an ANN model is trained to learn the feature space to automati-
cally detect gray matter loss in AD subjects, thus classifying the subjects accordingly
[HYJWO0S].

Several other studies tackled different types of binary classification tasks using
ANN [SA11], Logistic Regression [GKH190, JVW'14], and Random Forest[LXC*17]

to name a few.
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2.2.2 Alzheimer Disease, Mild Cognitive Impairment and

Cognitively Normal

Earlier attempts in automatic classification of AD subjects focus more on the clas-
sification of subjects into two groups of AD and non-AD in a binary type of clas-
sification. However, the more recent studies have devoted great efforts to the early
detection of AD, with few extending such efforts into the more challenging multiclass
classification. Studies that try to develop interesting algorithms for delineating the
prodromal stage of mild cognitive impairment (MCI) show varied and competing
classification results [SLST14a, LHM*10, Jagl8].

In [GCCT09], hippocampal shape features have been estimated by spherical har-
monics (SPHARM) coefficients algorithm to model the shape of the hippocampal
region. These shape features have been fed to an SVM algorithm to model three
classes of subjects (AD, MCI, NC), with NC defining the Non-converter group.
SVM with kernel function has been utilized in several research papers for multiclass
classification of the subjects in a similar manner [L.B14].

Gorji et al. have presented a Pseudo Zernike moments to extract discriminate
information from subjects” MRI. They have used ANN to delineate a boundary
between three groups of AD, MCI, and NC [GH15].

Random Forest (RF) algorithm is another widely studied algorithm for AD sub-
ject detection. In [GAHT13a] several features from four modalities of CSF biomarker
measures, regional MRI volumes, categorical genetic information, and voxel-based
FDG-PET signal intensities have been combined to train a random forest algorithm
for AD classification. The study of Wang et al. applied SVM, partial least square,
and Random forest to classify the subjects based on 3 sets of biomarkers from 1.5

T MRI, FDG-PET and florbetapir-PET modalities [WCY'16].
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This line of research has evolved during the last few decades and various biomark-
ers from different modalities including CSF, Genetic, MRI, PET, fMRI, etc. have
been deployed to train a wide range of machine learning algorithms for better auto-
matic classification of the subjects. Comprehensive reviews on this topic have been
provided by [SCQ17, TRK*20].

Most researchers agree that the current accuracy that is achieved, especially
for classifying EMCI vs. CN groups remains below an acceptable standard for the
medical field in light of the irreversible nature of the disease. This classification
error is of course further influenced in the negative when performing multiclass
classification (assuming all groups as it should be) rather than binary classification
(when only two classes are assumed at a time) and when contending with the missing
data challenge. Lack of sufficient data with complete samples for all the subjects
considered in a study whether cross-sectional or more significantly longitudinal is

an inherent problem of any clinical trial.

2.3 Related Work on Patient Sequential Data Modeling

Until recently, most of the research on AD topics were mainly focused on classifying
the subjects between groups (AD vs CN, AD vs MCI vs CN, NC vs EMCI vs LMCI
vs CN, etc.) based on cross-sectional data points. However, these approaches lack
enough information to predict a future state of the subject to take proactive steps in
treatment planning. While early diagnosis is of critical importance for slowing down
the progression of the disease through early intervention, researchers have started
to track and monitor subjects in time and create a longitudinal dataset to better
analyze the biomarkers and project the progression of the disease in different groups

of subjects. The release of the new longitudinal AD dataset by ADNI opens up many

14



opportunities for researchers to leverage temporal information from longitudinal
data and model AD progression. Several classification and regression models have
been proposed to model this longitudinal data.

Duchsesne et al. have applied principal component analysis on MRI-based fea-
tures (local volume changes, intensities). They combined MRI features with base-
line MMSE, gender, education level, and age of the subjects and trained a linear
regression model to predict the MMSE score of the subjects in the following year
[DCG109]. Longitudinal changes of the AD subjects’ cortical thickness and its effect
on the development of AD have been studied in [LWW™12]. Where they exploited
the longitudinal data to classify the subjects between 4 groups of Stable-MCI and
Progressive-MCI, AD, and CN. Cortical thickness, cortex thinning speed, and thick-
ness changes of different regions of interest are some of the important features they
have utilized for training an SVM classifier. Jack et al, studied 3 consecutive tau
PET, MRI, and clinical assessments of 126 individuals spread in 3 categories of 1)
cognitively unimpaired with normal amyloid, 2) cognitively impaired 3) cognitively
unimpaired with abnormal amyloid. They have used Ridge and Lasso regression
models to depict the trajectory of the disease in all 3 subject groups [JJWS*18].

Unlike many models which investigate the trajectory of continuous brain clinical
variables in the future separately, [ZSI"12a] focused on modeling multiple variables
together. In this way, the authors exploited the intrinsic correlation information
among different variables. They also captured features from multiple modalities
instead of focusing on a single modality. They proposed a multitask model to
project the Mini-Mental State Examination (MMSE), Alzheimer’s Disease Assess-
ment Scale-Cognitive Subscale (ADAS-Cog), and categorical variable (with the value
of ‘AD’, ‘MCI’ or ‘CN’), by using CSF data, baseline MRI, and FDG-PET.

newpage
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Zhu et al. proposed a multitask convex and non-convex fused group lasso re-
gression for modeling the temporal relationship between multiple future time points
to accurately predict the cognitive scores of the patient in the future [ZYLY1lal.
Even though the temporal dependency assumption cannot be guaranteed in reality
[HJG*16a]. In 2016, Moradi et al. studied the relationships between AD-related
structural atrophy within the brain MRI with Rey Auditory Verbal Learning Test
(RAVLT) cognitive measures over 3 years. They utilized an elastic net algorithm
for modeling the atrophy in MRI [MHH*17]. In a similar attempt, Wang et al. pre-
sented a multi-layer multi-target regression model for clinical multivariate prediction
in AD [WZL*18]. This model can simultaneously handle the nonlinear relationship
between MRI neuroimaging biomarkers and the cognitive assessment scores. They
employed matrix elastic nets to investigate the inter-correlations between multiple
test scores. Non-smooth L2, L1-norm loss function is shown to add robustness to
their proposed multi-target prediction model.

To address the sparsity in the data and model the cognitive scores in five future
time points in longitudinal data, Huang et al. in [HJG*16b] proposed the soft-split
sparse regression-based random forest (RF) model. Focusing on the volumetric fea-
tures of the MRI regions of interest (ROI), they have defined the most discriminate
regions along with the future score of the patients only based on the baseline data.
Although they provided predictions for multiple future time points, they have relied
on the features of the prior time points for every prediction rather than only based
on the baseline data. This means that the model cannot predict the trend of the
patient’s progression in time. Moreover, they have used a single modality (MRI)
to model the relationship between patients and disease progression and discarded
many other informative biomarkers from other modalities and demographic data.

Some other studies have exploited regression modeling on the longitudinal data
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for diagnosis and prognosis purposes [EBPT18, SLS*16, MCL*15b]. However, none
of them have applied deep learning techniques for regression modeling of the sub-

jects.

2.4 Related Work on Application of Deep Learning for AD
Diagnosis

Early diagnosis of AD plays an important role in slowing down the disease’s progress.
This diagnosis is particularly based on features that are extracted from brain neu-
roimages. The features are mainly captured from variations of anatomical brain
structures such as hippocampus shape, hippocampus volume, cortical thickness,
ventricles size, and brain volume. Automatic discrimination of brain images that are
coming from various modalities can be performed in two major ways. 1) the whole
brain gets analyzed and global features extracted from the whole brain [HAKEB16]
2) Some specific anatomical regions of the brain get investigated which are proven
to have the most discriminating features. Regions such as hippocampus structure
that its atrophy is known to be highly correlated with AD onset [ZLAT17].

Several earlier studies for brain segmentation and feature extraction either re-
quire human annotation or depend on third-party software [BRSM10]. In both cases,
the process is very time-consuming, inefficient, and error-prone. Brain registration
(affine or rigid) is still a resource-intensive and slow process. Therefore algorithms
and models that do not need human intervention and can work on neuroimaging
directly are in high demand.

Billones et al. have employed a modified VGG network to classify subjects
based on sMRI images. The trained 2D convolutional network processed each slice

of the 3D MRI data separately. They mainly picked 20 central slices of each image
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[BDHN16]. Liu et al. in [LZAS17] have defined 50 discriminative anatomical brain
landmarks in a data-driven way. Then they have captured multiple image patches
from each of the landmarks. Using those features they trained a multi-task multi-
channel convolutional neural network for AD diagnosis task to assign subjects to
four groups of NC, stable MCI (sMCI) a progressive MCI (pMCI), and AD. To
identify the hippocampus location in the brain MRI, Hajiesmaeili et al have proposed
an algorithm that performs 3D skull stripping and extracts the brain volume first
followed by a distance estimation from the first slice of the brain to the first slice
where the hippocampus appears in all 3 views of coronal, sagittal, and axial [HA17].
This algorithm is particularly beneficial if only patches of the hippocampus should
be processed instead of the whole brain image.

While many methods for brain automatic feature extraction and subject classifi-
cation have been proposed, they are mainly limited by one drawback: independent
feature engineering and disease modeling. These approaches usually result in sub-
optimal performance. Therefore Cao et al. have addressed this issue by proposing
a multi-task deep learning model which jointly segments the hippocampus and also
models the clinical regression score. Their model does not need prior time-consuming
non-linear registration, though they align the MRI images onto a standard template
before inputting to the network. After alignment, the model approximately locates
the hippocampus based on the template atlas and extracts image patches from those
regions. They used those patches to train a network composed of two sub-modules.
The first module is a UNET with Dice-loss for hippocampus segmentation and the
second network is a CNN with mean squared error loss function for regression mod-
eling of the clinical score. These two modules share some parameters for better

utilizing the inherent association between two tasks of segmentation and regression

[CLZ"18]. A similar approach has been adopted in [LLY*20] where they have de-
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veloped a multi-task deep learning model to jointly segment the hippocampus and
classifies the AD subjects. To extract features from hippocampus patches, they

employed 3D DenseNet.

2.5 Brain Segmentation

Segmentation has been a critical task in medical image analysis as it allows for the
quantification of key anatomical regions and to assess observed changes in cross-
sectional or longitudinal studies [GVOV*16]. Segmentation can also help in com-
parative studies using multimodal neuroimaging and multiclass classification. In
neuroimaging, several methods have been proposed for various tasks including brain
extraction, anatomical ROIs segmentation, White Matter Lesion (WML) segmenta-
tion, brain tumor segmentation, etc. Each of these tasks has its specific challenges.
With the recent advances in image processing and computer vision and with the
advent of CNNs, automated segmentation of medical images have also made signif-
icant progress. Moreover, these segmentation techniques through other imaging or
machine learning approaches could extend to other organs like lungs or liver, as our

research group has reported in [ETAT20, GGB*14]
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CHAPTER 3
ADDRESSING THE CHALLENGES OF INCOMPLETE
MULTIMODAL DATASETS FOR ALZHEIMER’S DIAGNOSIS

3.1 Introduction

Early diagnosis, prior to reaching the stage of irreversible disease changes in the
brain, allows for the planning of early treatment and therapeutic interventions,
and plays a significant role in providing subject-specific care, predicting disease
progression, and gauging the rate of decline and severity of impairment [MPG™15a,
IMC*17, DFAT09]. The more recent studies have devoted great efforts for early
detection of AD by developing algorithms for delineating the prodromal stage of
mild cognitive impairment (MCI) with varied and competing classification results
[SLST14a, LHM ™10, Jag18]. Most researchers agree that the current accuracy that is
achieved, especially for classifying EMCI vs. CN groups remains below an acceptable
standard for the medical field in light of the irreversible nature of the disease. This
error in classification is of course further influenced in the negative when performing
multiclass classification (assuming all groups as it should be) rather than binary
classification (when only two classes are assumed at a time) and when contending
with the missing data challenge. Lack of sufficient data with complete samples for
all the subjects considered in a study whether cross-sectional or more significantly
longitudinal is an inherent problem of any clinical trial. This is largely due to the fact
that many patients may miss some of tests at different intervals throughout a study.
Generally, missing values occur for a variety of reasons, including subjects that
stop attending the study or miss appointments, subjects that completely drop out
from the study, data with insufficient or incompatible resolutions, image corruption,

budget limitation, etc. [TCST01][LJ12]. Many algorithms simply discard subjects
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with missing modalities from further experiments or, in the simplest case, they just
replace them with zero values or with a mean average of the attribute, which still
results in a loss of valuable information. This challenge of missing data continues to
hinder the needed progress for understanding this complex brain disorder [Jagl3].
Accuracy in AD diagnosis and prognosis could be improved if the missing parameters
can be more precisely estimated from the rest of the available data or modalities or a
more reliable technique rather than mean substitution devised [BHR*16]. However,
different data modalities often have nonlinear and complicated correlations, which
impedes the prospects for correct estimation.

These difficult issues have led to a new line of research that focuses on developing
more realistic and more sophisticated techniques to substitute the incomplete sam-
ples. This line of research is generally divided into two main approaches: the first
approach attempts to synthesize missing modalities from remaining modalities with
the help of various techniques that include maximum mean discrepancy based mul-
tiple kernel learning [ZTA™17], missing modalities imputation via cascaded residual
autoencoder [TLZJ17], 3D convolutional neural networks[PM15] and generative ad-
versarial networks (GAN) [NTL*17, STC*18], However Cohen and his colleagues
have pointed out that synthesized medical images may result in mis-diagnosis due
to the distribution matching losses that arise from the process of matching an image
in the input domain to an image in the target domain while preserving the source
distribution [CLH18|. The second approach attempts to impute missing values by
applying various numerical techniques such as simple Mean substitution!, Mode
and K-Nearest Neighbor (KNN) impute [CPV*15, LGH12, HIG"16¢] . Authors in

[STCT18, RSWT15] have extracted a complete subset of features from the actual

! As the data is normalized around the center in this study Mean substitution in this
case is the same as zero fill.

21



dataset and synthesized the missing values randomly to analyze the power of some
imputation methods, but they have not determined the performance of the algo-
rithms on different patterns of missing values in real incomplete datasets which may
actually have completely different patterns from those that were randomly synthe-
sized. They also overlooked the fact that some of the proposed imputation methods
assume that the data have a Gaussian distribution, which may not be the case for
every dataset. These approaches do not address the block-wise missing patterns
of data in the relatively small size dataset of AD. Therefore, to the best of our
knowledge, none of the research studies so far have done a comparative study on ef-
fects of existing imputation techniques on a block-wise missing dataset of Alzheimer
while incorporating a huge sample size from various modalities (PET, MRI, Cog-
nitive Test, CSF) to check the effects of large size data on imputation task. As
an additional endeavor, we have also considered the challenging task of multi class
classification of the ADNI dataset with a high number of missing points. Moreover,
there are a number of new imputation techniques which have never been deeply
studied within this scope of work.

Considering the importance of the early detection of the prodromal stage of AD,
the first objective of this chapter is to present the classification power of Gradient
Boosting (GB) technique on a four-way classification of Cognitively Normal controls
(CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment
(MCI) and Alzheimer Disease (AD) subjects on a large multimodal heterogeneous
dataset pulled from various cites with missing data, which include ADNI1, ADNIII
and ADNIGO. The recent release of ADNI data which discriminate Early and Late
MCI patients motivated us to focus on multi class classification between four groups
of subjects rather than binary classification of three groups of subjects which has

been studied for several years and lacks the generalization power when it comes to
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Table 3.1: Biomarkers used in the study [RM14, JVW*11]

Source Features

EcogPtMem, EcogPtLang, EcogPtVisspat,

EcogPtPlan, EcogPtOrgan, EcogPtDivatt, EcogPtTotal,
EcogSPMem, EcogSPLang, EcogSPVisspat, EcogSPPlan,
EcogSPLang,EcogSPOrgan, EcogSPDivatt, EcogSPTotal,
FAQ, MOCA, RAVLTforgetting, RAVLTpercforgetting,
RAVLTimmediate, RAVLTlearning

Cognitive Test

Cognitive TesVentricles, Hippocampus, WholeBrain, Entorhinal,

MRI Fusiform, MidTemp, ICV, FLDSTRENG, FSVERSION
PET FDG, PIB amyloid, AV45 amyloid, CDRSB

Genetic APOE4

Demographic | AGE, Gender, Education

CSF Ap1, t-tau,p-tau

new sample data with no prior diagnosis label. The challenge of discriminating the
EMCI group from LMCI has not yet been well studied due mainly to the absence of
certain data in those two classes. The second objective of this chapter is to represent
the classification potential of GB when it applies to incomplete data sets. While
SVM and RF are unable to feed with incomplete sample data, GB is capable of
handling missing values with no need of further preprocessing.

Moreover the dependency of the various state of the art imputation techniques
on the patterns of missing data has been described. For this purpose, we investi-
gated the performance of a group of imputation techniques on two separate sets of
synthesized incomplete data with random wise missing values and real incomplete
data with block-wise missing values. Results reveal the shortcomings of imputation
techniques in the real case of block-wise missing data estimation. Despite few pa-
pers that attempted to proceed in this direction [CPVT15, JMC™16], to the best of
our knowledge, this work is the first one that provides an exhaustive comparative
study over real, incomplete heterogeneous multimodal dataset of Alzheimer with

four groups of subjects (AD, LMCI, EMCI, CN)
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3.2 Dataset and Preprocessing

Data used in the preparation of this article were obtained from the Alzheimer Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched
in 2003 as a public-private partnership led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological
markers and clinical and neuropsychological assessments can be combined to mea-
sure the progression of mild cognitive impairment (MCI) and Alzheimer’s Disease
[LHM*10]. ADNI data is processed with a standard pipeline resulting in a large
matrix of patients and their test measurements. Patients are arranged in rows and
each test result is ordered as column. In this research endeavor, various groups
of biomarkers including CSF, MRI, PET, DTI, Genetics, and neuropsychological
tests, which are derived from ADNI database have been used. The detailed list of
biomarkers is as provided in the table 3.1. Diagnosis labels are composed of Cogni-
tively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive
Impairment (LMCI) and Alzheimer’s Disease (AD).

The dataset that was considered for this study consists of 1627 subjects (413 CN,
312 EMCI, 565 LMCI and 337 AD) which have been examined during an 11-year
period and for every six months. However, many of the subjects have only a couple
of visits or time points. There is also diagnosis label for every visit separately,
regardless of the earlier diagnosis in the previous visit, but we mainly focus on
the baseline data for our experiments. A comprehensive set of 41 biomarkers were
selected at the end.

Imputation techniques tend to perform better in huge datasets, with more sam-

ples for training the model in search of an optimal classifier. Each patient-visit
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was regarded as a separate sample to augment the data size, help the imputation
process and augment the prospects in establishing or modeling an optimal classifier
that generalizes better. It is worth mentioning that even if the subject status does
not change between successive time points, subject-sample vector at various time
points tends to be slightly different from each other due to the alteration in imaging
and other tests.

In contrast to most studies that handle the problem of missing data, either by
excluding the patients with incomplete test results or by restricting the study to a
single modality, we tried to solve the problem by introducing an algorithm which
is capable of handling the missing values naturally. In a parallel experiment an
imputation stage was added to two other classifiers of RF and SVM to check if
this incorporation adds any robustness to the classification algorithms. Further-
more, in contrast to the majority of studies which work on a dataset from a specific
single source, current ADNIMERGE dataset is pulled from multiple cites which
adds heterogeneity to data and makes the classification process more challenging.
Pre-analysis of the dataset indicates that on the basis of all the aforementioned
biomarkers considered in this study, there was not a single record that did have not
have one or more measurements missing. The number of missing values altogether
for all patients’ samples and throughout all the biomarkers is equivalent to 46% of

the entire dataset.
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This clearly highlights the challenges researchers face when preforming longitu-
dinal studies while contending with missing data. It also places research groups in
the predicament of choosing only those complete datasets albeit ending up with a
smaller size dataset and more likely with a lesser number of recording modalities
(i.e., measurements), or assume the entire data set but find ways to impute the
missing data in the best way possible that would preserve the statistical and clinical
meaningfulness of the longitudinal data that took so many efforts and so many years
to establish.

Since feature normalization is required for many algorithms, especially in the
cases of SVM and K-nearest neighbors, prior to further analysis, datasets are cen-
tered and normalized. As there are many missing values in the dataset, before
normalization, missing values are masked. Using these techniques, the convergence
time was reduced dramatically, and classification accuracy is improved especially

when using SVM.

3.3 Experimental Methods

The outcomes of weighted K-Nearest Neighbors (KNN) [Zhal2|, Singular Value
Decomposition (SVD) based method [GR71], Soft Impute [MHT10], Matrix Fac-
torization [PT94], and Mean average, combined with three state of the art clas-
sification algorithms; Support Vector Machines [SV99], Random Forest [LWT02],
and Gradient Boosting [OPSS11, LO17, CG16|. To analyze the methods precisely,
the experiments have been repeated with varying percentages of missing values.
Hyper parameters were carefully adjusted by performing an exhaustive search to

adjust each classifier. In this section, methods that have been implemented in this
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study have been overviewed. All the methods are implemented using Fancy-impute
libraries as detailed in section IV.

The K-Nearest Neighbors imputation method selects subjects with similar fea-
ture sets to the subject that has missing values. For example, if a sample S has a
missing value in feature Q, this method would select all the subjects which are most
similar to S and have the feature Q. It gives a weight to each retrieved sample based
on the degree of similarity and then calculates the weighted average as the estimated
value for the missing target in sample S. For the similarity measure, various met-
rics can be utilized such as Pearson correlation, Euclidean distance, and variance
minimization. In our study we exploited the Euclidean distance as the similarity
measure of the data [Zhal2].

Matrix Factorization method was first introduced in [PT94] and since then it
has been used in many applications such as collaborative filtering and missing value
imputations. This technique attempts to split the original large matrix of X € R™™
in which n is the number of subjects and m is the number of features, into two
matrix components of smaller dimensions as a function of a k factor, W € R™F*
and H € R¥™. Considering that in the imputation problems the original matrix of
samples and features has a lot of missing values, the sparsity constraint should be

imposed on matrix H which results in the following minimization formulation (3.1):
s (X — WHT [ o | W[5 H 13 (3.1)

subjects W, H > 0

with regularizing constants « and 3 with || . ||% as the Frobenius Norm. To reach
the global minima, the mentioned minimization problem is solved using gradient

descent [PT94].
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The Singular Value Decomposition (SVD) method has been proposed in [SV99],
which is another approach for estimating the missing data iteratively. Assume that
X is a set of observed elements and subset of X. SVD-impute applies singular value
decomposition of matrix X to get orthonormal patterns of U and V. The approx-
imation of X" can be derived by a linear combination of these patterns through
JyD;V; where J;, Dy and Vj are orthogonal. Then, the SVD imputation of any

matrix X can be implied by solving the following problem (3.2):
Min || X —mj — U;D;V/ || (3.2)

where m/ is the mean of the i row and || . || is a sum of squared values of all non-
missing elements. In this method, we start the procedure by substituting the missing
values in X by the means of all non-missing values in each row. Then (3.2) will be
solved for a new set of matrix of U, V and D which produces a new approximation
of X. This step will be repeated until the difference between the X;.; and X; meets
the optimal stopping criteria [GR71].

Soft Impute has been proposed in [MHT10] as a more efficient algorithm than
the original iterative SVD which addresses the high computational cost of iterative
SVD for large matrices. However, it computes a low-rank SVD of a dense matrix
repetitively. This allows the regularization path of solutions to be computed ef-
ficiently on a grid of regularization parameters. Rank reduction and shrinkage is
performed simultaneously in soft impute in a single operation. More precisely, this
algorithm solves equation (3.3) to deduce and replace the missing values. Then the

SVD imputation of any matrix X can be implied by solving this problem:

minimizel
: S Iw-z 7 +A 11 Z ] (3.3)

where A is the regularization parameter. This algorithm initializes the missing

values with zero and keeps track of the old Z and replaces the Z™* with Sy, (P(X)+
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P%(de)), until it hits the exit or stop criteria define below (3.4):

H gmew _ Zold H%
| e |5

<€ (3.4)

PaX)(ig) = { O RTES 39
0, if i,j ¢

Po(X) (with dimension M % N) is a projection of matrix X onto the observed
entries.P% is a complementary projection Po(X) + P% = X. The above low-rank
optimization models are usually used for collaborative filtering, nonetheless they
have application in other domains such as missing data imputation, clustering and
data retrieval.

Support Vector Machines (SVM) is a robust statistical method first introduced
in the early 1990s as a nonlinear solution for regression and classification [SV99].
This technique has been proven to have superior performance in addressing vari-
ous problems due to its generalization abilities, robustness against noise and other
forms of interference, and its computational efficiency as compared to several other
methods. Support vector machines separate two or more classes by finding an op-
timal hyperplane with a maximized margin known as support vectors. Multi-class
SVM problems can be solved by decomposition into a predefined number of binary
problems. Two known approaches are one-versus-rest and one-versus-one. One-
versus-rest classifiers are composed of k separate binary classifiers in which each
classifier will be trained using the data of its own class with a positive outcome and
the data from all other classes as negative outcome. One-versus-one approach is
composed of all pairwise individual classifiers where each test example will be fed
into all individual classifiers and the data will be assigned to the class which yields

the highest winning score [OPSS11].
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Random Forest (RF) is a type of supervised machine learning algorithm which
is an ensemble of multiple decision trees. For each tree in the forest a bootstrap
sample of data is taken to create various input datasets so that each tree will be fit
with a different set of samples. Then the data will be split based on a selection of
random variables. The best split will iteratively be selected based on the impurity
measure. The whole process will be repeated in building several decision trees to
complete the random forest model. Each new data point will be fed iteratively into
all generated trees and their outcome will be averaged to form the final prediction
of the random forest [LWT02].

Gradient Boosting (GB) is a powerful supervised machine learning technique
based on regression, classification and ranking. This technique has a sequence of
weak tree learners which are trained to fit a given model F such that each learner will
improve the prediction accuracy of the previous one by minimizing the multiclass
logistic likelihood J between the pseudo residuals defined with the following formula
(3.6):

J = Z L(yi, K (2:)) (3.6)

In which y; is the target value and F(x;) is the value obtained from the predicted
model. GB is highly robust to redundant data, and has the inherent ability to handle
missing data. Hence, we was interested in using Gradient Boosting in our study to
examine and test this embedded imputation strength of this algorithm against the
proposed cascaded imputation classification method [OPSS11, LO17, CG16].

The experiments proceed in multiple steps, the first is to estimate the missing
data using different imputation techniques including KNN impute, iterative SVD,
Matrix Factorization, Soft Impute and mean averaging. The next step is the clas-

sification of subjects using data that has been acquired from an earlier imputation
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step. We randomly selected 70% of the data for training, 10% for validation set,
and the rest for testing purposes. We also normalized the data by subtracting the
mean value and dividing by the standard deviation prior to imputation. A mask
was generating to cover the Not Available (NA) or missing values. We implemented
the code in Python using Scikit-learn module for machine learning [PVG™11] and
Fancy-impute libraries. While other classifiers were more robust when nonnormal-
ized data were used, SVM accuracy improved dramatically due to normalization.

The diagnosis labels (AD, CN, EMCI, LMCI) were excluded, and some of the
highly correlated cognitive test scores such as Alzheimer’s Disease Assessment Scale-
Cog (ADAS-Cog), Mini Mental State Examination (MMSE), Clinical Dementia
Rating scale (CDR) were removed from training. This is worth mentioning that
classification accuracy based on the features used for training, especially those used
at baseline like MMSE and CDR;; and thus, comparative assessments to other studies
will be fair only if similar features/modalities and similar datasets are used. In this
study, imputation has been done across training, validation, and testing data sepa-
rately prior to classification. Each classifier has been adjusted through exhaustive
grid search with cross validation to achieve optimal accuracy. Tuning parameters for
SVM are (Gaussian) radial basis function (RBF) kernel with Gamma and C equal
to 0.0001 and 100, respectively. For RF our maximum number of features at each
node was set to 10, the minimum number of samples required in each leaf set to
3, and the minimum number of samples required to split an internal node set to 2,
with a Gini index for criteria of quality split. For GB we picked out maximum depth
of individual regression estimators as 2, the number of features as 25, sub-sample
used for fitting learner as 14, minimum number of samples as 10, and number of
boosting stages as 28.

To attain a robust performance prediction all experiments have been over 30 tri-
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Figure 3.1: Effects of imputation methods coupled with Random Forest classifiers
at different degrees of random missing values on 4-way (i.e. multiclass) classification

(CN, EMCI, LMCI, AD) of the subjects

als and the metrics across all trials have been averaged. Besides providing accuracy,
we also provide performance evaluation metrics that include precision, recall, and
Receiver Operating Characteristic curve (ROC) which is created by plotting the
true positive rate (TPR) against the false positive rate (FPR) at various thresholds.

In the following part the experiment is explained in more details.

3.3.1 Random Missing Data Handling

To have a clear understanding of the effect of imputation techniques on diverse
patterns of missing values, performance of each technique is evaluated on a complete
extracted version of the original dataset where only observations with no missing
values were retained. Subsequently, we randomly deleted 1%, 25%, 50% and 75% of

the data to investigate the best combination of classification-imputation pairs that
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achieves optimal classification accuracy. This experiment proves that the SVM and
RF classifiers, when coupled with an imputation method like SVD, soft impute or
KNN produces the highest accuracy in multiclass classification as compared to mean
substitution in almost all percentages of missing values at random less than 80%.
The comparison of the results, which is illustrated in figure 3.1 and 3.2 provides
enough evidence that selecting the appropriate imputation technique can improve
the accuracy of SVM and RF in case of missing data with a random pattern rather
than the block pattern. Nonetheless, GB achieves relatively equivalent result with
or without the imputation techniques owing to its innate ability for handling missing
data. Figure 3.3 also demonstrates that from low to middle percentage of random
missing values GB exhibits the highest classification accuracy, regardless of the
coupled imputation techniques. To illustrate the effectiveness of different imputation
technique in presence of various amount of synthesized missing data, we calculated
the accuracy improvement for each classifier as shown in figure 3.4,3.5 and 3.6 for
a low percentage of synthesized random missing values, the highest improvement in
accuracy is achieved by RF coupled with Matrix Factorization technique as shown
in figure 3.4 which happened at 20% of missing data. Additionally, this experiment
shows that for a high percentage of missing values, none of the imputation techniques

can estimate patterns of missing data correctly.

3.3.2 Original Missing Data Handling

We repeated our experiments on the original incomplete dataset, where almost 40%
of its data is missing and the pattern considered in this case is not random but is
assumed block-wise [L.J12]. Considering the measurements summarized in table 3.2-

3.6, it can be observed that GB method yields the best results over all combinations
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of classifiers and type of value substitution for GB can be observed through the ROC
curves in figure 3.7-3.9 The ROC curves of the classifiers represent the difficulty in
delineating the four classes (CN, EMCI, LMCI, AD) in a real comprehensive dataset.
Among all, GB archives the highest AUC for all the classes which is AUC =0.89,
0.86, 0.84 and 0.78 for AD, CN, EMCI and LMCI respectively while RF with AUC
= 0.87, 0.84, 0.82, 0.74 has the second place and SVM with 0.84, 0.82, 0.80, 0.74
shows a somewhat lowest performance for all the classes. figure 3.7-3.9 reveals that
EMCI and LMCI separation is the most difficult task for all the three classifiers.
Based on the missing data patterns and also quantity of the missing data,
imputation-classification pairing can perform better than simple mean value substi-
tution or no substitution but this improvement highly depends on the distribution
of the data and its missing values and cannot be guaranteed to happen in all the

cases. Hence, these investigations reveal that none of the state of the art imputation
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Figure 3.7: Receiver Operating Characteristic of Random Forest for ADNI dataset
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Figure 3.8: Receiver Operating Characteristic of Support Vector Machine for ADNI
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Receiver Operating Characteristic of GB for ADNI dataset
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Figure 3.9: Receiver Operating Characteristic of Gradient Boosting for ADNI
dataset

techniques have the ability to address block-wise missing data.

To emphasize the difficulty of multiclass classification, the accuracy of binary
classification, which has been a main focus of AD related research for many years
[XYF*13, GAH'13b], is provided in 3.2 - 3.6. These results highlight that even
though classification of subjects between two classes at a time provides higher accu-
racy, F-score, precision and recall in almost all the cases (AD vs CN, CN vs EMCI,
EMCI vs LMCI, and LMCI vs AD) these types of classification lacks as expected
the generalization ability for real-world scenarios when an unseen sample data may
belong to any of the four groups of (AD, LMCI, EMCI, CN). Four-way classifi-
cation is more desirable and much more challenging especially when dealing with
heterogeneous datasets.

In our study, although GB performed only slightly better than other methods

(2% higher accuracy), it holds perhaps the greatest promise because of its versatility,
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allowing it to assume simpler, faster and more interpretable forms, such as compo-
nent wise boosting and the ability to incorporate automatic predictor selection. This
study also provides evidence that imputation cost in terms of computational over-
head is more rational when the percentage of missing values is under 30% and the
pattern of missing data is assumed random.

All algorithms evaluated in this study are robust and successful when considering
large feature sets. However, SVM works well for smaller number of observations.
RF, on the other hand, is preferable for large non-normalized datasets. SVD and
KNN use the correlation structure of the data and KNN uses the Euclidean distance
to measure similarity and profile most related observations to estimate the missing
values based on this similarity. These approaches will fail to find the most similar
profile when it comes to outliers. This flaw can be overcome with scaling or using
log over observations. In addition, although the superiority of SVMs against other
machine learning algorithms in terms of accuracy has been reported in many studies,
this study shows that GB can achieve higher performance in ADNI dataset with its
inherent capability of managing the missing values. RF and GB are also quite robust
with respect to collinearity. However, SVM alleviates the multi collinearity problem
via regularization, where in RF, it is alleviated via choosing a random subset of

features for each tree.

3.4 Retrospective

In this chapter, we presented a comparative study of several methods for the estima-
tion of missing values in the largest heterogeneous dataset pulled from various longi-
tudinal studies and cites. We discussed the difficulty of classification in the inherent

presence of missing values in longitudinal and multimodal studies and when dealing
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with dataset heterogeneity. Of the different state-of-the-art algorithms implemented
in this study, Gradient Boosting algorithm achieved the highest performance when
dealing with multiclass classification involving all 4 groups (CN, EMCI, LMCI and
AD). GB has outperformed SVM and Random Forest algorithms. All the classi-
fiers have been coupled with four advanced imputation techniques including KNN
impute, Matrix Factorization, SVD, and Soft Impute and they have been utilized
to classify the different stages of AD. Despite the contribution of the imputation
techniques in missing value estimation in data with low percentage of the random
missing data, all the algorithms fail to perform well in high levels of missing data.
Moreover, in the presence of block-wise missing data patterns, where a particular
modality is completely missing for so many subjects, these imputation methods
are not helpful. While many studies so far focused on binary classification of AD,
we went further in performing multiclass classification while contending with the
missing data challenge inherent to longitudinal and multimodal studies.

Moreover, We also provided results of the different binary classifications as well
for comparative purposes and for estimating the effect of missing data on such
binary classification in contrast to multiclass classification. The imbalanced dataset
and insufficient samples in each group of subjects imposed a new constraint on the
current classification problem. We tried to tackle this issue by incorporating the
data samples from longitudinal studies and provided effective ways to augment the

dataset.
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CHAPTER 4
PREDICTIVE MODELING OF LONGITUDINAL DATA FOR
ALZHEIMER’S DISEASE DIAGNOSIS USING RNNS

4.1 Introduction

Regardless of enormous efforts, pinpointing the prodromal stage of mild cognitive
impairment is remained an open research field. Having incomplete samples in the
longitudinal medical studies is a common phenomenon, as many patients may miss
some of the tests and modalities in a time step or miss a complete visit within the
study’s lifespan. Generally, missing values occur for a variety of reasons includ-
ing drop out of subjects from the study, insufficient resolution, image corruption,
budget limitation, etc. [MPG*15b, NZM*16, ZYLY11b]. Many algorithms sim-
ply discard subjects with missing modalities from further experiments,which indeed
results in a considerable loss of valuable information. Disease diagnosis accuracy
might be improved if the missing parameters could be estimated correctly from the
rest of the available data or modalities. Furthermore, to have a better understand-
ing of the disease progression and to correctly label a subject as Normal Control
(NC), Mild Cognitive Impairment (MCI),or dementia (i.e.,AD), data from every
visit should not be scrutinized independently from the earlier steps. Currently,a
majority of the classification algorithms focus on the cross-sectional data and only
analyze a specific interval’s biomarkers for the diagnosis and disregard the former
patient’s status for the decision making process. To address this shortcoming, re-
cent studies moved toward longitudinal data analysis and proposed new methods
to leverage valuable temporal data by considering the inherent correlations of such
data [NZM*16, ZYLY11b, ZSI*12b]. Effectively mining AD longitudinal data is a

challenging task, owing to its heterogeneous measurements, varying length of sam-
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Table 4.1: Dataset statistics

Category | Subjects (f/m) | Age Education(y) | MMSE

AD 336 (150/186) | 74.93£7.81 | 15.17 £2.09 | 23.18 + .06
MCI 864 (354/510) | 73.03=7.60 | 15.91£2.85 | 27.59+1.81
NC 521 (268/253) | 74.25+5.79 | 16.37£2.70 | 29.06=1.14

ples, missing modalities and tests,and small sample size. In this study, for the first
time(to the best of our knowledge), two RNN models, namely the Long Short Term
Memory (LSTM) and the Gated Recurrent Unit (GRU) are employed to discover the
regression patterns of the subjects from the longitudinal data with missing variables
and intervals,especially for the task of classifying AD/MCI vs.NC,which is a chal-
lenging task only depending on the cross-sectional dataset. The progression of the
patients during time should be studied care-fully to capture the correct status of the
patient through the passage of time. Accordingly, in this study, Several experiments
have been conducted to investigate the effectiveness of the RNNs in AD diagnosis.
The outcomes of the LSTM and GRU model with Multi-Layer Perceptron (MLP)

were compared to evaluate the efficacy of the sequential models.

4.2 Dataset

The data used in this study is obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu/). ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether structural magnetic reso-
nance imaging (MRI), positron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can be combined to measure the

progression of MCI and early AD. Recently the largest longitudinal dataset,which
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is a subset of ADNI 1/Go/2 cohorts, has been extracted from ADNI by Bruno
M.Jedynak and Michael Donohue to make a baseline for researchers in the field to
propose and apply quantitative templates for the progression of Alzheimer’s disease.
This is an invaluable baseline for accurate evaluation of the proposed algorithms.
The database has 1721 distinct subjects (521 NC, 864 MCI, and 336 AD)examined
every 6 months during 1lyears’ period making 23time points for a patient in the
case of performing all the test regularly every six month(i.e., baseline,6 months,
12 months,..., 132 months). For every visit multiple outcomes provided including
ADAS13, CDRSB, RAVLT .learning MMSE, FAQ, FDG PET, Amyloid PET, CSF,
ABETA, CSF TAU, CSF PTAU, FS WholeBrain, FS Hippocampus, FS Entorhinal,
F'S Ventricles, FS MidTemp, F'S Fusi form and the covariates: age, APOE4 (yes/no),
Gender, Education. The primary phenotype is the diagnostic group and Mini-
Mental State Examination (MMSE). Sample data-point curation pipeline in our
work is presented in figure 4.1. This figure shows that the samples are composed of
features extracted from volumetric magnetic resonance imaging (MRI) including cor-
tical thickness, hippocampal volume and shape along withfluoro-2-Deoxy-D-glucose,
florbetapir F18, and PIB (which is radiotracer capable of highlighting deposits of
beta-amyloid) from PET imaging,and some other Cerebrospinal fluid(CSF) features
such as TAU, PTAU and ABETA. Around 12 functional and behavioral assessment
results such as Rey’s Auditory Verbal Learning Testand Montreal Cognitive Assess-
ment (MoCA) scores are also measured and used as features in this dataset. The
volumetric MRI measurements provide the cortical thickness, volume and shape of
hippocampal or voxel-wise tissue probability [GW84, HDD*94, CGT*11b, PM05b)]
to measure the brain atrophy; 18-Fluoro-DeoxyGlucose PET imaging (FDG-PET)
estimates the glucose hypo metabolism in bilateral temporal, temporal occipital

areas or posterior cingulated brain regions [MPG*15b, NZM*16, ZYLY11b]. Fur-
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Figure 4.1: Sample datapoint curation

thermore, global cognitive impairment tests are used by clinicians for screening and
measuring individuals who are at the risk of AD; or cerebrospinal fluid(CSF) to
measure the increase in t-tau, p-tau, or the decrease of amyloid-beta, which is a
sign of cognitive declination. Therefore, in total 47 features are used to represent

each subject at each time point. Dataset statistics has been provided in table 4.1

4.3 Models

In this section, we briefly overview the LSTM and GRU models used in our model
and then explain our model design using these architectures for classifying the sub-

jects into one of the AD, MCI, or NC categories from longitudinal data.
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Figure 4.2: An RNN network with LSTM cell with (k+1) time points.

4.3.1 Long Short Term Memory Unit (LSTM)

RNNs with internal memory and feedback loop have previously been adopted mostly
for processing arbitrary input sequences, like in hand writing recognition, speech
recognition, natural language processing, and time series prediction applications.
One of the main challenges in applying RNNs to long sequential data is that the
gradient of some learnable weights become too small or too large if the network is
unfolded for too many time steps. These phenomena are called the exploding and
vanishing gradients problem [BSF94]. LSTM was, hence, proposed by Hochreiter
et al. for the first time in 1997 to solve the vanishing gradient problem through
a gating mechanism [HS97]. An LSTM has three gates. The first gate determines
whether the information should be for gotten or not. The second gate decides about
updating the cell state,and the last gate is responsible for the cell output. Since
then,several variations of LSTM architecture have been implemented especially with
the utilization of Graphics Processing Units (GPUs). An RNN network with LSTM

cell with (k+1) time points has been depicted in figure 4.2
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Figure 4.3: The structure of LSTM and GRU cells

4.3.2 Gated Recurrent Unit (GRU)

To adaptively capture dependencies of different time scales in each recurrent unit,
Cho et al. [CVMG™14b] introduced a gated recurrent unit (GRU). Similar but not
the same as LSTM design, GRU has two gates, a reset gate r, and an update gate
z. Intuitively, the reset gate determines how to combine the new input with the
previous memory, and the update gate defines how much of the past memory to
keep around. Having simpler architecture than LSTM with a smaller number of
parameters, GRU provides better results in some applications [CPCT18] and is less

prone to over-fitting, especially in cases that there are not enough training data.

The structure of LSTM and GRU have been shown in figure 4.3

4.3.3 Proposed Model

RNN models have achieved popularity due to their power in pattern recognition for
the time series and sequential data. While there are plenty of research papers on

regression and classification modeling of AD data with well-established and novel
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machine learning techniques, along with many deep convolutional neural networks
for 2D and 3D brain MRI classification, number of research works exploiting RNNs
for finding the patterns in the AD longitudinal data sets is limited [SCZ*17, FLC*17,
SZL+17, CRG109, ZSWT17, LWVWT14]. Ouly a few papers recently adopted them
for regression analysis on the clinical medical data|BEWY]. Here, a RNN deep
learning technique is employed for the classification of the subjects. All features
are normalized by subtracting the mean value of each feature and dividing the
result by the standard deviation of that feature in all samples (i.e., using their
z-scores),before the analysis. To deal with missing modalities, we replace them
with zero values. Since our goal is to showcase the usage of RNNs for longitudinal
predictive analysis, we leave extensive data imputation experiments for future works.
A recent work also models AD progression with RNN models|CLL18]; however our
work is different from that in multiple aspects. We not only use MRI features but
also PET, Cognitive tests, and genetic features for modeling the disease. We also
propose multiple approaches for handling the missing intervals and compare the
potential RNN models with each other. The dataset contains N=1721 subjects each
scanned in 24 different time points. Data from each time point is represented by n
= 47 features. Figure 4.4 overviews the data arrangement. A challenge in analyzing
longitudinal data sets is dealing with missing data at different time steps for some
of the subjects. To address this inconsistency in the data points and to be able to
input the data to RNNs,we define three settings:(1) In our first attempt, we fill the
missing intervals with zero to create a same input size data for all the subjects and
compose a stack of 1721, 2D matrices that all have a set of 47 biomarkers in the
columns as features and all the possible time steps in the rows as time steps. We
refer to this arrangement as zero fill. (2) In the second attempt, we buffer the data

at every time point and replicate it in its next missing inter-val. This scheme is
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Figure 4.4: Data arrangement for RNN model

named as replicate fill. (3) In the last configuration we change the orientation of the
input data and stack all the available intervals on top of each other, disregarding the
missing intervals and pad them to the maximum size of the possible time steps, this
is called padding.One LSTM and GRU model with the memory of the maximum
size of the available time steps, which is 24, are designed to process this stack of
data. Each subject’s time point data is fed to the corresponding cell along with its
final diagnosis label (i.e.,AD,MCI, or NC) allowing the model to learn the pattern
of the change in the features for each subject. Figure 4.5 represents this pipeline.
In two different sets of experiments, we replace the cells in this figure with LSTM

and GRU sets and report the results.
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Figure 4.5: Schematic of RNN model and how input data feed to the model

4.4 Experiments

In all the experiments, we train and tune the RNN model with different configura-
tions of the hidden layers, percentages of drop out, various activation functions, loss,
optimizers and different combination of other hyperparameters to find the best set-
ting of the model through a grid search. We knowingly made the models as small as
possible to avoid overfitting,which can easily mislead the comparison. Data has been
split into 70% training, 15% validation set and the rest for the testing set. The best
configuration of the LSTM and GRU is represented in table 4.2. For evaluations,
we calculate the Accuracy, Sensitivity, Specificity,and F-score of all models. The
results of LSTM and GRU models for all arrangements of the data are compared
in table 5.4-4.5,along with the results of their counterpart from non-recurrent net-
works, i.e.,Multi-Layer Perceptron (MLP). The data is flattened to a 1D long vector
and fed into the MLP once for each patient. According to table 5.4-4.5, LSTM and
GRU models are superior to the MLP network in most of the cases as they result
in the highest accuracy and F-score.Our LSTM model yields nearly 1% accuracy

improvements over MLP in classifying AD patients from NC subjects. Interestingly,
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Table 4.2: Model hyperparameters

Hidden Units | Activation Function | Layers | Drop out
GRU | 32 Softmax 1 0.3
LSTM | 30 Softmax 1 0.4
MLP | 20 Softmax 2 0.3

the RNN models with the zero fill data arrangement for the missing data yields
consistently better results. The superiority is not significant, which can be mainly
due to the limited amount of data in this domain,besides the high portion of the
missing time points and modalities. These challenges prevented the vanilla RNNs
to find the appropriate patterns despite various input data arrangement. Second,
RNNs,especially the LSTM models,have a large number of trainable parameters,
which necessitate the model to be trained in a great corpse of sequential data and
despite having dropout layers in the architecture,they are still prone to overfitting
to the training data in this relatively small dataset. The third is the limited hand
engineered and structured feature set,used in this experiment. One of the main
superiority of the RNNs is their power in automatic feature learning from the raw

data,which can be further explored in the future.
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Table 4.3: Performance of the proposed models with three different data arrange-
ments in classification of ADNI subjects between two classes of AD vs NC. Best
results for each data arrangement are underlined, and the best overall results of
each column are in bold.

Method Accuracy F-score Sensitivity —Specificity
MLP 0.9467 0.9581  0.9626 0.9194
ZERO FILL LSTM  0.9526 0.9622  0.9532 0.9516
GRU 0.9527 0.9630 0.9720 0.9194
MLP 0.9467 0.9577  0.9533 0.9345
REPLICATE FILL | LSTM  0.9586 0.9674  0.9720 0.9355
GRU 0.9527 0.9626  0.9626 0.9345
MLP 0.9467 0.9577  0.9531 0.9355
PADDING LSTM  0.9527 0.9623 0.9533 0.9516
GRU 0.9408 0.9528  0.9439 0.9355

Table 4.4: Performance of the proposed models with three different data arrange-
ments in classification of ADNI subjects between two classes of AD vs MCI. Best
results for each data arrangement are underlined, and the best overall results of each
column are in bold.

Method = Accuracy F-score Sensitivity Specificity
MLP 0.8474 0.8449  0.9405 0.7736
ZERO FILL LSTM  0.8579 0.8492  0.9048 0.8208
GRU 0.8368 0.8360  0.9405 0.7547
MLP 0.8529 0.8492  0.9048 0.8208
REPLICATE FILL | LSTM  0.8576 0.8498  0.9286 0.8225
GRU 0.8211 0.8211  0.9286 0.7358
MLP 0.8421 0.8295  0.8690 0.8208
PADDING LSTM  0.8468 0.8298  0.8810 0.8219
GRU 0.8158 0.8108  0.8929 0.7547
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Table 4.5: Performance of the proposed models with three different data arrange-
ments in classification of ADNI subjects between two classes of NC vs MCI. Best
results for each data arrangement are underlined, and the best overall results of each
column are in bold.

Method Accuracy F-score Sensitivity Specificity
MLP 0.7729 0.7539  0.6207 0.9670
ZERO FILL LSTM  0.7729 0.7793  0.7155 0.8462
GRU 0.7536 0.7536  0.6724 0.8571
MLP 0.7005 0.6667  0.5345 0.9121
REPLICATE FILL | LSTM  0.7681 0.7757  0.7155 0.9352
GRU 0.7101 0.7000  0.6034 0.8462
MLP 0.7101 0.7609  0.6877 0.8423
PADDING LSTM  0.7585 0.7619  0.6897 0.8462
GRU 0.7101 0.7000  0.6034 0.8462
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CHAPTER 5
DEEP LEARNING BASED SEGMENTATION MODELS FOR
ALZHEIMER DISEASE DIAGNOSIS

5.1 Introduction

Hippocampus atrophy is among the most informative early diagnostic biomarkers of
AD. The hippocampus is a region of interest (ROI) for various research studies that
include memory function analysis, stress development observation and prediction
of neurological and neurodegenerative disorders. Hippocampus atrophy expressed
through accurate volume calculations could help in both multiclass classification
and prediction. Magnetic Resonance Imaging (MRI) has shown to be a promising
non invasive modality for AD diagnosis through in-depth assessment of the brain
structure, especially of disease-prone areas, among them the hippocampus. Neu-
rologists often use 3D MRI of the patient’s brain to diagnose and monitor diseasse
progression, and to formulate patient-specific treatment plans in the early stages
of the disease. In order to determine the brain morphological changes, regions
of interest (ROIs) should be first segmented in MR images. Currently this pro-
cess is performed manually which is not only tedious and time consuming but also
subjective, error prone and non-repeatable [FSBT02]. However, manual segmen-
tation, when performed by two or more experts, can serve as the gold standard
for comparing volumetric results obtained from automated segmentation techniques
[JJAKT11, WBP*17, BBG'15, BBM*15] as was the case for this 2019 Segmentation
Challenge data. These studies on standards and training labels clearly indicate that
although there is strong agreement among expert tracers, the need for automated
segmentation methods is highly desirable. This automation process is important not

only to overcome the tediousness and the labor intensive nature of manual tracing,
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especially in 3D medical images, but to also augment the practicality of volumetric
calculations of disease prone regions for early detection, multiclass classification, as-
sessing disease progression and performing prediction on future outcomes. Therefore
great attention has been devoted in the literature to automate this 3D segmenta-
tion process. It is important to emphasize however that regardless of the ways this
task is performed, manually or automatically, the burden of proof lies in the fact
that beyond the imbalance problem between ROI and background information (i.e.,
the ROI appears in a very small portion of the entire dataset), there are no clear
boundaries between the different regions of the brain, which makes this segmenta-
tion endeavor even more challenging. The complexity of this task is best expressed
in [BBG'15], showing that even when there is very high agreement among the four
expert tracers (pairwise Jaccard indices 0.82-0.87), the volumetric results obtained
on the HarP benchmark dataset containing 135 MRIs still showed a mean volume
difference of 9% with a standard deviation 7%.

Currently the most accurate and effective semantic segmentation models are
based on fully convolutional networks (FCN)[LSD15]. These models are composed
of several convolutional layers followed by pooling layers which gradually expand the
receptive field and create high-level semantic features. However, by passing through
a pooling layer, the size of the feature map is reduced and small objects or nuance
changes in the pixels get lost. This leads to an inaccurate boundary reconstruction
in the segmentation map. To address this drawback, multi-scale feature maps have
been used in the segmentation networks. This technique helps to effectively aggre-
gate complementary information from various scales and complements the missing
boundaries of feature maps|[HCH"17]. Among many of these CNN models with the
multi-scale feature maps are the DeepLab and PSPNet architectures. UNet-based

architectures on the other hand have shown superior performance. UNet-based ar-
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chitectures with deep feature representation, contraction-expansion path and skip
connections have outperformed other models in medical image segmentation tasks,
where fine grained masks and accurate margin identification are highly advanta-
geous. While efficient feature extraction with the UNet-based networks has shown
great success in image segmentation tasks such as in kidney tumor segmentation,
lung tumor segmentation, etc., automatic hippocampus segmentation remains a
challenging task due to the low contrast of the surrounding tissue, complicated fur-
ther by it’s small size and irregular shape. More specifically, the small size of the
hippocampus compared to the whole brain creates an imbalance between ROI and
background information, compromising as a consequence the performance of any
segmentation model. To overcome this imbalance problem, this study presents a
two-step hippocampus segmentation framework in which the first step is to locate a
candidate region surrounding the hippocampus structure in the brain. The candi-
date region expected to contain the hippocampus will have relatively equal ROI and
similar background voxels, attenuating as a consequence the imbalance data problem
and improve the segmentation performance. After extracting the voxels containing
the hippocampus, the second step is to leverage an efficient segmentation model
based on the combined Transformer and UNet architecture to generate the segmen-
tation mask. This architecture can efficiently model global contexts without losing
localization ability as the low level details are maintained. We have adjusted the
architecture and fine tuned the model to achieve high performance in the hippocam-
pus segmentation task. The hippocampus volume, which is captured almost in real
time from this model in the testing phase, can be utilized to enhance AD diagnosis.
More importantly, the proposed segmentation algorithm can be deployed on other
datasets of interest in pursuit of similar research goals that rely on segmentation

and volumetric measurements.
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To evaluate the merits of the proposed segmentation task, we further propose
multiple combination of Unet, Unet+4, MANet and FPN networks coupled with
strong feature extraction backbones pre-trained with large datasets of ImageNet or
Instagram. The performance of the aforementioned models on the hippocampus
segmentation task are thus provided and drawbacks and strengths of each model
are discussed in Section IV. In almost all of the models, the pipeline starts with
slice-wise feature extraction of voxels attributed to the hippocampus region to be
mapped to the target binary mask of structural MRI. In this method, the slice-wise
voxels are considered as the volumetric features. The proposed CNN architecture
learns the hidden representation of slice-wise volumetric features and ultimately
calculates a segmentation mask for the brain hippocampus region.

The rest of this chapter is organized in the following manner. In next section,
related literature in this challenging research field is presented. The methodology
along with the dataset, data processing, network architecture, and loss functions
used in this architecture are discussed in section III. Experimental results are pro-
vided in section IV starting with an introduction to the computational platform
used to run these experiments followed by a performance evaluation of the proposed
method with other state-of-the art methods. Section V provides a discussion with
concluding remarks on the contributions of this research work and current limita-

tions that need to be overcome for future neuroimaging segmentation tasks.

5.2 Related work on Hippocampus Segmentation

This section focuses on how the hippocampus region is located and then segmented.
Research findings suggest that hippocampal volumetry is an important quantitative

metric that can serve as a biomarker for neurodegenerative diseases like Alzheimer’s
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disease [LHW'19, MID*19, WNK*21, LMW*21], Parkinson’s disease [WDD"12]
neurological disorders like epilepsy [HWB7'04], neuro-psychological disorders like
bipolar disorder and schizophrenia [OJMM19] [SLPGO04] and depression [HSB*21]
[BNAT00], to name a few. Hence, segmenting correctly this region is of utmost
importance for assessing any subtle structural changes and thus volumetry that
may be due to the pathology. In fact, volumetric alterations and hippocampal
degeneration could be useful in the classification of the different stages of AD [CL18,
KYP*18, WWS*07], and in distinguishing between AD patients from dementia with
Lewy bodies (DLB) patients [WWS*07], and AD from patients with subcortical

ischemic vascular dementia as an other form of dementia [DSL*02].

5.2.1 Locating the Hippocampus in Brain 3D MRI

To estimate the hippocampus location in the brain MRI, several techniques have
been proposed. Bender et al. [BKB™ 18] have proposed a technique that first applies
both rigid and contour-based image registration on the brain images (CT or MRI),
then generates a population-based hippocampal atlas by mapping the hippocampus
from several patients into a template image set. Estimated hippocampal contours
can be automatically formed in a given image set by mapping this atlas onto it.
Multiple researchers have proposed similar segmentation techniques based on the
brain atlas registration [CAD05, vdLDHBNO08, WT21]. Thus, techniques based on
brain image registration became the most widely used brain anatomical segmenta-
tion techniques. Such techniques are adopted in many robust software packages such
as FreeSurfer. FreeSurfer explicitly starts with some pre-processing steps including
motion correction, affine transformation to image space, non-uniform intensity nor-

malization, and removal of non-brain tissues. Then image volume will be intensity
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normalized to match the brain atlas image intensity histogram. The final step to
perform brain structure segmentation is a nonlinear warping of the atlas brain image
to the sample brain image. This technique is mostly utilized for atlas-based tissue
segmentation, in labeling the brain stem, subcortical structures, cerebellum, and
cerebral cortex [Fis12].

An intuitive approach has been proposed by Hajiesmaeili et al. [HA17]. Their
algorithm performs 3D skull stripping and extracts the brain volume first followed
by a distance estimation from the first slice of the brain to the first slice where the
hippocampus appears in all 3 views of coronal, sagittal and axial. This algorithm is
particularly beneficial if a rough estimate of the hippocampus structure is needed.

Basher et al.[BCL*19] have presented a two-stage process where the model first
locates left and right hippocampal tissues in the MRI with the Hough-CNN model,
then slices of the hippocampus are sent to a Discrete Volume Estimator CNN model
to extract features from both hippocampal tissues. All the features are then ag-
gregated and passed to a final deep neural network where the AD classification
happens. Suk and Shen, on the other hand, propose to combine latent information
(more complex information of the low level features) with the original low-level fea-
tures to help build a robust model for AD/MCI classification with high diagnostic

accuracy[SS13].

5.2.2 Hippocampus Segmentation

Although manual segmentation or tracing of the hippocampus region remains the
gold standard, there is clearly a need for automating the segmentation process
[(WBP*17, BBG*15, MID*19, WNK*21]. Automatic hippocampus segmentation

techniques are mainly based on two types of approaches: 1) Conventional image
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processing techniques and atlas registration [BBLT07, HMC*00]; and 2) CNN-based
approaches for feature extraction and volume estimation. While many useful meth-
ods and software packages have been proposed based on brain multi atlas segmen-
tation, the performance of such models highly relies on registration accuracy, atlas
selection, type of brain atlas used and label fusion. These factors reduce the model
applicability for general use cases. With the success of deep learning models in var-
ious application domains of artificial intelligence, image processing and computer
vision, the biomedical research field shifted it’s attention toward a new line of re-
search with the advent of the CNN-based models, some of which have been proposed
for Hippocampus segmentation [PPW*14, AHH*09].

To overcome the high dimensionality of the 3D brain images, Liu et al. [LZAS18]
introduced a landmark-based feature learning approach. In their model, critical in-
formative anatomical brain regions are first detected with a heuristic algorithm.
Instead of feeding the entire 3D image to the model, patches of the image surround-
ing the landmark are fed to a CNN . Several earlier methods try to investigate whole
brain features together. In contrast to many models that are trained on the entire
3D MRI, which impose huge computational burden for training with specific hard-
ware needs, this approach needs far less computational power and is easier to carry

out the training phase [LZAS18].
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Zach et al. [ZBL*20] have proposed a simplified protocol for hippocampal volume
change measurement. They have found a single optimal slice of the brain MRI where
the hippocampus is the only visible organ. Then by calculating the area and volume
of the hippocampus in this specific slice, they have tried to classify 40 subjects
in normal control group against 40 subjects in AD group with these biomarkers.
They have shown that this simple process can substitute for the complex methods
of hippocampal volume estimation without any further needs for brain or skull
normalization.

Yanrong Guo et al. [GGS15] have proposed a segmentation model based on rich
features which were extracted by stacked sparse auto-encoder from prostate MR
images using a sparse patch matching process in a supervised fashion. They showed
that the deep-learned features were more effective than the handcrafted features in
guiding MR prostate segmentation. A dense V-network has been introduced by Eli
Gibson|GGH'18] for multi organ segmentation of abdominal organs. This model is
a fully convolutional neural network with five main features, which include: 1) V-
shape down sampling and up sampling path 2) dilated convolutions 3) dense feature
stacks 4) batch-wise spatial dropout and 5) explicit spatial prior. With this design,
they have been able to surpass the dice coefficient metrics of other models such as
VNet and VoXResNet with considerable margin in multi-organ segmentation task

[HLVDMW17].

5.2.3 CNN Models for AD Diagnosis

Hippocampus segmentation research for AD diagnosis dates back to 1992, where
Jack et al.[JPOT92] have proposed a model to estimate hippocampus volume at-

rophy from sMRI to assist in the clinical diagnosis of AD subjects . Since then,
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automatic AD diagnosis based on hippocampus volume estimation has evolved with
advances in neuroimaging and the advent of more advanced deep learning tech-
niques.

The majority of the research studies that utilized deep learning methods for AD
classification falls into three main categories: The first group utilize CNN mod-
els for feature extraction followed by a classifier such as support vector machines
(SVM) [SS13, SLS*T14b]. The second group relies on generated hand-crafted fea-
tures (e.g., voxel-based or region-based) from neuroimaging modalities followed by
the use of CNN-based classifiers. These models particularly apply other tools or
algorithms to perform brain template mapping and multi-atlas (affine or rigid) reg-
istration approach to perform the feature extraction process. FreeSurfer and FIRST
are two software suites which are heavily used for this purpose. In some cases,
the ROI is defined by experts. These feature sets are utilized to train a CNN
to classify the subjects [LLCT14, TAET20, TAST19, ATAA18, TAS*18]. These
models are highly prone to registration errors and the presence of noise. Further-
more, the trained classifiers could be biased by the specific dataset used in trained
phase. These methods usually result in a sub-optimal performance on disease diag-
nosis. The last group consists of models that have an end to end pipeline capable
of direct feature extraction integrated with a classifier to model the feature space.
These models are relatively newer and more powerful than their earlier counterparts
[HAKEB16, ZGG*16, LLZS18, KSBD17]. To create such a pipeline, this study fo-
cuses on modeling the automatic hippocampus segmentation as a two-stage model
relying on a localization process that delineates an area expected to contain the
hippocampus structure, followed by a segmentation process. Subsequently, volu-
metric measures of disease prone areas such as the hippocampus could be used as

reliable measures that would augment the prospects for multimodal and multiclass
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classification and prediction algorithms.

To diagnose AD subjects based on the hippocampus structure, Li et al. [LLIT19]
have proposed a hybrid convolutional model cascaded by a bidirectionally-gated Re-
current Neural Network(RNN). They have used a DenseNet-based model on 3D seg-
ments of the brain hippocampus to learn about related shape features and intensity.
This CNN is followed by an RNN to learn high-level features of the Hippocampus
for the diagnosis of AD subjects. While the results show the superiority of their
proposed model on segregation of the AD subjects, their model highly depends on
manual pre-processing and using external software for brain segmentation through
brain registration. This pipeline is not only prone to noise of the external soft-
ware, but also needs a high degree of manual scrutiny and data integrity checks as
pre-processing steps.

A pre-trained 3D convolutional auto-encoder presented in [HAKEB16] was used
to detect anatomical shape changes in sMRI. Few deeper fully connected layers
of this model are fine-tuned for AD task-specific classification. Suk et al. also
utilized an auto-encoder to extract features from PET, MRI and cerebrospinal fluid
(CSF) separately and combined those features with AD Assessment Scale-cognitive
(ADAScog) scores and clinical Mini-Mental State Examination (MMSE) to train a

multi-kernel SVM to classify the subjects [SLST14a].

5.3 Methods and Network Architecture Design

In this section, we introduce a novel framework for hippocampus segmentation.
This framework is composed of two modules: 1) hippocampus localization, and 2)
hippocampus segmentation. In the first module, a model estimates the hippocampus

location in the brain and produces a cropped area surrounding the hippocampus
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tissue. In the second module, the cropped area expected to contain the hippocampus
structure is fed to a segmentation model. The design of the first module is inspired
by [LZAS18, BCLT19, HA17]. This is a heuristic algorithm that performs 3D skull
stripping and extracts the brain volume. Considering the ratio of the acquired
volume to the average of the training set volume it performs a relative distance
estimation, which defines the distance of the first slice of the brain to the first slice
where the hippocampus appears in all three views of coronal, sagittal and axial to
determine a rough estimate of the hippocampus location in the 3D MRI.

In the second module, the cropped area which is expected to contain the hip-
pocampus is fed into a transformer-based segmentation model. The segmentation
algorithm leverages the architecture design of TransUnet proposed in [CLY"21].
This new design is based on integrating the Vision Transformer and the UNet model,
which has shown promising segmentation results on abdominal CT scans, but has
not been explored for 3D brain MRI segmentation. This latter task is viewed as
even more challenging given the difficulty in delineating the different regions of the
brain in 3D MRI.

The hippocampus segmentation problem falls in the category of an imbalanced
segmentation as the proportion of the region of interest is less than that of the
background. To improve the original implementation of the model for handling
this imbalanced case, we have used a combined loss function based on the focal loss
idea. Some data augmentation techniques applied on the data (random rotation and
flipping) before feeding the data points into the segmentation model. The proposed
pipeline is depicted in figure 5.1.

Several interesting methods are proposed for strengthening the UNet architec-
ture by coupling it with different backbone methods to extract richer features for

more accurate segmentation. DenseNet, InceptionNet and ResNet when integrated
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to the UNet architecture have resulted in higher performance in the different seg-
mentation tasks [LCQ™18, DAD18, CRBFS19, QJZ*20, DC20, ZCN*17]. Following
this line of research, we also explored multiple powerful backbone architecture that
have been lately introduced for generating rich feature maps but have not been yet
exploited in medical application. As such, networks like SeNet and EfficientNet
are integrated into UNet and UNet++ to further improve the segmentation accu-
racy. This investigation has been performed to analyse the effect of more advanced
feature extraction backbones on the well performing segmentation models such as
UNet++. These results confirm that a high performing feature extractor does lead
to a better performance of UNet type architecture overall, however they still lag
behind the performance attained when integrating the Vision Transformer to the
UNet architecture.

Furthermore, we have explored a multi-scale attention based network called
MANet. This attention-based architecture has been proposed in [FWLW20] for
liver tumor segmentation task, but has not been applied for brain segmentation so
far.

An overview of the studied networks and relevant details of model design and
evaluation metrics are discussed next.

UNet architecture which was proposed in 2015 by Ronneberger et al. [RFB15],
has been one of the most dominant method in medical image segmentation. Since
then this model has served as a building block of many other image segmentation
models. In contrast to object detection which draws a bounding box around the
subject and defines its corresponding label, in image segmentation, a fine binary
map draws over the images and classifies each pixel separating background and

object /region of interest.
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UNet architecture is composed of two main paths. Multiple convolution layers
are followed by a max-pooling layer from the encoding path. Through this path,
the model learns spatially relevant contextual information. This path matches a
reverse decoding path which adds precise localization to yield a final segmentation
with same size as the input image.

UNet++ that was proposed in 2018 attempts to improve the UNet architecture
by re-designing the encoder and decoder path and skip connections of the origi-
nal UNet. These pathways in UNet++ are composed of a series of nested dense
connections that reduce the semantic gap between encoder and decoder’s feature
maps. This strengthened connections in Unet++ show considerable improvement
in segmentation tasks [ZSTL18].

DenseNet is an effective network which consists of several dense blocks. Inside
each dense block, every layer’s output directly connects to all the following layers.
Therefore the input to each layer is concatenated to all the subsequent feature maps.
This design gives the model several advantages: 1) It prevents the vanishing gradient
by constructing a larger, richer feature map, 2) having multiple 1*1 kernels in the
network as means to control the computational complexity of the model,and 3)
having all the features from the input fed to the final layer instead of only focusing

on final layer features, all of which lead to higher model performance [HLVDMW17].

EfficientNet was introduced by Tan et al. in 2019 to show how systematically
scaling and balancing network depth, width and resolution can improve the perfor-
mance. This new design leads to a family of models called EfficientNet-B7 with a
better accuracy than previous ConvNets while they have much smaller size (smaller
by a scale of 8.4) and lower inference time(6.1x faster) [TL19].

In contrast to many CNN model-based architectures which attempt to enhance
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Figure 5.1: The two-stage proposed pipeline for hippocampus segmentation in MR
images

spatial encoding quality throughout the feature hierarchy to achieve better represen-
tational power, Squeeze and Excitation network (SeNet) focuses on channel relation-
ship [HSS18]. A squeeze and excitation block is introduced to explicitly model inter
dependencies between various channels. This action results in calibrating channel-
wise feature response to improve the network power. This new architecture not
only generalizes well to other applications but also improves the CNN performance
significantly .

Attention mechanism was first proposed for natural language processing task
and more recently expanded to the image processing and computer vision domains.
Attention mechanism draws from human vision, in that once we know the context
in which an object appears in a scene, we look for that same context when we
search for that object in the future. Multiple research endeavors have improved
their design by adding attention mechanism in conjunction with convolution layer,
one of them is MANet. While many of the proposed UNet architectures are based
on multi-scale feature fusion, MANet suggests a new attention-based model. This
network first introduced for liver tumor segmentation task and has a self-attention
mechanism which integrates local features with associated global dependencies. It

is composed of two main blocks:(1) a position-wise attention block which tries to
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find and model the spatial dependencies between pixels in a global view, and (2) a
multi-scale fusion attention block which applies multi-scale semantic feature fusion
to model the channel dependencies between feature maps [FWLW20].

While there are several studies which have exploited attention mechanism for
image classification, a fully transformer-based model has been proposed by Google
research team more recently in late 2020. This architecture is identical to the original
transformer model proposed for Natural Language Processing (NLP). It processes
a sequence of image patches similar to NLP tokens for image classification task.
Vision Transformer has shown promising results compared to the state-of-the-art
CNN models if it is trained on a large dataset for enough time while requiring
substantially fewer computational resources to train [DBK™20].

This novel transformer-based architecture is applied for image classification pur-
poses using an encoding module. For each image that is processed the model predicts
a label. To make this model applicable to more complex tasks such as object de-
tection and image segmentation, some modification in the architecture is essential.
To apply this model for segmentation task, Chen et al. have coupled this architec-
ture with a decoding module inspired by UNet architecture.They also applied the
transformer encoding on the feature maps extracted from layer third of a ResNet50
network. They selected this design after failing to obtain compelling result by fol-
lowing solely the original architecture which directly tokenize the original image.
This CNN-Transformer hybrid design performs better than pure transformer en-
coding as it allows the network to exploit high resolution CNN feature maps in
the reconstruction path. The reconstruction path consists of several up-sampling
units. The very first reconstruction unit gets the output of the transformer encoder
and after up-sampling it, it concatenates the current feature map with the feature

map of the last CNN layer of the ResNet in the corresponding encoding path to
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incorporate multi-scale information into the model. The outcomes passes through a
3*3 convolution and ReLU layer to form the input for the next reconstruction unit.
Same process applies two more times on the resulting output of each layer until
the decoder reconstructs the segmentation task in the original size of the input. A
segmentation head is added at the end of the reconstruction path which classifies
each pixel to its corresponding class and recovers the segmentation mask with the
same resolution of the input image [CLY*21].

The network architecture which is adopted from Trans+Unet model is depicted
in figure 5.2

To have a better performance in an imbalanced segmentation task, we have
changed the original loss function to a combined focal loss inspired by [YSSR21].

In our design, unlike in the original Vision Transformer model, the image is
passed through a CNN model to generate a rich feature map. Furthermore the
first few intermediate feature maps in the ResNet module are also kept to help
reconstruction in the up-sampling path. The final feature map which has a 2D shape
will split into fixed-size 1*1 patches. Patches are flattened and linearly projected to
a new latent space. To retain positional information, position embedding are added
to each patch separately as input to the transformer encoder unit. the Transformer
layer consists of layer norm and Multi Head Attention (MHA) unit. In this model,
12 transformer units have been stacked on top of each other. The final feature map
is bi-linearly up-sampled and concatenated with the corresponding feature map in
the down-sampling path from CNN model. Each up-sampling block consists of a 2
up-sampling operator, a 3x3 convolution layer, and a ReLU function.

Considering the enormous success of the aforementioned feature extractor net-
works (ResNet, DPN ,SeNet, EfficientNet, ExceptionNet) in many segmentation

tasks, we have integrated them into our pipeline and study them extensively when
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they are paired with 3 distinct segmentation models (UNet,UNet++,MANet) to
evaluate their performance when dealing with highly imbalanced segmentation tasks
with the specific challenges such as when dealing with convoluted structures like the

hippocampus and low contrast margins in between the different brain regions.

5.3.1 Loss Function

Class imbalance is a major issue that impact the semantic segmentation task, espe-
cially in neuroimaging. Since small ROI is usually suppressed through max pooling
layers, solutions based on optimizing the cross entropy loss function are often unsat-
isfactory. To overcome this issue, we have adopted mixed Focal Dice loss function.
This loss function is a weighted combination of modified focal loss and modified
focal dice loss. Focal loss was first introduced to address the problem of class imbal-
ance faced by cross entropy loss. To do so, it down-weights the contribution of easy
examples which in turn enables learning from harder examples. In this study, as
we face class imbalance in this segmentation problem, we have adopted a weighted
combination of modified focal loss L,,r and modified focal dice loss L,,rp as shown

below:

Lyp = Alpp + (1 — XN Lyrp

Lmew = = 32 Bt~ log(p) + (1 = ) [(1 = (1 = 1)
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P ify=1
Pt =
1—p ify=0
where A € [0, 1] defines the relative weights of two components of the loss function
and 7 is the focal parameter. Parameter C defines the number of classes,

The t; in the L,,cg equation refers to the Tversky index as an asymmetric sim-
ilarity measure, which is closely related to the Dice score and enables optimization
for output imbalance by tuning the weights assigned to false positives and false neg-
atives. The t; calculation is defined with details in [YSSR21]. The « term in the
range of [0, 1] controls the relative weighting of the Dice and cross entropy terms
contribution to the loss, and 3 controls the relative weights assigned to false posi-

tives and negatives. A value of § > % penalizes false negative predictions more so

than false positives.

5.4 FEvaluation Metrics

To quantitatively evaluate and compare the performance of the proposed methods,
four metrics have been exploited. Mean Dice Similarity Coefficient (DCS) is used

to measure overlaps between ground truth mask A, and predicted mask A,.

|As, N A,
D _ 7
¢ = Z\Asz Y

Jaccard Similarity Coefficient (JSC) is adopted to compare the similarity and

diversity between A, and A,,.
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Precision Index shows the overlapping ratio between A, and A, over ground
truth mask A, while Recall Index (RI) shows the overlapping ratio between A, and

A, over predicted mask A,.

1 A, N A,
Precision Index = — x Z |45 N A |
n’ 4 ,

A, N A,
Recall Inde:z:* Z| |A | !
All these metrics are calculated per image and the mean of all the metrics over
the test dataset is reported. A good segmentation method should produce high

value in all the metrics.

5.4.1 Optimizer Algorithm

One of the most popular optimization algorithms in machine learning domain is
Gradient Descent. It is an iterative algorithm looking for global minimum of a
differentiable function. In each step, GD calculates the derivative of the loss function
which points to the direction of the steepest descent. Various modification of this
algorithm have been proposed to improve the calculation speed and prevent the
algorithm to stuck in local minima.

Till now, several other optimization algorithms have been proposed to improve
GD peformance in terms of speed and convergence rate, including Stochastic Gra-
dient Descent (SGD) [Bot10] , AdaGrad [DHS11], RMSProp [TH"12], and Adam
[KB14], to name a few. Adam combines AdaGrad and RMSProp to create a better
optimization algorithm. Adam stands for Adaptive Moment Estimation. Similar to
momentum, this algorithm has an exponentially decaying average of past gradients.

So the direction of weight updates is calculated in a similar manner to momentum.
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Adam also employs an exponentially decaying average of past squared gradients to

support an adaptive learning rate [KB14].

5.4.2 Activation Function

Activation function is a non linear function in a neural network neuron that delivers
an output based on inputs. Sigmoid activation function is one of the earliest non
linearity which has been used in CNNs. Several other non-linearity functions have
been proposed till now, including RelLiu, Leaky Relu, Selu, Gelu and Mish, each has
own it’s advantage and weaknesses.

Among all,Mish has outperformed other vastly used activation functions like
Relu and Swish in more than 70 challenging problems. Mish is a non-monotonic
and smooth activation function which has several properties that can improve the
model performance when compared to the well studied and popularly used activation
functions like Relu, LeakyRelu or Swish. Main properties of Mish are concluded

below: f(X) = X.tanh(In(1 + e*)) Mish

e Unbounded above and bounded below: Unbounded above is a desirable prop-
erty for any activation function since it avoids saturation which causes the
training to slow down drastically. Hence, speeding up the training process.
The bounded below property helps in achieving strong regularization effects
(fits the model properly). (This property of Mish is similar to the properties
of ReLU and Swish with a range [0.31, )).

e Non-monotonic function: This property helps preserve the small negative val-
ues, hence stabilizing the network gradient flow. Most commonly used activa-

tion function like ReLU [f(x) = max(0, x)], and Leaky ReLU [f(x) = max(0,
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x), 1] fail to preserve the negative values as their differentiation is 0, and hence

most of the neurons do not get updated.

e Infinite order of Continuity and Smooth: Mish being a smooth function is good
with the improvement of results as it is better at generalization and effective

optimization of results.

e High computational cost, but better performance: It is costly as compared to
ReLU but shows better results in the deep neural networks as compared to

ReLU.

e Self Gating: This property is inspired by Swish function, where the scalar
input is provided to the gate. It is advantageous over point-wise activation
functions like ReLU which take in a single scalar input without requiring to

change the network parameters.

Weight initialization have done with Zhavier technique. Batch normalization
layer employed after all the non linearity layers. The method has been tested on

251 T1 MRI images each having 250 to 350 slices.

5.5 Dataset

In this study we have used two datasets. The data for training the segmentation
model has been captured from the Medical Segmentation Decathlon Challenge, 2019.
It consists of 105 patient data and 90 healthy subjects. The 3D structural MRI
data were captured by a 3D T1-weighted Magnetization Prepared Rapid Gradient
Echo Imaging (MPRAGE) sequence (TI/TR/TE, 860/8.0/3.7 ms; 170 sagittal slices;
voxel size, 1.0 mm3) all with the same machine. Tracing of head, body, and tail

of the hippocampus have been performed on the entire data [SABT19]. The data
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consisting of 326 MRIs used to test the pipeline end to end has been acquired from
Mount Sinai Medical Center (MSMC), Miami Florida as part of the data for the
1Florida Alzheimer’s Disease Research Center (ADRC). We first apply the MR-
based skull-stripping technique to extract the brain from each MRI scan. Then the
hippocampus is segmented in each brain image separately. The volumetric results
from this second dataset is compared with the volumetric results obtained using

FreeSurfer 6.0 (see supplementary information).

5.6 Experiments and Results

The experiments were carried out on an NVidia Titan RTX with 576 Tensor Cores
for Al acceleration and 24 GB of GDDR6 (Graphics Double Data Rate 6 ) memory.
The data has been normalized prior to running the experiments. With the Decathlon
Challenge dataset, the segmentation dataset was divided into two distinct subsets:
194 (3D) volumes for training and validation through cross validation technique
and the rest, the 65 (3D) volumes for testing. The batch size is set to 24 and the
number of training epoch is set to 150. During every training iteration, the input
was augmented by random rotation and flipping. The training process took about
13 hours. Five folds cross validation technique has been deployed to train and test
the end to end pipeline. For the MSMC dataset, we used 326 MRI sets and deployed
our pipeline on them.

Optimization of the deep learning model is achieved using the Adam optimizer
with a dynamic learning rate of 10e-4. Although the first component in the proposed
architecture is designed to reduce the imbalance between ROI and background by
cropping a region in the brain expected to contain the hippocampus. However, due

to the small size of the hippocampus in comparison to the background in the cropped
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3D ( 1:5), the data is still considered imbalanced. To tackle this issue, a combination
of loss functions [SLV*17] is used for this purpose. Focal dice loss and focal loss have
been utilized as they help when dealing with imbalanced data, and a cross entropy
(CE) function is used as means to gauge the difference between the predicted value
from the true label. The choice of the CE function is due to its smooth nature
and the easiness for calculating the gradient. Similar to [YXWT18, ZXS*17], 3D
volumes are processed slice by slice, and in the test time, the final 3D structure is
reconstructed by stacking all the slices together.

Evaluation of the proposed method was done by the mean Dice similarity co-
efficient, Jaccard score, mean precision, and mean recall. Related equations for
calculating these metrics were provided earlier in the Evaluation Metrics section.
To ensure a comprehensive and fair comparison, we have coupled different models
with multiple backbone architectures. The change in receptive field in the various
design architectures along with the different choices of loss functions, depth and
width of network and other design details resulted in the need for different segmen-
tation masks.

The performance of the proposed two-stage architecture for carrying out the
hippocampus segmentation task has been compared with various state of the art
segmentation network including Vanilla UNet, and UNet++. The implementation
of these networks has been borrowed from the PyTorch segmentation models library
[Yak20].

For illustrative purposes, figure 5.3 shows the model segmentation mask against
FreeSurfer mask and manual segmentation mask in three different subjects with the
axial, coronal and sagittal views. These results for each slice are then combined to
generate the 3D volumes of the hippocampus region for each subject.

Table 5.1 provides a quantitative comparison of the segmentation performance
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of UNet network coupled with several outstanding feature extractor backbone archi-
tectures. Except for DenseNet and ResNet, this is the first study that couples most
advanced feature extractors like SeNet, EfficientNet and ResNext with UNet. As can
be seen, UNet-SeNet and UNet-ResNext combinations have the highest DSC and
JSC values in the current segmentation task, which supports the fact that SeNet and
ResNext are stronger feature extractors than ResNet or the original UNet backbone
architecture.

Table 5.2 summarizes the results of similar studies when coupling state-of-the-art
feature extractors with the UNet++ segmentation model. These measured metrics
are slightly higher values than their counterpart in table 5.2 due to the better per-
formance of UNet++ with almost all the combined feature extractors. UNet++ is
an upgraded version of UNet with dense skip pathways that attempt to reduce the
semantic gap between the feature maps of the encoder and decoder modules. From
this table, the same conclusion that SeNet and ResNext do enhance the segmenta-
tion model can be drawn.

Table 5.3 shows the result of an experiment with MANet segmentation model
paired with a similar set of backbone architectures. Considering that MANet has
outperformed UNet++ in kidney segmentation task, it shows relatively similar out-
comes to UNet++; however, not all backbone architectures increase the segmenta-
tion results as in UNet++. This difference can be explained by the attention-based
mechanism of MANet, which is not a typical CNN based architecture.

In our research, we have searched through the best segmentation model for the
second stage of our pipeline. We have investigated various segmentation models such
as UNet and UNet++ which are based on convolution mechanism, and the more
recent architectures which are based on a combination of convolution and attention

mechanism such as MANet. The results presented in table 5.4 and figure 5.4 shows
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Table 5.1: Performance of UNet model paired with different feature extraction back-
bones. When a reference is not available, * means implemented by our group

Method | Backbone Dice Jaccard | Precision | Recall | Ref

UNet ResNet 0.882 0.791 0.883 | 0.884 | [ZCN*17]
UNet DenseNet 0.885 0.795 0.893 | 0.878 | [LCQ™18§]
UNet ResNext 0.885 0.796 0.912 | 0.862 *
UNet EfficientNet | 0.886 0.797 0.879 | 0.895 *
UNet Xception 0.884 0.794 0.893 | 0.877 *
UNet | SeNet 0.888 0.801 0.896 | 0.883 *

Table 5.2: Performance of UNet++ model paired with different feature extraction
backbones. When a reference is not available, * means implemented by our group

Method Backbone Dice Jaccard | Precision | Recall | Ref

UNet++ ResNet 0.889 0.802 0.899 0.882 | [JSRT19]
UNet++ ResNext 0.893 0.802 0.8992 0.882 *
UNet++ EfficientNet | 0.8865 0.797 0.879 0.895 *
UNet++ | Xception 0.886 0.801 0.897 0.879 *
UNet++ | SeNet 0.893 0.809 0.899 | 0.889 *

that our proposed model performs at least 2% higher in all four metrics of DSC,
JSC, PI and RI in comparison to UNet, UNet++ and MANet.

The best performing segmentation-feature extraction pairs from the above ex-
periments have been gathered and compared together in figure 5.4. As can be seen
from the results, the best performance is attributed to Transformer-Unet with com-
bined loss functions. This network is one of the most recent attention-based model
with Vision Transformers and Resnet feature extractor combined. The result in this
figure shows better performance of the Transformer-Unet model over other models
as expected in both metrics of DSC and JSC. This can be explained by the high
performance of the Vision Transformer in terms of feature extraction. Finally we
have performed Anova test to verify the statistical significance of the difference in

the model performance (P-value greater than 0.05)

83



Table 5.3: Performance of MANet model paired with different feature extraction
backbones. All combination have been proposed by our group

Method | Backbone Dice Jaccard | Precision | Recall
MANet | ResNet 0.886 0.796 0.896 | 0.877
MANet | ResNext 0.801 0.717 0.819 | 0.792
MANet | DenseNet 0.877 0.785 0.920 | 0.841
MANet | EfficientNet | 0.881 0.790 0.903 | 0.862
MANet | Xception 0.872 0.777 0.921 | 0.832
MANet | SeNet 0.891 0.805 0.897 | 0.887

Table 5.4: The Performance of different segmentation methods over Dechathlon
dataset. *Results of best performing combination of backbone for UNet,UNet++
and MANet models are illustrated.

Networks Dice Jaccard | Precision | Recall
UNet 0.888 0.801 0.896 | 0.883
UNet++ 0.893 0.808 0.899 | 0.898
MANet 0.891 0.805 0.897 | 0.887
Transformer based | 0.911 0.821 0.923 | 0.913

5.7 Discussion

Hippocampus is one of the most important disease-prone region of the brain used
as a biomarker for detecting the onset of AD as well as for assessing other neurolog-
ical, neuro-psychological and neurodegenerative diseases like epilepsy, depression,
bipolar disorder, schizophrenia, and Parkinson, to name a few . To assist doctors in
analyzing patients neuroimaging data, automatic, easy to use and deploy, fast and
accurate segmentation models play an important role for making a correct diagnosis.
Therefore in this study, we proposed a new two-stage pipeline for segmentation of
the hippocampus tissue in the 3D brain MRI. This pipeline is adopted mainly to

handle the imbalance in data which results from small size ROI like the hippocampus
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Figure 5.3: Illustration of model segmentation against FreeSurfer and manual seg-
mentation masks in different subjects has shown in left and right columns respec-
tively. Each subject hippocampus has been visualized in axial, sagittal and coronal
view
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Figure 5.4: Performance comparison of top performing models integrated in pro-
posed two-stage pipeline on hippocampus segmentation task.

in contrast to the larger background. The first module follows an intuitive approach
that roughly estimates the location of the ROI in the brain MRI and makes a crop
around that region. More specifically, first module starts with skull striping and
equalizing slice spacing in all 3 direction. Then it defines the coordinates of the
last slices that hippocampus occupies with respect to the brain atlas, then it crops
the image and sends the cropped section to the segmentation module. We have
strengthened the segmentation module by incorporating the advantages that vision
transformers provide. The vision transformer has been recently released by Google
and is trained on very large datasets and has shown tremendous success in feature
extraction, surpassing the already powerful ResNet performance. We further inves-
tigated the power of UNet, UNet++ and MANet for the current task when coupled
with stronger feature extraction backbone architectures such as EfficientNet, SeNet
or Xception. Our results support the assumption that a stronger backbone archi-
tecture leads to a better segmentation performance, while Transformer-Unet with

an adjusted loss can improve these results further. Our proposed pipeline based on
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Transformer-Unet with the new combination of dice and focal loss functions is found
to be more suited for the aforementioned imbalance problem in brain segmentation.
This new pipeline has shown over 2% and 1% improvement in Dice and Jaccard
Coefficient Similarity Score, respectively.

Through this research endeavor, the following contributions are made: 1) Inves-
tigated and extended the segmentation models provided by previous studies which
a focus on enhancing UNet architecture by coupling it with a stronger backbone
architecture for hippocampus segmentation. For the first time, a more advanced
UNet architecture is proposed with better performance than original UNet and
other networks such as UNet-SeNet and UNet++-SeNet. 2) Proposed an integrated
two-stage pipeline to locate and then segment the hippocampus structure, while
addressing the unequal distribution of foreground and background elements. 3)
Leveraged a Vision Transformer-based architecture coupled with the UNet architec-
ture trained for hippocampus segmentation task by adopting a modified focal dice
loss function which is shown to optimize training on imbalanced data. 4) Compared
the segmentation results obtained with the manual segmentation provided through
the Medical Segmentation Decathlon Challenge of 2019 on 40 MRIs not seen in
the training phase, showing a mean volume difference of 5% between them with
a standard deviation of 3%. 5) Deployed the proposed segmentation method over
our own Mount Sinai data with the 1Florida Alzheimer’s Disease Research Center
(ADRC) data, consisting of 326 MRIs. A comparison with the FreeSurfer version
6.0 results showed a mean volume difference of 7 % with a standard deviation of
4%. 6) Performed an exhaustive comparative assessment of relevant image segmen-
tation architectures like UNet, UNet++ and MANet coupled with stronger feature
extraction backbone architectures such as ResNet, DenseNet, EfficientNet, SeNet

or Xception using the metrics of Dice, mean Jaccard, Precision, Recall and average
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symmetric surface distance (ASD).

In terms of limitations, when deploying the proposed algorithm to process a
different dataset as we did with the Mount Sinai data, the learned features of the
base network will have to be repurposed to the target domain to ensure a good per-
formance. To transfer knowledge from the source domain, the pre-trained network
structure can thus be fully or partially utilized for the new task at hand. Also,
using the new labeled data, the network can be adapted and re-trained on the new
dataset that has been transformed to the same shape, slicing size, and dimensions

as the original dataset on which the original model was developed.
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CHAPTER 6
CONCLUDING REMARKS AND FUTURE WORK

6.1 Concluding Remarks

In this dissertation, the impact of multiple imputation techniques have been investi-
gated for estimating the missing values. Various imputation algorithms were coupled
with three best performing classification algorithms to improve the accuracy of the
multiclass classification of AD subjects between four groups of AD, EMCI, LMCI
and Control Normal. In another attempt to exploit subject’s longitudinal data,
two modifications of the Recurrent Neural Networks: Long Short Term Memory
and Gated Recurrent Network, which are known to be very effective in finding the
pattern in sequential data, were deployed to ascertain their efficacy in the presence
of missing data. Several approaches for handling the missing data in those models
have been investigated.

When addressing the challenge of incomplete multimodal datasets for Alzheimer
diagnosis, an extensive comparison of methods for estimating missing values in large
heterogeneous dataset was provided. The inherent challenge of missing values in lon-
gitudinal and multimodal studies is compounded in complexity by the heterogeneity
of the data. Under the missing data challenge, the Gradient Boosting algorithm is
found to yield the highest performance when dealing with multiclass classification
as a more natural process when dealing with all subgroups and the different pro-
dromal stages of the disease. An advantage of the research presented in Chapter 3
is in the broad scope of the investigation which coupled different classifiers with the
four most relevant imputation techniques including the k-nearest neighbors impute
algorithm (KNN), Matrix Factorization, SVD, and Soft Impute. Findings suggest

that imputation techniques perform reasonably well when there is a low percentage
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of missing values in a given dataset, and that all these imputation techniques fail to
perform well when high levels of missing data are experienced. Moreover, when a
particular modality is completely missing for so many subjects within the dataset,
a situation we refer to as block-wise missing data patterns, the imputation methods
fail to make any statistically meaningful inferences on the existing data to estimate
the missing ones.

Considering the importance of the hippocampus as a disease prone region for
many neurological and neurodegenerative diseases, an another research endeavor of
this dissertation involve the development of a deep learning model for the locali-
sation and segmentation of the hippocampus region as a biomarker for AD. The
developed model was composed of two stages. In the first stage a hippocampus lo-
calization model tries to detect a 3D bounding box around the hippocampus tissue
and in the second stage a segmentation model defines the accurate boundaries of
the hippocampus tissue. This two-stage model further strengthened by a combined
loss function to address the imbalance in the data, as the hippocampus tissue is
extremely small in context to the 3D full brain MRI. The small ratio of the ROI to
background creates an imbalanced segmentation problem, where the majority of the
image pixels belong to the negative class. The second stage of the model which is
the segmentation module combines two well-performing deep learning frameworks:
UNET and Vision Transformer. Effects of well known activation functions along
with a few successful new versions such as MISH activation function have been
tested and reported. Final model performance against original UNet model and
several variants of UNet (UNET++, UNetSenet, UNetDenseNet,etc) were summa-
rized in this chapter. An extremely important development in this case is the fact
that the developed algorithm can be deployed to other datasets as we have done

with the Mount Sinai Medical Center data as part of the 1Florida ADRC, show-
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ing extremely important results that are compared to the well-known FreeSurfer

software suite.

6.2 Future Research

Trajectory projection of Alzheimer’s Disease (AD) progression has been halted for
a long time due to lack of sufficient longitudinal data. In recent decades ADNI has
realized a relatively large dataset of AD subjects longitudinal studies which enables
researchers to focus on progression modeling of the disease. Alzheimer’s Disease
progression is generally assessed using biomarkers including structural Magnetic
Resonance Imaging (MRI), 18-Fluoro-DeoxyGlucose Positron Emission Tomogra-
phy (FDG-PET) imaging,CerebroSpinal Fluid (CSF), cognitive examination, and
to alesser extent electroencephalography (EEG)[JPM18, PDHvdF*13, LCD*18].
However several studies in the literature only focus on the effect of single biomarker
or only one modality for diagnosis and/or prognosis of the disease. When contend-
ing with the missing data challenge inherent to longitudinal and multimodal studies,
researchers need to situate this challenge in context to the more difficult process of
multiclass classification. The low accuracy obtained when performing multiclass
classification and the failure of imputation methods due to large percentage of miss-
ing values or block-wise missing data is due to the variability in measurements used
and to the interrelatedness between them. The cognitive tests used to label subjects
at baseline must be augmented through specific neuroimage measurements that are
yet to be defined through the most relevant feature extraction methods.

In relation to the results obtained in Chapter 3, future work should focus on
improving the current multiclass classification accuracy with the application of newer

techniques such as the Optimal Margin Distribution [Z2Z19]. Also developing newer
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machine learning classification methods that could find a balance in the features
that are optimal not only for multiclass classification but also for prediction as well,
and to determine a breakpoint when optimizing one task could only be achieved at
the expense of another task, especially when we have to contend with in incomplete
datasets.

In this dissertation, the applications of LSTM and GRUs to model prediction
tasks over the longitudinal data from the ADNI dataset were introduced. The
proposed models can be used for the diagnosis of Alzheimer’s disease. We also
incorporated three different strategies to deal with the incomplete and missing data
(from time points and modalities). Trying different variations of RNNs (i.e., LSTM
and GRU), We found slightly better performance using the LSTM model. Our
model can classify AD vs.NC with an accuracy of 95.9%, even with simple replicate
and zero filling of the missing data. It also performs better classification of AD
vs.MCI and NC vs.MCI patients. As a direction for future works, designing an
end-to-end convolutional and LSTM model for this longitudinal dataset can be of
great interest, to accurately learn powerful image features (from MRI and PET)
and simultaneously learn the classifier parameters.

To better appreciate the results summarized in terms of mean volume difference
and standard deviation as reported in 3) and 4) earlier in the Discussion section of
, and in order to understand the complexity in segmenting brain regions like the
hippocampus in 3D MRI, the study reported in [BBG'15] provides all the evidence
we need in the challenge faced when segmenting brain regions in MR images. The
authors of this study show that even when there is very high agreement among four
expert tracers (pairwise Jaccard indices 0.82-0.87), the volumetric results among the
four expert tracers obtained using the HarP benchmark dataset consisting of 135

MRIs still showed a mean volume difference of 9% between them with a standard
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deviation of 7%. Note that in the results reported in Tables I through III, they show
a Jaccard value between 0.80 to 0.82 for the different architecture with the best
result obtained with the Transformer-based architecture. These results as obtained
through the proposed machine learning method come in support of the call for
automated means to segment disease prone regions like the hippocampus [JJAK'11,
WBP*17, BBGT15, BBM'15].

For the future research, one can adopt this segmentation model to a pipeline
to jointly extract features from MRI and other discriminative regions of the brain
and classify the subjects in the subsequent network. More precisely, this end-to-
end network architecture composed of a CNN-ViT model which extract features of
the hippocampus from MRI. This network is jointly trained with another network
which captures the features and models the subject space between four classes. The
current heuristic hippocampus localization model can be improved if replaced by a
trainable neural network to more accurately locate the bounding box around the
hippocampus.

Moreover, it will be worth investigating ways to enhance the proposed modified
TransUnet with a more powerful feature extraction process using image processing
coupled with machine learning that exploits the relational positioning or location of
brain anatomical landmarks like the ventricles and cerebellum. This process could
also involve relational positioning in between brain regions. For example, once
the hippocampus is extracted, the focus will shift on searching for the expected
region containing the amygdala to be segmented as the next step. Image processing
for enhancing these segmentation tasks could include histogram modifications that
extend the dynamic range or perform histogram equalization followed by specialized
edge detection methods [MRCA18] that would take into consideration any noise

effect [MMC™19]. Such imaging and machine learning algorithms could be further
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integrated with the newest generation of Vision Transformers also called Token
by Token transformers, which show considerable improvements over the traditional

vision transformers for image classification and feature matching.
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Supplementary Documentation

Volumetric Calculations of the Hippocampus Region using the Mount Sinai
Medical Center (MSMC) Data as Part of the 1Florida Alzheimer’s Disease

Research Center (ADRC)
Difference ((Left) Difference ((Right) Difference ((Left+Right)

Mean 6.90 6.57 6.73

STD 5.58 4.33 4.96

# PID Date model(L) model(R) FS(L) FS(R) Diff(L) Diff(R)
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3 005 02/2017 3867.1 4359.3 4040.1 4087.9 0.042829 0.062250
4 008 03/2006 3187.4 3420.5 3466.8 3438.9 0.080597 0.005379
5 015 02/2017 3146.6 4083.8 3494.1 3602.4 0.099461 0.117888
6 016 02/2017 2839.2 3352.9 2992.2 3611.1 0.051127 0.076998
7 020 03/2018 3585.9 4398.1 3928.1 4198.8 0.087105 0.045321
8 025 04/2016 3841.6 3589.4 3589.6 3631.9 0.070209 0.011849
9 026 04/2016 4045.1 4195.1 4307.1 3919.8 0.060819 0.065621
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14 037 08/2016 3506.0 3496.8 3493.1 3792.1 0.003687 0.084447
15 038 06/2016 3414.5 4309.0 3323.8 4161.3 0.027303 0.034271
16 041 04/2016 2820.0 3884.8 3414.5 3611.3 0.174097 0.070399
17 042 05/2016 3515.4 3162.5 3552.2  3534.2 0.010365 0.117525
18 044 05/2016 3769.0 4188.3 3705.5 35774 0.017146 0.145867
19 045 05/2016 3183.2 4218.3 3447.6  3597.3 0.076690 0.147220
20 046 04/2016 3742.7 3231.0 3705.5 3577.4 0.010031 0.107219
21 047 05/2016 3418.1 3783.4 3489.2 3768.6 0.020369 0.003921
22 048 05/2016 3748.1 3700.8 3646.5 3760.7 0.027875 0.016180
23 049 04/2016 3196.6 3790.1 3526.0 3656.5 0.093428 0.035258
24 050 05/2017 2896.7 4068.1 3411.1 3624.2 0.150797 0.109113
25 051 03/2016 3003.6 1600.7 3228.7 1424.5 0.069715 0.110074
26 052 05/2016 3071.9 1978.5 3063.5 1762.1 0.002746 0.109370
27 053 10/2016 2585.6 2799.3 2596.4 2976.9 0.004168 0.063435
28 054 06/2016 3185.2 2009.4 3117.7 1854.1 0.021638 0.077272
29 055 04/2016 2913.1 3811.9 3440.6 3529.5 0.153326 0.074088
30 057 05/2016 3554.8 3804.4 3509.9 3523.4 0.012803 0.073869
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# PID Date model(L) model(R) FS(L) FS(R) Diff(L) Diff(R)

31 059 04/2016 3280.4 3452.1 3290.4 3482.7 0.003045 0.008850
32 060 05/2016 2808.8 3921.3 3183.5 33334 0.117710 0.149919
33 061 05/2016 3959.2 4006.0 3974.0 4237.4 0.003724 0.057764
34 062 04/2016 3763.9 3990.6 3748.8 4076.7 0.004035 0.021581
35 063 04/2016 3612.8 4079.0 3689.4 4075.4 0.020771 0.000879
36 064 07/2016 3564.8 3482.6 3168.5 3553.4 0.125071 0.020342
37 065 04/2016 3748.9 3642.5 3768.1 4046.2 0.005094 0.110845
38 066 06/2016 4179.9 4178.7 4135.2  4349.9 0.010803 0.040971
39 068 04/2016 3660.5 4403.7 3907.4 4358.7 0.063181 0.010212
40 069 07/2016 3080.1 3362.3 3186.3 3397.9 0.033345 0.010595
41 070 05/2016 3374.1 3564.2 3334.7 3500.2 0.011808 0.017962
42 071 05/2016 3720.3 4075.8 3730.4 3573.0 0.002715 0.123371
43 072 05/2016 3500.3 3219.0 3679.4 3580.4 0.048668 0.112271
44 073 05/2016 3157.7 4148.9 3595.7 3674.9 0.121826 0.114250
45 074 05/2016 3746.1 3561.9 3730.0 3796.9 0.004312 0.065962
46 075 05/2016 3532.8 3665.8 3687.4 3681.3 0.041914 0.004216
47 077 05/2016 3772.9 3959.6 3794.6 3664.2 0.005728 0.074606
48 078 05/2016 3272.5 4075.8 3464.2 3512.2 0.055348 0.138278
49 079 06/2016 3654.5 3118.2 3647.8 3577.5 0.001841 0.147304
50 080 05/2016 3354.5 2991.8 2860.1 3006.4 0.172865 0.004876
51 081 05/2016 3198.6 2758.3 2804.2 2922.3 0.140653 0.059475
52 082 05/2016 3110.4 3000.3 2904.5 3135.4 0.070883 0.045033
53 083 08/2016 2853.2 2960.6 2900.6 3018.5 0.016339 0.019542
54 084 05/2016 3165.2 2699.4 27272 2827.0 0.160589 0.047270
55 086 05/2016 3689.7 3295.1 3647.8 3577.5 0.011487 0.085716
56 087 06/2016 3650.0 3787.0 3686.7 3797.7 0.009953 0.002824
57 088 06/2016 3690.9 3557.9 3535.9 3656.2 0.043836 0.027633
58 090 06/2016 4004.8 3656.8 4009.9 3856.0 0.001271 0.054465
59 091 07/2016 3710.9 3648.5 3850.4 3839.3 0.036226 0.052286
60 095 07/2016 4001.5 4007.8 4038.5 4153.2 0.009164 0.036279
61 096 07/2016 2883.3 3225.7 3185.0 2811.1 0.094722 0.128528
62 097 07/2016 3686.9 2891.3 3407.7  3207.4 0.081942 0.109329
63 098 07/2016 3401.5 4239.3 4027.8 3937.8 0.155503 0.071122
64 100 09/2016 3507.8 3294.4 3537.8 3076.6 0.008494 0.066103
65 101 07/2014 3968.6 4537.3 3986.8 4028.7 0.004555 0.112085
66 102 08/2016 3377.1 3216.1 3397.3 3679.0 0.005949 0.143940
67 103 07/2016 3444.2 3673.8 3493.0 3861.3 0.013958 0.051043
68 104 07/2016 3395.8 3246.4 3391.4 3698.4 0.001302 0.139247
69 105 07/2016 3548.1 4064.6 3492.0 3764.5 0.016061 0.073835
70 106 08/2016 3020.8 4054.4 3299.7 3664.9 0.084513 0.096062
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# PID Date model(L) model(R) FS(L) FS(R) Diff(L) Diff(R)

71 108 07/2016 3981.8 4039.0 3919.3 3935.3 0.015945 0.025669
72 109 08/2016 3031.0 3993.9 3729.2 3899.7 0.187214 0.023590
73 111 07/2016 3355.8 2704.1 3321.7 2944.7 0.010259 0.088991
74 112 08/2016 2857.9 2640.2 3353.1 2849.0 0.147670 0.079094
75 115 08/2016 3565.1 2836.1 3216.6 2952.6 0.108338 0.041061
77T 118 09/2016 2921.9 2791.5 3137.8 2987.5 0.068801 0.070228
78 120 08/2016 2811.6 2746.3 2857.8 2865.5 0.016178 0.043387
79 122 09/2016 3295.2 2836.4 3137.2 2915.5 0.050361 0.027884
80 123 09/2016 2681.4 3000.0 3062.2 2989.3 0.124366 0.003568
81 124 09/2016 3843.8 3983.8 3677.3 41122 0.045289 0.032223
82 125 09/2016 3891.3 3934.1 3760.4 3946.1 0.034812 0.003053
83 126 09/2016 4261.4 4224.2 4137.0 4361.3 0.030069 0.032458
84 127 09/2016 3466.5 4175.1 4240.4 4408.4 0.182510 0.055884
85 128 09/2016 3890.1 4172.1 3995.5 3876.5 0.026378 0.070850
86 131 09/2016 3205.8 4101.0 3680.5 3799.9 0.128977 0.073421
87 132 09/2016 3556.0 3814.2 3603.1 3731.0 0.013076 0.021810
88 133 11/2016 3400.7 3556.0 3411.8 3703.8 0.003248 0.041564
89 135 10/2016 3590.2 3598.5 3473.0 3642.0 0.033744 0.012090
90 136 10/2016 3180.6 3426.0 3376.2 3421.2 0.057933 0.001404
91 138 09/2016 3395.3 3567.8 3281.0 3475.0 0.034850 0.026014
92 139 10/2016 3952.7 3500.5 3307.9 3461.6 0.194914 0.011116
93 140 01/2017 3398.3 4148.1 3815.0 3973.1 0.109237 0.042178
94 141 11/2016 3643.6 3478.5 3388.0 3463.0 0.075450 0.004462
95 142 10/2016 3236.7 3001.9 3207.5  3270.7 0.009095 0.089545
96 143 10/2016 3463.8 3300.7 3437.8 3449.2 0.007560 0.044997
97 144 10/2016 4170.7 4073.6 3985.1 4141.3 0.046575 0.016615
98 145 10/2016 3319.0 4259.3 3384.2 3731.5 0.019260 0.123913
99 146 10/2016 3591.6 4410.7 3591.8 4110.1 0.000061 0.068156
100 147 12/2016 3424.7 3787.4 3549.2  3917.5 0.035071 0.034347
101 148 10/2016 3281.8 4005.1 3590.6 3571.3 0.085995 0.108321
102 149 11/2016 3390.5 4227.4 3759.7 4068.8 0.098193 0.037517
103 150 11/2016 3808.4 3945.3 3892.6 3832.0 0.021641 0.028708
104 151 10/2016 2865.1 2558.2 2739.4 2511.7 0.045884 0.018196
105 152 10/2016 2870.6 3177.7 2899.0 2948.5 0.009799 0.072122
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# PID Date  model(L) model(R) FS(L) FS(R) Diff(L) Diff(R)

106 153  12/2016 2843.1 2810.7 2822.3 2628.4 0.007358 0.064864
107 154 11/2016 3146.1 3091.4 2845.5 2680.9 0.105628 0.132780
108 155 10/2016 3617.2 3790.0 3295.4 3294.7 0.097659 0.130689
109 157 11/2016 2007.4 2069.9 2098.3 2055.3 0.043335 0.007054
110 158 11/2016 3691.5 3517.0 3556.2  3584.3 0.038049 0.019121
111 160 11/2016 3212.9 3151.3 2717.6 3153.2 0.182241 0.000609
112 161 11/2016 3526.5 3741.7 3628.1 3769.1 0.028014 0.007315
113 163 02/2017 3279.0 3915.6 3116.0 3481.2 0.052304 0.110941
114 164 11/2016 3709.2 2564.1 34154 2684.6 0.086023 0.047014
115 165 11/2016 2956.1 2085.3 2553.6 2336.0 0.157615 0.120208
116 166 11/2016 2777.2 2711.1 2623.0 2394.4 0.058802 0.116808
117 167 11/2016 2636.8 2496.6 2606.3 2275.3 0.011719 0.088655
118 169 12/2016 3138.8 3223.8 3170.5 3448.3 0.010005 0.069626
119 170 12/2016 2768.6 3366.2 2897.2 3310.9 0.044403 0.016441
120 171 02/2017 4117.6 4598.3 4573.2 4911.8 0.099629 0.068180
121 172 09/2016 3999.4 3773.9 3968.5 4114.2 0.007781 0.090186
122 173 11/2016 2880.1 3113.5 2988.1 3406.5 0.036139 0.094109
123 174 12/2016 3312.6 3857.4 3523.5 3795.6 0.059860 0.016024
124 175 11/2016 2650.3 2617.3 2892.2 2556.4 0.083623 0.023272
125 176  12/2016 2998.0 3917.9 2980.6 3464.1 0.005851 0.115833
126 177 12/2016 3746.7 4678.0 3987.7 4173.0 0.060429 0.107948
127 178  02/2017 3503.2 2691.1 3382.0 2862.1 0.035832 0.063536
128 179 12/2016 3498.0 3365.3 3492.5 3327.1 0.001581 0.011362
129 181 12/2016 2373.3 3328.9 2860.1 3006.4 0.170201 0.096871
130 182 12/2016 3320.5 3119.3 2804.2 2922.3 0.184129 0.063165
131 183 12/2016 3310.3 3178.6 2904.5 31354 0.139717 0.013596
132 184 12/2016 2871.5 3209.1 2900.6 3018.5 0.010040 0.059394
133 185 12/2016 3916.8 4041.3 3910.0 4481.2 0.001736 0.108853
134 186 12/2016 32774 4104.2 3647.8 3577.5 0.101535 0.128325
135 187 01/2017 3467.9 4384.0 3686.7 3797.7 0.059362 0.133733
136 188 01/2017 3106.0 4021.9 3535.9 3656.2 0.121572 0.090919
137 189 01/2017 2953.6 3617.9 3535.9 3656.2 0.164669 0.010599
138 190 01/2017 3967.4 3966.8 4009.9 3856.0 0.010602 0.027944
139 191 01/2017 3113.8 3827.6 3850.4 3839.3 0.191304 0.003058
140 192 12/2016 3170.5 3246.1 2770.5 3046.1 0.144380 0.061612
141 194 03/2017 2611.9 3443.8 2770.5 3046.1 0.057247 0.115473
142 195 01/2017 3979.1 3699.6 4038.5 4153.2 0.014710 0.122623
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# PID Date model(L) model(R) FS(L) FS(R) Diff(L) Diff(R)
143 196 01/2017 2980.9 2832.2 3185.0 2811.1 0.064074  0.007442
144 197 03/2017 3007.2 3100.9 3407.7 32074 0.117526  0.034361
145 198 02/2017 4011.6 3976.4 4027.8 3937.8 0.004011  0.009704
146 199 01/2017 2862.6 2802.5 2730.9 2914.8 0.048208  0.040088
147 201 02/2017 2893.1 4239.5 3605.8 3692.9 0.197650  0.128925
148 202 02/2017 3072.3 3490.6 3512.4 3811.6 0.125313  0.091972
149 203 02/2017 2407.0 2700.8 2182.7 2729.1 0.102752  0.010482
150 204 02/2017 2297.1 2593.8 2649.0 2624.4 0.132825 0.011803
151 205 02/2017 3597.9 3492.2 3567.5 3645.8 0.008531  0.043989
153 207 06/2017 2719.0 3413.8 3359.8 3174.8 0.190713  0.069998
154 208 02/2017 3421.1 4258.2 3633.9 3738.6 0.058554  0.122023
155 209 02/2017 2861.6 3781.6 3431.4 4188.2 0.166052  0.107512
156 210 03/2017 3573.1 3306.1 3330.0 3298.5 0.073001  0.002297
157 211  03/2017 4203.3 4501.0 4238.1 4723.8 0.008212  0.049505
158 212 03/2017 1793.6 2000.2 1820.1 2031.3 0.014572  0.015554
159 213  03/2017 3323.2 4168.0 3654.6 3558.8 0.090674  0.146156
160 214 03/2017 2967.6 2985.9 3299.4 3147.5 0.100572  0.054114
161 215 02/2017 3300.6 3863.7 3550.7 3826.0 0.070424  0.009749
162 216 03/2017 3352.8 4161.4 3235.2 3836.4 0.036336  0.078103
163 217 04/2017 2946.7 3164.9 2988.0 2884.3 0.013816  0.088656
164 218 03/2017 3890.6 3991.9 4096.9 4004.5 0.0503666 0.0031589
165 219 04/2017 3992 3026.7 3765.9 3443.6 0.0600403 0.1377303
166 220 03/2017 3328.3 4534.1 3595.7 3891.8 0.074356  0.1416533
167 221 05/2017 31824 2897.6 3297.7 3076.2 0.0349541 0.0616508
168 222 03/2017 30904 3382 3202.6 3450.6 0.0350373 0.020292
169 225 03/2017 3657.4 4122.4 3652 3687.6 0.0014713 0.1054627
170 226 03/2017 2984.3 3874.4 3342.3 3523.2 0.1071038 0.0906513
171 227 03/2017 3226 3325.7 3150 3214.9 0.0241164 0.0333206
172 228 04/2017 3221.9 2669.2 2812.2 2785.7 0.1456988 0.0436562
173 230 04/2017 44114 4118.1 4441.4 4048.4 0.0067498 0.0169205
174 231 03/2017 2881.9 3870.9 3517.5 3809.2 0.1806845 0.0159457
175 232 04/2017 3209.9 3480.7 3192.1 3578.5 0.0055763 0.0281085
176 233 07/2017 2670.7 3627.5 3149.7 3412.9 0.1520821 0.0591475
177 234 05/2017 2966.3 3605 3629.3 3421.7 0.1826813 0.0508515
178 235 04/2017 3414.2 3002.8 3370.8 3203.6 0.0128672 0.0668738
179 236 06/2017 3182.6 3975.4 3525.4 3758.5 0.0972321 0.0545625
180 237 04/2017 3586.3 3999.4 3686.9 4004.5 0.0272927 0.0012752
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# PID Date  model(L) model(R) FS(L) FS(R) Diff(L)  Diff(R)

181 238 05/2017 2282.0 2401 24455 25537 0.0664823 0.0636051
182 239 05/2017 3379.5 3000 34221 31684 0.012459  0.0561309
183 240 05/2017 1575.8  2369.3 1396  2403.1 0.1287736 0.0142855
184 241 06/2017 3570.3  3935.5 35825 4096  0.0034086 0.040778
185 242 06/2017 4359.3  4002.9  4492.8 4333.1 0.0297229 0.0825013
186 243 12/2016 2143.8 25483  2157.1 2713.9 0.0061663 0.0649853
187 245 05/2017 2999.6 38524  3341.1 3903.3 0.1022042 0.0132136
183 250 06/2017 32264 42242 34823 3645.2 0.0734748 0.1370745
189 252 06/2017 28457  3859.8 31554 3352  0.0981593 0.1315606
190 253 11/2016 34355 43404  3761.2 4038.4 0.0865906 0.0695763
191 256 06/2017 33852  3447.3  2956.1 3570.2 0.1451559 0.0356637
192 257 06/2017 34443  3007.1  3088.8 3303.1 0.1151082 0.0984352
193 258 06/2017 3858.1  3699.6  3858.2 3757.3 0.0000191 0.0156066
194 259 06/2017 3966.6 3573 4014.7 38454 0.0119782 0.0762515
195 260 06/2017 3233.8  3111.6 28723 3175.1 0.125857  0.020416
196 261 06/2017 30045 37102  3094.4 3193.2 0.0290389 0.139334
197 262 06/2017 3420.6 3003 3534.7 3287.3 0.0322924 0.0946771
198 263 06/2017 3166.2  3333.7 34947 3364.6 0.0940104 0.0092632
199 264 11/2016 3686 33152 3749 34658 0.0168002 0.0454262
200 265 07/2017 32517 33583  3230.5 3587.8 0.0065732 0.0683462
201 266 11/2017 2746.5  2415.8  2476.9 2534.9 0.108844  0.0492921
202 267 06/2017 3183.1  4048.1  3023.3 3570  0.0528498 0.1180985
203 268 06/2017 24057  3284.3  2586.3 2857.8 0.0698109 0.1298532
204 269 06/2017 2738 2081.4  2759.6 3127.1 0.0078094 0.0488859
205 270 07/2017 4865.1  4467.5  4872.6 4933.1 0.001536  0.1042109
206 271 07/2017 33237 4412 3746.8 4156.1 0.1129165 0.0580072
207 272 03/2017 37138 35364  3738.8 3833.1 0.0066928 0.0839004
208 273 07/2017 34802  3775.1  3738.8 3833.1 0.0691623 0.0153732
209 274 07/2017 3251 3099.2  3270.5 33247 0.005974  0.0727588
210 276 07/2017 3292.6  3634.6 37544 4032.7 0.1230027 0.1095302
211 277 07/2017 22015 27752  2223.9 2665.7 0.0100927 0.0394482
212 278  07/2017 2277 2055.7  2462.5 3040.5 0.0753159 0.0286898
213 279 07/2017 27572 26183  2851.8 2701.6 0.0331723 0.0318202
214 281 07/2017 36351 35534  4140.2 3311.3 0.1220068 0.0681403
215 282 08/2017 3719.7  3703.6  3555.9 35089 0.0460503 0.0525598
216 283 07/2017 32479 33587  3496.2 3546.6 0.071031  0.0559502
217 284 07/2017 30457  3337.1 34453 3503.7 0.1159727 0.0499315
218 285 08/2017 3136.3  2972.1  3118.6 3340.7 0.0056696 0.1240371
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# PID Date model(L) model(R) FS(L) FS(R) Diff(L) Diff(R)
219 286 08/2017 3803.3 3979.5 3968.2 3964.3 0.0415488 0.0038121
220 287 08/2017 3019.7 2772.8 2635.4 2599.3 0.1458231 0.0625836
221 289 08/2017 3462.9 3171.3 3400.1 3572.5 0.0184566 0.1265199
222 290 10/2017 3012.8 3175 3676.7 3625.2 0.18058 0.141786
223 291 10/2017 2964.8 3828.2 3377.6 3673.6 0.1222247 0.0403885
224 292 08/2017 3088 4437 3838.7 4035.3 0.1955686 0.0905293
225 293 09/2017 30704 3522.5 3410.4 3815.9 0.0996913 0.0832806
226 294 11/2017 3101.1 3006 3236.5 3314.9 0.0418315 0.1027666
227 295 10/2017 3339 4163.6 3389.7 4001.7 0.0149712 0.038883
228 298 11/2017 3269.7 3287 3182.3 3358.4 0.0274512 0.0217163
229 299 10/2017 3514.7 3362.5 3627.8 3836.9 0.0311694 0.1410904
230 301 11/2017 3387.1 4210.4 3610.9 3689.4 0.0619851 0.1237484
231 302 10/2017 3167.3 2548.9 2842.8 2728.8 0.1141347 0.0705732
232 303 09/2017 2767.7 2862.5 2842.8 2728.8 0.0264048 0.0466941
233 304 10/2017 3049.3 2599.6 3088.4 2849.3 0.0126733 0.0960368
234 306 11/2017 3482.2 3690.8 3490.5 3550.6 0.0023872 0.0379849
235 307 10/2017 3381 3322.5 3537  3735.5 0.044095  0.1243036
236 309 10/2017 2339.8 2471.1 2346.9 2577.8 0.0030293 0.0431779
237 310 11/2017 3593.8 3639.1 3662.7 3826.1 0.0188093 0.0513982
238 311 10/2017 28714 2940.3 2710.6 3079  0.0593243 0.0471844
240 313 01/2018 3607.3 4430.4 4476.4 4305.5 0.1941594 0.0281883
241 314 01/2018 3536.3 4412.8 3501.5 3782.6 0.009926  0.1428116
242 315 11/2017 3736.1 4044.2 3888.9 3866.7 0.0393004 0.0438918
243 316 10/2017 3737 4021.9 3842.3 4593.8 0.0274122 0.1421944
244 317 11/2017 2739.8 3873.5 3215.3 3579.8 0.1478974 0.0758343
245 318 12/2017 3651.3 3862.4 3899.8 4262.4 0.0637192 0.1035712
246 319 12/2017 2808.5 3123.3 2764.1 3154.5 0.0160487 0.0099978
247 320 10/2017 3143.3 4173.7 3832.5 3965.5 0.1798286 0.0498784
248 321 11/2017 3570.5 3541.7 3934.6  3804.4 0.0925337 0.0741631
249 323 11/2017 2393.9 2598.3 2343.6 2543.1 0.0214676 0.0212365
250 324 11/2017 3483.6 4168.6 3362  3575.9 0.0361622 0.1421829
251 325 11/2017 2839.3 3565.9 2811 3190.1 0.0100791 0.1053809
252 326 11/2017 2972.1 3030.3 2809.3 3160.6 0.0579331 0.0429985
253 327 01/2018 4233.8 3911.5 45472 3915.8 0.0689301 0.0011042
254 328 01/2018 34114 4256.3 3874.8 3691.8 0.1195931 0.1326203
255 329 12/2017 3135.6 3770.3 3233.8 3265.8 0.0303718 0.1338124
256 330 12/2017 2890.8 2682.5 3253.9 3076.1 0.1115889 0.1467322
257 331 02/2018 3885.2 3907.1 4172.2 4331.8 0.0687998 0.1087015
258 333 03/2018 3867.6 3863.2 3675.7 3622.3 0.0522181 0.0623629
259 335 01/2018 3627.3 3771.4 3594.2 3470.4 0.0092104 0.0798195
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# PID Date model(L) model(R) FS(L) FS(R) Diff(L) Diff(R)
260 338 01/2018 3086.4 3843.2 3594.2 3470.4 0.1412937 0.0969934
261 339 02/2018 3081.7 3293.7 3206.7 3748.9 0.0389709 0.138218
262 340 03/2018 2735.6 3603 3130.4 3170.5 0.1261034 0.1200384
263 341 02/2018 3087.8 3557.8 3015.9 3154.9 0.0238394 0.1132385
264 342 02/2018 3552.8 3301.5 3054.6 3317.1 0.1631114 0.0047168
265 344 02/2018 3393.3 4358.5 3530.8 3713.9 0.0389353 0.1478866
266 345 04/2018 3249.9 3060.2 2979  2863.1 0.0909248 0.0643961
267 346 06/2018 3255.2 3322.9 3023.5 3144.4 0.0766324 0.0537115
268 349 08/2018 3339.9 3185.8 2987.2 3321.9 0.1180751 0.0427358
269 350 05/2018 2995.9 3884.1 2987.2 33219 0.0029217 0.1447475
270 351 07/2018 3511.6 4401 3571.7 3986.8 0.0168344 0.0941199
271 352 04/2018 3811.9 3636.9 3930.3 3751 0.0301372  0.0313805
272 353 04/2018 3811.9 3636.9 3930.3 3751  0.0301372 0.0313805
273 354 04/2018 3103.6 4009.6 3557.2  3636.6 0.1275291 0.0930277
274 355 04/2018 3149.8 4063.9 3421.7 3524.4 0.0794605 0.1327617
275 356 06/2018 3234.1 3144.8 3421.7 3524.4 0.0548318 0.1207182
276 357 07/2018 3231.9 3326.7 3301.8 3456.9 0.0211686 0.0391532
277 358 07/2018 2715.8 3422.7 3376.7 3568.8 0.1957144 0.0426948
278 359 11/2018 3870.9 4682.5 4178.9 4565  0.0737082 0.0251009
279 360 06/2018 3256.7 3051.1 2872.3 3175.1 0.1338171 0.040626
280 361 06/2018 2947.5 3189.1 3094.4 3193.2 0.0474841 0.0012966
281 362 07/2018 3302.8 3141.1 3534.7 3287.3 0.0656202 0.0465308
282 363 06/2018 2965.2 3522.8 3488.8 3414  0.1500725 0.030895
283 364 07/2018 3262.6 3419.7 3488.8 3414  0.0648221 0.0016655
284 365 09/2018 3585.2 3948.2 3352.9 3388.8 0.0692907 0.1416854
285 366 07/2018 2652.7 2662.4 29149 2428.3 0.0899458 0.0879237
286 368 08/2018 3314.1 4405.9 3662.3 3801.8 0.0950644 0.1371141
287 369 07/2018 3013.5 3116.2 3207.1 3067  0.060362  0.0157987
288 370 07/2018 3894 4858.4 4128.1 4236.1 0.0566969 0.1280851
289 371 08/2018 3442.6 4318.6 3624 3843  0.0500609 0.1101345
290 374 09/2018 3202.8 3904.1 3573.9 3580.7 0.1038282 0.0828294
291 375 01/2019 3214.8 4265.5 34277 4085.4 0.0621028 0.0422245
292 376 01/2019 3205.6 4238.8 3518.9 3780.5 0.0890336 0.1081302
293 377 11/2018 3346.7 4062 3744.7 3672.5 0.1062901 0.0958987
294 378 11/2018 2808.4 3727.8 3046.9 3535.4 0.0782747 0.0516046
295 379 09/2018 3505.8 3751.7 4270.1 3792.6 0.1789789 0.0108931
296 380 11/2018 3077.1 3070.3 3276 3259.2 0.0607185 0.0615245
297 381 11/2018 3395.6 4126.2 3652.9 3684.5 0.0704505 0.1070457
208 382 10/2018 3897.2 3769.6 3711.5 3402.7 0.0500244 0.0973289
299 383 10/2018 3088.9 3802.1 3724.7 3419.9 0.1706979 0.1005135
300 384 10/2018 3074.8 3371.6 3724.8 3419.1 0.1745044 0.0141012
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# PID Date model(L) model(R) FS(L) FS(R) Diff(L) Diff(R)
301 386 10/2018 2919.6 3997.4 3369.5 3530.3 0.1335193 0.116859
302 387 09/2018 3680.4 3370.7 3165.3 3166 0.1627349 0.0607299
303 388 09/2018 2936.4 2788.8 3338.5 2895.3 0.1204311 0.0381863
304 389 09/2018 3355.1 3331.6 3064.8 3507.7 0.0947073 0.0528593
305 391 10/2018 3364.9 3254.3 3064.8 3507.7 0.0979307 0.0778616
306 393 10/2018 2488.2 3709.3 3059.2 3718.7 0.1866356 0.0025466
307 395 01/2019 3102.3 4002.7 3874.7 4164 0.1993365 0.0403051
308 396 01/2019 3283 3014.7 3055.8 3351.3 0.0743372 0.111665
309 397 05/2018 3925.1 3802.8 3725.7 3780 0.0535313  0.0059995
310 400 02/2019 3482.3 4028.6 3059.2 3718.7 0.1382954 0.0769313
311 401 02/2019 3260.9 3789.2 3688.6 3931.1 0.1159521 0.0374593
312 402 03/2019 3361.7 4284.6 3569 4057.5 0.0580764 0.0529936
313 403 05/2019 3001.7 2708.3 2975 3098.1 0.0089723 0.1439266
314 404 04/2019 2901.1 3846.1 3261 3665.9 0.1103574 0.0468555
316 406 04/2019 3431.2 4096.3 3952.3 4483.4 0.1318555 0.0944869
317 409 04/2019 3305.9 3079.4 2870.2 3057.1 0.151795  0.0072504
318 410 04/2019 2825.5 3804.9 3225.8 3356.8 0.1240821 0.1177787
319 411 05/2019 3574.8 3309.7 3945.2  3650.2 0.0938956 0.1028942
320 412 06/2019 3820.7 3798 3716.9 3506.9 0.0279224 0.0766554
321 413 07/2019 3209.3 4330.2 3864.6 4072.1 0.1695589 0.0595971
322 414 05/2019 3611.7 3579.9 3759.9 3715.2 0.039404  0.0377967
323 415 06/2019 2900.2 3956.5 3359.8 3481.5 0.1368043 0.120057
324 418 08/2019 3574.3 4584.6 3827.6 4113.6 0.0661681 0.102733
325 428 01/2020 2477.2 3356.7 2863.6 3118.4 0.1349317 0.0709993
326 430 01/2020 2893.6 3984.1 3129.4 37154 0.0753605 0.0674462
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