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Abstract: Recent public disclosures on attacks targeting the power industry showed that savvy
attackers are now capable of occulting themselves from conventional rule-based network intrusion
detection systems (IDS), bringing about serious threats. In order to leverage the work of rule-based
IDS, this paper presents an artificially intelligent physical-model-checking intrusion detection
framework capable of detecting tampered-with control commands from control centers of power
grids. Unlike the work presented in the literature, the work in this paper utilizes artificial intelligence
(AI) to learn the load flow characteristics of the power system and benefits from the fast responses
of the AI to decode and understand contents of network packets. The output of the AI is processed
through an expert system to verify that incoming control commands do not violate the physical
system operational constraints and do not put the power system in an insecure state. The proposed
content-aware IDS is tested in simulation on a 14-bus IEEE benchmark system. Experimental
verification on a small power system, with an IEC 61850 network architecture is also carried out.
The results showed the accuracy of the proposed framework in successfully detecting malicious
and/or erroneous control commands.

Keywords: agent systems; cyber-physical security; decentralized control; intelligent systems

1. Introduction

1.1. Motivation

Resilient and secure operation of the power grid relies on judicious cooperation between several
cyber and physical entities. Cyber processes, for instance, read the physical states of the grid and
interact with it by actuating physical devices. Therefore, communication signals could be feedback
from sensory devices or control commands to actuating devices.

On several occasions, the literature has shown the ability of attackers to exploit vulnerabilities in
the communication networks of electricity grids and tamper with control fields in network packets.
For instance, [1] presented how a switching control command could be manipulated by an attacker
to maliciously open circuit breakers causing blackouts. The work in [2] also showed how power
could be interrupted by tampering with sensor measurements. Reference [3] showed that blackouts
could be caused due to the sequential removal of substations or transmission lines by malicious
acts. Similarly, Zhu et al. [4] discussed attack scenarios capable of causing cascaded failures in
power systems.

Furthermore, recent public disclosures emphasized the brutality of control-related attacks on
critical processes, such as the Stuxnet and the Crash Override malwares targeting industrial control
systems and power plants [5,6]. In the Stuxnet malware, attackers targeted Programmable Logic
Controllers (PLC)s by changing the control signals going to Variable Frequency Drives (VFD)s of
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motors. In a similar approach, the Crash Override malware targeted intelligent electronic devices by
altering the switching commands sent to open and close circuit breakers.

Notwithstanding the fact that the aforementioned attacks targeted critical infrastructure,
the gravity of these attacks is also accentuated by their ability to obscure themselves from conventional
rule-based Intrusion Detection Systems (IDS)s. In such attacks, the modified control fields are
re-encoded in the proper packet format before being transmitted on the network [1,7]. Rule based IDS
rely on information in the header of network packets and compare them against standard stipulations
or perform statistical analysis on network traffic to identify anomalous ones based on cyber rules.
By that, conventional IDS disregard the actual data fields. Accordingly, there is a need for new
innovative solutions that detect attacks that might disrupt of the operation of the power grid.

1.2. Related Work

Attacks on power control loops can be categorized as:

(1). False Data Injection Attacks (FDIA)s that target sensor or meter measurements. In these types
of attacks, attackers attempt to feed back to the controller fake sensor measurements to alter
its operation. For instance, a malware in [8] showed that injecting high current values into a
substation’s network could cause controllers to issue unwanted trip signals, jeopardizing the
reliability of the power system. There are extensive efforts on detecting and mitigating FDIAs.
For instance, the authors in [9] presented an algorithm based on the linear Weighted Least Square
Error (WLS) to detect bad or corrupted sensor measurements in digital substations. However,
there are practical limitations on the WLS method, such as the latency. In [10], a false data injection
attack detection mechanism, which based on identifying a set of candidate invariant microgrid
parameters, was introduced. This method was designed specifically for DC microgrids. In [2],
the authors focused on detecting fake sensor measurements in power systems and enhancing
the reliability of power grid by forecasting the values of lost measurements, due to network
congestion, based on historical trends. Similarly, there are plenty of other works that are focused
on FDIAs, such as [11–13].

(2). Control-related attacks that target control commands going to actuators and field devices.
There are few recent efforts that have been placed to detect control-related attacks in the
energy sector that incorporates physical rules along with cyber rules. In [1], a semantic analysis
framework, which integrates network IDS with power flow analysis was proposed to detect
malicious control commands. To achieve acceptable detection latency, this technique requires
adapting the power flow analysis algorithm, leading to a tradeoff between accuracy and latency,
as the system expands. In [14], an anomaly detection algorithm, which is specific for detecting
attacks on automatic generation control, is proposed. In the former, the control signal is executed
on the physical system only if it is regarded as legitimate by the anomaly detection engine,
otherwise, a signal from a model-based automatic generation control is utilized. This work relies
on the assumption that the feed-back frequency and tie-line measurements are trusted and do
not discuss their security requirements. In [15], faults are distinguished from cyber-attacks by
following a mathematical formulation that incorporates PMU data, event status, and monitoring
logs. Similarly, the work in [16] utilizes lookup tables for current measurements and circuit
breakers statuses to compare current and previous states for attack detection. Both [15,16] require
that data collection for the detection algorithms to be performed by a trusted entity, which is not
always the case [17].

Therefore, there is a need for security systems that not only are capable of detecting anomalous
network activity based on cyber rules, but also are aware of the content of network packets to be able
to understand and assess their consequences on the physical grid. Since the goal of most attackers is
to disrupt the operation of the power system, attackers have more incentive to directly alter control
commands, rather than tamper with sensor measurements to affect the controllers’ actions. Accordingly,



Sensors 2018, 18, 2478 3 of 22

the focus of this paper will be on the detection of switching attacks on circuit breakers, which falls
under the category of control related attacks.

1.3. Paper Contribution

This paper proposes a multi-agent security framework to detect and prevent cyber-attacks
targeting circuit breakers in a power system. Unlike the work presented in the literature, the work in
this paper utilizes artificial intelligence (AI) to learn the load flow characteristics of the power system
and benefits from the fast responses of the AI to decode and understand the contents of network
packets. The output of the AI is processed through an expert system to decide on whether an incoming
control command contains malicious content or not.

The contributions of the paper are:

• While the work in the literature assesses network packets against mathematical models of the
power system, to the best of the authors’ knowledge, this is the first effort to discuss the use of
machine intelligence to develop a content-aware intrusion detection and prevention system that
decodes and understands the physical meaning of the content of network packets.

• The use of AI reduces the online computational burden as compared to complex mathematical
models and therefore, accelerates the attack detection and decision-making processes (in the
µs range).

• Taking appropriate preventive action upon detecting malicious control commands and not only
detecting intrusions.

• Finally, implementing the developed security multi-agent system on a hardware laboratory
scale power system with an IEC 61850 communication architecture, taking into consideration
the practical aspects that arise from the hardware implementation of the power system, agents
as embedded microcontrollers, and communication network. The obtained results from the
experimental setup proved the feasibility of the proposed security algorithm in real-time physical
power systems.

The performance of the proposed framework was tested in simulation on a 14-bus IEEE benchmark
system for 36 test cases covering all N-1 contingency scenarios. The results showed that all the malicious
commands that will place the system in an insecure state, have been prevented from actuating the
circuit breakers. The framework was also verified experimentally, where the security algorithm was
compiled on embedded microntrollers that are interfaced with a 5-bus hardware power system testbed
setup having an IEC 61850 communication infrastructure.

1.4. Paper Organization

The rest of the paper is organized as follows: Section 2 discusses the current standards
used in power automation, describes the assumed attack models, and the details of the proposed
model-checking approach. Section 3 presents and discusses the simulation results. Section 4 presents
and discusses the agents’ development process, the hardware power system physical and network
setup, and test results. Section 5 concludes the paper and proposes future work.

2. The Artificially Intelligent Physical-Model Checking Approach

The proposed multi-agent security framework is shown in Figure 1. In this work, the power
system is sectionalized into several zones. In each zone, an agent is responsible for: (1) local control
and (2) security actions.
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Figure 1. 14-Bus IEEE benchmark system with decentralized and hierarchical control. 
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Unlike centralized control, the decentralized multi-agent framework in this paper contributes to 
the security of the power system by avoiding single points of failure. In centralized control, all the 
sensors and field devices communicate with a single server, which from a security view-point is a 
bottle-neck and single point of failure. However, in decentralized control, even if one of the agents 
failed, the system will not entirely collapse. In addition to that, by processing data locally and 
performing local control actions, the amount of data to be transferred to the control center and the 
communication bandwidth will be reduced. The required processing power on control centers will 
be less and the system reliability will be improved. 

In terms of the security actions, the goal of the proposed algorithm is to add an additional 
security layer to the operation of the power system by detecting malicious actions, which might 
occur on switching commands traveling the communication network. Switching commands that 
come from the system operator can be tampered with. The agents in this work are capable of 
assessing the physical consequences of these switching commands before they are executed, to 
ensure reliable operation of the power system and that the voltage levels and line loadings do not 
violate the safe operational limits set by standards [18,19]. The agents’ ability to assess the physical 
consequences is coming from intensive training of its neural network, by performing all the possible 
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In terms of local control, each agent is interfaced with sensors, actuators, and field devices within
its zone. Based on the feedback that it gets from the sensors, agents control the actuators and the
field devices. The agents communicate among each other to achieve the global objective of stable
and reliable operation of the power system. The agents also act as mediators between control centers
and field devices/processes. This will allow control centers to poll information/data from sensors to
monitor the entire system and to send control actions to actuators and field devices. Such a control
architecture is referred to as decentralized control. The standard industrial communication protocols
that allow the adoption of the decentralized control are discussed in Section 2.1.

Unlike centralized control, the decentralized multi-agent framework in this paper contributes to
the security of the power system by avoiding single points of failure. In centralized control, all the
sensors and field devices communicate with a single server, which from a security view-point is a
bottle-neck and single point of failure. However, in decentralized control, even if one of the agents
failed, the system will not entirely collapse. In addition to that, by processing data locally and
performing local control actions, the amount of data to be transferred to the control center and the
communication bandwidth will be reduced. The required processing power on control centers will be
less and the system reliability will be improved.

In terms of the security actions, the goal of the proposed algorithm is to add an additional security
layer to the operation of the power system by detecting malicious actions, which might occur on
switching commands traveling the communication network. Switching commands that come from the
system operator can be tampered with. The agents in this work are capable of assessing the physical
consequences of these switching commands before they are executed, to ensure reliable operation of
the power system and that the voltage levels and line loadings do not violate the safe operational
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limits set by standards [18,19]. The agents’ ability to assess the physical consequences is coming from
intensive training of its neural network, by performing all the possible N-1 contingency analysis and
all possible switching attack combinations on the loads and generators, and feeding all this data to the
neural network. The proposed security algorithm is discussed in detail in Section 2.2.

2.1. Current Standards and Associated Cyber Threats

The two most used protocols for system automation and control in the power industry are the
Distributed Network Protocol (DNP3.0) for Supervisory Control and Data Acquisition (SCADA)
systems and IEC 61850 Manufacturing Message Service (MMS), Generic Object Oriented Substation
Event (GOOSE), and Sampled Measured Values (SMV) messages in more recent systems [1,14].
Although these protocols enabled decentralized, robust, and more accurate power system control,
they brought alongside some vulnerabilities in terms of cyber security. Each of the aforementioned
protocol suits has its own vulnerabilities that were previously exploited to launch successful attacks
on power grids. For instance, Lin et al. [1] presented a successful data manipulation attack on a
DNP3 packet which has 4 control relay objects to operate 4 circuit breakers in a substation. A GOOSE
poisoning attack was also presented in [7] to generate malicious circuit breaker switching commands
as GOOSE messages. As mentioned previously, these attacks remained obscure form the network IDS
since the attackers established fake data as legitimate network packets but with malicious content.

A major facilitator of such attacks is that power system communication networks need to
accommodate the real-time operation of the grid. Therefore, strict time delay requirements are imposed
on the exchange of communication signals. Since current microcontrollers and Intelligent Electronic
Devices (IEDs) have low processing power, such industrial control networks are left unencrypted,
and sometimes, without authentication. In fact, a study conducted in [20] shows that even the latest
processor technologies cannot meet the 4 ms end-to-end time delay requirement set forth by the IEC
61850 standard stipulations on GOOSE messages.

Since this work targets the detection of control-related attacks, the publisher/subscriber GOOSE
messaging protocol is selected for controlling the statuses of circuit breakers in the studied system.
As will be shown later in the paper, the latency of the proposed detection algorithm falls within the
4 ms time delay set for GOOSE messaging.

Attack Model

In order to understand the threat models assumed in this paper for DNP3.0 and GOOSE switching
commands, we differentiate between two types of switching commands, as in [1]:

1. Automatic Switching Commands: These are commands exchanged between IEDs/Agents to
clear short-circuit faults, and they are usually exchanged over a Local Area Network (LAN).
Typically, these messages are either DNP3.0 switching commands or GOOSE commands.

2. Manual Switching Commands: These are commands sent by the system operator in the control
center over a Wide Area Network (WAN). These messages could be either DNP3.0 or Routable
GOOSE (R-GOOSE) messages, as defined in IEC TR 61850-90-5 for Routable GOOSE over WAN.

As reported in Table 1, GOOSE messages are Layer 2 messages of the Open System Interconnect
(OSI), which are exchanged over a LAN. The OSI model divides a network into seven abstraction
layers with the goal of providing interoperability to communication systems. In this work, we assume
that an attacker is able to perform a GOOSE Spoofing and Poisoning attack. First, the attacker sniffs the
network for GOOSE messages. Since these messages are unencrypted, the attacker could decode the
content of the GOOSE message and modify the data fields (i.e., change the OPEN command to CLOSE,
or vice-versa). Here, it is important to understand that GOOSE messages are event-driven, and each
message is associated with an incremental counter, called status number (stNum). For example, the IED
starts by sending a GOOSE message with stNum = 1. If a fault happens, the IED senses this fault
and issues a new GOOSE commands with stNum = 2, to open the circuit breaker and clear the fault.
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Knowing that, the attacker then publishes the poisoned GOOSE message with a new incremented
stNum and a spoofed MAC address. That is, the attacker uses the MAC address of the original sender.
This process is depicted in Figure 2a.

Table 1. Classification of Switching Commands and the Assumed Attacks.

Message Type Open System Interconnect Layer Network Assumed Attacks

GOOSE Layer 2 Data Link (MAC) LAN GOOSE Poisoning and Spoofing

R-GOOSE Layer 3 Network (IP) LAN/WAN ARP Poisoning
Man-in-the-Middle

DNP3.0 Layer 4 Transport (TCP/IP) LAN/WAN ARP Poisoning
Man-in-the-Middle
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Table 1 also shows that R-GOOSE and DNP3.0 are Layer 3 and Layer 4 messages, respectively.
This means that they are exchanged over an IP network. Accordingly, they are susceptible to Address
Resolution Protocol (ARP) Poisoning and Man-in-the-Middle attacks. ARP is a communication protocol
used to convert IP addresses into MAC addresses [21]. As shown in Figure 2b, the attacker sends
an ARP Reply to install a fake IP address and MAC address mapping to other hosts on the network.
Therefore, the IP address of the attacker is, now, associated with an incorrect MAC address. This allows
the attacker to intercept the messages exchanged between the control center and the subscriber IED.
The attacker can, then, perform a Man-in-the-Middle attack and manipulate the data fields in the
R-GOOSE or DNP3.0 packets.

Finally, although most industrial communication networks are not open to the public internet,
we assume that they can still be penetrated through corporate networks or personal devices of the
employees with techniques such as password cracking, backdoors, and malwares among others [1].

2.2. The Proposed Security Algorithm

A block diagram of the security module of each agent and its network interfaces is shown in
Figure 3. As can be seen in Figure 3, the security functionality in each agent is divided into two layers:
an AI module and an Expert System Module.
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2.2.1. The AI Module

In the first layer, the agent is continuously listening to incoming control commands from the
control center through its Ethernet network interface. Once a command is received, the agent decodes
the content of the network packets and checks if the requested change is within its area or not. The agent
gets activated only if the change is within its area. Once the agent is activated, the AI module will
check if the command is to disconnect a generation unit or a critical load. This command will be
further processed only if the agent sees an override signal from the system operator over its isolated
network interface. For all other commands, the AI module will pass the commands through a trained
neural network that will solve the power flow problem for the system. The AI module will output the
minimum voltage in per unit, the bus number on which this minimum voltage is anticipated, and the
maximum transmission line overloading. The neural network (NN) in this work is a feed forward NN
trained using the back-propagation algorithm. The mathematical process guarding the operation of
the AI module are explained below.

The NN utilized in this model is a three layer one composed of an input layer, a hidden layer,
and an output layer. Let X1[I + 1] = {x11, x12, . . . , x1i, 1} be the input coming to the NN, where i ∈
{1, I}, I is the dimension of the input, and x1I+1 = 1 is the bias for the input layer. In the input layer,
the inputs are multiplied by the weights (w1h,i) to get the vector N1[H] = {n11, n12, . . . , x1h}. H is the
dimension of the hidden layer and h ∈ {1, H}. The elements of N1 are calculated in accordance to (1):

n1h =
I+1

∑
i = 1

x1i × w1h,i (1)
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Next, each element in N1 will be processed through a neuron in the hidden layer, which will
result in X2[H + 1] = {x21, x22, . . . , x1h, 1}. The elements in X2 are calculated according to (2) and (3):

x2h =
2

1 + e−n2h
− 1 (2)

x2H+1 = 1 (3)

x2H+1 is the bias of the hidden layer. The equation in (2) is considered as the activation function
for the hidden layer neurons, which represents a sigmoid function.

Finally, X2 will be processed by the output layer to get the output vector O[K] = {o1, o2, . . . , ok},
where K is the dimension of the output and k ∈ {1, K}. The elements in O are calculated according
to (4):

ok =
2

1 + e
−

H+!
∑

h=1
x2h×w2h,k

− 1 (4)

w2h,k are weights between the hidden and output layer. The sigmoid function is also used as the
activation function for the neurons in the output layer as in (4).

The output vector is then interpreted to get the minimum voltage, the bus number at which this
voltage occurred, and the maximum transmission line loading.

2.2.2. The Expert System Module

This module consists of a fuzzy inference system. The outputs of the AI module, are passed to the
fuzzy inference system for further processing. These are the minimum bus voltage recorded in the
power system, the number of the bus at which that minimum voltage occurred, and the value of the
maximum transmission line overloading. It is to be noted here that the expert system module does not
account for over-voltage cases. This is due to the fact that such cases will be the result of disconnecting
multiple loads from the power system; however, the proposed security algorithm will automatically
counteract such incidents.

The value of the bus voltage, which is passed to the expert system module, is fuzzified using four
membership functions. These membership functions are designed to reflect the behavior of the power
system according to the recommendations of the ANSI C84.1-2006 standard, from the voltage point of
view [18]. The membership functions that correspond to the voltage are:

• Very Low (VL), repressing severe under voltage and Very High (VH), representing severe
over voltage.

• High (H), representing normal condition and Low (L), representing mild undervoltage. For the
latter case, a corrective action is necessary, such as reactive voltage support.

In this work, it is assumed that different priorities are assigned to the power system buses by the
system operator. That is, high priorities will be assigned to the buses where main generator units or
critical loads are connected, whereas low priorities will be assigned to busses with normal loads that
can be shed. Due to the limited capacity in the generators adopted in this model, all the buses with
generators were considered as critical buses (buses 1, 2, 3, 6, and 8), because the disconnection of any
of the generators can result in cascaded failures in the whole system, which will result in a partial or
full blackout. Also, generators are expensive equipment and are hard to replace within a reasonable
time during emergencies. The study by Assante, which was conducted in 2007, showed how a
massive diesel generator could be physically and permanently broken with only digital commands [4].
In fact, manipulating digital commands actually occurred in real life in the Crash Override malware.
The behaviour of the power system in response to the Crash Override malware that targeted the
Ukrainian power grid was considered as an example in assigning the critical busses in the test bench
system presented in this paper [5]. In the aforementioned malware, the attackers targeted switching
commands from the SCADA system, which controlled the status of circuit breakers. They were able
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to de-energize some of the substations resulting in blacking out a portion of the Ukrainian capital
equivalent to a fifth of its total power capacity. As reported in [5]: “The command sequence polls the
target device for the appropriate addresses. Once it is at the subset of known addresses, it can then
toggle the value. The command then begins an infinite loop and continues to set addresses to this
value effectively opening closed breakers. If a system operator tries to issue a close command on their
HMI the sequence loop will continue to re-open the breaker. This loop maintaining open breakers will
effectively de-energize the substation line(s) preventing system operators from managing the breakers
and re-energize the line(s).”

We assigned the loads at buses 2, 3, 4, and 9 to be critical loads. The bus number is therefore
considered as another second input to the fuzzy system. Finally, the fuzzy system takes the maximum
transmission loading (TLLmax) as its third input. The membership functions for this input are divided
according to the rating procedures, that can be found in [19], to normal loading (represented by
N), allowable overloading (represented by LTE), and unallowable overloading (represented by STE).
The acronyms are in accordance with those is [19].

In this work, the trapezoidal membership functions shown in relation (5) were considered:

f (x) =


0, (x < a) ∪ (x > d)

x−a
b−a , a ≤ x ≤ b
1, b ≤ x ≤ c

d−x
c−d , c ≤ x ≤ d

(5)

The boundaries {a, b, c, d} for each input level is defined in Table 2.

Table 2. Ranges of Membership Functions.

a b c d

Voltage (V p.u.)

VL 0 0 0.872 0.92
L 0.9 0.924 0.924 0.95
H 0.94 1 1 1.05

VH 1.03 1.04 2.082 2.36

TLL (%)
N 0 0 73 105

LTE 100 115 115 130
STE 128 148 200 200

As for the bus numbers input, impulse membership function are defined as in (6):

f (x) =

{
1, x ∈ {1, N}
0, otherwise

(6)

where N is the number of busses in the system and x ∈ Z+∗.
The output of the expert system is defuzzified based on weighted sum the Sugeno technique

following Equation (7):

output = ∑ wixi

∑ wi
(7)

Since this is a Sugeno-like fuzzy system, the output is a number, which value is interpreted to be
one of the following three cases: normal, alert, or malicious. In the normal case, the control commands
are executed as they come, whereas in the malicious case, the commands are blocked, since they
are suspected to put the power system in an insecure state. Finally, in the alert case, the control
commands are executed, but an alert is passed to the system operator over the out-of-band channel to
take corrective actions, if necessary. The controller makes its decision according to the following four
fuzzy rules:
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1. For the cases in which the control commands will lead the power system to have extreme
over-voltage (represented by VH) or extreme under-voltage (represented by VL) on any of its
busses, or extreme overloading of any of its transmission lines (represented by STE), the control
command will be considered malicious by the fuzzy inference system. This is because, under no
reasonable circumstance, will the system operator perform circuit breakers switching actions that
will put the power system in an insecure state, which might be the cause of cascaded blackouts.

2. For the cases in which the control commands will lead the power system to have low voltages
(represented by L) on one of the busses that has a main generator and/or a critical load connected
to it, the fuzzy inference system will consider command will also consider the command as
malicious. This is because such critical buses must maintain good voltage conditions at all times.

3. For the cases in which the voltage ends up to be low (represented by L) on the buses, which are
not accounted for in the second rule (Rule 2), or when the transmission line loading condition is
expected to be LTE, the control commands will be passed. However, the system operator will
receive an alert signal over the out-of-band channel, in order to see if further actions are necessary.

4. For the remaining cases, in which the incoming control commands do not place the power system
in an insecure state, the fuzzy inference system will pass the control commands without any issue.

Based on the previous rules, and following the standards for voltage rating and line loading [19,20],
respectively, the voltage at the different busses should be maintained within acceptable limits and the
line loading should be maintained within certain values to avoid overheating. Accordingly, the expert
system was designed to ensure that any malicious action, which is anticipated to put any part of the
system outside the acceptable standard limits, whether it is voltage or line loading or loss of generation
or critical loads, will not be processed.

It is important to note here that the system operator will need to perform some tasks, such as
maintenance tasks, which require the temporary disconnection of transmission lines or shutdown of
generators. For that purpose, the system operator has the ability to communicate with all the agents
over an encrypted and out-of-band communication channel and send a signal to override the decision
of the agents.

3. Simulation Results

First, the proposed algorithm was verified in simulation on the 14-bus IEEE benchmark system,
which is shown in Figure 1. The parameters of the system are given in Appendix A. The system was
divided into three zones, in such a way that each zone has at least one generation unit and one load.
Specifications of the system are found in detail in [22].

As mentioned earlier, the AI module of the first layer of the agent is trained to learn the
characteristic of the system. This is done according to the following procedure:

• Generating the Training and Test Target Data Sets: First, in this work, we assume N-1 contingency
cases (i.e., disconnecting the transmission lines, one at a time) and the disconnection of the
generators and the loads. For the simulated 14-bus system, this gives us 36 cases plus the normal
case, where all the circuit breakers are closed. For each case, the power flow problem was
solved and the real power (P), reactive power (Q), and bus voltage (V) at the different busses,
and transmission line loading (TLL) results were recorded as follows:



P1Bus1 . . . P1BusN Q1Bus1 . . . Q1BusN V1Bus1 . . . V1BusN TLL11 . . . TLL1K
P2Bus1 . . . P2BusN Q2Bus1 . . . Q2BusN V2Bus1 . . . V2BusN TLL21 . . . TLL2K

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

P37Bus1 . . . P37BusN Q37Bus1 . . . Q37BusN V37Bus1 . . . V37BusN TLL371 . . . TLL37K
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where, [PiBus1 . . . PiBusN], [QiBus1 . . . QiBusN], and [ViBus1 . . . ViBusN] are the real power,
reactive power, and voltage of the system busses, respectively, and i ∈ {1, 37}; N = 14. [TLLi1 . . .
TLLiK] are the transmission lines loading, and K = 20.

• Generating the Training and Test Input Data Sets: Second, in this case study, the switching commands
corresponding to each contingency were mapped to a 6-bit binary code, as shown in the matrix
below. For instance, the code 000010 will be utilized to represent a control signal to actuate circuit
breakers connecting bus 1 to bus 2.

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
...

...
...

...
...

...
1 0 0 1 0 1

−−−− >


Case1
Case2
Case3

...
Case37


• Training the Neural Network: The neural network of the agent was trained according to the Back

Propagation algorithm to accurately predict the system response in terms of the real power,
reactive power, and voltage of the buses and the transmission line loading.

The accuracy of the neural network is shown in Figure 4. The maximum errors recorded were
2.6% for the active and reactive power, 10−4 for bus voltages, and 0.614% for transmission line loading.

Simulation of the proposed framework were carried out in two different scenarios and the results
are tabulated in Table 3. In the first scenario, the response of the agents is assessed for each contingency
case separately. That is, after each command, the system is reverted to normal case before executing
the next command. The results for the first scenario are as follows:

• Cases 21–25 and 29–31 correspond to the disconnection of either a generation unit or a
critical load from the system. Since the override signal was set to zero throughout the
experiment, these commands were regarded as malicious and, therefore, were not passed to
the circuit breakers.

• Cases 9, 11, 12, 15, 18–20, 27, 28, and 33–36 resulted in alert situation, where the commands were
passed but an alert was issued to the system operator. It was noticed that there were no severe bus
voltage deviations in these cases from the allowable limits. In fact, in all the cases, the minimum
bus voltage was 1.02 p.u. Also, the maximum recorded transmission line loading was 129%,
which falls into the LTE state of Table 2.

• Cases 1–4, 7, 8, 10, and 14 violated the physical operation constraints of the power system,
and thus, were regarded as malicious by the agents.

• The rest of the cases were regarded as normal. It is worth noting that in these cases, commands to
disconnect non-critical loads, such as cases 27 and 28, were passed. Although these commands
might be malicious or erroneous, they were passed by the multi-agent system since they did
not put the power system in a contingency state and the power system maintained its stability.
Therefore, the multi-agent system was successful in satisfying its purpose by ensuring that only
signals that do not violate the stable operational limits of the power system will be passed.

Therefore, out of all simulated cases, the multi-agent security framework allowed the passage of a
command that lead to disconnection of a non-critical load 2 times. This is equivalent to 5.56% of the
simulated cases. To address this issue, each agent generates periodic log reports and sends them to
the system operator over its out-of-band network interface. This allows the system operator to get
feedback about the state of the circuit breakers and utilizes this feedback to take corrective actions,
if required.
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It is worth noting that in the simulation case study, the dynamic analysis against time is not
considered, since the training and the response of the agents in this paper are based on the steady-state
contingency analysis. Additionally, each case in Table 2 represents an attack on a different circuit
breaker, thus each case has a different power flow and plotting all the 36 cases over time does not
show indicative information and is infeasible in this manuscript. For example, the normal operation of
the system has a certain voltage, power, and current distribution and during the attack, one of these
(either the voltage or the line current) will slightly or drastically deviate and needs to be compared
with the standard ratings. Based on that, one of the agents will either pass the switching command,
block it, or alert the system operator. Therefore, following Table 2 can give a good indication of what
has changed, compared to the normal case, and the response of the agents.

Figure 5 shows a sample of report completed based on the log reported by the agents. The left
column compares P, Q, V, and TLL of a malicious case (Case 3) to the normal case. The right column
compares the same for an alert case (Case 9) to the normal case. The reports show that for Case 3, if the
control commands were to be executed, the power system would have gone into an insecure state.
On the other hand, the control commands would not have a significant impact on the operation of the
power system for Case 9.

Therefore, these reports could be considered very useful visualization tools that would assist in
future plans and lessons learned.
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Table 3. Performance of the proposed security algorithm.

Compare w. NC Sequential Compare w. NC Sequential

Case Vmin (pu) Bus Nb. TLLmax (%) A1 A2 A3 A1 A2 A3 Case Vmin (pu) Bus Nb. TLLmax (%) A1 A2 A3 A1 A2 A3
NC 1.02 4 103 NC 1.02 4 103

1 B1–B2 1.02 5 252 19 12–13 1.02 4 103
2 B1–B5 1.01 5 134 20 13–14 1.02 4 106
3 B2–B3 1.01 3 156 21 GB1 n/a n/a n/a
4 B2–B4 1.01 4 180 22 G B2 n/a n/a n/a
5 B2–B5 1.01 5 113 23 G B3 n/a n/a n/a
6 B3–B4 1.02 5 102 24 G B6 n/a n/a n/a
7 B4–B5 1.02 4 131 25 G B8 n/a n/a n/a
8 B4–B7 1.02 4 130 26 CL B9 n/a n/a n/a
9 B4–B9 1.02 4 123 27 L B6 1.02 4 103

10 B5–B6 0.99 12 198 28 L B5 1.02 4 102
11 B6–11 1.02 4 108 29 CL B4 n/a n/a n/a
12 B6–12 1.02 4 103 30 CL B3 n/a n/a n/a
13 B6–13 0.99 13 108 31 CL B2 n/a n/a n/a
14 B7–B8 0.02 8 100 32 L B14 1.03 4 98
15 B7–B9 1.02 14 129 33 L B13 1.02 4 103
16 B9–10 1.02 5 108 34 L B12 1.02 4 102
17 B9–14 0.99 14 117 35 L B11 1.02 4 102
18 10–11 1.02 4 107 36 L B10 1.02 4 102

NC: Normal Case; B: Bus; G: Generator; L: Load; CL: Critical Load; A1: Agent 1; A2: Agent 2; A3: Agent 3; V: Voltage; TLL: Transmission Line Loading; Yellow: Alert; Red: Malicious;
Green: Normal.
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4. Hardware Setup and Experimental Results

4.1. Description of the Hardware Setup

The performance of the proposed security framework was tested on the 5-bus power system
shown in Figure 6a. The power system has the following components:

- Two generation units Generator 1 and Generator 2 with 13.8 KVA 230 V and 5 KW and 10.3 KVA
230 V and 3 KW, respectively.

- Seven distribution lines with a typical π-models.
- Three loads each having 10 levels of parallel resistive loads ranging from 300-W to 3-kW.

In this experiment, L1, L2, and L3 are set at 600 W each. L3 is considered to be a critical
load, and therefore, has a redundant path to the generation units.

- Each of the five buses has three sets of three-phase inputs and outputs with 530 V/25 A solid-state
relays whose switching can be controlled by digital inputs. Each phase has its own potential and
current transformer for measurement data collection.

Complete specifications of the system components are found in [23,24]. It is be noted that the
experimental setup is not a portion of the simulation network. It is a totally new physical system,
with its own parameters and components. Contingency analysis for the experimental system were
also done independently and were fed to the neural network for training. Therefore, the two neural
networks, the one used for simulation and the one used for the experimental work, are different
networks and are not meant to mitigate attacks for the same power network. We emphasize that
the experimental setup is not a portion of the simulation network. It is rather a different small-scale
testbed benchmark that was used to validate our algorithm experimentally.
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Complete specifications of the system components are found in [23,24]. It is be noted that the 
experimental setup is not a portion of the simulation network. It is a totally new physical system, 
with its own parameters and components. Contingency analysis for the experimental system were 
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testbed benchmark that was used to validate our algorithm experimentally. 
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4.2. Information Exchange and Agent Development

Figure 6c depicts the information exchange between the developed agents and the system operator
at the control center, which follows the IEC 61850 GOOSE publisher/subscriber model for high speed
communication. The software embedded into the agents has two threads running in parallel. The first
thread is a GOOSE Subscriber. This thread listens to incoming GOOSE commands over network
interface 1 and processes them through its security module before interacting with the physical power
system through its digital outputs. The second thread is a GOOSE publisher. This thread waits for an
internal flag from the security module to issue an alert to the system operator over the isolated and
encrypted network interface.

Figure 7 shows the actual hardware agents with their digital output extension board.
The embedded microcontroller on each agent has an AM335x 1 GHz ARM® Cortex-A8. 512 MB
DDR3 RAM processor running a real-time Linux kernel. Agent 1 has 4 digital outputs interfaced with
the circuit breakers connected to Generator 1 (G1), Load 1 (L1), the Long Path (LP) connecting busses 1
and 5, and the Short Path (SP1) connecting busses 4 and 2.

4.3. Results and Discussion

A data set including bus measurements of previously recorded events and measurement data
collected from a simulated model of the power system for various contingency cases was used to
train the AI module of the two developed agents. The simulated power system was developed in
Matlab/Simulink and was verified by comparing bus voltages, currents, and power measurements
with experimental data for three different cases shown in Figure 8a–c. The results show that the
model accurately represents the actual system. The performed experiment comprised of nine control
command signal combinations, which are:

• R1: Normal condition. All circuit breakers are closed.
• R2: Disconnection of slack generator (G1).
• R3: Disconnection of generator 2 (G2).
• R4: Disconnection of load 1 (L1).
• R5: Disconnection of critical load 3 (CL3).
• R6: Disconnection of load 2 (L2).
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• R7: Disconnecting the circuit breakers between bus 4 and bus 5, which represents the main path
to CL3.

• R8: Disconnecting the circuit breakers between bus 1 and bus 5, representing the redundant path
to CL3.

• R9: Disconnecting the path between G1 and G2.
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The power measurements on each of the buses were plotted throughout the duration of the
experiment in Figure 9 to visualize which control commands actually passed and which were
considered as malicious, and therefore, prevented. Note that in Figure 9, there is no relation between
the regions (R1–R9) and the time scale. Since this is a hardware setup, which requires careful
synchronization among the generators, the power system was ran and the attacks were performed.
The power was plotted throughout the duration of the experiment to show which commands were
passed by the agents and which ones were blocked. Also, Table 4 shows the output of the AI module
and the decision of each agent in response to each command signal. As can be seen from the results
of the normal case (R1), each of the three loads was at around 600 W summing to around 1800 W,
which was provided by G1. G2 was acting as a synchronous condenser. As can be seen from Table 4
and Figure 8, the commands that attempted to disconnect G1 (R2), G2 (R3), and critical load L3 (R5)
were directly considered as malicious commands. This is because the override signal sent over the
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isolated network interface to the agents was set to zero. The disconnection of the main path to CL3 (R7)
was considered a malicious command, since the AI module anticipated an under voltage of 0.90 p.u.
on the critical load bus.
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Figure 8. Comparison of the voltage, current, and power on all 5 buses between the simulation model
and experimental setup in three cases: (a) normal case; (b) supplying CL3 from redundant path only;
(c) under voltage case on CL3.

Table 4. Experimental Evaluation of the proposed security system.

Cases (Figure 8) Description Vmin (pu) Bus Nb. TLLmax (%) A1 A2
R1 NC 0.95 3 40.8
R2 Open CB G1 — — —
R3 Open CB G2 — — —
R4 Open CB L1 0.96 5 30.6
R5 Open CB CL3 — — —
R6 Open CB L2 0.96 3 30.5
R7 Open CB B4–B5 0.90 5 40.0
R8 Open CB B1–B5 0.95 3 40.9
R9 Open CB B1–B2 0.92 3 52.7

Yellow: Alert; Red: Malicious; Green: Normal.
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It is noted that the disconnection of L1 and L2 was considered as a normal command by the
agents. This is shown by the drop of power on L1 and L2 from around 600 W to 0 W in Figure 9.
Although this command was actually not issued by the system operator, the agents still passed these
commands since they did not put the power system in an insecure state. As mentioned earlier, this is
compensated for by the periodic reports that each agent sends to the system operator to take corrective
action. In this experiment, after receiving periodic reports, the system operator restored power to L1
and L2, as shown in Figure 9. By the same connection, the command to open the redundant path to
CL3 (8) was passed. Finally, the case where the circuit breakers connecting bus 1 to bus 2 (R9) were
open, the minimum recorded voltage was 0.92 p.u. which was regarded as an alert situation and an
alert signal was sent to the system operator. It is also noted in Table 4 that each agent was activated
only when a change was detecting within its zone.

Latency Due to the Proposed Security Algorithm

A comparison of the online detection latency of the proposed method, which utilizes artificial
intelligence to characterize the power system, with the work in [1], which uses a modified power flow
analysis technique, is presented in this section.

The work in [1] is chosen for comparison because it targets the same type of control-related attacks
detection utilizing power flow models. The results reported in [1] show that the online detection
latency increases with the expansion of the system and can reach up to 200 ms. This is because their
detection algorithm requires to solve the adapted power flow problem online, every time a control
command is issued. Thus the time to solve the power flow problem is directly to proportional to
the size of the system. However, in the proposed framework in this work, the detection latency is in
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297 µs, and remains marginally constant as the number of the buses in the power system increases.
This is because in this work, the computation time required for the AI module to produce an output is
relatively constant regardless of the number of buses.

It is worth noting that the performed comparison is for the online detection latency. That is,
detecting attacks while the system is up and running. It is true that more than 200 ms would be
required to collect training data and train the AI module; however, this will be performed offline and
will not significantly affect the detection latency.

5. Conclusions and Future Work

This paper presented a cyber-security algorithm, which utilizes artificial intelligence techniques,
to defend against bad control commands targeting circuit breakers in power systems. These bad
commands could be either malicious or erroneous. A multi-agent system was set up to verify
the proposed algorithm. In this setup, the power system was divided into different zones and a
security and control agent is assigned to each zone. Each agent hosts a trained neural network,
which is able to assess the physical dynamics of the power system in response to the incoming control
commands, before actually executing them. The simulation results on the IEEE 14-bus benchmark
system revealed that the neural network accurately characterizes the system and is effective in blocking
the power system into going to insecure states, such as having under voltages or transmission
line overloading. Finally, the algorithm was experimentally verified at the FIU Smart Grid testbed,
where embedded microntrollers, acting as agents, were interfaced with the physical power system
over an IEC 61850-based network.

As an extension to this work, a higher level will be added the network of agents to form a
hierarchy. In the upper level of the hierarchy, an agent will be present to make sure that the parameters
of the neural network are adapted to accurately reflect the changes in the topology of the system, such
as the addition of the new buses or power equipment. In addition to that, the neural network will be
trained with a large set of N-k contingencies to reflect the cases where attackers launch simultaneous
attacks on more than one circuit breaker.
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Appendix A. Parameters of the Simulation and Hardware Setups

Parameters of the Simulated 14-bus IEEE Benchmark System [22].

Generator Number
Real Power (MW) Reactive Power (MVAR)

Min Max Min Max

1 10 160 0 10
2 20 80 −42 50
3 20 50 23.4 40
4 – – -6 24
5 – – -6 24
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Bus Number Load Real Power (MW) Load Reactive Power (MVAR)

1 0 0
2 21.7 12.7
3 94.2 19.1
4 47.8 -3.9
5 7.6 1.6
6 11.2 7.5
7 0 0
8 0 0
9 29.5 16.6

10 9.0 5.8
11 3.5 1.8
12 6.1 1.6
13 13.8 5.8
14 14.9 5.0

Line Number From Bus To Bus MVA Rating

1 1 2 120
2 1 5 65
3 2 3 36
4 2 4 65
5 2 5 50
6 3 4 65
7 4 5 45
8 4 7 55
9 4 9 32
10 5 6 45
11 6 11 15
12 6 12 32
13 6 13 32
14 7 8 32
15 7 9 32
16 9 10 32
17 9 14 32
18 10 11 12
19 12 13 12
20 13 14 12

Parameters of the Hardware Setup [23,24].

Generator Number
Real Power (KW) Reactive Power (KVAR)

Min Max Min Max

1 0 5 0 4.8
2 0 3 0 7.5

Bus Number Load Real Power (W) Load Reactive Power (VAR)

1 0 0
2 0 0
3 600 0
4 600 0
5 600 0
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Line Number From Bus To Bus KVA Rating (3-Phase)

1 1 2 5.4
2 1 3 5.4
3 1 5 5.4
4 2 4 5.4
5 4 5 5.4
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