
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

Electrical and Computer Engineering Faculty
Publications College of Engineering and Computing

12-1-2022

A Real-Time Energy Consumption Minimization Framework for A Real-Time Energy Consumption Minimization Framework for

Electric Vehicles Routing Optimization Based on SARSA Electric Vehicles Routing Optimization Based on SARSA

Reinforcement Learning Reinforcement Learning

Tawfiq M. Aljohani
College of Engineering

Osama Mohammed
Florida International University

Follow this and additional works at: https://digitalcommons.fiu.edu/ece_fac

Recommended Citation Recommended Citation
Aljohani, Tawfiq M. and Mohammed, Osama, "A Real-Time Energy Consumption Minimization Framework
for Electric Vehicles Routing Optimization Based on SARSA Reinforcement Learning" (2022). Electrical
and Computer Engineering Faculty Publications. 93.
https://digitalcommons.fiu.edu/ece_fac/93

This work is brought to you for free and open access by the College of Engineering and Computing at FIU Digital
Commons. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an
authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/ece_fac
https://digitalcommons.fiu.edu/ece_fac
https://digitalcommons.fiu.edu/coec
https://digitalcommons.fiu.edu/ece_fac?utm_source=digitalcommons.fiu.edu%2Fece_fac%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ece_fac/93?utm_source=digitalcommons.fiu.edu%2Fece_fac%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

Citation: Aljohani, T.M.; Mohammed,

O. A Real-Time Energy Consumption

Minimization Framework for Electric

Vehicles Routing Optimization Based

on SARSA Reinforcement Learning.

Vehicles 2022, 4, 1176–1194. https://

doi.org/10.3390/vehicles4040062

Academic Editor: Yongzhi Zhang

Received: 9 September 2022

Accepted: 9 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Real-Time Energy Consumption Minimization Framework
for Electric Vehicles Routing Optimization Based on SARSA
Reinforcement Learning
Tawfiq M. Aljohani 1 and Osama Mohammed 2,*

1 Department of Electrical and Computer Engineering, College of Engineering, Taibah University (Y-Campus),
Medina 46422, Saudi Arabia

2 Energy Systems Research Laboratories, Florida International University, Miami, FL 33174, USA
* Correspondence: mohammed@fiu.edu

Abstract: A real-time, metadata-driven electric vehicle routing optimization to reduce on-road energy
requirements is proposed in this work. The proposed strategy employs the state–action–reward–
state–action (SARSA) algorithm to learn the EV’s maximum travel policy as an agent. As a function
of the received reward signal, the policy model evaluates the optimal behavior of the agent. Markov
chain models (MCMs) are used to estimate the agent’s energy requirements on the road, in which a
single Markov step represents the average energy consumption based on practical driving conditions,
including driving patterns, road conditions, and restrictions that may apply. A real-time simulation
in Python with TensorFlow, NumPy, and Pandas library requirements was run, considering real-life
driving data for two EVs trips retrieved from Google’s API. The two trips started at 4.30 p.m. on 11
October 2021, in Los Angeles, California, and Miami, Florida, to reach EV charging stations six miles
away from the starting locations. According to simulation results, the proposed AI-based energy
minimization framework reduces the energy requirement by 11.04% and 5.72%, respectively. The
results yield lower energy consumption compared with Google’s suggested routes and previous
work reported in the literature using the DDQN algorithm.

Keywords: EV routing optimization; state–action–reward–state–action (SARSA); Markov chain
model (MCM); energy minimization strategy

1. Introduction

Transportation electrification has emerged as a pivotal solution to combat climate
change by offsetting emissions from the two main contributors to greenhouse gas emis-
sions (GHG): the transportation sector and the power industry. To expedite transportation
electrification, governments around the globe have recently adopted progressive policies
and supported research to facilitate the fast and reliable integration of millions of electric
vehicles (EVs) on the road. Nevertheless, efforts are still needed to increase confidence in
EVs as a reliable technology and overcome internal battery energy management concerns.
This includes extending the driving range of EVs to reduce range anxiety, which is the fear
of running out of power while not finding a charging station. According to [1,2], this resem-
bled a significant obstacle to the large-scale adoption of EVs. This work presents a real-time,
metadata-driven, reinforcement learning-based energy consumption minimization strategy
that allows EVs to extend their driving range. This is especially during conditions where
EV owners are more concerned with the amount of energy required to reach a charging
destination than with arrival time. The proposed framework is based on the SARSA, an
iterative, on-policy, reinforcement learning algorithm that computes the expected value of
a policy considering the explorative behavior of an agent.

Reinforcement learning (RL) is an artificial intelligence technique widely accepted as
an efficient tool for solving various scientific problems [3]. In the recent decade, several

Vehicles 2022, 4, 1176–1194. https://doi.org/10.3390/vehicles4040062 https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles4040062
https://doi.org/10.3390/vehicles4040062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com
https://orcid.org/0000-0002-2586-4046
https://doi.org/10.3390/vehicles4040062
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com/article/10.3390/vehicles4040062?type=check_update&version=1

Vehicles 2022, 4 1177

works in the literature have employed reinforcement learning to perform electric vehicle-
related studies, such as in optimal EV routing [4], intelligent EV charging scheduling [5],
and powertrain optimization for hybrid and PEVs [6,7]. It is worth mentioning that the
study conducted in [4] was successfully performed by the authors of this work based on the
DDQN algorithm; therefore, its results will serve as a benchmark for the proposed work.
Away from electric vehicles, RL techniques have widely been utilized to perform a wide
range of studies in the energy field. Reference [8] proposes residential load management
based on RL to effectively design price-based demand response programs to control smart
buildings’ loads. Reference [9] utilizes RL to optimize the maintenance scheduling of the
power grids. RL was used in [10] to coordinate strategic bidding for power markets, where
multidimensional continuous states and action spaces enable the market participants to
receive accurate feedback regarding the impact of their bidding decisions. While other
studies have deployed RL for robotic control [11,12], cybersecurity of smart grids [13,14],
computer systems architecture [15,16], traffic congestion relief and coordination [17,18],
and wireless systems and communication networks [19,20], there are still limitations to the
use of RL-SARSA in the EV-related research literature. Previous studies have shown the
capability of the SARSA algorithm to effectively solve problems ranging from EV charging
control [21], demand response in smart grids [22], peer-to-peer energy transactions [23],
to hybrid EVs controllers and powertrains [24,25]. More importantly, the EV routing
optimization problem is an underexplored research area in a time where range anxiety
remains one of the challenges to expanding the EV market [26]. To complement such
deficiencies, this work proposes a real-time, metadata-driven RL-SARSA algorithm-based
routing optimization to reduce on-road EV energy requirements to extend the drivability
range. The proposed approach evaluates Q-values through the state–action–reward–state–
action (SARSA) algorithm to train the EV as an agent that independently chooses optimal
actions that resemble driving decisions with lower energy requirements. Ultimately, the
learning process extends the drivability range of the EV. The driving dynamics of EVs
are achieved following the Markov chain model (MCM) to evaluate the energy needs for
on-road trips with respect to the proposed framework. The agent’s learning experience
is supplemented with real-time metadata provided by Google’s API platform to feed the
agent with continuously updated driving information.

The rest of this article is organized as follows: Section 2 shows the primary concepts
of RL and MCM utilized with the SARSA algorithm; Section 3 presents the proposed
strategy to achieve energy consumption minimization, the metadata extraction process
from Google’s API, and the application of the SARSA algorithm; Section 4 shows the
experimental results of the proposed strategy for two geographically different trips; and
Section 5 concludes the work.

2. Reinforcement Learning
2.1. State–Action–Reward–State–Action (SARSA) Algorithm

State–action–reward–state–action (SARSA) is an artificial intelligence algorithm based
on the Markov decision process (MDP). Considered one of the well-established algorithms
in the reinforcement learning area of machine learning, SARSA was firstly proposed by
Rummery and Niranjan [27] as the “Modified Connectionist Q-Learning MCQL” algorithm.
Sutton [28] later suggested the current name SARSA. SARSA and Q-learning are two
famous RL algorithms based on temporal difference learning (TD), with a high capability
of establishing a learning process that eventually produces successive decision-making
steps. Reinforcement learning utilizes the concept of an agent that operates in a given
environment to infer a policy, Π, following a set of self-explanatory actions ai, and states
si, computed Q-values, and reward signals, R. The agent can only choose a certain action
based on its current state, influenced by a positive or negative reward signal established by
the learning process. In addition, a discount factor γ is suggested concerning the learning
strategy’s design goals. The closer γ gets to unity, the more influence the next reward will

Vehicles 2022, 4 1178

have on the current state, and vice versa. Reward signals, therefore, serve as feedback that
indicates the possibility of failure or success of the action in relation to the learning process.

The concept of SARSA is that the primary function used to update the Q-value depends
on the current state of the agents. The action that the agent chooses “a”, the reward signal
“r” that influences the agent to select the proper action, the state “s’” that the agent enters
after taking that specific action, and finally, the following action “a’” the agent chooses in
its new state. In SARSA, the agent uses the state–value function in conjunction with the
epsilon greedy policy to perform exploration and exploitation. Based on the weights of
the obtained Q-values, the following process grades the states and estimates their relative
strength as follows:

Vπ(s) = E [∑á∈A γ r(s, a)I s] (1)

Qπ(s, a) = E [∑t γ r(s, a)I s, a] (2)

where A is the set of agent’s actions ai ∈ A; si ∈ S is the set of agent’s states; Qi(s, a) and
ri(s, a) as the corresponding Q-value and reward signal; and π as the control policy in
the learning process. While Equation (1) defines the state–value relationship, Equation (2)
highlights the action–value correlation. The major difference between the two functions
lies in whether the agent’s current action is known. As a result, the action–value function
is usually utilized to derive the optimal action at each time step. Therefore, Equation (2)
could be better rewritten as the Bellman form as follows:

Qπ(s, a) = ri(s, a) + γ ∑ś∈S Pi(ś I s, a)Qπ
i (ś, á) (3)

where P(s’| s, a) is the probability of the agent transitioning between any two consecutive
states following a given action, while s’, a’ are the updated state and action. Then, the agent
can decide on an optimal action by either feedback obtained by maximizing or minimizing
the value function, as follows:

π∗(s) = argmax
a

{ri(s, a) + γ ∑ś∈S Pi(ś I s, a)Qπ
i (ś, á) } (4)

The major goal behind RL is to train the agent with a policy (π) that maximizes
reinforcements that influences the agent’s behavior, mapping its states into optimal actions.
ε-greedy is a methodology for optimal action selections in RL, where the parameter ε ∈ [0, 1]
is defined, and the policy π(s) could be utilized as follows:

π(s) =
{

á with probability 1− ε
ar with probability ε

(5)

where á is the best-obtained action for the state s, while ar is the agent that selects a
random action with a probability ε. As one may notice, for each time step, the optimal
control policy is achieved by iterative calculations of the action–value matrix Q (s,a). In
this work, the ε-greedy policy is utilized to decide the optimal control actions for the agent,
as it explores a random control action with a probability that increases when the learning
experience advances. This point distinguishes the SARSA from the Q-learning algorithm
of reinforcement learning. In SARSA, the current and subsequent actions of the agent are
all chosen by greedy policy, making it an on-policy. Conversely, in Q-learning, the agent’s
following action is not determined by the greedy online policy, making it an off-policy. The
SARSA updates the Q-values utilizing the following expression:

Qt+1(s, a)← Qt(s, a) + α {ri(s, a) + γ Qt(ś, á)−Qt(s, a)} (6)

where a is the learning rate that has values ∈ [0,1]. As mentioned earlier, the epsilon greedy
policy is utilized to determine the agent’s optimal action in Equation (6). As one may notice,
this may yield a better exploration strategy but with the drawback of consuming more
time, presenting SARSA as a better strategy than Q-learning to obtain optimal values, yet

Vehicles 2022, 4 1179

possibly may yield more time to achieve such a purpose. Another significant difference
between SARSA and Q-learning is that the SARSA algorithm can obtain a different policy
when exploration of the agent may result in hefty penalties. For example, suppose the agent
(an EV) navigates near an unreachable position that poses a danger, such as driving toward
a lake or a tree next to the side of the road. In that case, even if this is an optimal policy
per calculations, it will be dangerous for exploration steps. As a result, SARSA will note
this and adopt a policy that keeps the EV away from that side of the road through its drive.
In other words, SARSA will find an optimal policy considering the exploration inherited
in the policy. A third distinction between the two RL algorithms could be seen from the
aspect of the agent’s policy; behavior or learning. For instance, the behavioral approach
generates actions because of the agent’s interaction with its surrounding environment.
Then, the learning strategy influences the agent to learn through such interactions. For
SARSA, both behavioral and learning approaches are equal, while this is not the case for
the DDQN algorithm.

Agents can find themselves in an actual instant situation, known as the state, in a
given environment, such as a transportation system that has a driver to guide them to their
destination. This work assumes an EV to be the agent that learns from its present state to
infer its next state by using a strategy that achieves maximal rewards (i.e., minimal energy
consumption), known as the learning policy Π. The SARSA algorithm provides artificial
learning that determines the agent’s next action. The agent achieves the next reward
with each additional step. As a result of this reward, the learning process establishes the
new state, s’, with a particular probability of transforming between states. The mapping
represents the learning policy and the sequence of actions and states required to achieve
any reward is known as the trajectory. Figure 1 provides an illustration of the concept of
SARSA-RL utilized in this work.

Vehicles 2022, 4, FOR PEER REVIEW 4

consuming more time, presenting SARSA as a better strategy than Q-learning to obtain

optimal values, yet possibly may yield more time to achieve such a purpose. Another sig-

nificant difference between SARSA and Q-learning is that the SARSA algorithm can ob-

tain a different policy when exploration of the agent may result in hefty penalties. For

example, suppose the agent (an EV) navigates near an unreachable position that poses a

danger, such as driving toward a lake or a tree next to the side of the road. In that case,

even if this is an optimal policy per calculations, it will be dangerous for exploration steps.

As a result, SARSA will note this and adopt a policy that keeps the EV away from that

side of the road through its drive. In other words, SARSA will find an optimal policy con-

sidering the exploration inherited in the policy. A third distinction between the two RL

algorithms could be seen from the aspect of the agent’s policy; behavior or learning. For

instance, the behavioral approach generates actions because of the agent’s interaction with

its surrounding environment. Then, the learning strategy influences the agent to learn

through such interactions. For SARSA, both behavioral and learning approaches are

equal, while this is not the case for the DDQN algorithm.

Agents can find themselves in an actual instant situation, known as the state, in a

given environment, such as a transportation system that has a driver to guide them to

their destination. This work assumes an EV to be the agent that learns from its present

state to infer its next state by using a strategy that achieves maximal rewards (i.e., minimal

energy consumption), known as the learning policy Π. The SARSA algorithm provides

artificial learning that determines the agent’s next action. The agent achieves the next re-

ward with each additional step. As a result of this reward, the learning process establishes

the new state, s’, with a particular probability of transforming between states. The map-

ping represents the learning policy and the sequence of actions and states required to

achieve any reward is known as the trajectory. Figure 1 provides an illustration of the

concept of SARSA-RL utilized in this work

Figure 1. Learning process in the RL (environment) algorithm.

The pseudo-code of the proposed energy consumption minimization strategy based

on SARSA is shown in Table 1. The number of episodes considered in this work is 140,

with a maximum of 1000 iterations within each episode. It is worth mentioning that the

learning rate is continuously changing with time and is decided as 1/√𝑘 + 2, with a sam-

ple time of 1 s. The reward signal for moving between states 𝑖 and 𝑗 is estimated as fol-

lows:

𝑅𝑗
𝑖 =

1

𝐸𝑙(𝑖, 𝑗)
𝐸ℎ(𝑖, 𝑗)

(7)

Figure 1. Learning process in the RL (environment) algorithm.

The pseudo-code of the proposed energy consumption minimization strategy based
on SARSA is shown in Table 1. The number of episodes considered in this work is 140, with
a maximum of 1000 iterations within each episode. It is worth mentioning that the learning
rate is continuously changing with time and is decided as 1/

√
k + 2, with a sample time of

1 s. The reward signal for moving between states i and j is estimated as follows:

Ri
j =

1
El(i,j)
Eh(i,j)

(7)

where El(i, j) and Eh(i, j) correspond to the best and highest energy requirement obtained
in a driving cycle between states i and j, respectively. For the agent to reach an optimal
policy is equivalent to converging the obtained Q-value to the Q-values desired for the

Vehicles 2022, 4 1180

next time step. For each newly integrated input data at time slot t, the Q-update and its
probabilistic information can be expressed as follow:

Vt(s, π(s)) = rπ(s)(s, ś) + γQt(ś, π(ś)) (8)

E(Vt) = Q∗t (s, π(s)) (9)

Var(Vt) = σ2
t (s, π(s)) (10)

To fittingly train the estimator, a common loss function is utilized as follows:

L[Qt(s, π(s))]= 0.5 [Qt(s, π(s))−Vt(s, π(s))]2 (11)

E(L[Qt(s, π(s))]) = 0.5
{
[Qt(s, π(s))−Q∗t (s, π(s))]t + σ2

t (s, π(s))
}

(12)

Var(X) = E
(
X2
)
−E(X)2 (13)

L resembles the loss value to be calculated at the ith iteration and is an indication of
the distance between the obtained Q-values and the Q-values at the next time step. The
target value at the ith iteration, which could be found as follows:

gi(s, a) = ri(s, a) + γ ∑
‘
s∈S

Pi(s′|s, a) Qi(s̀, à; θi−1) (14)

Table 1. Pseudo-code of the SARSA algorithm.

SARSA Algorithm

1. Retrieve the agent’s geocode location.
2. Initialize Q (s, a), state (s), and the number of iteration k.
3. Calculate Wi(P), generate QM.
4. Repeat each step k s.t. k = 1, 2,. . . . k.
5. Determine optimal action a, depend on Q(s, ·), following ε-greedy policy.
6. Based on action a; observe reward r and next state ś
7. Determine action á = arg maxa Qt(s, a)
8. Qt+1(s, a)← Qt(s, a) + α {ri(s, a) + γ Qt(ś, á)−Qt(s, a)}
9. s← ś
10. Repeat until s is terminal.

2.2. Operation Modes

The primary goal of the neural network (NN) model is to permit mapping from Rn to
Rm. An input vector indicates the agent’s geocoded location coordinates. In contrast, an
output vector shows the Q-values generated by the algorithm, which represent the possible
directions the agent may drive (north, south, west, east, northeast, northwest, southeast,
and southwest). Hidden layers are incorporated into the NN model to avoid any implied
data trapping. Another careful consideration was allocated to the number of neurons in
the hidden layers. Overfitting or underfitting problems may emerge because of improper
numbering of neurons, leading to impractical extreme simulation times [29,30].

In the proposed framework, the input layer describes the geocoding of the agent’s
location retrieved in real time from Google’s API. The input is succeeded by two hidden
connection layers, the first consists of twelve neurons connected to ten neurons of the second
hidden layer. The output layer has an eight-dimensional vector that resembles the possible
actions for the agent to perform, which is navigating through eight physical directions.
This experiment assumes 0.30 as a drop-out rate to minimize potential overfitting and
increase generalization, with a learning rate of 0.1 for every step in the learning process
to optimally manage the learning speed. SARSA will converge to optimal Q-values but
strictly within the space of the epsilon greedy policy, with SARSA reaching the ultimate
optimal policy with the decay of epsilon to zero. As highlighted in [31], the SARSA will

Vehicles 2022, 4 1181

indeed converge to an optimal policy as long as pairs representing state–action are visited
an infinite number of times. As a result, the policy converges but within the limit of the
greedy policy by selecting ε = 1/t.

2.3. Markov Chain Modeling of the Traffic Dynamics

The Markov chain model (MCM) is a practical methodology for simulating the dy-
namics of traffic roads. To achieve the overall goal of this work, MCM is utilized to model
the driving patterns and accordingly estimate their energy requirements on the roads. The
MCM’s microscopic behavior allows realistic modeling of the EV’s journey and driving
possibilities. This is because MCM can deal with a large dataset containing millions of
input information. Therefore, it is ideal for modeling urban network infrastructures in-
corporating thousands of roads and associated transportation services (e.g., stop signs
and signals). Specifically, MCM is a discrete stochastic process with finite states that, for
a homogeneous MCM, change its value at each time step under the stochastic nature of
the vehicles’ dynamics. It is worth mentioning that the probability of a transition between
any two states mainly depends on the state of the previous time step. Reference [32] was
among the first to utilize MCM in capturing a dynamically complex system. Modeling
road dynamics is highly stochastic and is difficult to estimate. As a result, this work re-
alizes that the best methodology to handle such complex modeling is through perturbed
MCM. The core idea behind representing the dynamics of the road via MCM lies in its
powerful capabilities in modeling traffic data via proper construction of the transition ma-
trix. This allows adequate simulation for the vehicle’s travel information and subsequent
on-road energy requirements that feed the proposed RL energy minimization framework.
As required for any dynamic system, a reference point must be set to properly measure
the contribution from all involved points in the system’s boundary. The reference point
establishes the probability of transition between any two states within a bounded region
in the simulation environment. Typically, such regions of study are defined as mappings
between two spaces T: G, s.t. the set G represents a nonempty subset of the space T, divided
into mutually exclusive and collectively exhaustive sets {S1, S2, . . . , ST}. On the other
hand, T represents the total number of states in the simulation, with each set labeled as
a specific state, i, of the MCM. The modeling starts with the agent navigating through a
defined segment on the road that resembles the change of its states from si to state sj. A
probability Pij describes the likelihood of the agent’s change of states. Successively, a matrix
TM is constructed with entries representing the agents’ relative transitional probabilities
that capture the vehicle drive. It is worth mentioning that TM should have no negative
entries as the sum of probabilities must add up to 1, with the probabilities of transitions
forming its diagonal elements. Hence, special consideration must be considered to deal
with the regenerative braking of EVs, as illustrated in Section 3.5.

The work assumes that the agent’s drive starts when the vehicle moves from a prede-
fined location (starting position of a road segment) to another predefined location (ending
position of the road segment), establishing an initial probability distribution for the transi-
tion matrix. Such process continues until the agent stops its drive, wherein this case, the
relative entry represents the probability of the same state, Pii. Assuming rs represents the
total states in a drive, the ijth element of TM after n steps is found as follows:

pij =
rs

∑
k=1

pik pkj (15)

Upon the calculation of p and pn, pn is normalized as follows:

Pn,ij =
m
(

An,i ∩ T−1 An,j
)

m(An,i)
(16)

∑n
i=1 Pn,i = 1 (17)

Vehicles 2022, 4 1182

This work realizes the agent drives as a set of graphs that represent the EV’s historical
geocode locations throughout the drive, which was retrieved in this work from Google’s
API platform. Modeling the road segments is achieved with vertices representing specific
geocodes that resemble intersections on the driven pathway. Vertices i and j are connected
by an oriented graph G if there is a road segment that links them, and hence a segment
is only considered if it is a drivable path. Accordingly, G =

〈
Gi, Gj

〉
is represented by

the weights pij iff pij > 0. The weight Wij is defined in this work as the average energy
requirement to move the agent between vertices i and j, as explained in Section 3.2. Figure 2
presents an illustration of graph modeling in transportation. Specifically, a segment G1G2
is the drivable pathway that connects geocodes represented as G1 and G2. It is worth
mentioning that the core concept in modeling the actual probability transitions in MCM is
achieved as a step unit of time. This work modifies this concept to represent the energy
consumption requirements on the road as a unit step of energy. Such an assumption has
been used previously in the literature [33,34].

Vehicles 2022, 4, FOR PEER REVIEW 7

∑ 𝑃𝑛,𝑖 = 1
𝑛

𝑖=1
 (17)

This work realizes the agent drives as a set of graphs that represent the EV’s historical

geocode locations throughout the drive, which was retrieved in this work from Google’s

API platform. Modeling the road segments is achieved with vertices representing specific

geocodes that resemble intersections on the driven pathway. Vertices 𝑖 and 𝑗 are con-

nected by an oriented graph G if there is a road segment that links them, and hence a

segment is only considered if it is a drivable path. Accordingly, 𝐺 = <𝐺𝑖 , 𝐺𝑗> is repre-

sented by the weights 𝑝𝑖𝑗 iff 𝑝𝑖𝑗 > 0. The weight 𝑊𝑖𝑗 is defined in this work as the average

energy requirement to move the agent between vertices 𝑖 and 𝑗, as explained in Section

3.2. Figure 2 presents an illustration of graph modeling in transportation. Specifically, a

segment 𝐺1𝐺2 is the drivable pathway that connects geocodes represented as 𝐺1and 𝐺2.

It is worth mentioning that the core concept in modeling the actual probability transitions

in MCM is achieved as a step unit of time. This work modifies this concept to represent

the energy consumption requirements on the road as a unit step of energy. Such an as-

sumption has been used previously in the literature [33,34].

Figure 2. Illustration of graph representation considering MCM.

3. Application of the SARSA Algorithm to Solve the EV Routing Optimization

By utilizing the concept of cumulative rewards instead of immediate ones, RL could

effectively be used as an approach to train the EV as an agent that navigates through driv-

ing routes that yield lower energy requirements. This is achieved based on inputs that

include EV power demand, battery status, and driving conditions, including the number

of stops, speed limits, road closures, etc. As an agent, EVs are only required to know the

current state of knowledge and the resultant rewards produced by the learning algorithm

of navigation in the driving environment, the Google Maps platform, in this work. The set

of actions in the learning process represents the feasible routes with the least energy re-

quirements. Specifically, the agent starts driving, taking random steps, supplementing the

geocodes of driving each road segment as an input layer to the RL algorithm. The two

hidden layers in the neural network have a linear rectifier unit that acts as an activation

function that gradually optimizes the agent’s actions as the driving process continues. As

the learning process proceeds, the energy is optimized due to a change of the agent’s states

following the MCM, where Markov’s step unit represents the step unit of energy con-

sumption. Several studies in different fields used the same modification of Markov’s step

unit to achieve other optimization objectives. Authors in [35] represented the step unit as

a unit of pollution in their model instead of a time. This work uses discounted factors in

the range of 0.1–0.85, driving losses of 15%, with nearly 50% of energy that could be

Figure 2. Illustration of graph representation considering MCM.

3. Application of the SARSA Algorithm to Solve the EV Routing Optimization

By utilizing the concept of cumulative rewards instead of immediate ones, RL could
effectively be used as an approach to train the EV as an agent that navigates through driving
routes that yield lower energy requirements. This is achieved based on inputs that include
EV power demand, battery status, and driving conditions, including the number of stops,
speed limits, road closures, etc. As an agent, EVs are only required to know the current state
of knowledge and the resultant rewards produced by the learning algorithm of navigation
in the driving environment, the Google Maps platform, in this work. The set of actions
in the learning process represents the feasible routes with the least energy requirements.
Specifically, the agent starts driving, taking random steps, supplementing the geocodes of
driving each road segment as an input layer to the RL algorithm. The two hidden layers
in the neural network have a linear rectifier unit that acts as an activation function that
gradually optimizes the agent’s actions as the driving process continues. As the learning
process proceeds, the energy is optimized due to a change of the agent’s states following
the MCM, where Markov’s step unit represents the step unit of energy consumption.
Several studies in different fields used the same modification of Markov’s step unit to
achieve other optimization objectives. Authors in [35] represented the step unit as a unit of
pollution in their model instead of a time. This work uses discounted factors in the range
of 0.1–0.85, driving losses of 15%, with nearly 50% of energy that could be retained during
the deceleration phase of the drive [36]. The impact of regenerative braking is carefully
accounted for in this work and is explained thoroughly in the forthcoming sections.

Vehicles 2022, 4 1183

3.1. Real-Time Metadata Extraction from Google’s API

With the Google Maps Geocoding API, physical locations can be converted into
longitude and latitude coordinates. This experiment utilizes the geocoding API to obtain
navigation geocodes for each trip segment, from the starting point to the destination. A
rectangular limitation is imposed on the map for each phase in the learning process to allow
realistic modeling of the EV EV trip within strictly specific physical boundaries. However,
due to Earth’s spherical geometry and restrictions set on the stride length, such a grid map
may not always be a rectangle.

As mentioned earlier, the EV can move only in one direction out of eight possible
options provided by Google’s Direction API during each state of the modeling. On the other
hand, the Elevation API supports the learning process by offering differences in heights
during the drive with the help of the Navigation API instructional geocoding list. In the
case of an unreachable position during the driving process (e.g., lakes or trees), the Direction
API returns a “False” value to exclude the route from the list of options. In addition, and for
realistic driving simulation, Google’s Roads API was used to provide the EV with real-time
driving conditions, such as speed limitations, the number of stops, traffic signals, road
closures due to construction, and traffic congestion, to name a few. Such information is
pivotal in the learning algorithm to dictate the optimal energy consumption options for
the agent. Because access to instant traffic data was sometimes limited and challenging to
obtain due to Google’s API access limitations, raw traffic data were estimated based on the
“duration in traffic” results for each drive segment returned by Google’s Duration.

3.2. EV Energy Consumption in the MCM Traffic Model

Modeling the driving segments is achieved following the concept of oriented graphs,
with each vertex resembling a particular geocoded position that has edges

(
Gi, Gj

)
as a

feasible driving path between any two vertices. This work defines the weights w
(
Gi, Gj

)
as the average energy requirement for the EV’s battery during the ith state, calculated
as follows:

Wi(P) = ∑k
i=1

w(vi−1,vi)
− β(vi−1,vi)

w(vi−1,vi)
(18)

where i = 1... n, and β resembles the step size in the range between zero and weights wi. To
appropriately comprise the weights into the model, TM is transformed into another matrix,
Q.M., as follows:

QM = (IM − D)TM + D (19)

where D represents the diagonal entries of matrix QM s.t. D = diag (w1,..,wn) with weights
wi= 1,..., n. Matrix I represents the identity matrix that has the same dimensions as TM.
As mentioned earlier, the step unit in MCM is modeled as a step unit of energy instead of
a step unit of time. This allows proper estimation of the agent’s energy requirement per
each segment considering the driving conditions. It also allows realistic incorporation of
different driving behaviors that differ from one person to another. In this simulation, three
driving phases are considered: cruising, deceleration, and acceleration phases. The energy
requirement of the EV on each segment is the sum of its energy consumption, modeled
as the integration of the EV dynamics taking into account the three forces Facc, Frol , and
Fad, along with Fslope. Facc represents the accelerating force; Frol is the overcoming rolling
resistance force; Fad is the aerodynamic drag force; and Fslope is the hill-climbing force.
These dynamics are obtained as follows:

W1 =
∫ x1

0

(
ma1 + µro1mg +

1
2

ρACd ν2 + mg sin(∅)

)
dx (20)

W2 =
∫ x2

x1

(
µro1mg +

1
2

ρACd ν2 + mg sin(∅)

)
dx (21)

Vehicles 2022, 4 1184

W3 =
∫ x3

x2

(
ma2 + µro1mg +

1
2

ρACd ν2 + mg sin(∅)

)
dx (22)

where A represents the area in front of the vehicle, depending on its types and size (e.g., EV
truck, EV sedan, etc.); α represents the acceleration factor of the vehicle; m is the vehicle’s
mass at a particular speed V; ϕ as the physical incline of the road segment; and µro1, ρ,
Cd, and g are constants; x1, x2 represents accumulated driven distances of the cruising
and deceleration phases; while x3 represents the total length of the traveled path. Such
information provides accuracy for modeling the experiment, as geophysical metadata and
relative limitations are accordingly reflected in the equations. Table 1 shows the pseudo-
code of the SARSA algorithm utilized in this work, while Table 2 shows the parameters of
the EV, assumed Tesla V, used in this experiment. It is worth mentioning that the parameters
in Table 2 are the same as those used in [4] by the authors for benchmarking purposes.

Table 2. Parameters of the EV in the experiment.

Parameter Value

Gravity force (g) 9.81 m/s2

Air density constant (P) 1.2 kg/m3

Rolling resistance (µro1) 0.01

Drag coefficient (Cd) 0.35

Forward air area (A) 1.6

Acceleration constant (a1) 3.5 m/s2

Deceleration constant (a2) −3.5 m/s2

Mass of EV (m) 1961 kg

3.3. Value Iteration Network (VIN) Model

The main objective of designing the value-iteration network (VIN) is to find the optimal
Q-values for the learning algorithm. Following the graph convolution and VIN, the traffic
conditions of the agent could be mapped to routing decisions on the graph. To achieve
this purpose, the VIN was approximated following the work of reference [36], where the
VIN module was introduced as an NN layer that allows encoding differentiable planning
computations. As proposed in [37], each iteration of the VIN module passes both value
and reward functions through conventional neural network (CNN) max pooling layers.
For optimal results, experienced replay inspired by [38] was integrated to allow a scalable
learning model for the agent. To avoid getting the agent trapped in deciding optimal
Q-values, a memory is utilized to store the output values of the previous learning iterations
into a historical record stack. During the training process, training data from this stack are
weight-sampled concerning its reward values. As Figure 3 shows, the input signal is an
image representing geographical coordinates of the physical EV location, producing output
that influences the overall travel policy following attention and observation. Then as shown
in Figure 4, the quadrable et = 〈s, a, r, ś, á〉 is saved in historical stock D = e1, e2, . . . , en,
with n as the number of the preserved states of the learning process. A CNN layer, fr,
reforms the input grid map into one that contains pixels representing the reward values.
The results from the MCM influence the value function described in Equations (1) and (8).
Figure 5 provides illustration for the structure of the VI module in the training process.
Particularly, at the ith iteration, the loss function defined in Equation (11) is differentiated to
get the gradient of the loss function. Finally, the output layer provides the optimal Q-values
based on the discounting factor, save the quadrable in historical stack D, and then start
the next iteration process. Values for the final policy values are produced once iterations
are concluded.

Vehicles 2022, 4 1185

Vehicles 2022, 4, FOR PEER REVIEW 10

Equation (11) is differentiated to get the gradient of the loss function. Finally, the output

layer provides the optimal Q-values based on the discounting factor, save the quadrable

in historical stack D, and then start the next iteration process. Values for the final policy

values are produced once iterations are concluded.

Figure 3. Illustration of the VIN structure utilized in the learning process.

Figure 4. Illustration of the data extraction mechanism in this work.

Figure 5. Illustration of the value function feedback iterations in the learning process.

Figure 3. Illustration of the VIN structure utilized in the learning process.

Vehicles 2022, 4, FOR PEER REVIEW 10

Equation (11) is differentiated to get the gradient of the loss function. Finally, the output

layer provides the optimal Q-values based on the discounting factor, save the quadrable

in historical stack D, and then start the next iteration process. Values for the final policy

values are produced once iterations are concluded.

Figure 3. Illustration of the VIN structure utilized in the learning process.

Figure 4. Illustration of the data extraction mechanism in this work.

Figure 5. Illustration of the value function feedback iterations in the learning process.

Figure 4. Illustration of the data extraction mechanism in this work.

Vehicles 2022, 4, FOR PEER REVIEW 10

Equation (11) is differentiated to get the gradient of the loss function. Finally, the output

layer provides the optimal Q-values based on the discounting factor, save the quadrable

in historical stack D, and then start the next iteration process. Values for the final policy

values are produced once iterations are concluded.

Figure 3. Illustration of the VIN structure utilized in the learning process.

Figure 4. Illustration of the data extraction mechanism in this work.

Figure 5. Illustration of the value function feedback iterations in the learning process. Figure 5. Illustration of the value function feedback iterations in the learning process.

3.4. Experimental Modeling of the EV’s Battery

A dynamic modeling of EV batteries was used for this simulation and was derived
from the work of References [39,40]. Time factors for lithium batteries are presented in

Vehicles 2022, 4 1186

studies [41,42] and are incorporated into the battery model by [42] to better estimate SoC.
The SoC, voltage, and power losses of the agent’s battery are modeled as follows:

Vterminal = Voc(SOC, T)− ibat(t)× Rint(SOC, T) + ibat(t)× Rtransient(Tsec,Tmin,Thour) (23)

where Tsec, Tmin, and Thour represent time-constant variables of the dynamic behavior of
the battery. It should be noted that number of driving cycles, temperature and battery’s
discharge rate were assumed based on [42]. Vterminal and Voc are both terminal and open
circuit voltage levels for the battery’s circuit; Rint and Rtransient are the battery’s internal
and train set resistance; Cbattery and Ibattery represent the capacity and current of the battery,
both modeled as a current source as follows [43]:

ISoC = −Ibat(t)/Cbattery (24)

VSoC = Vterminal/Cbattery (25)

Table 1 in Reference [42] shows the parameters utilized in our simulation, with the
exception of the battery’s degradation level that was disregarded, as the battery’s life cyle
is out of the scope of the study.

3.5. Impact of Regenerative Braking

To avoid having zero values in the diagonal elements of TM because of regenera-
tive braking, a medial matrix is introduced in this work. Specifically, the medial matrix
will allow only absolute values of the unit step of energy for the vehicle’s traveled path.
Subsequently, the weights are rearranged as follows:

|W| = diag(|w1|, , |wn|) (26)

D = I− ∝ |W|−1 (27)

where ∝ represents the sign of a change of the energy requirement during regenerative
braking and is strictly bounded in the interval 0 < ∝ < minimum wi.

4. Results and Discussion

To verify the proposed energy minimization framework based on the SARSA algo-
rithm, a real-time experiment was conducted in the Python environment to assess the
capability of the proposed algorithm in achieving an optimal EV routing optimization.
Furthermore, the energy required for the simulated trips based on Google Maps-suggested
routes, and previously published results the authors had achieved following the DDQN
algorithm [4] are benchmarks in this study. The overall goal of the experiment is to optimize
the EV’s energy requirement by extending its driving range to navigate through what is
typically considered a daily road trip that the average EV driver is expected to make. This
experiment considers real-time metadata input that simulates a real-life driving condition
to obtain realistic results. As an agent, the EV aims to maximize the reward of its decisions
by reducing its energy requirement to reach a charging station that is assumed to be located
six miles away from its driving starting point. This work successfully models the road
segments’ dynamics between the two vertices through MCM. The EV was evaluated over
140 episodes, with each episode representing an entire set of steps, states, and reward
signals obtained from the agent’s learning process. Termination criteria include either
finishing the drive of a road’s segment or facing restrictions imposed on episodes. Such
restrictions may include domain-specific restrictions (i.e., violation of permitted steps per
episode), reaching an optimal energy-aware decision for driving that segment, or simply
returning FALSE because of an unreachable step due to environment-specific limitations
(e.g., flood, lakes, road closure, etc.). It is worth mentioning that this experiment considers
two driving trips in two locations to measure the relative impact of the difference in the
geophysical terrains on the learning algorithm. Both drives were simulated at 4.30 p.m., 11

Vehicles 2022, 4 1187

October 2021. In addition, the importance of timesaving is neglected in his work, as we
assumed that EV owners have limited energy in their batteries and that their main concerns
are to reach their charging stations. The geophysical coordinates of the two selected drives
are presented in Table 3 of this work. The first drive starts at the College of Engineering
and Computing of the Florida International University (FIU), Miami, FL, whose destination
is an EV charging station in Doral, FL, located nearly six miles away. The second drive,
selected in a location that exhibits different geographic characteristics to add credibility to
the testing of the proposed strategy, starts at the J. Paul Getty Museum, located in a hilltop
area in Los Angeles, CA, USA. The destination of the second drive is set as a charging
station in Ventura, CA, USA, which is also located six miles away from the starting location.
Table 4 highlights the total number of episodes and subsequent steps during the simulation
of both drives. In addition, the experiment considered the stride length not to exceed 200 m,
with 80 steps maximumly per each episode. As mentioned earlier, this experiment ignores
timesaving, the battery’s level of degradation, and internal energy utilization of the EV
(e.g., air conditioning). It is noted that different results may have been received depending
on the condition of the dynamic environment, such as the time, location, distance, and
driving routes.

Table 3. Experimental information and results.

Simulated Trips Starting
Geocodes

Destination
Geocodes

Energy by
SARSA

Energy by
Google’s Routes

Energy from
Regenerative

Braking

Simulation
Time

FIU College of
Engineering–Doral

EV Charging Station

25.768506–
80.366891

25.809732–
80.331379

2.1305 Kwh at
21 min

2.3949 Kwh at
19 min Negligible 3112 s

J. Paul Getty Museum
-Ventura EV

Charging Station

34.077823–
118.475863

34.158980–
118.49994

2.0501 Kwh at
25 min 2.1748 at 22 min 0.191 Kwh 2680 s

Table 4. Total number of episodes and steps per route.

Simulated Trips No. of Episode No. of Failed Step Steps Unreachable Positions

First Trip 140 20 5715 1711

Second Trip 143 18 7226 1501

The agent’s driving experience was simulated using Python with TensorFlow, Pandas,
and NumPy libraries. A continuous update of the vehicle geocodes serves as input data for
the learning algorithm, including data about the road such as traffic congestion, the highest
and highest elevations on the roads, and speed limits, among others. Through Google’s
API platform, real-time metadata information can be extracted from Google’s map services
in real-time through APIs and software development kits (SDKs). It is worth mentioning
that such a process was not easy to achieve, as we had to query the Direction API multiple
times during the experiment to allow the proper representation of the drive considering the
real-time traffic conditions per each road segment. Furthermore, the energy consumption
of the agent was modeled for each state during the learning process to estimate the most
optimal action per state. The results were then benchmarked with findings from a previous
experiment achieved by the authors, considering the same driving experience but on
different dates and algorithms. The results were also benchmarked when modeling the
drive strictly following Google’s suggested routes. Figures 6 and 7 present the energy
requirements considering the proposed RL based on the SARSA algorithm, the DDQN
algorithm, and Google’s original routes for both drives in Los Angeles, CA, USA, and
Miami, FL, USA, respectively. As the results indicate, the EV reaches its planned destination
with lower energy needs following the SARSA algorithm than the main route suggested
by Google Maps, by 11.04% and 5.72%, respectively. Both drives took the same time to

Vehicles 2022, 4 1188

arrive at their destination, with a slight time difference of two minutes shorter in favor
of Google Maps’ routes. As one may notice, although the exact vehicle was simulated
for approximately the same length, there is a slight difference in the reported energy
requirements. This could be attributed to the spatial and temporal differences in both
driving experiences, which yielded slightly different energy requirements to reach each
destination. Figure 8 shows a screenshot of the simulation results.

Vehicles 2022, 4, FOR PEER REVIEW 13

energy consumption of the agent was modeled for each state during the learning process

to estimate the most optimal action per state. The results were then benchmarked with

findings from a previous experiment achieved by the authors, considering the same driv-

ing experience but on different dates and algorithms. The results were also benchmarked

when modeling the drive strictly following Google’s suggested routes. Figures 6 and 7

present the energy requirements considering the proposed RL based on the SARSA algo-

rithm, the DDQN algorithm, and Google’s original routes for both drives in Los Angeles,

CA, USA, and Miami, FL, USA, respectively. As the results indicate, the EV reaches its

planned destination with lower energy needs following the SARSA algorithm than the

main route suggested by Google Maps, by 11.04% and 5.72%, respectively. Both drives

took the same time to arrive at their destination, with a slight time difference of two

minutes shorter in favor of Google Maps’ routes. As one may notice, although the exact

vehicle was simulated for approximately the same length, there is a slight difference in

the reported energy requirements. This could be attributed to the spatial and temporal

differences in both driving experiences, which yielded slightly different energy require-

ments to reach each destination. Figure 8 shows a screenshot of the simulation results.

Figure 6. Benchmarking of the energy requirements of the first route for SARSA vs. DDQN and

Google Maps.
Figure 6. Benchmarking of the energy requirements of the first route for SARSA vs. DDQN and
Google Maps.

Vehicles 2022, 4, FOR PEER REVIEW 14

Figure 7. Benchmarking of the energy requirement for the second route for SARSA vs. DDQN and

Google Maps.

Figure 8. Part of the simulation process for the second drive in Los Angeles, CA, USA.

Table 3 presents the results of simulating the two trips. It is worth mentioning that

the amount of regenerative braking is almost trivial, with only a small amount detected

in the driving simulation in the Los Angeles trip. This is attributed to the relatively small

distance driven by the agents and to the physical terrain of the LA drive, where a portion

of the trip was driven downhill from the Santa Monica Mountains, where the J. Paul Getty

Museum is located. Figures 9 and 10 show the reward accumulation through the driving

experience based on the SARSA algorithm considering 140 episodes. It should be noted

that the reward is primarily influenced by the number of steps in the learning process,

Figure 7. Benchmarking of the energy requirement for the second route for SARSA vs. DDQN and
Google Maps.

Vehicles 2022, 4 1189

Vehicles 2022, 4, FOR PEER REVIEW 14

Figure 7. Benchmarking of the energy requirement for the second route for SARSA vs. DDQN and

Google Maps.

Figure 8. Part of the simulation process for the second drive in Los Angeles, CA, USA.

Table 3 presents the results of simulating the two trips. It is worth mentioning that

the amount of regenerative braking is almost trivial, with only a small amount detected

in the driving simulation in the Los Angeles trip. This is attributed to the relatively small

distance driven by the agents and to the physical terrain of the LA drive, where a portion

of the trip was driven downhill from the Santa Monica Mountains, where the J. Paul Getty

Museum is located. Figures 9 and 10 show the reward accumulation through the driving

experience based on the SARSA algorithm considering 140 episodes. It should be noted

that the reward is primarily influenced by the number of steps in the learning process,

Figure 8. Part of the simulation process for the second drive in Los Angeles, CA, USA.

Table 3 presents the results of simulating the two trips. It is worth mentioning that
the amount of regenerative braking is almost trivial, with only a small amount detected
in the driving simulation in the Los Angeles trip. This is attributed to the relatively small
distance driven by the agents and to the physical terrain of the LA drive, where a portion
of the trip was driven downhill from the Santa Monica Mountains, where the J. Paul Getty
Museum is located. Figures 9 and 10 show the reward accumulation through the driving
experience based on the SARSA algorithm considering 140 episodes. It should be noted
that the reward is primarily influenced by the number of steps in the learning process,
returning negative values whenever there is a failed episode. In addition, the EV’s returned
reward is illustrated in Figures 9 and 10 to provide insight into how much benefit the EV
will receive from each action it takes at each state throughout the journey; it represents the
accumulated sum at each time step t, following the discounted rate that was set earlier.

Vehicles 2022, 4, FOR PEER REVIEW 15

returning negative values whenever there is a failed episode. In addition, the EV’s re-

turned reward is illustrated in Figures 9 and 10 to provide insight into how much benefit

the EV will receive from each action it takes at each state throughout the journey; it rep-

resents the accumulated sum at each time step t, following the discounted rate that was

set earlier.

Figure 9. Accumulated reward returns per the number of steps in the first trip. Figure 9. Accumulated reward returns per the number of steps in the first trip.

Vehicles 2022, 4 1190Vehicles 2022, 4, FOR PEER REVIEW 16

Figure 10. Accumulated reward returns per the number of steps in the second trip.

While the DDQN converged to slightly more optimal results than the SARSA algo-

rithm, the learning process considering SARSA converged faster for both trips, as shown

in Figure 11. This could be attributed to the fact that SARSA converges to the near-optimal

policy as ε must be decayed so that the learning policy converges to a greedy policy, while

the DDQN must achieve a full optimal policy. In addition, every state–action pair will be

visited infinitely in SARSA. We had to limit the number of episodes in this experiment

due to Google’s API restrictions, which limited and sometimes blocked our access to re-

trieve real-time data from the platform. As the training process proceeds, the agent’s ran-

dom behavior decreases, indicating the learning algorithm’s robustness, as shown in Fig-

ure 12. The randomness that starts at the beginning of the drive is related to the fact that

the agent starts the drive by taking random actions. Yet, such randomness decreases sig-

nificantly as the SoC level improves due to the success of the learning algorithm in guiding

the agent toward driving into energy-efficient options. As one may notice, as the agents

continue the driving process, the reward trend indicates a positive direction with fewer

negative values that are nothing but indicators of failed steps in the learning process. On

a comparative scale, and as results presented in Figures 9–11 show, the SARSA algorithm

possesses unique characteristics that make it capable of solving difficult problems and this

gives it an advantage over the popular Q-learning and DDQN algorithms. It has a faster

convergence rate and accurate reward return when compared to Q-learning and can learn

a near-optimal policy and remain more conservative, which means it seeks to avoid the

risk of failure and hence opts for a longer and safer approach. If EMS and EV routing

problems must be well probed in full detail with a lower risk of failure or errors along the

way, the SARSA should be favored and put to more extensive use across the scientific

community.

Figure 10. Accumulated reward returns per the number of steps in the second trip.

While the DDQN converged to slightly more optimal results than the SARSA algo-
rithm, the learning process considering SARSA converged faster for both trips, as shown in
Figure 11. This could be attributed to the fact that SARSA converges to the near-optimal
policy as ε must be decayed so that the learning policy converges to a greedy policy, while
the DDQN must achieve a full optimal policy. In addition, every state–action pair will be
visited infinitely in SARSA. We had to limit the number of episodes in this experiment due
to Google’s API restrictions, which limited and sometimes blocked our access to retrieve
real-time data from the platform. As the training process proceeds, the agent’s random
behavior decreases, indicating the learning algorithm’s robustness, as shown in Figure 12.
The randomness that starts at the beginning of the drive is related to the fact that the agent
starts the drive by taking random actions. Yet, such randomness decreases significantly as
the SoC level improves due to the success of the learning algorithm in guiding the agent
toward driving into energy-efficient options. As one may notice, as the agents continue
the driving process, the reward trend indicates a positive direction with fewer negative
values that are nothing but indicators of failed steps in the learning process. On a compara-
tive scale, and as results presented in Figures 9–11 show, the SARSA algorithm possesses
unique characteristics that make it capable of solving difficult problems and this gives it an
advantage over the popular Q-learning and DDQN algorithms. It has a faster convergence
rate and accurate reward return when compared to Q-learning and can learn a near-optimal
policy and remain more conservative, which means it seeks to avoid the risk of failure and
hence opts for a longer and safer approach. If EMS and EV routing problems must be well
probed in full detail with a lower risk of failure or errors along the way, the SARSA should
be favored and put to more extensive use across the scientific community.

Vehicles 2022, 4 1191Vehicles 2022, 4, FOR PEER REVIEW 17

Figure 11. Convergence performance of the two RL-proposed algorithms.

Figure 12. The level of SoC vs. probability of taking random actions for the agent during the drives.

5. Conclusions

This work presents an energy consumption minimization framework based on the

SARSA algorithm to train EVs to reach their final destinations with lower energy

Figure 11. Convergence performance of the two RL-proposed algorithms.

Vehicles 2022, 4, FOR PEER REVIEW 17

Figure 11. Convergence performance of the two RL-proposed algorithms.

Figure 12. The level of SoC vs. probability of taking random actions for the agent during the drives.

5. Conclusions

This work presents an energy consumption minimization framework based on the

SARSA algorithm to train EVs to reach their final destinations with lower energy

Figure 12. The level of SoC vs. probability of taking random actions for the agent during the drives.

5. Conclusions

This work presents an energy consumption minimization framework based on the
SARSA algorithm to train EVs to reach their final destinations with lower energy require-
ments. The dynamics of EVs on the road were modeled as successive partitioning that

Vehicles 2022, 4 1192

utilized the MCM to model the energy requirements for each partitioned segment. Two
driving experiments of the same distance but at different geographic locations were simu-
lated to verify the proposed framework. Both drives were set at a particular time and date
with a limited state of charge, with the driving experience assumed to be a continuous state.
As the agent incorporates real-time data from Google APIs, the transitional probabilities are
updated continuously during the learning process. The results show the superiority of the
SARSA algorithm in achieving optimal decisions for the agent to reach its destination with
lower energy requirements than Google’s suggested routes at around the same traveling
time. Compared with previously reported results by authors using DDQN [4] and Google’s
originally suggested routes, the SARSA proved an effective learning strategy. Considering
convergence performance and computation requirements, SARSA achieved better energy
performance than Google’s routes but slightly less than the DDQN’s average driving time,
which is only 15% over the driving period following Google’s routes. This shows that
SARSA could exclude routes that may have resulted in a higher driving period even if
they yield lower energy requirements. Due to its powerful computation capabilities, future
work should incorporate the SARSA algorithm, as it has been proven to be an effective
and reliable machine learning methodology. We recommend the implementation of the
SARSA on topics such as smart grid reliability analysis studies [44,45], dynamic energy
management systems incorporating EVs [46–48], and cybersecurity of energy grids such as
charging stations [49]. However, a limitation to using the SARSA algorithm is that com-
putational time may exceed that of other methods, as SARSA, a conservative RL method,
may not execute the optimal solution within the shortest possible time. Due to its on-policy
approach, the SARSA algorithm requires controllers to perform the action selection while
following the policy for which the Q-values are found and updated. Another challenge
to be investigated by the research community is the hardware implementation of ECU
processors inside vehicles that incorporate AI algorithms such as the SARSA algorithm.
Such implementation requires extensive integration efforts to achieve optimal real-time
decisions for EV drivers. While previous microprocessors were presented in the literature
by the ESRL of FIU to support smart charging decisions [50], ECU implementation that
involves an AI-based algorithm system requires more extensive efforts to achieve optimal
real-time decisions for EV drivers. References [51,52] highlight the real-time implementa-
tion of RL methods considering microprocessor capabilities. It is worth mentioning that
better results of the SARSA algorithm may have been accomplished in this work if not
for the continuous data interruptions from Google’s API platform, with the considerably
limited computational capabilities of the simulating devices. Overall, the SARSA algorithm
proved an effective RL methodology to train EVs to produce self-exploratory decisions that
yield optimal driving decisions.

Author Contributions: Conceptualization, T.M.A., and O.M.; methodology, T.M.A.; software, T.M.A.,
and O.M.; validation, T.M.A., and O.M.; formal analysis, T.M.A..; investigation, T.M.A.; resources,
T.M.A., and O.M..; data curation, T.M.A..; writing—original draft preparation, T.M.A., writing—review
and editing, T.M.A., and O.M. visualization, T.M.A.; supervision, T.M.A.; project administration, O.M.
funding acquisition, T.M.A., and O.M., All authors have read and agreed to the published version of
the manuscript.

Funding: Taibah University (Financial Support for T.M.J.)

Acknowledgments: Tawfiq Aljohani would like to thank Taibah University for funding his graduate
studies.

Conflicts of Interest: The authors declare no conflict of interest.

Vehicles 2022, 4 1193

References
1. Pevec, D.; Babic, J.; Carvalho, A.; Ghiassi-Farrokhfal, Y.; Ketter, W.; Podobnik, V. Electric vehicle range anxiety: An obstacle for

the personal transportation (r) evolution? In Proceedings of the 2019 4th International Conference on Smart and Sustainable
Technologies (SpliTech), Split, Croatia, 18–21 June 2019; pp. 1–8.

2. Kim, S.; Rhee, W.; Choi, D.; Jang, Y.J.; Yoon, Y. Characterizing Driver Stress Using Physiological and Operational Data from
Real-World Electric Vehicle Driving Experiment. Int. J. Automot. Technol. 2018, 19, 895–906. [CrossRef]

3. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. Proc. Conf. AAAI Artif. Intell.
2016, 30. [CrossRef]

4. Aljohani, T.M.; Ebrahim, A.; Mohammed, O. Real-Time metadata-driven routing optimization for electric vehicle energy
consumption minimization using deep reinforcement learning and Markov chain model. Electr. Power Syst. Res. 2021, 192, 106962.
[CrossRef]

5. Valogianni, K.; Ketter, W.; Collins, J.; Zhdanov, D. Effective management of electric vehicle storage using smart charging. In
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014.

6. Liu, T.; Zou, Y.; Liu, D.; Sun, F. Reinforcement Learning of Adaptive Energy Management With Transition Probability for a Hybrid
Electric Tracked Vehicle. IEEE Trans. Ind. Electron. 2015, 62, 7837–7846. [CrossRef]

7. Qi, X.; Wu, G.; Boriboonsomsin, K.; Barth, M.; Gonder, J. Data-Driven Reinforcement Learning–Based Real-Time Energy
Management System for Plug-In Hybrid Electric Vehicles. Transp. Res. Rec. J. Transp. Res. Board 2016, 2572, 1–8. [CrossRef]

8. Remani, T.; Jasmin, E.A.; Ahamed, T.P.I. Residential Load Scheduling With Renewable Generation in the Smart Grid: A
Reinforcement Learning Approach. IEEE Syst. J. 2018, 13, 3283–3294. [CrossRef]

9. Rocchetta, R.; Bellani, L.; Compare, M.; Zio, E.; Patelli, E. A reinforcement learning framework for optimal operation and
maintenance of power grids. Appl. Energy 2019, 241, 291–301. [CrossRef]

10. Ye, Y.; Qiu, D.; Sun, M.; Papadaskalopoulos, D.; Strbac, G. Deep Reinforcement Learning for Strategic Bidding in Electricity
Markets. IEEE Trans. Smart Grid 2019, 11, 1343–1355. [CrossRef]

11. Perrusquía, A.; Yu, W.; Li, X. Multi-agent reinforcement learning for redundant robot control in task-space. Int. J. Mach. Learn.
Cybern. 2021, 12, 231–241. [CrossRef]

12. Brunke, L.; Greeff, M.; Hall, A.W.; Yuan, Z.; Zhou, S.; Panerati, J.; Schoellig, A.P. Safe Learning in Robotics: From Learning-Based
Control to Safe Reinforcement Learning. Annu. Rev. Control. Robot. Auton. Syst. 2022, 5, 411–444. [CrossRef]

13. Wang, Z.; He, H.; Wan, Z.; Sun, Y.L. Coordinated Topology Attacks in Smart Grid Using Deep Reinforcement Learning. IEEE
Trans. Ind. Inform. 2020, 17, 1407–1415. [CrossRef]

14. An, D.; Yang, Q.; Liu, W.; Zhang, Y. Defending Against Data Integrity Attacks in Smart Grid: A Deep Reinforcement Learning-
Based Approach. IEEE Access 2019, 7, 110835–110845. [CrossRef]

15. Oh, S.-Y.; Lee, J.-H.; Choi, D.-H. A new reinforcement learning vehicle control architecture for vision-based road following. IEEE
Trans. Veh. Technol. 2000, 49, 997–1005.

16. Barrett, E.; Howley, E.; Duggan, J. Applying reinforcement learning towards automating resource allocation and application
scalability in the cloud. Concurr. Comput. 2013, 25, 1656–1674. [CrossRef]

17. Liu, W.; Qin, G.; He, Y.; Jiang, F. Distributed Cooperative Reinforcement Learning-Based Traffic Signal Control That Integrates
V2X Networks’ Dynamic Clustering. IEEE Trans. Veh. Technol. 2017, 66, 8667–8681. [CrossRef]

18. Huang, X.; Yuan, T.; Qiao, G.; Ren, Y. Deep Reinforcement Learning for Multimedia Traffic Control in Software Defined
Networking. IEEE Netw. 2018, 32, 35–41. [CrossRef]

19. Ortiz, A.; Al-Shatri, H.; Li, X.; Weber, T.; Klein, A. Reinforcement learning for energy harvesting point-to-point communications.
In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016;
pp. 1–6.

20. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.-C.; Kim, D.I. Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey. IEEE Commun. Surv. Tutorials 2019, 21, 3133–3174. [CrossRef]

21. Wang, S.; Bi, S.; Zhang, Y.J.A. Reinforcement Learning for Real-Time Pricing and Scheduling Control in EV Charging Stations.
IEEE Trans. Ind. Inform. 2019, 17, 849–859. [CrossRef]

22. Aladdin, S.; El-Tantawy, S.; Fouda, M.M.; Eldien, A.S.T. MARLA-SG: Multi-Agent Reinforcement Learning Algorithm for Efficient
Demand Response in Smart Grid. IEEE Access 2020, 8, 210626–210639. [CrossRef]

23. Wang, D.; Liu, B.; Jia, H.; Zhang, Z.; Chen, J.; Huang, D. Peer-to-peer electricity transaction decision of user-side smart energy
system based on SARSA reinforcement learning method. CSEE J. Power Energy Syst. 2020, 8, 826–837.

24. Parque, V.; Kobayashi, M.; Higashi, M. Reinforced explorit on optimizing vehicle powertrains. In Proceedings of the International
Conference on Neural Information Processing, Daegu, Korea, 3–7 November 2013; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 579–586.

25. Kouche-Biyouki, S.A.; Naseri-Javareshk, S.M.A.; Noori, A.; Javadi-Hassanehgheh, F. Power management strategy of hybrid
vehicles using sarsa method. In Proceedings of the Electrical Engineering (ICEE), Mashhad, Iran, 8–10 May 2018; pp. 946–950.

26. Noel, L.; de Rubens, G.Z.; Sovacool, B.K.; Kester, J. Fear and loathing of electric vehicles: The reactionary rhetoric of range anxiety.
Energy Res. Soc. Sci. 2019, 48, 96–107. [CrossRef]

27. Rummery, G.A.; Niranjan, M. On-Line Q-Learning Using Connectionist Systems; Department of Engineering, University of
Cambridge: Cambridge, UK, 1994; Volume 37, p. 20.

http://doi.org/10.1007/s12239-018-0086-0
http://doi.org/10.1609/aaai.v30i1.10295
http://doi.org/10.1016/j.epsr.2020.106962
http://doi.org/10.1109/TIE.2015.2475419
http://doi.org/10.3141/2572-01
http://doi.org/10.1109/JSYST.2018.2855689
http://doi.org/10.1016/j.apenergy.2019.03.027
http://doi.org/10.1109/TSG.2019.2936142
http://doi.org/10.1007/s13042-020-01167-7
http://doi.org/10.1146/annurev-control-042920-020211
http://doi.org/10.1109/TII.2020.2994977
http://doi.org/10.1109/ACCESS.2019.2933020
http://doi.org/10.1002/cpe.2864
http://doi.org/10.1109/TVT.2017.2702388
http://doi.org/10.1109/MNET.2018.1800097
http://doi.org/10.1109/COMST.2019.2916583
http://doi.org/10.1109/TII.2019.2950809
http://doi.org/10.1109/ACCESS.2020.3038863
http://doi.org/10.1016/j.erss.2018.10.001

Vehicles 2022, 4 1194

28. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
29. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals, Syst. 1989, 2, 303–314. [CrossRef]
30. Hinton, G.E.; Osindero, S.; Teh, Y.W. “A fast learning algorithm for deep belief nets” _(PDF). Neural Comput. 2006, 18, 1527–1554.

[CrossRef] [PubMed]
31. Kumar, V. Reinforcement Learning: Temporal-Difference, SARSA, Q-Learning & Expected Sarsa on Python. Medium. Avail-

able online: https://towardsdatascience.com/reinforcement-learning-temporal-difference-sarsa-q-learning-expected-sarsa-
on-python-9fecfda7467e (accessed on 12 May 2021).

32. Froyland, G. Extracting dynamical behavior via Markov models. In Nonlinear Dynamics and Statistics; Birkhauser: Boston, MA,
USA, 2001; pp. 281–321.

33. Maia, R.; Silva, M.; Araujo, R.; Nunes, U. Electric vehicle simulator for energy consumption studies in electric mobility systems.
In Proceedings of the IEEE Forum on Integrated and Sustainable Transportation Systems, Vienna, Austria, 29 June–1 July 2011;
pp. 227–232.

34. Schlote Crisostomi, E.S.; Kirkland, R.; Shorten, R. Traffic modelling framework for electric vehicles. Int. J. Control 2012, 85,
880–897. [CrossRef]

35. Crisostomi, E.; Kirkland, S.; Shorten, R. Markov Chain based emissions models: A precursor for green control. In Green IT:
Technologies and Applications; Kim, J.H., Lee, M.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 381–400.

36. Apostolaki-Iosifidou, E.; Codani, P.; Kempton, W. Measurement of power loss during electric vehicle charging and discharging.
Energy 2017, 127, 730–742. [CrossRef]

37. Tamar, A.; Wu, Y.; Thomas, G.S.; Levine; Abbeel, P. Value iteration networks. Adv. Neural Inf. Process. Syst. 2016, 9, 2146–2154.
38. Gold, S. A PSPICE macromodel for lithium-ion batteries. In Proceedings of the 12th Annual Battery Conference on Applications

and Advances, Long Beach, CA, USA, 14–17 January 1997; pp. 215–222.
39. Kroeze, R.C.; Krein, P.T. Electrical battery model for use in dynamic electric vehicle simulations. In Proceedings of the 2008 IEEE

Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 1336–1342.
40. Chen, M.; Rincon-Mora, G.A. Accurate electrical battery model capable of predicting runtime and I-V performance. IEEE Trans.

Energy Convers. 2006, 21, 504–511. [CrossRef]
41. Schweighofer, B.; Raab, K.M.; Brasseur, G. Modeling of high-power automotive batteries by the use of an automated test system.

IEEE Trans. Instrum. Meas. 2003, 52, 1087–1091. [CrossRef]
42. Gao, L.; Liu, S.; Dougal, R. Dynamic lithium-ion battery model for system simulation. IEEE Trans. Components Packag. Technol.

2002, 25, 495–505.
43. Sun, C.; Moura, S.J.; Hu, X.; Hedrick, J.K.; Sun, F. Dynamic Traffic Feedback Data Enabled Energy Management in Plug-in Hybrid

Electric Vehicles. IEEE Trans. Control Syst. Technol. 2015, 23, 1075–1086.
44. Aljohani, T.M. Distribution System Reliability Analysis for Smart Grid Applications; University of Southern California: Los Angeles,

CA, USA, 2014.
45. Aljohani, T.M.; Beshir, M.J. Matlab code to assess the reliability of the smart power distribution system using monte carlo

simulation. J. Power Energy Eng. 2017, 5, 30–44. [CrossRef]
46. Alqahtani, M.; Hu, M. Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning.

Energy 2022, 244, 122626. [CrossRef]
47. Aljohani, T.M.; Ebrahim, A.F.; Mohammed, O.A. Dynamic real-time pricing mechanism for electric vehicles charging considering

optimal microgrids energy management system. IEEE Trans. Ind. Appl. 2021, 57, 5372–5381. [CrossRef]
48. Yang, T.; Zhao, L.; Li, W.; Zomaya, A.Y. Reinforcement learning in sustainable energy and electric systems: A survey. Annu. Rev.

Control. 2020, 49, 145–163. [CrossRef]
49. Aljohani, T.M. Cyberattacks on Energy Infrastructures: Modern War Weapons. arXiv 2022, arXiv:2208.14225.
50. Hariri, A.; El Hariri, M.; Youssef, T.; Mohammed, O. Systems and Methods for Electric Vehicle Charging Decision Support System.

U.S. Patent 10,507,738, 17 December 2019.
51. Dini, P.; Saponara, S. Processor-in-the-Loop Validation of a Gradient Descent-Based Model Predictive Control for Assisted Driving

and Obstacles Avoidance Applications. IEEE Access 2022, 10, 67958–67975. [CrossRef]
52. Ramstedt, S.; Pal, C. Real-time reinforcement learning. In Proceedings of the Advances in Neural Information Processing Systems,

Vancouver, BC, Canada, 8–14 December 2019; p. 32.

http://doi.org/10.1007/BF02551274
http://doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
https://towardsdatascience.com/reinforcement-learning-temporal-difference-sarsa-q-learning-expected-sarsa-on-python-9fecfda7467e
https://towardsdatascience.com/reinforcement-learning-temporal-difference-sarsa-q-learning-expected-sarsa-on-python-9fecfda7467e
http://doi.org/10.1080/00207179.2012.668716
http://doi.org/10.1016/j.energy.2017.03.015
http://doi.org/10.1109/TEC.2006.874229
http://doi.org/10.1109/TIM.2003.814827
http://doi.org/10.4236/jpee.2017.58003
http://doi.org/10.1016/j.energy.2021.122626
http://doi.org/10.1109/TIA.2021.3099083
http://doi.org/10.1016/j.arcontrol.2020.03.001
http://doi.org/10.1109/ACCESS.2022.3186020

	A Real-Time Energy Consumption Minimization Framework for Electric Vehicles Routing Optimization Based on SARSA Reinforcement Learning
	Recommended Citation

	Introduction
	Reinforcement Learning
	State–Action–Reward–State–Action (SARSA) Algorithm
	Operation Modes
	Markov Chain Modeling of the Traffic Dynamics

	Application of the SARSA Algorithm to Solve the EV Routing Optimization
	Real-Time Metadata Extraction from Google’s API
	EV Energy Consumption in the MCM Traffic Model
	Value Iteration Network (VIN) Model
	Experimental Modeling of the EV’s Battery
	Impact of Regenerative Braking

	Results and Discussion
	Conclusions
	References

