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Small object detection is one of the most challenging problems in computer vision. Algorithms based on state-of-the-art object 

detection methods such as R-CNN, SSD, FPN, and YOLO fail to detect objects of very small sizes. In this study, we propose 

a novel method to detect very small objects, smaller than 8×8 pixels, that appear in a complex background. The proposed 

method is a multistage framework consisting of an unsupervised algorithm and three separately trained supervised 

algorithms. The unsupervised algorithm extracts ROIs from a high-resolution image. Then the ROIs are upsampled using 

SRGAN, and the enhanced ROIs are detected by our two-stage cascade classifier based on two ResNet50 models. The 

maximum size of the images used for training the proposed framework is 32×32 pixels. The experiments are conducted using 

rescaled German Traffic Sign Recognition Benchmark dataset (GTSRB) and downsampled German Traffic Sign Detection 

Benchmark dataset (GTSDB). Unlike MS COCO and DOTA datasets, the resulting GTSDB turns out to be very challenging 

for any small object detection algorithm due to not only the size of objects of interest but also the complex textures of the 

background. Our experimental results show that the proposed method detects small traffic signs with an average precision 

of 0.332 at the intersection over union of 0.3. 

CCS CONCEPTS • ARTIFICIAL INTELLIGENCE • COMPUTER VISION • COMPUTER VISION PROBLEMS • 

OBJECT DETECTION  

Additional Keywords and Phrases: Object detection, Computer vision, Deep learning, Image processing 

ACM Reference Format: 

First Author’s Name, Initials, and Last Name, Second Author’s Name, Initials, and Last Name, and Third Author’s Name, 

Initials, and Last Name. 2018. The Title of the Paper: ACM Conference Proceedings Manuscript Submission Template: This 

is the subtitle of the paper, this document both explains and embodies the submission format for authors using Word. In 

Woodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA, 

10 pages. NOTE: This block will be automatically generated when manuscripts are processed after acceptance. 

 
* Place the footnote text for the author (if applicable) here.  



2 

1 INTRODUCTION 

Object detection comprises two major tasks known as identifying objects in an image and predicting their 

bounding box coordinates. Thus, object detection can be considered as a combination of classification and 

regression problems. Although object detection has been successful in diverse domains such as face 

recognition or autonomous driving, traditional approaches often fail to detect very small objects.  

     The detection of small objects with correct class and precise location is mainly affected by intraclass 

variation, variations in object rotation and scale, occlusion, and change in illumination [1]. Most of these 

challenges for regular-sized objects are reasonably handled by modern state-of-the-art object detection 

algorithms such as R-CNN, SSD, FPN, and YOLO to help develop various technologies that are commercially 

available today [2]. Although adaptation of such algorithms along with other object detection techniques such 

as image tiling improved the detection of smaller objects, the detection of 20×20 pixel or smaller objects is still 

an open problem [2].  

Common approaches of small object detection in highly regarded object detection frameworks emphasize 

the detection of either relatively small objects in high-resolution images or actually small objects in a rather 

simple background [24]. An example of the former may aim to detect buildings and structures using satellite 

imagery. An example of the latter may aim to detect people on a clear sandy beach using drone images. 

Detection of such objects does not much suffer from the lack of spatial resolution, signal-to-noise ratio [3], and 

insufficient features inherent to the detection of objects smaller than 10×10 pixels and located in a complex 

background. Li et al. [4] adopt a perpetual GAN to enhance the low-level feature representation of small objects. 

Pham et al. [5] introduce YOLO-Fine as a one-stage small object detection method based on a much fine 

detection grid. The authors claim that their system is capable of detecting objects as small as 10×10 pixels. Zou 

et al. [6] and Tong et al. [7] present surveys of methods used in small object detection and object detection 

respectively. More recently, Liu et al. [8] present a comprehensive survey of research studies done in the field 

of small object detection. Some examples of deep learning techniques are fusing feature maps, adding context 

information, balancing foreground-background examples, and creating positive examples. Their experiments 

compare the popular models YOLOv3, Faster R-CNN, and SSD. Although the accuracy of the models is poor 

(< 40%), Faster R-CNN performed the best, while YOLOv3 was a close second. The limitations on size and 

complex backgrounds make these algorithms inadequate for detecting very small objects such as traffic signs 

or small figures of animals in their natural habitat. Another problem with the common small object detection 

deep learning algorithms is that they need to be trained on hundreds of larger images than the size of a small 

object being detected [9]. Therefore, training and inference of such algorithms demand a lot of computational 

power and memory [10].  

     In this study, we focus on the detection of objects in 52 – 82 pixel range that appear in complex and 

inconsistent background. Our initial in-person evaluations reveal that detecting such objects in an image could 

be next to impossible. Hence, even detecting these objects at a level would be very promising because, to the 

best of our knowledge, the traditional state-of-the-art methods could not delve into such smaller sizes. Detecting 

such small objects would enable making decisions in a timely manner for real-world applications.  

     We use 8×8 pixel bounding boxes to create Region of Interest (ROI) with a fixed coordinate stamp to help 

track the location of the detected objects. Our method primarily consists of three components: unsupervised 

ROI extraction, image super-resolution, and two-stage cascade classifier. Each trainable component is  
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Figure 1: The architecture of the proposed framework: An input candidate image is used to extract ROIs. Then the ROIs are 

upsampled and sent for classification. The upsampled ROIs are first classified into the small object of interest (in this case 

traffic signs) or the background. Next, the ROIs with the object of interest are classified into respective classes.  

separately trained with a maximum resolution of 32×32 pixels, which is only 16 – 40 times larger (in resolution) 

than the small object of interest. After completing training, each component is merged into a pipeline in the high-

level architecture shown in Figure 1. An example of object detection is shown in Figure 2. 

     For experiments, we choose the publicly available Traffic Sign Recognition Benchmark dataset (GTSRB) 

[11] and the German Traffic Sign Detection Benchmark dataset (GTSDB) [12] for the following reasons. 

Detecting traffic signs could be challenging due to the complex background, various illuminations, different 

orientations, and the presence of hard negatives [13]. In addition, the inconsistency of the background of traffic 

signs helps avoid potential explainability pitfalls [14]. Moreover, when downsampling is applied to the GTSDB 

dataset, most traffic signs are hardly seen by the naked eye due to the lack of high-level features. Thus, the 

resulting dataset can be considered a challenging domain for any small object detection algorithm compared to 

the benchmark MS COCO [15] and DOTA [16] datasets.  

 

Figure 2: (Left) The input image. (Middle) The extracted ROIs. (Right) The output image with detected traffic signs.  

2 METHODOLOGY 

In this section, we explain the main components of the proposed framework including unsupervised ROI 

extraction, image super-resolution, and two-stage cascade classifier shown in Figure 1. The selection of hyper-

parameters of these components is discussed in Section 3. 
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2.1 Unsupervised ROI Extraction 

There are numerous techniques for automatic ROI extraction using general-purpose ROI extraction and 

domain-specific approaches. These methods can also be categorized as supervised or unsupervised 

techniques. Nevertheless, most of the popular automated state-of-the-art ROI extraction methods do not meet 

the criteria mentioned in the introduction since they are either supervised or focused on a specific feature of the 

target [11,17,18]. This led us to propose a novel unsupervised ROI extraction framework for small object 

detection composed of three major processes: primary contour detection, selecting overlapping tiles, and 

random ROI generation. Each process is unsupervised and executed sequentially. 

2.1.1 Primary Contour Detection. 

This is our novel approach that leverages global image thresholding for a range of threshold values T, where 

T∈ [l, h] and l and h are hyperparameters representing low and high pixel intensities respectively. In this paper, 

we choose multiples of 10 as the step factor from l to h and set l and h as 50 and 200 respectively. Then each 

binarized grayscale candidate image is used to produce a set of points belonging to small, disconnected 

contours having 2 – 10 pixels. This important task aims to limit the selected contours for small regions that could 

represent the features of small objects by applying connected component analysis. Finally, the union of the sets 

of points produced for all T is fed to the next stage, selecting overlapping tiles. 

     For very small object detection, the primary contour detection outperforms both adaptive image thresholding 

[19] and Otsu image thresholding [20]. Figure 3 shows a comparison between the adaptive image thresholding 

and the primary contour detection in the identification of small, disconnected contours. The adaptive image 

thresholding (left) proposes small contours from all parts of the image although there is a plane sky and there 

are smooth objects in the background whereas our primary contour detection (right) illustrates only edges and 

objects with a textured surface, and therefore, correctly guides the selection of tiles to extract ROIs. Although 

choosing a larger block size alleviates false positives (incorrect candidate regions) for adaptive image 

thresholding, it increases the risk of missing contours of the small traffic signs. Moreover, Otsu image 

thresholding faces a similar issue as adaptive image thresholding. All three methods are fast enough to avoid 

latency but only the primary contour detection produces satisfactory results leading to reliable and efficient ROI 

extraction.            

 

 

 

 

 

 

 

 

 

Figure 3: A comparison: (Left) Adaptive image thresholding highlights all regions of the candidate image. (Right) the primary 

contour detection highlights only regions with significant edges. 
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2.1.2 Selecting Overlapping Tiles 

This is the second step of the proposed unsupervised ROI extraction, and it initially creates 32×32 pixel virtual 

tiles with an overlapping margin of 8 pixels. Therefore, any traffic sign slightly smaller than 8×8 pixels can be 

completely captured by at least one tile. If a point of small contour generated in the previous step intersects a 

virtual tile, this tile becomes a candidate slice of the region. Usually, this point-tile matching starts from the top-

left corner of the candidate image and continues from left to right. To optimize this brute force comparison, we 

extract slices along with all matching points right after each pass from left to right. Thus, at the start of each 

pass, there is always a smaller number of points and tiles to compare. 

2.1.3 Random ROI Generation 

In the last step of the proposed unsupervised ROI extraction, in which the extracted 32×32 pixel slices are 

scanned with a multifilter procedure. Filter f1 roughly locates the ROI. Filter f2 is activated by a strong signal 

region whereas filter f3 is designed to detect weak signals from a small object. The strength of a detected signal 

is measured by the total number of points belonging to any contour having several pixels in the range [n1, n2]. 

These values are a part of the hyperparameters of our model. We choose n1 and n2 to be 5 and 10 respectively 

in our experiments. First, an 8×8 pixel grid is applied to divide the slices into 16 smaller regions. Then each 

region is scanned in a sliding window fashion by filter f1 using Canny edge detection with an automatic threshold 

estimation [21]. This process of region-based scanning aims to narrow down the search for ROI further by 

benefiting from the Canny edge detection to eliminate locally weak and noisy edges in our analysis. 

     After locating the regions with significant edges, at most N number of different bounding boxes are generated 

by shifting the approximate center of the square-shaped regions randomly in [-4, 4] neighborhood (along both 

axes). N is a hyperparameter of our model such that 1 ≤ N ≤ 64 and is set as 20 in our experiments. For each 

bounding box, filters f2 and f3 are applied for scanning the overlapping regions. Filter f2 is designed with a 

Gaussian filter and Canny edge detection (thresholds: 150, 400) to detect a strong signal from a small object. 

The purpose of filter f3 is to detect a weak signal from a small object. This is achieved by implementing Canny 

edge detection with automatic threshold estimation to detect closed contours. To capture traffic signs failing to 

generate a strong signal, filter f3 enables to detect a weak signal of a closed contour which is barely noticeable 

in the background. Finally, the ROIs extracted from all the slices are collected into a pool and standard non-

maximal suppression (NMS) with an overlapping threshold of 0.1 is applied to select the best ROIs. 

2.2 Image super-resolution 

For the image super-resolution component of the proposed framework, we use the SRGAN [22], which is 

adapted from the notion of obtaining photo-realistic images using super-resolution. During the training, the 

SRGAN learns to upsample 8×8 pixel low-resolution images corresponding to 32×32 pixel high-resolution 

images of traffic signs. In our experiments, only the image patches of traffic signs are used to train the SRGAN 

from scratch. Despite each image including many background pixels, the model is trained with an intentional 

selection bias. Therefore, the pretrained generator is much more capable of enhancing features inherent to the 

traffic signs. We leverage this bias to produce more correct and detailed images of high-resolution traffic signs 

as generating images like the original traffic signs is important for recognition. The risk of developing features 

resembling to traffic signs in the background is mitigated using our two-stage cascade classifier. 
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2.3 Two-stage cascade classifier 

The last component of our framework is the two-stage cascade classifier that consists of two ResNet50 [23] 

models. The architectures of these two classifiers are identical except for their output layer. Both classifiers are 

trained from scratch by using training sets of super-resolution images of ROIs. Figure 4 shows the two-stage 

cascade classifier as a single classification pipeline, which takes the super-resolution ROI as an input and 

outputs the predicted class of the traffic sign and the location. Stage 1 of the cascade classifier is a binary 

classifier that classifies the input ROI as a traffic sign or background. The prediction probability p of the desired 

class is partitioned into [0, L), [L, H), and [H, L], where L and H are hyperparameters representing low and high 

thresholds of p. Based on the results of this stage, the following classification and subsequent actions are 

applied on the ROI. 

I. If p ∈ [0, L), then the ROI is classified as the background and discarded. 

II. If p ∈ [L, H), then the ROI is classified as a potential traffic sign and sent to optimizing ROI. 

III. If p ∈ [H, 1], then the ROI is classified as a traffic sign and sent to stage 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Two-stage cascade classifier: The main inference pipeline takes a super-resolution ROI as the input. In stage 1, it 

is classified into traffic signs or background. If the ROI is classified as a traffic sign, then it is sent to stage 2 in which it is 

classified into the respective classes. 

     We set L and H to be 0.01 and 0.95 for our experiments. The optimizing ROI is designed to address the 

partial presence of the small object in the super-resolution ROI. The idea is to replace such weak ROI with an 

optimized ROI that has a better presentation of the small object. Thus, this process can access the candidate 

and scan the neighborhood of the original ROI. It produces a series of optimized ROIs by shifting the location 

of the approximate center c of the original ROI to a new location within the original ROI. 

Optimizing ROI uses an optimal path search presented in Algorithm 1 to determine the best-optimized ROI 

that yields the local maximum p. Let G(V, E) be the graph representing the association between the neighboring 

pixels of the original ROI. Thus, V is the set of pixels and E is the set of associations between neighboring pixels 

of the original ROI. The following steps yield the best-optimized ROI to be sent to the main inference pipeline. 

If an optimized ROI fails to be classified as a traffic sign, it is considered to be the background and discarded.  

In stage 2, a multiclass model classifies the ROIs containing the traffic signs into respective classes. For this 

task, a multiclass ResNet50 is trained to classify the traffic signs into 6 classes as proposed by the authors of 

the datasets [11]. We trained our binary classifier using 32×32 pixel super-resolution images of traffic signs and 
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background with approximate ratio 1:4. By modeling a binary classifier to learn a wide range of features of the 

background, this provides the binary classifier an advantage to classify ROIs with background more correctly 

while offsetting a possible side effect of irrelevant features in the background of traffic signs due to non-square 

shapes of traffic signs and limitations of image super-resolution. 

ALGORITHM 1: Optimizing ROI 

//Perform an optimal path search on 𝐺.                                                                                                                                                                                          

//Input: 𝐺(𝑉, 𝐸), c                                                                                                                                                                                                         

//Output optimized c                                                                                                                                                                        

while 𝑐 ∈ 𝑉 do 

Find the unprocessed neighborhood W of c (𝑊 ⊂ 𝑉)                                                                                                                        

k = argmax
𝑣∈𝑊

(𝑝𝑣)  //𝑝𝑣 is p of the ROI of which the center pixel is the node v                                                                                  

if 𝑝𝑘 > 𝑝𝑐  then                                                                                                                                                                              

set 𝑐 = 𝑘                                                                                                                                                                             

end                                                  

end 

 

3 DATASETS AND RESULTS 

3.1 Data Preprocessing 

We preprocess the original datasets GTSRB (traffic sign images) and GTSDB (road images having traffic signs) 

for our experiments as follows. For the training of the proposed framework, we construct the datasets known 

as TV1, TV2, and TV3. For the evaluation of the proposed framework, we construct a benchmark dataset known 

as BMV.  

     TV1: This dataset is created by randomly selecting 10,473 images from the GTSRB dataset and rescaling 

them to 32×32 resolution images. TV1 is primarily created to train the SRGAN model. Images are downscaled 

for training the SRGAN. We use the split ratio of 0.8 for training and 0.2 for testing. 

    TV2: This dataset consists of all super-resolution images obtained from TV1 and super-resolution images 

obtained from 39,527 low-resolution background patches extracted from selected 108 images of the GTSDB 

validation dataset produced by 4× downsampling. First 8×8 pixel patches are selected from the most probable 

regions of the downsampled images using our primary contour detection and then the extracted patches are 

upsampled using the trained SRGAN. Then a total of 50,000 images go through the following data 

augmentation: zoom range = 0.2, width shift range = 0.1, and height shift range = 0.1. Again, the split ratio is 

0.8 for training and 0.2 for testing.                                                             

TV3: This dataset consists of super-resolution images of randomly selected 100 images from all classes of 

the GTSRB dataset. Thus, there are 4300 images in TV3. First, the images are downscaled to the resolution of 

8×8 and then upsampled using the trained SRGAN. Then these images are combined to create 6 super classes 

suggested by the authors [15]: Class 1: speed limit signs, Class 2: other prohibitory signs, Class 3: derestriction 

signs, Class 4: mandatory signs, Class 5: danger signs, and Class 6: unique signs. The split ratio: 0.8 and 0.2. 
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     BMV: We categorize the GTSDB dataset into 3 groups based on the scene: rural, suburban, and urban. 

Rural images contain a more natural environment and less traffic, whereas suburban images have some natural 

scenes and buildings with moderate traffic. On the other hand, urban images capture less natural environment, 

but they have more buildings and traffic. We select and annotate the remaining 182 images of the GTSDB 

validation dataset using a square-shaped bounding box where the area of all the images is at least 164 times 

larger than that of the bounding box. Then these images are scaled until the bounding boxes have the size of 

a 8×8 block. We define 3 different scene categories for the GTSDB dataset called rural, suburban, and urban. 

Rural: more natural environment and less traffic, Suburban: natural, built environment and traffic Urban: less 

natural environment, more built environment, and traffic. Then, 60 images are chosen using random stratified 

sampling from the above 182 images. The mean resolution of a BMV image is 190×322. 

3.2 Analysis of Results 

All our experiments were performed on Python 3 and TensorFlow 2.9.2 on Google Colaboratory with Tesla T4 

GPU. We set the hyperparameters of our model as follows: l = 50, h = 200, N = 20, L = 0.01, H = 0.95. In our 

experiments, we have used Intersection Over Union (IOU) threshold of 0.3 for detection. Given a successful 

locating of traffic signs, the mean IOU value was 0.637 with a standard deviation of 0.182. The average number 

of traffic signs per image is 1.65. The average number of predictions made by the model per image is 3.32. We 

have obtained Average Precision (AP) of 0.332. Table 1 presents the precision and recall for each class based 

on the BMV dataset. Class 1 and Class 5 performed relatively better than other classes. However, the 

performance in Class 4 was the lowest among all classes. Figure 5 shows a sample of the results in which 

locating a traffic sign is presented with a bounding box along with the predicted class on top of it. Locating an 

object other than traffic signs is shown with an unlabeled bounding box. 

Table 1: Detection of traffic signs by the proposed framework on the BMV dataset 

 

3.3 Discussion 

The hyperparameters of our framework need to be tuned for optimal performance. To determine thresholds l 

and h, we recommend using primary contour detection separately on a sample of the validation images and 

examine its performance on different l and h values. This step just requires one-time selection at the beginning 

of evaluation. Setting a high number N for the random bounding boxes to be processed by the unsupervised 

Category Number of 
Ground Truth 

Number of 
Predictions 

TP FP FN Precision Recall 

Class 1 23 37 12 25 11 0.324 0.522 

Class 2 14 44 5 39 9 0.114 0.357 

Class 3 9 28 3 25 6 0.107 0.333 

Class 4 15 25 3 22 12 0.12 0.2 

Class 5 19 30 11 19 8 0.367 0.579 

Class 6 19 35 7 28 12 0.2 0.368 
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ROI extraction completely on the sample image may result in a longer time to complete this task, but it may 

yield better ROI extraction. The last hyperparameters are for thresholds L and H. To determine these values, 

the proposed framework needs to be executed at least up to Stage 1 using the sample images 

The proposed method is also a low-cost object detection framework. For efficient training of the proposed 

method, the SRGAN needs to be trained using only the patches with the small object of interest. Also, the binary 

classifier in stage 1 should be trained with significantly more background patches compared to the images of 

the small objects. Consequently, the binary classifier has high specificity. This effect helps mitigate the potential 

bias of the features of upsampled ROIs generated by the trained SRGAN. In addition, the background patches 

should be a representative sample of the background features of the candidate images. TV2 is constructed 

mainly using the background patches of rural settings. It is an average representative of suburban backgrounds 

and a poor representative of urban backgrounds. As in Figure 5 below, the effect of this selection bias in the 

training of the binary classifier is prominent in the evaluation of the proposed method using the BMV dataset. 

In general, more FP is produced for the candidate images of urban settings than images of rural settings. 
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Figure 5: A sample of output images produced by the proposed framework using the BMV dataset. The localizations are 

presented with a 8×8 pixel bounding box along with the predicted class on top of it. FP is shown with a bounding box only. 

(Left) scene images of rural settings. (Middle) scene images of suburban settings, (Right) scene images of urban settings.  

 

4 CONCLUSION 

This research primarily investigates the possibility of developing a low-cost multistage framework to detect very 

small objects in a complex background. The major contribution of our work is to show the possibility of detecting 

very small objects as small as 5x5 pixels that appear in complex backgrounds, which has not been achieved 

before. While most small object detection algorithms are based on cutting-edge object detection models, our 

method combines a novel unsupervised ROI extraction with independently trained deep learning models that 

are not specific to object detection. The proposed framework successfully addresses the major challenges in 

small object detection: determination of location and class of small objects that has noisy low-level features. 

Our method demonstrates AP of 0.332 at IOU of 0.3 on an evaluation dataset with small traffic signs in a 52 – 

82 pixel scale. The performance could be improved by using more data in each training phase is required, 

especially for training the binary classifier. In addition, a fast and more accurate image super-resolution 

technique would be beneficial. There are two major extensions planned for this work: reduce the running time 

and extend experiments to different datasets. 
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