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ExplainabilityAudit: An Automated Evaluation of
Local Explainability in Rooftop Image Classification

Duleep Rathgamage Don1, Jonathan Boardman1, Sudhashree Sayenju1, Ramazan Aygun1, Yifan Zhang1, Bill
Franks1, Sereres Johnston2, George Lee2, Dan Sullivan2 and Girish Modgil2

1School of Data Science and Analytics, Kennesaw State University, USA
2The Travelers Companies, Inc., USA

Abstract—Explainable Artificial Intelligence (XAI) is a key
concept in building trustworthy machine learning models. Local
explainability methods seek to provide explanations for individual
predictions. Usually, humans must check these explanations
manually. When large numbers of predictions are being made,
this approach does not scale. We address this deficiency for a
rooftop classification problem specifically with ExplainabilityAu-
dit, a method that automatically evaluates explanations generated
by a local explainability toolkit and identifies rooftop images
that require further auditing by a human expert. The proposed
method utilizes explanations generated by the Local Interpretable
Model-Agnostic Explanations (LIME) framework as the most
important superpixels of each validation rooftop image during
the prediction. Then a bag of image patches is extracted from
the superpixels to determine their texture and evaluate the local
explanations. Our results show that 95.7% of the cases to be
audited are detected by the proposed system.

Index Terms—explainability, computer vision, artificial intelli-
gence

I. INTRODUCTION

In the last decade, the explosion in deep learning technology
has yielded machine learning systems capable of matching or
surpassing human-level performance for some application do-
mains such as object recognition [1]. Incredibly, these models
appear to retain their superhuman performance on unseen test
data, indicating that they are actually learning robust patterns.
The introduction of additional layers or residuals from earlier
layers continued to improve the performance [2]. As the
complexity of models has increased, model interpretability has
decreased. The inability to explain or comprehend such black
box models is problematic in high-stakes problem domains,
where safe and reliable performance are critical due to the
high cost associated with errors [3].

XAI plays an important role in understanding black box
models and the choice of method and nature of the explanation
should be informed by the problem context. Many different
approaches to interpretability have emerged to meet this de-
mand, and they can be categorized along many dimensions –
global vs. local, model-specific vs. model-agnostic, intrinsic
vs. post-hoc [4], [5].

This paper presents an automated explainability audit tech-
nique named as ExplainabilityAudit to investigate the local
interpretability in rooftop detection. As shown in Fig. 1, our

The Travelers Indemnity Company

method analyzes the reliability of classification by processing
the explanations. This audit is a type of sanity check for
the original classifier, primarily manifested as the technical
perspective of explainability auditing [6]. ExplainabilityAu-
dit analyzes the explanations and returns satisfactory if the
explanations are good, or returns weak if the explanations
are poor. This process requires training another model based
on explanations as shown in Fig. 2. If this audit model
determines that an explanation of a decision by the main model
is weak (not reliable), this would require the involvement
of a human expert to analyze the prediction and explanation.
Human experts would only be required to step in for relatively
few cases instead of potentially thousands or millions.

Fig. 1. The image prediction-explainability pipeline: first the image recogni-
tion algorithm predicts the label of a candidate image. Then the local inter-
pretability toolkit generates local explanations for each prediction. Finally, the
ExplainabilityAudit algorithm works on both the image label and respective
local explanations to decide if the prediction is reliable.

As an application, we propose a version of Explainabil-
ityAudit, which uses the original LIME framework as the local
explainability toolkit. The goal of rooftop classification is to
distinguish flat roofs among various other types of roofs in
a nadir rooftop image dataset where the footprint of rooftops
is often surrounded by various neighboring objects such as
ground, trees, vehicles, driveways, etc. The regions other than
the rooftop are considered to be the background. Our method
uses LIME to split a candidate image into many superpixels
(LIME prediction of regions that are utilized for classification)
to create a synthetic dataset using random perturbations of
the candidate image. Then a locally weighted interpretable
linear model is trained on the new dataset of superpixels. Next,
superpixels corresponding to the highest estimated coefficients
are chosen to be the top local explanations. Our experiment
is limited to the extraction of the largest segment of local
explanations for validation images and the assumption that
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the prediction is satisfactory if the local explanations represent
rooftops or similar regions. In this case, we ignore the disparity
of rooftop labels.

Fig. 2. The proposed ExplainabilityAudit method: The local explanations are
segmented to extract GLCM features. The audit model evaluates the GLCM
features with respect to the image label to predict the audit label.

This paper is organized as follows. The next section pro-
vides the related work on explainability and the background
on local interpretability. Section 3 introduces our approach on
auditing explainability for local interpretability. Experiments
are presented and discussed in Section 4. The last section
concludes our paper.

II. RELATED WORK

Explainability generally falls into two main types of tasks:
model understanding (global explainability) and decision un-
derstanding (local explainability). Model understanding or
global explainability involves finding out how the model
behaves for general data. Particularly, this means the task of
recognizing the patterns in its predictive features or model
parameters on classification. On the other hand, decision
understanding or local explainability is concerned with the task
of model behavior only on a particular data instance. Here,
the aim is to find how the input features affect a single data
point’s classification. Most of the research in explainability
focuses on decision understanding. Tools like what-if [7]
offer dashboards called data point instance editor and feature
statistics which help deduce explainability indirectly. Another
popular method to generate explanations is using Shapley
values [8]. The concept of Shapley values derives from game
theory and is based on probability theory. Shapley values
are the average marginal contribution of a feature across all
possible coalitions. AWS SageMaker Clarify [9] uses Shapley
values to give an explanation of a model.

The main reason why deep learning models are considered
black boxes is that their behavior is not linear, and hence it
is hard to come up with a global but simple interpretation.
For decision understanding of a single data instance, it is not
necessary to understand the complete non-linear behavior of
the model. LIME [10] provides an explanation of the model
around the local region of the data instances being scrutinized.
These explanations have locally linear fidelity: linear behavior
of the model in the vicinity of the prediction instance. LIME
[10] learns the locally linear classifier by minimizing a loss
function that minimizes the error between the actual model
in the region and the explainable model. More comprehensive

explainability tools like LIT [11], ELI5 [12] and Skater [13]
include LIME to give model explainability.

Although the original LIME has some potential pitfalls,
several important modifications are introduced in the past few
years to address those issues. DLIME [14] is a determin-
istic version of LIME in which the random perturbation is
replaced with agglomerative hierarchical clustering to create
clusters within the training dataset and then applying K-
nearest neighbor (KNN) to find the relevant cluster for the
new observation. Then more stable explanations are generated
by training a linear model over the selected cluster. ALIME
[15] applies an alternative approach to reduce instability in
generated explanations while maintaining local fidelity. In this
method, a large number of synthetic data points are sampled
from a Gaussian distribution and weighted for the locality
by a denoising autoencoder. Lee et al. [16] state that the
mean and the standard deviation of weighted superpixels of a
test image produced by LIME demonstrate that the generated
explanations are relatively stable. MPS-Lime [17] is a modified
perturbated sampling for LIME that avoids correlation between
the superpixels. In this method, the superpixels are represented
by an undirected graph and the perturbed sampling is formal-
ized as a clique-set construction problem. BayLIME [18] is a
Bayesian extension to the LIME framework that applies prior
knowledge and Bayesian reasoning to enhance the stability of
the explanations.

III. METHODOLOGY

In this section, we first provide a brief description of
LIME and then explain how we automate the evaluation of
explainability in our research.

A. Local Interpretable Model-Agnostic Explanations (LIME)

Assume that the image recognition algorithm is a deep
neural network represented by a real function f such that
f : X 7→ Y,X ⊆ Rd, and Y ⊆ R, where d is the number
of RGB pixels of the image being predicted. For validation
image x ∈ X, consider that f(x) is the probability that x
belongs to a certain class (e.g., ‘flat roof’ in our case). In
this study, LIME splits x into d′ number of superpixels such
that each superpixel is a contiguous patch of similar pixels. An
interpretable representation of x given by a binary vector x′ is
obtained such that x′ = {0, 1}d

′
, where 0 and 1 represent the

absence and presence of superpixels respectively. A random
perturbation z is generated by blacking out some superpixels
in x. Its interpretable representation z′ is also a binary vector
as above. Then a set of N number of random perturbations
Z is generated by sampling uniformly at random around x′

in order to train a locally weighted linear model g ∈ G,
where G is the class of potential interpretable models. Also,
the perturbations in the original presentation are recovered
and predicted by using the image recognition algorithm f
to obtain a target set f(z) for the predicted class of x. A
weight function Πx is an exponential kernel defined on some
distance function D, introduced as a proximity measure such
that Πx (z) = exp

(
−D (x, z)

2
/σ2

)
, where D(x, z) is the

distance between x and z, and σ is the kernel width [10].
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To measure how unfaithful the local linear model g to the
image recognition algorithm f , a loss function L is used such
that

L (f, g,Πx) =
∑

z,z′∈Z

Πx (z) (f(z)− g (z′))
2 (1)

Note that every linear model g is not simple enough to
be interpretable. Therefore, another loss function Ω known as
the measure of complexity is introduced to determine how
complicated a linear model g is. Ω(g) could be the number of
nonzero weights for a linear model. It is added to the loss in
equation (1) to obtain the total loss. Finally, a linear model ξ is
trained on the dataset consisting of z′ and f(z), and the local
explanations are obtained from the linear model that minimizes
the total loss.

ξ(x) = argming∈G L (f, g,Πx) + Ω(g) (2)

Setting ξ to be linear regression, the top local explanations
are extracted as superpixels that represent the highest k
estimated regression coefficients.

B. Preparing Local Explainability for Auditing

The local explanations generated in classifying image x by
the image recognition algorithm f can be visualized as a new
image denoted by ℓ. An audit model is built to classify the
image ℓ by utilizing the class of x in order to evaluate the
local explanations generated. The purpose of the audit model
is to determine whether f has focused on the proper regions
in the image or not.

Although LIME shows some instability in the generated
explanations, a typical image ℓ can be considered as a sparse
representation of the corresponding x. Although ℓ and x have
the same dimensions, it is possible that a very high percentage
of pixels could be blacked out in ℓ. Large areas of black pixels
aggravate the auditing task. Hence, the image ℓ cannot be
directly used for auditing purposes.

C. Patch-based Preprocessing for Auditing

Patch-based preprocessing assumes that superpixels could
be large enough and also, not every segment in a superpixel
could be relevant for the correct explanation. Therefore, the
preprocessing in Fig. 2 is applied to each image ℓ for patch-
based processing. The stages are briefly explained in the
following paragraphs.

Selecting Superpixels for Patch-based Analysis. First, the
image ℓ is converted to an 8-bit greyscale image of which each
pixel is represented by an integer 0 – 255. Then appropriate
masking is applied to the greyscale image and the extreme
outer contour for each segment of the local explanations is
determined. Note that these image segments might contain
several neighboring superpixels. For our experiment, the image
segment with the largest contour is selected and a rectangular
bounding box is applied to the selected image segment to crop
the greyscale image.

Grid Search for Maximizing Number of Patches. Ideally, the
above preprocessing stage can be repeated for all such image
segments that contain at least a single p×p pixel image patch.
The selected superpixel has typically a non-rectangular convex
or concave shape having many black regions close to the sides
of the minimum bounding rectangle. The superpixel image can
be divided into a grid containing p×p cells. However, because
of the black regions and irregular shape of the superpixels, the
patch selection process can be improved by not starting from
the top left corner of the minimum bounding rectangle. A
patch can be used for analysis if it has at least θ portion (patch
coverage threshold) of its pixels as non-black. This problem
can be solved using a grid search approach that maximizes the
number of patches that satisfy the patch coverage threshold.
A virtual grid of p×p pixel cells is created on the rectangular
bounding box of the selected image segment. This virtual grid
is initially aligned with the top and the left margin of the
bounding box. Let the coordinates of the top left corner be
(m,n), where m,n are integers such that 0 ≤ m ≤ p, and
0 ≤ n ≤ p. The number of image patches satisfying the patch
coverage constraint is calculated for each value of m and n.
The best m and n are chosen such that the number of image
patches that lay in the grid is maximized and used to determine
the bag of image patches. In this work, we use patch size as
10× 10 considering the varying sizes of superpixels.

Fig. 3. The GLCM feature extraction: the input grayscale image is trans-
formed into a bag of image patches. Then some GLCM features are extracted
from each image patch to construct the GLCM dataset. (Satellite images
courtesy of Nearmap US, Inc.)

Creating GLCM texture datasets. Before creating the bag of
image patches, it is recommended that the selected greyscale
image segments are converted into a lower bit depth such as
4-bit or 5-bit. This is an important preprocessing to effec-
tively extract some Grey Level Co-occurrence Matrix (GLCM)
features from each valid image patch to construct a GLCM
texture dataset for the respective bag of image patches as
shown in Fig. 3. If an 8-bit image patch was used for the
above purpose, its GLCM would be a sparse matrix and some
Haralick features might decrease in amplitude and generate
a poor representation of the texture of the image patch [19].
In this GLCM texture feature dataset, the extracted GLCM
features become columns, while image patches become rows.
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D. Patch-based Auditing

The major motivation behind patch-based auditing is that
a superpixel may cover proper regions as well as incorrect
regions for decision-making. In the first stage of the audit
model, a supervised machine learning algorithm is used to
classify each patch available in the GLCM texture dataset into
a set of classes formed by image labels and background. In
the second stage, the entire explanation is classified based on
the majority of voting. The next step is to compare this result
with the image label. If the result matches the image label then
the explanation is considered satisfactory or weak otherwise.
In the output, the satisfactory class indicates that the segment
is a proper region to make a decision whereas the weak class
denotes that it may not be possible to make a correct decision
or the decision could be unreliable.

Fig. 4. The proposed audit model: The audit model utilizes a multimodal
architecture in which an audit classifier applies the max-voting strategy on
the prediction of patches and the result Cτ is compared with the predicted
image label C. If both are equal, then the audit label is satisfactory and weak
otherwise.

IV. EXPERIMENTS AND EVALUATION
In this section, we explain the rooftop dataset used in

the experiments, the tuning of LIME algorithm, and the
classifiers used for auditing explanations. Then we provide the
results of our experiments before the discussion. To conduct
experiments, we have used AWS/Amazon SageMaker instance
p3.2xlarge. The machine learning models were trained using
TensorFlow and Keras 2 on Python 3 with CUDA 9.0 and
MKL-DNN.

A. Experimental Setup

1) Datasets: The original dataset is provided by The Trav-
elers Indemnity Company. This dataset is a nadir rooftop
imagery consisting of 3715 RGB images split into 2956
training images and 759 validation images. The images have a
fixed size of 640 × 640 pixels. The label sets have two nearly
balanced classes: flat and non-flat. Each rooftop image is
preprocessed to produce a polygonal bounding box consisting
of the footprint of the rooftop and possible background objects.
This dataset is used to train our image recognition (rooftop
detection) model.

To extract patches, a dataset is created by randomly select-
ing and processing some 200 training images and 88 validation
images belonging to the original dataset. The training images

of this dataset are manually obtained by selecting rectangular
regions of either rooftops or background but not both.

2) GLCM feature extraction: When extracting image
patches, the patch coverage threshold used is θ = 0.95. The
training GLCM texture dataset consists of 7162 observations,
each representing a training patch belonging to one of some
200 training images and 6 GLCM features known as Dis-
similarity, Correlation, Contrast, Homogeneity, Energy, and
Angular Second Moment (ASM) obtained with angle 0 and
distance 2. The observations are nearly balanced in terms of
the class labels ‘rooftop’ and ‘background’. Random sampling
is used to create a smaller training GLCM texture dataset with
0.7 observations, and the rest is used for testing the audit
classifier. Note that our experiments are limited to the largest
segment of the local explanations in each image ℓ.

3) Tuning LIME algorithm: The following parameter set-
tings are used for the LIME algorithm. The number of super-
pixels d′, generated for each image x is in the range (80, 120).
The number of random perturbations N is set to be 1000. The
weighted linear g is linear regression. In the weight function
Πx, distance function D and the kernel width σ are cosine
and 0.25 respectively. Setting k=8 led to the extraction of the
best local explanations.

4) Rooftop Recognition: The rooftop detection algorithm
is a deep neural network created by modifying a pretrained
ResNet50 architecture using transfer learning. In this process,
the top layer of the ResNet50 is replaced by three fully
connected layers including a new top layer for binary clas-
sification. Then only the newly added layers are trained with
the rooftop training dataset. After training on the complete
training dataset, the performance of the image classification
algorithm is validated using the complete test dataset, and
the following performance measures are obtained: Accuracy:
0.8326, Precision: 0.7904, Recall: 0.8225, F-1: 0.8109, and
ROC: 0.9159.

5) Audit Classifier: For the patch-based audit classifier,
three binary classification algorithms known as Support Vector
Machine (SVM), Artificial Neural Network (ANN) with one
hidden layer and 10 neurons per layer, and K-Nearest Neigh-
bor (KNN) are used. These algorithms are trained on the same
training GLCM dataset using the following hyperparameters.
For SVM with RBF kernel, gamma and cost are chosen to be 1
and 1000 respectively. For ANN built using the Sklearn MLPC
module, the default batch size, optimization, and learning rates
are used. The number of epochs is set to be 1000. For KNN,
K is selected to be 15.

B. Results

Since the difference between image labels is ignored in this
experiment, the local explanation is considered satisfactory if
the majority of patches belong to a rooftop. Also, the local
explanation is considered weak if the majority of patches
belong to the background. We experiment with three different
machine learning methods applying for the audit classifier:
SVM, KNN, and ANN applying the same GLCM training
and GLCM validation datasets. The results for classifying
individual patches are shown in Table I.
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TABLE I
PERFORMANCE OF CLASSIFYING INDIVIDUAL PATCHES.

Method Accuracy Precision Recall F1
SVM (C = 103, γ = 1) 80.8 79.1 86.0 82.4

KNN (K = 15) 73.2 74.2 75.0 74.6
ANN (iter = 103) 79.1 78.5 82.8 80.6

For each method in Table I, experiments are conducted
under different hyper-parameter settings, and for each method,
only the best performance is presented. The SVM equipped
with RBF kernel exhibits the best performance in predicting
image patches of rooftops and backgrounds. The correspond-
ing cost and gamma are noted as 1000 and 1 respectively. Table
II shows the performance of the audit model on the validation
images. In this case, the audit model uses the multimodal clas-
sification presented in Fig. 4. The SVM-based audit classifier
has outperformed the other variants by a significant margin
in accuracy, recall, and F1-score. Therefore, we analyze SVM
further as the most effective audit classifier and conducted 5
fold cross-validation. The resulting mean values of accuracy,
precision, recall, and F1-score are computed as 86.6, 88.3,
95.7, and 91.8 respectively.

TABLE II
PERFORMANCE OF THE AUDIT MODEL.

Audit Classifier Accuracy Precision Recall F1
SVM (C = 103, γ = 1) 87.5 88.2 97.1 92.4

KNN (K = 15) 68.2 95.6 62.3 75.4
ANN (iter = 103) 79.5 91.8 81.2 86.2

Fig. 5. Special cases of possible miss and unnecessary review. From left to
right: image x, image ℓ, and a bag of patches. Top row: smooth texture and
unsupportive color variance lead to a possible miss. Bottom row: rough texture
and unsupportive color variance lead to an unnecessary review. (Original
satellite images courtesy of Nearmap US, Inc.)

C. Discussion

Auditing of explainability is a type of sanity check for
the original classifier. The major purpose of this auditing
is to detect cases where the original classifier is likely to
misclassify. However, this may lead to cases where validation
by a human expert may be deemed unnecessary although
validation could be beneficial or vice versa. In this section, we
cover four cases with respect to the quality of the audit and

Fig. 6. Special cases of detection and no review. From left to right: image
x, image ℓ, and a bag of patches. Top row: shadows or branches of trees
obstruct the rooftop in the image ℓ. Bottom row: background very similar to
some flatroofs confuse the classifiers. (Original satellite images courtesy of
Nearmap US, Inc.)

the explanation for validating results by a human expert (Table
III). In this discussion, rather than focusing on successful
auditing, we provide one example per case. Fig. 5 and Fig.
6 show validation images, selected segments of the local
explanation, and a respective bag of image patches. Any image
patch predicted as rooftop is marked with a green pixel, and
any image patch predicted as background is marked with a red
pixel.

TABLE III
CASES OF VALIDATION.

Validation Case Audit Result Ground Truth
Recommended Weak Weak
Unnecessary Satisfactory Satisfactory

Missed Satisfactory Weak
Extraneous Weak Satisfactory

Case 1. Validation is recommended. The top row of Fig. 5
illustrates a local explanation indicating a view of a rooftop
obstructed by branches or shadows of trees. In this case,
the audit classifier technically classifies the segment of local
explanation as weak since most image patches are similar to
the ones that come from the background. Regardless of the
original model classification, such an image requires additional
review to avoid errors. Hence, validation is recommended.

Case 2. Validation is unnecessary. In the bottom row of Fig.
5, the audit classifier classifies this explanation as satisfactory.
In this image, the image covers rooftop-like regions including
the rooftop and the driveway. Since the driveways have similar
textures as flat roofs or they are eligible regions to roof,
this explanation is considered satisfactory. We should note
that this auditing does not check the ability of the original
classifier to distinguish a driveway from a flat roof. This is
rather an indication that the classifier analyzes proper regions
from the image. Since the classifier analyzes proper regions
for determining the rooftop type, validation is unnecessary in
this case.
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Case 3. Validation is missed. The top row of Fig. 6 illustrates
a segment of the local explanation revealing the background
but classified incorrectly as satisfactory. Normally, it would
be beneficial to validate this case by an expert regardless of
the original model’s classification.

Case 4. Validation is extraneous. The bottom row of Fig.
6 illustrates a segment of the local explanation revealing the
rooftop but classified as weak. This leads to an unnecessary
review by an expert.

V. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed auditing of explainability
for automating the evaluation of machine learning systems.
As the volume of data where these machine learning systems
increase, a human expert can not check the explanation of
each decision made by the system. Random or arbitrary checks
are insufficient to guarantee an overall local explanation. We
propose the ExplainabilityAudit system where the proposed
system analyzes whether the right segments or components of
images are processed by machine learning models to make the
prediction. The concepts introduced in this paper reflect the
first stage of ongoing research to develop ExplainabilityAudit.
Our experimental results confirm that the suggested version of
the ExplainabilityAudit is capable of predicting the reliability
of the image recognition algorithm with a satisfactory recall
of 95.7% indicating that 95.7% of the cases to be audited have
been detected by the proposed system.

In the future, the possibility of replacing LIME with other
explainability tools such as Grad-CAM is prominent. Also, the
analysis should be further carried out for a multiclass image
classification algorithm. Then, the ExplainabilityAudit would
highlight the weaknesses of such a classifier with respect to
different class labels. Moreover, rather than using a single
explanation (largest superpixel), all the segments of the local
explanations should be selected for making the bag of image
patches. Adding more GLCM features and other metrics such
as image histograms might help fix the issues with the audit
classifier related to the sensitivity to roughness and color of
texture. Instead of just producing audit labels, it would be
possible to modify the audit model to generate a confidence
value for the explanation.
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