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Abstract

The number one threat to the digital world is the exponential increase in ransomware at-

tacks. Ransomware is malware that prevents victims from accessing their resources by

locking or encrypting the data until a ransom is paid. With individuals and businesses grow-

ing dependencies on technology and the Internet, researchers in the cyber security field are

looking for different measures to prevent malicious attackers from having a successful cam-

paign. A new ransomware variant is being introduced daily, thus behavior-based analysis

of detecting ransomware attacks is more effective than the traditional static analysis. This

paper proposes a multi-variant classification to detect ransomware I/O operations from be-

nign applications. The deep learning models implemented in the proposed approach are

Bi-directional Long Short-Term Memory (Bi-LSTM) and Convolutional Neural Networks

(CNN). The deep learning models are compared against a classic machine learning model

such as Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest

(RF). The ransomware samples contain 70 binaries from 30 different ransomware extracted

during the encryption of an extensive network shared directory. The benign samples came

from network traffic traces recorded in a campus LAN where staff users access files from

shared servers. A sample contains I/O operations (short Control Commands, bytes being

read, and written) per second over a period of T seconds. The proposed deep learning

models are tested with Zero-day ransomware samples as well. Both Bi-LSTM and CNN

achieved above 98% in accurately classifying ransomware and benign samples.

VI



VII

Detection of Ransomware Attack
Using Deep Learning

A Thesis Presented to

The Faculty of the Computer Science Department

by

Muna Jemal

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Advisor: Dr. Dan Lo

Kennesaw State University

May 2023



Acknowledgment

Foremost, I would like to give thanks to my supervisor and advisor Dr. Dan Lo for his

guidance and encouragement in partaking in this research.

I would like to also give thanks to my parents for supporting and providing for me to

pursue my education in the United States of America. My siblings and friends also played

a key role in being there for me emotionally to keep pursuing my dreams

VIII



Contents

1 Introduction 1

1.1 Types of Ransomware Attacks . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Prevention and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Types of Ransomware Analysis . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Works 6

2.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Proposed Approach and Architecture 12

3.1 Classic Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Proposed Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Bi-directional LSTM . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Experiments 19

4.1 Dataset And Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . 19

IX



CONTENTS X

4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Results and Analyses 24

5.1 Testing Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion and Future Work 32

Bibliography 34



List of Figures

3.1 Visualization of SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Visualization of RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Visualization of CNN layers. . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 CNN model summary for T = 20s. . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Visualization of Bi-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Bi-LSTM model summary for T = 20s. . . . . . . . . . . . . . . . . . . . . 18

4.1 Visualization of mirroring network traffic . . . . . . . . . . . . . . . . . . 20

4.2 I/O of Maze ransomware . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 I/O of TeslaCrypt ransomware . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Visualization of I/O features in T seconds . . . . . . . . . . . . . . . . . . 22

5.1 Confusion Matrix for T=10s . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Confusion Matrix for T=20s . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Confusion Matrix for T=30s . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Confusion Matrix for T=40s . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5 Confusion Matrix for T=50s . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6 Confusion Matrix for T=60s . . . . . . . . . . . . . . . . . . . . . . . . . 30

XI



List of Tables

4.1 Dataset distribution of ransomware/benign samples for T seconds. . . . . . 22

5.1 Performance Metric for T= 10s . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Performance Metric for T= 20s . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Performance Metric for T= 30s . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Performance Metrics for T=40s . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5 Performance Metrics for T=50s . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6 Performance Metrics for T=60s . . . . . . . . . . . . . . . . . . . . . . . . 30

XII



Chapter 1

Introduction

Ransomware is a type of malware that prevents victims from accessing their own resources

by locking the Operating System (OS) or encrypting their data until a ransom is paid.

The ransom is usually demanded to be paid in untraceable forms of payment or decentral-

ized digital currency like Bitcoin. Ransomware infects a victim’s device by various means

ranging from email phishing to brute force attacks (Cventicanin, 2023). The first known

ransomware attack was in 1989, before the age of the internet, using a floppy disk, called

AIDS Trojan (Humayun, Jhanjhi, Alsayat, & Ponnusamy, 2021). Early ransomware at-

tacks required external devices to be connected to the victim’s device; however, malicious

attackers have now progressed to the usage of the internet to expand their attacks. Once the

use of the internet expanded, the dependency of individuals and businesses on technology

increased exponentially, and so have ransomware attacks (Richardson & North, 2017). In

an article by Cyber Magazine, they estimate that ransomware attacks occur about every 11

seconds, which is about 3 million unique attacks a year (Savage, Coogan, & Lau, 2015).

The reason for such a high amount of ransomware attacks is due to groups of people with no

programming experience operating these attacks through Ransomware as a Service (RaaS).

RaaS is a business model in which ransomware operators charge affiliates by developing

and creating the ransomware code, while affiliates conduct the ransomware attacks that the

1



CHAPTER 1. INTRODUCTION 2

operators have developed (S. H. Kok, Abdullah, Jhanjhi, & Supramaniam, 2019).

In recent years, ransomware attacks have been targeting bigger businesses like health-

care entities, governmental organizations, industrial companies, and so on. Since these big

organizations have high-value data, once they are breached, ransomware groups can de-

mand higher ransom payments. The impact of ransomware attacks is felt at a higher scale

for big institutions; 66% of organizations reported a significant loss of revenue, 55% of

organizations had their brand and reputation damaged, and 29% reported being forced to

lay off employees due to financial pressures following a ransomware attack (Freed, 2021).

On 7 May 2021, Colonial Pipeline, an oil pipeline system, experienced one of the most

disruptive digital ransomware attacks by a group called Darkside (also operates as a RaaS)

(Alqahtani & Sheldon, 2022). The attackers stole 100 GB of data within two hours and

infected the Colonial Pipeline IT network. The hacker group DarkSide was paid 75 Bitcoin

(equivalent to 4.4 million USD at the time) by Colonial Pipeline to get the decryption key

in order to restore the disruption. This attack disrupted the shipping and airline industry

of approximately 5,500 miles of distribution network. As a result, these and other occur-

rences made ransomware a national security threat, leading the United States Department

of Justice (US DOJ) to classify such attacks as terrorist attacks. Thus, a ransomware attack

is a serious threat to the digital era and it is critical to find measures to prevent such attacks.

1.1 Types of Ransomware Attacks

The two main forms of ransomware attacks are Locker ransomware and Crypto ransomware.

Locker ransomware is a type of ransomware that locks computers or other devices and pre-

vents the victim from using them. Even if the malware is difficult to remove, the data can

usually be recovered by transferring the storage device to another working device, which

makes this type of malware less effective for attackers. Crypto ransomware, on the other

hand, encrypts data so that it cannot be accessed even if the malware is removed from the
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computer or the storage media is relocated to another device (Savage et al., 2015). Double-

extortion is a more recent and popular type of ransomware attack where attackers steal the

victim’s data before encrypting it and demand a second ransom by threatening to release

the data on the Internet (Kerns, Payne, & Abegaz, 2022).

In this paper, ransomware refers to Crypto ransomware unless specified otherwise. As

malicious groups are creating new strains of ransomware each day, they generally follow a

similar approach to execute such attacks in the steps below :

1. Find vulnerabilities to infiltrate a targeted victim.

2. Collect information about the victim’s system.

3. Distribute infection vector.

4. Install ransomware code.

5. Retrieve/generate encryption key.

6. Access/steal victim’s files to encrypt.

7. Encrypt the victim’s data and make it inaccessible.

8. Demand ransom in exchange for the victim to have access to their data.

Once a malicious group has successfully taken control of a victim’s system and en-

crypted all their data, in most cases it is too late for the victim to gain back control without

paying the ransom or at all. Thus, security professionals and researchers are looking for

ways to detect, prevent and mitigate ransomware attacks before victims completely lose

access to their data.

1.2 Prevention and Recovery

To reduce the risk of ransomware attacks, there must be security measures to prevent access

to a system by unauthorized groups. This could be done by having a regular backup, having
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the latest software with better security, not opening links from unknown sources, protecting

all devices and networks with firewalls, and educating individuals on common patterns of

ransomware attacks. Big institutions have a dedicated security team to monitor all devices

and their whole network system. Even with all these security measures, malicious groups

are committed to finding new ways to infiltrate a victim’s system. Thus, having a detection

system set up in every step before all victim’s data is encrypted (mentioned in Section 1.1

before Step 7).

Later sections will discuss how to detect ransomware attacks on a network-shared file

system that is similar to a corporate setting. Once ransomware is detected, all infected

devices must be disconnected from the network to prevent it from spreading to other devices

in the network. Berrueta, Morato, Magaña, and Izal (2018) proposed the architectural

design of a network-shared file system that can recover more than 5GB of files encrypted

by 48 out of 54 ransomware samples detected promptly.

1.3 Types of Ransomware Analysis

In the cybersecurity field, ransomware analysis can be broadly classified into two types:

static analysis and dynamic analysis. Static analysis, also known as signature-based meth-

ods, involves analyzing a malicious file without executing it. However, due to the increase

in ransomware variants and anti-forensic techniques like packing and obfuscation, these

methods have limitations (Urooj, Al-rimy, Zainal, Ghaleb, & Rassam, 2021). In contrast,

dynamic analysis, also known as behavior-based approaches, involves running a malicious

program and observing its behavior within the system. This method provides a more com-

prehensive understanding of ransomware behavior by observing its actions in real-time.

Signature-based analysis can be used to detect ransomware attacks until the installation of

ransomware code (until Step 4 mentioned in Section 1.1). Hybrid Analysis is a multi-level

ransomware analysis using both signature-based and behavioral-based approaches.
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Dynamic analysis can be used to determine how ransomware behaves. This is done

by observing how applications behave in a controlled environment, typically when obtain-

ing an encryption key or gaining access to the victim’s data (in Step 5 and Step 6 before

Step 7 as mentioned in Section 1.1). One drawback of dynamic analysis when analyzing

ransomware is that the malware may attempt to hide its true actions by checking its environ-

ment, which could lead to the ransomware avoiding detection in a controlled environment.

Specifically, the ransomware might perform environmental mapping to ensure that it is run-

ning in the victim’s system and not in a controlled environment, making it more difficult

for analysts to accurately observe the behavior of ransomware and identify its malicious

actions (Aldauiji, Batarfi, & Bayousef, 2022). Static analysis is more efficient and quicker

compared to dynamic analysis, but a simple addition to the ransomware feature will cause

a mismatch and thus not be effective. Dynamic analysis, on the other hand, is better at

detecting Zero-day ransomware attacks.

1.4 Research Question

This paper explores effective defense strategies for businesses and essential organizations

against ransomware attacks, despite the constant emergence of new ransomware variants.

The study uses a dataset from a network scenario on Windows computers, similar to a

corporate setting, to detect ransomware attacks that exhibit abnormal behavior while ac-

cessing, writing, reading, and deleting files in a network-shared file system. This study

proposes a multi-variant deep learning classification technique, leveraging the capacity of

deep learning to comprehend complex patterns to detect malicious behavior by ransomware

from benign application behavior. The evaluation of the proposed models is based on their

accuracy in differentiating ransomware behavior from benign applications, minimizing the

False Negative (FN) rate of ransomware, and detecting Zero-day ransomware.
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Related Works

In the modern world, machine learning is used to optimize various processes in different

sectors such as healthcare, finance, transportation, and cybersecurity. Thus, researchers in

the cybersecurity field are increasingly using machine learning to detect, prevent and re-

spond to cyber threats. This chapter will categorize previous works that focus on detecting

ransomware attacks based on the types of analysis mentioned in 1.3.

2.1 Static Analysis

An online malware scanning tool called VirusTotal includes its own clustering and similarity-

matching algorithms for various sample sets. In order to compare various ransomware

families and determine the similarity matrix between those samples, Yamany, Azer, and

Abdelbaki (2022) suggested their own malware indexing approach, which depends on hy-

brid data from static feature extraction. This study’s shortcoming is finding similarities

between 10,000 different ransomware samples for clustering and classification.

Static features can be collected from VirusTotal to detect ransomware attacks; Virus-

Total is a popular service that scans malicious files and web URLs (Peng, Yang, Song,

& Wang, 2019). In M., S., P., and Sandhya (2020), they extracted about 400 features

from both ransomware and benign executable files using N-gram and Term Frequency-

6
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Inverse Document Frequency (TF-IDF) methods. The machine learning models used to

classify ransomware attacks are Gradient Boosting Tree, Decision Tree, Navies Bayes, and

Adaboost. Gradient Boosting Tree performed better with 99.997% accuracy and a False

Positive rate of 0.01.

The core function of ransomware attacks is similar, such as finding new vulnerabilities

and distributions. Medhat, Gaber, and Abdelbaki (2018) proposed extracting static features

such as Application Programming Interface (API) functions, file keywords, cryptography

signatures, and file extensions. YARA language is used to make ransomware decision rules,

that make decisions by grouping the static features. This approach achieved an accuracy of

94.15% in classifying ransomware samples. Their approach is extended in Medhat, Essa,

Faisal, and Sayed (2020), YARAMON, which is adding a dynamic analysis where the

memory dump is extracted and scanned. It increased the accuracy to 96.2% in classifying

ransomware samples.

Ransomware attacks can occur on multiple operating systems and devices, such as mo-

bile devices with Andriod applications. In Kanwal and Thakur (2017), proposed an ap-

proach that detects ransomware by static analysis of Android applications. They extracted

codes from applications and the .apk files for code review and text analysis. The analysis is

done by comparing the percentage of permission/keywords used by applications to previ-

ously known ransomware. The approach was tested across 10 devices and also developed

their own application that has suspicious code. The limitation of this paper is that it might

not be able to keep up with the complexity of both benign and ransomware applications.

Deep learning models are able to extract meaningful features thus, in Zhang et al. (2020)

proposed a static approach based on N-gram instruction of machine codes (opcodes) using

deep learning. The deep learning models used to classify the opcode sequence are a com-

bination of a Self-Attention Convolutional Neural Network (CNN) and a Bi-Directional

Self-Attention Network. The models achieved an accuracy of 89.5%, precision of 87.5%,

recall of 87.6%, and F1-measure of 87.3%. This approach fails to handle new variants of
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ransomware.

Using dynamic analysis on a program is ineffective as it is uncertain how long a pro-

gram should be monitored to detect a ransomware attack (Manavi & Hamzeh, 2020). Thus,

they proposed a static analysis by extracting features from Portable Executable (PE) header

files and constructing a 32*32 gray-scale image of the malicious executable files. Then

used a CNN to extract features from the image and classify the constructed image. This

approach achieved an accuracy of 93.33%. The drawback to this approach is that convert-

ing the PE header into an image would require a network with more layers to extract its

features. In (2021), Manavi and Hamzeh proposed to improve the processing of the se-

quence of header bytes using a Long Short Term Memory (LSTM) network and classify

the ransomware samples from benign samples. The LSTM network achieved an accuracy

of 93.25%.

Byte-level static analysis from an executable file to detect ransomware attacks is pro-

posed in (Khammas, 2020). They extracted the features from raw bytes of an executable file

using 32-bit sliding windows (4-gram) and frequent pattern mining. Random Forest (RF)

machine learning technique is used to detect ransomware attacks. The approach achieved

an accuracy of 97.7% in just 1.37s time of detection.

Pre-Encripytion Detection Algorithm (PEDA) two-level detection of ransomware at-

tacks is proposed in (S. Kok, Abdullah, & Jhanjhi, 2022). The first level matches ran-

somware signatures using SHA-256 (Secure Hashing Algorithm) from the stored Signature

Repository and the second level detects the behavior of ransomware using Learning Algo-

rithm (LA), based on API calls. In this research, they identified fourteen important APIs

that can differentiate between ransomware and good ware. The limitation of this research

is that it will not be able to detect ransomware that uses its encryption code without an API.
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2.2 Dynamic Analysis

The current signature-based detection is not able to address the growing number of distinct

ransomware variants, hence in Sgandurra, Muñoz González, Mohsen, and Lupu (2016)

proposed a framework called EldeRan that used a machine learning model, Regularized

Logistic Regression, to classify ransomware by using dynamic features such as API calls,

Registry Key Operations, and File System Operations. The ransomware and good ware

dataset are obtained by analyzing 582 binaries from 11 ransomware families and 942 good

ware applications in a sandbox environment for 30 seconds. EldeRan achieved an accu-

racy of 96.3% detection rate and also 93.3% detection rate on Zero-day ransomware. The

dataset in this paper is frequently used by researchers for dynamic analysis of ransomware

attacks, which is one of the few publicly available datasets. An example use of the dataset,

in Sethi, Kumar, Sethi, Bera, and Patra (2019), proposed an approach to use two differ-

ent feature selections to extract the most relevant features and increase the accuracy of

ransomware detection. They also compared different machine learning models such as

K-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), and

Random Forest (RF). DT gives a high accuracy of 99.11%.

Deep Contractive Autoencoder Zero-Shot Learning (DCAE-ZSL) as well as Hetero-

geneous Voting Ensemble (DCAE-ZSL-HVE) to extract features against Zero-day ran-

somware attacks is proposed in (Zahoora, Rajarajan, Pan, & Khan, 2022). The DCAE-ZSL

technique learns the uniform latent semantic embedding and concentrates on key similari-

ties between known and unknown ransomware attacks while penalizing the input for minor

changes. In the DCAE-ZSL-HVE technique, ZSL-train data are trained on heterogenous

learning models such as RF, SVM, Gaussian Naive Bayes (GNB), and Logistic Regression

(LR). To infer the unknown class label, they combined two decision spaces. DCAE-ZSL-

HVE has a Recall of 0.95 and a reduced False Negative (FN).

Hardware Performance Counters (HPCs) are monitored dynamically to detect mali-

cious programs targeted for a particular system within some time interval in Alam et al.
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(2020). In this study, they proposed a two-step unsupervised detection tool called Ran-

somware Prevention via Performance Counters (RAPPER). RAPPER utilized an LSTM-

based autoencoder to generate an intermediate feature vector related to the time-series

multivariate input sequence and Fast Fourier Transformation (FFT) to understand repeti-

tive patterns of ransomware traces. The limitation of this approach is that ransomware and

benign samples are generated by observing system activities for 10ms.

Dynamic Ransomware Detector based on improved TextCNN (DRDT) to obtain se-

mantic information features from an API call sequence is proposed in (Qin, Wang, & Ma,

2020). They used the frequency of API calls, which are the specific operation of ran-

somware or benign application such as creating/deleting, reading/writing files, or modify-

ing registry keys provided by Sangfor Technologies. DRDT reached an accuracy of 95.9%

in comparison to LSTM with an accuracy of 88.7% and CNN-LSTM hybrid with an accu-

racy of 90%.

Time-series micro-architectural information is collected from 80 ransomware executa-

bles and 76 benign programs executed at random for 2ms from embedded HPCs in (Maniath

et al., 2017). LSTM-based Recurrent Neural Network (RNN) is used for the time-series

classification of micro-architectural event signatures of 20 timestamps. RanStop has an

accuracy of 97% for 50 random trials. This method’s drawback is that runtime hardware

data processing is susceptible to corruption.

Since fog nodes collect and process a lot of sensitive data, such as personal data, they

are a prime target for ransomware attacks. Thus, Homayoun et al. (2019) utilized two deep

learning models CNN and LSTM to classify ransomware samples from benign samples

based on system call sequence in 10s. The proposed models achieved an F-measure of

99.6% with a true positive rate of 97.2% and a false positive rate of 0.027% in the classifi-

cation of ransomware variants.

Malicious attackers find it easy to target Supervisory Control and Data Acquisition

(SCADA), which is the underlying control system of most critical infrastructures such as
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power, energy, water, traffic lights, and nuclear plants. Thus, Basnet, Poudyal, Ali, and Das-

gupta (2021) proposed three deep learning models, Deep Neural Network (DNN), CNN,

and LSTM-RNN to detect ransomware attacks on the framework in the SCADA-controlled

Electric Vehicle Charging Station (EVCS). 561 ransomware samples and 447 benign sam-

ples are collected from VirusTotal extracted from Windows OS to train and test the deep

learning models. A dynamic binary instrumentation technique is used to extract frequency

analysis of assembly instructions. The accuracy of the three proposed deep learning models

is 98.30% for DNN, 98.73% for CNN, and 97.59% for LSTM-RNN.

It is noted that the number of unique files and total files accessed by benign users is

considerably lower than by ransomware attacks. Thus, the I/O Request Packet (IRP), a

low-level file system I/O logs of 272 ransomware samples from 18 different families is

analyzed in (Ayub, Continella, & Siraj, 2020). They extracted features such as ransomware

process IDs, and process names for each sample’s IRP logs. Artificial Neural Network

(ANN), a deep learning model, is used to classify ransomware and benign samples. The

model achieved an accuracy of 99.86%. The weakness of this study is that the ransomware

IRP logs are captured within 90 minutes post-encryption, thus it would not be an early

detection of ransomware attacks.

Ransomware has a higher activity such as opening, closing and modifying files than a

benign application (Morato, Berrueta, na, & Izal, 2018); thus, they extracted these features

from file-sharing network traffic during the execution of different ransomware binaries.

They proposed a framework called Ransomware Early Detection from FIle SHaring traffic

(REDFISH), designed to detect ransomware that overwrites the original file or produces an

encrypted version in the same file system path. REDFISH is tuned to achieve high accu-

racy. Berrueta, Morato, Magaña, and Izal (2022) proposed another approach by training

and testing a Tree Ensembles and a 3-layer Neural Network deep learning model. Their

approach achieved an accuracy of over 99% in detecting ransomware activity.



Chapter 3

Proposed Approach and Architecture

This section will introduce the proposed deep learning models; Convolutional Neural Net-

works, and Bi-Directional Long Short Term Memory for detecting crypto-ransomware at-

tacks. The deep learning models are built using a Python library called Keras that runs on

top of TensorFlow (Chollet et al., 2015). The proposed models will be compared against

the classic machine-learning models Logistic Regression, Support Vector Machine, and

Random Forest. The Scikit-learn library is used to implement a logistic regression model

for this paper (Pedregosa et al., 2011).

3.1 Classic Machine Learning Models

3.1.1 Logistic Regression

A Logistic Regression model (LR) is a supervised machine learning algorithm used for bi-

nary classification problems. It uses a logistic function called the Sigmoid function (equa-

tion below 3.1) to model the relationship between the input features and the output class

probability.

f (x) =
1

1+ e−x (3.1)

12



CHAPTER 3. PROPOSED APPROACH AND ARCHITECTURE 13

During the training phase, the LR algorithm learns the weights of the features through

an optimization process called maximum likelihood estimation. Once trained, the model

can be used to predict the output class of new input instances by computing their predicted

probabilities using the learned weights and applying a threshold to classify them into the

positive or negative class (Kanade, 2022).

3.1.2 Support Vector Machine

Figure 3.1: Visualization of SVM

Support Vector Machine (SVM) is a machine learning algorithm mainly used for classi-

fication. The goal of SVM is to find a line (or a hyperplane in higher dimensions) that

maximally separates the two classes of data points as shown in Figure 3.1 (Saini, 2021).
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The hyperplane should be equidistant from the closest data points of each class, and this

distance is called the margin. The data points that are closest to the margin are called Sup-

port Vectors and are used to define the hyperplane. Once the hyperplane is found, new data

points can be classified as belonging to one of the two classes depending on which side

of the hyperplane they fall in. SVM is a powerful algorithm that works well with high-

dimensional data and can handle non-linearly separable data using kernel functions. It has

been successfully applied in various fields, including computer vision, text classification,

and bio-informatics.

3.1.3 Random Forest

Figure 3.2: Visualization of RF
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A Decision Tree is a supervised machine-learning algorithm that has a tree-like structure

widely used for classification and prediction. By learning straightforward decision rules,

it predicts a class by organizing the data from the root to the leaf/terminal node of the

tree. A Random Forest (RF) combines multiple decision trees to create a more accurate

model. Each decision tree is built on a subset of the training data and each split decision

tree is chosen at random to reduce over-fitting. The final decision in RF is from the class

that receives the most votes from individual trees as shown in figure 3.2 . Features of

RF have high accuracy and they can handle large datasets but they fail to comprehend the

significance of each variable.

3.2 Proposed Deep Learning Models

3.2.1 Convolutional Neural Network

Convolutional Neural Networks (CNN) are variants of neural networks which are mainly

used for image classification, facial recognition, object detection for self-driving cars, im-

age analysis in healthcare, automatic speech recognition, and so on. CNNs are composed

of layers and each layer applies a function to its input tensors and passes the transformed

version of the data tensors as input to the next layer.

The three main types of layers of CNN are convolutional layers, pooling layers, and

Fully Connected layers. Convolutional layers use feature map equation in Equation 3.2 a

filter (kernel) to extract features from input data.

hi = f ((W∗x)i) (3.2)

Pooling Layers are used to reduce the number of parameters and to avoid over-fitting. There

are different types of pooling techniques such as max pooling, average pooling, and so on

(Kiranyaz, Gastli, Ben-Brahim, Al-Emadi, & Gabbouj, 2019).
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Figure 3.3: Visualization of CNN layers.

For this research, the CNN model is composed of two Convolutional blocks. Each

block has a 1D convolution layer with Sigmoid as an activation function and a 1D averaging

pooling layer. Then it is flatted to be an input for the fully connected layer which applies

linear transformation followed by an activation function for an output layer. The CNN

model is compiled with Mean Squared Error for the loss function, Adam optimization, and

Binary Accuracy for the metrics as shown in Figure 3.4.
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Figure 3.4: CNN model summary for T = 20s.

3.2.2 Bi-directional LSTM

Unlike traditional neural networks where inputs and outputs are independent of each other,

in Recurrent Neural Network(RNN) provides some gates to store output from a previous

step to use as input in the current step. This enables RNN to leverage previous sequential

information for arbitrary long sequences, however, in practice, it has memory limitations

and it is also unable to capture long-term dependencies due to ’vanishing gradients’ (Siami-

Namini, Tavakoli, & Namin, 2019). Long Short-Term Memory (LSTM) is introduced to

avoid the long-term dependencies problem of RNN. LSTM is able to remember long se-

quences of input data furthermore, it is able to describe the relationship between input and

output data in terms of further dimensions such as time. Bi-directional LSTM (Bi-LSTM)

is a variation of normal LSTM, where each step will have input from both forward LSTM
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and backward LSTM about the sequence. Figure 3.5 shows the illustration of the Bi-LSTM

model (Verma, 2021).

Figure 3.5: Visualization of Bi-LSTM

In this research, the Bi-LSTM is composed of forward LSTM and backward LSTM.

Both LSTMs use Sigmoid for the activation function. The Bi-LSTM model is compiled

with Mean Squared Error for the loss function, Adam optimization, and Binary Accuracy

for the metrics as shown in Figure 3.6.

Figure 3.6: Bi-LSTM model summary for T = 20s.



Chapter 4

Experiments

4.1 Dataset And Feature Selection

In Berrueta, Morato, Magaña, and Izal (2020), it contains file access operations of more

than 70 samples from 30 distinct crypto-ransomware retrieved during the encryption of an

extensive network share directory which is comparable to a corporate setting. The ran-

somware samples are executed on a Microsoft Windows machine running in a virtual box

environment with a Network Attached Storage (NAS) file server network configuration to

extract information from the network traffic. The network traffic is captured and analyzed

using a network probe which mirrors network traffic between a user and NAS file server. In

Microsoft Windows, Server Message Block (SMB) protocols are transported over TCP/IP

in network file-sharing scenarios and developed their own tool to extract input/output (I/O)

operations from SMB commands as shown in Figure 4.1. In Morato et al. (2018), the I/O

operations of ransomware and benign dataset are made available to train machine learning

models. The benign samples came from network traffic traces recorded in a campus LAN,

where staff users access files from shared servers.

19
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Figure 4.1: Visualization of mirroring network traffic

Even though there is a variation during a ransomware attack, in most cases, files are

opened and read to be encrypted. Thus I/O operations extracted from benign and ran-

somware samples are vital to detecting ransomware attacks. A sample contains I/O features

such as short Control Commands (such as opening/closing, renaming, or deleting a file),

bytes being read, and bytes being written per second.

Figure 4.2: I/O of Maze ransomware
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Figure 4.3: I/O of TeslaCrypt ransomware

Maze ransomware uses the double extortion method, it connects to a file transfer pro-

tocol(FTP) and moves the data by copying files and encrypting them. Figure 4.2 shows the

I/O operations of Maze ransomware, the rate of bytes read and written are the same, and

it co-relates to the number of delete commands(Berrueta et al., 2020). In Figure 4.3 I/O

of a different ransomware called TeslaCrypt also encrypted the victim’s images, and docu-

ments, and demanded a ransom in exchange for the decryption key. Different ransomware

exhibits different I/O operations and sometimes benign applications might showcase sim-

ilar behaviors thus training the deep learning models with a variety of ransomware and

benign samples yield a better result.

Figure 4.4 shows the visualization of I/O features captured over T seconds from execu-

tion time, meanwhile, T represents 10, 20, 30, 40, 50, and 60. Since different ransomware

exhibits different behavior over time, having a detection system spread across T seconds

would yield successful detection of malicious activities. In this study 0 represents a benign

sample and 1 represents a ransomware sample. Table 4.1 shows the number of ransomware

and benign samples for each T second period in the dataset.
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Figure 4.4: Visualization of I/O features in T seconds

10s 20s 30s 40s 50s 60s

Ransomware 17,618 9,097 6,111 4,632 3,687 3,055

Benign 17,618 9,097 14,537 12,512 11,159 10,228

Table 4.1: Dataset distribution of ransomware/benign samples for T seconds.

4.2 Evaluation Metrics

In the context of classification models, there are four possible outcomes: True Positive

(TP), True Negative (TN), False Negative (FN), and False Positive (FP). In this particular

study, TP refers to when a sample is correctly classified as ransomware, while TN refers to

when a sample is correctly classified as benign. On the other hand, FP is when a sample is

incorrectly classified as ransomware, and FN is when a sample is incorrectly classified as

benign.

In order to assess the performance of the machine learning models, several evaluation

metrics were employed including accuracy, sensitivity (recall), specificity, precision, F1-

score, and Matthews Correlation Coefficient (MCC). Accuracy refers to the percentage of

correct predictions out of the total number of predictions made by the model.
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Accuracy =
TP

(TP + TN + FP + FN)
(4.1)

Sensitivity assesses the model’s ability to predict true positives in each available cate-

gory.

Sensitivity(recall) =
TP

(TP + FN )
(4.2)

While specificity measures the model’s ability to predict true negatives in each category.

Specificity =
TN

(TN + FP)
(4.3)

Precision is the number of accurate positive results divided by the number of positive

results expected by the classifier.

Precision =
TP

(TP + FP)
(4.4)

The F1 score showcases how accurate and robust your classifier is. High precision

but poor recall yields a highly accurate result, but it also misses a significant number of

difficult-to-classify instances. The model’s efficiency increases with a higher F1 Score.

F-score = 2
Precision ∗ Recall
Precision + Recall

(4.5)

Matthews Correlation Coefficient(MCC) is a very important evaluation metric as it

shows the correlation between the four outcomes(TP, TF, FN, FP). The value is between -1

and 1. So the closer the value of MCC is to 1, it signifies the predicted class and true class

are strongly related. In this study, the measured value of MCC has been scaled between 0

to 100%.

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(4.6)



Chapter 5

Results and Analyses

This section will discuss the evaluation and comparison of the baseline and proposed mod-

els. Logistic regression and Random Forest, process features independently which means

it does not take the leverage of information about the sequence of events. Hence, multi-

variant classification using CNN and Bi-LSTM is proposed in this paper. The models are

trained and tested on Google Colab, which is an online Jupyter Notebook that provides

computing resources through a browser. The programming language used to implement

and evaluate these models is Python and open-resource Python libraries such as Keras and

Scikit-learn.

5.1 Testing Results and Comparison

80% of the samples are used for training the model meanwhile, both CNN and Bi-LSTM

are trained over 100 epochs. After training both models, they are tested with the remaining

20% of samples used to test and evaluate the deep learning models. A Confusion Matrix

(CM) is a that reports the number (in this study, it will be shown in percentage) of True

Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).

24
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(a) CNN

(b) Bi-LSTM

Figure 5.1: Confusion Matrix for T=10s

Accuracy Sensitivity Specificity F1-Score MCC

Logistic Regression 89.65% 86.04% 93.27% 89.27% 79.52%

Support Vector Machine 92.42 % 90.24% 94.60% 92.25% 84.92%

Random Forest 99.58% 99.77% 99.4% 99.58% 99.17%

Convolutional Neural Networks 98.62% 98.48% 98.76% 98.63% 97.24%

Bi-directional LSTM 99.27% 99.2% 99.34% 99.27% 98.55%

Table 5.1: Performance Metric for T= 10s
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(a) CNN

(b) Bi-LSTM

Figure 5.2: Confusion Matrix for T=20s

Accuracy Sensitivity Specificity F1-Score MCC

Logistic Regression 90.38% 86.26% 94.63% 90.11% 81.09%

Support Vector Machine 92.22% 90.26% 94.24% 92.18% 84.52%

Random Forest 99.67% 99.62% 99.72% 99.67% 99.34%

Convolutional Neural Networks 99.23% 98.9% 99.55% 99.23% 98.4%

Bi-directional LSTM 99.39% 99.02% 99.77% 99.40% 98.79%

Table 5.2: Performance Metric for T= 20s
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(a) CNN

(b) Bi-LSTM

Figure 5.3: Confusion Matrix for T=30s

Accuracy Sensitivity Specificity F1-Score MCC

Logistic Regression 93.7% 84.08% 97.73% 88.73% 84.65%

Support Vector Machine 95.42% 90.02% 97.66% 92.03% 88.87%

Random Forest 99.7% 99.25% 99.89% 99.5% 99.29%

Convolutional Neural Networks 99.46% 98.38% 99.89% 99.05% 98.69%

Bi-directional LSTM 99.46% 99.34% 99.52% 99.09% 98.71%

Table 5.3: Performance Metric for T= 30s
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(a) CNN

(b) Bi-LSTM

Figure 5.4: Confusion Matrix for T=40s

Accuracy Sensitivity Specificity F1-Score MCC

Logistic Regression 94.75% 86.27% 97.98% 90.07% 86.67%

Support Vector Machine 96.29% 91.86% 97.98% 93.19% 90.67%

Random Forest 99.7% 99.25% 99.89% 99.5% 99.29%

CNN 99.44% 98.48% 99.8% 98.97% 98.59%

Bi-directional LSTM 99.56% 98.83% 99.83% 99.2% 98.90%

Table 5.4: Performance Metrics for T=40s
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(a) CNN

(b) Bi-LSTM

Figure 5.5: Confusion Matrix for T=50s

Accuracy Sensitivity Specificity F1-Score MCC

Logistic Regression 94.64% 85.46% 97.7% 88.87% 85.47%

Support Vector Machine 96.19% 91.38% 97.79% 92.31% 89.79%

Random Forest 99.6% 98.92% 99.91% 99.32% 99.1%

Convolutional Neural Networks 99.39% 99.16% 99.46% 98.75% 98.35%

Bi-directional LSTM 99.66% 99.19% 99.82% 99.32% 99.1%

Table 5.5: Performance Metrics for T=50s
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(a) CNN

(b) Bi-LSTM

Figure 5.6: Confusion Matrix for T=60s

Accuracy Sensitivity Specificity F1-Score MCC

Logistic Regression 95.48% 86.27% 98.23% 89.79% 87.02%

Support Vector Machine 97.13% 94.11% 98.04% 93.81% 91.95%

Random Forest 99.62% 98.85% 99.85% 99.1% 98.93%

Convolutional Neural Networks 99.54% 98.18% 99.95% 99% 98.71%

Bi-directional LSTM 99.66% 99.55% 99.7% 99.26% 99.04%

Table 5.6: Performance Metrics for T=60s
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Looking at the performance metrics in Table 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 for the dif-

ferent models, it can be observed that all models performed quite well in terms of accuracy,

with Random Forest achieving the highest accuracy score followed by CNN. In terms of

sensitivity, which is a measure of how well the model identifies true positive cases, Bi-

directional LSTM performed the best followed by CNN. Specificity, which measures how

well the model identifies true negative cases, was highest for Random Forest, followed by

CNN. F1-score is a weighted average of precision and recall and gives an overall measure

of the model’s accuracy. Random Forest achieved the highest F1-score followed by Bi-

directional LSTM. Finally, Matthews Correlation Coefficient (MCC) is a measure of the

quality of binary classification, taking into account true and false positives and negatives.

Random Forest had the highest MCC followed closely by CNN. Overall, the results suggest

that Random Forest, CNN, and Bi-directional LSTM are all strong performers for detecting

ransomware attacks, with high accuracy, sensitivity, specificity, F1-score, and MCC.

Figure 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6 displays the Confusion Matrix results of Convo-

lutional Neural Network (CNN) and Bi-directional LSTM (Bi-LSTM). Overall, it can be

observed that both CNN and Bi-LSTM false negative rate decreases as T seconds increase.

Bi-LSTM achieved a low false negative rate of 0.04% and CNN achieved a low false nega-

tive rate of 0.2% when T = 50 seconds. The deep learning models are tested with a ZeroDay

ransomware to dictate if it will be able to detect ransomware strains that were not used to

train the models.CNN and Bi-LSTM detected ZeroDay ransomware with a high accuracy

of 98.66% and 99.53% respectively at T= 60s.
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Conclusion and Future Work

In this study, a multi-variant classification using deep learning models is proposed to de-

tect ransomware attacks from a network scenario that is similar to a corporate setting. The

ransomware samples were extracted from 70 binaries from 30 different ransomware during

the encryption of an extensive network shared directory. The benign samples came from

network traffic traces recorded in a campus LAN where staff users access files from shared

servers. The samples were collected T seconds after the program executions, T = 10, 20,

30, 40, 50, and 60. The deep learning models proposed are CNN and Bi-LSTM. The deep

learning models are compared against classic machine learning models, LR, SVM, and RF.

CNN and Bi-LSTM achieved an accuracy above 98% and 99% respectively. Meanwhile,

LR, SVM, and RF achieved an accuracy of above 89%, 92%, and 99% respectively. The

proposed deep learning models overall performed well in classifying ransomware samples

from benign samples; they are also able to classify Zero-day ransomware with high accu-

racy. Since this is a dynamic approach, the ransomware must execute, and some files might

be lost in the process, which can be retrieved if a backup system is set in place.

This paper showed that deep learnings are able to extract features from I/O operations

in a network file-sharing scenario in a corporate setting to detect ransomware attacks. In

the future, adding more features of ransomware behavior would increase the accuracy of

32
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the model and minimize the rate of false negatives. Once a victim’s system has been infil-

trated, the future direction of this study is also to detect a ransomware attack using a hybrid

model from multiple1 stages. Overall, many essential businesses and organizations have

valuable data in which malicious actors can encrypt/steal to ask for ransom. This study

shows using CNN and Bi-LSTM trained over increasing time to detect ransomware attacks

once a system in a corporate setting has been infiltrated.
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