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Abstract 
 

The emergence of deep-learning algorithms provides great potential to enhance the 

prediction performance of computer-aided supporting diagnosis systems. Recent research 

efforts indicated that well-trained algorithms could achieve the accuracy level of 

experienced senior clinicians in the Dermatology field. However, the lack of 

interpretability and transparency hinders the algorithms’ utility in real-life. Physicians and 

patients require a certain level of interpretability for them to accept and trust the results. 

Another limitation of AI algorithms is the lack of consideration of other information related 

to the disease diagnosis, for example some typical dermoscopic features and diagnostic 

guidelines. Clinical guidelines for skin disease diagnosis are designed based on 

dermoscopic features. However, a structured and standard representation of the relevant 

knowledge in the skin disease domain is lacking.  

To address the above challenges, this dissertation builds an ontology capable of formally 

representing the knowledge of dermoscopic features and develops an explainable deep 

learning model able to diagnose skin diseases and dermoscopic features. Additionally, 

large-scale, unlabeled datasets can learn from the trained model and automate the feature 

generation process. The computer vision aided feature extraction algorithms are combined 

with the deep learning model to improve the overall classification accuracy and save 

manual annotation efforts.  
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Chapter 1: Introduction and Background 

1.1 The current status of skin diseases  

Skin diseases are one of the most common human illnesses.  They are one of the leading 

causes of global disease burden, affecting millions of people worldwide [1]. Nearly 85 

million Americans visit a dermatology department for some form of skin disease annually. 

This number exceeds current annual estimates for cardiovascular diseases and diabetes [2–

4], making skin disease an essential public health problem [5].  Skin disease is present in 

all cultures and occurs at all ages. The burden of skin diseases is even heavier if a malignant 

skin diseases is not detected or controlled at the early stage. This is especially true in rural 

areas where the healthcare resources are limited [6–8].  

Skin cancer is the most common cancer worldwide, with the incidence of both melanoma 

and non-melanoma skin cancers showing steady increases in recent years [9]. Melanoma 

is responsible for about 9,000 skin cancer deaths each year [10]. Unfortunately, reliable 

skin cancer screening may not be readily available to all patients. For example, individuals 

who live in rural areas without local dermatology clinics or who face barriers to attending 

in-office evaluation may miss the opportunity to have skin cancers detected early. To 

combat this, the use of teledermatology has become increasingly popular.  
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Teledermatology has been especially important during the COVID-19 pandemic, which 

significantly decreased in-person dermatological evaluation [11,12]. 

The clinical diagnosis of skin disease usually begins with an initial clinical screening, 

potentially followed by dermoscopic analysis, or even a biopsy and histopathological 

examination, if needed [13]. The dermoscopic analysis is a non-invasive technique to 

examine pigmented anatomic structures that are not visible to the naked eye [14]. It has 

been shown to facilitate the clinical recognition of several inflammatory and infectious 

diseases [15], and to significantly improve the clinician's diagnosis of both pigmented and 

non-pigmented skin lesions, including skin cancers, inflammatory and infectious diseases 

[6,16–22].  

1.2 The utilization of dermoscopy 

Early detection of skin cancer is an important prognostic factor for improved patient 

survival and overall outcomes [23]. The utilization of dermoscopic analysis is becoming 

more and more important for diagnosing skin diseases by physicians and possibly even 

artificial intelligence. However, the utilization of dermoscopy requires additional training 

for dermatologists, including the ability to recognize specific dermoscopic features 

different from clinical features that can be seen by the naked eye [24]. In addition, to master 

the skill of dermoscopic analysis, dermatologists need to learn the designated terminology 

and diagnostic rules developed by content experts.   
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Recently, teledermatology has been shown to increase access to reliable dermatology 

evaluation and minimize delays in skin cancer management [11,25]. A useful subset of 

teledermatology is teledermoscopy, whereby digital images of skin lesions are taken using 

a dermatoscope or a smartphone with a dermatoscopy attachment [26]. Studies find that 

the use of dermoscopic images in teledermatology consultations improves the sensitivity 

and specificity of the diagnosis [11,27]. In this way, teledermoscopy is a promising tool to 

increase patient access to reliable skin cancer screening and, thus, the early detection of 

skin cancer.  

1.3 Using AI to help with diagnosis  

Research has shown that the prevalence of skin disease is high in emerging countries, while 

diagnosis and treatment resources are lagging behind [7,9,28].  Healthcare resources, such 

as a senior, qualified, on-site physician, are always rare in rural areas. Accessing care is 

also an issue if patients have to travel long distances to receive treatment. Patients may 

carefully weigh the likelihood of improving vs. the problems and costs of traveling to seek 

care [29]. Low health literacy, a measure of a patient’s knowledge about defined health 

issues, is another barrier to care. In resource-poor communities, health literacy  may be low 

[7].  

Artificial intelligence systems could provide new strategies to help diagnose patients when 

a physician is not present. For example, visible skin lesion images of individuals living in 

Egypt were sent online to senior dermatologists for their expertise [30]. As a result, the 
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study participants were able to decrease travel time and save on travel expenses. In fact, 

research has been done to automatically diagnose skin diseases, and deep neural networks 

have been widely used for image classification and pattern recognition in the clinical 

domain [31–41]. The computer algorithm can easily achieve the same accuracy as senior 

dermatologists. In a paper published in Nature, researchers from Stanford University  used 

deep neural networks to classify over two thousand kinds of photographic and dermoscopic 

skin disease images. The performance of the computer algorithm was shown to be on par 

with 21 board-certified dermatologists [13]. This result also demonstrated the feasibility of 

applying computer algorithms to help with the clinical decision supporting system. 

Integrating the algorithm can not only help aid diagnosis for the less experienced 

dermatologists but also replace an on-site physician in rural areas.  

1.4 The existing models 
 
The first computer-aided diagnosis system was published in 1984 [32]. The researchers 

built a knowledge base consisting of precise descriptions of disease characteristics after 

consulting with experienced dermatologists. They also summarized the patient profile, and 

the diseases matching the description of the patient most closely were displayed high in the 

differential diagnosis list. The degree of similarity or difference between a patient profile 

and disease template was scored numerically, and only those scores exceeding the 

preselected threshold level were considered final results. This computer-aided diagnosis 

system was a milestone in the clinical decision support domain.  However, it did not take 
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skin images into account, which are the most crucial evidence for diagnosis. Many 

researchers used deep convolutional neural networks (CNN) to develop image 

classification methods [31,34,35,38,42–48]. Some of the studies have shown promising 

results for the task of applying image classification to the clinical domain.  The MindLab 

research group from Columbia tested the performance of CNN on a large histology basal 

cell carcinoma cancer image dataset and achieved a performance of 89.4% in F-measure 

and 91.4% in balanced accuracy for binary classification [49]. They tried to interpret the 

classification results by highlighting cancerous and non-cancerous areas. Doaa A. S et al. 

claimed to reach 93.75% accuracy for the detection of melanoma disease; however, the 

size of their training data set was relatively small [34]. (3) In Esteva A et al.’s work, they 

achieved an average accuracy of 72.1 ± 0.9% for a three class-classification of benign, 

malignant, and non-neoplastic lesions on a large-scale dataset, which slightly outperformed 

the average accuracy of 21 board-certified dermatologists [13].  

1.5 The challenges in this field  
 
In the last decade, the challenges in the computer vision domain have gone through 

different stages, from image classification to multi-class, multi-label classification to more 

complex tasks such as image captioning and image segmentation. This rapid and significant 

development has been partially driven by the releases of large-scale image datasets with 

quality annotations. These datasets, such as ImageNet [50], provide a solid foundation for 

the training of deep CNNs. In particular, pre-trained deep CNN models using ImageNet 
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have become a baseline for many tasks using deep learning algorithms, e.g., image 

classification and visual question answering. Correspondingly, the release of the 

International Skin Imaging Collaboration (ISIC) archive [51] promoted the development 

of techniques for skin lesion segmentation, skin lesion attribute detection, and skin disease 

classification.  

However, there are still gaps in the development of computer algorithms with the 

application of artificial intelligence in clinical environments.  One of the gaps is the lack 

of uniformed terminology for clinical attributes of skin lesions. The current terms are not 

standardized or presented in a structured way. Using standardized terminology can 

facilitate the information exchange process. With various terminologies for skin disease 

features, a harmonized, well-received terminology can serve as a guideline for the usage 

of dermoscopy and enhance its use in both daily practice and research. Another issue is 

that the interpretability and transparency of the deep learning algorithm is lacking, making 

it difficult for dermatologists to trust the diagnostic results [52–54].   

Additionally, the automatic diagnosis of skin disease is usually based on a limited source 

of information, images [13,34,42,55,56] in most cases. However, dermatologists generally 

don’t use solely clinical images to make a diagnosis. For instance, the occurrence of 

psoriasis has two peaks in the 20-30 and 50-60 age groups [57]. Moreover, a certain amount 

of sun exposure to body parts can increase the risk of having basal cell carcinoma [58]. The 

dermatologist also relies on diagnostic rules to make decisions, such as the ABCD rule, 
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pattern analysis, seven-point checklist, and three-point checklist, that have been developed 

to standardize the dermoscopic evaluation of melanoma and play a critical role in skin 

lesion diagnosis [59–63].  

However, the most challenging element could be embedding the computer algorithm into 

the clinical decision support system. First, the physician needs to understand how 

computers generate the results for diagnosis aid. Furthermore, patients also need to be 

convinced when the algorithm serves as the physician. A trust-worthy automatic diagnosis 

computer algorithm can be used to educate dermatologists and the public in skin disease 

recognition as well as direct aid in the clinical diagnosis. (3)  

1.6 Melanocytic nevus and Melanoma 

One in five Americans will be diagnosed with a cutaneous malignancy. Moreover, the 

incidence rates of both melanoma and non-melanoma cancers have increased steadily [10]. 

In this project, we used two commonly seen skin diseases that are easily confused as an 

illustration: melanocytic nevus and melanoma. Melanoma is the most aggressive cutaneous 

malignancy. Although melanomas represent fewer than 5% of all skin cancers in the United 

States, they account for approximately 75% of all skin cancer-related deaths and are 

responsible for over 10,000 deaths annually in the United States alone [13] [64].   

Melanoma often shares morphology with melanocytic nevi. Naked-eye examination yields 

only 60% accuracy in melanoma diagnosis by expert dermatologists [21]. Melanocytic 
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nevus is a skin tumor frequently seen in the population. It can be found in patients from 

infancy to old age [65]. These two skin diseases belong to two critical classification 

scenarios. One is the classification task of the most common tumors; the other is identifying 

the deadliest skin cancer. Notably, a misdiagnosis would result in improper health care, 

delayed treatment, or even unjustified treatment. Therefore, precisely identifying these 

similar diseases has always been a focus in the dermatology research field. A well-trained 

computer algorithm can easily extract the features from clinical images that are key to 

distinguishing them. In this regard, the International Skin Imaging Collaboration (ISIC) 

organizes data challenges every year that focus primarily on diagnostic accuracy when 

distinguishing melanoma from other malignant and benign lesions [66]. 

1.7 The need for an ontology  

An ontology usually consists of entities and relationships between the entities that define 

and model a knowledge space for a specific domain. Using ontology to describe domain 

knowledge provides a way to reuse domain knowledge, generates an encoding of 

knowledge that machines can understand, and makes automated large-scale machine 

processing possible. There are several ontology languages, OIL [67], RDF [68], and OWL 

[69]. The development of these languages made ontologies easy to distribute and 

consumable by machine-based agents for storing knowledge and performing basic machine 

intelligence. In the dermoscopy domain, the development of technology allowed for the 

propagation of information, derivatizing different terminologies that are not uniformly 
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consistent. Two competing terminologies exist; one is a metaphoric terminology that 

includes various terms, and the other is a descriptive terminology based on five basic terms 

[70].  

These issues encourage the development and research of ontologies, which aims to define 

consistent terms to benefit knowledge exchange in this domain. In the proposed ontology, 

the terms or class objects for the dermoscopic features were defined as well as their 

relationships or connections with other terms or class objects. Applications utilizing an 

ontology benefit from its extensibility to link distributed data sources. For example, the 

disease ontology in BioPortal [71] is a comprehensive repository of biomedical ontologies 

from all over the world. 

1.8 Specific aims 

Addressing the challenges above, this dissertation (1) harmonized the various 

terminologies for skin disease clinical features by building an ontology to standardize the 

terms and visualize their properties; (2) improved the interpretability of the deep learning 

algorithm by generating the dermoscopic features in the images along with the disease 

diagnosis results; (3) automated the feature extraction process to improve the efficiency 

and reliability of the algorithm.  

Therefore, the research aims were to: 
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Aim 1. Develop a domain-specific ontology to formally represent the knowledge for 

certain dermoscopic features.  

Create a domain ontology that can formally represent dermoscopic features based on 

literature and clinical guidelines. The ontology will also align with two existing skin 

disease clinical feature terminologies and the relationships between clinical features and 

skin diseases for the three-point checklist diagnosis rule. This aim will address the research 

question of whether or not a skin disease ontology can present the domain knowledge in a 

machine-understandable way.  

Aim 2. Improve the interpretability of the deep learning model in the skin disease 

image classification task.  

Based on the ontology defined in aim 1, a guideline will be created for human experts to 

annotate the clinical features they find in real-life dermoscopic images from clinical 

practice. Different from the “interpretability” concept in machine learning,  this aim focus 

on generating clinically interpretable dermoscopic features for input images. In this way, 

physicians will be given a more detailed explanation of what the algorithm finds instead of 

just a disease name. In this study, the semi-supervised model was developed to perform 

such classification on the large-scale, unlabeled dataset.  

Aim 3. Compare the performance of computer-rated and human-annotated features 

in the CNN image classification task. 
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Based on the model from aim 2, the annotated dermoscopic features for each image in our 

dermoscopic image dataset will serve as additional labels to improve the overall 

classification accuracy. Additionally, the clinical risk factors, such as demographic 

information, can also be embedded in the model to complement the image data. The 

performance of these integrated deep learning models will be compared with state-of-art 

image classification algorithms on the same image dataset. The research question is 

whether integrating the clinical attributes with input images can improve the accuracy of 

the classification algorithm. 

Accomplishing these aims can help develop an automatic computer-aided supporting 

algorithm that can assist with clinical practice and early diagnosis of skin diseases. This 

computer-aided algorithm can not only serve as an assistant for clinicians but also serve as 

an expert in remote areas where healthcare resources are limited. 
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Chapter 2: DEVO: An Ontology to Help With Dermoscopic Features 

Standardization 

 

2.1 Introduction 
 
With the expansion of dermoscopy in recent years, its vocabulary has proliferated. 

However, the rapid evolution of the vocabulary of dermoscopy without standardized 

control has been counterproductive. The vocabulary of dermoscopy has expanded so 

significantly that it has become challenging even for experts to track the multitude of terms.  

Two competitive terminologies exist. One is a metaphoric terminology that includes 

numerous analogies and specific terms; the other is a descriptive terminology based on 

essential elements [72]. Even though the metaphoric terminology is easier to understand, 

the analogies provided may be ambiguous, redundant, even harmful, as poorly defined 

metaphors lend themselves to misinterpretation. The language of metaphoric terminology 

is technical because its specific vocabulary is incomprehensible outside of its context. 

Many metaphoric terms, such as “leaf-like” areas and “strawberry pattern”, are ambiguous 

and create general research and education barriers. Hence, this is the motivation for 

creating the second terminology, a descriptive language with a simple and logical structure. 
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However, when dealing with some complicated structures, the descriptive terminology 

could result in a long and cumbersome expression, especially when dealing with some 

complicated features.  

Since both terminologies have advantages and disadvantages, establishing a dictionary that 

harmonizes and standardizes the existing terms is imperative. The third consensus 

conference conducted by the International Society of Dermoscopy tried to provide a 

dictionary that maps between both terminologies [70], but problems still exist. For example, 

some characteristics defined by metaphoric terms are not covered by the descriptive 

terminology. Furthermore, some basic terms defined by the descriptive terminology are not 

straightforward, creating obstacles for the trainee or computer to learn. These issues 

encourage the development of an ontology that defines consistent terms to benefit 

knowledge exchange in this domain.  

Ontologies are software artifacts representing domain knowledge using terminologies and 

taxonomic relations to express domain meaning. By describing and linking concepts 

together using taxonomic relations, they can explicitly describe grounded knowledge 

shared with agents to facilitate common understanding. Knowledge representation is one 

of the essential components of artificial intelligence, alongside vision and inferencing [73], 

which together present opportunities to analyze domain knowledge. In addition, ontologies 

are encoded with semantic machine-level syntax (e.g., OWL [74] and RDF [75,76]) that 
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can mimic first-order logic, thereby producing machine-based inferences from the 

ontology with reasoner software, for example HermiT [77] or Pellet [78]. 

With a simple and logical structure, the designed ontology language can break down the 

characteristics of a “leaf-like area” into individual categories, such as color, pattern, and 

texture, so that any user of the dermoscopy terminology can have a more precise and more 

standardized understanding for the same terms.  Using ontology to describe domain 

knowledge can help provide a way to reuse domain knowledge, provide an encoding of 

knowledge that machines can understand, and automate large-scale machine processing. 

Before designing the ontology, related concepts of skin disease ontology were searched in 

distributed data sources, especially the disease ontology in BioPortal [71]. There have been 

repeated initiatives trying to develop ontologies for skin disease, some dedicated to the skin 

disease categories, while others dived further into phenotypes [79]. Some ontologies also 

tried to consider the expert's knowledge, such as the ABCD rule, which involves four 

characteristics of a lesion to help with computer-aided diagnosis systems [80–83]. 

 However, an ontology relevant to dermoscopic features was not found. Dermoscopic 

features are the foundation for all the diagnostic rules, including ABCD rules. Therefore, 

the existing ontologies could not help humans and computers understand dermoscopic 

features better. Suppose the computer can detect and help classify not just the benign vs. 

melanoma skin disease category but all the skin categories under diagnostic rules. Hence, 
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to fill this gap, an object-oriented, top-down developed skin disease feature ontology was 

built based on the consensus from the International Society of Dermoscopy using Protégé 

[84]. 

2.2 Methods 
 
Metaphoric terminology has also been called analogical terminology. True on its name, 

this terminology uses lots of metaphors from human language to describe the 

characteristics of lesions under dermoscopy. It has been criticized for lack of clear 

definitions. Therefore, the first step to translate this terminology into machine-interpretable 

syntax was to create an ontology that covers the fundamental aspects and elements in 

describing visualizations, such as shapes and colors. 

2.2.1 Development of EVO 

A foundamental ontology named Elements of Visualizations Ontology (EVO) was created. 

It provides a set of concepts and taxonomic structures that decompose visuals into basic 

elements and conceptualize them to provide meaning. Scalable vector graphics (SVG), 

ConceptNet, and Wikipedia colors were utilized to decompose basic visual elements and 

colors in a standardized way. 

The basic premise of this work is predicated on the notion that every visualization is a 

composite of visualization elements. Based on the SVG vocabulary, these elements include 
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Shape, Color, Pattern, Stroke, etc. The total expression of the visualization is built on these 

elements.  

Definition 1. Given the gamut of visualization elements, VE was defined as a set of any 

number of shapes S, textures T, colors C, patterns P, spatial patterns SP, strokes SK, points 

PT, spatial relationships SR, sizes SZ, and Paths PH.  

𝑉𝐸	 ∋ {𝑆!, 𝑇!, 𝐶!, 𝑃!, 𝑆𝑃!, 𝑆𝐾!, 𝑃𝑇!, 𝑆𝑅!, 𝑆𝑍!, 𝑃𝐻!} (1) 

 

Definition 2. Furthermore, with the set of visualization elements, the description of 

visualization VZ is a composite of visualization elements VE. For example, visualization 

can be just one shape, or a pattern, an individual color, or an aggregate of a shape with a 

color, or multiple shapes comprising a pattern, etc. 

 

										∀	𝑉𝑍	 ⊨ 𝑉𝐸" ⋏ 𝑉𝐸# ⋏ ⋯⋏	𝑉𝐸!                              (2) 

  

The construction of this model is largely informed by the SVG standards [85]. In essence, 

the Pattern class serves as a container for shape, along with the usage and definition of 

Stroke and Color. The visualization for EVO is shown in Figure 1. A detailed description 

of the Pattern class can be found in definition 3.  
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Figure 1. General concepts of visualizations for EVO 
 
 
 
 

Definition 3. A pattern is a composite of shapes (Pattern > hasShape > Shape), and can 

also be comprised of one or more patterns (Pattern > hasPattern > Pattern). Pattern P is a 

set of shapes S or equally a set of patterns P with an associated spatial pattern SP.  
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∀	𝑃	 = 5
𝑆" ∧ 𝑆# ∧ ⋯∧ 𝑆!

𝑃! ∧ 	𝑆𝑃
7 (3) 

 

For certain circumstances, the model utilizes the Spatial Pattern concept, influenced by 

Phenotype And Trait Ontology (PATO)’s [86] own spatial pattern. The Spatial Pattern 

describes the overall arrangement of the components within the pattern using the 

hasSpatialPattern object property.  

Also, this model elaborates on the Shape concept. Each Shape has a color fill (Shape > 

hasColorFill > Color). Like most of the concepts from EVO, the Color concept inherits 

some of the features present in the SVG model. EVO’s Color concept contains a variety of 

color subclasses with RGB and hex-value data properties, derived from a list sourced from 

Wikipedia [87].  

Aside from the color data, a concept was created called Multi-Color to accommodate a mix 

of several colors. This concept relates to the subclassed Colors through the 

hasMultipleColor object property (Multi-Color > hasMultipleColors > Color). An inverse 

of hasMultipleColor is also provided with isComposedOfColors (Color > 

isComposedOfColors > MultiColor). 
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The Size concept is to describe the relative size of visual elements. This is based on the 

terminologies from ConceptNet and PATO (2-D extent from size). Similarly, Perceived 

Visual Texture leverages concepts from PATO and ConceptNet with Smooth Texture and 

Rough Texture types.  

Definition 4 provides a general model of the Shape concept, where it defines shape S 

having a color fill hasColorFill for color C, having a stroke element hasStroke for stroke 

SK, having a texture hasVisualTexture for perceived visual texture T, and having a size 

description hasQualitativeSize for size SZ. The Shape concept is further elaborated with 

subclasses of Shape. Circle, Ellipse, Polygon, Polyline, Line are all based on the SVG 

standard [85]. The visualization of the Shape concept can be seen in figure 2. 

 

		∀	𝑆	 ⊨ 	ℎ𝑎𝑠𝐶𝑜𝑙𝑜𝑟𝐹𝑖𝑙𝑙(𝑆, 𝐶)⋀	ℎ𝑎𝑠𝑆𝑡𝑟𝑜𝑘𝑒(𝑆, 𝑆𝐾)	         (4) 

														⋀	ℎ𝑎𝑠𝑉𝑖𝑠𝑢𝑎𝑙𝑇𝑒𝑥𝑡𝑢𝑟𝑒(𝑆, 𝑇)	⋀	ℎ𝑎𝑠𝑆𝑖𝑧𝑒(𝑆, 𝑆𝑍)   
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Figure 2. Shapes concept from EVO. 
 

 

The model also addresses the expression of adjacency between multiple Shape concepts. 

The category “Spatial relationships” was defined to explore how shapes are spatially 

distributed, utilizing the Dimensionally Extended 9-Intersection Model (DE-9IM) to 

denote the spatial placement of objects [88]. According to the DE-9IM standard, the spatial 

relationships are defined as follows. For two objects that share no intersection of the 
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boundary and no common interior parts, the object property spatialDisjoint is defined. In 

contrast, spatialOverlap is the opposite where there is an intersection of the boundary, 

common interior parts, the boundaries as part of the interior, and the interior is part of the 

boundary. spatialMeet is defined as only having an intersection of the boundary. 

spatialEqual is described as having an intersection of the boundary and common interior 

parts. spatialInside is based on common interior parts and boundaries as part of the interior. 

spatialCoveredBy and spatialCovers share the property of having an intersection at the 

boundary and common interior parts, but where they differ is the boundary's relationship 

with the interior. For spatialCovers, object A is on top of object B, so A's interior is part of 

the boundary. For spatialCoveredBy, where object A is below object B, the boundary of B 

is part of the interior. Lastly, spatialContains is an intersection of the boundary, common 

interior parts, and the interior is part of the boundary. Table 1 outlines each spatial 

relationship with a visual description.  
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Table 1. Spatial relationship description for EVO. 

 

Spatial Relationship Visual description Alternative Label 
spatialDisjoint 

 

 

spatialMeet 

 

         spatialTouches 

spatialEqual 

  

 

spatialInside 

            

         spatialWithin 

spatialCoveredBy 

 

 

spatialContains 

 

 

spatialCovers 

            

 

spatialOverlaps 
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2.2.2 Evaluation of EVO 
 
Hootation [89] is a natural language generation tool that can produce equivalent natural 

language statements for ontologies. It was used to evaluate the logical axioms of EVO. For 

example, the axiom, Ellipse ⊑ Shape from EVO would produce the sentence “every ellipse 

is a shape.”  

Three ontology experts, RL, XZ, and TA, independently reviewed the sentences, and the 

pairwise percentage agreement was calculated to assess the quality of independent 

evaluations. Each of the evaluators was given 182 natural language statements extracted 

from the ontology through Hootation. All three evaluators had previous research 

experience in ontology development and were thus suited to evaluate the translated axioms. 

The evaluators were instructed to denote "Y" if they agreed with the logical axiom's 

expression in natural language, or "N" or "X" if they did not agree or were not sure of the 

statement's veracity. 

2.2.3 Design of DEVO 

The second phase was to create the domain ontology that harnesses the upper-level 

ontology to formalize the definitions of dermoscopic metaphorical terms. Based on EVO, 

the Dermoscopy Elements Visual Ontology (DEVO) was developed  to further decompose 

technical dermoscopic terminologies. DEVO offers the capability to formally represent the 

knowledge of metaphoric dermoscopic features for skin diseases. It can help better encode 



 

 
 
 

  
 24 

domain knowledge in a computer-understandable way, enhance the reuse of domain 

knowledge, and automate large-scale computer analysis for dermoscopy.  

A comprehensive list of metaphoric definitions was generated during the third consensus 

conference of the International Society of Dermoscopy [70], the terms of which were 

translated into machine-intelligible descriptive language for DEVO. Definitions were 

broken down based on semantic syntax. For example, the subject of the sentence usually 

is shape or pattern. Most of the verbs are describing spatial relationships between the shape 

or pattern. Adjective terms often times are depicting textures, sizes, colors etc. The clause 

of the sentence could be describing the locations or another shape in the lesion.  All the 

shapes were first mapped to the five basic elements from descriptive terminology and the 

visual elements from EVO. If a mapped pair was not found, a new shape class was created 

for DEVO. The five basic dermoscopic elements that comprise the descriptive terminology 

are circles, lines, dots, clods, and pseudopods. If none of these basic elements applies, 

“structureless” can be used to descibe the lesion. For each metaphoric term in the list, the 

visual elements present in the list were determined, enabling the creation of comprehensive 

diagrams. 

DEVO was authored using Protege with imports of EVO and SKOS (Simple Knowledge 

Organization System) to support the construction of the ontology. In addition, SKOS was 

used to facilitate alternative labels and annotations, such as alternative or preferred labels 

of the concepts.  
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2.2.4 Evaluation of DEVO 
 
The quality evaluation of DEVO was conducted by OntoKeeper. It leverages the semiotic 

ontology metrics that measure specific traits of an ontology rooted in semiotic theory – 

syntactic, semantic, and pragmatic. A set of ontologies from NCBO Bioportal were 

collected to compare qualities of DEVO with ontologies that are of a similar domain. 

Dermatology Lexicon (DL), Human Dermatological Disease Ontology (HDDO), and the 

Skin Physiology Ontology (SPO) were used to compute their qualities with the semiotic 

framework of the ontology evaluation suite. 

Three domain experts were recruited to evaluate the consistency, complexity, and future 

application of the ontology. The annotation included three sections. The first section 

included 48 short answer questions to evaluate the accuracy of the ontology. Three experts 

had to review the definitions of 48 metaphoric terms from Table 2 of Kittler et al.’s third 

consensus paper [70] coded in the ontology language. The survey asked the evaluator 

whether they thought the defined ontology language correctly conveys the meaning of 

those terms. The second section was the evaluation of similarities between figures. Each 

expert received two free-response questions in the third section to evaluate the utility of 

the ontology: (1) Are the definitions provided by DEVO clearer, equally clear, or less clear 

than existing definitions (online/textbooks)? (2) Are there terms you use in your clinical 

practice that are missing from DEVO? If so, what are they? 



 

 
 
 

  
 26 

2.3 Results 

Using EVO as a foundation, visual elements from EVO (shapes S, textures T, colors C, 

patterns P, spatial patterns SP, strokes SK, points PT, spatial relationships SR, size SZ) 

were imported into DEVO with selection. There were also two newly created categories 

for DEVO: relative position RP, and body position BP.  

Shape (S) 

Structureless was added in DEVO as a new shape class. It is one of the basic elements from 

descriptive terminology, defined as an area lacking basic elements. In light of these basic 

elements, Circle, Line, and Polygon were chosen to integrate from EVO into DEVO. 

Polygon is a shape that was included in DEVO but not as one of the basic elements. It was 

mentioned in the Cobblestone pattern definition [70].  

Texture (T) 

The Perceived Visual Texture concept was added in DEVO to include Shiny Texture for 

the Milia-Like Cyst (Cloudy/Starry) patterns. In addition, raised and Sunken were also 

defined for the Ridge and Furrow patterns.  

Color (C) 

The most common colors found in the metaphoric terminology are brown, light-brown, 

blue-gray, and white. Because the color varies from different lesion background, the 

RGB/hex-value was not added in DEVO. Several new colors can be found in DEVO that 
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describe skin color more accurately, including Non-pigmented Color, Hypopigmented 

Color, Pigmented Color, Dark Color, Uniform Color, and Variable Color. 

(Hypopigmented is lighter than the surrounding skin color, Pigmented is darker). 

 

 

Figure 3. Visualization of Angulated lines concept from DEVO. 
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Pattern (P) 

Each metaphoric term corresponds to a pattern in DEVO, and as in EVO, a pattern is a 

composite of all of the visual elements. For example, Angulated lines is defined as gray-

brown lines that are connected at an angle or coalescing to form polygons.  Figure 3 shows 

the visualization of Angulated lines from DEVO. 

Spatial Relationship (SR) 

The Spatial Relationship concept from EVO was extended to include Interconnecting, 

Incomplete Connection, Non-interconnecting, Parallel, Orthogonal, Radial, Clustered, 

Distributed, Symmetrical, Asymmetrical, Uniform, and Variable Spatial Relationships in 

DEVO. In addition, shapes may use the object property hasSpatialRelationship to describe 

their spatial layout within the pattern. Additional object properties that describe the spatial 

relationships between two shapes include spatialCover and spatialMeet from EVO and 

spatialSurround (new in DEVO).  

Spatial Pattern (SP) 

DEVO extended the Spatial Pattern concept from EVO to include Polygon Formation, 

Square Formation, and Leaf-like patterns. Different from SR, SP describe special types of 

shapes that contain spatial relationships and combined to form a larger shape-like structure 
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within a pattern. For instance, the Rosettes pattern contains bright white circles arranged to 

form a square.  

Size (SZ) 

The Size concept from EVO was extended to include Small, Large, Long, Uniform, and 

Variable Sizes in DEVO. The small size was sufficient to describe small circles and short 

lines. Still, large and long sizes were defined separately to differentiate between large 

circles and elongated circles or ellipses (there were no instances of large or long lines).  

Relative Position (RP) 

RP is a new concept created for DEVO. It often describe the relative position of the pattern 

to the lesion, such as Center, Off-Center, and Periphery. Shapes may use the object 

property hasRelativePosition to describe their relative location within the skin lesion.   

Body Position (BP) 

BP was also a new concept created for DEVO to describe the lesion site position on the 

human body. It included the subclasses Face and Volar (palm or sole). Patterns may use 

the object property locatedAtBodyPosition to describe their location on the body, as some 

patterns only appear on certain areas (if unspecified, the lesion may be on any part of the 

body). However, it is important to note that this would be background information already 

known, as it is difficult to determine body position from an image of a small area of skin.  
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DEVO was coded using OWL2 with no logical inconsistencies revealed through the 

reasoner (FaCT++ 1.6.5). Figure 4 shows a screenshot of the ontology viewed in Protege. 

Based on EVO, some changes have been made in DEVO to accommodate knowledge in 

the field of dermatology.  

 

 

Figure 1. Protege screenshot for DEVO 
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2.3.1 Evaluation Results of EVO 

After completing the expert review, the answers were re-coded numerically: "X" (Don't 

Know)  and "N" (No agreement to the veracity of the statement) to "0" and "Y" (Yes) to 

"1". For the former, it was presumed that if the axiom was not clear, it should be counted 

as a negative. The percentages of "1"s for each evaluator were 0.90, 0.63, and 0.92. The 

percentage pairwise agreement among the evaluators was 72.9%, indicating there was 

majority agreement of the review by the evaluators. The average agreement of the veracity 

of the EVO computed to 0.82 (average of 0.90, 0.63, and 0.92), signifying the amount of 

accurate domain knowledge of visualizations that is encoded in EVO. 

2.3.2 Evaluation Results of DEVO 

DEVO contains 1047 classes, 47 object properties, and 16 data properties. For the expert 

evaluation, one annotator found 12 not equal to the original definition, and another 

annotator found 5 not exactly accurate. The last annotator agreed with all 48 terms. All the 

annotators found the definitions equally clear to the existing resources, and one of the 

annotators did not think the ontology missed anything. After incorporating their 

suggestions, all three annotators agreed with all 48 terms in the edited version. When asked 

about the utility/accuracy of the ontology, two annotators found our definition equally clear 

to the existing resources, and one annotator stated it is important to have an example picture 

to truly learn the terms.			
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The semiotic evaluation results are presented in Table 2, along with a side-by-side 

comparison with similar ontologies of the same domain - Dermatology Lexicon (DL), 

Human Dermatological Disease Ontology (HDDO), and the Skin Physiology Ontology 

(SPO).  

 
Table 2. Semiotic evaluation of DEVO with similar ontologies related to dermatology. 
 

  DEVO DL HDDO SPO 
Syntactic  0.782 0.417 0.577 0.692 

 Richness 0.564 0.333 0.154 0.385 

 Lawfulness 1.000 0.501 1.000 1.000 
Semantic  0.986 0.669 0.946 0.848 

 Clarity 0.988 0.999 0.998 0.983 

 Consistency 1.000 0.0004 0.934 0.981 

 Interpretability 0.964 1.000 0.901 0.575 
Pragmatic  0.020 0.220 0.065 0.006 

 Comprehensiveness 0.020 0.220 0.065 0.006 
OVERALL SCORE 0.597 0.436 0.530 0.516 

 
 

The overall score of DEVO was computed as 0.597, indicating a better than average overall 

score compared to DL (0.436), HDDO (0.53), and SPO (0.516). The syntactic score, which 

specifically measures the utilization of machine-level syntax and minimal logical 

consistency with syntax, was also better than average with a score of 0.782. This is due to 

the richness score (0.564), which indicates that DEVO utilizes a more extensive and diverse 

set of OWL2 expressions in the ontology compared to the others.  
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2.4 Discussion and limitation 
 
Necessary revisions to EVO were made based on the assessment. For the EVO evaluation, 

25 statements had two or three combinations of "X" (Don't Know) or "N", and were 

examined more closely. One statement conflicted with Definition 3 related to hasPattern 

having only one pattern. Functional characteristic of hasPattern was added to reflect that 

hasPattern can include more than one pattern. For 12 of the statements, it was revealed 

that the semantic definitions for the Polygons required a more accurate description of the 

number of points (e.g., “every decagon is something that has at most 10 points …”). The 

“most” part was redefined as "exactly." Another 10 statements needed clarification on the 

data property domain to define that it was a numerical value and not a literal (e.g., 

"everything is something that has at most 1 stroke-width that is Literal"). This was modified 

in the ontology to reflect a numerical value.  

When DEVO was first created, it tried to inheritate from the descriptive terminology, where 

there are five base elements defined to describe any dermoscopic features. Three elements 

(“dots,” “clods,” or “pseudopods”) were not directly added to DEVO as shape. One reason 

is that, in DEVO, the shape “Circle” was loosely defined as a rounded shape that may not 

have a uniform radius for maximal clinical utility, as it is unlikely that any skin lesion 

would be a perfect circle. “Dot” was defined as a circle of a small size. Thus, a circle in 

DEVO would also encompass the terms “clod,” “globule,” “ellipse,” etc. Another reason 

that some basic elements were not added is to ensure the machine intelligence of the 
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ontology. For example, the word “clod” itself is a metaphor that refers to a clod of the earth 

[90], which is less straightforward to understand than the word “circle.” Holes, follicle 

openings, and adnexal openings were all classified as types of circles in DEVO. Finally, 

since a pattern is a composite of shapes (Definition 3), “pseudopod” is a pattern, not a 

shape. It contains peripherally-located circles (Circle > hasRelativePosition > Periphery) 

meeting radial lines (Line > hasSpatialRelationship > Radial Spatial Relationship; Circle > 

spatialMeets > Line). Another pattern would then use the object property hasPattern 

instead of hasShape to note that it contains pseudopods (e.g., Starburst Pattern > 

hasPattern > Pseudopods).  

The weakest aspect of DEVO comes from the pragmatic/ comprehensiveness score that 

assesses the domain coverage based on the amount of ontology elements (instances, classes, 

objects, and data properties). The computed score for this was 0.02. This is reasonable 

considering dermoscopy is a subfield of dermatology and the ontology was built to 

standardize 48 specific metaphoric terms. The Dermatology Lexicon had the highest 

pragmatic/comprehensiveness score (0.22) due to its broad coverage of terms. Nonetheless, 

DEVO’s overall score for quality was better than similar dermoscopic and skin ontologies. 

The evaluation metrics for the qualities of DEVO indicate that the ontology is of higher 

quality when considering syntactic features, semantics, and coverage of the ontology.  

The Color concept in DEVO was extended to include more dermoscopic-related colors, 

such as Non-pigmented Color, Hypopigmented Color, Pigmented Color, and Dark Color. 
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These colors depend on the individual’s skin color and don’t have RGB and hex-value data 

properties. One element that is missing from DEVO is the spectrum of skin color. Some 

color definitions vary under different skin tones. For example, the “Blue White Veil” 

pattern contains white scar-like depigmentation that does not strictly look white on a dark 

skin tone. The Fitzpatrick scale can be added to further incorporate those situations.  

Additionally, the coverage of DEVO is limited to the 48 terms summarized in Kittler’s 

paper [91]. The table does not list certain features, such as color or location, for each term. 

Also, the scope of the terms included in the paper may not be comprehensive enough. In 

our free-response question, when asked about the coverage of DEVO, one annotator did 

not identify any terms from their clinical practice missing from DEVO. Another annotator 

provided one term “Vessels as dots”, which is useful for inflammatory lesions but missing 

from DEVO. The third annotator found vessel patterns missing in general, such as 

arborizing, glomerular, hairpin, crown, serpiginous, comma-shaped, dotted, serpentine or 

irregular linear, polymorphous, corkscrew, etc. More dermoscopic terms are used in 

clinical practice and should be integrated in the ontology.   

Three experts’ feedback generated great insights how we can further improve DEVO. For 

one, some classes from EVO did not adapt well to DEVO. One term that all three annotators 

commented on is “Stroke”. They found it hard to understand and not accurately defining 

dermoscopic lesions because a well-demarcated lesion is different from having a border or 

outline. Furthermore, each annotator had their own interpretation of the dermoscopic terms, 
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and there were some slight differences between them. During the evaluation, sometimes it 

was not the ontology definition that the annotators disagreed with, but the original 

definition itself. For example, a grey-brown color is an important property of “Annular 

Granular Pattern” which was not mentioned in the original definition.  Another reason 

some evaluators disagreed with terms in the ontology was because  some details that were 

not directly related to the dermoscopic features are still important to include. For example, 

the “Rainbow Pattern” is detected under polarized light dermoscopy. The annotators also 

helped better understand some terms, for example, “ridge pattern” was defined as lines that 

have variable and distributed spatial relationships in the first version. The annotators 

pointed out that “skin lines” would be more accurate. 

Some expert reviewers provided great suggestions for consistency, recommending that if 

a certain category was defined for one term, then it should be included as a feature for all 

the other terms. For example, if there’s a defined color category, all the related terms should 

have a color definition. A bottom-up method was adopted to summarize the metaphoric 

terms in the Kittler’s paper [91], but there are still blanks to fill. DEVO was revised to 

address all of the above suggestions. 

In summary, the development of the ontologies facilitates the learning process for new 

trainees and enables machine-based agents to store knowledge and perform essential 

machine intelligence. This may even facilitate more comprehensive diagnostic rules to be 

derived in the dermoscopy domain. 
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Chapter 3: Semi-Supervised Skin Disease Detection via a Combination of Human 

and Artificial Intelligence 

 

3.1 Introduction 

The automated classification of dermoscopic images through CNNs has emerged as a 

reliable supplement to visual skin examination for the detection of skin cancer 

[31,62,63,92]. CNNs have the potential to extend reliable skin cancer recognition to 

clinicians who lack special dermatology training, including nurse practitioners, physician 

assistants, and primary care physicians. In addition, the use of CNNs enables the evaluation 

of skin lesions via telemedicine. Images captured on smartphone cameras and analyzed by 

similar algorithms have been shown to identify melanomas with an accuracy similar to that 

of board-certified specialists [93]. Some CNN models even exhibit greater sensitivity and 

specificity in diagnosing early melanoma than inexperienced clinicians [30,94].  

Recent studies have focused on attempts to combine semantic knowledge with CNN to 

arrive at a more accurate diagnosis [64,95–97]. Several studies have suggested that 

diagnoses arrived at by using more than one input are more accurate than those using only 

a single input [98–100]. For example, one study showed that non-dermatologist physicians 
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were able to improve their accuracy in classifying pigmented lesions when combining their 

knowledge of age, sex, and localization of the lesion with deep-learning frameworks [64]. 

Earlier research added factors such as age, body site, the proportion of dysplastic nevi, 

nevus count, and family history of melanoma to a computer image-analysis program and 

found that the addition of clinical data significantly improved the ability to distinguish 

between benign and malignant skin lesions [41]. Another study found an improvement in 

the detection of basal cell carcinoma after adding factors such as lesion size and elevation, 

age, gender, and lesion location [101]. Kawahara et al. conducted similar work when 

proposing a multitask deep CNN trained on multimodal data to classify the seven-point 

melanoma checklist criteria and perform a skin lesion diagnosis [102]. Even though they 

integraded each feature from the seven-point checklist using loss blocks, their studies did 

not integrate the knowledge with the CNN architecture. One major constraint of these 

studies is the lack of high-quality data related to diagnosis, for example the dermoscopic 

features that dermatologists use to diagnose skin lesions.  

In this study, the limitation was addressed by developing a semi-supervised deep-learning 

framework that applied the results learned from a small annotated dataset to a larger 

unlabeled dataset and imitated the human diagnosis process in the CNN structure. In this 

dissertation, the three-point checklist was chosen to represent human knowledge. The 

three-point checklist is easy to interpret and is highly sensitive for diagnosing melanoma 

vs. melanocytic nevus [103]. It evaluates dermoscopic images of pigmented lesions based 
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on the presence or absence of (1) asymmetry, (2) atypical pigment network, and (3) blue-

white structures. If any of these features were detected in the skin lesion image, one point 

was added to the scoring for that image. The scoring range for each image is 0 to 3. The 

higher the score (usually higher than two), the higher the risk of melanoma. If the score is 

zero or one, the lesion is more likely to be benign. These three-point automated 

classification outputs can assist in a provider’s decision to biopsy a lesion or refer the 

patient to a specialist for a more thorough evaluation. 

3.2  Methods 

3.2.1 Dataset  

All images from labeled and unlabeled datasets were drawn from the ISIC archive. The 

“label” here represents the three-point checklist feature labels. The small labeled dataset 

consisted of an even distribution of melanoma and melanocytic nevus dermoscopic images 

from ISIC 2019. The large unlabeled dataset was drawn mainly from ISIC 2020, containing 

the 584 melanoma and 5,193 melanocytic nevus dermoscopic images. To balance the 

dataset, 4,062 melanoma images were added from ISIC 2019, excluding images in the 

small, labeled dataset. Each dataset was divided into training and validation sets in an 80/20 

ratio and rotated, and five-fold cross-validation was used to validate the models. (An 

additional 400 images served as a hold-out testing set.) The algorithm evaluated 

dermoscopic images of pigmented lesions based on the three-point checklist. Table 3 

presents the number of images for melanoma and melanocytic nevus skin diseases.  
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Table 3: Number of images for labeled and unlabeled datasets. 

 
 

 

 

3.2.2 Annotation of Images using the Three-point Checklist 
 
The experiment was developed based on a gold standard. Two annotators rigorously 

reviewed each image. If consensus was reached, the resulting diagnosis was annotated. If 

not, a third annotator re-evaluated the image. First, the three annotators had training 

sessions to develop consensus annotation guidelines. The annotators were provided with a 

small image set annotated by domain experts as a means to annotate and evaluate. During 

this phase, the annotators were allowed to discuss their different understandings. After the 

inter-rater agreement reached at least 70%, annotators moved to the second step, in which 

they annotated images independently. The whole image dataset was divided into three 

subsets, and each annotator was assigned two subsets so that every image had at least two 

annotation results. The final inter-rater agreement Kappa-Cohen score was 0.64, which 

indicated substantial agreement. If any images had different annotation results, the third 

Disease Unlabeled Dataset Labeled Dataset 
Melanoma (MA) 4,646 450 
Melanocytic nevus (MN) 
Total 

5,193 
9,839 

450 
900 
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annotator proposed a label, after which a majority vote was used to determine the final 

label. Overall, this was a very time-consuming process.  

3.2.3 Image Pre-processing 
 
Crop and resize  

Because the training dataset came from three data sources, each had a different resolution 

of the images. There could be one lesion that took up the entire image or just one corner of 

the image. Hence, a rule was developed to crop and resize all of the training images, which 

improved the model's performance.  

Color constancy  

The color of dermoscopic images varied considerably due to the different imaging sources 

and illuminations. Therefore, it was essential to calibrate the color of the images in the pre-

processing stage to reduce possible bias for the deep neural network. Catarina et al. 

compared four color-constancy algorithms (Gray World, max-RGB, Shades of Gray, and 

General Gray World) to calibrate the color of dermoscopic images for the melanoma 

classification system [104]. These algorithms improved the system performance by 

increasing sensitivity and specificity, and Shades of Gray achieved better results than the 

other color-constancy algorithms. Therefore, Shades of Gray was chosen as the color-

constancy algorithm to calibrate the color of the dermoscopic images before the training 

stages. The calibration procedure involved two steps. First, the color of the light source in 
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the RGB color space was estimated. Then the image was transformed using the estimated 

illuminant.  

Contrast-limited adaptive histogram equalization (CLAHE)  

CLAHE was used to improve the contrast in images. Unlike histogram equalization, it 

computes several distinct sections of the image and uses them to redistribute the brightness 

values of the image. It improves the local contrast and enhances the edges of objects in the 

image. 

 

 

 

          
(a)                                                       (b) 

 
Figure 5. Dermoscopic images: (a) Original; (b) After CLAHE operation.  
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3.2.4 Model Architecture 
 
The semi-supervised learning framework for the prediction of skin disease made use of a 

small set of labeled images to classify and label a larger set of unlabeled images. The 

labeled dataset contained 900 images labeled with disease labels and the three-point 

checklist annotation, while the unlabeled dataset contains 9,839 images with only disease 

labels.  

The architecture of the classification model is presented in Figure 6 and contains primarily 

three components. The input component involved the pre-processing of both labeled and 

unlabeled images. The output of the input component was fed into two branches. One 

branch was the supervised learning component that used ResNet. Inside of this branch  the 

representation of each image was associated with feature supervised loss using the three-

point labels, and the disease supervised loss using the disease label and with the ranking 

loss calculated by the sum of three features [105]. The other branch was the semi-

supervised learning component, whereby a consistency loss was optimized using the output 

from an exponential moving average (EMA) model [106]. Finally, the three types of losses 

were combined, and coefficients were used to balance their weights. A detailed description 

of these three components is provided in this section.  
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3.2.4.1 Supervised learning + Ranking loss 
 
Supervised learning was conducted on the 900 labeled dataset. Using the three-point 

checklist, each feature was given a binary score of 0 or 1 in the training phase, indicating 

whether it existed in the image. A total score higher than 2 suggests that the lesion is more 

likely to be malignant. This knowledge was incorporated into the traditional cross-entropy 

loss function to optimize the skin disease classification results in the ranking loss format. 

 

 

Figure 6. Architecture of the semi-supervised learning framework. 
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3.2.4.2 Semi-supervised learning  
 
Image annotation requires not only enormous time investment but also domain expertise 

of human annotators. Inspired by the research of Tarvainen and Valpola [106], a semi-

supervised scheme was developed based on their “mean teacher” framework to automate 

the feature annotation process of skin lesion images. The adapted model can utilize the 

information from small-scale labeled image datasets  and make skin feature and disease 

predictions on larger, unlabeled image datasets. The predicted features can be utilized 

simultaneously in the training phase to improve the disease classification accuracy. The 

supervised loss is associated with the disease label of each image and denoted by the cross-

entropy function. In the semi-supervised learning component, the mean-teacher strategy 

was adopted to minimize the consistency loss between labeled and unlabeled datasets and 

to average the model weights from supervised and unsupervised learning.  

 

3.2.5 Theory/Calculation 
 
The ranking loss function forced the model to learn a predefined diagnostic rule: the 

samples with higher scores are more likely to have melanoma. The ranking loss was 

computed from each pair of samples in a batch, denoted as: 𝑜$% ≡ 𝑓(𝑥$) − 𝑓(𝑥%), where 𝑓 

is the logit corresponding to the disease class, the posterior 𝑃$%, and the desired target values 

𝑃M$%: 
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𝑃&'MMM = N
0										𝑠𝑐𝑜𝑟𝑒(𝑖) < 	𝑠𝑐𝑜𝑟𝑒(𝑗)
1/2				𝑠𝑐𝑜𝑟𝑒(𝑖) = 𝑠𝑐𝑜𝑟𝑒(𝑗)
1									𝑠𝑐𝑜𝑟𝑒(𝑖) > 𝑠𝑐𝑜𝑟𝑒(𝑗)

                          (1) 

 

Then, the cross-entropy loss function can be represented as: 
 

𝐶$% ≡ 𝐶W𝑜$%X = −𝑃M$%𝑙𝑜𝑔𝑃$% − W1 − 𝑃M$%X logW1 − 𝑃$%X		 (2) 
 

	𝑃$% was computed from 𝑜$% using the sigmoid function as follows, the loss function can be 
further rewritten as: 
 

																													𝑃$% ≡
(!"#

")(!"#
                   (3) 

														𝐶$% = −𝑃M$%𝑜$% + log	(1 + 𝑒*"#)                         (4) 

 

The EMA model behaved as the teacher model on the unlabeled set, whereas the ResNet 

model behaved as the teacher model on the labeled set. This method constrained the model 

to behave similarly to the past models during each update to find potentially flatter local 

minima and avoid singularity points where a small update would result in a large behavior 

change in the model. The mean-teacher strategy proved useful in previous works, and the 

consistency cost is defined as: 
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𝐽(θ) = 𝐸+,-$,-[∥ 𝑓(𝑥, 𝜃., 𝜂.) − 𝑓(𝑥, 𝜃, 𝜂) ∥]#                 (5) 

                         where 𝜃./ = 𝛼	𝜃./0" + (1 − 𝛼)	𝜃/ 
 

Finally, the ranking loss (RL), disease supervised loss (DSL), feature supervised loss (FSL), 

and consistency loss (CL) were added together to train the model. 

 

																											𝐿123 =	𝛼" ∙ 𝐿4 + 𝛼# ∙ 𝐿51 + 𝛼6 ∙ 𝐿71 	+ 𝛼8 ∙ 𝐿9 														(6) 

 

3.3 Results 
 
The models were built based on the state-of-the-art ResNet model. All ResNet-18, ResNet-

50, ResNet-152, and Resnext50_32x4d models were compared, and there was no 

significant difference in classification accuracies. To facilitate the training process, a 

relatively light architecture, ResNet-18, was chosen as baseline, with a batch size of 128, 

SGD optimizer, and ReduceLROnPlateau learning rate decay (mode = “min,” factor = 0.5, 

threshold = 0.01, patience = 7, verbose = True).  

The first task was to test whether the model produced increased classification accuracy 

after adding human knowledge.  The three-point checklist knowledge was transformed and 

represented in the Ranking Loss format. Many state-of-the-art CNN model architectures 
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have been developed for image recognition task, some of which achieved great 

performance on the skin lesion recognition task on ISIC datasets. Yiming Zhang et al. 

(2021) reported that DenseNet [107] achieved superior performance over other deep 

learning approaches on the melanoma classification task using ISIC 2020 dataset [108].  

MobileNet [109] is another CNN model developed in recent years, and has been adapted 

to ISIC image classification tasks multiple times [110,111]. The state-of-the-art CNN 

models mentioned above were compared to choose a CNN architecture as the baseline 

model.  The comparison outcomes are shown in Table 4. All the models were trained using 

the 900 annotated-image dataset (Table 3). The ranking loss was combined with the 

baseline model to show the improvement of accuracy after adding human knowledge. 

 

Table 4: Five-fold cross validation results for the disease classification task.  
 

Model Five-Fold Accuracy -Mean (SD) 
MobileNetV3 (Pre-train = True)          0.8733 (0.0113） 
DenseNet (Pre-train = True)          0.8856 (0.0114) 
Baseline (ResNet-18, Pre-train = True)          0.8867 (0.0191) 
Baseline + Human Knowledge (RL)          0.8943 (0.0115) 
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As shown in Table 4, the pre-trained baseline model reached the same level of accuracy on 

the large 9,000-image dataset. After adding the human knowledge, the average accuracy 

improved further.  

The experiment described above was based on human-annotated three-point feature labels. 

The entire process, from recruiting annotators to finally reaching agreement, took more 

than two months. Hence, we developed the semi-supervised model to automate the feature-

annotation process. We combined the generated features with human knowledge to test 

whether such knowledge can help to improve the disease classification accuracy.   

To evaluate the performance of the three-point feature classification for the semi-

supervised model, we calculated the testing accuracy and area under the receiving 

operating characteristic curve (AUC) on a separate hold-out testing dataset that contained 

100 images with annotated three-point features and disease type. To determine whether 

having a larger unlabeled dataset benefits the accuracy of the semi-supervised model, we 

designed two unlabeled datasets. One was relatively small, with 400 unlabeled images 

(separated from the 9,000-image dataset), and the other was larger, containing 9,000 

unlabeled images (Table 3). We tested the performance for feature and disease 

classification using the models shown in Table 5, for which the baseline model was trained 

on labeled 900-image dataset for supervised training. “Semi-small” means that a small 

unlabeled dataset (400 images) was used for the semi-supervised model, while a larger 
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unlabeled dataset (9,000 images) was used for the “semi-large” unsupervised training 

process. The combination of feature loss functions was added.  

 

Table 5: Results for Semi-supervised models of disease/feature classification tasks with 

different loss functions: Disease Supervised Loss (DSL), Feature Supervised Loss (FSL), 

and Consistency Loss (CL) 

 

 
Note. “ * ” means the weight of the “Asymmetry” feature was emphasized in the loss 

function. The results are displayed in “Accuracy, (AUC)” format. 

 
 
 
As seen in Table 5, semi-small achieved the best accuracy for feature label classification, 

while semi-large had the best performance for the disease classification task. Adding the 

feature supervised loss function was helpful for the feature classification task.  

Model (Test Accuracy, 
AUC) 

Asymmetry Atypical 
Network 

Blue-White 
Structure 

Disease on 
100-Labeled 

Test Set 
Semi-Small/Mean 
Teacher[106]  

0.73, (0.777) 0.86, (0.8294) 0.74, (0.8295) 0.78, (0.8583) 

Semi-Small/  
DSL+FSL+CL 

0.74, (0.792) 0.89, (0.8752) 0.74, (0.8117) 0.72, (0.7746) 

Semi-Large/  
DSL+FSL+CL  

0.73, (0.8036) 0.85, (0.8474) 0.76, (0.8444) 0.79, (0.8402) 

Semi-Large/  
DSL+*FSL+CL  

0.75, (0.7932) 0.88, (0.8752) 0.71, (0.7951) 0.69, (0.7971) 
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3.4 Discussion and Limitation 

3.4.1 Annotation Process 
 
Annotators in this study were medical students with no expert training in dermatology. 

They evaluated images based solely on tutorials from online resources and textbooks. 

Without any specific training,  each of the annotators initially had a different idea of what 

each feature looked like. Preliminary agreement scores may have been improved if 

annotators had been given reference images from which to learn the dermoscopic features.  

Another difficulty in analyzing the images was the use of different screens with various 

color-display settings. One common error encountered was the inability to properly 

characterize blue structures when “night light” or “blue light” filters were activated. As 

such options can be automatically engaged on a schedule, however, this could lead to 

annotation errors. The use of different screens led to initial disagreement among the 

annotators but was corrected by proper calibration and ensuring that no color filter was 

active. 

Discovering that medical students’ concepts of each checklist feature differed greatly 

highlights the potential value of the algorithm as an educational tool. Suppose medical 

students were able to evaluate a dermoscopic image and check their three-point annotation 

against the algorithm’s validated output. In that case, it would help them to develop their 

ability to visually identify each dermoscopic feature. This concern could be addressed by 
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proposing an ontology that can integrate the domain knowledge on dermoscopic features 

and represent the features in a more standardized, computer-readable format. 

One limitation of this study was that the majority of the images are taken from Caucasian 

skin. This has implications for whether the algorithm can effectively detect melanoma in 

colored skin. Training the algorithm to identify lesions in more than just one group of skin 

colors would be valuable in helping to screen a larger population of patients at risk of 

melanoma. Another limitation was that the image quality could have been decreased due 

to shadows, hairs, reflections, and noise, leading to an inadequate lesion analysis, as 

discussed in an earlier study [112]. 

3.4.2 Classification Models 
 
For the first task, after combining transfer learning and human knowledge, the loaded 

model weights from the large dataset improved the classification accuracy from an average 

of 0.8866 to 0.8943. This shows that the ranking loss has a positive impact on classification 

accuracy. Future work will focus on expanding the use of human knowledge to develop 

more complicated diagnostic rules to test their impact on computer algorithms. 

For the feature- and disease-classification task that used semi-supervised architecture, 

models trained on the large dataset did not outperform the model trained on the smaller 

annotated dataset. This is reasonable because the large dataset did not have gold-standard 
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annotated features; it learned only from the teacher model. Hence, it is difficult for the 

student model to outperform its teacher model.  

During the human annotation process for the three-point checklist, the “atypical network” 

had the lowest inter-agreement rate among the three annotators. However, for the computer 

feature-classification task, the “atypical network” had the highest classification accuracy. 

This suggests that the algorithm had the advantage of learning certain image features that 

might be a challenge for human experts. Again, this shows that human intelligence and AI 

can complement each other.  

Because the image dataset was from the ISIC archives, the performance of the proposed 

algorithm was also compared with the winner of the ISIC 2020 leader board 

(https://www.kaggle.com/c/siim-isic-melanoma-classification/leaderboard). The current 

best performance from the ISIC data challenge has an AUC of 0.949. The AUC of the 

proposed model on the 400 unlabelled-image testing set (from ISIC 2020) is 0.9848 with 

different settings of disease category. The ISIC challenge has an “unknown” disease 

category other than melanoma and melanocytic nevus which was not included in this 

project.  

Another interesting finding was seen for Model (Baseline + Semi-Large / DSL+*FSL+CL) 

in Table 5, where the weight of the “asymmetry” feature’s loss function was emphasized. 

The result shows an improvement of 2% for the testing accuracy of “asymmetry”, as well 
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as 2–3% increase for the classification of the “atypical network”.  Nevertheless, such 

modification negatively affected the classification accuracy of the “blue-white structure,” 

which was decreased by 3–5%. In summary, after adding the extra knowledge, the 

proposed model has significant improvement compared to the baseline, indicating the 

power of semi-supervised learning. 

3.4.3 Future Steps 
 
The current experimental setting for the disease classes and rules of the three-point 

checklist is only a demonstration of how researcher can integrate the human thinking 

process into the structure of CNNs. Numerous diagnostic rules are being developed, as 

dermatology is thriving. The future work includes a summarization of all of the diagnostic 

rules and dermoscopic features mentioned, as well as their relationship with skin diseases, 

into an ontology and to further accelerate the automation process of clinical decision 

support by computer algorithms. The trained algorithm can automate the three-point 

checklist annotation process and apply it to a broader range of image databases.  
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Chapter 4: Computer Vision Aided Feature Extraction for Melanoma Detection 

4.1 Introduction 
 
Feature extraction is the most critical module in the computer-aided skin disease diagnosis 

model. Different feature extraction methods have been performed to obtain an appropiate 

representation of skin lesions. Among them, the most popular methods are deep learning 

based and hand-crafted. Deep learning features ultilize CNNs to automatically extract and 

optimize feature maps. Computer-aided algorithms, especially deep learning, have shown 

great improvement on skin imaging classification over traditional hand-crafted feature 

detection [113]. However, hand-crafted features can preserve lower-level features that are 

more interpretable. Studies combining deep learning based and hand-crafted features have 

been completed to improve the overall model performance [114–118]. 

Aim 2 has already proven that combining the human-annotated three-point checklist 

features with CNN can help CNN arrive at a more accurate and more interpretable 

diagnosis. Furthermore, the feature classification can be automated through a semi-

supervised learning model. However, challenges still exist. First, the teacher model in 

semi-supervised learning still requires time and labor for image annotation. Several stages 
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are involved to establish the gold standard for annotations. First, training sessions for the 

annotator to make sure they share the same knowledge of features. Then, annotation testing 

to calculate their inter-agreement score. Furthermore, the accuracy of CNN training 

depends heavily on the quality of human annotation, where individual bias is unavoidable. 

Even a group of qualified, experienced dermatologists will have disagreements. Therefore, 

this study aims to determine whether using computer vision aided hand-crafted features 

can help improve classification accuracy. Just as aim 2, this study focus on hand-crafting 

dermoscopic features from the three-point checklist. 

Numerous studies have been conducted concerning human annotation using the three-point 

checklist to help classify melanomas [103,119,120]. Soyer et al. demonstrated that the 

three-point checklist also had a diagnostic value in screening procedures when used by a 

non-expert. In their study, six novice dermoscopists were asked to evaluate 231 clinically 

suspicious lesions after a one-hour introduction to the three-point checklist. Finally, the 

non-experts were able to identify malignant pigmented skin lesions with a sensitivity of 

96% and a specificity of 33%. The pilot study was followed by Zalaudek et al. and 

performed on a larger dataset to re-evaluate the preliminary results. The study was open 

both to experts and non-experts in dermoscopy who, after a short web-based dermoscopy 

training, evaluated dermoscopy images of 165 skin lesions following the algorithm 

mentioned above. The results showed good inter-observer reproducibility with a kappa 

value of 0.53, sensitivity of 91% (not influenced by the observers’ experience), and an 
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overall specificity of 72% for malignancy (significantly influenced by observers’ skills). 

The best predictor of malignancy was asymmetry, followed by the blue-white structures 

and atypical network. In these studies, participants with varying experience were able to 

score laboratory confirmed non-melanoma and melanoma lesions using just the three-point 

checklist criteria.  

Computer algorithms can obtain a higher sensitivity for melanoma detection compared 

with inexperienced dermatologists [121]. Celebi et al. proposed a decision tree using the 

feature vector detected from the color and texture of dermoscopy images to classify the 

blue-whitish veil [122]. Mirzaalian et al. trained a support vector machine (SVM) classifier 

based on a feature vector to classify the typical network [123]. Studies have been done to 

develop skin feature extraction computer algorithms. Some researchers combine the 

extracted features with conventional machine learning techniques: Total Dermoscopic 

Score, K-Nearest Neighbor, or SVM [68,120,122–124]. The deep learning-based method 

gives more accurate and precise detection of melanoma than conventional supervised 

learning models [124]. However, none of these studies related to the three-point checklist 

have tried to combine the extracted features with CNN imaging features to arrive at a 

diagnosis.  

4.2 Methodology 

4.2.1 Extract Region of Interest (ROI) 
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The first step of image analysis starts with segmentation. Several studies have been 

conducted to locate the main region of interest (ROI). First, the images were converted to 

grayscale and the IsoData method was used to calculate thresholds to separate lesions from 

the background. Second, elevation maps were calculated using the Sobel gradient, which 

is frequently used in computer vision to detect edges and proved better than the classical 

Otsu methods. [127] Then, the watershed algorithms were used to label all the regions of 

the elevation map followed by several morphology operations, such as binary_fill_holes, 

remove_small_objects, and erosion. The segmented binary mask resulting from this stage 

and the associated image can be seen in Figure 7, where different colors represent different 

mask regions. 

 

(a) (b) 

               

 

  Figure 7. (a) Original image; (b) Segmented binary masks in different colors. 
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From all the labeled regions, the main ROI was extracted based on each region's centroid 

location and area size. All three-point checklist feature extractions, asymmetry, atypical 

network, and blue-white structure, were based on the segmented ROI.  

4.2.2 Extract Feature of Blue-white Structure 
 
Unlike other feature extraction methods, the extraction of Blue-white Structure relies 

heavily on the pixel value [122,128,129]. Therefore, the segmented binary label mask was 

overlayed with the original image. Based on the knowledge from aim 1, the blue-white 

structure is similar to blue whitish veil that has a structureless shape with blue/white filled 

colors. While its shape is not fixed, we decided to extract the percentage of pixels from 

each image that met the blue/white color standard. At first, several annotated images with 

Blue-white Structure were analyzed to find the RGB value range for the blue/white color. 

However, unlike the standard color, the RGB value of the blue-white structure  depends 

greatly on the lesion background. The decomposed RGB value can range from 50 to 200 

and still form the blue/white color. Therefore, the extraction of pixels focused on the 

relative percentages of three channels’ values. The segmented RGB mask and the extracted 

blue-white pixels can be seen in Figure 8. 
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4.2.3 Extract Feature of Atypical Network 
 
The typical network consists of lines uniform in width and color, [130,131] whereas the 

atypical network is a pigment network with irregular holes and lines varying in size and 

color [132]. “Branched streaks” is often regarded as one of the characteristics of the 

atypical network, which looks like a mesh of wires distributed between lines of the typical 

network. Therefore, one way to distinguish atypical network is to calculate the variance of 

 
    (a) 

 

    
(b) 

 

     
 (c) 

 

 
Figure 8. (a) Original images; (b) segmented RGB ROIs; and (c) extracted blue/white 

pixel points. 
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the size of areas enclosed by lines [126]. Several studies have tried to use the Laplacian of 

Gaussian (LOG) filter to identify the pigmented reticulum [126,133,134].  LOG can detect 

sharp changes of intensity with various kernel sizes. This study used a kernel size of 7 to 

identify the meshed atypical network. After the edges were detected, erosion reconstruction 

was applied to fill the area. Then isolated regions were enclosed by removing edges from 

the filled image. The images transformed in this process are shown in Figure 9. 

 

 
 (a) 

  
(b) 

 
(c) 

 
                          (d) 

 
Figure 9. (a) Segmented ROI; (b) segmented binary mask; (c) rotated binary mask; 

and (d) rotated grayscale ROI. 
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4.2.4 Extract Feature of Asymmetry 

Based on DEVO (ontology from aim 1), the asymmetry feature refers to the asymmetry of 

patterns and structures. It can be defined as asymmetry in the distribution of dermoscopic 

color and structures in one or two perpendicular axes. Most studies focused only on shape 

asymmetry. They calculated the percentage of overlapping pixels after rotating the lesion 

around two axes. In addition, Tenenhaus et al. [135] proposed texture asymmetry by 

finding the quadratic error averages between the intensity of overlapping pixels after 

rotation. This is similar to the color asymmetry and brightness asymmetry proposed by 

Kasmi [136]. However, none of them considered the asymmetry of patterns or structures. 

Unlike those computer algorithms that focus on shape and lightness, clinical evaluation 

was performed by assessing the asymmetry of pigment distribution and dermoscopic 

structures, including the distribution of the atypical network. [137]  

The asymmetry index is a vector of three measurements in this study: shape asymmetry,  

brightness asymmetry, and pattern asymmetry. Shape asymmetry focuses on the 

calculation of the difference of areas across two axes. The segmented markers were first 

rotated through their centroid by the angle between the x-axis and the major axis of the 

same-size ellipse. Then the marker was converted to a binary matrix to perform bitwise 

negation. The illustration of the markers mentioned above is shown in Figure 10. Finally, 

the original matrix was multiplied by the vertically and horizontally flipped bitwise matrix 

to calculate the asymmetry index.  
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To calculate brightness asymmetry, all the outlying pixels were filtered by the mean 

function. The extraction of the atypical network was utilized for the pattern asymmetry 

index calculation. The same rotation and asymmetry calculation algorithms were 

performed to evaluate three measurements. The final asymmetry index was the sum of the 

three measurement indexes. Asymmetric lesions tended to have larger index value.  

 

 

 
                                  (a) 

 
    (b) 

 
                                  (c) 
 

 
                         (d) 

Figure 10. (a) Segmented ROI; (b) segmented binary mask; (c) rotated binary mask; 

and (d) rotated grayscale ROI. 
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4.2.5 Evaluate the Computer Vision Rated Features  
 
Two evaluations were done to compare the performance of automatically computed 

features with human-annotated features. First, a direct comparison of the precision and 

recall for both the computer algorithm and human annotators on a 60-image dataset was 

performed. This dataset was annotated separately and agreed upon by two domain experts, 

therefore, it is considered the gold-standard. Second, the computer vision rated features 

were combined with the CNN via a weighted multi-loss objective function. The experiment 

was conducted on the same 900 labeled datasets from aim 2 to compare the results. The 

only difference in aim 3 model was that feature labels were generated entirely by computer 

algorithms. The ranking score label was updated to the sum of three computer-extracted 

features.   

4.3 Results 

4.3.1 Performance of Computer Algorithm vs. Human Annotators 

The evaluation was carried out to compare computer-rated features' performance with the 

human-annotated results (generated by two medical students with proper training). Both 

results were compared to the gold standard. The precision and recall for each feature are 

shown in Table 6.  
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Table 6. Performance of Computer Algorithm vs. Human Annotators. 

 Asymmetry Atypical Network Blue-white Structure 

 Precision Recall Precision Recall Precision Recall 

Computer  0.3243 0.8571 0.8511 0.8889 0.7368 0.7778 

Annotator 1 0.3871 0.8571 1.000 0.2445 0.8485 0.7778 

Annotator 2 0.3793 0.7857 1.000 0.200 0.9063 0.8056 

 
 
 

Computer and human annotations performed at the same level on the asymmetric feature, 

with human annotators having better precision scores but lower average recall scores. The 

same situation applied to the blue-white structure, except that the average recall scores for 

human annotators were slightly higher. Finally, the atypical network feature had a different 

performance pattern, where human annotators had an average precision score of 1.0 but 

only a 0.2 recall score.  

The aim 2 model was compared to test if the computed dermoscopic features can also help 

with skin image classification. Comparison was conducted using both human-annotated 

and computed feature loss. In addition, the ranking loss was also calculated based on the 

input feature scores. Five-fold cross-validation results are shown in Table 7.  
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Table 7. CNN Performance Results Combined with Human-Annotated or Computer-

Rated Features.  

 

 

 

As seen from Table 7, after adding feature loss and ranking loss, both human-annotated 

features and computed features had an approximately 1% increase in the average accuracy.  

4.4 Discussion  

The precision and recall results suggest that the computer algorithm performed similarly 

to the human annotators for both asymmetry and blue-white structure features. For the 

atypical network, however, the preference depends on the application scenario. The 100% 

precision score with only a 20% recall score suggests that annotator didn’t misclassify 

normal lesion as atypical network, but also failed to identify most of the positive cases. The 

computer algorithm, on the other hand, scored equally well in precision and recall. Given 

that melanoma is highly lethal if not treated, if users are willing to sacrifice the precision 

                   Model Five-Fold Accuracy - Mean (SD) 

Baseline (ResNet-18, Pre-train = True) 0.8756  (0.0147) 

Human Annotated Feature Loss  0.8789  (0.0124) 

Human Annotated Feature Loss + RL 0.8800  (0.0163) 

Computed Feature Loss  0.8867  (0.0083) 

Computed Feature Loss + RL 0.8833 (0.0099) 
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score to identify as many positive cases as possible, then the computer algorithm would be 

a better choice.   

The results of adding feature loss were favorable but did not meet expectations. This could 

be due to the inexperienced human annotators, hence the importance of a good method for 

feature extraction. Feature loss plus ranking loss, on the other hand, showed an 

improvement in both human-annotated and computed features experiments.  

One limitation of this study is that images were taken under different lightings. Since the 

feature extraction of blue-white structure relies heavily on pixel values, the color constancy 

algorithm could not be applied. Including a color calibration plate when taking the image 

can help standardize the background colors. Furthermore, thresholds were used to convert 

the numberic hand-crafted features into binary scores at the cost of losing extra information. 

The feature loss function could be altered using calculated numeric values for each feature.   

This study can be further applied to more dermoscopic features and a wider range of skin 

diseases, such as actinic keratosis, basal cell carcinoma, and dermatofibroma etc. Take  

melanoma for example, it has more clinically associated features including broadened 

network, milky-red areas, and scarlike depigmentation [70]. Adding more feature criteria 

can help better identify the disease category. Since these features can be extracted by 

computer vision algorithms, massive amount of time could be saved that would otherwise 

be spent on human annotation. 



 

 
 
 

  
 68 

 

Chapter 5: Conclusion, Contribution, and Innovation 

5.1 Conclusion 
 
With the growing importance of dermoscopic analysis to diagnose skin diseases, the 

vocabulary of dermoscopy has rapidly expanded without standardized control, creating 

barriers for general research and education. Ontologies are computable artifacts 

representing and modeling information from a domain space that software can later 

leverage to understand domain knowledge. As a result, EVO can help decompose the visual 

elements of physical entities, while DEVO can harness EVO to formalize the definitions 

of dermoscopic metaphoric terms. The standardized dermoscopic vocabulary DEVO may 

enhance trainee education and patient care. The future goal is to generate responses to 

queries about dermoscopic features and integrate these features with diagnostic rules for 

skin diseases. 

The results from aim 2 have shown that combining diagnostic rules with the three-point 

checklist classification algorithm can yield benefits that improve patient access to care and 

diagnostic accuracy. This study is distinctive because it combined the semantic knowledge 

from the three-point checklist with a computer algorithm (CNN) to arrive at a more 

accurate and interpretable diagnosis. The CNN classification was conducted based on more 
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information than just the imaging pixels. Due to the time and labor involved in the image-

annotation process, enormous imaging datasets remain unannotated. The proposed semi-

supervised learning framework can help automate the annotation process, enabling the 

reuse of many skin imaging datasets, which is also beneficial for the robustness and domain 

adaptation of the deep-learning model.  

Aim 3 showed the benefits of adding the 100% computer-generated three-point checklist 

features into CNN. The improvement was not significant, but adding computed features 

still positively affected the disease classification task. Furthermore, this improvement has 

answered the proposed research question: In the absence of time and human expertise, 

automatically computed features perform on par with human-annotated features on CNN 

image classification tasks. 

5.2 Contribution 
 
 
The significant contributions of this dissertation are as follows: (1) harmonize the various 

terminologies for skin disease clinical features using the DEVO ontology; (2) combine 

human intelligence with a computer algorithm by integrating the three-point checklist 

diagnostic rules using ranking loss and feature loss functions to improve classification 

accuracy; (3) automatically classify skin disease images and generate feature labels to 

improve trust and acceptance of teledermoscopy; (4) improve the interpretability of the 

deep learning algorithm by generating the clinically interpretable image features; (5) assist 
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medical students in learning and identifying the features in dermoscopic images using the 

developed ontology; (6) automate the process of feature annotation; thus, fewer human 

annotators need to be involved, enabling the secondary use of enormous imaging data 

resources, such as the ISIC archive.   

5.3 Innovation 
 
One of the most substantial drawbacks of the deep learning algorithm is the lack of 

interpretability, especially when behavior changes are needed in the hospital. The existing 

clinical image classification studies using deep learning algorithms have not been able to 

provide evidence of how the results are generated or whether the results are reliable. 

Physicians need to be convinced of using this algorithm as a decision aid. This is the first 

attempt to build a semantic ontology to standardize and decompose the terminologies of 

dermoscopic features. This research generated an innovative deep learning model that 

combines the three-point checklist diagnostic rule with image features. The accuracy of the 

computer-aided diagnosis system can be improved by fine-tuning the parameters of the 

deep learning algorithm and integrating human knowledge into the computer algorithm.  
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